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Bayesian Threshold Moving Average Models 
 

Mahmoud M. Smadi M. T. Alodat 
Jordan University of Science and Technology, 

Irbid, Jordan 
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Irbid, Jordan 
 

 
A Bayesian approach in threshold moving average model for time series with two regimes is provided. 
The posterior distribution of the delay and threshold parameters are used to examine and investigate the 
intrinsic characteristics of this nonlinear time series model. The proposed approach is applied to both 
simulated data and a real data set obtained from a chemical system. 
 
Key words: Threshold time series, moving average model, Bayesian estimation, simulation, chemical 

data. 
 
 

Introduction 
One class of nonlinear time series models is the 
threshold time series models which are 
extensively reported in literature. Among these, 
Tong and Lim (1980) introduced threshold 
autoregressive (TAR) models with statistical 
inference and applications. Bayesian inference 
for threshold autoregressive models have been 
investigated by different authors.  

Geweke and Terui (1991) derived an 
exact posterior distribution of the delay and 
threshold parameters. Cathy, et al. (1995) used 
Monte Carlo Markov chain (MCMC) methods to 
implement a Bayesian inference on TAR 
models, and Broemeling and Cook (1992) 
performed a Bayesian analysis on TAR models. 
However, most of the literature emphasizes the 
threshold autoregressive models. Wang, et al. 
(1984) introduced the threshold autoregressive 
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moving average (TARMA) models and 
considered the estimation of the model 
parameters. De Gooijer (1998) studied various 
problems associated with the identification, 
estimation and testing of threshold moving 
average models. Ling and Tong (2005) 
considered a quasi-likelihood ratio test for the 
threshold in moving average models. Amendola, 
et al. (2009) discussed the stochastic structure of 
the self-exiting TARMA model; they specified 
sufficient conditions for weak stationarity and 
showed that the self-exiting TARMA model 
belongs to the class of the random coefficients 
autoregressive models. Smadi (1997) used the 
Bayesian approach for exploration of the joint 
posterior distribution for TARMA models using 
MCMC methods: he assumed noninformative 
priors, fixing the delay parameter d. In addition, 
he used a modified Gibbs sampling scheme, 
which is a hybrid strategy of Gibbs sampler, 
random walk Metropolis, and importance 
sampling. Safadi and Morettin (2000) 
considered a Bayesian analysis for threshold 
autoregressive moving average models and a 
hierarchical prior to perform Bayesian analysis 
using a rearranged procedure with MCMC 
methods. 

The objective of this study is to provide 
a Bayesian approach in a threshold moving 
average model for time series with two regimes. 
The posterior distribution of the delay and the 
threshold parameters are used to examine and 
investigate the characteristics which are intrinsic 
to this nonlinear time series model. The 
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proposed approach is applied to both simulated 
data and a real data set obtained from a chemical 
system. 
 

Methodology 
The Threshold Models 

Let { }1, ≥tYt  be a time series, the 

threshold autoregressive moving average models 
with two regimes. Wang, et al. (1984) 
symbolized TARMA(2,(p1, q1),(p2, q2.)), given 
by: 
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A special case of equation (1), is the 
threshold autoregressive model TAR(2;p1,p2): 
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Another special case of equation (1) is the 
threshold Moving Average model TMA(2;q1,q2): 
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Posteriors Distribution 

The approximate posterior distribution 
of the delay and threshold parameters (d, r) for 
threshold moving average models (3) is based on 
using estimated residuals instead of the true 

innovations. Broemeling and Shaarawy (1986) 
implemented the estimated innovations for 
Bayesian analysis of ARMA models. Smadi 
(1997) and Safadi and Morettin (2000) have 
used this estimated innovation approach to 
explore the posterior distributions of the 
threshold autoregressive moving average 
models. 

Defining ),( rd=φ , and the set 

),...,,( )()(
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B θθθ= , and under the 

normality assumption, that is, 

),0( .. 2)(
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t NdiiZ σ , a prior )(φπ  could be any 

form as long as 
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Conditional on φ , independent priors on jB  and 

jσ  of standard Jeffreys prior can be expressed 

as: 
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on ),( rd=φ , estimates of the innovations 
)2()1(  and tt ZZ  can be obtained using least 

squares estimates. In this case, the following 
model is obtained: 
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Derivation of the approximate posterior 

of the delay and the threshold parameters of the 
threshold moving average model is similar to the 
threshold autoregressive model (2) reported by 
Geweke and Terui (1993). After estimating the 
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innovations and using the model (3), conditional 
on ),( rd=φ , let 1W  be a vector consisting of 

1N  ordered observations on }{ tY  such that 

rY dt ≤− , and let 2W  be a vector consisting of 

2N  ordered observations on }{ tY  such that 

rY dt >− . Let jX  be a jj qN ×  matrix of 

lagged variables on the estimated innovations 
{ }tZ


 corresponding to )2,1( =jW j . Then, the 

approximate posterior density of 
),,,( 2211 σσ BB  conditional on d and r is the 

product of two posterior densities, that is: 
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The posterior distribution of φ  can be derived 
by integrating this expression with respect to 

),,,( 2211 σσ BB . The problem is to integrate the 
following expression with respect to σ: 
 

'
( 1)

2

2 ' '
( 1)

2

( ) ( )
exp

2

( ) ( )
exp

2

− +

− +

 − −− = 
 
 + − −− 
 

 

T

T

W XB W XB

s B B X X B B

σ
σ

υσ
σ

 

(7) 
where 
 

1 2( ' ) ' ,  

( ) '( ) / ,  

1.

−=

= − −
= − −

 
B X X X W s

W XB W XB
N K

ν
ν

 

 
Integrating over σ1 and σ2 on the right 

hand side of equation (7), it is possible to obtain: 
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multiplying equation (8) by )(φπ  and 
integrating Bj, for j = 1, 2 out results in the 
posterior distribution of φ  (Geweke & Terui, 
1993): 
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Results 

The characteristics of the posterior distribution 
of ),( rd=φ  were investigated for simulated 
data and a real data set obtained from a chemical 
system. As a set of possible values of the 
threshold parameter r, the order statistics 

)](,...,1,[ )( NqiY i ≤=  of observations was 
used. 
 
Simulation Examples 

Simulation results were based on both 
one realization and 100 realizations. The 
TMA(2;1,1) model was considered, where 

1 ,1 ,4.0 ,4.0 2
2

2
1

)2()1( ===−= σσθθ , d = 
1,and r = 0. A one realization was generated 
with series length of 50. As a set of possible 
values of the threshold parameter r, [r0, rL] was 
chosen as large as possible and the delay 
parameter d was selected as d = 1, 2, 3, 4 and 5. 
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Simulation results demonstrated that the 
posterior mass was concentrated at d=1, 2 and 3. 
Summary results of the joint posterior 
distribution of ),( rd=φ  are presented in Table 
1. The marginal posterior distribution of d = 1, 
2, 3 have probabilities of 0.5566, 0.2500 and 
0.1800 respectively. The posterior probability 
concentrates predominantly on few points, 
namely (d, r) = (1, 0.0036) and (1, 0.0350) with 
respective probabilities of 0.05582 and 0.06987. 

Simulation results based on 100 
realizations with series length of 100 were 
analyzed. For each realization, ),( rd=φ  was 
estimated based on modal value of the posterior 
distribution. The results yield relative 
frequencies of 87%, 7%, and 6% for d = 1, 2, 
and 3 respectively. The marginal posterior of r is 
shown in Figure 1; as expected, the model value 
is concentrated around the true threshold value r 
= 0. 
 
Real Data Example 

Series A, which consists of 197 
observations and represents the concentration of 
a chemical process, was considered (Box & 
Jenkins, 1976). The differenced time series was 
considered. Fitting MA(1) model yields 
 

ttt ZZX +−= −169.0                (15) 

 
Smadi (1997) used the MCMC technique for 
exploration of the posterior distribution of the 
threshold parameter r. The methodology 
proposed herein is applied to the differenced 
series in order to examine the posterior 
distribution of the threshold and the delay 
parameter ),( rd=φ . The number of threshold 
points is reduced from 196 to 22 points because 
some differences have the same values. Values 
of [−0.4, 0.4] were assigned for [r0, rL]. For the 
delay parameter d, the set d = 1, 2, 3, 4 and 5 
were selected. It was found that the posterior 
mass was concentrated at d = 1, 2 and 3.  

Summary results of the joint posterior 
distribution of ),( rd=φ  are presented in Table 
2. It can be seen that the marginal posterior 
distribution of d = 1, 2, 3 have probabilities of 
0.8344, 0.13163 and 0.03398, respectively. 
Also, the posterior probability concentrates on 

(d, r) = (1, 0.0) with probability of 0.17; this 
corresponds to the largest mode of the posterior 
density. Conditioning on (d, r) = (1, 0.0), the 
fitted TMA(2;1,1) model is 
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Conclusion 
From the proposed methodology and numerical 
results it can be concluded that the threshold 
moving average models are tractable from a 
Bayesian point of view. The nonlinearity 
threshold-type for moving average models can 
be detected by examining the marginal posterior 
distribution of the threshold parameter. 
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Table 1: Summary of Joint Posterior Densities of (r, d) 

(r, d) 
Integrated 
Density 

(r, d) 
Integrated 
Density 

(r, d) 
Integrated 
Density 

(-1.1832, 1) 0.02234 (-1.1832, 2) 0.00345 (-1.1832, 3) 0.01233 

(-1.0101, 1) 0.02278 (-1.0101, 2) 0.00263 (-1.0101, 3) 0.00771 

(-0.8562, 1) 0.02282 (-0.8562, 2) 0.00223 (-0.8562, 3) 0.00513 

(-0.7346, 1) 0.01532 (-0.7346, 2) 0.00192 (-0.7346, 3) 0.00510 

(-0.6573, 1) 0.01058 (-0.6573, 2) 0.00181 (-0.6573, 3) 0.00321 

(-0.6326, 1) 0.00839 (-0.6326, 2) 0.00181 (-0.6326, 3) 0.00321 

(-0.5574, 1) 0.00777 (-0.5574, 2) 0.00163 (-0.5574, 3) 0.00462 

(-0.5478, 1) 0.00752 (-0.5478, 2) 0.00171 (-0.5478, 3) 0.00303 

(-0.5237, 1) 0.00287 (-0.5237, 2) 0.00172 (-0.5237, 3) 0.00281 

(-0.4982, 1) 0.00255 (-0.4982, 2) 0.00148 (-0.4982, 3) 0.00196 

(-0.4631, 1) 0.00195 (-0.4631, 2) 0.00166 (-0.4631, 3) 0.00400 

(-0.4336, 1) 0.00170 (-0.4336, 2) 0.00187 (-0.4336, 3) 0.00272 

(-0.3709, 1) 0.00164 (-0.3709, 2) 0.00197 (-0.3709, 3) 0.00193 

(-0.2798, 1) 0.00154 (-0.2798, 2) 0.00218 (-0.2798, 3) 0.00259 

(-0.1939, 1) 0.00159 (-0.1939, 2) 0.00298 (-0.1939, 3) 0.00199 

(-0.1918, 1) 0.00143 (-0.1918, 2) 0.00326 (-0.1918, 3) 0.00289 

(-0.1837, 1) 0.00205 (-0.1837, 2) 0.00556 (-0.1837, 3) 0.00211 

(-0.1450, 1) 0.00173 (-0.1450, 2) 0.00760 (-0.1450, 3) 0.00170 

(-0.1430, 1) 0.00161 (-0.1430, 2) 0.00568 (-0.1430, 3) 0.00128 

(-0.1151, 1) 0.00423 (-0.1151, 2) 0.00220 (-0.1151, 3) 0.01389 

(-0.0884, 1) 0.00351 (-0.0884, 2) 0.00175 (-0.0884, 3) 0.02066 

(-0.0560, 1) 0.00514 (-0.0560, 2) 0.00176 (-0.0560, 3) 0.01154 

(-0.0124, 1) 0.00380 (-0.0124, 2) 0.00214 (-0.0124, 3) 0.01050 

(0.0000, 1) 0.00296 (0.0000, 2) 0.00284 (0.0000, 3) 0.00881 

(0.0036, 1) 0.05584 (0.0036, 2) 0.00492 (0.0036, 3) 0.00569 

(0.0350, 1) 0.06987 (0.0350, 2) 0.00677 (0.0350, 3) 0.00355 

(0.0879, 1) 0.03947 (0.0879, 2) 0.00821 (0.0879, 3) 0.00258 

(0.1222, 1) 0.03186 (0.1222, 2) 0.01139 (0.1222, 3) 0.00189 

(0.2192, 1) 0.02311 (0.2192, 2) 0.01434 (0.2192, 3) 0.00215 

(0.2223, 1) 0.01459 (0.2223, 2) 0.00523 (0.2223, 3) 0.00155 

(0.2748, 1) 0.01459 (0.2748, 2) 0.00523 (0.2748, 3) 0.00155 

(0.3154, 1) 0.01221 (0.3154, 2) 0.00334 (0.3154, 3) 0.00129 

(0.4112, 1) 0.01151 (0.4112, 2) 0.00458 (0.4112, 3) 0.00129 

(0.4434, 1) 0.01184 (0.4434, 2) 0.00738 (0.4434, 3) 0.00115 

(0.4484, 1) 0.00883 (0.4484, 2) 0.01028 (0.4484, 3) 0.00105 

(0.4677, 1) 0.00626 (0.4677, 2) 0.01178 (0.4677, 3) 0.00102 

(0.5505, 1) 0.01574 (0.5505, 2) 0.01142 (0.5505, 3) 0.00159 

(0.5662, 1) 0.02498 (0.5662, 2) 0.02024 (0.5662, 3) 0.00177 

(0.7154, 1) 0.01499 (0.7154, 2) 0.03736 (0.7154, 3) 0.00173 

(0.8502, 1) 0.02341 (0.8502, 2) 0.0229 (0.8502, 3) 0.00286 

(1.1930, 1) 0.01985 (1.1930, 2) 0.00789 (1.1930, 3) 0.01769 
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Figure 1: Marginal Posterior Density of r 
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Table 2: Summary of Joint Posterior Densities of (d, r) for Chemical Data 

(d, r) Integrated 
Density 

(d, r) Integrated 
Density 

(d, r) Integrated 
Density 

(1, -0.4) 0.03665 (2, -0.4) 0.01669 (2, -0.4) 0.00088 
(1, -0.3) 0.15757 (2, -0.3) 0.01319 (2, -0.3) 0.00061 
(1, -0.2) 0.15757 (2, -0.2) 0.01319 (2, -0.2) 0.00061 
(1, -0.1) 0.09583 (2, -0.1) 0.00858 (2, -0.1) 0.00031 
(1, 0.0) 0.17483 (2, 0.0) 0.01402 (2, 0.0) 0.00030 
(1, 0.1) 0.04738 (2, 0.1) 0.02424 (2, 0.1) 0.00026 
(1, 0.2) 0.03386 (2, 0.2) 0.02145 (2, 0.2) 0.00064 
(1, 0.3) 0.03344 (2, 0.3) 0.01352 (2, 0.3) 0.00304 
(1, 0.4) 0.09726 (2, 0.4) 0.00675 (2, 0.4) 0.02733 
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