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Abstract  

Objective Survivors of critical illness in early life are at risk of long-term memory and attention 

impairments. However, their neurobiological substrates remain largely unknown.  

Design A prospective follow-up study.   

Setting Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands. 

Patients Thirty-eight school-age (8-12 years) survivors of neonatal extracorporeal membrane 

oxygenation (ECMO) and/or congenital diaphragmatic hernia (CDH) with an IQ ≥ 80 and a below 

average score (z-score≤ -1.5) on one or more memory tests.  

Interventions None.  

Measurements and Main Results Intelligence, attention, memory, executive functioning and 

visuospatial processing were assessed and compared with reference data. White matter microstructure 

and hippocampal volume were assessed using Diffusion Tensor Imaging and structural MRI, 

respectively. Global fractional anisotropy(FA) was positively associated with selective attention 

(β=0.53, p=.030) and sustained attention (β=0.48, p=.018). Mean diffusivity(MD) in the left 

parahippocampal region of the cingulum (PHC) was negatively associated with visuospatial memory, 

both immediate (β=-0.48, p=.030) and delayed recall (β=-0.47, p=.030). MD in the PHC was negatively 

associated with verbal memory delayed recall (left:β=-0.52, p=.021; right:β=-0.52, p=.021). 

Hippocampal volume was positively associated with verbal memory delayed recall (left:β=0.44, p=.037; 

right:β=0.67, p=.012). ECMO treatment or ECMO type did not influence the structure-function 

relationships.  

Conclusions Our findings indicate specific neurobiological correlates of attention and memory deficits 

in school-age survivors of neonatal ECMO and CDH. A better understanding of the neurobiology 

following critical illness, both in early and in adult life, may lead to earlier identification of patients at 

risk for impaired neuropsychological outcome with the use of neurobiological markers. 
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INTRODUCTION 

The number of children admitted to neonatal intensive care units has increased over the last decade and 

medical improvements have led to higher survival rates(1). The long-term neurodevelopment following 

critical illness in early life is therefore, now more than ever, of major concern. Previous studies have 

shown that growing up after critical illness in early life, either due to prematurity, specific forms of 

cardiac anomalies or major congenital anomalies, is associated with neuropsychological deficits and 

school problems. Attention and memory domains have been reported in pre-adolescent and adolescent 

survivors, irrespective of underlying cause or birthweight(2-7). However, the neurobiological substrates 

of these impairments remain largely unknown.  

A clearly delimited group of critical illness survivors are children treated with neonatal 

extracorporeal membrane oxygenation(ECMO) or congenital diaphragmatic hernia(CDH) treated 

without ECMO. Recently, we showed altered global white matter microstructure and specific alterations 

in limbic system regions in 11-year-old ECMO survivors(8). Hippocampal volume was positively 

associated with verbal memory(8). However, as only a limited cognitive assessment was available, 

specific aspects of neuropsychological outcome in relation to brain alterations have yet to be explored. 

This is of interest as, despite a generally average IQ, not only verbal but visuospatial memory and 

attention deficits have been shown following ECMO and CDH without ECMO(2, 5, 7).  

The identification of impaired neurodevelopment currently relies solely on neuropsychological 

assessment. Understanding the neurobiological correlates of impaired outcome may lead to earlier 

identification of children at risk with the use of advanced neuroimaging techniques. In this study, we 

aimed to find neurobiological substrates of neuropsychological deficits in school-age (8-12 years) 

survivors of critical illness in early life by combining elaborate neuropsychological assessment with 

structural MRI and diffusion tensor imaging(DTI). We hypothesized that previously demonstrated brain 

alterations in neonatal ECMO survivors (i.e. global white matter microstructure, white matter 

microstructure in the cingulum bundle and parahippocampal region of the cingulum, and hippocampal 

volume(8)) would be specifically associated with memory and attention deficits. We expect our findings 

to aid in earlier identification of patients at risk of long-term cognitive deficits with the use of 

neurobiological markers.  
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MATERIALS AND METHODS 

Population  

Participants of an ongoing trial of working-memory training (NTR4571) at the Erasmus MC-Sophia 

Children’s Hospital with usable neuroimaging data at baseline were included. Inclusion criteria for the 

trial were: school-age (8-12 years) children treated with ECMO or treated for CDH without ECMO in 

the first weeks of life at the Erasmus MC-Sophia Children’s Hospital in Rotterdam or the Radboud 

University Medical Center in Nijmegen (the Netherlands), IQ ≥ 80 and memory impairment (z-score ≤ 

-1.5 on ≥1 memory tests(9)). Children who met the inclusion criteria underwent neuroimaging. ECMO 

treatment had been applied in case of reversible severe respiratory failure using the entry criteria by 

Stolar et al(10): oxygenation index>25 with 3-hour intervals, persistent low pH (<7.15) for 3-6 hours, 

and non-responding to changes in therapy. Entry criteria for ECMO did not change over time. Exclusion 

criteria were: psychopharmaceutical drugs (e.g. methylphenidate) and/or genetic syndromes known to 

affect neuropsychological functioning. 

This study was performed in compliance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) and approved by the Institutional Review Board (MEC-2014-

001). All parents and children ≥12 years signed an informed consent prior to their inclusion in the study. 

The neuropsychological and neuroimaging data collected at baseline are presented in this study.  

 

Neuropsychological assessment  

Validated neuropsychological tests, with Dutch validated reference values, were assessed cognitive 

skills across four domains (brief test descriptions in Supplemental Digital Content 1):  

1. Intelligence: Two-subtest(Block Design and Vocabulary) short-form(11) of the Wechsler 

Intelligence Scale for Children(WISC-III-NL)(12). 

2. Attention:  

a. Sustained attention: Dot Cancellation Test(DCT)(13).  

b. Selective attention: Trail Making Test B(TMTB)(9), STROOP color-word 

test(Stroop)(9). 

c. Processing speed: Trail Making Test A(TMTA)(9). 
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3. Memory:  

a. Working-memory: subtest Digit Span of the WISC-III-NL(12), subtest Spatial Span of 

the Wechsler Nonverbal Scale of Ability(WNV)(14). 

b. Verbal memory: Rey Auditory Verbal Learning Test(RAVLT)(15). 

c. Visuospatial memory: Rey Complex Figure Test(RCFT)(16).  

4. Executive functioning: Subtests Key Search and Modified Six Elements of the Behavioral 

Assessment of the Dysexecutive Syndrome(17). 

 

Neuroimaging 

All children first underwent a mock scanning session to become familiarized with the MR-

environment(18). MRI data were acquired on a 3 Tesla GE MR-750 system using an 8-channel head 

coil(General Electric, Milwaukee, WI). A full description of the methods is provided in Supplemental 

Digital Content 2. After DTI data processing, the voxel-wise scalar maps fractional anisotropy(FA) and 

mean diffusivity(MD) were computed. FA indicates the degree of directionality of water diffusion and 

ranges from 0 to 1. MD is the rate of diffusion of water (hydrogen) averaged in all directions. The FSL 

plugin ‘AutoPtx’ for fully automated probabilistic fiber tractography was used to create subject-specific, 

probabilistic representations of multiple white matter bundles(19). Automated(20) and visual inspection 

of the data left 33 DTI datasets(87%) and 35 structural MRI datasets(92%) with usable image quality. 

All scans were reviewed by a board-certified neuroradiologist (M.S.), blinded for medical history and 

outcome. No serious clinically relevant abnormalities were reported. In one patient with a hemorrhagic 

infarct in the posterior middle cerebral artery as shown on neonatal cranial ultrasound, abnormalities 

(ulegyria) in this region were still visible on the long-term MRI scan. Sensitivity analyses were 

performed without this child’s data. As the results did not change, the child was not excluded from the 

analyses.  

 

 

 

 

5 
 



Statistical analysis  

Neuropsychological test scores were converted to z-scores (individual score minus the population mean 

divided by the population SD). Scores were inverted where appropriate so that higher scores always 

equated with better performance. Described in more detail in our previous study(8), global white matter 

microstructure was calculated using a weighted (by tract volume) average score of FA/MD of the 

association and limbic system fibers (uncinate, inferior fronto-occipital fasciculus, superior longitudinal 

fasciculus, inferior longitudinal fasciculus, cingulum bundle and parahippocampal part of 

cingulum(PHC)):  

 

Formula 1:  

Global FA =
∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖6
𝑖𝑖=1
∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖6
𝑖𝑖=1   

 

Where i denotes the tract, and Vol the volume of the tract. The same formula was used for global MD.  

Our primary aim was to examine whether previously reported brain alterations in ECMO 

survivors (global white matter structure, FA in the cingulum bundle, MD in the PHC and hippocampal 

volume(8)) were associated with specific neuropsychological deficits in ECMO survivors and survivors 

of CDH treated without ECMO. Linear regression analyses were used to assess the associations between 

the brain regions of interest and neuropsychological outcome. Brain structures were analyzed in the left 

and right hemispheres separately. If a significant association existed between an individual white matter 

tract and neuropsychological outcome, global FA/MD was added to identify whether associations were 

specific to an individual white matter tract above and beyond a global effect. The False Discovery 

Rate(FDR) correction(21) was applied once for each set of analyses between the same 

neuropsychological task and white matter microstructure outcomes(i.e. once for every six tests). The 

same method was used for the analyses between neuropsychological outcome and hippocampal volume. 

In post-hoc analyses, we adjusted for IQ to assess whether the structure-function relationships were 

specific to that neuropsychological domain or driven by general intellectual functioning.  
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Next, we assessed whether ECMO treatment(yes/no) or type of ECMO treatment(venoarterial 

ECMO(VA-ECMO)/venovenous ECMO(VV-ECMO)) influenced the associations between the brain 

regions of interest and neuropsychological outcome using linear regression analyses(5, 22).  

Finally, we determined if neuropsychological outcome was significantly different from the 

general population(mean z-score=0; SD=1) using one-sample t-tests, to inform us about the potential 

meaning of a significant structure-function relationship.  

SPSS Statistics Version 22.0(Armonk, NY: IBM Corp.) was used for the statistical analyses. 

Normality tests were performed for all data and assumptions of ANCOVA were checked and met before 

analyses were conducted. No multicollinearity was found(variance inflation factors<2.5(23)). In all 

regression analyses, we adjusted for age at the time of assessment and gender(24). Total brain volume 

was included in the analyses with hippocampal volume(25). The standardized regression coefficient 

beta(β), uncorrected(puncor) and FDR-corrected p-values were reported. Effect sizes were calculated 

using partial eta squared(hp
2) and interpreted according to Cohen’s guidelines (0.01=small, 

0.06=medium, 0.14=large)(26). Results were considered statistically significant at FDR-corrected 

p<.05.  
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RESULTS 

Study population  

Thirty-eight children participated (15 girls, 23 boys) with a mean age(SD) of 9.7(1.5) years. Twenty-six 

children (68%) had been treated with ECMO (MAS=18; CDH=2; Other=6) and 12 CDH patients (32%) 

had not required ECMO. Seventeen ECMO patients (65%) had undergone VA-cannulation and nine 

(35%) VV-ECMO. Patient characteristics retrieved from medical records are reported in Table 1.  

 

White matter microstructure and neuropsychological outcome 

Lower global FA was associated with worse selective attention, β=0.45, p=.036, hp
2=0.24, and sustained 

attention, β=0.48, p=.018, hp
2=0.23(Table 2). Lower FA in the right cingulum bundle was associated 

with worse sustained attention, β=0.46, p=.018, hp
2=0.24, whereas the association with FA in the left 

cingulum bundle disappeared after correcting for multiple testing, β=0.40, p=.046, hp
2=0.26. These 

findings were no longer significant when global FA was added(Table 2). 

 No associations were found between global MD and any of the neuropsychological tests(Table 

2). Higher MD in the left PHC was associated with worse visuospatial memory immediate recall, β= -

0.48, p=.030, hp
2=0.24, and delayed recall, β= -0.47, p=.030, hp

2=0.24. MD in both the left and right 

PHC were also negatively associated with verbal memory delayed recall (left: β= -0.52, p=.021, 

hp
2=0.23; right: β= -0.52, p=.021, hp

2=0.26)(Table 2, Figure 1).   

 IQ did not affect the associations between white matter microstructure and neuropsychological 

outcome. 

 

Hippocampal volume and neuropsychological outcome 

Smaller hippocampal volumes in the left and right hemispheres were associated with lower scores on 

verbal memory delayed recall (left: β=0.44, p=.037, hp
2=0.16; right: β=0.67, p=.012, hp

2=0.14)(Table 3, 

Figure 1). IQ did not affect these associations. 
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Treatment characteristics and neurodevelopmental outcome 

The significant associations found between neuropsychological outcome and the brain were the same in 

ECMO and non-ECMO patients, and VA-ECMO and VV-ECMO patients(Supplemental Digital 

Content 3).  

 

Neuropsychological functioning compared to the norm population 

Participants had an average IQ but scored significantly lower on all verbal and visuospatial memory 

tasks (immediate recall, delayed recall and recognition). Participants also had significantly lower 

sustained attention than the reference population(Table 4).  
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DISCUSSION 

The aim of this study was to identify neurobiological substrates of long-term impaired 

neuropsychological outcome following critical illness in early life. In CDH survivors treated with and 

without ECMO and in survivors of ECMO treatment following other diagnoses, specific associations 

were found between attention and memory deficits and global white matter microstructure and regions 

of the limbic system. These results – that were irrespective of ECMO or conservative ventilator 

management – provide more insight in the underlying neurobiology of long-term outcome following 

critical illness in early life. Furthermore, our findings were irrespective of general IQ. This supports a 

‘growing into deficit’ phenomenon in these patients, where subtle brain injuries acquired at a young age 

become functionally evident when higher cognitive functioning is required at a later age.  

The PHC and hippocampus are part of the limbic system, one of the main brain networks 

involved in memory. The PHC is bidirectionally connected to the hippocampus and forms a larger 

memory circuit together with cortical structures(27). While the hippocampus is viewed as the main hub 

for memory, its connections are highly important for intact functioning of various memory types (27, 

28). In line with this, our findings showed higher MD, suggestive of decreased integrity in axonal 

membranes, packing, or myelin(29), in the PHC to be associated with lower visuospatial and verbal 

memory. Further, smaller hippocampal volume was associated with impaired verbal memory. 

Interestingly, studies on other types of critical illness in early life have demonstrated similar structure-

function relationships. Hippocampal alterations and related verbal memory impairments were 

previously found by our group in a different cohort of neonatal ECMO survivors, but also by others in 

survivors of neonatal hypoxia and in patients with severe forms of congenital heart disease(3, 8, 30). In 

preterms, infant hippocampal volume was negatively associated with school-age verbal memory, and 

white matter volume in the PHC with non-verbal memory (31, 32). 

The present study further showed that lower global FA was related to poorer attention. Lower 

FA can be interpreted as reduced coherence of white matter fibers(29). Global white matter 

abnormalities have been associated with lower attention in preterms as well(33). Although we also found 

a significant association between lower FA in the cingulum bundle and worse sustained attention, this 

10 
 



association disappeared when global FA was added. These findings support the notion of more 

widespread white matter network alterations underlying attention impairments(34).  

In our study, the majority of significant structure-function relationships were found in the left 

and right hemispheres, although associations with FA in the left cingulum bundle disappeared after 

multiple testing correction. The associations with visuospatial memory were found only in the left PHC. 

Predominantly left hemispheric alterations have been suggested to be due to right internal jugular vein 

cannulation in neonatal ECMO patients(35). However, our results did not show an effect of ECMO. 

CDH survivors treated without ECMO showed structure-function relationships similar to ECMO-treated 

patients. Also, no differences were found between VA- and VV-ECMO treated patients. However, these 

findings should be interpreted with caution due to the small sample size. Furthermore, previous findings 

have shown more brain abnormalities in VA-ECMO-treated patients compared to VV-treated patients, 

but associations with neuropsychological outcome were not studied(22). Future studies with larger 

sample sizes, also including near-ECMO patients, are needed to further delineate the effects of treatment 

or diagnosis on neurodevelopment following critical illness.  

Although further research is needed, our results suggest similar neuropsychological deficits and 

structure-function relationships in CDH survivors treated with and without ECMO and ECMO survivors 

following other diagnoses. This may suggest potentially similar neurodevelopmental mechanisms 

following various types of critical illness in early life(3, 30-32). The brain matures in a nonlinear fashion 

from childhood into adulthood, indicating that the timing of microstructural changes differs per brain 

region(24, 36). Consequently, the timing of injuries is likely to have specific effects on brain 

development(37). As the limbic system undergoes rapid development in the third trimester and neonatal 

period, these structures may be particularly vulnerable in critically ill newborns, born prematurely and 

at term(38, 39). Furthermore, the hippocampus is sensitive to both internal and external influences. 

Hypoxic-ischemic injury and (chronic) stress have been associated with hippocampal alterations in term 

and preterm infants(40, 41). White matter limbic system fibers, such as the PHC and cingulum bundle, 

may be more vulnerable to these types of injuries because of their connections with the hippocampus 

and their periventricular location(37). Interestingly, similar long-term cognitive impairments were 

reported in adult patients after treatment at intensive care units (ICU)(42). Although newborns are likely 
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to be at higher risk of limbic system alterations due to its rapid development during this time, 

hippocampal vulnerability has been shown in the adult brain as well but needs further exploration in 

adult ICU survivors(43).  

 While this study contributes to the limited research on the neurobiology of neuropsychological 

outcome following critical illness, there are some limitations. First, our comparisons between ECMO 

and non-ECMO, and VA- and VV-ECMO treated patients should be interpreted with caution as the 

small sample size limits the interpretability of the regression analyses. Second, we did not have a 

(healthy) control group to compare our neuroimaging data with. Due to major differences in scanner 

hardware and software, we could not compare our data to data obtained elsewhere. We did however 

have normative data of the neuropsychological tests. Since we were primarily interested in finding 

potential neurobiological substrates of impaired outcome following critical illness, we were still able to 

adequately address these questions. Third, our sample includes only children with a below average score 

on one or more memory tests and an IQ of 80 or above. However, since previous studies have shown 

that the majority of ECMO and CDH survivors have average intelligence but an increased likelihood of 

attention and memory impairments(2, 5, 7), we feel this sample is representative of critical illness 

survivors and suits the aim of this study. Nonetheless, future studies should explore how below average 

IQ affects the structure-function relationships. 

 

 

 

 

 

 

 

 

 

 

 

12 
 



CONCLUSIONS 

We showed that regions of the limbic system and global white matter microstructure were specifically 

related to impaired neuropsychological outcome in school-age survivors of CDH treated with and 

without ECMO and in ECMO survivors following other diagnoses. Our findings may lead to earlier 

identification of those at risk of neurodevelopmental impairment with the use of neurobiological 

markers, such as low hippocampal volume. Also, a better understanding of the neurobiology will 

contribute to a more critical appraisal of potential intervention modalities. As similar 

neurodevelopmental outcomes have been found in survivors of various causes of critical illness, future 

research should assess neurodevelopment longitudinally across different patient groups using both 

neuroimaging and neuropsychological assessment and compare outcomes to age-matched healthy 

controls.  
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FIGURE LEGENDS 

Figure 1.  

Yellow and orange colors indicate a positive association and blue colors indicate a negative association 

between brain regions and neuropsychological outcome. a) Parasaggital and coronal views of the left and 

right hemispheres showing the left and right hippocampal volumes(1) and the left and right 

parahippocampal regions of the cingulum(2). b) Showing the associations between verbal memory delayed 

recall and mean diffusivity in the parahippocampal region of the cingulum and the hippocampal volume in 

both hemispheres. c) Showing the associations between visuospatial memory immediate and delayed recall 

and mean diffusivity in the parahippocampal region of the cingulum in both hemispheres. *Indicates a 

significant association at p < .05. Abbreviations: PHC, parahippocampal region of the cingulum.  
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Supplemental Digital Content 1. Descriptions of the neuropsychological tests.  

Brief descriptions of the neuropsychological tests used.  

 

Supplemental Digital Content 2. Neuroimaging methods.  

A full description of the structural MRI and diffusion tensor imaging methods used.  

 

Supplemental Digital Content 3. Influence of ECMO treatment and type of ECMO on structure-

function relationships. 

Table showing the results of linear regression analyses assessing differences between patients treated with 

ECMO and without ECMO in the significant structure-function relationships, and differences between 

patients treated with venoarterial and venovenous ECMO. 
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Patient characteristics  All (n = 38) ECMO (n = 26) CDH non-ECMO (n = 12)  
Age at assessment (years) 9.7 ± 1.5 9.6 ± 1.7 10.0 ± 1.2 
Gestational age (weeks) 40.0 ± 0.3 41 ± 1.4 39 ± 2.3 
Birth weight (grams) 3410 (3205-3790) 3595 (3296-3822) 3133 (2414-3423) 
Male 23 (61%) 14 (54%) 9 (75%) 
Dutch ethnicity  32 (84%) 20 (77%) 12 (100%) 
Days of mechanical ventilation 10 (8-16) 11 (9-17) 9 (6-16) 
Neonatal brain abnormalities1 3 (9%) 3 (13%) 0 
Inborn  7 (18%) 1 (4%) 6 (50%) 
Diagnosis 
  MAS 
  CDH 
  Other2 

  
18 (69%) 
2 (8%) 
6 (23%) 

 
 
12 (100%) 

Age start ECMO (days)  2 (1-3)  
Duration of ECMO (hours)  114 (89-181)  
Type of ECMO 
   VA 
   VV 
   VV to VA conversion 

 
 

 
16 (61%) 
9 (35%) 
1 (4%) 

 

Data are expressed as mean ± SD, median (IQR) or number (percentage), as appropriate.  

1 Abnormalities seen on cranial ultrasound or MRI in neonatal period: hemorrhagic infarct in the posterior middle cerebral artery (n= 1), bilateral thalamic lesions (n=2). 

2 Other diagnoses are PPHN (n=3), respiratory insufficiency due to respiratory syncytial virus (n=2), monoventricular heart with transposition of the great vessels (n=1).  

Abbreviations: ECMO, extracorporeal membrane oxygenation; CDH, congenital diaphragmatic hernia; MAS, meconium aspiration syndrome; PPHN, persistent pulmonary 

hypertension of the newborn. 
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Table 2. White matter microstructure and neuropsychological outcome.      
Neuropsychological test, 
n = 33 Global FA FA CB left FA CB right Global MD MD PHC left MD PHC right 

Intelligence       
 WISC-III-NL  β = 0.16, puncor.= .426,   p 

= .680 
β = 0.08, puncor. = .680,  p 
= .680 

β = 0.26, puncor.= .158,   p 
= .474 

β = -0.13, puncor.= .564,   
p = .680 

β = 0.09, puncor.= .642,   p 
= .680 

β = 0.27, puncor.= .146,   p 
= .474 

Attention       
 TMT A  
 

β = 0.20, puncor.= .324,   p 
= .648 

β = 0.15, puncor.= .468,   p 
= .702 

β = 0.23, puncor.= .227,    
p = .648 

β = 0.12, puncor.= .587,   p 
= .704 

β = -0.00, puncor.= .983,   
p = .983 

β = 0.32, puncor.= .083,   p 
= .498 

 TMT B  
 

β = 0.53, puncor.= .005,   
p = .030 

β = 0.22, puncor.= .277,   p 

= .397 
β = 0.36, puncor.= .045,   p 

= .135 
β = -0.35, puncor.= .103,   
p = .206 

β = -0.19, puncor.= .331,   
p = .397 

β = 0.13, puncor.= .489,   p 

= .489 
 Stroop interference β = -0.14, puncor.= .450,   

p = .675 
β = -0.32, puncor.= .064,   
p = .384 

β = -0.01, puncor.= .966,   
p = .969 

β = 0.24, puncor.= .223,   p 

= .460 
β = 0.01, puncor.= .969,   p 

= .969 
β = 0.20, puncor.= .230,   p 

= .460 
 DCT  
 

β = 0.48, puncor.= .006,   p 
= .018 

β = 0.40, puncor.= .023,   p 
= .046*  

β = 0.46, puncor.= .004,   
p = .018* 

β = -0.35, puncor.= .069,   
p = .104 

β = -0.29, puncor.= .110,   
p = .132 

β = -0.08, puncor.= .620,  p 
= .620 

Verbal memory       
 Digit span β = 0.08, puncor.= .685,   p 

= .685 
β = 0.14, puncor.= .484,   p 
= .581 

β = 0.26, puncor.= .158,   p 
= .358 

β = 0.25, puncor.= .257,   p 
= .386 

β = 0.32, puncor.= .108,   p 
= .358 

β = 0.25, puncor.= .179,   p 
= .358 

 RAVLT immediate β = 0.32, puncor.= .111,   p 

= .333 
β = 0.22, puncor.= .274,   p 

= .411 
β = 0.09, puncor.= .631,   p 

= .631 
β = -0.21, puncor.= .350,   
p = .420 

β = -0.41, puncor.= .036,   
p = .216 

β = -0.25, puncor.= .192,  p 

= .384 
 RAVLT delayed β = 0.21, puncor.= .313,   p 

= .470 
β = 0.04, puncor.= .851,   p 

= .851 
β = -0.04, puncor.= .831,   
p = .851 

β = -0.24, puncor.= .284,   
p = .670 

β = -0.52, puncor.= .007,   
p = .021 

β = -0.52, puncor.= .004,  
p = .021 

 RAVLT recognition β = 0.15, puncor.= .464,   p 
= .873 

β = 0.16, puncor.= .437,   p 
= .873 

β = 0.03, puncor.= .878,   p 
= .893 

β = 0.03, puncor.= .893,   p 
= .893 

β = -0.12, puncor.= .582,   
p = .873 

β = -0.24, puncor.= .209,  p 
= .873 

  

Visuospatial memory       
 Spatial Span β = 0.02, puncor. = .913,   

p = .945 
β = 0.04, puncor.= .848,   p 
= .945 

β = -0.10, puncor.= .945,   
p = .945 

β = -0.02, puncor.= .913,   
p = .945 

β = 0.13, puncor.= .519,   p 
= .945 

β = 0.25, puncor.= .164,   p 
= .945  

 RCFT immediate β = 0.18, puncor.= .320,   p 

= .480 
β = -0.05, puncor.= .778,   
p = .934 

β = -0.01, puncor.= .963,   
p = .963 

β = -0.30, puncor.= .131,   
p = .393  

β = -0.48, puncor.= .005,   
p = .030 

β = -0.20, puncor.= .243,  p 

= .480  
 RCFT delayed β = 0.23, puncor.= .203,   p 

= .406 
β = -0.02, puncor.= .932,   
p = .932 

β = -0.04, puncor.= .806,   
p = .932 

β = -0.29, puncor.= .130,   
p = .390 

β = -0.47, puncor.= .005,   
p = .030 

β = -0.16, puncor.= .324,  p 

= .486 
 RCFT recognition β = 0.36, puncor.= .056,   p 

= .112 
β = 0.18,  puncor.= .346,   
p = .519 

β = 0.05, puncor.= .765,   p 
= .820 

β = -0.44, puncor.= .028,   
p = .084 

β = -0.42, puncor.= .022,   
p = .084*    

β = 0.04, puncor.= .820,   p 
= .820 

Executive functioning       
 Key Search β = -0.04, puncor.= .808,   

p = .808 
β = -0.26, puncor.= .138,   
p = .549 

β = -0.12, puncor.= .461,   
p = .692 

β = 0.25, puncor.= .183,   p 
= .549 

β = 0.06, puncor.= .752,   p 
= .808 

β = 0.15, puncor.= .357,   p 
= .692 

 Modified six elements β = 0.20, puncor.= .333,   p 

= .635 
β = 0.15, puncor.= .451,   p 

= .635 
β = 0.13, puncor.= .529,   p 

=  .635 
β = -0.09, puncor.= .686,   
p = .686 

β = -0.26, puncor.= .200,   
p = .600 

β = -0.26, puncor.= .200,  p 

= .600 
Visuospatial processing     
 RCFT copy β = 0.24, puncor = .248,   p 

= .743 
β = 0.13, puncor.= .522,   p 
= .743 

β = 0.11, puncor.= .549,   p 
= .743 

β = -0.29, puncor.= .188,   
p = .743 

β = 0.01, puncor.= .953,   p 
= .953 

β = 0.10, puncor.= .619,   p 
= .743 

Results of linear regression analyses assessing associations between our brain regions of interest[8] and neuropsychological outcome, adjusted for gender and age at assessment. puncor. gives the uncorrected
 
p-value. P < .05 is considered 

statistically significant after correcting for multiple testing using the false discovery rate correction. *No longer significant  when global measure of microstructure was added to the model.  

Abbreviations: FA, fractional anisotropy; CB, cingulum bundle; MD, mean diffusivity; PHC, parahippocampal region of the cingulum; WISC-III-NL, Wechsler Intelligence Scale for Children Dutch version; TMT, Trail Making Test; DCT, 

Dot Cancellation Test; RAVLT, Rey Auditory Verbal Learning Test; RCFT, Rey Complex Figure Test..  
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Table 3. Hippocampal volume and neuropsychological outcome 
Neuropsychological test 
n= 38 

Hippocampal volume,  
left 

Hippocampal volume,  
right 

Intelligence     
 WISC-III-NL  β = 0.12, puncor.= .583, p = .868    β = 0.04, puncor.= .868, p = .868    
Attention 
 TMT A β = -0.04, puncor.= .862, p = .862  β = -0.08, puncor.= .799, p = .862   
 TMT B β = -0.20, puncor.= .364, p = .470    β = -0.19, puncor.= .470, p = .470   
 Stroop interference β = 0.10, puncor.= .645, p = .900    β = 0.03, puncor.= .900, p = .900   
 DCT  β = 0.07, puncor.= .716, p = .950  β = -0.02, puncor.= .950, p = .950    
Verbal Memory 
 Digit span β = -0.10, puncor.= .624, p = .624    β = -0.42, puncor.= .073, p = .146  
 RAVLT immediate β = 0.40, puncor.= .057, p = .114  β = 0.36, puncor.= .148, p = .148   
 RAVLT delayed β = 0.44, puncor.= .037, p = .037    β = 0.67, puncor.= .006, p = .012    
 RAVLT recognition β = 0.27, puncor.= .238, p = .238 β = 0.40, puncor.= .144, p = .238   
Visuospatial memory     
 Spatial Span β = 0.04, puncor.= .842, p = .920  β = -0.03, puncor.= .920, p = .920 
 RCFT immediate β = 0.30, puncor.= .133, p = .133   β = 0.39, puncor.= .103, p = .133  
 RCFT delayed β = 0.22, puncor.= .264, p = .290   β = 0.24, puncor.= .290, p = .290    
 RCFT recognition β = -0.05, puncor.= .825, p = .825    β = -0.08, puncor.= .748, p = .825    
Executive Functioning 
 Key Search  β = 0.17, puncor.= .358, p = .716    β = 0.04, puncor.= .859, p = .859    
 Modified six elements β = 0.22, puncor.= .328, p = .328  β = 0.49, puncor.= .074, p = .074 
Visual spatial processing 
 RCFT copy β = -0.00, puncor.= .987, p = .987   β = -0.04, puncor.= .889, p = .987   
Results of linear regression analyses assessing associations between neuropsychological outcome and hippocampal volume in the left and right  

hemispheres. Puncor. gives the uncorrected p-value. P < .05 is considered statistically significant after correcting for multiple testing using the false  

discovery rate correction. Abbreviations: WISC-III-NL, Wechsler Intelligence Scale for Children Dutch version; TMT, Trail Making Test; DCT,  

Dot Cancellation Test; RAVLT, Rey Auditory Verbal Learning Test; RCFT, Rey Complex Figure Test.  
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Table 4. Overview of neuropsychological assessment outcome 
Neuropsychological test All (n = 38) P value1 

Intelligence   
 WISC-III-NL2  100 (12) .968 
Attention   
 TMT A  -0.33 (0.95) .057 
 TMT B  -0.03 (1.18) .954 
 Stroop interference -0.31 (1.00) .063 
 DCT  -1.13 (2.01) .001 
Memory   
 WISC-III-NL Digit span 0.21 (1.02) .219 
 WNV Spatial Span 0.17 (1.02) .336 
 RAVLT immediate -1.58 (1.10) .000 
 RAVLT delayed -1.90 (1.19) .000 
 RAVLT recognition -1.19 (1.59) .000 
 RCFT immediate -1.65 (0.97) .000 
 RCFT delayed -1.65 (1.07) .000 
 RCFT recognition -0.63 (1.45) .007 
Executive functioning   
 Key Search 0.01 (1.20) .669 
 Modified six elements -0.08 (0.99) .652 
Visual spatial processing   
 RCFT copy 0.14 (0.68) .205 
Data are expressed as mean z-score ± SD. P  < .05 is considered statistically significant.  

1P value of the one-sample t-test assessing the difference between the average z-score of the 

participants and the general population z-score (μ = 0).  

2IQ was based on a short-form of the WISC-III-NL using two subtests, Vocabulary and Block 

Design.[11] Abbreviations: WISC-III-NL, Wechsler Intelligence Scale for Children Dutch version; 

TMT, Trail Making Test; DCT, Dot Cancellation Test; RAVLT, Rey Auditory Verbal Learning Test; 

RCFT, Rey Complex Figure Test. 
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Supplemental Digital Content 1. Descriptions of the neuropsychological tests. 
Intelligence  
Wechsler Intelligence Scale for Children (WISC-III-NL) 
A short-form with two subtests, Block Design and Vocabulary, of the WISC-III-NL were used to assess general 
intelligence.(1) The WISC-III-NL has been shown to have good reliability and validity.(2) A normalized population 
mean of 100 with a standard deviation of 15 is used.(2) 
 
Attention  
Dot Cancellation Test 
This paper-and-pencil test measures sustained attention and concentration in terms of speed. It consists of a paper on 
which figures made of three, four or five dots are displayed in 33 rows. The child is instructed to mark all figures with 
four dots, as precise and as fast as they can.(3)  
 
Stroop Color Word Test (Stroop) 
The Stroop consists of three trials: in the first trial (Stroop 1) the subject must read color names, in the second trial 
(Stroop 2) name printed colors, and in the third trial (Stroop 3) name printed colors not denoted by the color name. 
The test can be administered to children and adults in the age range 8-65 years. Selective attention is measured with 
this test, using the difference score between Stroop 2 and Stroop 3.(4, 5)  
 
Trail Making Test (TMT) 
This paper and pencil test consists of two parts. In the first part (part A), the subject must draw lines to consecutively 
connect numbered circles on a sheet. In the second part (part B), the subject must consecutively but alternately connect 
numbered and lettered circles on another worksheet. The aim of the test is to finish each part as quickly as possible.  
The test can be administered to children and adults in the age range 6-89 years. This test measures visual conceptual 
and visuomotor tracking as well as divided attention.(4, 5) 
 
Memory  
WISC-III-NL – subtest Digit Span  
The Digit Span consists of random number sequences that increase in length and that the examiner reads aloud at the 
rate of 1 number per second. The child has to reproduce these numbers in the same order. Next, the sequences must 
be recalled backwards (3-5-7 becomes 7-5-3). The first part of the test measures short-term auditory memory and 
short-term retention capacity. The second part measures auditory working memory.(2)  
 
Wechsler Nonverbal Scale of Ability (WNV) – subtest Spatial Span 
The Spatial Span requires the child to touch a group of block arranged on a board in a nonsystematic manner in the 
same and reverse order as demonstrated by the examiner. The first part of the test measures short-term visuospatial 
memory and short-term retention capacity. The second part measures visuospatial working-memory.(6)  
 
Rey Auditory Verbal Learning Test (RAVLT) 
The RAVLT consists of five presentations with recall of a 15-word list, a sixth recall trial after 30 minutes, and a 
seventh recognition trial. This test measures memory span, short- and long term verbal memory, verbal recognition, 
and learning curve. It can be administered to children and adults in the age range 6-89 years.(7, 8) 
 
Memory and visual-spatial functioning  
Rey Complex Figure Test (RCFT) 
The RCFT consist of three trials. First the child has to copy a complex figure (Copy). Then after 3 and after 30 minutes 
the figure must be drawn from memory (Recall). Next, different figures are shown and the child has to indicate whether 
these figures were in the original figure (Recognition). This test measures visual integration, short- and long-term 
visual-spatial memory, and visual-spatial recognition. It can be completed by children and adults in the age range 6-
89 years.(9, 10)  
 
Executive functioning  
Key Search  
A test of strategy formation. The child is asked to demonstrate how they would search a field for a set of lost keys and 
their strategy is scored according to its efficiency and functionality.(11)  
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Modified Six Elements 
The child is asked to work on six different tasks for which they have five minutes. The child needs to make sure that 
by the end of the five minutes, all six of the tasks have been done and the child has done as much as possible of each 
task. This is a test of planning, task scheduling and performance monitoring.(11)  
 
We used Dutch versions of all tests.  
 
 
REFERENCES Supplemental Digital Content 1.  
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3. Vos P. Bourdon-Vos. Handleiding (manual dot cancellation test). Lisse: Swets en Zeitlinger; 1992. 
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Supplemental Digital Content 2. Neuroimaging methods.  
Image Acquisition  
Prior to neuroimaging, all participants underwent a 30-minute mock scanning session to become familiarized with the 
MR-environment1. Magnetic resonance imaging data were acquired on a 3 Tesla GE MR-750W system using an 8 
channel receive-only head coil (General Electric, Milwaukee, WI). In order to support the participant’s head and 
minimize head motion, cushions were placed on both sides of the child’s head inside of the head coil. Participants 
were able to watch a movie during the scans. MRI-compatible headphones were used to reduce the scanner noise and 
allow participants to listen to the movie’s audio track. Communication with the MR operator was also enabled through 
the headphones before and after scans. The DTI data were acquired using a single-shot, echo-planar imaging sequence 
with the following parameters: TR = 12,500 ms, TE = 72 ms, flip angle = 90, matrix = 120 x 120, FOV = 240 mm x 
240 mm, slice thickness = 2 mm, number of slices = 65, ASSET acceleration factor = 2. In total, 35 volumes with 
diffusion weighting (b = 900 s/mm²) and 3 volumes without diffusion weighting (b = 0 s/mm²) were acquired. The 
high-resolution structural T1-weighted images were acquired using an inversion recovery fast spoiled gradient recalled 
BRAVO sequence with the following parameters: TR=8.77ms, TE = 3.4ms, inversion time=600ms, flip angel=10,  
matrix 220x220, FOV=220mm x220mm, ARCimaging acceleration factor of 2, slice thickness = 1mm, and a final 
1mm3 isotropic resolution.  
 
MR-Image Preprocessing  
Data were processed using the Functional MRI of the Brain’s Software Library (FMRIB, FSL) (2) and the Camino 
Diffusion MRI Toolkit within Python (version 2.7) and the Neuroimaging in Python Pipelines and Interfaces package 
(Nipype, version 0.92)3,4. First, motion and eddy-current induced artifacts5 were addressed using the FSL 
“eddy_correct” tool6. In order to account for the rotations applied to the diffusion data after adjusting for these artifact, 
the resulting transformation matrices were used to rotate the “B-matrix” gradient direction table7,8. The FSL Brain 
Extraction Tool was used to remove non-brain tissue9. In order to minimize the limitations observed with respect to 
the ordinary least squares fit method10, the diffusion tensor was fit using the RESTORE method implemented in 
Camino11. Voxel-wise scalar maps (i.e. FA, MD) were then computed.  FA is the degree of directionality of diffusion 
and ranges from 0 to 1, where a higher FA generally represents a greater coherence of white matter fibers. MD is the 
rate of diffusion of hydrogen averaged in all directions. Lower MD is suggestive of increased integrity in axonal 
membranes, packing, or myelin. White matter continues to mature throughout childhood, even into young adulthood, 
causing FA to increase and MD to decrease. Abnormal brain development typically leads to lower FA and higher MD 
in white matter tracts12. 
 
Probabilistic Fiber Tractography  
Fully automated probabilistic fiber tractography was performed using the FSL plugin, “AutoPtx”13. Subject-specific, 
probabilistic representations of multiple white matter fiber bundles are created with this method using a combination 
of FSL tools from the Diffusion Toolkit (FDT). The Bayesian Estimation of Diffusion Parameters Obtained using 
Sampling Techniques (BEDPOSTx), accounting for two fiber orientations at each voxel, was used to esatimate 
diffusion parameters at each voxel14,15. Next, for each subject, the FA map was aligned to the FMRIB-58 FA template 
image with the FSL nonlinear registration tool (FNIRT). The inverse of this nonlinear warp field was computed, and 
applied to a series of predefined seed, target, exclusion, and termination masks provided by the AutoPtx plugin 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx). The FSL module “ProbtrackX” was then applied to conduct 
probabilistic fiber tracking using these supplied tract-specific masks (i.e., seed, target, etc.) in the native diffusion 
image space of each subject14. The connectivity distributions resulting from fiber tractography were normalized to a 
scale from 0 to 1 using the total number of successful seed-to-target attempts, and were subsequently thresholded to 
remove low-probability voxels likely related to noise. For each tract, the number of samples used for probabilistic 
tracking, and the probability thresholds applied to the resulting distributions (ILF: 0.005, SLF: 0.001, IFO: 0.01, UNC: 
0.01, CB: 0.01, PHC: 0.02), were selected based on previously established values13. After thresholding the path 
distributions, weighted average DTI scalar measures were computed within each tract using the normalized path 
distributions as the weights. The methods used were based on those described by Muetzel et al16. 
  
Structural Image Acquisition and Analysis  
The Freesurfer image analysis suite version 5.3.0 (http://surfer.nmr.mgh.harvard.edu/) for cortical reconstruction and 
volumetric segmentation was used. Freesurfer computes structural morphometric measures using a fully-automated 
approach. Technical procedures have been described extensively19.  
 
Image Quality Assurance  
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Raw DTI image quality was assessed with both a visual inspection and with automated software16. For the visual 
inspection, maps of the sum of squares error (SSE) of the tensor fit were inspected for structured signal that is 
consistent with motion and other artifacts in the diffusion-weighted images (e.g., attenuated slices in diffusion-
weighted images). Furthermore, probabilistic tractography data were inspected visually to ensure images were 
properly aligned to the template and paths were reconstructed accurately16. Datasets determined to be of poor quality 
were excluded (n = 7, ~8%).  

In addition to this visual inspection, slice-wise signal intensity was examined for attenuation resulting from 
motion, cardiac pulsation and other artifacts using the automated DTIprep quality control tool 
(http://www.nitrc.org/projects/dtiprep/). Four (~5%) additional datasets were excluded based on the DTIprep results, 
leaving 77 DTI datasets (patients = 23, controls = 54) for analysis. 

FreeSurfer reconstructions were evaluated for accuracy through detailed visual inspections.   Each image was 
visually inspected and subjects with poor quality data were excluded. In subjects with small errors in the gray/white 
segmentation, control points, and white matter edits were added to identify and correct misclassified white matter 
regions. When the segmentation improved, the corrected images were used. 
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Supplemental Digital Content 3. Influence of ECMO treatment and type of ECMO on structure-function relationships. 
 DCT RAVLT delayed recall RCFT immediate recall RCFT delayed recall 
Global FA 
 ECMO treatment 
 ECMO treatment*GlobalFA 

F(1,29)=6.74, p=.015 
F(1,29)=0.23, p=.635 
F(1,29)=0.23, p=.638 

   

MD left PHC 
 ECMO treatment 
 ECMO treatment*MDleftPHC 

 F(1,29)=7.47, p=.011 
F(1,29)=0.00, p=.987 
F(1,29)=0.00, p=.963 

F(1,29)=13.05, p<.001 
F(1,29)=0.24, p=.629 
F(1,29)=0.27, p=.611 

F(1,29)=15.92, p<.001 
F(1,29)=1.57, p=.220 
F(1,29)=1.68, p=.205 

MD right PHC 
 ECMO treatment 
 ECMO treatment*MDrightPHC 

 F(1,29)=9.01, p=.005 
F(1,29)=0.21, p=.647 
F(1,29)=0.29, p=.592 

  

Left hippocampal volume 
 ECMO treatment 
 ECMO treatment*LeftHippocampus 

 F(1,31)=2.79, p=.105 
F(1,31)=0.05, p=.820 
F(1,31)=0.06, p=.829 

  

Right hippocampal volume 
 ECMO treatment 
 ECMO treatment*RightHippocampus 

 F(1,31)=4.39, p=.044 
F(1,31)=0.45, p=.507 
F(1,31)=0.27, p=.498 

  

Global FA 
 ECMO type 
 ECMO type*GlobalFA 

F(1,18)=8.05, p=.011 
F(1,18)=0.03, p=.861 
F(1,18)=0.04, p=.837 

   

MD left PHC 
 ECMO type 
 ECMO type*MDleftPHC 

 F(1,18)=3.60, p=.074 
F(1,18)=0.16, p=.696 
F(1,18)=0.17, p=.685 

F(1,18)=8.05, p=.011 
F(1,18)=0.15, p=.704 
F(1,18)=0.15, p=.700 

F(1,18)=4.54, p=.047 
F(1,18)=0.11, p=.738 
F(1,18)=0.11, p=.741 

MD right PHC 
 ECMO type 
 ECMO type*MDrightPHC 

 F(1,18)=10.23, p=.005 
F(1,18)=0.34, p=.565 
F(1,18)=0.31, p=.582 

  

Left hippocampal volume 
 ECMO type 
 ECMO type*LeftHippocampus 

 F(1,20)=5.24, p=.033 
F(1,20)=0.61, p=.443 
F(1,20)=0.61, p=.445 

  

Right hippocampal volume 
 ECMO type 
 ECMO type*RightHippocampus 

 F(1,20)=9.35, p=.006 
F(1,20)=0.19, p=.665 
F(1,20)=0.27, p=.608 

  

Results of linear regression analsyes assessing differences between patients treated with ECMO and without ECMO in the significant structure-function relationships. The same analyses were conducted to assess differences 

between patients treated with venoarterial and venovenous ECMO (ECMOtype). P < .05 is considered statistically significant.  

Abbreviations: FA, fractional anisotropy; MD, mean diffusivity; PHC, parahippocampal region of the cingulum; DCT, Dot Cancellation Test; RAVLT, Rey Auditory Verbal Learning Test; RCFT, Rey Complex Figure Test.  
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