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Testing Goodness Of Fit Of The Geometric Distribution: 
An Application To Human Fecundability Data 

 
Sudhir R. Paul  

Department of Mathematics and Statistics 
University of Windsor 

 
 
 
A measure of reproduction in human fecundability studies is the number of menstrual cycles required to 
achieve pregnancy which is assumed to follow a geometric distribution with parameter p. Tests of 
heterogeneity in the fecundability data through goodness of fit tests of the geometric distribution are 
developed, along with a likelihood ratio test statistic and a score test statistic. Simulations show both are 
liberal, and empirical level of the likelihood ratio statistic is larger than that of the score test statistic. A 
power comparison shows that the likelihood ratio test has a power advantage. A bootstrap p-value 
procedure using the likelihood ratio statistic is proposed. 
 
Key words: Beta-geometric distribution; bootstrap p-value; fecundability data; geometric distribution; 
likelihood ratio test; score test.  
 
 

Introduction 
 
The geometric distribution is important in many 
real life data analyzes. For example, in 
fecundability studies (Weinberg & Gladen, 
1986), the number of cycles required to achieve 
pregnancy would be distributed as a geometric 
distribution with parameter p. However, in real 
life data situations, the actual variation of the 
data may exceed that of the geometric 
distribution, as the parameter p may not remain 
constant in the course of the experiment. It is 
then useful to assume that the parameter p varies 
from observation to observation. One can 
assume one of many continuous distributions for 
p in the parameter space 0<p<1. But, the most 
convenient and most sensible distribution for p 
is the beta distribution, because it is the natural 
conjugate prior distribution in the Bayesian 
sense. 
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It also produces a convenient mixed distribution, 
namely, the beta-geometric distribution. The 
parameters of this mixed distribution have 
practical interpretation. In some other analogous 
applications, such as in Toxicology, the beta-
binomial distribution arises as a beta mixture of 
the binomial distribution (Weil, 1970; Williams, 
1975; Crowder, 1978; Otake & Prentice, 1984).  

It is assumed that ~p|Y geometric 

distribution. Let  pq −= 1 . Then, the 
probability function of Y is  

.)|( 1 pqqyYP y−==  
In human reproduction the random 

variable Y may be the number of menstrual 
cycles required for conception in which the 
parameter p may be interpreted as the pre-cycle 
conception probability or a measure of 
fecundability (Weinberg & Gladen, 1986). It is 
assumed that the parameter p is fixed for a given 
couple, but across couples it varies according to 
some unspecified underlying distribution which 
is assumed to be beta with probability density 
function given by  
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where  
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is the beta function and where  )a(Γ  is the 
gamma function:   
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The mean and variance of the beta random 
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This distribution is known as the beta-

geometric distribution. In the human 
reproduction literature P(Y=y) is the probability 
that conception occurs at y for a randomly 
selected couple. The beta-geometric distribution 
can be written in terms of the parameter  

)/( βααπ += and )/( βαθ += 1 , where p is 

interpreted as the mean parameter and θ  as the 
shape parameter (Weinberg & Gladen, 1986), 
which is given in what follows.  
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The distribution has mean  
θπ
θ
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 and variance  
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corresponds to the geometric distribution with 

mean  
p

1
  and variance .

p

p
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The purpose of this article is to develop 
tests of goodness of fit of the geometric 
distribution against the beta-geometric 
distribution. A score test and a likelihood ratio 
test are developed. The score test (Rao, 1947) is 
a special case of the more general C(α ) test 
(Neyman, 1959) in which the nuisance 
parameters are replaced by their maximum 

likelihood estimates which are N consistent 
estimates (N=number of observations used in 
estimating the parameters) . The score or the 
C(α ) class of tests (i) often maintain, at least 
approximately, a preassigned level of 
significance (Bartoo & Puri, 1967), (ii) require 
estimates of the parameters only under the null 
hypothesis, and (iii) often produce statistics 
which are simple to calculate.  

These tests are robust in the sense that 
their optimality remain true whatever the form 
of the distribution assumed for the data under 
the alternative hypothesis - a property called 
robustness of optimality by Neyman and Scott 
(1966). The C(α ) test has been shown by many 
authors to be asymptotically equivalent to the 
likelihood ratio test and to the Wald test (Moran, 
1970; Cox & Hinkley, 1974). Potential 
drawbacks to the use of the likelihood ratio and 
Wald tests include the fact that both require 
estimates of the parameters under the alternative 
hypotheses and often show liberal or 
conservative behaviour. Examples of this may 
be found in Barnwal & Paul (1988), Paul (1989), 
Paul (1996), Paul & Banerjee (1998), and Paul 
and Islam (1995).  

In the present context, although the 
score test statistic has a very simple form, both 
the score test and the likelihood ratio test have 
been found, by simulation, to be liberal. A 
power comparison, using the empirical quantiles 
derived from the corresponding size simulation 
to ensure that each test had approximately the 
nominal size, has been conducted. This 
comparison shows that the likelihood ratio test 
has power advantage over the score test. A 
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bootstrap likelihood ratio test is therefore 
proposed to test the fit of a geometric model 
against the over-dispersed geometric model. The 
bootstrap likelihood ratio test provides 
approximately correct p-value (Davison & 
Hinkley, 1998). McLachlan (1987) uses the 
bootstrap likelihood ratio test to test for the 
number of components in mixture of normal 
distributions. McLachlan notes that the bootstrap 
and the true null distribution of the likelihood 
ratio statistics are the same. The bootstrap 
likelihood ratio test was also used by others in 
similar contexts (Aitkin, Anderson & Hinde, 
1981; Karlis & Xekalaki, 1999).  

For the situation in which the data are 
found to be heterogeneous, maximum likelihood 
estimates of the parameters of the beta-
geometric distribution and the elements of the 
exact Fisher information matrix are obtained. 
Two sets of data including one on human 
fecundability study from Weinberg & Gladen 
(1986) are analyzed.  
 
Tests of Goodness of Fit 
 
Estimation of the Parameters 
 Suppose data are available on n 
individuals as  .n,,i,yi �1=  The maximum 
likelihood estimate of the parameter p of the 
geometric distribution is ,y/p̂ 1= where  

∑ == n
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1
 The likelihood function for  

 
the data based on the beta-geometric distribution 
is given as  
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and the corresponding log-likelihood can be 
written as  
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The maximum likelihood estimates π̂  and  θ̂ of 
the parameters π  and θ  are obtained by solving 
the maximum likelihood estimating equations 

π∂
∂l

=0  and 
θ∂

∂l
=0 simultaneously. That is, by 

solving  
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simultaneously subject to the constraints 

.0and10 ><< θp  Note that there is no 
closed form solution for these equations. So 
these equations are to be solved using a 
numerical procedure such as the Newton-
Raphson method or a numerical subroutine, such 
as the IMSL subroutine ZBRENT or NEQNF.  
 
The Likelihood Ratio Test 
 The maximized log-likelihood under the 
geometric distribution is  
 

)ˆ1log()1()ˆlog(0 pynpnl −−+=          (1) 

 
 
 
and that under the beta-geometric distribution is  
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Then, the likelihood ratio statistic to test 

for 0:0 =θH  against 

).(2is0: 01 llLRH A −=>θ  Under standard 

conditions, the asymptotic null distribution of 
this likelihood ratio statistic would be chi-square 
with 1 degree of freedom. However, since the 
parameter θ  is necessarily nonnegative, there is 
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a boundary problem and the regular asymptotic 
likelihood theory breaks down in this situation. 
In the course of a general discussion of 
asymptotic properties of likelihood procedures 
when some of the parameters are on the 
boundary, Self & Liang (1987) derive a 
representation for the asymptotic distribution of 
the likelihood ratio statistic. Since the parameter 
value under 0H  is on the boundary of the 

parameter space it can be easily seen from the 
results of Self & Liang (1987) that the correct 
distribution of the LR test is a 50:50 mixture of 
zero and chi-square with 1 degree of freedom 
provided .10 << p  

 
The Score Test 
 
Define 

    

,|,|

,|

0

2

02

2

0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂∂
∂=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂=

∂
∂=

==

=

θππθππ

θ

φππ

θ
l

EI
l

EI

l
S

 

 
and 
 

.| 02

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂= =θθθ θ

l
EI  

 
Then, a score test statistic for testing 0:0 =θH  

against 0: >θAH  is given by  

.)/(/ 2
πππφθθ IIISZ −=   If the nuisance 

parameter  π   is replaced by its maximum 
likelihood estimate under the null hypothesis, 
then, asymptotically, as  ,∞→n the distribution 
of Z is standard normal. Note, under the null 
hypothesis π  becomes .p  Then, the following 
is obtained  
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It can be shown that  

.//)( 22 pnIIISVar =−= πππφφφ  Thus, the 

score test statistic for testing  
0:0 =θH against 0: >θAH  is given by 

.)/(/ 2pnSZ =   If p is replaced by ,p̂  

where p̂  is the maximum likelihood estimate of 
the parameter p of the geometric distribution, in 
Z, then, under the null hypothesis 0:0 =θH , 

the statistic Z will have an asymptotic standard 
normal distribution. Since this is a one-sided test 
the null hypothesis is rejected at )%1(100 α−  

level of significance if ,αzZ > where, tz  is the 

)%1(100 t−  point of the standard normal 
distribution.  

 
Simulations 
 A simulation experiment was conducted 
to study size properties of the likelihood ratio 
statistic LR and the score test statistic Z. Data 
have been generated from the geometric 
distribution with values of the geometric 
parameter  .5, .4, .3, .2, .1,=p sample sizes,  

50, 20, 10,=n and   .10. .05,=α Each 
simulation experiment was based on 5000 
replications. Empirical size values are given in 
Table 1.  
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Table 1: Empirical sizes, in percent, for H0 of score test statistics Z and the likelihood ratio statistic 
LR 
 

p  
n  α  Statistics 0.1 0.2 0.3 0.4 0.5 

10 
 

0.05 Z 
LR 
LR1 

8.0 
12.0 
12.0 

6.9 
10.6 
10.6 

7.2 
10.6 
10.6 

6.5 
10.5 
10.5 

6.6 
10.0 
10.0 

 
20  Z 

LR 
LR1 

11.2 
13.0 
12.0 

10.2 
11.4 
10.6 

10.2 
11.4 
10.6 

11.5 
12.7 
10.5 

13.3 
15.0 
10.0 

 
50  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
100  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
500  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
10 0.10 Z 

LR 
LR1 

14.0 
19.0 
12.0 

12.6 
17.1 
10.6 

12.4 
16.6 
10.6 

12.8 
18.0 
10.5 

12.8 
18.3 
10.0 

 
20  Z 

LR 
LR1 

17.9 
20.0 
12.0 

16.7 
18.2 
10.6 

16.6 
18.2 
10.6 

17.9 
19.7 
10.5 

21.8 
23.0 
10.0 

 
50  Z 

LR 
LR1 

21.6 
21.2 
12.0 

20.2 
20.6 
10.6 

19.9 
20.0 
10.6 

21.9 
22.5 
10.5 

25.5 
25.6 
10.0 

 
100  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
500  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 
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From Table 1 it is seen that both the 

score test statistic and the likelihood ratio 
statistic are liberal. Empirical level of the 
likelihood ratio statistic is larger than that of the 
score test statistic. Also, empirical level 
increases as the sample size increases. A mean-
variance correction of the score test statistic 
using Taylor series expansion (Paul, 1996) 
produces empirical levels that are too small 
compared with the nominal levels.  

A power comparison of the two 
statistics was also conducted. The empirical 95% 
quantiles derived from the corresponding size 
simulation have been used to ensure that each 
test had approximately the nominal size of 0.05. 
Empirical quantiles were calculated based on 
20,000 replications and empirical power 
calculations were based on 1000 replications. 
Empirical power values are given in Table 2. 
The likelihood ratio statistic, in general, shows 
power advantage, over the score test.   

 
The Bootstrap Goodness of Fit Test 
 As seen from the simulation results in 
Section 3, both the likelihood ratio test and the 
test based on the score test statistic are liberal. 
However, the likelihood ratio test has some 
power   advantage    over   the    score   test.   So,  
 
 
 

 

 
 
following Davison & Hinkley (1997), a 
bootstrap test of the null hypothesis 

0:0 =θH against : 0AH θ >  is proposed. The 

bootstrap likelihood ratio test procedure 
proceeds according to the following steps: 
 
Step 1. Obtain p̂ of the parameter p of the 
geometric distribution from the data. Calculate 
the value of the likelihood ratio statistic LR, say 
LR0, from the data.  
 
Step 2. Generate n observations from the fitted 
null distribution, i.e., the geometric distribution 
with parameter pp ˆ=  and calculate the 

likelihood ratio statistic LR *
0 .  

 
Step 3. Repeat step 2 B times obtaining B values 
of the bootstrap likelihood ratio statistic, say, 

LR )(
0
b , b=1,2,...,B. 

 
Step 4. Estimate the bootstrap p-value by   
 

.
1

}{#1
ˆ 0

)( *
0

+
≥+

=
B

LRLR
p

b

boot  

 
This gives the level at which to reject or not to 
reject .0H  A typical value of B is 1000. 

Table 2: Empirical powers, in percent, for H0 , at 05.0=α , of score test statistics Z and the 
likelihood ratio statistic LR. The extra-geometric variation is .01(.05)(.1) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

  p    
n  Statistics 0.1 0.3 0.5 

10 
 

Z 
LR 

 

6(32)(67) 
7(38)(82) 

8(20)(39) 
9(25)(52) 

5(9)(15) 
5(10)(18) 

20 Z 
LR 

 

11(53)(88) 
10(57)(96) 

22(49)(70) 
25(64)(86) 

10(19)(39) 
12(24)(46) 

50 Z 
LR 

 

15(81)(99) 
16(84)(99) 

53(93)(97) 
54(97)(99) 

8(38)(70) 
13(44)(81) 
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Elements of the Expected Fisher Information 
Matrix of the Beta-geometric Distribution 
 In this section, the elements of the 
expected Fisher Information matrix for the 
estimates of the parameters of the beta-
geometric distribution are derived. The 
calculations are quite involved, so the details 
were omitted. The exact expressions are given in 
what follows. 
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Calculations of the above terms do not 

pose any difficulty if ∞  in the upper limit of the 
summation is replaced by a sufficiently large 
number, say, 5000. Thus, the estimated variance 

of π̂ and θ̂ are  
 

22

2
11 22 12
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and 
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I
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respectively, where 221211
ˆand,ˆ,ˆ III  are estimates 

of 221211 and,, III  respectively obtained by 

replacing the parameter p by its maximum 
likelihood estimate.  

 
 

Examples 
Example 1: The data, given in the Table 3 from 
Weinberg & Gladden (1986), refer to times, 
taken by couples that were attempting to 
conceive, until pregnancy results.  

 
Table 3: Data from Weinberg and Gladen (1986) 
on the number of menstrual cycles to pregnancy 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

The data were obtained retrospectively, 
starting from a pregnancy in each case. 
Weinberg & Gladen (1986) analyzed 
fecundability data for a total of 586 women, 
contributing a total of 1844 cycles. See 
Weinberg & Gladen (1986) for more details 
regarding the data. For these data, the data for 12 
or more cycles has been combined.  

An estimate of the parameter p of the 
geometric distribution for these data is 

.3177874.ˆ =p  An estimate of the variance is 
2ˆ ˆ(1 ) /p p− = 6.76. The observed variance, 

however, is 8.68 which is much larger than the 
variance predicted by the geometric distribution. 
This indicates that an over-dispersed geometric 
distribution may fit the data better than the 
geometric distribution. Now, the value of the 
likelihood ratio statistic is LR=14.97 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom)=0.00000006 
and the bootstrap p-value is 0.002. In calculating 
the bootstrap p-value B=500 have been used. 
The data shows very strong evidence in favor of 

Cycles Number of 
Women 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

227 
123 
72 
42 
21 
31 
11 
14 
6 
4 
7 
28 
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the beta-geometric distribution. Note that in this 
example the p-value of the likelihood ratio 
statistic is much smaller than the corresponding 
bootstrap p-value. This is in line with the 
simulation results in Section 3 that the 
likelihood ratio test is liberal.  

The maximum likelihood estimates of 
the parameters π  and θ  of the beta-geometric 

distribution are =π̂ 0.36596 and θ̂ =0.0745 and 

the standard errors of the estimates π̂  and θ̂ are 
.0162 and .0204 respectively. 

 
Example 2: In example 1 the data produce a 
value of 14.97 for the likelihood ratio statistic. 
This is rather large and therefore it is not 
surprising that both the ordinary likelihood ratio 
test and the bootstrap likelihood ratio test 
provide same conclusion. Moreover, the 
observed variance is about 28% larger than what 
is predicted by the geometric distribution. Thus, 
the data given in Table 4 was produced; it was 
obtained by modifying the data set in Table 3.  

 
Table 4: Modified data of Table 3 on the number 
of menstrual cycles to pregnancy 
 

Cycles Number of 
Women 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

180 
123 
72 
42 
21 
31 
11 
14 
6 
4 
7 
18 

 
 
For these data an estimate of the 

variance predicted by the geometric distribution  

is 2ˆ ˆ(1 ) /p p− = 6.88 and the corresponding 
observed variance is 7.72. These two variances 
are much closer than the two corresponding 
variances for the data in Table 3. This indicates 
that the geometric distribution might fit these 

data well. For these data the value of the 
likelihood ratio statistic is LR=2.51 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom) = 0.025 and 
the bootstrap p-value is 0.14. For these data, the 
bootstrap likelihood ratio procedure shows that 
the geometric distribution fits the data well at 
5% level of significance which is contradicted 
by the ordinary likelihood ratio test. The reason 
for this is that the likelihood ratio test is liberal. 
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