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BRIEF REPORTS 
Inference on P(Y < X) in a Pareto Distribution 

  
     M. Masoom Ali                                                 Jungsoo Woo 

       Department of Mathematical Sciences                            Department of Statistics 
          Ball State University                                             Yeungnam University 

 
 
 
Inference on the reliability R = P(Y < X) in a Pareto distribution with a known scale parameter is 
considered. Point estimates and confidence intervals of R are obtained a test of hypothesis is also 
considered. 
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Introduction 

 
A Pareto distribution is given by 
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(1 / )
f x x

x α
αα β

β β += >
+

α, β > 0.                             

                                                                                        
Pareto law has been universal and inevitable, 
regardless of taxation and social and political 
conditions. More recently, attempts have been 
made to explain many empirical phenomena 
using the Pareto distribution (see Moothathu, 
1984; Arnold & Press, 1983). Ali, et al, (2005a 
and 2005b) considered the problem for some 
other distributions. The probability that a 
Weibull random variable Y is less than another 
independent Weibull random variable X was 
considered by McCool (1991). Baklizi (2003) 
considered the confidence interval of P(X < Y) 
in the exponential case with common location. 
 
_______________________________________ 
 
M.Masoom Ali is George & Frances Ball 
Distinguished Professor of Statistics. His 
research interests are in order statistics, Bayesian 
statistics, statistical inference, and distribution 
problems. Email him at mali@bsu.edu. Jungsoo 
Woo is Professor of Statistics. His research 
interests are in Bayesian statistics, statistical 
inference and distribution problems.  
 
 

The problem of estimating and of drawing 
inferences about the probability that a random 
variable Y is less than another independent 
random variable X arise in reliability studies. 
 When Y represents the random variable 
of a stress that a device will be subjected to in 
service and X represents the strength that varies 
from item to item in the population of devices, 
then the reliability R, i.e., the probability that a 
randomly selected device functions successfully, 
is equal to P(Y < X). The same problem also 
arises in the context of statistical tolerance 
where Y represents, say, the diameter of a shaft 
and X the diameter of a bearing that is to be 
mounted on the shaft. The probability that the 
bearing fits without interference is the P(Y < X). 
In biometry, Y represents a patient's remaining 
years of life if treated with drug A and X 
represents the patient's remaining years when 
treated with drug B. If the choice of drug is left 
to the patient, person's deliberations will center 
on whether P(Y < X) is less than or greater than 
1/2. 
 In this article, the problem of estimating 
P(Y < X) in a Pareto distribution with a known 
scale parameter, including point and interval 
estimation is considered and also a test of 
hypothesis.  

 
Inference on P(Y < X) 
 Let X and Y be independent random 
variables from Pareto distributions with 
parameters ( , )xα β  and ( , )yα β  respectively. 
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Then from formula 3.381(4) in Gradshteyn and 
Ryzhik (1965), the following fact is obtained. 
 
Fact 1: 

 ( ) 1
1

x

x y

R P Y X
α ρ

α α ρ
≡ < = − =

+ +
  

is a monotone function of ρ , where y

x

α
ρ

α
≡ . 

Proof:  
 

0

( )

1 ( ; , ) ( ; , )X x Y y

y x

R P Y X

f x f y dxdyα β α β
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= <
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where Xf  is the Pareto density with 

parameters ( , )xα β  and Yf  is the Pareto 

distribution with parameters ( , )yα β . By 

formula 3.381(4) in Gradshteyn and Ryzhik 
(1965), one can integrate and obtain the 
following. 
 

( ) 1 (1, ),x x yR P Y X Bα α α= < = − ⋅ +  

 
where, ( , )B a b is a beta function. Using 

( , ) ( ) ( ) / ( ), 0, 0,B a b a b a b a b= Γ Γ Γ + > >  the 
above result is obtained. 
 Because R is a monotone function of ρ , 

inference on ρ is equivalent to inference on R . 
Attention is confined to the parameter ρ  (see 

McCool, 1991). Assume 1 2, ,..., mX X X and 

1 2, ,..., nY Y Y are independent random samples 

from 0( ; , )X xf x α β and 0( ; , )Y yf y α β , 

respectively, where 0β  is known. From Johnson 

et al (1995), MLE's of xα and yα are 
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The following results in Fact 2 are well-known. 
 
Fact 2:  (a) Assume 1 2, ,..., mX X X  be a random 

sample from a Pareto distribution with 

parameters 0( , )xα β . Then 01
ln(1 / )

m

ii
X β

=
+∑  

follows a gamma distribution with a shape 
parameter m and a scale parameter 1/ xα . (b)  If 

a random variable X follows a gamma 
distribution with shape α and scale β  then  
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From Fact 2(a) and (b), one can obtain the 
following fact. 
 
Fact 3: 
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From Johnson et al (1995),  
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and  
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are UMVUE of xα and ,yα  respectively. 
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Then one can obtain the following expectation 
and variance. 
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and  
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Therefore, it is obtained: 
 
Fact 4:  ˆ( ) ( ).MSE MSEρ ρ< �  
 
To consider a confidence interval for ρ , the 
following random variables are defined. Let 
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and / .U Z W≡  
 
 By formula 3.381(4) in Gradshteyn and 
Ryzhik (1965) and the quotient pdf of two 
independent random variables, the pdf of U is 
obtained as follows. 
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where ( , )B m n is the Beta function. From the 

density of /U Z W= , one can easily find the 

distribution of 
U

B
Uρ

≡
+

. 

 

Fact 5:  Let .
U

B
Uρ

≡
+

 Then, B follows a beta 

distribution with parameters m and n. Based on 
the pivot quantity B , a confidence interval of ρ  
is considered. From the beta distribution 
function, for a given 0 1,α< < there 

exists 0 1bα< < such that 
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Here, for a given 0 1,α< <  bα  can be easily 

evaluated by inverse function of the beta 
distribution using statistical software. Hence, 
a (1 )100%α− confidence interval of ρ  can be 
obtained as 
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and from the result of Fact 3, its expected length 
is 
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Next, the null hypothesis is tested 
 

0 : x yH α α=  against 1 : x yH α α≠ . Let 

{( , ) | 0, 0},x y x yα α α αΘ = > > and

( , ).x yθ α α=  

 
Then the joint probability density function of  

1 2 1 2, ,..., , , ,...,m nX X X Y Y Y  is 
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Differentiating with respect to xα and yα , the 

MLE's are obtained as follows. 
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If ,x yα α α= = then the MLE of α is 

 

0 0
1 1

ˆ .
ln(1 / ) ln(1 / )

m n

i i
i i

m n

x y
α

β β
= =

+=
+ + +∑ ∑

 

 
From the definition of likelihood ratio test, the 
likelihood ratio test function is given by 
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Therefore, ( , )x y cΛ < is equivalent to 1U c<  

or 2.U c>  Under 0 : ,x yH α α=  i.e., 1ρ = , 

from Fact 5, the statistic  

 

0 1

U U
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U Uρ
= =

+ +
 

 
follows a beta distribution with m and n . 
Because 0B is a monotone increasing function of 

U , so 1U c< or  2U c>  is equivalent to 

0 1B b<  or 0 2B b> . 1b and 2b can be obtained by 

inverse function of a beta distribution and using 
a statistical software. 
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