
Journal of Modern Applied Statistical
Methods

Volume 10 | Issue 2 Article 28

11-1-2011

A Pooled Two-Sample Median Test Based on
Density Estimation
Vadim Y. Bichutskiy
George Mason University, vbichuts@masonlive.gmu.edu

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Emerging Scholar is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted
for inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Bichutskiy, Vadim Y. (2011) "A Pooled Two-Sample Median Test Based on Density Estimation," Journal of Modern Applied Statistical
Methods: Vol. 10: Iss. 2, Article 28.
Available at: http://digitalcommons.wayne.edu/jmasm/vol10/iss2/28

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss2/28?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol10/iss2/28?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol10%2Fiss2%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2011 JMASM, Inc. 
November 2011, Vol. 10, No. 2, 692-698                                                                                                                 1538 – 9472/11/$95.00 

692 
 

Emerging Scholars 
A Pooled Two-Sample Median Test Based on Density Estimation 

 
Vadim Y. Bichutskiy 

George Mason University 
Fairfax, Virginia 

 
 
A new method based on density estimation is proposed for medians of two independent samples. The test 
controls the probability of Type I error and is at least as powerful as methods widely used in statistical 
practice. The method can be implemented using existing libraries in R. 
 
Key words: Sample median, two-sample hypothesis test, adaptive kernel density estimation. 
 
 

Introduction 
Let 1 nX , X , … , X2  be iid having cdf F and pdf 

f with F(η) = 1/2 so that η is the population 
median. Suppose f is continuous at η with f(η) > 
0. Denote the sample median by H. It is known 
that H is asymptotically normal with mean η and 
variance 1/4nf2(η). Estimating the asymptotic 
standard error of the sample median requires an 
estimate of the population density at the median. 
Besides being a challenging problem, density 
estimation was difficult to apply in practice prior 
to the computer revolution; due to this, several 
alternative methods for estimating the standard 
error of the sample median have been developed 
(Maritz & Jarrett, 1978; McKean & Schrader, 
1984; Price & Bonett, 2001; Sheather & Maritz, 
1983; Sheather, 1986).  

Comparing medians based on two 
independent samples is a well-studied problem 
(see Wilcox & Charlin, 1986; Wilcox, 2005; 
Wilcox, 2006; Wilcox, 2010 also has a good 
discussion). The methods fall into two main 
categories. The first uses the bootstrap (Efron, 
1979), and the second assumes the sample 
median or some other estimator of the  
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population median is approximately normal and 
uses one of several methods for estimating the 
standard error of the sample median. Virtually 
all methods are very conservative, particularly 
for heavy-tailed populations. 

A new two-sample test is proposed for 
comparing medians. When population shapes 
can be assumed to be the same, a pooled test 
statistic, analogous to a pooled two-sample 
Student’s t statistic for comparing means, is 
derived. Computer-intensive Monte Carlo 
simulations in R (R Development Core Team, 
2009) are used to study the properties of the test 
and compare it to other methods. The method 
offers several additional benefits to practitioners: 
(1) a parameter that controls the trade-off 
between making the test conservative and liberal 
with a suitable value of the parameter producing 
a test with a nominal significance level; (2) the 
test is easy to implement in R using the 
QUANTREG (Koenker, 2009) library. 
 

Methodology 
Two-Sample Test Statistic for Difference in 
Medians 

Let 1 nX , X , … , X2  and 

1 mY , Y , … , Y2  be two independent random 

samples of sizes n and m from populations with 
densities fx, fy that are continuous at the medians 
ηx, ηy with fx(ηx) > 0, fy(ηy) > 0, respectively. 
Denote sample medians by Hx, Hy. The test 
hypotheses are: 
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where Δ is a specified difference in medians, 
and is often 0. 

For sufficiently large n and m: 
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Assuming the normal approximation 

holds when the standard error of the difference 
in medians is estimated, then under the null 
hypothesis, the V statistic is: 
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where f Hˆ ( )x x  and f Hˆ ( )y y  are respective 

population density estimates at the median. 
Further, if it is assumed that the two 

populations have the same shape, possibly with 
a difference in location, then fx(ηx) = fy(ηy), and 
the density estimates can be pooled to obtain a 
pooled test statistic: 
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is the pooled estimate of the population density 
at the median. 
 
Simulations 

The software R was used to simulate the 
power of the pooled test statistic (1). Two cases 
were considered: (i) population shapes are 
assumed to be known, and (ii) population shapes 
are unknown. The assumption of known 
population shapes is analogous to the 
assumption of known population variances in 
the z-test for comparing the means of two 
normal populations since the variance 
determines the shape of the normal distribution. 
The goal was to see how the test would perform 
for samples of moderate size from symmetric 
heavy-tailed populations. Parent populations 
investigated were Cauchy, Laplace and 
Student’s t distributions with 2 and 3 degrees of 
freedom. In all settings, the parent populations 
were of the same shape, shifted under the 
alternative, and a two-sided test H0: ηx = ηy 
versus H1: ηx ≠ ηy was performed. 
 
Adaptive Kernel Density Estimation 

When population shapes are unknown, 

fx(ηx) and fy(ηy) are estimated with f Hˆ ( )x x  and 

f Hˆ ( )y y , respectively, using adaptive kernel 

density estimation (AKDE). 

Let 1 nX , X , … , X d
2 ∈  be a sample 

from unknown density f. The AKDE is a three 
step procedure: 

1. Find a pilot estimate f (X)
 that satisfies 

if (X ) 0> , 1, 2, , n.…i=   

 
2. Define local bandwidth factors 

-γλ 
i i={f(X)/g}  where g  is the geometric 

mean of the if (X )  and 0 γ 1≤ ≤  is the 

sensitivity parameter.  
3. The adaptive kernel estimate is defined by 
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f(X)= n h K{h (X-X )}  

 
where K(.)  is a kernel function and h  is the 
bandwidth.  

 
The AKDE method varies the 

bandwidth among data points and is better suited 
for heavy-tailed populations than ordinary KDE 
(Silverman, 1998, pp. 100-110). Intuitively, the 
AKDE is based on the idea that for heavy-tailed 
populations a larger bandwidth is needed for 
data points in the tails of the distribution (i.e., 
for outliers). In R, function AKJ in library 
QUANTREG implements AKDE. Obtaining the 
pilot estimate requires the use of another density 
estimation method, such as ordinary KDE. The 
general view in the literature is that AKDE is 
fairly robust to the method used for the pilot 
estimate (Silverman, 1998) and that the choice 
of the sensitivity parameter γ  is more critical. 
When using AKDE with Gaussian kernel, if the 
parent population has tails close to normal then 
γ 5< .  should be used, however, if the parent 

population is heavy-tailed then γ 5> .  should be 

used. Thus, γ 5= .  is a good choice and has 
been shown to reduce bias (Abramson, 1982). 
 

Results 
Case 1: Known Population Shapes 

Figure 1 shows the power curves for the 
pooled test when population shapes are assumed 
to be known at the 5% level of significance. 
Each point on the curves is based on 10,000 
simulated samples. The Type I error rate is 
controlled very well. 
 
Case 2: Unknown Population Shapes 

Figure 2 shows the power curves for the 
pooled test when population shapes are 
unknown at the 5% level of significance and 
using AKDE with γ 5= . . Each point on the 
curves is based on 10,000 simulated samples. 
The Type I error rate is controlled very well. 
 
Comparisons with Other Methods 

The test was compared to the following 
methods: (i) Student’s t-test; (ii) Mann-Whitney-
Wilcoxon (MWW) rank sum test; (iii) bootstrap 

(Efron & Tibshirani, 1993. p. 221); and (iv) 
permutation test. Figure 3 shows the receiver 
operating characteristic (ROC) curves for a 
balanced design with n = m = 30. The parent 
populations were of the same shape in each case 
and the difference in population medians was set 
to 1. For the bootstrap and the permutation test, 
the difference in medians was used as the metric. 
Each point on the curves is based on 10,000 
simulated samples. 
 

Conclusion 
Tests for comparing medians tend to be very 
conservative. The proposed test is able to control 
the probability of Type I error. It is as powerful 
as the permutation test and the bootstrap and is 
more powerful than the MWW test for heavy-
tailed populations. The more heavy-tailed the 
parent population, the greater the power 
advantage of the proposed test over the MWW 
test; when the parent population is light-tailed, 
the MWW test is more powerful than the 
proposed test. 

A key precept of the method is that 
AKDE provides a better estimate of the 
population density at the median, especially for 
heavy-tailed populations, than ordinary KDE. As 
expected, using ordinary KDE makes the test 
very conservative where the Type I error rate 
can be as low as 0.02 at the 5% significance 
level.  

These experiments show that the 
sensitivity parameter γ  in AKDE controls the 
trade-off between making the test conservative 
and liberal, with a suitable value of γ  producing 
a test with a nominal significance level. The 
Type I error rate of the test can be increased 
(decreased) by increasing (decreasing) γ .  

The asymptotic distribution of the 
sample median has been known for over 50 
years (Chu, 1955; Chu & Hotelling, 1955), but it 
is only now with the improvement in computing 
power that this theory can be practically 
employed to derive useful statistical 
methodology, illustrating the interplay between 
theory, methodology and computation in the 21st 
century. 
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Figure 1: Power Curves for Known Population Shapes (10,000 Simulated Samples) 
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Student’s t (df = 2)                                                          Student’s t (df = 3) 
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Figure 2: Power Curves for Unknown Population Shapes 
(10,000 Simulated Samples, AKDE with γ 5= . ) 
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Figure 3: ROC Curves. Balanced Design with n = m = 30 (10,000 Simulated Samples) 
 

(The curves for the permutation test coincide closely with the curves for the proposed test 
and have been omitted for clarity.) 

 
Cauchy                                                                               Laplace 

 

 
 
 

Student’s t (df = 2)                                                         Student’s t (df = 3) 
 

 



POOLED TWO-SAMPLE MEDIAN TEST 

698 
 

Acknowledgements 
The author thanks Professor Emeritus Bruce E. 
Trumbo, Professor Eric A. Suess and Professor 
Joshua D. Kerr at California State University, 
East Bay (Hayward), for helpful discussions and 
suggestions. The journal staff improved the 
prose. Earlier versions of this work were 
contributed at Joint Statistical Meetings 
(Bichutskiy, Kerr & Trumbo, 2009; Bichutskiy, 
et al., 2010). 
 

References 
Abramson, I. S. (1982). On bandwidth 

variation in kernel estimates: A square root law. 
The Annals of Statistics, 10, 1217-1223. 

Bichutskiy, V. Y., Kerr, J., & Trumbo, 
B. E. (2009). Classroom simulation: 
Investigation of the asymptotic distribution of 
the sample median. In JSM Proceedings, 
Statistical Education Section, Alexandria, VA: 
American Statistical Association, 3715-3728. 

Bichutskiy, V. Y., Kerr, J. D., Suess, E. 
A., & Trumbo, B. E. (2010). Classroom 
derivation and simulation: An asymptotic two-
sample test for comparing population medians. 
In JSM Proceedings, Statistical Education 
Section, Alexandria, VA: American Statistical 
Association, 4531-4545. 

Chu, J. T. (1955). On the distribution of 
the sample median. The Annals of Mathematical 
Statistics, 26, 112-116. 

Chu, J. T., & Hotelling, H. (1955). The 
moments of the sample median. The Annals of 
Mathematical Statistics, 26, 593–606.  

Efron, B. (1979). Bootstrap methods: 
Another look at the jackknife. The Annals of 
Statistics, 7(1), 1-26. 

Efron, B., & Tibshirani, R. J. (1993). An 
introduction to the bootstrap. Boca Raton, FL: 
Chapman & Hall/CRC.  

Koenker, R. (2009). quantreg: Quantile 
regression, R package version 4.44. 
http://CRAN.R-project.org/package=quantreg.  

Maritz, J. S., & Jarrett, R. G. (1978). A 
note on estimating the variance of the sample 
median. Journal of the American Statistical 
Association, 73, 194-196. 
 
 
 
 

McKean, J. W., & Schrader, R. M. 
(1984). A comparison of methods for 
Studentizing the sample median. 
Communications in Statistics – Simulation and 
Computation, 13, 751-773. 

Price, R. M., & Bonett, D. G. (2001). 
Estimating the variance of the sample median. 
Journal of Statistical Computation and 
Simulation, 68, 295-305. 

R Development Core Team. (2009). R: 
A language and environment for statistical 
computing. R Foundation for Statistical 
Computing, Vienna, Austria. ISBN 3-900051-
07-0, URL http://www.R-project.org. 

Sheather, S. J., & Maritz, J. S. (1983). 
An estimate of the asymptotic standard error of 
the sample median. Australian Journal of 
Statistics, 25(1), 109-122. 

Sheather, S. J. (1986). A finite sample 
estimate of the variance of the sample median. 
Statistics and Probability Letters, 4, 337-342. 

Silverman, B. W. (1998). Density 
estimation for statistics and data Analysis. Boca 
Raton, FL: Chapman & Hall/CRC. 

Wilcox, R. R., & Charlin, V. L. (1986). 
Comparing medians: A Monte Carlo study. 
Journal of Educational Statistics, 11(4), 263-
274. 

Wilcox, R. R. (2005). Comparing 
medians: An overview plus new results on 
dealing with heavy-tailed distributions. The 
Journal of Experimental Education, 73(3), 249-
263. 

Wilcox, R. R. (2006). Comparing 
medians. Computational Statistics & Data 
Analysis, 51, 1934-1943. 

Wilcox, R. R. (2010). Fundamentals of 
modern statistical methods: Substantially 
improving power and accuracy, 2nd Edition. 
New York, NY: Springer. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2011

	A Pooled Two-Sample Median Test Based on Density Estimation
	Vadim Y. Bichutskiy
	Recommended Citation


	Microsoft Word - toc_vol10_no2

