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Inferences About the Components of a Generalized Additive Model 
 

Rand R. Wilcox 
Department of Psychology 

University of Southern California 
 
 
A method for making inferences about the components of a generalized additive model is described. It is 
found that a variation of the method, based on means, performs well in simulations. Unlike many other 
inferential methods, switching from a mean to a 20% trimmed mean was found to offer little or no 
advantage in terms of both power and controlling the probability of a Type I error. 
 
Key words: Nonparametric regression, smoothers, backfitting algorithm, wild bootstrap 
 
 

Introduction 
 
When dealing with a regression problem, a 
standard approach is to assume  
 
        0 1 1 ,i i p ip iY X Xβ β β ε= + + ⋅⋅⋅+ +          (1) 
 
i=1,...,n, where iε  is independent of 

1,...,i ipX X , E(ε )=0, and then test hypotheses 

about the unknown parameters ,...,o pβ β . This 
approach seems appropriate when the assumed 
model, given by (1), is a reasonable 
approximation of the true regression surface. But 
experience with smoothers suggests that, at least 
in some situations, the assumption that Y is 
linearly related to the p regressors is 
unsatisfactory, and often it is unclear how to 
correct this problem when using a parametric 
approach to modeling the data, particularly when 
p>2. That is, simple transformations of the 
regressors might be used, such as taking 
logarithms, but situations arise where effective 
transformations are not evident and difficult to 
discern.  
 
Rand R. Wilcox (rwilcox@usc.edu) is Professor 
of Psychology at the University of Southern 
California. 

 
 
 
 
 

 
One problem is that smooths often suggest that 
over some region of the predictor space, the 
regression surface is, approximately, a 
horizontal plane, meaning there is virtually no 
association at all, but for other regions a 
curvilinear association appears that can be 
difficult to model. 

Figure 1 provides an example where the 
goal is to predict reading ability (measured by a 
word identification score) based on two 
measures of phonological awareness. Shown is a 
smooth using the loess method derived by 
Cleveland and Devlin (1988). Note that for low 
measures associated with both predictors, the 
regression surface is nearly flat, but in other 
regions there appears to be a nonlinear 
association. (Switching to a robust smooth, 
namely the running interval smoother in Wilcox, 
2003, with the span set to 1.2, results in a plot 
nearly identical to Figure 1.) 

A more flexible approach, when 
modeling the data, is to use a generalized 
additive model (Hastie & Tibshirani, 1993). 
That is, assume that there exists functions 
f1,...,fp  such that  

 
      0 1 1( ) ( ) .p pY f X f Xβ ε= + + ⋅⋅⋅+ +        (2) 
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Of course, equation (2) contains the usual 
model, given by (1), as a special case. For any 
fixed j, the goal in this paper is to consider the 
problem of testing  
 
                                H0:fj(Xj)=0.                  (3) 

 
The general strategy used here is to fit a 
generalized additive model omitting the jth 
variable and then check what is essentially a 
simple extension of the partial residual plot (e.g. 
Berk & Booth, 1995) for an association. (The 
approach used here for detecting an association 
is closely connected to what Berk and Booth call 
the  AMALL  method  for  detecting  curvature, 
which stems from Breiman and Friedman, 1985,  
 

 

 
p. 618). That is, test the hypothesis that the 
regression  line  between  the resulting  residuals 
and jX  is straight and horizontal; this is done 
with the wild bootstrap method derived by Stute, 
González-Manteiga and Presedo-Quindimil 
(1998). Details of the proposed method are 
given in the next two sections. 
 
A Generalized Additive Fit 
 There are many ways of fitting the 
model given by (2) with most methods assuming 
that the goal is to estimate the mean of Y given 
( )1,...,i ipX X . The method used here was 

chosen because it represents a particularly 
simple way of including virtually any robust 
measure of location. Robust measures of 
location are known to have many advantages, 
versus the mean, for a wide range of situations 
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(e.g., Hampel, Ronchetti, Rousseeuw and Stahel, 
1986; Huber, 1981; Staudte & Sheather, 1990; 
Wilcox, 2005).  

Two fundamental advantages are 
improved control over the probability of a Type 
I error in situations where methods based on 
means perform poorly, and substantial gains in 
power, even under small departures from 
normality. Here, however, when using means, 
good control over the probability of a Type I 
error is obtained in simulations and using means 
actually offers higher power. So the method 
used here provides an interesting example of a 
situation where a non-robust estimator performs 
better than a robust estimator in terms of power, 
even when sampling from a heavy-tailed 
distribution. 

The robust location estimator used here 
is the 20% trimmed mean which is computed as 
follows. Let 1,... mX X  be any m values and let 

( ) ( )1 ... mX X≤ ≤  be the values written in 

ascending order. Let g = [.2m], where [x] is the 
greatest integer less than or equal to x. Then the 
20% trimmed mean is  
 

( )
1

1
2

m g

i
i g

X
m g

−

= +− ∑   . 

                                 
The reason for choosing 20% trimming, over 
alternative amounts of trimming, stems from 
results on efficiency reported by Rosenberger 
and Gasko (1983).  

As explained in Hampel, Ronchetti, 
Rousseeuw and Stahel (1986), Huber (1981), 
and Staudte and Sheather (1990), a reasonable 
alternative to the 20% trimmed mean is some 
robust M-estimator. The only reason for 
choosing a 20% trimmed over the better-known 
robust M-estimators is to avoid division by zero 
in certain situations to be described. 

First consider the one-predictor case 
(p=1). There are many ways of estimating f1 

using so-called smoothers (e.g., Hastie & 
Tibshirani, 1990; Härdle, 1990). Here, a running 
interval smoother is used mainly because it is 
readily extended to robust measures of location 
such as the 20% trimmed mean. This is not to 
suggest that other smoothers have no value for 

the problem at hand. Rather, the goal is find at 
least one method that performs well in 
simulations, and the running interval smoother is 
relatively easy to implement. 

A fairly well-known alternative is the 
smoother derived by Cleveland (1979) which 
includes a method of down weighting extreme Y 
values. One reason for choosing a running 
interval smoother is that when used with a 20% 
trimmed mean, it seems to be a bit better at 
handling moderately large or small outliers, 
versus Cleveland’s method, and it seems to 
perform reasonably well compared to a variety 
of other smoothers that might be used (Wilcox, 
2005). Again, this is not to suggest that all other 
smoothers be eliminated from consideration for 
the problem at hand, but the relative merits of 
using other smoothers is left for future 
investigations. 

The running interval smoother is applied 
as follows. Let M be the median of the values 

1,..., nX X . The median absolute deviation 
(MAD), based on 1,..., nX X , is the median of 
the n values 1| |,...,| |nX M X M− − . Let 
MADN=MAD/.6745; under normality, MADN 
estimates σ, the standard deviation. Let κ be 
some constant that is chosen in a manner to be 
described. Then the point X is said to be close to 
Xi if  

 
|Xi-X|≤κ×MADN. 

 
The constant κ is called the span. Thus, 

for normal distributions, X is close to Xi if X is 

within κ standard deviations of Xi. Let  

 
N(Xi)={j:|Xj-Xi|≤κ×MADN}.  

 
That is, N(xi) indexes all Xj values that are 

close to Xi. Now consider the random sample 

1 1( , ),..., ( , )n nX Y X Y  and let θi be an estimate of 

some parameter of interest, based on the Yj 

values such that ( )ij N X∈ . That is, use all of 
the Yj values for which Xj is close to Xi. Here, as 
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previously indicated, a mean or 20% trimmed 

mean is used. So, for example, θi might be 

estimated with the 20% trimmed mean of the Yj 

values such that ( )ij N X∈ . In exploratory 
work, a good choice for the span is often κ=.8 or 
1, but for the situation at hand an alternative 
choice is needed. 

Virtually any smoother, including the 
one used here, can be extended to the 
generalized additive model given by (2) using 
the backfitting algorithm in Hastie and 
Tibshirani (1990). Set k=0 and let 0

jf  be some 
initial estimate of fj (j=1,,...,p). Here, 

( )0 |j j jf S X Y= , where Sj(Y|Xj) is the running 

interval smooth based on the jth predictor, 
ignoring the other predictors under investigation. 
Next, iterate as follows: 

 
1. Increment k.  
2. For each j, j=1,...,p, let  

( | ).kf S Y f Xj j l jl j
= − ∑

≠
 

3. Repeat steps 1 and 2 until 
convergence.  

 

Finally, estimate β0 with  

 

( ),0
kb m Y f j= −∑  

 
where m indicates the measure of location used 
when computing the smooth, which here is taken 
to be a 20% trimmed mean or the usual mean. 
 
Testing H0 

 For convenience, momentarily assume 
the goal is to test  
 

: ( ) 0.0 1 1H f X =  

 
The proposed method begins by fitting the 
generalized additive model as described in the 

previous section using the 2 ,..., pX X  values, 
ignoring  X1, yielding  

Yi=b0+f2(Xi2)+⋅⋅⋅+fp(Xip),  

 

where fj(Xij) is the estimate of fj(Xij) based on 

the backfitting algorithm. Let ri=Yi-Yi, i=1,...,n. 

Then the strategy is to test the hypothesis that 
when predicting the residuals, given X1, the 

regression is a straight horizontal line. This is 
done using the wild bootstrap method derived by 
Stute, González-Manteiga and Presedo-
Quindimil (1998). As is evident, the method is 
readily modified to test (3) for any j. 

To elaborate, let tr  be the mean or 20% 
trimmed mean based on the residuals 1,..., nr r . 
Fix j and set Ii=1 if Xi≤Xj, otherwise Ii=0. The 

notation Xi≤Xj means that for every k, k=1,...,p, 

Xik≤Xjk. Let  

 

                   
( )1

1

j i i t

i i

R I r r
n

I v
n

= −

=

∑

∑
    ,           (4) 

 
where 
 

i i tv r r= − . 
 

The test statistic is the maximum 
absolute value of all the Rj values. That is, the 

test statistic is  
 
                                | | .D max R j=               (5) 

 
An appropriate critical value is estimated with 
the wild bootstrap method as follows. Generate 
U1,...,Un  from a uniform distribution and set  

 
12( .5),i iV U= −  
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* ,v v Vi i i=  

and  
* *

i t ir r v= + . 
 

Then based on the n pairs of points 
* *

1 1( , ),..., ( , )n nr rX X , compute the test statistic 
as described in the previous paragraph and label 

it D*. Repeat this process B times and label the 
resulting (bootstrap) test statistics * *

1 ,..., BD D . 
Finally, put these B values in ascending order 
yielding * *

(1) ( )BD D≤ ⋅⋅⋅ ≤ . Then the critical 

value is D
*
(u) , where u=(1-α)B rounded to the 

nearest integer. That is, reject if  
 

* .( )D D u≥  

 
Based on Theorem 1 in Stute et al. (1998), this 
method is valid under weak assumptions placed 
on X. 

For convenience, when using means, the 
technique just described will be called method 
V1. When using a 20% trimmed mean, it will be 
called method V2. Note that a smooth can be fit 
using a 20% trimmed mean, but when using the 
wild bootstrap in conjunction with the resulting 
residuals, one could use the mean of the 
residuals, rather than a 20% trimmed mean, 
when testing H0. This will be called method V3. 

 
Choosing the Span 
 There remains the issue of choosing the 
span, κ, when fitting the generalized additive 
model. Preliminary simulations indicated that if 
the span is too large, the actual probability of a 
Type I error can exceed the nominal level (cf. 
Härdle & Mammen, 1993). A proper choice for 
the span, given n and the amount of trimming, 
was found to correct this problem. That is, the 
choice of the span when using means differs 
from the choice when using a 20% trimmed 
mean instead. Here the span was determined by 
assuming that X1,...,Xp  and ε  have 

independent standard normal distributions, and 

then for a given sample size and depending on 
whether means or 20% trimmed means were 
used, κ was determined via simulations so that 
the actual probability of a Type I error is 
approximately equal to the nominal level when 
testing at the .05 level. Then given n, and 
depending on whether a trimmed mean was to 
be used, this value for κ was used in the 
simulations described in the next section. All 
indications are that the choice for the span does 
not depend on p for p=2, 3, 4 and 5. (Whether 
this remains true for p>5 has not been 
investigated.) The results are summarized in 
Table 1. 
 
Table 1:  Choices for the span, κ 
 

n 20% trimming mean 
20 1.20 .80 
40 1.0 .70 
60 .85 .55 
80 .75 .50 

120 .65 .50 
160 .65 .50 

 
Simulation Results 
 Simulations were used to check the 
small-sample properties of the proposed method. 
Observations were generated where the marginal 
distributions have a g-and-h distribution 
(Hoaglin, 1985) which includes the normal 
distribution as a special case. More precisely, 
observations Zij, (i=1,...,n; j=1, 2) were initially 

generated from a multivariate normal 
distribution having correlation ρ, then the 
marginal distributions were transformed to 
 

2

2

( ) 1
( / 2), 0

( / 2), 0

ij
ij

ij

ij

exp gZ
exp hZ if g

g
X

Zexp hZ if g

−⎧
>⎪

⎪= ⎨
⎪ =⎪⎩

 

 
where g and h are parameters that determine the 
third and fourth moments. The four (marginal) 
g-and-h distributions examined were the 
standard normal (g=h=0), a symmetric heavy-
tailed distribution (g=0, h=.5), an asymmetric 
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distribution with relatively light tails ( g=.5, 
h=0), and an asymmetric distribution with heavy 
tails (g=h=.5). Here, two choices for ρ were 
considered: 0 and .5. Table 1 shows the 
theoretical skewness (κ1) and kurtosis (κ2) for 

each distribution considered. When g>0 and 

h>1/k, E(Xk)  is not defined and the 
corresponding entry in Table 1 is left blank. 
Additional properties of the g-and-h distribution 
are summarized by Hoaglin (1985). Some of 
these distributions might appear to represent 
extreme departures from normality, but the idea 
is that if a method performs reasonably well in 
these cases, this helps support the notion that 
they will perform well under conditions found in 
practice. 
 
Table 2:  Some properties of the g-and-h 
distribution. 
 

g h κ1 κ2 κ1 κ2 

0.0 0.0 0.00 3.0 0.00 3.0 
0.0 0.5 0.00 — 0.00 11,896.2 
0.5 0.0 1.75 8.9 1.81 9.7 
0.5 0.5 — — 120.10 18,393.6 

 
A possible objection to Table 2 when 

performing simulations is that the distribution of 
observations generated on a computer does not 
always have the theoretical skewness and 
kurtosis values shown. The reason is that 
observations generated on a computer come 
from a bounded interval, so the skewness and 
kurtosis of the distribution will be finite, even 
when in theory it should be infinite. 
Accordingly, Table 2 also reports the estimated 

skewness (κ1) and kurtosis (κ2) values based on 

simulations with 10,000 replications. 
Two sets of simulations were run. The 

first was for p=3 with the goal of testing 
H0:f3(X3)=0. The correlation between X1 and 

X2 was taken to be either 0 or .5, and 

observations were generated according to one of 
three models: Y=ε , 1 2Y X X ε= + +  and 

2
1 22Y X X ε= + + . Table 3 contains α, the 

estimated probability of making a Type I error 

when testing at the .05 level with n=20, when 
ρ=0. Increasing ρ to .5 had a negligible effect, 
so for brevity the results are not reported.  

It is noted, however, that if n=20 and 
ρ=.7, then some effect on the probability of a 
Type I error results: it tends to decrease 
somewhat versus situations where ρ=.5 or 0. But 
for n=40, this was no longer the case. 
Introducing curvature had more of an effect, and 
so results for this case are reported. No situation 
was found where the estimated probability of a 
Type I error exceeded .065 when testing at the 
.05 level, and the lowest estimate was .030 

except when ρ=.7, in which case, with n=20, α 
goes as low as .017. 

The second set of simulations was for 
p=5. Again observations were generated 
according to the models Y=ε , 1 2Y X X ε= + +  

and 2
1 22Y X X ε= + + , only now the goal was 

to test H0: f5(X5)=0. Obviously, with p=5, it is 

difficult to consider the many variations that 
might arise when the null hypothesis is true. 
Here, as a partial check on the method, some 
additional simulations were run assuming 
normality. If, for example, the models 

 
1 2 3 4Y X X X X ε= + + + +  

and 
 2 3

1 2 3 4Y X X X X ε= + + + +  
 
are used to generate the data, the estimated 
probability of a Type I error when testing at the 
.05 level was .049 and .045, respectively. 
 
Power 
 Now consider power. Various situations 
were considered and it was found that regardless 
of the distributions used, or the model used to 
generate the data, method V1 always had higher 
power than V2, and often the gain in power was 
substantial. For example, with n=40 and 

1 3.5Y X X ε= + + , if X1, X2 and ε  have 

independent standard normal random variables, 
power is .63 for method V1 and .40 for method 
V2. If instead ε  has a symmetric, heavy-tailed 
distribution (g=0 and h=.5), now power is .19 
and .06 for methods V1 and V2, respectively. 
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So, based purely on Type I error and power, all 
indications are that the approach based on means 
performs well, and there is no known reason for 
preferring the method based on a trimmed mean. 
This is not to suggest completely ruling out a 
trimmed mean, because using a trimmed can 
result in a better fit to the data, but in terms of 
detecting situations where a component of a 
generalized additive model differs from zero, 
using the mean appears to be preferable. 

The reason method V2 has relatively 
low power is evidently related to using a 
trimmed mean applied to the residuals when 
using the wild bootstrap method. If method V3 
is used instead, the problem of relatively low 
power, when using a general additive model 
based on a trimmed mean, is reduced 
substantially. Table 4 shows power estimates 
when using V1 versus V3. Often there is little 
separating the two methods, but even now, V1 
has uniformly higher power. This continued to 
be the case when data were generated from non-
linear models. 
 

Conclusion 
 

Of course, simulations cannot prove that a 
particular method always controls the 
probability of a Type I error, or that one 
particular method always has higher power than 
another. Nevertheless, all indications are that 
method V1, based on means, dominates in terms 
of power, and it performs well in terms of 
controlling the probability of a Type I error 
under what would seem like fairly extreme 
departures from normality. 
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Table 3:  Estimated probability of a Type I error, n=20 

 
    p=3 p=5 

g h g h 
1 2Y X X ε= + + 2

1 2Y X X ε= + + 1 2Y X X ε= + +  2
1 2Y X X ε= + +  

0.0 0.0 0.0 0.0 .051 .065 .049 .050 
  0.0 0.5 .041 .048 .030 .038 
  0.5 0.0 .044 .062 .040 .046 
  0.5 0.5 .033 .037 .023 .038 

0.0 0.5 0.0 0.0 .047 .045 .039 .051 
  0.0 0.5 .043 .046 .036 .040 
  0.5 0.0 .040 .043 .043 .050 
  0.5 0.5 .038 .039 .036 .043 

0.5 0.0 0.0 0.0 .053 .055 .047 .042 
  0.0 0.5 .038 .053 .041 .042 
  0.5 0.0 .050 .056 .042 .041 
  0.5 0.5 .036 .043 .031 .034 

0.5 0.5 0.0 0.0 .043 .040 .040 .049 
  0.0 0.5 .039 .043 .041 .046 
  0.5 0.0 .045 .043 .041 .046 
  0.5 0.5 .036 .043 .031 .046 

 
Table 4:  Estimated power, n=40, p=3, 1 3.5Y X X ε= + +  

 
g h g h Method V1 Method V3 

0.0 0.0 0.0 0.0 .63 .63 
  0.0 0.5 .19 .18 
  0.5 0.0 .53 .52 
  0.5 0.5 .15 .15 

0.0 0.5 0.0 0.0 .64 .61 
  0.0 0.5 .29 .27 
  0.5 0.0 .59 .37 
  0.5 0.5 .26 .24 

0.5 0.0 0.0 0.0 .68 .45 
  0.0 0.5 .21 .20 
  0.5 0.0 .57 .42 
  0.5 0.5 .19 .17 

0.5 0.5 0.0 0.0 .56 .34 
  0.0 0.5 .28 .24 
  0.5 0.0 .52 .34 
  0.5 0.5 .26 .24 
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