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Identifying Outliers in Fuzzy Time Series 
 

S. Suresh K. Senthamarai Kannan 
ManonmaniamSundaranar University, 

Tirunelveli, India 
 

 
Time series analysis is often associated with the discovery of patterns and prediction of features. 
Forecasting accuracy can be improved by removing identified outliers in the data set using the Cook’s 
distance and Studentized residual test. In this paper a modified fuzzy time series method is proposed 
based on transition probability vector membership function. It is experimentally shown that the proposed 
method minimizes the average forecasting error compared with other known existing methods. 
 
Key words: Membership functions, fuzzy sets, fuzzy logical relations, outliers, Cook’s distance, average 

forecasting error. 
 
 

Introduction 
Time series analysis plays a vital role in most 
actuarial related problems. Fuzzy time series is a 
scientific method that can be applied to time 
series data and in forecasting future events. 
Commonly actuarial issues are mainly related to 
the concept of uncertainty, each observation of a 
fuzzy time series is assumed to be a fuzzy 
variable along with an associated membership 
function. The accuracy of fuzzy time series 
plays a significant role in forecasting. 
Conventional methods that deal with forecasting 
problems show their inefficiency when solving 
problems related to linguistic values. 

Several approaches in the literature have 
been developed to identify outliers in time series 
analysis. Fox (1972) introduced the concept of 
outliers in time series analysis and discussed 
different types of time series outliers. Tsaur 
(1986) used an iterative fashion to detect 
multiple outliers.  
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A complete survey and discussion 

regarding outlier detection can be found in 
Barnett and Lewis, (1984). The Studentized 
residual analysis method and Cook’s distance 
can be used to detect outliers in time series. 
According to Barnett and Lewis (1984), the 
identified outliers can be either accommodated 
or removed. Chang and Tiao (1988) discussed 
estimation of time series parameters in the 
presence of outliers. 

Song and Chissom (1993) introduced 
definitions of fuzzy time series and its modeling 
by using fuzzy relational equations and 
approximate reasoning by Zadeh (1965). Song 
and Chissom (1993) outlined modeling 
procedures and implemented time-invariant and 
time-variant models to forecast enrollments at 
the University of Alabama. Sullivan and 
Woodall (1994) reviewed the first-order time-
variant fuzzy time series model and the first-
order time-invariant fuzzy time series model 
presented. Chen (1996) developed a basic or 
simplified method for time series forecasting 
using arithmetic operations rather than 
complicated max-min composition operations. 
Sullivan and Woodall (1999) have discussed 
three methods for estimating Markov transition 
matrices when observed state probabilities are 
not all either zeros or ones and a simulation-
based comparison of the performance of the 
estimators. Huarng (2001) worked on finding 
the effective lengths of intervals to improve 
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forecasting accuracy. Chen (2002) developed a 
fuzzy time series using arithmetic operations.  

Song (2003) has proposed the sample 
autocorrelation functions of fuzzy time series 
and used in model selection. The main idea is to 
select a number of different data sets from each 
fuzzy set and calculate the sample auto 
correlation function for each data set. Chung and 
Hsu (2004) proposed a higher order fuzzy time 
series applied for Taiwan future exchange. Lee 
et al., (2004) have presented an improved 
method to forecast university enrollments based 
on the fuzzy time series. The method proposed 
not only defines the supports of the fuzzy 
numbers that represent the linguistic values of 
the linguistic variable more appropriately, but 
also makes the RMSE smaller Sah et al., (2005) 
presented the method for forecasting given high 
accuracy and comparing existing methods. Tsaur 
et al., (2005) have proposed fuzzy relation 
matrix affecting the forecasting performance and 
proposed an arithmetic procedure for deriving 
fuzzy relation matrix method using Fuzzy 
relation analysis in fuzzy time series. Fuzzy 
relation is a crucial connector in presenting 
fuzzy time series model. Also the concept of 
entropy is applied to measure the degrees of 
fuzziness when a time invariant matrix is 
derived. Singh (2007) proposed a method for 
fuzzy time series forecasting using a simple time 
variant method. Hao-Tien Liu (2007) has 
proposed improved time-variant fuzzy time 
series method. The proposed method takes into 
consideration of Window base, length of 
interval, degrees of membership values, and 
existence of outliers. The improved method 
provides decision makers with more precise 
forecasted values.  
 
Fuzzy Time Series 

Song and Chissom (1993) proposed a 
procedure for solving fuzzy time series models 
described as follows: Let Ube the universe of 
discourse, 
 

min 1 max 2[ , ],U V V V V= − +  

 
where }...,{ 21 nuuuU =  is the given historical 
data, the minimum data is Vmin, the maximum 

data is Vmax and V1,V2 are two real numbers. A 
fuzzy set Ai of U is defined by 

nnAiAiAii uufuufuufA /)(....../)(/)( 2211 +++=
 
where fA is the membership function of fuzzy set 
Ai. Let ...)2  ,1  ,0( ),( =ttY be a subset of R. If Y 
(t) is the universe of interest defined by the 

fuzzy set ( ), 1,   2,...i t iμ =  then F(t) is called a 

fuzzy time series of Y(t). If there exists a fuzzy 
relationship ( , 1),R t t −  such that 

),1,(*)1()( −−− ttRtFtF  where the symbol * is 
an operator, then F(t) is said to be induced by 
F(t−1) the relationship can be denoted by 

)()1( tFtF →− . Suppose )1( −tF  by Ai 
and F (t) by Aj fuzzy logical relationship can be 
defined by ii AA →  where Ai and Aj are called, 
respectively, the left hand side and right hand 
side of the fuzzy logical relationship. 
 
Detection of Outliers 

Outlier defines an observation that is 
numerically distant from the rest of the data, or 
is any observation in a set of data that is 
inconsistent with the remainder of the 
observations in the data set. The outlier is 
inconsistent in the sense that it is not indicative 
of possible future behavior of the data sets. 
Cook’s Distance (Di) defines how much an 
observation affects a change in a parameter 
estimate of least square regression analysis: 
 

( )
2

2 .
* 1

i ii
i

ii

e hD
p MSE h

 
=  

 − 
 

 
To interpret Di, compare it to the F-distribution 
with (p, n−p) degrees of freedom to determine 
the corresponding percentile; if the percentile 
value is greater than 50%, then the observation 
has a major influence on the fitted values and 
should be examined. Thus, if Di>F(0.5, p, n−p) 
then consider influence. 

The Studentized residual analysis 
methods can assist in determining whether 
outliers exist in historical data. The Studentized 
test can be employed to examine the outliers as 
follows: If there are n historical data x1, x2,…,xn 
a square matrixR can be defined as, 
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The Studentized residual can be defined by the 
Studentized Residual Test: 

j

i

S
e

, 

where 

( )ˆ 1 .j iiS i rσ= −  

 
Here, Sj is the estimated variance of the residual, 
ei specifies the residual of the ith datum, ( )iσ̂  is 

the estimated value of the standard deviation σ  
without the ith observation, and ri is the ith 
diagonal element in matrix R. The data is 
considered to be an outlier where the absolute 
residual values having Studentized residuals are 
greater than 2.0. 
 
Discrete Time Markov Chain 

A Markov chain is a discrete random 
process with the property that the next state 
depends only on the current state; the past states 
have no influence on the future.  

A Markov chain X is said to be time-
homogenous if the conditional probability 

[ ] Sji,,PiX|jXP ijn1n ∈===+
 is independent of 

n, and S is the countable state space. The 
probabilities of Pij are called the transition 
probabilities for the Markov chain X. It is 
customary to arrange the Pij or P(i,j) = Pij into a 
square array and to call the resulting matrix 
P=(Pij) the transition probability matrix of the 
Markov chain X; for any i, j∈S, Pij≥0, and 

1P
Ej

ij =
∈

 for any m∈N, 

[ ] Sji,,PiX|jXP m
ijnmn ∈===+

. Here
)(m

ijP  

denotes the probability that the process goes 
from state i to state j in m transitions. The 

transition probabilities ijP  can be exhibited as a 

square matrix 
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PPPP
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which is called the transition probability matrix 
of the chain. If the number of states is finite, for 
example n, then there will be n rows and n 
columns in the matrix P; otherwise the matrix 
will be infinite.As it is known, 0≥ijP , and 

1.P
0j

ij =
∞

=
 for every ,...2,1,0, =ji  

 
Modified Method of Forecasting 

This article aims to provide better 
forecasting accuracy using fuzzy time series 
with forecasts using only historical data. The 
step by step forecasting procedure is as follows: 
 
1. First identify outliers from the historical data 

using Cook’s distance and the Studentized 
residual test. 

 
2. After identifying the outlier, compute the 

appropriate length of interval l using the 
distribution based method by Chen (2002). 

 
3. Compute the number of intervals m as 

follows: 
 

( ) ( )
l

VVVV
m 1min2max −−+

=  

where Vmax is the maximum value of the 
historical data, V2 is the positive integer, 
Vmin is the minimum value of the historical 
data, V1 is the positive integer and l  is the 
appropriate length of interval.  

 
4. Let U be the universe of discourse, 

[ ]2max1min VV,VVU +−=  and partition 
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into m equal length intervals 

 }.u ... u ,u,{u m321  

 
5. Fuzzify the variations of the historical data 

and determine the fuzzy logical 
relationships. 

 
6. If Ai is the fuzzified value of current year n 

and Aj is the fuzzified value of next year 
n+1, then fuzzy logical relation is denoted 
by Ai→ Aj. 

 
7. Define Fuzzy sets Ai on universe of 

discourse U, then determined how many 
linguistic variables to be fuzzy sets. 

 
8. Define the linguistic terms of Ai represented 

by the fuzzy sets are as follows: 
 

A1 ={u1/0.667,u2/0.337,u3/0, . . . ,um/0} 
 

A2 ={u1/0.25,u2/0.5,u3/0.25, . . . ,u m/0} 
 

A3={u1/0,u2/0.25,u3/0.50, . . . , 0,um/0} 
… 

Am ={u1/0, . . . , um-1/0.333, um/.0.667 } 
 
9.  Fuzzify the historical data are as follows: 

If the value belongs to u1, then fuzzified  
membership into 0.667/A1+0.333/A2+0/A3 

denoted by A1.If the value belongs  
to ui,i=2,3,…,n-1, then the fuzzified 
membership values into 0.25/Ai-1 + 0.5/Ai + 
0/Ai+1 denoted by Ai. If the value belongs to 
un then the fuzzified membership values 
0/An-2+0.333/An-1+0.667/An denoted by An. 

 
10. Identify the fuzzy logical relationship of first 

order fuzzy time series is as follows: 
Aj-1 → Aj. 

 
11. Determine the fuzzy logical 

relationship
i

T
ii AAR ×= −1

, i = 1,2,…,n 

and obtain the transition probability matrix 

is 
n

1i
im RP

=

= . 

 
12. Calculate the forecast outputs using 

transitions state probability membership 

function as mPPP t1t ×′=′+ , where, 1tP +′  is 

the current year historical data is obtained 
from previous year vector probability 
membership tP′  and probability matrix mP . 

 
13. Obtain the average forecasting error using 

actual and forecasted values: 
 

%100
)(

 ×
−

=
valueactual

valueactualvalueforcasted
errorForcast

 
 
Numerical Example 

The proposed approach isdescribed with 
actual data corresponding to the number of 
accidentsoccurring in India. The original data set 
is shown in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Identifying Outliers Using Cook’s 
Distance and Studentized Residual Test 

 

Year
Number 

of 
Accidents

CooksDistance 
Student 
Residual

1985 20700 0.001 -0.168 
1986 21550 0.008 -0.415 
1987 23400 0.000 0.026 
1988 24670 0.000 0.067 
1989 27000 0.020 0.837 
1990 28260 0.019 0.870 
1991 29340 0.014 0.777 
1992 26030 0.115 -2.597 
1993 28010 0.067 -1.890 
1994 32040 0.000 0.142 
1995 34890 0.037 1.292 
1996 37120 0.097 2.126 
1997 37370 0.048 1.345 
1998 38500 0.051 1.290 
1999 38640 0.010 0.524 
2000 39140 0.000 0.037 
2001 40560 0.002 0.182 
2002 40750 0.016 -0.528 
2003 40670 0.040 -1.504 
2004 42990 0.035 -0.667 
2005 43920 0.070 -0.882 
2006 46090 0.006 -0.085 
2007 47920 0.135 0.371 
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Table.1 shows an unusual residual value 
(−2.597) in 1992, which has a Studentized 
absolute value residual greater than 2.0. 
Studentized residuals measure how many 
standard deviations each observed value deviates 
from a model fitted using all of the data except 
that observation.In this case, there is one 
Studentized residual greater than 2.0, but none 
greater than 3.0. The step by step procedure is as 
follows: 
 
1. First, the appropriate length of interval l is 

computed using distribution based length 
procedure to obtain an interval length of      
l  = 2000. 

 
2. The calculated number of intervals, 

2000

2000048000
m

−=  = 14. 

 
3. Define the universe of discourse or universal 

set, U = [20000, 48000], and partition U into 
14 equal length of intervals, ui, i=1, 2,…, 14, 
u1 =[20000, 22000), u2 =[22000, 24000),     
u3 =[24000, 26000),..., u13 =[44000, 46000), 
and u14= [46000, 48000]. 

 
4. It is assumed that the linguistic variable of 

the historical data can take fuzzy values are 
as follows: A1 (very big decrease), A2 (big 
decrease), A13 (big increase) and A14 (very 
big increase). Then, for the given intervals 
ui, i = 1, 2….14, each ui belongs to a 
particular Aj, j=1,2,…,14 and is expressed 
by the real value within the range [0,1]. The 
complete sets of relationship are shown in 
Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. The fuzzy relationships are combined into 
fuzzy logical relations starting from 
identical left-hand sides. Then Ri,i=1, 2…22 
is calculated as a sum of logical 
relationships in each group. Here, the 
relation matrix Ri is converted into a 
transition probability matrix Pm is shown in 
Figure 1. 

 
6. Table 3 illustrates the defuzzified forecast 

outputs using transition state probability 
membership function. The outputs are 
multiplied with corresponding mid values of 
the fuzzy interval over the period of years 
and its overall summation leads the 
predicted values. For example, year 2004 is 
forecasted using fuzzified values of 2003 
.The midpoints of the intervals u1,u2 ,..., u14 
are multiplied into corresponding 
defuzzified probability values and its overall 
summation. The actual and predicted value 
of number of accidents in India is shown in 
Figure 2. 

 
7. Finally, the average forecasting error is 

obtained using actual and forecasted values, 
when compared with the other existing 
methods. The result is shown in Table 3. 

 
Conclusion 

This article is mainly focused on improving the 
forecasting accuracy by removing the identified 
outlier in the data set. This proposed method 
first predicts the fuzzy time series using 
transition probability vector membership 
functions, then, the average forecasting error is 
calculated based on after removing the outliers 
in the data. The experimental results show that 
the average forecasting error is 2.86% for the 
historical data. After removing the outlier, the 
method produces 2.60% of average forecasting 
error. Thereby, the proposed method improves 
average forecasting accuracy by approximately 
9%.The results indicate that the proposed 
method is more appropriate compared to other 
existing methods. It is supported by numerical 
and graphical representations. 
 
 
 
 

A1→ A1 A1 → A2 A2→ A3 

A3 → A4 A4 → A5 A5 → A5 

A5 → A4 A4 → A5 A5 → A7 

A7→ A8 A8 → A9 A9 → A9 

A9→ A10 A10 → A10 A10 → A10 

A10→ A11 A11 → A11 A11 → A11 

A11 → A12 A12 → A12 A12 → A14 

A14 → A14 A13 → A14 A14 → A14 
A13 → A14   
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Figure 1: Transition Probability Matrix from Relation Matrix 
 

Pm= 



















































0.670.330.000.000.000.000.000.000.000.000.000.000.000.00

0.470.310.150.080.000.000.000.000.000.000.000.000.000.00

0.190.200.290.250.070.000.000.000.000.000.000.000.000.00

0.060.100.250.340.200.050.000.000.000.000.000.000.000.00

0.000.020.140.320.340.160.020.000.000.000.000.000.000.00

0.000.000.030.190.380.310.090.000.000.000.000.000.000.00

0.000.000.000.050.250.400.250.050.000.000.000.000.000.00

0.000.000.000.000.080.330.420.170.000.000.000.000.000.00

0.000.000.000.000.000.060.190.190.190.250.130.000.000.00

0.000.000.000.000.000.000.070.140.250.360.180.000.000.00

0.000.000.000.000.000.000.040.080.210.380.250.040.000.00

0.000.000.000.000.000.000.000.000.060.250.380.250.060.00

0.000.000.000.000.000.000.000.000.000.040.180.280.280.22

0.000.000.000.000.000.000.000.000.000.000.040.180.390.39

 

Table 3: Forecasting Number of Accidents from 1985-2007 
 

Year Actual 
Fuzzy Output Vectors 

Predicted 
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 

1985 20700                

1986 21550 0.33 0.35 0.22 0.09 0.01 0 0 0 0 0 0 0 0 0 23202 

1987 23400 0.33 0.35 0.22 0.09 0.01 0 0 0 0 0 0 0 0 0 23202 

1988 24670 0.20 0.26 0.25 0.19 0.08 0.02 0 0 0 0 0 0 0 0 24488 

1989 27000 0.05 0.10 0.21 0.29 0.23 0.08 0.02 0.01 0 0 0 0 0 0 26858 

1990 28260 0 0.02 0.08 0.26 0.34 0.18 0.08 0.04 0 0 0 0 0 0 28952 

1991 29340 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1993 28010 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1994 32040 0 0 0.01 0.18 0.33 0.22 0.14 0.09 0.02 0 0 0 0 0 30280 

1995 34890 0 0 0 0.03 0.06 0.05 0.14 0.32 0.28 0.10 0.01 0 0 0 34958 

1996 37120 0 0 0 0 0 0 0.07 0.25 0.36 0.24 0.07 0.01 0 0 37042 

1997 37370 0 0 0 0 0 0 0.01 0.12 0.30 0.34 0.19 0.05 0.01 0 38477 

1998 38500 0 0 0 0 0 0 0.01 0.12 0.30 0.34 0.19 0.05 0.01 0 38477 

1999 38640 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2000 39140 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2001 40560 0 0 0 0 0 0 0 0.03 0.17 0.32 0.29 0.14 0.04 0.02 39996 

2002 40750 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2003 40670 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2004 42990 0 0 0 0 0 0 0 0.01 0.06 0.21 0.31 0.23 0.11 0.08 41656 

2005 43920 0 0 0 0 0 0 0 0 0.01 0.09 0.23 0.24 0.20 0.23 43441 

2006 46090 0 0 0 0 0 0 0 0 0.01 0.09 0.23 0.24 0.20 0.23 43441 

2007 47920 0 0 0 0 0 0 0 0 0 0 0.02 0.05 0.32 0.60 46001 
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