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Type I Error Of Four Pairwise Mean Comparison Procedures 
Conducted As Protected And Unprotected Tests 

 
        J. Jackson Barnette                           James E. McLean 
           Department of Biostatistics        Program of Educational Research 
    University of Alabama at Birmingham                University of Alabama, Tuscaloosa 
 
 
Type I error control accuracy of four commonly used pairwise mean comparison procedures, conducted 
as protected or unprotected tests, is examined. If error control philosophy is experimentwise, Tukey’s 
HSD, as an unprotected test, is most accurate and if philosophy is per-experiment, Dunn-Bonferroni, 
conducted as an unprotected test, is most accurate. 
 
Key words: Type I error control, experimentwise vs. per-experiment error, protected vs. unprotected tests, 
pairwise comparisons, Tukey’s HSD, Dunn-Bonferroni, Dunn-Sidak, Holm’s sequentially rejective    
 
 
 

Introduction 
 
Whenever a researcher has more than two 
comparisons to test, control of the Type I error-
rate becomes a concern. Soon after Fisher 
developed the process of analysis of variance 
(ANOVA), he recognized the potential problem 
of the error-rate becoming inflated when 
multiple t tests were performed on three or more 
groups. 
 He discussed this problem in the 1935 
edition of his famous book, The Design of 
Experiments. His recommendation of using a 
more stringent alpha when performing his Least 
Significant Difference Procedure (LSD) is based 
on this concern. However, researchers still 
criticized the LSD as providing inadequate 
control of Type I error. This early recognition of 
the problem has resulted in hundreds of multiple 
comparison procedures being developed over the 
years.   
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The earliest example of what is now 

known as a multiple comparison procedure 
could be found in 1929, when Working and 
Hotelling applied simultaneous confidence 
intervals to regression lines. The Fisher (1935) 
reference cited earlier was the first application to 
the process of ANOVA. The Type I error-rate 
control problem was also referred to by Pearson 
and Sekar in 1936 and Newman in 1939. 
Newman described a multiple comparison test 
that used the “Studentized Range Statistic.”  It is 
said that his work was prompted by a discussion 
he had with Student. Years later, Keuls 
published an updated version of the procedure 
(1952) using the Studentized range. That 
multiple comparison procedure is now known as 
the Student-Newman-Keuls procedure. 
 Most studies of Type I error rates for 
follow-up of pairwise mean differences have 
been based on what is referred to as 
experimentwise or familywise error control 
philosophies. These terms were more 
extensively described by Ryan (1959) and Miller 
(1966). Experimentwise (EW) Type I error 
relates to finding at least one significant 
difference by chance for the specified alpha 
level. In these cases, the only difference of 
concern is the largest mean difference. 
Experimentwise Type I error control ignores the 
possibility of multiple Type I errors in the same 
experiment. The pairwise mean differences for 
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those other than the largest mean difference are 
not considered. Type I error control is such that 
not all possible Type I errors are evaluated. In 
these cases, many procedures such as Tukey’s 
HSD are considered to have conservative Type I 
error control since the actual probabilities of 
finding at least one Type I error are lower than 
the nominal alpha level. 
 Per-experiment (PE) Type I error 
control considers all the possible Type I errors 
that can occur in a given experiment. Thus, more 
than one Type I error per experiment is possible 
and reasonably likely to occur if there is an 
experimentwise Type I error on the highest 
mean difference. Klockars & Hancock (1994) 
pointed out the importance and risks associated 
with this distinction. They found, using a Monte 
Carlo simulation, that there was a difference of 
.0132 in the per-experiment and experimentwise 
Type I error rates for Tukey’s HSD when alpha 
was set at .05. This discussion was expanded in 
their 1996 review titled “The Quest for α” 
(Hancock & Klockars). Thus, when one has 
exact control of Type I error in the 
experimentwise situation, the per-experiment 
Type I error probability is higher. One of the 
purposes of this research was to examine how 
much of a difference there may be between 
experimentwise and per-experiment Type I error 
rates for four of the most commonly used 
pairwise multiple comparison procedures when 
used with alpha levels of .10, .05, and .01, and to 
determine the relative influence on this 
difference of number of groups and number of 
subjects per group. While most Type I error 
research is based on an experimentwise mode, 
the per-experiment Type I error is more 
consistent with the reality of pairwise hypothesis 
testing. It considers not only the largest mean 
difference subjected to error control, but all the 
pairwise differences.  
 There seems to be an inconsistency of 
logic when comparing the power of various 
methods and manners of Type I error control. 
When it is stated that the Student-Newman-
Keuls is more powerful than Tukey’s HSD or 
Holm’s procedure is more powerful than Dunn-
Bonferroni; the notion is that one method leads 
to more rejections of partial null hypotheses. 
However, if one considers the notion of 
experimentwise Type I error (the largest 

pairwise difference or more being rejected), then 
SNK and HSD have the same power and Dunn-
Bonferroni and Holm have the same power. 
Differences in power only come when 
considering pairwise differences that are found 
beyond the k number of means steps. Thus, 
should not error rate take into account the 
possible false rejections in the entire structure of 
mean differences, not just the largest one? Per-
experiment Type I error control is more 
consistent with actual pairwise hypothesis 
decision-making. 
 Four multiple comparison procedures 
were selected for this research: Dunn-
Bonferroni, Dunn-Sidak, Holm’s sequentially 
rejective, and Tukey’s HSD. Based on a review 
of current literature and commonly used 
statistical texts, it was concluded that these are 
among the most frequently used pairwise 
procedures and represent a variety of approaches 
to control for Type I error. Since the names of 
these procedures tend to vary slightly in texts, 
statistical software, and in the literature, each is 
described briefly below: 
 The Dunn-Bonferroni procedure uses 
the Bonferroni inequality (αPE  ≤ ΣαPC) as 
authority to divide equally the total a priori error 
among the number of tests to be completed, 
often following the application of the Fisher 
LSD procedure. The LSD procedure is 
equivalent to conducting all pairwise 
comparisons using independent t tests with the 
MSerror as the common pooled variance estimate 
(Kirk, 1982). An example of the application of 
the Dunn-Bonferroni would be identifying the a 
priori α as .05 where tests are required to 
compare means of five groups using 10 
comparisons, running each individual test at the 
.05/10= .005 level (Hays, 1988). Sidak’s 
modification of the Dunn-Bonferroni procedure, 
referred to as the Dunn-Sidak procedure 
substituted the multiplicative computation of the 
exact error-rate, αPE = 1 − (1 − αPC)c where c is 
the number of comparisons for the Bonferroni 
Inequality (αPE  ≤ ΣαPC), otherwise following 
the same procedures (Kirk, 1982). 
 A procedure proposed by Holm in 1979, 
Holm’s Sequentially Rejective procedure is also 
referred to as the Sequentially Rejective 
Bonferroni procedure. Assuming a maximum of 
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c comparisons to be performed, the first null 
hypothesis is tested at the α/c level. If the test is 
significant, the second null hypothesis is tested 
at the α/(c − 1) level. If this is significant, the 
testing continues in a similar manner until all c 
tests have been completed or until a 
nonsignificant test is run. The testing stops when 
the first nonsignificant test is encountered 
(Hancock & Klockars, 1996). 
 Tukey’s Honestly Significant Difference 
procedure (HSD) was presented originally in a 
non-published paper by Tukey in 1953. Its 
popularity has grown to the point where it is, 
possibly, the most widely used multiple 
comparison procedure. The HSD is based on the 
Studentized Range Statistic originally derived by 
Gossett (a.k.a., Student) (1907-1938). This 
statistic, unlike the t statistic, takes into account 
the number of means being compared, adjusting 
for the total number of tests to make all pairwise 
comparisons (Kennedy & Bush, 1985).  
 Many researchers follow the practice of 
conducting post-hoc pairwise multiple 
comparisons only after a significant omnibus F 
test. Protected tests are conducted only after a 
significant omnibus F test, while unprotected 
tests are conducted without regard to the 
significance of the omnibus F test. Many 
common statistical texts either recommend or 
imply the use of a protected test for all post-hoc 
multiple comparison procedures (e.g., Hays, 
1988; Kennedy & Bush, 1985; Kirk, 1982; 
Maxwell & Delaney, 1990). While these texts 
provide a logical basis for this, and excellent 
reviews of multiple comparison procedures are 
available (e.g., Hancock & Klockars, 1996; 
Toothaker, 1993), little empirical evidence is 
presented, either analytically or empirically, to 
justify this practice. 
 The research questions addressed in this 
research are:   
 

1. Which of these four multiple 
comparison procedures has the most 
accurate control of Type I error 
across the three alpha conditions? 

 
2. Does error control accuracy differ 

when tests are conducted as 
protected or unprotected tests? 

 

3. Do methods differ relative to 
accuracy when conducted as 
experimentwise vs. per-experiment 
control? 

 
Methodology 

 
Monte Carlo methods were used to generate the 
data for this research. All data comprising the 
groups whose means were compared were 
generated from a random normal deviate routine, 
which was incorporated into a larger compiled 
QBASIC program that conducted all needed 
computations. The program was written by the 
senior author. All sampling and computation, 
conducted with double-precision, routines were 
verified using SAS® programs. Final analysis of 
the summary statistics and correlations was 
conducted using SAS®. 
 Several sample size and number of 
groups arrangements were selected to give a 
range of low, moderate, and large case 
situations. The numbers of groups were: 3, 4, 5, 
6, 8, and 10 and the sample sizes for each group 
were: 5, 10, 15, 20, 30, 60, and 100, which when 
crossed gave 42 experimental conditions. This 
was replicated for three nominal alphas of .10, 
.05, and .01. The approach used was to 
determine what number of replications would be 
needed to provide an expected .95 confidence 
interval of +/- .001 around the nominal alpha.  
 This is an approach to examination of 
how well observed Type I error proportions are 
reasonable estimates of a standard nominal 
alpha. In other words, if alpha is the standard, 
what proportion of the estimates of actual Type I 
error proportions can be considered accurate, as 
evidenced by them being within the expected .95 
confidence interval around nominal alpha? 
 This was based on the assumption that 
errors would be normally distributed around the 
binomial proportion represented by nominal 
alpha. Thus, when alpha was .10, 345742 
replications were needed to have a .95 
confidence interval of +/- .001 or between .099 
and .101. When alpha was .05, 182475 
replications were needed to have a .95 
confidence interval of +/- .001 or between .049 
and .051 and when alpha was .01, 38032 
replications were needed to have a .95 
confidence interval of +/- .001 or between .009 
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and .011. Observed Type I error proportions 
falling into the respective .95 confidence 
intervals are considered to be accurate estimates 
of the expected Type I error rate.  
 Within each nominal alpha/sample 
size/number of groups configuration, the number 
of ANOVA replications were generated. Each 
replication involved drawing of elements of the 
sample from a distribution of normal deviates, 
computation of sample means, and the omnibus 
F test. Error rates were determined for protected 
and unprotected tests for each of the four 
multiple comparison procedures. While Dunn-
Bonferroni, Dunn-Sidak, and HSD use only one 
critical value for all differences, the pairwise 
differences were recorded in a hierarchical 
fashion to determine pairwise differences 
significant at each of the numbers of steps 
between means from k down to 2. This approach 
permitted determination of experimentwise Type 
I error (at least one Type I error per experiment) 
or a Type I error for the largest mean difference, 
and per-experiment Type I errors or the total 
number of Type I errors observed regardless of 
where they are in the stepwise structure.  
 Summary statistics were computed for 
each alpha level for experimentwise and per-
experiment conditions including: the mean 
proportion of Type I errors, standard deviation 
of the proportion of Type I errors, and the 
percentage of those proportions falling in the 
three regions associated with the .95 confidence 
interval of nominal alpha +/- 0.001.Additional 
analysis included computation of differences 
between per-experiment proportions and 
experimentwise proportions (PE-EW).  
 Preliminary analyses were run using the 
Monte Carlo program to test its accuracy. First, 
500,000 standard normal scores (z scores) were 
generated and the statistics for the distribution 
were computed. This resulted in a mean = -
.00096, variance = 1.0013, skewness = .00056, 
kurtosis = .00067, and the Wilk-Shapiro D = 
.000734 (nonsignificant). Thus, we concluded 
that the program generates reasonable normal 
distributions. Second, 900,000 cases were 
computed with k ranging from 2 to 10 and n 
ranging from 5 to 100 with no differences 
between the group means. In each case, the 
proportions of significant F statistics were 
computed corresponding to preset alphas of .25, 

.10, .05, .01, .001, and .0001. The resulting 
proportions of rejected null hypotheses were 
.24989, .10106, .05071, .01022, .001004, and 
.000103 respectively. These results support the 
accuracy of the Monte Carlo program. 

 
Results 

 
The first research question is: Which of these 
four multiple comparison procedures has the 
most accurate control of Type I error across the 
three alpha conditions? The results for each of 
the three alpha conditions are presented in 
Tables 1 through 3 and Figures 1 through 3. 
Table 1 and Figure 1 present results when 
nominal alpha is set at .10, Table 2 and Figure 2 
present results when nominal alpha is set at .05, 
and Table 3 and Figure 3 present results when 
nominal alpha is set at .01.  
 When alpha is set at .10, if the Type I 
error rate philosophy is experimentwise, the 
most accurate of these four procedures is clearly 
Tukey’s HSD, conducted as an unprotected test, 
with a mean observed Type I error rate of 
.09940 and with 78.6% of the observed Type I 
errors being in the range of .099 to .101. The 
HSD conducted as a protected test with an 
experimentwise control philosophy had a mean 
of .08134, somewhat conservative. All of the 
other procedures conducted, based on the 
experimentwise philosophy are conservative 
procedures with mean Type I error rates in the 
range of .07239 to .07535 when conducted as 
unprotected tests and .06695 to .06885 when 
conducted as protected tests. 
 If the Type I error control philosophy is 
per-experiment, the most accurate procedure is 
clearly the Dunn-Bonferroni, conducted as an 
unprotected test with a mean observed Type I 
error rate of .10011 and 85.7% of the observed 
Type I errors in the range of .099 to .101. When 
the philosophy is per-experiment and conducted 
as unprotected tests, the other three methods 
tend to be liberal with the mean error rate for the 
Dunn-Sidak at .10481 and the Holm procedure 
at .10582. Tukey’s HSD was very liberal in this 
situation with a mean error rate of .14579. When 
conducted as protected tests, HSD was slightly 
liberal with a mean error of .12741 and the other 
three methods were reasonably accurate with 
mean errors of .09466 for the Dunn-Bonferroni, 
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.09834 for the Dunn-Sidak, and .10036 for 
Holm’s procedure.  

When nominal alpha was set at .05, the 
results were very similar. If the Type I error rate 
philosophy is experimentwise, the most accurate 
of these four procedures is clearly Tukey’s HSD, 
conducted as an unprotected test, with a mean 
observed Type I error rate of .04993 and with 
97.6% of the observed Type I errors being in the 
range of .049 to .051. The HSD conducted as a 
protected test with an experimentwise control 
philosophy had a mean of .03865, somewhat 
conservative. All of the other procedures 
conducted,   based    on     the     experimentwise  
philosophy are conservative procedures with 
mean Type I error rates in the range of .03864 to 
.03943 when conducted as unprotected tests and 
.03352 to .03395 when conducted as protected 
tests. 
 If the Type I error control philosophy is 
per-experiment, the most accurate procedure is 
clearly the Dunn-Bonferroni, conducted as an 
unprotected test with a mean observed Type I 
error rate of .04998 and 92.9% of the observed 
Type I errors in the range of .049 to .051. When 
the philosophy is per-experiment and conducted 
as unprotected tests, the other three methods 
tend to be liberal with the mean error rate for the 
Dunn-Sidak at .05110 and the Holm procedure 
at .05208. Tukey’s HSD was very liberal in this 
situation with a mean error rate of .06674. When 
conducted as protected tests, HSD was slightly 
liberal with a mean error of .05531 and the other 
three methods were slightly conservative with 
mean errors of .04483 for the Dunn-Bonferroni, 
.04560 for the Dunn-Sidak, and .04696 for 
Holm’s procedure. 

When nominal alpha was set at .01, the 
patterns of results were very similar to the .10 
and .05 nominal alpha conditions. If the Type I 
error rate philosophy is experimentwise, the 
most accurate of these four procedures is clearly 
Tukey’s HSD, conducted as an unprotected test, 
with a mean observed Type I error rate of 
.01002 and with 100.0% of the observed Type I 
errors being in the range of .009 to .011. The 
HSD conducted as a protected test with an 
experimentwise control philosophy had a mean 
of .00702, somewhat conservative. All of the 
other procedures conducted, based on the 
experimentwise philosophy are conservative 

procedures with mean Type I error rates in the 
range of .00860 to .00865 when conducted as 
unprotected tests and .00647 to .00649 when 
conducted as protected tests. If the Type I error 
control philosophy is per-experiment, the most 
accurate procedure is clearly the Dunn-
Bonferroni, conducted as an unprotected test 
with a mean observed Type I error rate of 
.01003 and 97.6% of the observed Type I errors 
in the range of .009 to .011.  

When the philosophy is per-experiment 
and conducted as unprotected tests, the Dunn-
Sidak outcome is very close to the Dunn-
Bonferroni outcome with a mean error rate of 
.01007 and 92.9% of the observed errors in the 
.009 to .011 range. The other two methods tend 
to be liberal with the mean error rate for the 
Holm procedure at .01026 and Tukey’s HSD  
with a mean error rate of .01181. When 
conducted as protected tests, all four methods 
were conservative with Tukey’s HSD slightly 
less conservative with a mean error rate of 
.00878. The other three methods were slightly 
more conservative with mean errors of .00790 
for the Dunn-Bonferroni, .00793 for the Dunn-
Sidak, and .00814 for Holm’s procedure.  
 In summary, relative to research 
question 1 (Which of these four multiple 
comparison procedures has the most accurate 
control of Type I error across the three alpha 
conditions?), if the most accurate control of per-
experiment Type I error is desired, the Dunn-
Bonferroni, conducted as an unprotected test, is 
the most accurate across all three levels of alpha. 
It consistently provides a mean Type I error rate 
closest to nominal alpha, has the lowest 
variance, and captures the highest proportion of 
observed Type I errors in the expected +/- .001 
interval. Although the Dunn-Sidak and Holm 
provide values that are reasonably close, they 
tend to be slightly more liberal and less accurate, 
particularly with higher nominal alpha. As alpha 
decreases, both the Dunn-Sidak and Holm 
approach the level of accuracy of the Dunn-
Bonferroni. Tukey’s HSD is liberal as an 
unprotected test in control of per-experiment 
Type I error, although this decreases as alpha 
decreases. If the error control philosophy is 
experimentwise, Tukey’s HSD is the most 
accurate, conducted as an unprotected test. It has 
a mean error closest to nominal alpha, the lowest 
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variance, and the highest proportion of observed 
Type I errors in the expected +/- .001 interval. 
When alpha is .10, HSD is slightly less accurate 
than when alpha is .05 or .01. The other three 
methods are conservative, with the Dunn-Sidak 
being slightly less conservative compared with 
Dunn-Bonferroni and Holm. 
 The second research question is: Does 
error control accuracy differ when tests are 
conducted as protected or unprotected tests? If 
the interest is in using any of these methods as a 
protected test, a practice not generally supported 
by these data, the HSD provides the most 
accurate control of experimentwise Type I error 
although it is very conservative at all alpha 
levels. The other three methods are very 
conservative in control of experimentwise Type 
I error. If per-experiment control of Type I error 
is the philosophy, HSD is liberal when alpha is 
.10 or .05 but becomes more accurate, even 
somewhat conservative, when alpha is .01. Of 
the remaining three, Holm’s procedure tends to 
be more accurate across the three alpha levels. It 
is clear and expected that unprotected tests are 
more powerful than protected tests.  
 The third research question is: Do 
methods differ relative to accuracy when 
conducted as experimentwise vs. per-experiment 
control? It seems pretty clear that the results 
vary a great deal depending on the Type I error 
control philosophy. By the very nature of these 
philosophies, there will be a higher proportion of 
Type I errors in the per-experiment condition 
compared with the experimentwise condition. In 
every case, across alpha levels and for both 
protected and unprotected tests, the lowest 
difference between these rates was for the Dunn-
Bonferroni, followed relatively closely by the 
Dunn-Sidak, Holm’s procedure has next highest, 
and the highest difference was for the HSD. 
Thus, the issue is more a concern if one is using 
the HSD as compared with the other three 
methods.  

 
Conclusion 

 
These results provide insights on two major 
controversies. One is the need for a significant 
omnibus F test as the gateway for conducting 
pairwise follow-ups (i. e., the protected test). Is 
it not possible, as Hancock & Klockars (1996) 

pointed out, that this requirement overprotects 
against finding pairwise differences?  These 
results certainly support that claim, particularly 
when experimentwise Type I error is the control 
philosophy. Protected tests were more 
conservative in every case. It can clearly be 
concluded that none of these four tests should be 
used as protected tests when experimentwise 
error control is used. If per-experiment error 
control is desired, only the Holm procedure with 
alpha of .10 was more accurate as a protected 
test than as an unprotected test. However, that 
accuracy difference was lower when alpha was 
.05 or .01.  

The other controversy is the use of 
experimentwise vs. per-experiment Type I error 
control. Clearly there is a difference in the error 
rates of these philosophies. The authors of this 
article contend that per-experiment mode is 
closest to the realities of pairwise hypothesis 
testing, because more than just the largest 
pairwise difference is of interest and all pairwise 
comparisons are tested. The conventional 
wisdom, based on experimentwise Type I error 
control, is that the Dunn-Bonferroni is very 
conservative and that the HSD is conservative, 
but less so. 

The HSD is often recommended because 
it is conservative, yet provides reasonable power 
for finding significant differences; but this 
relates to experimentwise control and a 
protected test. Yet, arguments could be made 
that the HSD gets its power from a higher-than-
nominal alpha level. In this research, when HSD 
is used as a protected test with alpha of .10 or 
.05, the actual per-experiment Type I error rates 
are .12741 and .05531 respectively and actual 
experimentwise Type I error rates were much 
lower at .08134 and .03865. Thus, the 
operational alpha level is not the nominal level, 
but a higher level.  

If one is truly interested in maintaining 
an accurate level of control of Type I error, then 
methods which are shown to provide accurate 
actual controls should be used, and the power 
available can be determined by other 
comparison conditions: sample size, effect size, 
number of groups, and error variance. This 
research indicates that Tukey’s HSD, conducted 
as an unprotected test, is the most accurate 
control of experimentwise Type I error. If it is 
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desired that accurate, as advertised, control of 
per-experiment Type I error be the primary 
criterion, there is one method that seems to 
provide that regardless of alpha level and that is 
the Dunn-Bonferroni conducted as an 
unprotected test.  
 These findings are not consistent with 
common wisdom or with recommendations 
found or implied in most statistics texts. 
However, it is hoped that this research 
influences others to replicate this work, possibly 
using other methods. Only when one is willing 
to question our current practice can one be able 
to improve on it. 
 Additional study of the discrepancy 
between experimentwise and per-experiment 
Type I errors is needed. Determining the 

importance of this discrepancy is required. The 
current study did not consider the case of 
unequal sample sizes or heterogenous variances. 
Is it the same under conditions of unequal 
sample sizes and/or variances? While it might be 
useful to include other procedures such as the 
Student-Newman-Keuls, Scheffé, and 
modifications of Holm’s procedure, it is 
believed that it is unlikely that any of these 
methods will fare better as methods of Type I 
error control than Tukey’s HSD when 
experimentwise is the control philosophy, or the 
Dunn-Bonferroni when per-experiment is the 
control philosophy and unprotected tests are 
used.  

 



BARNETTE & MCLEAN 453 

 
 
 
 
 

 
 
 
 
 

Table 1. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple 
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .10 

 

Protected Test Unprotected Test 

 
Per- 

Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001  

 
.09466 

 
−.00534 

 
.00427 

 
 

19.0 

 
.06695 

 
−.03305 

 
.00962 

 
 

0 

.02771 
 
 
 
 
 
 

 
.10011 

 
+.00011 

 
.00075 

 
 

85.7 

 
.07239 

 
−.02767 

 
.00626 

 
 
0 

.02772 
 
 
 
 
 
 

Dunn-Sidak 

  
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.09834 
 

−.00166 
 

.00401 
 
 

19.0 

 
 

.06885 
 

−.03115 
 

.00972 
 
 

0 

 
.02949 

 
 
 
 
 
 

 
 

.10481 
 

+.00481 
 

.00093 
 
 
0 

 
 

.07535 
 

−.02465 
 

.00625 
 
 
0 

 
.02946 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.10036 
 

+.00036 
 

.00739 
 
 

2.4 

 
 

.06695 
 

−.03305 
 

.00962 
 
 

0 

 
.03341 

 
 
 
 
 
 

 
 

.10582 
 

+.00582 
 

.00346 
 
 

7.1 

 
 

.07239 
 

−.02761 
 

.00626 
 
 
0 

 
.03343 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.12741 
 

+.02741 
 

.00906 
 
 
0 

 
 

.08134 
 

−.01866 
 

.00755 
 
 

0 

 
.04607 

 
 
 
 
 
 

 
 

.14579 
 

+.04579 
 

.01472 
 
 
0 

 
 

.09940 
 

−.00060 
 

.00102 
 
 

78.6 

 
.04639 
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Figure 1
Accuracy of Type I Error Control with Experimentwise and Per-Experiment Control Conducted 

as Protected and Unprotected Tests when Nominal Alpha= .10 and % in .10 +/- 0.001 
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Table 2. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple   
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .05 
 

 

Protected Test Unprotected Test 

 Per- 
Experiment 
Error (PE) 

Experiment
-wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment
-wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
.04483 

 
−.00517 

 
.00315 

  
 

7.1 

 
.03352 

 
−.01648 

 
.00534 

 
 

0 

.01113 
 
 
 
 
 
 

 
.04998 

 
−.00002 

 
.00054 

 
 

92.9 

 
.03864 

 
−.01136 

 
.00294 

 
 

0 

.01134 
 
 
 
 
 
 

Dunn-Sidak 

  
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.04560 
 

−.00440 
 

.00308 
 
 

16.7 

 
 

.03395 
 

−.00405 
 

.00536 
 
 

0 

 
.01165 

 
 
 
 
 
 

 
 

.05110 
 

+.00110 
 

.00052 
 
 

50.0 

 
 

.03943 
 

−.01057 
 

.00291 
 
 

0 

 
.01167 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.04696 
 

−.00304 
 

.00433 
 
 

19.0 

 
 

.03352 
 

−.01648 
 

.00535 
 
 

0 

 
.01344 

 
 
 
 
 
 

 
 

.05208 
 

+.00208 
 

.00146 
 
 

33.3 

 
 

.03864 
 

−.01136 
 

.00294 
 
 

0 

 
.01344 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.05531 
 

+.00531 
 

.00324 
 
 

2.4 

 
 

.03865 
 

−.01135 
 

.00458 
 
 

0 

 
.01666 

 
 
 
 
 
 

 
 

.06674 
 

+.01674 
 

.00541 
 
 

0 

 
 

.04993 
 

−.00007 
 

.00048 
 
 

97.6 

 
.01681 
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Figure 2
Accuracy of Type I Error Control with Experimentwise and Per-Experiment Control Conducted 

as Protected and Unprotected Tests when Nominal Alpha= .05 and % in .05 +/- 0.001 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

DB - Prot

DS - Prot

HLM - Prot

HSD - Prot

DB - UnPr

DS - UnPr

HLM - UnPr

HSD - UnPr

DB - Prot

DS - Prot

HLM - Prot

HSD - Prot

DB - UnPr

DS - UnPr

HLM - UnPr

HSD - UnPr

P
E

E
W

Mean Probability of Type I Error

7.1%

97.6%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

33.3%

50.0%

92.9%

2.4%

19.0%

16.7%

 



BARNETTE & MCLEAN 457 

 
 
 
 
 
 
 
 
 

 
 
 

Table 3. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple   
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .01 

 

Protected Test Unprotected Test 

 
Per- 

Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
.00790 

 
−.00210 

 
.00103 

 
 

11.9 

 
.00647 

 
−.00353 

 
.00123 

 
 

0 

.00143 
 
 
 
 
 
 

 
.01003 

 
+.00003 

 
.00048 

 
 

97.6 

 
.00860 

 
−.00140 

 
.00059 

 
 

26.2 

.00143 
 
 
 
 
 
 

Dunn-Sidak 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.00793 
 

−.00207 
 

.00103 
 
 

14.3 

 
 

.00649 
 

−.00351 
 

.00122 
 
 

0 

 
.00144 

 
 
 
 
 
 

 
 

.01007 
 

+.00007 
 

.00049 
 
 

92.9 

 
 

.00865 
 

−.00135 
 

.00058 
 
 

26.2 

 
.00142 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.00814 
 

−.00186 
 

.00119 
 
 

31.0 

 
 

.00647 
 

−.00353 
 

.00123 
 
 

0 

 
.00167 

 
 
 
 
 
 

 
 

.01026 
 

+.00026 
 

.00054 
 
 

92.9 

 
 

.00860 
 

−.00140 
 

.00059 
 
 

26.2 

 
.00166 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

00878 
 

−.00122 
 

.00097 
  
 

42.9 

 
 

.00702 
 

−.00298 
 

.00116 
 
 

2.4 

 
.00176 

 
 
 
 
 
 

 
 

.01181 
 

+.00181 
 

.00080 
 
 

14.3 

 
 

.01002 
 

+.00002 
 

.00043 
 
 

100.0 

 
.00179 
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