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INVITED ARTICLE 
Within By Within ANOVA Based On Medians  

 

 
 
This article considers a J by K ANOVA design where all JK groups are dependent and where groups are to be 
compared based on medians. Two general approaches are considered. The first is based on an omnibus test for 
no main effects and no interactions and the other tests each member of a collection of relevant linear 
contrasts. Based on an earlier paper dealing with multiple comparisons, an obvious speculation is that a 
particular bootstrap method should be used. One of the main points here is that, in general, this is not the case 
for the problem at hand. The second main result is that, in terms of Type I errors, the second approach, where 
multiple hypotheses are tested based on relevant linear contrasts, performs about as well or better than the 
omnibus method, and in some cases it  offers a distinct advantage. 
 
Keywords: Repeated measures designs, robust methods, kernel density estimators, bootstrap methods,              

linear contrasts, multiple comparisons, familywise error rate 
 
 

Introduction 
 
Consider a J by K ANOVA design where all JK 
groups are dependent. Let jkθ (j =1,...J; k 

=1,...K) represent the (population) medians 
corresponding to these JK groups. This article is 
concerned with two strategies for dealing with 
main effects and interactions. The first is to 
perform an omnibus test for no main effects and 
no interactions by testing  
 
                   : 0,Ho Cθ =                           (1) 

 
 
 
Rand R. Wilcox (rwilcox@usc.edu) is a 
Professor of Psychology at the University of 
Southern California, Los Angeles. 
 
 
 

where θ  is a column vector containing the JK 
elements jkθ ,and C is an �  by JK matrix 

(having rank � ) that reflects the null hypothesis 
of interest. (The first K elements of θ are 

11 1, , Kθ θ… , the next K elements are 

21 2, , Kθ θ… , and so forth.) The second 

approach uses a collection of linear contrasts, 
rather than a single omnibus test, and now the 
goal is to control the probability of at least one 
Type I error. 

A search of the literature indicates that 
there are very few results on comparing the 
medians of dependent groups using a direct 
estimate of the medians of the marginal dis-
tributions, and there are no results for the 
situation at hand. In an earlier article (Wilcox, 
2004), two methods were considered for 
performing all pairwise comparisons among a 
collection of dependent groups. The first uses an 
estimate of the appropriate standard error 
stemming from the influence function of a single 
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order statistic. The second method uses the usual 
sample median in conjunction with a bootstrap 
estimate of the standard error. The bootstrap 
method performed quite well in simulations in 
terms of controlling the probability of at least 
one Type I error. 

Recently, Dawson, Schell, Rissling and 
Wilcox (2004) dealt with an applied study where 
a two-way ANOVA design was used with all JK 
groups dependent. An issue is whether the 
results in Wilcox (2004) extend to this two-way 
design. One of the main results here is that the 
answer is no. The other main result deals with 
the choice between an omnibus test versus 
performing multiple comparisons where each 
hypothesis corresponding to a collection of 
relevant linear contrasts is to be tested. It is 
found that simply ignoring the omnibus test, and 
performing the relevant multiple comparisons, 
has practical value. 
 
Some Preliminaries 

For convenience, momentarily consider 
a single random sample X1,...,Xn  and for any 

q, 0<q<1, suppose the qth quantile, xq, is 

estimated with ( )mX , where m=[qn+.5] and [.] is 

the greatest integer function. Then, ignoring an 
error term, which goes to zero as n → ∞ ,  

 

             ( )

1
( ),m q q iX x IF X

n
= + ∑               (2) 

where  

 

            

1
, if  

( )

( ) 0, if  

, if  ,
( )

q
q

q q

q
q

q
x x

f x

IF x x x

q
x x

f x

−⎧ <⎪
⎪⎪= =⎨
⎪
⎪ >
⎪⎩

 

 

(Bahadur, 1966; also see Staudte & Sheather, 
1990). 

Now consider the situation where 
sampling is from a bivariate distribution. Let Xik 

(i=1,...,n; k=1, 2) be a random sample of n 

vectors. Let (1) ( )k n kX X≤ ⋅⋅⋅ ≤  be the 

observations associated with kth variable written 
in ascending order. Two estimates of the 
population median are relevant here. The first is  

 

                             ( )
ˆ ,k m kXθ =  

 

where again m=[.5n+.5], and the other is θ� j=Mk, 

the usual sample median based on X1k,...,Xnk . 

Although the focus is on estimating the 
median with q=.5, the results given here apply to 
any q, 0<q<1. Let fk be the marginal density of 

the kth variable and let  
 

2
1 1 1 2 2( 1) ( , ),q qV q P X x X x= − ≤ ≤  

          2 1 1 2 2( 1) ( , ),q qV q q P X x X x= − ≤ >  

          3 1 1 2 2( 1) ( , ),q qV q q P X x X x= − > ≤  

and  

          2
4 1 1 2 2( , ),q qV q P X x X x= > >  

 
where xq1 and xq2 are the qth quantiles 

corresponding to the first and second marginal 
distributions, respectively. Then for the general 
case where m=[qn+.5], a straightforward 
derivation based on equation (2) yields an 
expression for the covariance between ( )1mX  

and ( )2mX :  

 

                    2 1 2 3 4
12

1 1 2 2

.
( ) ( )q q

V V V V

nf x f x
τ + + +=                (3) 

 

Also, (2) yields a well-known expression for the 
squared standard error of ( )1mX , namely,  

 

                         2
11 2

1 1

1 (1 )
.

( )q

q q

n f x
τ −=  

 

Using (3) to estimate 2
12τ  requires an 

estimate of the marginal densities. Here, a 
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variation of an adaptive kernel density estimator 
is used (e.g., Silverman, 1986), which is based in 
part on an initial estimate obtained via a so-
called expected frequency curve (e.g., Wilcox, 
2005; cf. Davies & Kovac, 2004). To elaborate, 
let MADk be the median absolute deviation 

associated with the kth marginal distribution, 
which is the median of the values 

1| | ...,| |k k nk kX M X M− − . For some 

constant κ to be determined, the point x is said to 
be close to ikX  if  

 

                    | | .
.6745

k
ik

MAD
X x κ− ≤ ×  

 

Under normality, MADNk=MADk/.6745 

estimates the standard deviation, in which case x 
is close to Xik if x is within κ standard 

deviations of Xik. Let  

 
         ( ) { :| | }.k ik kN x i X x MADNκ= − ≤ ×  

 

That is, ( )kN x  indexes the set of all Xik values 

that are close to x. Then an initial estimate of 
( )kf x  is taken to be  

 

          ( )

1
( ) ,

2 kk i N x
k

f x I
MADNκ ∈= ∑�  

 

where I is the indicator function. Here, κ=.8 is 
used.  

The adaptive kernel density estimate is 
computed as follows. Let  

 

              
1

log log ig f X
n κ= ( )∑ �  

 

and  

 

                 ( ( ) / ) ,a
i k ikf X gλ −= �  

 

where a is a sensitivity parameter satisfying 
0≤a≤1. Based on comments by Silverman 
(1986), a=.5 is used. Then the adaptive kernel 
estimate of fk is taken to be  

 

       ( ){ }1 11
,i i

i

f x K h x X
n hκ λ

λ
− −1( ) = −∑�  

where  

23 1
( ) (1 ) / 5, | | 5

4 5
0, otherwise,

K t t t= − <

=  

is the Epanechnikov kernel, and following 
Silverman (1986, p. 47 – 48), the span is  

 

                    
1/5

1.06 ,
A

h
n

=  

 
                       A=min(s, IQR/1.34),  
 
and where s is the standard deviation and IQR is 
the interquartile range based on 1 ,...,k nkX X . 

Here, IQR is estimated via the ideal 
fourths. Let �=[(n/4)+(5/12)]. That is, � is 

(n/4)+(5/12) rounded down to the nearest 
integer. Let  

                           
5

4 12

n
h l= + − .  

 

Then the estimate of the .25 quantile is given by  

 
                     1 (1 )q h X hX( ) ( +1)= − + .

� �
      (4) 

Letting �
'=n-�+1, the estimate of the upper 

quartile, is  

 
              2 '(1 )q h X hX( ) ( −1)= − +

� �
          (5) 

and the estimate of the interquartile range is  

 
                          2 1.IQR q q= −  
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All that remains is estimating V1, V2, V3 

and V4. An estimate of V1 is obtained once an 

estimate of 1 1 2 2( , )q qP X x X x≤ ≤  is 

available. The obvious estimate of this last 
quantity, and the one used here, is the proportion 
of times these inequalities are true among the 
sample of observations. That is, let Ai12=1 if 

simultaneously 1 ( )1i mX X≤  and 2 ( )2i mX X≤ , 

otherwise Ai12=0. Then an estimate of V1 is 

simply  

 

                           12
ˆ

i
q

V
n

2

1
( −1)= Α .∑  

 
Estimates of V2, V3 and V4 are obtained 

in a similar manner. The resulting estimate of 
the covariance between ( )1mX  and ( )2mX  is 

labeled τ�
2
12. Of course, the squared standard 

error of ( )1mX  can be estimated in a similar 

fashion and is labeled τ�
2
11. 

An alternative approach is to use a 
bootstrap method, a possible appeal of which is 
that the usual sample median can be used when 
n is even. Generate a bootstrap sample by 
resampling with replacement n pairs of values 

from Xik yielding X
*
ik (i=1,...,n; k=1, 2). For 

fixed k, let M
*
k be the usual sample median 

based on the bootstrap sample and 
corresponding to the kth marginal distribution. 

Repeat this B times yielding M
*
bk, b=1,...,B. 

Then an estimate of the covariance between M1 

and M2 is  

 

    * *
12 1 1 2 2

1ˆ ( )( ),
1 i iM M M M

B
ξ = − −

− ∑
 

 

where            * ./k bkM M B=∑  

 

Methodology 
 
Now consider the more general case of a J by K 
design and suppose (1) is to be tested. Based on 
the results in the previous section, two test 
statistics are considered. The first estimates the 
population medians with a single order 
statistic, ( )mX , and the second uses the usual 

sample median, M. 
Let Xijk be a random sample of nj 

vectors of observations from the jth group 
( 1,..., ji n= ; j=1,...,J; k=1,...,K).  

Let ( )
ˆ

jk m jkXθ =  be the estimate of the 

median for the jth level of first factor and the kth 
level of the second. Then a test statistic for (1) 
can be developed along the lines used to derive 
the test statistic based on trimmed means, which 
is described in Wilcox (2003, section 11.9). 

For convenience, let '
11
ˆ ˆˆ ( ,..., )JKθ θΘ = . 

For fixed j, k and �, k≠�, let vjk� be the estimated 

covariance between θjk and θj�. That is, vjk� is 

computed in the same manner as τ�
2
12, only now 

use the data Xijk and jlXι , 1,..., ji n= . When 

k=�, vjk� is the estimated squared standard error 

of θ� jk. Let V be the K by K matrix where the 

element in the Kth row and �th column is given 

by jkv
�

. The test statistic is  

 

                  ' ' ' 1( ) .Q −= Θ ΘC CVC C                (6) 

 

As is well known, the usual choices for C for 
main effects for Factor A, main effects for 

Factor B, and for interactions are C=CJ⊗j
'
K, 

'
J K= ⊗C j C  and C=CJ⊗CK, respectively, 

where CJ is a J-1 by J matrix having the form  
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0 ... 0 1 1

1 −1 0 0 ... 0⎛ ⎞
⎜ ⎟0 1 −1 0 ... 0⎜ ⎟ ,
⎜ ⎟
⎜ ⎟0 −⎝ ⎠

�
 

 
 

j
'
J is a 1×J matrix of ones and ⊗ is the (right) 

Kronecker product. 

There remains the problem of 
approximating the null distribution of Q. Based 
on results in Wilcox (2003, chapter 11) when 
comparing groups using a 20% trimmed mean, 
an obvious speculation is that Q has, 
approximately, an F distribution with ν1 and ν2 

degrees of freedom. For main effects for Factor 
A, main effects for Factor B, and for 
interactions, ν1 is equal to J-1, K-1 and (J-1)(K-

1), respectively. As for ν2, it is estimated based 

on the data, but an analog of this method for 
medians was not quite satisfactory in 
simulations; the actual probability of a Type I 
error was too far below the nominal level. A 
better approach was simply to take 2ν = ∞ , 

which will be assumed henceforth. This will be 
called method A. 

An alternative approach is to proceed 
exactly as in method A, only estimate the .5 
quantiles with the usual sample median and 
replace Vj with the bootstrap estimate described 

in section 2. (Here, B=100 is used.) This will be 
called method B. 
 
An Approached Based on Linear Contrasts 

Another approach to analyzing the two-
way ANOVA design under consideration is to 
test hypotheses about a collection of linear 
contrasts appropriate for studying main effects 
and interactions. Consider, for example,  
 

                          ˆˆ .j jkθΨ =∑  

 
 
 

1, , .j J= …  Then when dealing with main 
effects for Factor A, one could perform all 
pairwise comparisons among the .jΨ  This is for 

every ,j j′<  
 
                                0 : .j jH ′Ψ = Ψ  

 
There is the problem of controlling the 
probability of at least one Type I error among 

the 2( ) / 2J J−  hypotheses to be tested, and 
here this is done with a method derived by Rom 
(1990). Interactions can be studied by testing 
hypotheses about all of the relevant 

2 2( )( ) / 4J J K K− −  tetrad differences, and of 
course, main effects for Factor B can be handled 
in a similar manner. 

For convenience, attention is focused on 
Factor A (the first factor). Here, jΨ  is simply 

estimated with 
 

ˆˆ .j jkθΨ =∑  

Writing 
 

' '
ˆˆ ˆ

j jk jkj
c θΨ − Ψ =∑ ∑  

 
for appropriately chosen contrast coefficents 

,jkc then of course an estimate of the squared 

standard error of  ˆ ˆ
j j′Ψ − Ψ  is  

 
2

,ˆ ˆjk jkn c τ= ∑∑  

 
Based on results in Wilcox (2004), the null 
distribution of T is approximated with a 
Student’s T distribution with n−1 degrees of 
freedom. 

To elaborate on controlling the 
probability of at least one Type I error with 
Rom’s method, and still focusing on Factor A, 

let 2( ) / 2D J J= − be the number of 

hypotheses to be tested and let 1, DP P…  be the 

corresponding p-values. Put the p-values in 
descending order yielding [ ] [ ] [ ]1 2 ... DP P P≥ ≥ .  
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Proceed as follows:  
 
1. Set � =1.  
 
2. If ,P d

⎡ ⎤⎣ ⎦
≤

��
 where d

�
 is read from 

Table 1, stop and reject all D 
hypotheses; otherwise, go to step 3 (If 

10,>�  use /d α=
�

� ). 

 
3. Increment � by 1. If ,P d

⎡ ⎤
⎣ ⎦

≤
��

, stop 

and reject all hypotheses having a 
significance level less than or equal d

�
.  

 
4. If ,P d

⎡ ⎤⎣ ⎦
>

��
repeat step 3.  

 
5. Continue until a significant result is 

obtained or all D hypotheses have been 
tested. 

 
A Simulation Study 

Simulations were used to study the 
small-sample properties of the methods just 
described. Vectors of observations were 
generated from multivariate normal distributions 
having a common correlation, ρ. To study the   
effect of non-normality, observations were 
transformed to various g-and-h distributions 
(Hoaglin, 1985), which contains the standard 
normal distribution as a special case. If Z has a 
standard normal distribution, then  
  

 

( ) ( )2

2

exp 1
 exp / 2 , if g > 0

exp( / 2)                        if g > 0

gZ
hZ

W g

Z hZ

⎧ −
⎪= ⎨
⎪
⎩

 

 
has a g-and-h distribution where g and h are 
parameters that determine the first four mo-
ments. The four distributions used here were the 
standard normal (g = h =0.0), a symmetric 
heavy-tailed distribution (h = 0.5, g = 0.0), an 
asymmetric distribution with relatively light tails 
(h = 0.0, g = 0.5), and an asymmetric distribution 
with heavy tails (g = h = 0.5). Table 2 shows the 
skewness 1( )κ  and kurtosis 2( )κ  for each 

distribution considered. For h = .5, the third and 

fourth moments are not defined and so no values 
for the skewness and kurtosis are reported. 
Additional properties of the g-and-h distribution 
are summarized by Hoaglin (1985). 
 
Table 1: Critical values, ,d

�
, for Rom’s method. 

 

   �  α  = .05   α = .01 

1 .05000 .01000 

2 .02500 .00500 

3 .01690 .00334 

4 .01270 .00251 

5 .01020 .00201 

6 .00851 .00167 

7 .00730 .00143 

8 .00639 .00126 

9 .00568 .00112 

10 .00511 .00101 

 
 
 
Table 2: Some properties of the g-and-h 
distribution. 
 

   g    h 
1( )κ  2( )κ

0.0 0.0 0.00 3.0 

0.0 0.5 0.00 — 

0.5 0.0 1.81 8.9 

0.5 0.5 — — 
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Table 3: Estimated probability of a Type I error, J = K = 2, n = 20, α  = .05 

 
   Method A Method B Method C 

g h ρ Factor A Inter Factor A Inter Factor A Inter 

0.0 0.0 0.0 .074 .068 .046 .050 .051 .052 

0.0 0.0 0.8 .072 .073 .032 .036 .048 .048 

0.0 0.5 0.0 .046 .045 .048 .053 .025 .027 

0.0 0.5 0.8 .049 .036 .047 .038 .026 .027 

0.5 0.0 0.0 .045 .053 .045 .044 .045 .049 

0.5 0.0 0.8 .044 .024 .047 .029 .043 .048 

0.5 0.5 0.0 .030 .038 .030 .038 .021 .020 

0.5 0.5 0.8 .019 .027 .032 .015 .023 .024 

 
 

Table 4: Estimated Type I error rates using Methods A and C, J = 2, K = 3, n = 20, α  = .05 
 

   Method A  Method C  

  g     h     ρ Factor A Factor B Inter Factor A Factor B Inter 

0.0 0.0 0.0 .047 .036 .043 .059  .044  .049 

.047 
0.0 0.0 0.8 .062 .021 .023 .056  .057 .047 

0.0 0.5 0.0 .034 .023 .026 .026  .018 .019 

0.0 0.5 0.8 .038 .012 .015 .031  .023 .025 

0.5 0.0 0.0 .040 .032 .039 .053  .040 .045 

0.5 0.0 0.8 .055 .020 .016 .052  .047 .050 

0.5 0.5 0.0 .027 .017 .023 .024  .015 .019 

0.5 0.5 0.8 .035 .010 .010 .025  .024 .023 
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Simulations were run for the case J = K 
= 2 with n = 20. (Simulations also were run with 
n = 100 and 200 as a partial check on the 
software.) Table 3 shows the estimated 
probability of a Type I error when ρ  = 0 or .8 
when testing Factor A and the hypothesis of no 
interaction with method A. For brevity, results 
for Factor B are not shown because they are 
essentially the same as for Factor A, which should 
be the case. The estimates are based on 1,000 
replications. (From Robey & Barcikowski, 1992, 
1,000 replications is sufficient from a power 
point of view. More specifically, if we test the 
hypothesis that the actual Type I error rate is .05, 
and if we want power to be .9 when testing at 
the .05 level and the true α  value differs from 
.05 by .025, then 976 replications are required). 

As is evident, method A does a 
reasonable job of controlling the probability of a 
Type I error, the main difficulty being that when 
sampling from a very heavy-tailed distribution, 
the estimated probability of a Type I error can 
drop below .025. Switching to method B does 
not correct this problem. Generally, when using 
method B the estimated probability of a Type I 
error was approximately the same or smaller 
than the estimates shown in Table 3. For 
example, under normality with ρ  = .8, the 
estimates corresponding to Factor A and the 
hypothesis of no interaction were .035 and .011, 
respectively. As for method C it performs well 
with the possible appeal that the estimate never 
drops below .02, unlike method B. 

Table 4 reports results for methods A 
and C when J = 2 and K = 3. Both methods 
avoid Type I error probabilities well above the 
nominal level. Both methods have estimates that 
drop below .02, but in general method C seems a 
bit more satisfactory. 

When J = 3 and K = 5, method A 
deteriorates even more when dealing with Factor 
B and interactions, with estimated Type I error 
probabilities typically below .01. (One exception 
is normality with  ρ = 0; the estimates were .020 
and .023.) All indications are that method C 
does better at providing actual Type I error 
probabilities close to the nominal level. For 
example, under normality with  ρ = .8, method A 
has estimated Type I error probabilities equal to 
.044, .006 and .001 for Factors A, B and 

interactions, respectively. For method C, the 
estimates were .057, .042 and .068. 
 

Conclusion 
 
In summary, the bootstrap version of method A 
(method B) does not seem to have any practical 
value based on the criterion of controlling the 
probability of a Type I error. This is in contrast 
to the situations considered in Wilcox (2004) 
where pairwise multiple comparisons among J 
dependent groups were considered. A possible 
appeal of method B is that it uses the usual 
sample median when n is even rather than a 
single order statistic, but at the cost of risking 
actual Type I error probabilities well below the 
nominal level.  

Methods A, B and C perform well in 
terms of avoiding Type I error probabilities well 
above the nominal level, but methods A and B 
become too conservative in certain situations 
where method C continues to perform 
reasonably well. It seems that applied 
researchers rarely have interest in an omnibus 
hypothesis only; the goal is to know which 
levels of the factor differ. Because the linear 
contrasts can be tested in a manner that controls 
FWE, all indications are that method C is the 
best method for routine use. Finally, S-PLUS 
and R functions are available from the author for 
applying method C. Please ask for the function 
mwwmcp. 
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The validity of the multivariate multiplicative-intercept risk model with 1I +  categories based on case-
control data is tested. After reparametrization, the assumed risk model is equivalent to an ( 1)I + -sample 

semiparametric model in which the I ratios of two unspecified density functions have known parametric 
forms. By identifying this ( 1)I + -sample semiparametric model, which is of intrinsic interest in general 

( 1)I + -sample problems, with an ( 1)I + -sample semiparametric selection bias model, we propose a 
weighted Kolmogorov-Smirnov-type statistic to test the validity of the multivariate multiplicative-
intercept risk model. Established are some asymptotic results associated with the proposed test statistic, 
also established is an optimal property for the maximum semiparametric likelihood estimator of the 
parameters in the ( 1)I + -sample semiparametric selection bias model. In addition, a bootstrap procedure 
along with some results on analysis of two real data sets is proposed. 
 
Key words: Biased  sampling  problem,  bootstrap,    Kolmogorov-Smirnov  two-sample statistic,  logistic  
                    regression,  mixture sampling,   multivariate Gaussian process, semiparametric selection bias 
                    model, strong consistency, weak convergence 
 
 

Introduction 
 
Let Y  be a multicategory response variable with 

1I +  categories and X  be the associated 1p×  
covariate vector. When the possible values of 
the response variable Y  are denoted by 

0,1, ,y I= …  and the first category (0) is the 
baseline category, Hsieh, Manski, and 
McFadden (1985) introduced the following 
multivariate multiplicative-intercept risk model: 
 

*( | )
( ; ),   1, , ,  (1)

( 0 | ) i i i
P Y i X x

r x i I
P Y X x

θ β= = = =
= =

…
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where * *
1 , , Iθ θ…  are positive scale parameters, 

1, , Ir r…  are, for fixed x , known functions 

from pR  to R+ , and 1( , , )p
i i i

τβ β β= …  is 

a 1p×  vector parameter for 1,i I= … . The 
class of multivariate multiplicative-intercept risk 
models includes the multivariate logistic 
regression models and the multivariate odds-
linear models discussed by Weinberg and 
Sandler (1991) and Wacholder and Weinberg 
(1994). By generalizing earlier works of 
Anderson (1972, 1979), Farewell (1979), and 
Prentice and Pyke (1979) in the context of the 
logistic regression models, Weinberg and 
Wacholder (1993) and Scott and Wild (1997) 
showed that under model (1.1), a prospectively 
derived analysis, including parameter estimates 

and standard errors for 1 , , ,Iβ β…  is 

asymptotically correct in case-control studies. In 
this article, testing the validity of model (1) 
based on case-control data as specified below is 
considered. 
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Let 1, ,
ii inX X…  be a random sample from 

( | )P x Y i=  for 0,1, ,i I= …  and assume that 

1{( , , ) :    0,1, }
ii inX X i I=… …  are jointly 

independent. Let ( )i P Y iπ = =  and 

( ) ( | )ig x f x Y i= =  be the conditional density 

or frequency function of X given Y i=  for 
0,1,i I= … . If ( )f x is the marginal 

distribution of X , then applying Bayes’ rule 
yields  

 
( | )

( | ) ( ),

0,1, .
i

P Y i X x
f x Y i f x

i I

π
= == =

= …

 

 
It is seen that 
 

0

*0

( | ) ( | )
( | 0) ( 0 | )

( ; ), 1, , .

i

i i i
i

f x Y i P Y i X x
f x Y P Y X x

r x i I

π
π

π θ β
π

= = ==
= = =

= = …

 

 
Consequently, 
 

*0

0

( ) ( | ) ( ; ) ( | 0)

exp[ ( ; )] ( ), 1, , ,

i i i i
i

i i i

g x f x Y i r x f x Y

s x g x i I

π θ β
π

θ β

= = = =

= + = …

 

where *
0log log( / )i i iθ θ π π= + and 

 
( ; ) log ( ; )i i i is x r xβ β=  for 1, ,i I= … . As a 

result, the following ( 1)I + -sample 
semiparametric model is obtained: 
 

0

. . .

01 0 0

. . .

1 0

, , ( ),

, , ( ) exp[ ( ; )] ( ),

                                   1, , .                   (2)
i

i i d

n

i i d

i in i i i i

X X g x

X X g x s x g x

i I

θ β= +

=

… ∼

… ∼

…

  Throughout this article, let 

1( , , ) ,I
τθ θ θ= … 1( , , ) ,I

τ τ τβ β β= …  

and ( )iG x be the corresponding cumulative 

distribution function of ( )ig x  for 0,1,i I= … . 

Note that model (2) is equivalent to an ( 1)I + -
sample semiparametric model in which the i th 
( 1, , )i I= …  ratio of a pair of unspecified 

density functions ig  and 0g  has a known 

parametric form, and thus is of intrinsic interest 
in general ( 1)I + -sample problems. Model (2) 

is equivalent to model (1); it is an ( 1)I +  -
sample semiparametric selection bias model 
with weight functions 0 ( , , ) 1w x θ β =  and  

 
( , , ) exp[ ( ; )]i i iw x s xθ β θ β= +  

 
for 1, ,i I= … depending on the unknown 

parameters θ  and β . The s -sample 
semiparametric selection bias model was 
proposed by Vardi (1985) and was further 
developed by Gilbert, Lele, and Vardi (1999). 
Vardi (1982, 1985), Gill, Vardi, and Wellner 
(1988), and Qin (1993) discussed estimating 
distribution functions in biased sampling models 
with known weight functions. Weinberg and 
Wacholder (1990) considered more flexible 
design and analysis of case-control studies with 
biased sampling. Qin and Zhang (1997) and 
Zhang (2002) considered goodness-of- 
fit tests for logistic regression models based on 
case-control data, whereas Zhang (2000) 
considered testing the validity of model (2) 
when 1I = . 

The focus in this article is to test the 
validity of model (1.2) for 1I ≥ . Let 1{ , , }nT T…  

denote the pooled sample 

0 101 0 11 1 1{ , , ; , , ; ; , , }
In n I InX X X X X X… … … …  

with 
0

I

ii
n n

=
=∑ . Furthermore, let  

�
1

[ ]1
( ) i

ij

n

i i X tj
G t n I−

≤=
= ∑  

and  
1

0 [ ]1
( )

k

n

T tk
G t n I−

≤=
= ∑  

be, respectively, the empirical distribution 
functions based on the sample 1, ,

ii inX X…  from 

the i th ( 0,1, , )i I= …  category and the pooled 

sample 1, , nT T… . In the special case of testing 
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the equality of 0G  and 1G  for which 1I =  and 

1 1( ; ) 0s x β ≡  in model (2), as argued by (van 

der Vaart & Wellner, 1996, p. 361; Qin & Zhang,  
1997), the Kolmogorov-Smirnov two-sample 
statistic is equivalent to a statistic based on the 
discrepancy between the empirical distribution 

function �

0G and the pooled empirical 

distribution function 0G . This fact, along with 

the fact that �0G  and 0G are, respectively, the 

nonparametric maximum likelihood estimators 
of 0G  without and with the assumption of 

0 1( ) ( )G t G t= , motivates us to employ a 

weighted average of the 1I +  discrepancies 

between �iG  and �iG  ( 0,1, , )i I= …  to assess 

the validity of model (2), where �iG is the 

maximum semiparametric likelihood estimator 
of iG  under model (2) and is derived by 

employing the empirical likelihood method 
developed by Owen (1988, 1990). For a more 
complete survey of developments in empirical 
likelihood, see Hall and La Scala (1990) and 
Owen (1991). 

This article is structured as follows:  in 
the method section proposed is a test statistic by 
deriving the maximum semiparametric 
likelihood estimator of iG  under model (2). 

Some asymptotic results are then presented 
along with an optimal property for the maximum 
semiparametric likelihood estimator of ( , )θ β . 
This is followed by a bootstrap procedure which 
allows one to find P -values of the proposed 
test. Also reported are some results on analysis 
of two real data problems. Finally, proofs of the 
main theoretical results are offered. 

 
Methodology 

 
Based on the observed data in (2), the likelihood 
function can be written  as 

0 0
0 1

1 11

( , , ) exp[ ( ; )] ( )

exp [ ( ; )] ,

i

i

nI

i i ij i ij
i j

nn I

k i i ij i
i jk

L G s X dG X

p s X

θ β θ β

θ β

= =

= ==

= +

⎡ ⎤⎛ ⎞⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

∏∏

∑∑∏
 
where 0 0,θ = 0 0( ; ) 0,s β ≡i  and 0 ( ),k kp dG T=  

1, , ,k n= …  are (nonnegative) jumps with total 
mass unity. Similar to the approach of Owen 
(1988, 1990) and Qin and Lawless (1994), it can 
be shown by using the method of Lagrange 
multipliers that for fixed ( , )θ β , the maximum 

value of L , subject to constraints 
1

1
n

kk
p

=
=∑ , 

0kp ≥ and  

1
{exp[ ( ; )] 1} 0

n

k i i k ik
p s Tθ β

=
+ − =∑  

 for 1, ,i I= … , is attained at 
 

0 1

1 1
,

1 exp[ ( ; )]

1, , ,

k I

i i i k ii

p
n s T

k n

ρ θ β
=

=
+ +

=
∑

…

 

where 0/i in nρ =  for 0,1, ,i I= … . Therefore, 

the (profile) semiparametric log-likelihood 
function of ( , )θ β  is given by 

 

0

1 1

1 1

( , ) log

log 1 exp[ ( ; )]

[ ( ; )].
i

n I

i i i k i
k i

nI

i i ij i
i j

n n

s T

s X

θ β

ρ θ β

θ β

= =

= =

= −

⎡ ⎤− + +⎢ ⎥
⎣ ⎦

+ +

∑ ∑

∑∑

�

 

Next, maximize �  over ( , )θ β . Let � �( , )θ β  with 

� � �

1( , )I
τθ θ θ= …  and � � �

1( , )I

ττ τβ β β= …  be the 

solution to the following system of score 
equations: 
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1
1

1

1
1

exp[ ( ; )]( , )

1 exp[ ( ; )]

0, 1, , ,

( , )
( ; )

exp[ ( ; )]
( ; )

1 exp[ ( ; )]

0, 1, , ,                            

u

n
u u u k u

u I
ku i i i k ii

n

u uj u
ju

n
u u u k u

u k uI
k m m m k mm

s T
n

s T

u I

d X

s T
d T

s T

u I

ρ θ βθ β
θ ρ θ β

θ β β
β

ρ θ β β
ρ θ β

=
=

=

=
=

+∂ = −
∂ + +

= =

∂ =
∂

+−
+ +

= =

∑
∑

∑

∑
∑

�

…

�

…             (3)
 

where 
( , )

( ; ) u u
u k u

u

s
d T

θ ββ
β

∂=
∂

 for 1, ,u I= … .  

That produces the following, 
 

� �

0 1

1 1
,

1 exp[ ( ; )]

1, , .                                            (4)

k I

i i i k ii

p
n s T

k n

ρ θ β
=

=
+ +

=
∑

�

…

 

 
On the basis of the kp�  in (4), it can be  

proposed to estimate ( )iG t , under model (2), by 

 

� � �

� �

� �

[ ]
1

[ ]
10

1

( ) exp[ ( ; )]

exp[ ( ; )]1
,

1 exp[ ( ; )]

0, , ,                                                    (5)

k

k

n

i k i i k i T t
k

n
i i k i

T tI
k m m m k mm

G t p s T I

s T
I

n s T

i I

θ β

θ β
ρ θ β

≤
=

≤
=

=

= +

+
=

+ +

=

∑

∑
∑

�

…

 
 

where �0 0θ = and �

0 0( ; ) 0s β ≡i . Throughout this 

article, a b≤  and a−∞ ≤ ≤ ∞ with 

1( , , )pa a a τ= … and 1( , , )pb b b τ= … stand for, 

respectively, i ia b≤ and ia−∞ ≤ ≤ ∞ for 

0,1, ,i p= … . Note that �iG  is the maximum 

semiparametric likelihood estimator of iG  under 

model (2) for 0,1, ,i I= … . Let 

�
1

[ ]1
( ) i

ij

n

i i X tj
G t n I−

≤=
= ∑  be the empirical 

distribution function based on the sample 

1, ,
ii inX X…  from the i th ( 0,1, , )i I= …  

category. Moreover, let 

 
� �( )( ) ( ) ( ) , sup ( ) ,

0,1, , .

ni i i ni ni
t

t n G t G t t

i I
−∞≤ ≤∞

∆ = − ∆ = ∆

= …

 
Then, ni∆ is the discrepancy between the two 

estimators �( )iG t and �( ),iG t and thus measures 

the departure from the assumption of the 
multivariate multiplicative-intercept risk model 
(1) within the i th ( 1, , )i I= …  pair of category 
i  and the baseline category (0). Since 

� �

0 0
( ) [ ( ) ( )] 0,

I I

i ni i i ii i
t n G t G tρ ρ

= =
∆ = − =∑ ∑  

there exists a motivation to employ the weighted 
average of the ni∆ defined by  

 

                
0

1
                      (6)

1

I

n i ni
iI

ρ
=

∆ = ∆
+ ∑

 

 
to assess the validity of model (2). Clearly, the 
proposed test statistic n∆  measures the global 

departure from the assumption of the 
multivariate multiplicative-intercept risk model 
(1). Because the same value of n∆ occurs no 

matter which category is the baseline category, 
there is a symmetry among the 1I +  category 
designations for such a global test. Thus, the 
choice of the baseline category in model (1) is 
arbitrary for testing the validity of model (1) or 
model (2) based on n∆ . Note that the test 

statistic n∆ reduces to that of Zhang (2000) 

when 1I =  in model (1) since 
1

0 1 1 02 ( )n n n nρ−∆ = ∆ + ∆ = ∆  for 1I = . 

Remark 1: The test statistic n∆  can also 

be applied to mixture sampling data in which a 

sample of 
0

I

ii
n n

=
=∑ members is randomly 

selected from the whole population with 

0 1, , , In n n…  being random (Day & Kerridge, 

1967). Let ( , )k kX Y , 1, ,k n= … , be a random 

sample from the joint distribution of 
( , ),X Y then the likelihood has the form of 
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1

0 1

( | ) ( )

[ ( | )],
i

n

k k k
k

nI

i ij
i j

L P Y X f X

f X Y iπ

=

= =

=

= =

∏

∏∏
 

 
where ( )i P Y iπ = =  for 1, ,i I= … . The first 

expression is a prospective decomposition and 
the second one is a retrospective decomposition. 

Remark 2: In light of Anderson (1972, 
1979), the case-control data may be treated as 
the prospective data to compute the maximum 

likelihood estimate of *( , )θ β  under model (1), 

where * * *
1( , , )I

τθ θ θ= … . Suppose that the 

sample data in model (2) are collected 
prospectively, then the (prospective) likelihood 
function is, by (1), 
 

*
*

*
0 1 0 1

1

( ; )
( , ) ( | ) .

1 ( ; )

i in nI I
i i ij i

ij I
i j i j m m ij mm

r X
L P Y i X X

r X

θ β
θ β

θ β= = = =
=

⎡ ⎤
⎢ ⎥= = = =
⎢ ⎥+⎣ ⎦

∏∏ ∏∏
∑

 

 
The log-likelihood function is 

* *

0 1

*

1 1

( , ) [log ( ; )]

log 1 exp[ ( ; )] .

jnI

i i ij i
i j

n I

m m k m
k m

s X

s T

θ β θ β

θ β

= =

= =

= +

⎡ ⎤− +⎢ ⎥
⎣ ⎦

∑∑

∑ ∑

�

 

 
The system of score equations is given by 
 

*

*

*

* *
1

1

*

1

*

*
1

1

( , )

exp[ ( ; )]1

1 exp[ ( ; )]

0, 1, , ,

( , )
( ; )

exp[ ( ; )]
( ; ) 0,

1 exp[ ( ; )]

1, , .                    

u

u

n
u u k u

u I
ku m m k mm

n

u uj u
ju

n
u u k u

u k uI
k m m k mm

s T
n

s T

u I

d X
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d T

s T

u I

θ β
θ

θ β
θ θ β

θ β β
β

θ β β
θ β

=
=

=

=
=

∂
∂

⎡ ⎤
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⎢ ⎥+⎣ ⎦

= =

∂ =
∂

− =
+

=

∑
∑

∑

∑
∑

�

…

�

…                          (7)
 

 

Let �
�

*( , )θ β with � � �* * *
1( , , )I

τθ θ θ= …  and 

� � �

1( , , )I

τ τ
τβ β β= …  denote the solution to the 

system of score equations in (7). Then 
comparing (7) with (3) implies that 
�

�*
0log log( / )u u un nθ θ= +  and � �

u uβ β=  for 

1, ,u I= … . Thus, the maximum likelihood 
estimates of are identical under the retrospective 
sampling scheme and the prospective sampling 
scheme. In addition, the two estimated 

asymptotic variance-covariance matrices for �β  

and �β  based on the observed information 
matrices coincide. See also Remarks 3 and 4 
below. 
 
Asymptotic results 

In this section, the asymptotic properties 

of the proposed estimator �( )iG t  ( 0,1, , )i I= …  

in (5) and the proposed test statistic n∆  in (6) 

are studied. To this end, let (0) (0)( , )θ β  be the 

true value of ( , )θ β  under model (2) with  
 

(0) 10 0( , , )p
τθ θ θ= …  

 
and 

 (0) 10 0( , , )p
τ τ τβ β β= … . 

Throughout this article, it is assumed 
that 0/i in nρ =  ( 0,1, , )i I= …  is positive and 

finite and remains fixed as 
0

I

ii
n n

=
= → ∞∑ . 

Write 
0

I

ii
ρ ρ

=
=∑ and 

 

2

( ; )
( ; ) ,

( ; ) ( ; )
( ; )

1, , ,

i i
i i

i

i i i i
i i

i i i

s t
d t

d t s t
D t

i I

τ τ

ββ
β

β ββ
β β β

∂=
∂

∂ ∂= =
∂ ∂ ∂

= …
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where J  is an I I×  matrix of 1 elements and 

1 1
1Diag( , , )ID ρ ρ− −= …  is the I I×  diagonal 

matrix having elements 1 1
1{ , , }Iρ ρ− −
… on the 

main diagonal. In order to formulate the results, 
the following assumptions are stated. 

(A1) There exists a neighborhood 0Θ  of 

the true parameter point (0)β  such that for all t  

the function ( ; )i ir t β ( 1, , )i I= …  admits all 

third derivatives 
3 ( ; )i i
k l m
i i i

r t β
β β β
∂

∂ ∂ ∂
 for all 0β ∈Θ  

(A2) For 1, ,i I= … , there exists a function 1Q  

such that 1

( ; )
( )i i

k
i

s t
Q t

β
β

∂ ≤
∂

 for all 0β ∈Θ  and 

1, ,k p= … ,    where 
 

1

1 0 0( ){1 exp[ ( ; )]} ( ) ,

1, 2,3.

j

j
i i i io

q

Q y s y dG y

j

ρ θ β= + + < ∞

=
∫

 
(A3) For 1, ,i I= … , there exists a function 2Q  
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such that 
2

2
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(A4) For 1, ,i I= … , there exists a function 3Q  

such that 
3

3

( ; )
( )i i

k l m
i i i

s t
Q t

β
β β β
∂ ≤
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 for all 0β ∈Θ  

and , , 1, , ,k l m p= … where 
 

3

3 0 0( ){1 exp[ ( ; )]} ( )i i i io

q

Q y s y dG yρ θ β

=

+ + < ∞∫
 

First, study the asymptotic behavior of 
the maximum semiparametric likelihood 

estimate � �( , )θ β  defined in (3). Theorem 8 
concerns the strong consistency and the 

asymptotic distribution of � �( , )θ β  
 

Theorem 1: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S is positive definite. 
(a) As n → ∞ , with probability 1 there exists a 

sequence � �( , )θ β  of roots of the system of score 

equations (2.1) such that � �( , )θ β  is strongly 

consistent for estimating (0) (0)( , ),θ β i.e.,  

� �

. .

(0) (0)( , )  ( , )
a s

θ β θ β→ . 

 
(b) As n → ∞  , it may be written 
 

�

�

( , )(0) (0)
1

( , )(0) (0)

1/ 2

(0) 1

(0)

( ),                                        (9)p

S
n
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θ β

θ
θ β

β

θ θ

β β

⎛ ⎞∂
⎜ ⎟
⎜ ⎟− ∂
⎜ ⎟

∂⎜ ⎟
⎜ ⎟⎜ ⎟∂⎝ ⎠

−

⎛ ⎞−
⎜ ⎟ =⎜ ⎟−⎜ ⎟
⎝ ⎠

+

�

�  

 

where 
( , ) ( , )(0) (0)

( , ) ( , )(0) (0)

θ β θ β
θ θ θ β θ β

∂ ∂=
∂ ∂ =

�
�  and 

( , ) ( , )(0) (0)

( , ) ( , )(0) (0)

θ β θ β
β β θ β θ β

∂ ∂=
∂ ∂ =

�
� .As a result, 

�

�

( 1)

(0)
  (0, ).              (10)

(0)

d

p In N
θ θ

β β +

⎛ ⎞−
⎜ ⎟ → ∑⎜ ⎟−⎜ ⎟
⎝ ⎠

 
 

Remark 3: A consistent estimate of the 
covariance matrix ∑  is given by 

� �

1 0
(1 )

0 0

D J
S ρ

− +⎛ ⎞
∑ = − + ⎜ ⎟

⎝ ⎠
 

where �S  is obtained from S  with (0) (0)( , )θ β  

replaced by � �( , )θ β  and 0G  replaced by �0G . 

Remark 4: Because 1S −  is the 
prospectively derived asymptotic variance-

covariance matrix of � �
*( , )θ β  on the basis of the 

prospective likelihood function given                    
in Remark 2, it is seen from the expression for 
the asymptotic variance-covariance matrix ∑ of  
� �( , )θ β  that the asymptotic variance-covariance 

matrices for �β  and �β  coincide under the 
retrospective sampling scheme and the 
prospective sampling scheme. Consequently, 
a prospectively derived analysis under model 
(1.1) on parameter estimates and standard errors 
for β  is asymptotically correct in case-control 
studies. These results match those of Weinberg 
and Wacholder (1993) and Scott and Wild 
(1997). 

The two-step profile maximization 
procedure, by which the maximum 

semiparametric likelihood estimator � � �

0( , , )Gθ β is 

derived, relies on first maximizing the 
nonparametric part 0G  with ( , )θ β  fixed and 

then maximizing ( , )θ β�  with respect to 

( , )θ β . The estimator � � �

0( , , )Gθ β can also be 

derived by employing the following “method 
of moments”. Motivated by the work of Gill, 
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Vardi, and Wellner (1988), let 
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I ni
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=∑  

be the “average distribution function”, then by 
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i

n

n T tn i
F t I ≤=

= ∑  be the 

empirical distribution function of the pooled 
sample 1{ , , }nT T… . Then iG  can be estimated 

for fixed ( , )θ β  by 
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for 0,1, ,i I= … . Let  � 1
[ ]1

( ) i

ij

n
i i X tj

G t n I−
≤=

= ∑  

be the empirical distribution function based on 
the sample 1, ,i inX X…  from the i th response 

category. Let ( ; , )i tψ θ β  be a real function from 
pR  to 1pR +  for 1, ,i I= …  and let 

1( ; , ) ( ( ; , ), , ( ; , )) .It t t= …

τ τ τψ θ β ψ θ β ψ θ β  

Then, for a particular choice of ( ; , )tψ θ β , 

( , )θ β can be estimated by matching the 

expectation of ( ; , )i in tψ θ β  under iG  with that 

under � iG  for 1, ,i I= …  : 
 

  

�

�

[ ( ; , )]

( ; , ) ( )
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∫

  

 

for 1, ,i I= … . In other words,  ( , )θ β  can be 
estimated by seeking a root to the following 
system of equations: 

1
0

1

( , )

exp[ ( ; )]
( , , )

exp[ ( ; )]

( , , ) 0 1, , .               (11)  
i

i

n
i i i k i

i kI
k m m m k mm

n

i ij
j

L

s T
T

s T

X i I

θ β
ρ θ β ψ θ β

ρ θ β

ψ θ β

=
=

=

=
+

+

− = =

∑
∑

∑ …

 It is easy to see that the above system of 
equations reduces to the system of score 

equations in (3) if ( ; , ) (1, ( ; ))i i it d tτ τψ θ β β=  is 

taken for 1, , .i I= … Let ( , )θ β  with 

1( , , )I
τθ θ θ= …  and 1( , , )I

τβ β β= …  be a 
solution to the system of equations in (11). Note 

that ( , )θ β  depends on the choice of 

( ; , )i tψ θ β  for 1, , .i I= …  The following 

theorem demonstrates that the choice of 

( ; , ) (1, ( ; ))i i it d tτ τψ θ β β=  for 1, ,i I= …  is 

optimal in the sense that the difference between 
the asymptotic variance-covariance matrices of 

( , )θ β  and � �( , )θ β  is positive semidefinite for 
any set of measurable functions 
{ ( ; , ) :   1, , }.i t i Iψ θ β = … Qin (1998) 

established this optimal property when 1I = . 
Theorem 2: Under the conditions of 

Theorem 1, we have 
 

(0)
( 1)

(0)

  (0, ),
d

p In N ψ

θ θ
β β +

⎛ ⎞−
⎜ ⎟ → ∑
⎜ ⎟−⎝ ⎠

  

where 1 1( )V B V τ
ψ ψ

− −
∑ =  with V  and Bψ  

defined in (18) of the proof section. Moreover, 
the maximum semiparametric likelihood 

estimator � �( , )θ β  is optimal in the sense that 

ψ∑ −∑  is positive semidefinite for any set of 

measurable functions { ( ; , ) : 1, , }i t i Iψ θ β = … . 

In the following case, 1p =  is 
considered, although the results can be naturally 
generalized to the case of 1p > . The weak 

convergence of � � � �

0 0( , , )I In G G G G τ− −…  is 



BIAO ZHANG  
 

19 

now established to a multivariate Gaussian 

process by representing � �  ( 0,1, , )i iG G i I− = …  
as the mean of a sequence of independent and 
identically distributed stochastic processes with 

a remainder term of order 1/ 2( )po n− . 

Theorem 3: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S  is positive definite. For 0,1, ,i I= … , 
one can write 
 
� � �

1 2( ) ( ) ( ) ( ) ( ) ( ),

                                                                (12)
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and the remainder term ( )inR t satisfies    

1/ 2sup ( ) ( ).                         (14)in p
t
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As a result, 
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n
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⎜ ⎟ ⎜ ⎟
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−∞ ∞

��  

where 1[ , ]ID + −∞ ∞  is the product space defined 

by [ , ] [ , ]D D−∞ ∞ × × −∞ ∞�  and 

0 1( , , , )IW W W τ
…  is a multivariate Gaussian 

process with continuous sample path and 
satisfies, for s t−∞ ≤ ≤ ≤ ∞ ,  
 

( ) 0, 0,1, , ,iEW t i I= = …  

1
1 2

1
( ) ( ) [ ( ) ( )]

2

( )1 1( ( ), ( )) , 0,1, , ,
2 ( )
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⎜ ⎟− =
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⎝ ⎠

…

 

1
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( )

2

i j

ij i i

EW s W t
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i j I
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j

τ τρ
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⎛ ⎞
⎜ ⎟ ≠ =
⎜ ⎟
⎝ ⎠
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Theorem 3 forms the basis for testing 
the validity of model (2) on the basis of the test 
statistic n∆  in (6). Let wα  denote the α -

quantile of the distribution of 
1

1 0
{sup | ( ) |},

I

i t iI i
W tρ −∞≤ ≤∞+ =∑  i.e., wα  

satisfies 
1

1 0
( {sup | ( ) |} ) .

I

i t iI i
P W t w−∞≤ ≤∞+ =

≤ =∑ αρ α  

According to Theorem 3 and the continuous 
Mapping Theorem (Billingsley, 1968, p. 30): 

 

� �

{ }

1

1
0

1
0

lim ( )

1
lim { sup | ( ) ( ) |}

1

1
     sup | ( ) |

1

n
n

I

ii i
n ti

I

i i
ti

P w

P n G t G t w
I

P W t w
I

α

α

α

ρ

ρ α

−→∞

−→∞ −∞≤ ≤∞=

−
−∞≤ ≤∞=

∆ ≥

⎛ ⎞= − ≥⎜ ⎟+⎝ ⎠

⎛ ⎞= ≥ =⎜ ⎟+⎝ ⎠

∑

∑

 
Thus, the proposed goodness of fit test 
procedure has the following decision rule: reject 
model (2) at level α  if 1n w α−∆ > . In order for 

this proposed test procedure to be useful in 
practice, the distribution of 

1

1 0
{sup | ( ) |}

I

i t iI i
W tρ −∞≤ ≤∞+ =∑ must be found 

and the (1 )α− -quantile 1w α−  calculated. 
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Unfortunately, no analytic expressions appear to 
be available for the distribution function of 

1

1 0
{sup | ( ) |}

I

i t iI i
W tρ −∞≤ ≤∞+ =∑ and the quantile 

function thereof. A way out is to employ a 
bootstrap procedure as described in the next 
section. 
 
A Bootstrap Procedure 

In this section is presented a bootstrap 
procedure which can be employed to 
approximate the quantile 1w α−  defined at the 

end of the last section. If model (1) is valid, 

since * * *
1( , , )I

τθ θ θ= …  is not estimable in 

general on the basis of the case-control data 

1, , nT T… , only generated data, respectively, 

from � � �

0 1, , , IG G G… , where �  ( 0,1, , )iG i I= …  

is given by (5). Specifically, let * *
1, ,

ii inX X…  be 

a random sample from � iG  for 0,1, ,i I= …  and 

assume that * *
1{( , , ) :  0,1, , }

ii inX X i I=… … are 

jointly independent. Let * *
1{ , , }nT T…  denote the 

combined bootstrap sample 

0 1

* * * * * *
01 0 11 1 1{ , , ; , , ; ; , , }

In n I InX X X X X X… … � …  

and � �* *( , )θ β with � � �* * *
1( , , )I

τθ θ θ= …  and 

� � �* * *
1( , , )I

τ τ
τβ β β= …  be the solution to the 

system of score equations in (3) with the *
kT  in 

place of the kT . Moreover, similar to (4) (6), 

let � *

* 1

[ ]1
( ) i

ij

n
i n X tji

G t I
≤=

= ∑  for 0,1, ,i I= …  and 
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≤
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≤

=
=

=
+ +

=
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+
=
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=

∑

∑

∑
∑

…

…

 

 

where �

*
0 0θ =  and �

*

00 ( ; ) 0s β ≡i . Then the 

corresponding bootstrap version of the test 
statistic n∆  in (6) is given by 

                      * *

0

1
,

1

I

n i ni
iI

ρ
=

∆ = ∆
+ ∑

 

where * *sup | ( ) |ni t ni t−∞≤ ≤∞∆ = ∆  with 

� �

*** ( ) ( ( ) ( ))i ini t n G t G t∆ = − for 0,1, ,i I= … . 

To see the validity of the proposed bootstrap 
procedure, the proofs of Theorems 1 and 3 can 
be mimicked with slight modification to show 
the following theorem. The details are omitted 
here. 

Theorem 4: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S  is positive definite and  

         2 ( ) ( ){1 exp[ ( ; )]} ( )1 2 0 0 0Q y Q y s y dG yi i i iρ θ β
−∞

+ +
∞

< ∞∫  

for 1, ,i I= … .  
(a) Along almost all sample sequences 

1 2, , ,T T …  given 1( , , )nT T… , as n → ∞ , we 

have 

                    
� �

� �

( 1)

*
  (0, ).

*

d

p In N
θ θ

β β
+

⎛ ⎞−⎜ ⎟ → ∑
⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
(b) Along almost all sample sequences 

1 2, , ,T T …  given 1( , , )nT T… , as n → ∞ , we 

have 

� �

� �

� �

0 0
0

1 11 1
 

**

**
 in [ , ],

**

D
I

I

I I

G G W

WG Gn D

W
G G

+
→

⎛ ⎞−⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟ −∞ ∞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
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��

 

where 0 1( , , , )IW W W τ
…  is the multivariate 

Gaussian process defined in Theorem 3. 
 Theorem 3 and part (b) of Theorem 4 
indicate that the limit process of 

� � � �

0 0
* ** *

( , , )I In G G G G τ− −…  agrees with that 
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of � � � �

0 0( , , )I In G G G G τ− −… . It follows 
from the Continuous Mapping Theorem that 

1* *
1

0

I

n i niI
i

ρ+
=

∆ = ∆∑  has the same limiting 

behavior as does 1

1
0

I

n i niI
i

ρ+
=

∆ = ∆∑ . Thus, the 

quantiles of the distribution of n∆  can be 

approximated by those of *
n∆ . For (0,1)α ∈ , let 

* *
1 inf{ ;  ( ) 1 }n

nw t P tα α− = ∆ ≤ ≥ − , where *P  

stands for the bootstrap probability under 
�  ( 0,1, , )iG i I= … . Then there is the following 

bootstrap decision rule: reject model (2) at level 

α  if 1
n

n w α−∆ > . 

Two real data sets are next considered. 
Note that the multivariate logistic regression 
model is a special case of the multivariate 
multiplicative-intercept risk model (1) with 

* *exp( )i iθ α=  and ( ; ) exp( )i i ir x xτβ β=  for 

1, ,i I= … . In this case, we have 
* 0

1
log( )i i

π
πθ α= +  and ( ; )i i is x xτβ β= in model 

(2) for 1, ,i I= … . 
Example 1: Agresti (1990) analyzed, by 

employing the continuation-ratio logit model, 
the relationship between the concentration level 
of an industrial solvent and the outcome for 
pregnant mice in a developmental toxicity study. 
The complete dataset is listed on page 320 in his 
book. Let X denote “concentration level (in 
mg/kg per day)” and Y represent “pregnancy 
outcome”, in  which  0,1,Y =   and 2  stand  for  
 
 
 
 
 
 
 
 
 
 
 
 
 

three possible outcomes: Normal, Malformation, 
and Non-live. Here this data set is analyzed on 
the basis of the multivariate logistic regression 
model. Because the sample data ( , )i iX Y , 

1, ,1435i = … , can be thought as being drawn 
independently and identically from the joint 
distribution of ( , )X Y , Remark 1 implies that  

the test statistic n∆  in (6) can be used to test the 

validity of the multivariate logistic regression 
model. Under model (2), 

� � � �

1 1 2 2( , , , ) ( 3.33834, 0.01401, 

2.52553, 0.01191)

θ β θ β = −
−

 

and 0.49439n∆ =  with the observed P -value 

equal to 0 based on 1000 bootstrap replications 

of *
n∆ . Because 0 1000n = , 1 199n = , and 

2 236n = , * *
1 1logα θ= and * *

2 2logα θ=  can be 

estimated by 
�

*
1 = 3.33834 + log(199/1000) = 4.95279α − −

and �
*
2 = 2.52553  α −  

+ log(236/1000)= 3.96945− , respectively. 

Figure 1 shows the curves of � 0G  and 
�

0G (left panel), the curves of �1G  and �1G (middle 

panel), and the curves of � 2G and � 2G (right 
panel) based on this data set. The middle and 
right panels indicate strong evidence of the lack 
of fit of the multivariate logistic regression 
model to these data within the categories for 
Malformation and Non-live. 
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Figure 1. Example 1: Developmental toxicity study with pregnant mice. Left panel: estimated cumulative 

distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated cumulative 

distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated cumulative 

distribution functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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Example 2: Table 9.12 in Agresti (1990, 
p. 339) contains data for the 63 alligators caught 
in Lake George. Here the relationship between 
the alligator length and the primary food choice 
of alligators is analyzed by employing the 
multivariate logistic regression model. Let X  
denote “length of alligator (in meters)” and Y  
represent “primary food choice” in which 

0,1,Y = and 2 stand for three categories: Other, 
Fish, and Invertebrate. Since the sample data 
( , )i iX Y , 1, ,63i = … , can be thought as being 

drawn independently and identically from the 
joint distribution of ( , )X Y , Remark 1 implies 

that the test statistic n∆ in (6) can be used to test 

the validity of the multivariate logistic 
regression model. 

For the male data, we find 
� � � �

1 1 2 2( , , , )θ β θ β = (0.41781, − 0.17678, 4.83809, 

− 2.60093) and n∆  = 1.33460 with the observed 

P -value identical to 0.389 based on 1000 

bootstrap replications of *
n∆  . For the female 

data, we find � � � �

1 1 2 2( , , , )θ β θ β = ( − 5.58723, 

2.57174, 2.70962, − 1.50304) and n∆ = 1.63346 

with the observed P -value equal to 0.249 based 

on 1000 bootstrap replications of *
n∆ . For the 

combined male and female data, 
� � � �

1 1 2 2( , , , )θ β θ β = ( − 0.19542, 0.08481, 4.48780, 

− 2.38837) and n∆ = 1.73676 is found with the 

observed P -value identical to 0.225 based on 

1000 bootstrap replications of *
n∆ , indicating 

that we can ignore the gender effect on primary 
food choice. Because 0n  = 10, 1n = 33, and 2n = 

20, * *
1 1logα θ=  and * *

2 2logα θ=  can be 

estimated by �
*
1α = − 0.19542 + log(33/10) = 

0.99850 and �

*
2α = 4.48780 + log(20/10) = 

5.18094, respectively. 

Figures 2-4 display the curves of � 0G  

and � 0G (left panel), the curves of �1G  and 
�

1G (middle panel), and the curves of � 2G  and 
�

2G (right panel) based, respectively, on the 
male, female, and combined data set. For the 

combined data, the curve of � �

1 2( )G G  bears a 

resemblance to that of � �

1 2( )G G , whereas the 

dissimilarity between the curves of � 0G  and � 0G  
indicates some evidence of lack of fit of the 
multivariate logistic regression 
model to these data within the baseline category 
for Other. 
 

Proofs 
 
First presented are four lemmas, which will be 
used in the proof of the main results. The proofs 
of Lemmas 1, 2, and 3 are lengthy yet 
straightforward and are therefore omitted here. 
Throughout this section, the norm of a 21 mm ×  

matrix 
21

)( mmijaA ×= is defined by 

1 2
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i 1 1
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= =
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Furthermore, in addition to the notation in (8) 
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Figure 2. Example 2: Primary food choice for 39 male Florida alligators. Left panel: estimated cumulative 

distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated cumulative 

distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated cumulative distribution 

functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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Figure 3. Example 2: Primary food choice for 24 female Florida alligators. Left panel: estimated 

cumulative distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated 

cumulative distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated 

cumulative distribution functions 2

~
G  (solid curve) and  2Ĝ  (dashed curve).   
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Figure 4.  Example 2: Primary food choice for 63 male and female Florida alligators. Left panel: estimated 

cumulative distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated 

cumulative distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated 

cumulative distribution functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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 Lemma 1: Suppose that model (2) holds 
and S  is positive definite. Let J  be an II ×  
matrix of 1 elements and let 

1 1
1Diag( , , )ID ρ ρ− −= � denote the II ×  

diagonal matrix having elements 
1 1

1{ , , }Iρ ρ− −
� on the main diagonal, then  
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Lemma 2: Suppose that model (2) holds 
and S  is positive definite. For 

∞≤≤≤∞− ts ,  
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Lemma 3: Suppose that model (2) holds 
and S  is positive definite. For 

∞≤≤≤∞− ts , we have  
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Lemma 4: Suppose that model (2) and 

Assumption (A2) hold. If S  is positive definite 
and 0G is continuous, then the stochastic process 

}  )],()(ˆ)([{ 21 ∞≤≤∞−−− ttHtGtHn iii is 

tight in ],[ ∞−∞D for ,, ,1 ,0 Ii �= where 

)(1 tH i  and )(2 tH i  are defined in (13). 

 

Proof: Because i
i

nn
ρ

ρ+= 1
 for 

,, ,1 ,0 Ii �= it can be shown after some 
algebra that  
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Let ℑ }R:{ ],( ∈= −∞ tI t be the collection of all 

indicator functions of cells ],( t−∞ in R. 
According to the classical empirical process 
theory, ℑ is a 

1kXP -Donsker class for 

,, ,1 ,0 Ik �=  where 1
11

−= kX XPP
k

�  is the 

law of 1kX  for  0,  1,  , .k I= � For each 

,, ,1 ,0 Ii �=   let us define 1+I  fixed 
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Then it is seen that iIii fff ,,, 10 �  are uniformly 

bounded functions. According to Example 
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As a result, there exist 1+I zero-mean Gaussian 
processes iIii VVV ,,, 10 �  such that 
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Thus, the stochastic process 

}  ),({ ∞≤≤∞− ttUn ikk is tight on 

],[ ∞−∞D  for Iki , ,1 ,0, �= . Moreover, it 
can be shown by using the tightness axiom (Sen 
& Singer, 1993, p. 330) that the stochastic 

process }  ),({ 2 ∞≤≤∞− ttHn i  is tight on 

],[ ∞−∞D  for Ii , ,1 ,0 �= . These results, 
along with (17), imply that the stochastic 
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is tight in ],[ ∞−∞D for Ii , ,1 ,0 �= . The 
proof is complete. 

Proof of Theorem 1: Fro part (a), let 

}||||||:||),{( 22
)0(

2
)0( εββθθβθε ≤−+−=B

 be the ball with center at the true parameter 
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For small ε , it can be shown that we can expand 
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where 01 >λ is the smallest eigenvalue of S . 
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for sufficiently large n  with probability 1. It has 
been shown that for any sufficiently small 0>ε  
and sufficiently large n , with probability 1,  
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thus establishing (9). To prove (10), it suffices to 
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The proof is complete. 
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This completes the proof of Theorem 2. 
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Under the assumption that the underlying 
distribution function 0G  is continuous (20) is 

proven. According to (16) and Lemmas 2 and 3, 
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It then follows from the multivariate central 
limit theorem for sample means and the Cramer-
Wold device that the finite-dimensional 
distributions of  
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ˆ{ ( ( ) ( ) ( ), ,

ˆ( ) ( ) ( )) ,   }I I I

n H t G t H t

H t G t H t tτ

− −

− − − ∞ ≤ ≤ ∞

�

 

is tight in ].,[1 ∞−∞+ID  But this has been 

established by Lemma 4 for continuous .0G  

Thus, (20) has been proven when 0G  is 

continuous. 
Suppose now that 0G  is an arbitrary 

distribution function over ],[ ∞−∞ . Define the 

inverse of 0G , or quantile function associated 

with 0G , by },)(:inf{)( 0
1

0 xtGtxG ≥=−
  

).1,0(∈x  Let 
iini ξξ ,,1 �  be independent 

random variables having the same density 
function )]);((exp[)( 1

0 iiii xGsxh βθ −+=  

on )1,0(  for Ii ,,1,0 �=  and assume that 
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},,1,0:),,{( 1 Ii
iini �� =ξξ  are jointly 

independent. Thus, we have the following 
( 1)I + -sample semiparametric model analogous 
to (2): 
 

),()(~,, )1,0(0

...

001 0
xIxh

dii

n =ξξ �  

 
. . .

1
1 0 0, , ~ ( ) exp[ ( ( ); )] ( ),

       0,1, , .                                       (21)
i

i i d

i in i i i ih x s G x h x

i I

ξ ξ θ β−= +

=

�

�

 
Then, it is easy to see that ),,( 1 iini XX � and 

))(,),(( 1
01

1
0 iini GG ξξ −−

� have the same 

distribution, i.e., 
d

ini i
XX =),,( 1 � ))(,),(( 1

01
1

0 iini GG ξξ −−
� for 

0,1, , .i I= � Let },,{ 1 nψψ �  denote the 

pooled random variables 
},,;;,,;,,{ 1111001 10 IInInn ξξξξξξ ���� , then 

d

nTT =),,( 1 �
1 1

0 1 0( ( ), , ( )).nG Gψ ψ− −
�  For 

)1,0(∈u  and ,,,1,0 Im �=  let 

1 2( ), ( ),m mH u H u� �  and )(
ˆ̂

uGm  be the 

corresponding counterparts of 1 2( ),  ( )m mH t H t� � , 

and )(
ˆ̂

tGm under model (21). Now define 

],[],[: 11 ∞−∞→∞−∞ ++ II DDφ  by 

))(())(( 0 tGKtK =φ , then it can be shown that 

 10 0 0 0 20 0

1 0 0 2 0

ˆ̂
( [ ( )] [ ( )] [ ( )], ,

ˆ̂
[ ( )] [ ( )] [ ( )])I I I

n H G t G G t H G t

H G t G G t H G t τ

− −

− −

� �

�

� �

 

10 0 20 1
ˆ ˆ( ( ) ( ) ( ), , ( ) ( )]

d

I In H t G t H t H t G t= − − −�
 

2 ( ))IH t τ−           and 

 10 0 20 1 2

ˆ ˆˆ ˆ( , , )I I In H G H H G H τ− − − −� � � �
�   

0 ( , )
D

IW W τ→ � �

�  

in 1[0,1],ID +  where τ)
~

,
~

( 0 IWW �  is a 

multivariate Gaussian process satisfying 

0 0[( , ) ]  ( , )
d

I IW W W Wτ τφ =� �
� � . If nK  converges to 

K  in the Skorohod topology and 

],,[1 ∞−∞∈ +ICK  then the convergence is 

uniform, so that nKφ  converges to Kφ  

uniformly and hence in the Skorohod topology. 
As a result, Theorem 5.1 of Billingsley (1968, 
page 30) implies that  
 

10 0 20 1 2
ˆ ˆ( , , )I I In H G H H G H τ− − − −�  

10 0 20 1 2

0 0

ˆ ˆˆ ˆ[ ( , , ) ] 

 [( , ) ]  ( , ) .

d

I I I

D d

I I

n H G H H G H

W W W W

τ

τ τ

φ

φ

= − − − −

→ =

� � � �

�

� �
� �

Therefore, (20) holds for general 0G , and this 

completes the proof of Theorem 3. 
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Two Sides Of The Same Coin:  
Bootstrapping The Restricted Vs. Unrestricted Model 

 
Panagiotis Mantalos 

Department of Statistics 
Lund University, Sweden 

 
 
The properties of the bootstrap test for restrictions are studied in two versions: 1) bootstrapping under the 
null hypothesis, restricted, and 2) bootstrapping under the alternative hypothesis, unrestricted. This article 
demonstrates the equivalence of these two methods, and illustrates the small sample properties of the 
Wald test for testing Granger-Causality in a stable stationary VAR system by Monte Carlo methods. The 
analysis regarding the size of the test reveals that, as expected, both bootstrap tests have actual sizes that 
lie close to the nominal size. Regarding the power of the test, the Wald and bootstrap tests share the same 
power as the use of the Size-Power Curves on a correct size-adjusted basis. 
 
Key words: Bootstrap, Granger-Causality, VAR system, Wald test 
 
 

Introduction 
 

When studying the small sample properties of a 
test procedure by comparing different tests, two 
aspects are of importance: 

 
a) to find the test that has actual size closest to  

the nominal size, and given that (a) holds, 
and 

b) to find the test that has the greatest power. 
 
In most cases, however, the distributions of the 
test statistic used are known only asymptotically 
and, unfortunately, unless the sample size is very 
large, the tests may not have the correct size. 
Inferential comparisons and judgements based 
on them might be misleading. Gregory and Veall 
(1985) can be consulted for an illustrative 
example.  

One of the ways to deal with this 
situation is to use the bootstrap. The use of this 
procedure is increasing with the advent of 
personal computers. 
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However, the issue of the bootstrap test, 
even it is applied, is not trivial. One of the 
problems is that one needs to decide how to 
resample the data, and whether to resample 
under the null hypothesis or under the alternative 
hypothesis. 
 By bootstrapping under the null 
hypothesis, an approximation is made of the 
distribution of the test statistic, thereby 
generating more robust critical values for our 
test statistic. Alternately, by bootstrapping under 
the alternative hypothesis, an approximation is 
made of the distribution of the parameter, and is 
subsequently used to make inferences. 

In either case, it does not matter whether 
the nature of the theoretical distribution of the 
parameter estimator or the theoretical 
distribution of the test statistic is known. What 
matters is that the bootstrap technique 
approximates those distributions. 

In this article, the bootstrap test 
procedure shows that  

 
a) by bootstrapping under the null 

hypothesis (that is, bootstrapping the restricted 
model), and 

b) by bootstrapping under the alternative 
hypothesis (that is, bootstrapping the 
unrestricted model) 
 
will lead to the same results. 
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The properties of the two different 
methods will be illustrated and investigated 
using Monte Carlo methods. The Residual 
Bootstrap, (RB), will be used to study the 
properties of the test procedure when the errors 
are identically and independently distributed. To 
provide an example that is easy to be extended 
to a more general hypothesis, it is convenient to 
use the Wald test for restrictions for testing 
Granger-causality in a stable stationary VAR 
system. 

 
The Model 
Consider the general linear model 
 
                      y β δ= X +          (1) 
 

where y is an ( )1n×  vector, X is an ( )n K×  

matrix and b is a ( )1K×  vector. It is assumed 

that δ  is an n-dimensional normal vector 
(0, )Ω� . 

Consider testing q independent linear 
restrictions: 
 
     1:  R  = r   vs.    : R   roH Hβ β ≠ ,         (2) 

 
where q and r are fixed (q x 1) vectors and R is a 

fixed ( )q K×  matrix with rank q. It is possible 

to base a test of 0H  on the Wald criterion 

 
1ˆ ˆ ˆ(  - ) (  ) (  - ).sT R r Var R R r

−
⎡ ⎤′= ⎣ ⎦β β β        (3) 

 
Bootstrap critical values 
 The bootstrap technique improves the 
critical values, so that the true size of the test 
approaches its nominal value. The principle of 
bootstrap critical values is to draw a number of 
Bootstrap samples from the model under the null 
hypothesis, calculate the Bootstrap test statistic 

*
sT , and compare it with the observed test 

statistic. 
 The bootstrap procedure for calculation 
of the critical values is given by the following 
steps: 
 
a)  Estimate the test statistic as in (3) 

b)  Use the adjusted OLS residuals 
ˆ( )iδ δ−  i = 1,...,T to draw i.i.d * *

1 ,...,  Tδ δ  data. 

Define 
 

                           * *
0

ˆ =  + y Xβ δ .         (4) 

c) Then, calculate the test statistic *
sT  as in 

(3), i.e., by applying the Wald test procedure to 
the (4) model. Repeat this step Νb times and take 
the (1-α)th quintile of the bootstrap distribution 

of *
sT  to obtain the α - level Bootstrap critical 

values ( *
tc
α

). Reject Ho if sT ≥
*
tc
α

.  
Among articles that advocated this 

approach are Horowitz (1994) and Mantalos and 
Shukur (1998), whereas Davidson and 
MacKinnon (1999) and Mantalos (1998) 
advocated the estimate of the P-value. A 
bootstrap estimate of the P-value for testing is 

P*{ *
sT ≥ sT }. 

 
Bootstrap-hypothesis testing 
 One of the important considerations for 

generating the *
ty  leading to the bootstrap 

critical values is whether to impose the null 
hypothesis on the model from which is 

generated the *
ty . However, some authors, 

including Jeong and Chung (2001), argued for 
bootstrapping under the alternative hypothesis. 
‘Let the data speak’ is their principle in apply 
the bootstrap. The bootstrap procedure to 
resample the data from the unrestricted model 
consists of the following steps: 
 
a) Estimate the test statistic as in (3) 

b) Use the adjusted OLS residuals ˆ( )iδ δ−  i 

= 1,...,T. to draw i.i.d * *
1 ,...,  Tδ δ  data. Define 

* *ˆ =  + y Xβ δ , noting that β̂  is the 

unconstrained LS estimator of β . That is, the 

unrestricted model is used to simulate the *y . 
c) Calculate 

                     
( )2

*

*

*

ˆ ˆ(  - )

ˆ(  )
s

R
T

Var R

β β

β
=  .        (5) 
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By repeating this step Νb times the (1-
α)th quintile can be used of the bootstrap 
distribution of the (5) as the α - level Bootstrap 

critical values ( *
tc
α

). Reject Ho if sT ≥
*
tc
α

. The 

bootstrap estimate of the P-value is 

P*{ *
sT ≥ sT }. 

Since Efron’s (1979) introduction of the 
bootstrap as a computer-based method for 
evaluating the accuracy of a statistic, there have 
been significant theoretical refinements of the 
technique. Horowitz (1994) and Hall and 
Horowitz (1996) discussed the method and 
showed that bootstrap tests are more reliable 
than asymptotic tests, and can be used to 
improve finite-sample performance. They 
provided a heuristic explanation of why the 
bootstrap provides asymptotic refinements to the 
critical values of test statistics. See Hall (1992) 
for a wider discussion on bootstrap refinements 
based on the Edgeworth expansion. 

Davidson and MacKinnon (1999) 
provided an explanation of why the bootstrap 
provides asymptotic refinements to the p- values 
of a test. The same authors conclude that by 
using the bootstrap critical values or bootstrap 
test, the size distortion of a bootstrap test is at 

least of order 
1

2T
−

smaller than that of the 
corresponding asymptotic test. 
 
Two sides of the same coin 
 Consider the general linear model 
 
                               y β δ= X +           (1) 
 
and suppose that the interest is in testing the q 
independent linear restrictions 
 

1:  R  = r   vs.    : R   roH Hβ β ≠ .         (2) 

 
Let the LS unconstrained estimator of β  be 

denoted by β̂  and the equality-constrained 

estimator be denoted by 0β̂ . The bootstrap 

GDPs are: 
 

a) Restricted:    * *
0

ˆ
Ry β δ= X + .                      (6) 

 

b) Unrestricted: * *ˆ
uy β δ= X + .                      (7) 

   

Let *
β̂  be the LS estimator of the b coefficient 

in the model relating *
Ry  to X, and *ˆ̂

β  be the LS 

estimator of the b in the *
uy  on X model. Thus, 

 
* 1 * 1 *

0
ˆ ˆ( ) ( )Ryβ β δ

− −′ ′ ′ ′= = +X X X X X X     (8) 

    
and 
 

* 1 * 1 *ˆ̂ ˆ( ) ( )uyβ β δ
− −′ ′ ′ ′= = +X X X X X X .     (9) 

 
From (8) and (9)  
 

               * 1 *
0

ˆ ˆ ( )β β δ
−

′ ′− = X X X                (10) 

and 
 

              * 1 *ˆ̂ ˆ ( )β β δ
−

′ ′− = X X X .       (11) 

 
Because the right-hand components of the (10) 
and (11) are equal,  
 

              ( )* *
0

ˆˆ ˆ ˆ ˆβ β β β
⎛ ⎞⎟⎜− = − ⎟⎜ ⎟⎝ ⎠

.                   (12) 

  
It is not difficult to see from (12) that the same 
results from the both methods are expected: 
there are two sides to the same coin. These 
results will be illustrated by a Monte Carlo 
experiment. 
 
Wald test for restrictions in a VAR model 
 Consider a data-generation process 
(DGP) that consists of the k-dimensional 
multiple time series generated by the VAR(p) 
process 
 

1 1 p =  ... +At t t p ty A y y ε
− −

+ + ,       (13) 

where ( )1t kt = ,  ..., tε ε ε

′

 is a zero mean 

independent white noise process with non-
singular covariance matrix 

ε
Σ  and, for j = 1, ... , 
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k, 
2

 jt

τ

ε

+

Ε <∞  for some τ > 0. The order p 

of the process is assumed to be known. Define 
 

( ) ( )1:  = , ,       k x TTy yY �  matrix, 

( )1:  = , , ,     (k x (kp+ 1)) pv A AB � matrix, 

( )

1

1

:   =       (kp +1) x 1 
t

t

t p

y

y
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z
�

 matrix,  

( ) ( ):  = , ,      (kp+1) x T
−0 T 1Z Z Z�  matrix  

 
and 
 

( ) ( )1:  = , ,       k x TTδ ε ε�  matrix. 

By using this notation, for t = 1, …, T, the VAR 
(p) model including a constant term ( v ) can be 
written compactly as  
 
                          =  + δY BZ .                    (14) 
     
Then, the LS estimator of the B  is  
 

                  ( )
1ˆ  = 
−

′ ′B YZ ZZ .        (15) 

 

Let 1  ,   ,p pvec A Aα ⎡ ⎤=
⎣ ⎦
�  be the vector of 

the true parameters, and 1 p
ˆ ˆˆ  = vec A ,   ,Apα

⎡ ⎤
⎢ ⎥⎣ ⎦
�  

be the vector the LS estimators of the 
parameters, where vec[.] denotes the 
vectorization operator that stacks the columns of 
the argument matrix. Then, 
 

( ) ( )1/ 2 ˆ 0,p p pT Nα α− ⇒ Σ ,                    (16) 

   
where ⇒ denotes weak convergence in 

distribution and the [ 2( )k p  x 2( )k p ] 

covariance matrix pΣ  is non-singular. 

Now, suppose that in testing q 
independent linear restrictions is of interest 
 

1:  R  = s   vs.    : R   so p pH Hα α ≠ ,         (17)  

 

where q and s are fixed (q x 1) vectors and R is a 

fixed [q x 2k p ] matrix with rank q. 

We can base a test of 0H  on the Wald 

criterion 
 

1

_ ˆ ˆ ˆ(  - ) (  - ) (  - )s wald p p pT R s Var R s R sα α α
−

′⎡ ⎤= ⎣ ⎦ . 

                                               (18) 
 
Let  

( )1ˆ
1T kp

-1YY - YZ (ZZ ) ZYδ ′ ′ ′ ′Σ =
− −

   (19) 

   
be the estimate of the residual covariance 
matrix. 

Then, the diagonal elements of 

( ) 1 ˆZZ δ
−′ ⊗ Σ form the variance vector of the 

LS estimated parameters. Substitute (19) into 
(18) in order to have 

   

( )( )
_

1
1 ˆˆ ˆ(  - ) (  - ).

s wald

p p

T

R s R ZZ R R s
−−′ ′ ′= ⊗ Σ⎡ ⎤

⎣ ⎦δα α
                     

          (20) 
 
The null hypothesis of no Granger-causality may 
be expressed in terms of the coefficients of VAR 
process as 
 

1:  R  = 0   vs.    : R   0o p pH Hα α ≠ .       (21) 

 
Then, (20) can be written as 

( )( )
_

1
1 ˆˆ ˆ(  ) (  )

s wald

p p

T

R R ZZ R Rδα α
−−⎡ ⎤′ ′ ′= ⊗ Σ

⎣ ⎦

 

                                               (22) 
 
and the bootstrap variations as  

( )( )
*
_

1
1* * * * *ˆˆ ˆ(  ) (  )

s wald

p p

T

R R Z Z R R
δ

α α
−−′⎡ ⎤′ ′= ⊗ Σ

⎢ ⎥⎣ ⎦

 

                                               (23)            
for the restricted form and 
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( )( )
*
_

1
1* * * *

*

ˆˆ ˆ( - )

ˆ ˆ( -  )

s wald

p p

p p

T

R R R Z Z R

R R

δ
α α

α α

−−′⎡ ⎤′ ′= ⊗ Σ
⎢ ⎥⎣ ⎦

 

                                                          (24) 
for the unrestricted form. 
 

Methodology 
 

Monte Carlo experiment 
This section illustrates various 

generalizations of the Granger-causality tests in 
VAR systems with stationary variables, using 
Monte Carlo methods. The estimated size is 
calculated by observing how many times the null 
is rejected in repeated samples under conditions 
where the null is true. 

 
The following VAR(1) process is 

generated: 
 

11/ 2

0.5 0.3
 = 

0.5t t ty y
T

ε

γ
−

−

⎡ ⎤
⎢ ⎥ +
⎢ ⎥
⎣ ⎦

,          (25) 

where ( )2~ 0,  t N Iε , ( )1 2 = .t t ty y y
′

. If γ = 0, 

1ty  is Granger-noncausal for 2ty and if γ ≠ 0, 

1ty  causes 2ty . Therefore, γ = 0 is used to study 

the size of the tests.  
The order p of the process is assumed to 

be known. Because this assumption might be too 
optimistic, a VAR(2) is fitted: 

1 1 2 2 =  At t t ty v A y y ε
− −

+ + + . 

For each time series, 20 pre-sample 
values were generated with zero initial 
conditions, taking net sample sizes of T = 25 and 

50. The Bootstrap test statistic ( *
sT ) is 

calculated. As for Νb, which is the size of the 
bootstrap sample used to estimate bootstrap 
critical values and the P-value, Νb = 399 is used. 
Note that there are no initial bootstrap 
observations in bootstrap procedure. 

Next presented are the results of the 
Monte Carlo experiment concerning the sizes of 
the various versions of the tests statistics using 
the VAR(2) model. Graphical methods are used 
that were developed and illustrated by Davidson 

and MacKinnon (1998) because they are easy to 
interpret. The P-value plot is used to study the 
size, and the Size-Power curves is used to study 
the power of the tests. The graphs, the P-value 
plots and Size-Power curves are based on the 
empirical distribution function, the EDF of the 

P-values, denoted as ( )ˆ
jF x . 

For the P-value plots, if the distribution 
used to compute the sp  terms is correct, each of 

the sp  terms should be distributed uniformly on 

(0,1). Therefore the resulting graph should be 

close to the 45o line.  
Furthermore, to judge the 

reasonableness of the results, a 95% confidence 
interval is used for the nominal size ( 0π ) as: 

0 0
0

 (1 )
2  

N

π π

π

−

± , where N is the number 

of Monte Carlo replications. Results that lie 
between these bounds will be considered 
satisfactory. For example, if the nominal size is 
5%, define a result as reasonable if the estimated 
size lies between 3.6% and 6.4%. The P-value 
plots also make it possible and easy to 
distinguish between tests that systematically 
over-reject or under-reject, and those that reject 
the null hypothesis about the right proportion of 
the time. 

Figure 1 shows the truncated P-value 
plots for the actual size of the bootstrap and the 
Wald tests, using 25 and 50 observations. 
Looking at these curves, it is not difficult to 
make the inference that both the bootstrap tests 
perform adequately, as they lie inside the 
confidence bounds. However, using the 
asymptotic critical values, the Wald test shows a 
tendency to over-reject the null hypothesis.  

The superiority of the bootstrap test over 
the Wald test, concerning the size of the tests, is 
considerable, and more noticeable in small 
samples of size 25. The power of the Wald and 
bootstrap tests by using sample sizes of 25 and 
50 observations was examined. The power 
function is estimated by calculating the rejection 
frequencies in 1000 replications using the value 
γ = 2.  

The Size-Power Curves are used to 
compare the estimated power functions of the 
alternative test statistics. This proved to be quite 
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adequate, because those tests that gave 
reasonable results regarding size usually differed 
very little regarding power.  

The same processes are followed for the 
size investigation to evaluate the EDFs denoted 

by ( )ˆ
jF x⊕ , by using the same sequence of 

random numbers used to estimate the size of the 
tests. Size-Power Curves are used to plot the 
estimated power functions against the nominal 
size. The estimated power functions are plotted 

against the true size, that is, plotting ( )ˆ
jF x⊕  

against ( )ˆ
jF x , which produces the Size-Power 

Curves on a correct size-adjusted basis.  
Figure 2 shows the results of using the 

Size-Power Curves. The Wald test has higher 
power than the restricted and unrestricted 
bootstrap tests. A sample effect can also be seen. 
The larger the sample, the larger is the power of 
the tests. As the sample size increases, the power 
difference decreases. 

However, the most interesting result is 
that both the restricted and unrestricted bootstrap 
tests share the same power. This result confirms 
the view that these two bootstrap methods are 
two sides of the same coin. 

When using the Size-Power Curves on a 
correct size-adjusted basis, however, the 
situation is different concerning the power of the 
Wald and the bootstrap tests. Now the Wald, 
restricted and unrestricted bootstrap tests share 
the same power, as seen in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Conclusion 
 
The purpose of this study was to provide advice 
on whether to resample under the null 
hypothesis or under the alternative hypothesis. 
In summary: 
 
a) the restricted bootstrap test was used, in 
which the distribution of the test statistic was 
approximated, generating more robust critical 
values for our test statistic, and 
b) the unrestricted bootstrap test, where the 
distribution of the parameter (coefficient) was 
approximated. 
 

In both cases it does not matter whether 
or not the nature of the theoretical distribution of 
the parameter estimator or the theoretical 
distribution of the test statistic is known. What 
matters is that the bootstrap technique well 
approximates those distributions. Moreover, this 
article demonstrated the equivalence of these 
two methods. 

The conclusion to this investigation for 
the Granger-causality test is that both bootstrap 
tests have an actual size that lies close to the 
nominal size. Given that the both unrestricted 
and restricted models have the same power, it 
makes sense to choose the bootstrap ahead of the 
classical tests, especially in small samples. 
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Figure 1. P-values Plots Estimated Size of the Wald and Bootstrap Tests. 
 

Figure 1a: 25 observations 

 

Figure 1b: 50 observations 

 
Dash 3Dot lines: 95% Confidence interval 
 

Figure 2. Estimated Power of the Wald and Bootstrap Tests. 
 

Figure 2a: 25 observations 

 

Figure 2b: 50 observations 

 
 

Figure3. Size-adjusted Power of the Wald and Bootstrap Tests. 
 

Figure 3a: 25 observations 
 

 

Figure 3b: 50 observations 
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Coverage Properties Of Optimized Confidence Intervals For Proportions 
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Wardell (1997) provided a method for constructing confidence intervals on a proportion that modifies the 
Clopper-Pearson (1934) interval by allowing for the upper and lower binomial tail probabilities to be set 
in a way that minimizes the interval width. This article investigates the coverage properties of these 
optimized intervals. It is found that the optimized intervals fail to provide coverage at or above the 
nominal rate over some portions of the binomial parameter space but may be useful as an approximate 
method. 
 
Key words: Attribute, Bernoulli, dichotomous, exact, sampling  
 
 

Introduction 
 
A common task in statistics is to form a 
confidence interval on the binomial proportion 
p. The binomial probability distribution function 
is defined as 

[ ] ( )

( )
Pr | , b , ,

1 ,y n y

Y y p n p n y

n
p p

y
−

= =

⎛ ⎞
= −⎜ ⎟
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where the proportion of elements with a 
specified characteristic in the population is p, the 
sample size is n, and y is the outcome of the 
random variable Y representing the number of 
elements with a specified characteristic in the 
sample. 

The coverage probability for a given 
value of p is 

( ) ( ) ( ),,,b,I
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n
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where ( )pC
CLn *,

 is the coverage probability for a 

particular method with a nominal confidence 

level *CL for samples of size n taken from a 
population with binomial parameter p and 

( )pi,I  is 1 if the interval contains p when 
iy = and 0 otherwise. The actual confidence 

level of a method for a given *CL and n 

( )*,n CL
CL  is the infimum over p of ( )pC

CLn *,
. 

Exact confidence interval methods (Blyth & 

Still, 1983) have the property that *
, * CLCL
CLn

≥  

for all n, and *CL . 

The most commonly used exact method 
is due to Clopper and Pearson (1934) and is 
based on inverting binomial tests of 

00 : ppH = . The upper bound of the Clopper-

Pearson interval (U) is the solution in 0p  to the 

equation 

( )0b p , ,
n

U
i y

n i α
=

=∑ , 

except that when ny = , 1=U . The lower 

bound, L, is the solution in 0p  to the equation 

( )0
0

b p , ,
y

L
i

n i α
=

=∑ , 

except that when 0=y , 0=L . The nominal 

confidence level α−= 1*CL  where 
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LU ααα += . Because the Clopper-Pearson 

bounds are determined by inverting hypothesis 
tests, both Uα  and Lα  are set a priori and 

remain fixed regardless of the value of y. In 
practice, the values of Uα  and Lα  are often set 

to 2/ααα == LU . 

Wardell (1997) modified the Clopper-
Pearson bounds by replacing the condition that 

Uα  and Lα  are fixed with the condition that 

only α  is fixed. This allows α  to be partitioned 
differently between Uα  and Lα  for each sample 

outcome y. Wardell (1997) provided an 
algorithm for accomplishing this partitioning in 
such a way that the confidence interval width is 
minimized for each y. Intervals calculated in this 
way are referred to here as optimized intervals. 
Wardell (1997) was concerned with determining 
the optimized intervals and not the coverage 
properties of the method. The purpose of this 
article is to investigate the coverage properties. 
 
Coverage Properties of Optimized Intervals 

Figure 1 plots ( ),.95nC p  against p for 

sample sizes of 5, 10, 20, and 50. The 
discontinuity evident in the Figure 1 plots is due 
to the abrupt change in the coverage probability 
when p is at U or L for any of the 1n +  
confidence intervals. Berger and Coutant (2001) 
demonstrated that the optimized interval method 
is an approximate and not an exact method by 
showing that 5,.95 .9375 .95CL = < . Figure 1 

confirms the Berger and Coutant result and 
extends it to sample sizes of 10, 20, and 50. 

Agresti and Coull (1998) argued that 
some approximate methods have advantages 
over exact methods that make them preferable in 
many applications. In particular, they 
recommended two approximate methods for use 
by practitioners:  the   score   method and 
adjusted Wald method. The interval bounds for 
the score method are 
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where nyp /ˆ = and cz is the c−1 quantile of 

the standard normal distribution. The adjusted 
Wald method interval bounds are 
  

( ) ( )/ 2 ,1 / 4p z p p nα± − +� � �  

 
where  
 

( ) ( )4/2~ ++= nyp . 
 

One measure of the usefulness of an 
approximate method is the average coverage 
probability over the parameter space when p has 
a uniform distribution. This measure is used by 
Agresti and Coull (1998). Ideally, the average 
coverage probability should equal the nominal 
coverage probability. Figure 2 is a plot of the 
average coverage probabilities for the optimized 
interval, adjusted Wald and score methods for 
sample sizes of 1 to 100 and nominal confidence 
levels of .80, .90, 95, and .99.  

Both the adjusted Wald and the score 
method perform better on this measure than the 
optimized interval method in the sense the 
average coverage probability is closer to the 
nominal across all of the nominal confidence 
levels and sample sizes. However, the optimized 
interval method has the desirable property that 
the average coverage probability never falls 
below the nominal for any of the points plotted. 
The score method is below the nominal for the 
entire range of sample sizes at the nominal 
confidence level of .99 and the same is true for 
the adjusted Wald method at the nominal 
confidence level of .80. 
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Figure 1. Coverage Probabilities of Optimized Intervals Across Binomial Parameter p. The disjointed 
lines plot the actual coverage probabilities of the optimized interval method across the entire range of 
values of p at a nominal confidence level of .95 for sample sizes of 5, 10, 20, and 50. The 
discontinuities occur at the boundary points of the n + 1 confidence intervals. The horizontal dotted 
line is at the nominal confidence level of .95. For all four sample sizes the actual coverage probability 
falls below the nominal for some values of p, demonstrating that the optimized bounds method is not 
an exact method. 
 

 

 
 
 
 



PROPERTIES OF OPTIMIZED CONFIDENCE INTERVALS FOR PROPORTIONS 46 

 
 
 

 
 
 

 
 
 

 
Figure 2. Average Coverage Probabilities of Three Approximate Methods. The scatter is of the 
average coverage probabilities of three approximate methods when p is uniformly distributed for 
sample sizes of from 1 to 100 with nominal confidence levels of .80, .90, .95, and .99. The optimized 
interval method is indicated by a “o”, the adjusted Wald method by a “+”, and the score method by a 
“<”. The horizontal dotted line is at the nominal confidence level. The optimized interval method’s 
average coverage probability tends to be further away from the nominal than the other two methods 
for all four nominal confidence levels and is always higher than the nominal. The average coverage 
probabilities of the other two methods tend to be closer to, and sometimes below, the nominal level. 
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A second measure used by Agresti and 

Coull (1998) is ( )( )*

21 *

,0 n CL
C p CL dp−∫ , the 

uniform-weighted root mean squared error of the 
average coverage probabilities about the 
nominal confidence level. Ideally, this mean 
squared error would equal zero. Figure 3 plots 
the root mean squared error for the three 
methods over the same range of sample sizes 
and nominal confidence levels as Figure 2. The 
relative performance of the three methods for 
this metric varies according to the nominal 
confidence level. Each method has at least one 
nominal confidence level where the root mean 
squared error is furthest from zero for most of 
the sample sizes. The score method is worst at 
nominal confidence level of .99, the adjusted 
Wald at .80, and the optimized interval method 
at both .90 and .95. 

Agresti and Coull (1998) also advocated 
comparing one method directly to another by 
measuring the proportion of the parameter space 
where the coverage probability is closer to the 
nominal for one method than the other. Figure 4 
plots this metric for both the score method and 
the adjusted Wald method versus the optimized 
interval method for the same sample sizes and 
nominal confidence levels as Figures 2 and 3.  

The results are mixed. At the .99 
nominal confidence level the coverage of the 
adjusted Wald method is closer to the nominal in 
less than 50% of the range of p for all sample 
sizes, whereas the score method is closer for 
more than 50% of the range of p for all sample 
sizes above 40. At the other three nominal 
confidence levels both the adjusted Wald and 
score methods are usually closer to the nominal 
than the optimized interval method in more 50% 
of the range of p when sample sizes are greater 
than 20 and less than 50% for smaller sample 
sizes. Neither method is closer than the 
optimized interval method to the nominal 
confidence level in more than 65% of the range 
of p for any of the pairs of sample sizes and 
nominal confidence levels.  

Another metric of interest is the 
proportion of the range of p where the coverage 
probability is less than the nominal. For exact 
methods, this proportion is zero by definition. 
For approximate methods, a small proportion of 

the range of p with coverage probabilities less 
than the nominal level is preferred. Figure 5 
plots this metric over the same sample sizes and 
nominal confidence levels as Figures 2 to 4. The 
optimized interval method is closer to zero than 
the other methods for almost all of the sample 
sizes and nominal confidence levels. The 
adjusted Wald is the next best, with the score 
method performing the worst on this metric. 

The approximate methods all have the 

property that *
*

,n CL
CL CL<  for most values of 

*CL  and  n, so it is of interest how far below the 
nominal confidence level the actual confidence 
level is. The actual coverage probability of the 
optimized interval method can never fall below 

the nominal minus α , that is *
*

,n CL
CL CL α≥ −  

for every n and CL*. This follows from the 
restriction that U Lα α α+ =  which requires that 

 and U Lα α α≤  for all y. As a result, the 
* 1CL α= −  level optimized intervals must be 

contained within the Clopper-Pearson 
* 1 2CL α= −  level intervals. Because the 

Clopper-Pearson method is an exact method, it 

follows directly that *
*

,n CL
CL CL α≥ −  for all n 

and *CL . The score and the adjusted Wald 
method have no such restriction on *,n CL

CL . 

Figure 6 plots the actual coverage 
probability of the optimized interval method 
against sample sizes ranging from 1 to 100 for 
nominal confidence levels of .80, .90, .95, and 
.99. Figure 6 shows that the optimized method is 
always below the nominal except for very small 
sample sizes. It is often within a distance of α/2 
of the nominal confidence level, particularly for 
sample sizes over 20. The performance of the 
adjusted Wald method for this metric is very 
similar to the optimized interval method for 
sample sizes over 10 at the .95 and .99 
confidence level. At the .80 and .90 confidence 
level the adjusted Wald performs very badly, 
with coverage probabilities of zero for all of the 
sample sizes when the nominal level is .80. The 
score method is the opposite, with actual 
confidence levels substantially below the 
nominal at the .95 and .99 nominal levels and 
closer at the .90 and .80 levels. 
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Figure 3. Root Mean Square Error of Three Approximate Methods. The scatter is of the uniform-
weighted root mean squared error of the average coverage probabilities of three approximate methods 
when p is uniformly distributed for sample sizes of from 1 to 100 with nominal confidence levels of 
.80, .90, .95, and .99. The optimized interval method is indicated by a “o”, the adjusted Wald method 
by a “+”, and the score method by a “<”. The relative performance of the three methods for this metric 
varies according to the nominal confidence level. Each method has at least one nominal confidence 
level where the root mean squared error is furthest from zero for most of the sample sizes. 
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Figure 4. Proportion of Values of p Where Coverage is Closer to Nominal. The scatter is of the 
proportion of the uniformly distributed values of p for which the adjusted Wald or score method has 
actual coverage probability closer to the nominal coverage probability than the optimized method for 
sample sizes of from 1 to 100 with nominal confidence levels of .80, .90, .95, and .99. The adjusted 
Wald method is indicated by a “o” and the score method by a “+”. The horizontal dotted line is at 50%. 
At the .80, .90, and .95 nominal confidence levels both the adjusted Wald and Score method tend to 
have coverage probabilities closer to the nominal for more than half the range of p sample sizes over 20 
and this is also true for the score method at a nominal confidence level of .99. For the adjusted Wald at 
nominal confidence level of .99, and for both methods with sample sizes less than 20, the coverage 
probability is closer to the nominal than the optimized method for less than half the range of for p. 
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Figure 5. Proportion of p Where Coverage is Less Than the Nominal. The scatter is of the proportion of 
the uniformly distributed values of p for which a coverage method has actual coverage probability less 
than the nominal coverage probability for sample sizes of from 1 to 100 with nominal confidence levels 
of .80, .90, .95, and .99. The optimized interval method is indicated by a “o”, the adjusted Wald method 
by a “+”, and the score method by a “<”. In general, the optimized interval method has a smaller 
proportion of the range of p where the actual coverage probability is less than the nominal than the 
other two methods and this proportion tends to decrease as the sample size increases while it increases 
for the adjusted Wald and stays at approximately the same level for the score method. 
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Figure 6. Actual Confidence Levels. The scatter is of the actual confidence levels for three approximate 
methods for sample sizes of from 1 to 100 with nominal confidence levels of .80, .90, .95, and .99. The 
optimized interval method is indicated by a “o”, the adjusted Wald method by a “+”, and the score 
method by a “<”. No actual confidence levels for any sample size are shown for the adjusted Wald 
method at a nominal confidence level of .80 or for sample sizes less than four at a nominal confidence 
level of .90. The actual confidence level is zero at all of those points. The upper horizontal dotted line is 
at the nominal confidence level and the lower dotted line is at the nominal confidence level minus a. The 
actual confidence level for the optimized bound method is always less than nominal level except for very 
small sample sizes, but it is never less than the nominal level minus a. The actual confidence level of the 
other two methods can be substantially less than the nominal. 
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Conclusion 
 

The optimized interval method is not an exact 
method. It should not be used in applications 
where it is essential that the actual coverage 
probability be at or above the nominal 
confidence level across the entire parameter 
space. For applications where an exact method is 
not required the optimized method is worth 
consideration.  

Figures 2 – 6 demonstrate that none of 
the three approximate methods considered in 
this paper is clearly superior for all of the 
metrics across all of the sample sizes and 
nominal confidence levels considered. The 
investigator needs to determine which metrics 
are most important and then consult Figures 2 – 
6 to determine which method performs best for 
those metrics at the sample size and nominal 
confidence level that will be used. If the distance 
of the actual confidence level from the nominal 
confidence level and the proportion of the 
parameter space where coverage falls below the 
nominal are important considerations then the 
optimized bound method will often be a good 
choice. 
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Inferences About Regression Interactions Via A Robust Smoother  
With An Application To Cannabis Problems 
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A flexible approach to testing the hypothesis of no regression interaction is to test the hypothesis that a 
generalized additive model provides a good fit to the data, where the components are some type of robust 
smoother. A practical concern, however, is that there are no published results on how well this approach 
controls the probability of a Type I error. Simulation results, reported here, indicate that an appropriate 
choice for the span of the smoother is required so that the actual probability of a Type I error is 
reasonably close to the nominal level. The technique is illustrated with data dealing with cannabis 
problems where the usual regression model for interactions provides a poor fit to the data. 
 
Key words: Robust smoothers, curvature, interactions 
 
 

Introduction 
 
A combination of extant regression methods 
provides a very flexible and robust approach to 
detecting and modeling regression interactions. 
In particular, both curvature and nonnormality 
are allowed. The main goal in this paper is to 
report results on the small-sample properties of 
this approach when a particular robust smoother 
is used to approximate the regression surface. 
The main result is that in order to control the 
probability of a Type I error, an appropriate 
choice for the span must be used which is a 
function of the sample size. However, before 
addressing this issue, we provide a motivating 
example for considering smoothers when 
investigating interactions. 

A well-known approach to detecting and 
modeling regression interactions is to assume 
that for a sample of n vectors of observations,   
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(Yi,Xi1,Xi2),  

0 1 1 2 2 3 1 2 ,i i i i i iY X X X Xβ β β β ε= + + + + (1) 

 
i=1,...,n, where ε  is independent of 1iX  and 

2iX , ( ) 0.E ε =  The hypothesis of no 

interaction corresponds to  
 

0 3: 0.H β =  

 
This approach appears to have been first 

suggested by Saunders (1956). A practical issue 
is whether this approach is flexible enough to 
detect and to model an interaction if one exists. 
We consider data collected by the second author 
to illustrate that at least in some situations, a 
more flexible model is required. The data deal 
with cannabis problems among adult males. 
Responses from n=296 males were obtained 
where the two regressors were the participants’ 
use of cannabis ( 1X ) and consumption of 

alcohol ( 2X ). The dependent measure (Y) 

reflected cannabis dependence as measured by 
the number of DSM-IV symptoms reported. An 
issue of interest was determining whether the 
amount of alcohol consumed alters the 
association between Y and the amount of 
cannabis used, and there is the issue of 
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understanding how the association changes if an 
interaction exists. 

Using a method derived by Stute, 
González-Manteiga and Presedo-Quindimil 
(1998), it is possible to test the hypothesis that 
the model given by equation (1) provides a good 
fit to the data. If, for example, 
 

2
0 1 1 2 2 3 1 2 ,i i i i i iY X X X Xβ β β β ε= + + + +  

 
then there is an interaction, but the family of 
regression equations given by (1) is 
inappropriate. The Stute et al. method can be 
applied using the S-PLUS or R function lintest 
in Wilcox (2003). Estimating the unknown 
parameters via least squares, this hypothesis is 
rejected at the .05 level. A criticism is that when 
testing the hypothesis that (1) is an appropriate 
model for the data, and when using the ordinary 
least squares estimator when estimating the 
unknown parameters, the probability of a Type I 
error might not be controlled (Wilcox, 2003). 

Replacing the least squares estimator with 
various robust estimators corrects this problem. 
Here, using the robust M-estimator derived by 
Coakley and Hettmansperger (1993), or using a 
generalization of the Theil-Sen estimator to 
multiple predictors (see Wilcox, 2005), again the 
hypothesis is rejected. Moreover, the R (or S-
PLUS) function pmodchk in Wilcox (2005) 
provides a graphical check of how well the 
model given by (1) fits the data when a least 
squares estimate of the parameters is used, 
versus a more flexible fit based on what is called 
a running interval smoother, and a poor fit based 
on (1) is indicated. Robust variations give 
similar results. So, at least in this case, an 
alternative and more flexible approach to testing 
the hypothesis of no interaction seems 
necessary. 

To provide more motivation for a more 
flexible approach when modeling interactions, 
note that equation (1) implies a nonlinear 
association between Y versus 1X  and 2X . A 

concern, however, is that a nonlinear association 
does not necessarily imply an interaction. If, for 
example, X1, X2 and ε  are independent and 

have standard normal distributions, and if 
2

1 2Y X X ε= + + , the probability of rejecting 

0H : 3 0β =  is .18 when testing at the .05 level 

with a sample size of twenty. Of course, in this 
case, standard diagnostics can be used to detect 
the curvature, but experience with smoothers 
suggest that dealing with curvature is not always 
straightforward. 

Suppose instead 2
1 1 2| |Y X X X ε= + + + , 

so there is no interaction even though there is a 
nonlinear association. Then with a sample size 
of fifty, and when testing at the .05 level, the 
probability of rejecting 0H : 3 0β =  is .30. In 

contrast, using the more flexible method 
described here, the probability of rejecting the 
hypothesis of no interaction is .042. 

If we ignore the result that (1) is an 
inadequate model for the cannabis data and 
simply test 0H : 3 0β =  (using least squares in 

conjunction with a conventional T test), or if we 
test H0: β3=0 using a more robust hypothesis 

testing method derived for the least squares 
estimator that is based on a modified percentile 
bootstrap method (Wilcox, 2003), or when using 
various robust estimators (such as an M-
estimator with Schweppe weights or when using 
the Coakley-Hettmansperger estimator), we 
reject. But an issue is whether we reject because 
there is indeed an interaction, or because the 
model provides an inadequate representation of 
the data. And another concern is that by using an 
invalid model, an interaction might be masked. 

A more general and more flexible approach 
when investigating interactions is to test the 
hypothesis that there exists some functions 1f  

and 2f  such that  

 
      0 1 1 2 2( ) ( ) .Y f X f Xβ ε= + + +              (2) 

 
Equation (2) is called a generalized additive 
model, a general discussion of which can be 
found in Hastie and Tibshirani (1990). A special 
case is where 1 1 1 1( )f X Xβ= , 2 2 2 2( )f X Xβ= , 

but (2) allows situations where the regression 
surface is not necessarily a plane, even when 
there is no interaction. If the model represented 
by (2) is true, then there is no interaction in the 
following sense. Pick any two values for 2X , 
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say 6 and 8. Then no interaction means that the 
regression line between Y and 1X , given that 

2 6X = , is parallel to the regression line 

between Y and X1, given that 2 8X = . 

For completeness, Barry (1993) derived 
a method for testing the hypothesis of no 
interaction assuming an ANOVA-type 
decomposition where  

 

0 1 1 2 2 3 1 2( ) ( ) ( , ) ,Y f X f X f X Xβ ε= + + + +
 
in which case the hypothesis of no interaction is  

 
                      0 3 1 2: ( , ) 0.H f X X ≡  

 
Barry (1993) used a Bayesian approach 

assuming that the (conditional) mean of Y is to 
be estimated and that prior distributions for 1f , 

2f  and 3f  can be specified. The goal in this 

article is to investigate the small-sample 
properties of a non-Bayesian method where the 
mean is replaced by some robust measure of 
location (cf. Samarov, 1993). 

 
Methodology 

 
There are, in fact, many approaches that might 
be used that are based on combinations of 
existing statistical techniques. The problem is 
finding a combination of methods that controls 
the probability of a Type I error in simulations 
even when the sample size is relatively small. 
One possibility is to use some extension of the 
method in Dette (1999), this was considered, but 
in simulations no variation was found that 
performed well in terms of controlling the 
probability of a Type I error. 

Only one method was found that 
performs well in simulations; it is based on a 
combination of methods summarized in Wilcox 
(2005). The approach is outlined here, and the 
computational details are relegated to 
Appendices A and B. Briefly, the method begins 
by fitting the model given by (2) using the so-
called backfitting algorithm (Hastie & 
Tibshirani, 1990) in conjunction with a what is 
called a running interval smoother. Generally, 
smoothers are methods for approximating 

regression lines without forcing them to have a 
particular shape such as a straight line. As with 
most smoothers, the running interval smoother is 
based in part on something called a span, κ, 
which plays a role when determining whether 
the value X is close to a particular value of 1X  

(or 2X ). Details are provided in Appendix A.  

There are many ways of fitting the 
model given by (2). Here, the focus is on a 
method where the goal is to estimate a robust 
measure of location associated with Y, given 

1 2( , )X X , because of the many known 

advantages such measures have (e.g., Hampel, 
Ronchetti, Rousseeuw & Stahel, 1986; Huber, 
1981; Staudte & Sheather, 1990; Wilcox, 2003, 
2005). Primarily for convenience, the focus is on 
a 20% trimmed mean, but various robust M-
estimators are certainly a possibility. The 
advantages associated with robust measures of 
location include an enhanced ability to control 
the probability of a Type I error in situations 
where methods based on means are known to 
fail, and substantial gains in power, over 
methods based on means, even under slight 
departures from normality. (Comments about 
using the mean, in conjunction with the 
proposed method, are made in the final section 
of this paper.) Here, the main reason for not 
using a robust M-estimator (with say, Huber’s 
Ψ), is that this estimator requires division by the 
median absolute deviation (MAD) statistic, and 
in some situations considered here, when the 
sample size is small, MAD is zero. 

The running interval smoother provides 
a predicted value for Y, given 1 2( , )i iX X , say 

îY ; see Appendix A. Next, compute the 

residuals ˆ
i i ir Y Y= − . If the model given by (2) 

is true, meaning that there is no interaction, then 
the regression surface when predicting r, given 

1 2( , )X X , should be a horizontal plane. The 

hypothesis that this regression surface is indeed 
a horizontal plane can be tested using the 
method derived by Stute et al. (1998). The 
details can be found in Appendix B. 
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Results 
 
Simulations were conducted as a partial check 
on the ability of the method, just outlined, to 
control the probability of a Type I error. Values 
for 1X , 2X  and ε  were generated from four 

types of distributions: normal, symmetric and 
heavy-tailed, asymmetric and light-tailed, and 
asymmetric and heavy-tailed. For non-normal 
distributions, observations were generated from 
a g-and-h distribution which is described in 
Appendix C. The goal was to check on how the 
method performs under normality, plus what 
would seem like extreme departures from 
normality, with the idea that if good 
performance is obtained under extreme 
departures from normality, the method should 
perform reasonably well with data encountered 
in practice. The correlation between 1X  and 2X  

was taken to be either ρ=0 or ρ=.5. 
 Initial simulation results revealed that 

the actual probability of a Type I error, when 
testing at the .05 level, is sensitive to the span, κ. 
(Härdle & Mammen, 1993, report a similar 
result for a method somewhat related to the 
problem at hand.) If the span is too large, the 
actual Type I error probability can drop well 
below the nominal level. When testing at the .05 
level, simulations were used to approximate a 
reasonable choice for κ. Here, the span 
corresponding to the sample sizes 20, 30, 50, 80 
and 150 are taken to be .4, .36, .18, .15 and .09, 
respectively. It is suggested that when 
20≤n≤150, interpolation based on these values 
be used, and for n>150 use a span equal to .09. 
For n>150 and sufficiently large, perhaps the 
actual Type I error probability is well below the 
nominal level, but exactly how the span should 
be modified when n>150 is an issue that is in 
need of further investigation. 

 Table 1 contains α̂ , the estimated 
probability of making a Type I error when 
testing at the .05 level. n=20, and when Y= ε  or 

2
1 2Y X X ε= + + . (The g and h values are 

explained in Appendix C.) Simulations were 
also run when 1 2Y X X ε= + + , the results 

were very similar to the case Y=ε , so for brevity 
they are not reported. No situation was found 

where the estimated probability of a Type I error 
exceeded the nominal .05 level. The main 
difficulty is that when marginal distributions 
have a skewed, heavy-tailed distribution, ρ=.5, 
and there is curvature, the estimated probability 
of a Type I error dropped below .01. This 
situation corresponds to what would seem like 
an extreme departure from normality as 
indicated in Appendix C. 

 
An Illustration 
 Returning to the cannabis data described 
in the introduction, the hypothesis of no 
interaction is rejected at the .05 level when 
testing the model given by (2). (The test statistic 
described in Appendix B is D=3.37 and the .05 
critical value is 1.79.) To provide some overall 
sense of the association, Figure 1 shows an 
approximation of the regression surface based 
on a smooth derived by Cleveland and Devlin 
(1988) called loess. (Using the robust smooth in 
Wilcox, 2003, section 14.2.3, gives similar 
results when the span is set to 1.2.) Note the 
nonlinear appearance of the surface. Also, there 
appears to be little or no association over some 
regions of the 1X  and 2X  values. 

 Figure 2 shows the plot based on 1X  

and 2X  versus the residuals corresponding to 

the generalized additive model given by (2). 
This plot should be a horizontal plane if there is 
no interaction. As is evident, the surface appears 
to be nonlinear, at least to some degree 

 To further explore the nature of the 
interaction, first it is noted that the quartiles 
associated with X2 (alcohol use) are -0.732, -

0.352 and 0.332. The left panel of Figure 3 
shows three smooths between Y and 1X ; they 

are the smooths between Y and X1 given that 

2 0.73X = − , X2=-0.352 and 3 0.332X = . 

(These smooths were created using a slight 
generalization of the kernel regression estimator 
in Fan, 1993; see R or S-PLUS function kercon 
in Wilcox, 2005, Ch. 11.)  
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Table 1:  Estimated probability of a Type I error, n=20. 
 

    Y=ε  2
1 2Y X X ε= + +  

g h g h ρ=0 ρ=.5 ρ=0 ρ=.5
0.0 0.0 0.0 0.0 .033 .034 .047 .035

  0.0 0.5 .039 .034 .026 .031
  0.5 0.0 .045 .043 .045 .034
  0.5 0.5 .037 .035 .035 .032

0.0 0.5 0.0 0.0 .031 .032 .019 .015
  0.0 0.5 .032 .024 .020 .012
  0.5 0.0 .033 .031 .016 .013
  0.5 0.5 .029 .024 .023 .013

0.5 0.0 0.0 0.0 .029 .022 .036 .022
  0.0 0.5 .031 .020 .032 .014
  0.5 0.0 .040 .039 .037 .028
  0.5 0.5 .029 .027 .025 .020

0.5 0.5 0.0 0.0 .028 .024 .024 .003
  0.0 0.5 .026 .017 .015 .003
  0.5 0.0 .035 .029 .014 .006
  0.5 0.5 .020 .015 .015 .007

 
Figure 1: An approximation of the regression surface based on the smoother loess. 
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When there is no interaction, all three 

regression lines should be approximately parallel 
which is not the case. The regression lines 
corresponding to 2 0.73X = −  and -0.352 are 

reasonably parallel, and they are approximately 
horizontal suggesting that there is little 
association between Y and X1 for these special 

cases.  
 
 
 
 
 
 
 

 
 
But for 3 0.332X = , the association 

changes, particularly in the right portion of 
Figure 1 where the association becomes more 
positive. If the data are split into two groups 
according to whether Xi2 is less than the median 

of the values 12 2,..., nX X , -0.352, and then 

create a smooth between Y and 1X , the result is 

shown in right panel of Figure 3. 
 
  
 

 
 
 

 
Figure 2: A smooth of the residuals stemming from the generalized additive model versus the two predictors. 
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Conclusion 
 

In principle, the method in this article can be 
used with any measure of location. It is noted, 
however, that if the 20% trimmed mean is 
replaced by the sample mean, poor and unstable 
control over the probability of a Type I error 
results. 

Finally, all of the methods used in this 
paper are easily applied using the S-PLUS or R 
functions in Wilcox (2005). (These functions 
can be downloaded as described in chapter 1.) 
Information about S-PLUS can be obtained from 
www.insightful.com, and R is a freeware variant 
of S-PLUS that can be downloaded from 
www.R-project.org. For convenience, the 
relevant functions for the problem at hand have 
been combined into a single function called 
adtest. If, for example, the X values are stored in 
an S-PLUS matrix x, and the Y values are stored 
in y, the command adtest(x,y) tests the 
hypothesis that the model given by (2) is true. 
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Appendix A 
 
We begin by describing how to compute a 20% 
trimmed mean based on a sample of m 
observations. Put the observations in ascending 
order yielding (1) ( )mW W≤ ⋅⋅⋅ ≤ . Let � =[.2m], 

where [.2m] means to round .2m down to the 
nearest integer. Then the 20% trimmed mean is  

 

         
1

2

n

t iX W
n ι

−

( )
= +1

= .
− ∑

�

��
 

 
In terms of efficiency (achieving a small 

standard error relative to the usual sample 
mean), 20% trimming performs very well under 
normality but continues to perform well in 
situations where the sample mean performs 
poorly (e.g., Rosenberger & Gasko, 1983). 

Now, we describe the running interval 
smoother in the one-predictor case. Consider a 
random sample 1 1( , ),..., ( , )n nX Y X Y  and let κ 

be some constant that is chosen in a manner to 
be described. The constant κ is called the span. 
The median absolute deviation (MAD), based on 

1,..., nX X , is the median of the n values 

1| |,..., | |nX M X M− − , where M is the usual 

median. Let MADN=MAD/.6745. Under 
normality, MADN estimates σ, the standard 
deviation. Then the point X is said to be close to 

iX  if  

            | | .iX X MADNκ− ≤ ×  

 
Thus, for normal distributions, X is close to iX  

if X is within κ standard deviations of iX . Then 

îY  is the 20% trimmed mean of the jY  values 

for which jX  is close to iX . In exploratory 

work, a good choice for the span is often κ=.8 or 
1, but for the situation at hand an alternative 
choice is needed. 

Virtually any smoother, including the 
one used here, can be extended to the 
generalized additive model given by (2) using 
the backfitting algorithm in Hastie and 

Tibshirani (1990). Set k=0 and let 0
jf  be some 
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initial estimate of jf  (j=1, 2). Here, 
0 ( ) ( | )j j j jf X S Y X= , where Sj(Y|Xj) is the 

running interval smooth based on the jth 
predictor, ignoring the other predictor under 
investigation. Next, iterate as follows. 
 
1. Increment k.  
2. Let  

 
1

1 1 1 2 2 1( ) ( ( ) | )k kf X S Y f X X−= −  

 
and  

 
1

2 2 2 1 1 2( ) ( ( ) | ).k kf X S Y f X X−= −  

 
3. Repeat steps 1 and 2 until convergence.  

Finally, estimate 0β  with the 20% trimmed 

mean of the values ( | )k
i j i ijY f Y X−∑ , 

i=1,...,n. The computations are performed by R 
or S-PLUS function adrun in Wilcox (2005). 

 

Appendix B 

 

This appendix describes the method for testing 
the hypothesis of no interaction. Fit the 
generalized additive model as described in 

Appendix A yielding îY , and let ˆ
i i ir Y Y= − , 

i=1,...,n. The goal is to test the hypothesis that 
the regression surface, when predicting the 
residuals, given 1 2( , )i iX X , is a horizontal 

plane. This is done using the wild bootstrap 
method derived by Stute, González-Manteiga 
and Presedo-Quindimil (1998). Let tr  be the 

20% trimmed mean based on the residuals 

1,..., nr r . Fix j and set 1iI =  if simultaneously 

1 1i jX X≤  and 2 2i jX X≤ , otherwise 0iI = .  

 

 

 

Let  

               

1
( )

1
,

j i i t

i i

R I r r
n

I v
n

= −

=

∑

∑         (3) 

where                           .i i tv r r= −  

The test statistic is the maximum 
absolute value of all the jR  values. That is, the 

test statistic is  

 
               | | .jD max R=          (4) 

An appropriate critical value is 
estimated with the wild bootstrap method as 
follows. Generate 1,..., nU U  from a uniform 

distribution and set  

 

                   12( .5),i iV U= −  

                           

                                    * ,i i ivVν =  

and  

                         * *.i t ir r v= +  

Then based on the n pairs of points ( 1X , 

2X , *
1r ), ..., ( nX , nX , *

nr ), compute the test 

statistic as described in the previous paragraph 

and label it *D . Repeat this process B times and 
label the resulting (bootstrap) test statistics 

D
*
1,...,D

*
B . Here, B=500 is used. Finally, put 

these B values in ascending order yielding 
* *
(1) ( )BD D≤ ⋅⋅⋅ ≤ . Then the critical value is *

( )uD , 

where u=(1-α)B rounded to the nearest integer. 
That is, reject if  

                           *
( ) .uD D≥  
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Appendix C 
 

Details regarding the simulations are as follows. 
Observations were generated where the marginal 
distributions have a g-and-h distribution 
(Hoaglin, 1985) which includes the normal 
distribution as a special case. More precisely, 
observations ijZ , (i=1,...,n; j=1, 2) were initially 

generated from a multivariate normal 
distribution having correlation ρ, then the 
marginal distributions were transformed to  

 

2

2

( ) 1
( / 2), if   0

( / 2), if   0

ij
ij

ij

ij

exp gZ
exp hZ g

gX

Zexp hZ g

−⎧
>⎪= ⎨

⎪ =⎩

 

where g and h are parameters that determine the 
third and fourth moments. The four (marginal) 
g-and-h distributions examined were the 
standard normal (g=h=0), a symmetric heavy-
tailed distribution (g=0, h=.5), an asymmetric 
distribution with relatively light tails (g=.5, 
h=0), and an asymmetric distribution with heavy 
tails (g=h=.5). Here, two choices for ρ were 
considered: 0 and .5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the theoretical skewness 
( 1κ ) and kurtosis ( 2κ ) for each distribution 

considered. When g>0 and h>1/k, ( )kE X  is not 
defined and the corresponding entry in Table 2 
is left blank. Additional properties of the g-and-
h distribution are summarized by Hoaglin 
(1985). Some of these distributions might appear 
to represent extreme departures from normality, 
but the idea is that if a method performs 
reasonably well in these cases, this helps support 
the notion that they will perform well under 
conditions found in practice. 
 

Table 2: Some properties of the g-and-h 
distribution. 

 

g h 
1κ  2κ  

0.0 0.0 0.00 3.0 

0.0 0.5 0.00 --- 

0.5 0.0 1.75 8.9 

0.5 0.5 --- --- 
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Regression By Data Segments Via Discriminant Analysis 
 

Stan Lipovetsky         Michael Conklin 
GfK Custom Research Inc 
Minneapolis, Minnesota 

 
 
It is known that two-group linear discriminant function can be constructed via binary regression. In this 
article, it is shown that the opposite relation is also relevant – it is possible to present multiple regression 
as a linear combination of a main part, based on the pooled variance, and Fisher discriminators by data 
segments. Presenting regression as an aggregate of the discriminators allows one to decompose 
coefficients of the model into sum of several vectors related to segments. Using this technique provides 
an understanding of how the total regression model is composed of the regressions by the segments with 
possible opposite directions of the dependency on the predictors. 
 
Key words: Regression, discriminant analysis, data segments 
 
 

Introduction 
 
Linear Discriminant Analysis (LDA) was 
introduced by Fisher (1936) for classification of 
observations into two groups by maximizing the 
ratio of between-group variance to within-group 
variance (Rao, 1973; Lachenbruch, 1979; Hand, 
1982; Dillon & Goldstein, 1984; McLachlan, 
1992; Huberty, 1994). For two-group LDA, the 
Fisher linear discriminant function can be 
represented as a linear regression of a binary 
variable (groups indicator) by the predictors 
(Fisher, 1936; Anderson, 1958; Ladd, 1966; 
Hastie, Tibshirani & Buja, 1994; Ripley, 1996). 
Many-group LDA can be described in terms of 
the Canonical Correlations Analysis (Bartlett, 
1938; Kendall & Stuart, 1966; Dillon & 
Goldstein, 1984; Lipovetsky, Tishler, & Conklin, 
2002). LDA is used in various applications, for 
example, in marketing research  
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(Morrison, 1974; Hora & Wilcox, 1982; 
Lipovetsky & Conklin, 2004). 
          Considered in this article is the possibility 
of presenting a multiple regression by segmented 
data as a linear combination of the Fisher 
discriminant functions. This technique is based 
on the relationship between total and pooled 
variances. Using this approach, we can interpret 
regression as an aggregate of discriminators, that 
allows us to decompose the coefficients of 
regression into a sum of vectors related to the 
data segments. Such a decomposition helps 
explain how a regression by total data could have 
the opposite direction of the dependency on the 
predictors, in comparison with the coefficients 
related to each segment.  

These effects correspond to well-known 
Simpson’s and Lord’s paradoxes (Blyth, 1972; 
Holland & Rubin, 1983; Good & Mittal, 1987; 
Pearl, 2000; Rinott & Tam, 2003; Skrondal & 
Rabe-Hesketh, 2004; Wainer & Brown, 2004), 
and to treatment and causal effects in the models 
(Arminger, Clogg & Sobel, 1995; Rosenbaum, 
1995; Winship & Morgan, 1999).  
          The article is organized as follows. Linear 
discriminant analysis and its relation to binary 
regression are first described. The next section 
considers regression by segmented data and its 
decomposition by Fisher discriminators, 
followed by a numerical example and a 
summary. 
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Methodology 
 

Consider the main features of LDA. Denote X a 
data matrix of n by p order consisting of n rows 
of observations by p variables x1, x2, …, xp. Also 
denote y a vector of size n consisting of binary 
values 1 or 0 that indicate belonging of each 
observations to one or another class. Suppose 
there are n1 observations in the first class (y =1), 
n2 observations in the second class (y =0), and 
total number of observations n=n1+n2 . Construct 
a linear aggregate of x-variables: 
 
                     aXz = ,                                      (1) 
 
where a is a vector of p-th order of unknown 
parameters, and z is an n-th order vector of the 
aggregate scores. Averaging scores z (1) within 
each group yields two aggregates: 
                                             

           ,, )2()2()1()1( amzamz ==                 (2) 
 
where m(1) and m(2) are vectors of p-th order of 

mean values )1(
jm  and )2(

jm of each j-th variable 

xj within the first and second group of 
observations, respectively. The maximum 
squared distance between two groups ||z(1)-z(2)||2 = 
||(m(1)-m(2))a||2 versus the pooled variance of 
scores a’Spool a defines the objective for linear 
discriminator: 
                                  

aSa

ammmma
F

pool′
′−−′

= ))(( )2()1()2()1(

,              (3) 

 
with elements of the pooled matrix defined by 
combined cross-products of both groups:  

            

1

2

(1) (1)

1

(2) (2)

1
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n

pool jk ji j ki k
i

n
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i
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=
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                                                                           (4) 
Equation (3) can represent as a conditional 
objective: 

        
(1) (2) (1) (2)( )( )

( 1)pool

F a m m m m a

a S aλ
′ ′= − −
′− −

,         (5) 

where λ is Lagrange multiplier. The first-order 
condition 0/ =∂∂ aF  yields: 
                               

aSammmm poolλ=′−− ))(( )2()1()2()1( ,       (6) 

 
that is a generalized eigenproblem. The matrix at 
the left-hand side (6) is of the rank one because it 
equals the outer product of a vector of the group 
means’ differences. So the problem (6) has just 
one eigenvalue different from zero and can be 
simplified. Using a constant of the scalar product 

ammc )( )2()1( ′−= , reduces (6) to the linear 
system: 
                         

                        )( )2()1( mmqaS pool −= ,         (7) 

 
where q=c/λ is another constant. The solution of 
this system is: 
                        

                        )( )2()1(1 mmSa pool −= − ,           (8) 

 
that defines Fisher famous two-group linear 
discriminator (up to an arbitrary constant). 
          The same Fisher discriminator (8) can be 
obtained if instead of the pooled matrix (4) the 
total matrix of second-moments defined as a 
cross-product X’X  of the centered data is used, so 
the elements of this matrix are: 
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where mj corresponds to mean value of each xj 
by total sample of size n. Similarly to 
transformation known in the analysis of 
variance, consider decomposition of the cross-
product (9) into several items when the total set 
of n observations is divided into subsets with 
sizes nt  with t = 1, 2, …, T :  
 

∑∑ ∑

∑∑∑∑

∑∑∑

= = =

= == =

= ==

−−+−−=

−+−=

−+−=−−=

T

t

n

i

T

t
k

t
kj

t
jt

t
k

t
ki

t
j

t
ji

T

t

n

i

t
kij

t
j

T

t

n

i

t
ki

t
j

t
ji

T

t

n

i

t
kij

t
j

t
j

t
jikki

n

i
jjijktot

t

tt

t

mmmmnmxmx

xmmxmx

xmmmxmxmxS

1 1 1

)()()()()()(

1 1

)()(

1 1

)()()(

1 1

)()()()(

1

.))(())((

)()(

)]()[())(()(      

                                                                         (10) 
 



LIPOVETSKY & CONKLIN 65 

The obtained double sum equals the pooled 
second moment (4) for T groups, and the last sum 
corresponds to a total (weighted by sub-sample 
sizes) of the second moment of group means 
centered by the total means of the variables. So 
(10) can be rewrote in a matrix form as: 
                                

∑
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t

tt
tpooltot mmmmnSS

1

)()( ))(( ,   (11) 

where )(tm  is a vector of mean values )(t
jm  of 

each  j-th variable within t-th group, and m is a 
vector of means for all variables by the total 
sample. 
          Consider the case of two groups, T=2. Then 
(11) can be reduced to 
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where h = n1n2/( n1+n2) is a constant of the 
harmonic sum of sub-sample sizes. In place of the 
pooled matrix poolS  let us use the total matrix 

totS  (12) in the LDA problem (7): 
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Applying a known Sherman-Morrison formula 
(Rao, 1973; Harville, 1997)  
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where A is a non-singular square n-th order 
matrix, u and v are vectors of n-th order, the 
matrix in the left-hand side (13) is inverted and 
solution obtained: 
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Comparison of (8) and (15) shows that both 
discriminant functions coincide (up to 
unimportant in LDA constant in the denominator 
(15)), so we can use Stot instead of Spool .  
          This feature of proportional solutions for 
the pooled or total matrices holds for more than 
two classification groups as well. Consider a 
criterion of maximizing ratio (3) of between-
group to the within-group variances for many 
groups. Using the relation (11) yields: 
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Similarly to derivation (5)-(6), (16) is reduced to 
an eigenproblem: 
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that is a generalized eigenproblem for the many 
groups. Denoting the scalar products at the left-

hand side (17) as some constants ct =( )(tm -m)’a , 

the solution of (22) via a linear combination of 
Fisher discriminators is presented: 
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In the case of two groups we have simplification 
(12) that reduces the eigenproblem (17) to the 
solution (8). But the discriminant functions in 



REGRESSION BY DATA SEGMENTS VIA DISCRIMINANT ANALYSIS 66 

multi-group LDA with the pooled matrix or the 
total matrix in (17) are the same (up to a 
normalization) – a feature similar to two group 
LDA (15). To show this, rewrite (17) using (16) 
in terms of these two matrices as a generalized 
eigenproblem:   
                                         
               aSaSS poolpooltot λ=− )( .             (19) 

 

Multiplying 1−
poolS  by the relation (19) reduces it 

to a regular eigenproblem 

aaSS totpool )1()( 1 +=− λ . Taking the objective 

(16) with the total matrix in denominator, another 
generalized eigenproblem is obtained:  
                                          
                 bSbSS totpooltot µ=− )( ,             (20) 

 
 with eigenvalues µ and eigenvectors b in this 

case. Multiplying 1−
poolS  by the relation (20), it is 

represented as bbSS totpool ))1/(1()( 1 µ−=− . Both 

problems (19) and (20) are reduced to the 

eigenproblem for the same matrix totpoolSS 1−  with 

the eigenvalues connected as (1+λ)(1-µ)=1 and 
with the coinciding eigenvectors a and b.  
          Now, consider some properties of linear 
regression related to discriminant analysis. 
Multiple regression can be presented in a matrix 
form as a model: 
               
                    ε+= aXy ,                               (21) 
 
where Xa is a vector of theoretical values of the 
dependent variable y (corresponding to the linear 
aggregate z (1)), and ε denotes a vector of errors. 
The Least Squares objective for minimizing is: 
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                                                                         (22) 
 
The condition for minimization 0/ =∂∂ aLS  
yields a normal system of equations: 
            yXaXX ′=′ )( ,                                   (23) 
 

with the solution for the coefficients of the 
regression model: 
  

                yXXXa ′′= −1)( .                            (24) 
 
          Matrix of the second moments X’X  in (23) 
for the centered data is the same matrix totS  (9). 

If the dependent variable y is binary, then the 
vector X’y is proportional to the vector of 
differences between mean values by two groups 

)2()1( mm − , and solution (24) is proportional to 
the solution (15) for the discriminant function 
defined via totS . As it was shown in (15), the 

results of LDA are essentially the same with both 

totS  or poolS  matrices. Although the Fisher 

discriminator can be obtained in regular linear 
regression of the binary group indicator variable 
by the predictors, a linear regression with binary 
output can also be interpreted as a Fisher 
discriminator. Predictions z=Xa (21) by the 
regression model are proportional to the 
classification (1) by the discriminator (15). 
 
Regression as an Aggregate of Discriminators 

Now, the regression is described by data 
segments presented via an aggregate of 
discriminators. Suppose the data are segmented; 
for instance, the segments are defined by 
clustering the independent variables, or by 
several intervals within a span of the dependent 
variable variation. Identify the segments by index 
t =1,…,T to present the total second-moment 
matrix XXStot ′= as the sum (11) of the pooled 

second-moment matrix poolS  and the total of 

outer products for the vectors of deviations of 
each segment’s means from the total means. 
Using the relation (11), the normal system of 
equations (23) for linear regression is represented 
as follows: 
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where the pooled cross-product is defined due to 
(10)-(11) as: 
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where St are the matrices of second moments 
within each t-th segment. Introducing the 
constants  
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defined similarly to those in derivation (17)-(18), 
reducing the system (25) to: 
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                                                                         (29) 
In (29) the notations used are: 
                                      

)(, )(11 mmSayXSa t
pooltpoolpool −=′= −− ,        

                                                                         (30) 
 
so the vector apool corresponds to the main part of 
the total vector in (29) of the regression 
coefficients defined via the pooled matrix (26), 
and additional vectors at correspond to Fisher 
discriminators (8) between each t-th particular 
segment and total data set. Decomposition (29) 
shows that regression coefficients a consist of the 
part apool and a linear aggregate (with weights 
ntct) of Fisher discriminators at of the segments 
versus total data. It is interesting to note that if to 
increase number of segments up to the number of 
observations (T=n, with only one observation in 
each segment) then each variable’s mean in any 
segment coincides with the original observation 

itself, )()( t
ki

t
k xm = , so 0=poolS  in (26). In this 

case the sum in (25) coincides with the total 
second-moment matrix, so the regular regression 

solution can be seen as an aggregate of the 
discriminators by each observation versus total 
vector of means.  

The obtained decomposition (29) is 
useful for interpretation, but it still contains the 
unknown parameters  ct (27) that need to be 
estimated. First, notice that the Fisher 
discriminators at (30) of each segment versus 
entire data, are restricted by the relation: 
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Thus, for T segments there are only T-1 
independent discriminators.  
           Consider a simple case of two segments in 
data. In difference to the described two-group 
LDA problem (12)-(15) and its relation to the 
binary linear regression (24), we can have a non-
binary output, for instance, a continuous 
dependent variable. Using the derivation (12)-
(15) for the inversion of the matrix of the normal 
system of equations (25), the solution (29) is 
obtained for two-segment linear regression in 
explicit form:  
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                                                                        (32) 
 
where h is the same constant as in (12). It can be 
seen that the vector of coefficients for two-
segment regression, similarly to the general 
solution (29), equals the main part apool (30) 
minus a constant (in the parentheses at the right-
hand side (32) multiplied by the discriminator 
(8). 
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          Another analytical result can be obtained 
for three segments in data, when a general 
solution (29) contains two discriminators. For this 
case we extended the Sherman-Morrison formula 
(14) to the inversion of a matrix 2211 vuvuA ′+′+ , 

where A is a non-singular matrix and 2211 vuvu ′+′  
are two outer products of vectors. The derivation 
for the inverted matrix of such a structure is given 
in the Appendix. In this case, the system (25) can 
be presented in the notations: 
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Applying the formula (A16) with definitions (33), 
we obtain solution of the system (25) for three 
segments. In accordance with the relations (29)-
(31), this solution is expressed via the vector apool 
and two Fisher discriminators. 
          In a general case of any number T of 
segments, the parameters ct in the decomposition 
(29) can be obtained in the following procedure. 
Theoretical values of the dependent variable are 
predicted by the regression model (28) as 
follows: 
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                                                                         (34) 
 
where a predicted vector y~  is decomposed to the 

vector pooly~  defined via the pooled variance and 

the items ty~  related to the Fisher discriminator 

functions in the prediction: 
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                                                                         (35) 
 
All the vectors in (35) can be found from the 
data, so using y~  (34) in the regression (21), the 
model is reduced to: 
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t
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where poolyyy ~−=∆  is a vector of difference 

between empirical and predicted by pooled 
variance theoretical values of the dependent 
variable. The relation (36) is also a model of 
regression of the dependent variable y∆  by the 

new predictors - the Fisher classifications ty~  

(35). This regression can be constructed in the 
Least Squares approach (22)-(24). In difference 
to the regression (21) by possibly many 
independent x variables, the model (36) contains 
just a few regressors ty~ , because a number of 

segments is usually small. 
          Regression decomposition (25)-(35) uses 
the segments within the independent variables, 
that is expressed in presentation of the total 
second-moment matrix of x-s at the left-hand side 
(25) via the pooled matrix of x-s (26). However, 
there is also a vector X’y of the x-s cross-products 
with the dependent variable y at the right-hand 
side of normal system of equations (25). The 
decomposition of this vector can also be 
performed by the relations (10)-(11). Suppose, 
we use the same segments for all x-s and y 
variables, then:  
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where )(ty  and y  are the mean values of the 

dependent variable in each t-th segment and the 
total mean. The elements of the vector poolyX )( ′  

in (37) are defined due to (10)-(11) as: 
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                                                                         (38) 
 
where xj is a column of observations for the j-th 
variable in the X matrix. Using the presentation 
(37)-(38) in place of the vector X’y in (29)-(30) 
yields a more detailed decomposition of the 
vector apool by the segments within the dependent 
variable data. In the other relations (32), or (34)-
(35), this further decomposition can be used as 
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well. In a more general case we can consider 
different segments for the independent variables 
and for the dependent variable y.  
          If y is an ordinal variable, and the segments 
are chosen by its levels, then within each segment 

there are zero equaled deviations 0)()( =− tt
i yy . 

Thus, in (38) the values 0)( =′ poolj yx , and the 

decomposition (37) does not contain the pooled 
vector poolyX )( ′ . Solution (29) can then be given 

as: 
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where the vectors by segments and the constants 
are defined as: 
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                                                                         (40) 
 
Thus, the solution (29)-(30) is in this case 
reduced to the linear combination of discriminant 
functions at with the weights tγ , without the apool 

input. This solution corresponds to the 
classification (18) by several groups in 
discriminant analysis. The parameters tγ  can be 

estimated as it is described in the procedure (32)-
(36). If we work with a centered data, a vector of 
total means by x-variables 0=m  and the mean 
value 0=y , so these items can be omitted in all 
the formulae. 

A useful property of the solution (30) 
consists in the inversion of the pooled matrix 

poolS  instead of inversion of the total matrix 

XXStot ′= as in (24). If the independent 

variables are multicollinear, their covariance or 
correlation matrix is ill-conditioned or close to a 
singular matrix. The condition number, defined 
as ratio between the biggest and the smallest 
eigenvalues, is large for the ill-conditioned 
matrices and even infinite for a singular matrix. 
For such a total matrix X’X  there could be a 

problem with its inversion. At the same time the 
pooled matrix obtained as a sum of segmented 
matrices (26), is usually less ill-conditioned. The 
numerical simulations showed that the condition 
numbers of the pooled matrices are regularly 
many times less than these values of the related 
total second-moment matrices. It means that 
working with a pooled matrix in (30) yields more 
robust results, not as prone to multicollinearity 
effects as in a regular regression approach. 
 
Numerical example 

Consider an example from a real 
research project with 550 observations, where 
the dependent variable is customer overall 
satisfaction with a bank merchant’s services, and 
the independent variables are: x1 – satisfaction 
with the account set up;  x2 – satisfaction with 
communication; x3 – satisfaction with how sales 
representatives answer questions; x4 – 
satisfaction with information needed for account 
application;  x5 – satisfaction with the account 
features; x6 – satisfaction with rates and fees; x7 
– satisfaction with time to deposit into account. 
All variables are measured with a ten-point scale 
from absolutely non-satisfied to absolutely 
satisfied (1 to 10 values). The pair correlations 
of all variables are positive. The data is 
considered in three segments of non-satisfied, 
neutral, and definitely satisfied customers, where 
the segments correspond to the values of the 
dependent variable from 1 to 5, from 6 to 9, and 
10, respectively.  
          Consider the segments’ contribution into 
the regression coefficients and into the total 
model quality. The coefficients of regression for 
the standardized variables are presented in the 
last column of Table 1.  
 The coefficient of multiple 
determination for this model is R2=0.485, and F-
statistics equals 73.3, so the quality of the 
regression is good. The first four columns in 
Table 1 present inputs to the coefficients of 
regression from the pooled variance of the 
independent variables combined with the pooled 
variance of the dependent variable and three 
segments (37)-(38). The sum of these items in 
the next column comprises the pooled subtotal 
apool (30). 
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Table 1. Regression Decomposition by the Items of Pooled Variance and Discriminators. 

 

Pooled Variance of Predictors 
Fisher 

Discriminators 
Variable 

 
Pooled  

Dependent 
Segment 

1 
Segment 

2 
Segment 

3 
Pooled 

Subtotal 
Segment 

1 
Segment 

3 

Regression 
 

Total 
 

x1 .116 .026 .015 .064 .222 -.011 -.044 .166 
x2 .007 .149 .001 .049 .206 -.064 -.034 .108 
x3 .008 .232 -.006 .048 .282 -.100 -.033 .149 
x4 -.035 .005 .021 .077 .068 -.002 -.053 .013 
x5 .039 .101 -.016 -.028 .096 -.044 .019 .072 
x6 .054 .325 .012 .142 .533 -.141 -.098 .294 
x7 .048 .102 .018 .095 .262 -.044 -.065 .153 

 
Table 2. Regression Decomposition by Segments. 

 

Core Input Segment 1 Segment3 Regression Total 

Variable Coefficient 
Net 

Effect Coefficient 
Net 

Effect Coefficient 
Net 

Effect Coefficient 
Net 

Effect 
x1 .131 .072 .015 .008 .020 .011 .166 .091 
x2 .008 .005 .084 .046 .015 .008 .108 .059 
x3 .003 .001 .131 .069 .015 .008 .149 .078 
x4 -.014 -.006 .003 .001 .024 .011 .013 .006 
x5 .023 .008 .057 .020 -.009 -.003 .072 .025 
x6 .066 .037 .184 .103 .044 .025 .294 .165 
x7 .065 .026 .058 .023 .030 .012 .153 .061 
R2 .143 .271 .071 .485 

R2 share 29% 56% 15% 100% 
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The next two columns present the Fisher 
discriminators (30) for the first and the third 
segments. It is interesting to note that the 
condition numbers of the predictors total and 
pooled matrices of second moments equal 19.7 
and 11.9, so the latter one is much less ill-
conditioned. Adding the pooled subtotal apool 
and Fisher discriminators yields the total 
coefficients of regression in the last column of 
Table 1.   
           Combining some columns of the first 
table, Table 2 of the main contributions to the 
coefficients of regression is obtained. Table 2 
consists of doubled columns containing 
coefficients of regression and the corresponded 
net effects. In Table 2, the core input 
coefficients equal the sum of pooled dependent 
and the segment-2 columns from Table 1. 
Segment-1 coefficients in Table 2 equal the sum 
of two columns related to Segment-1 from Table 
1, and similarly for the Segment-3 coefficients. 

Summing all three of these columns of 
coefficients in Table 2 yields the total 
coefficients of regression. Considering 
coefficients in the columns of Table 2 in a way 
similar to factor loadings in factor analysis, we 
can identify which variables are more important 
in each segment of the total coefficients of 
regression. For instance, comparing coefficients 
in each row across three first columns in Table 
2, we see that the variables x1 and x7 have the 
bigger values in the core input than in segments, 
satisfaction with account set up and with time to 
deposit into account play a basic role in the 
customer overall satisfaction.  

Segment-1 has bigger coefficients by the 
variables x2, x3, x5, and x6, and the Segment-3 
has a bigger coefficient by the variable x4, so the 
corresponded attributes play the major roles in 
creating customers dissatisfaction or delight, 
respectively. It is interesting to note that this 
approach produces similar results to another 
technique developed specifically for the 
customer satisfaction studies (Conklin, Powaga 
& Lipovetsky, 2004).  
          Besides the coefficients of regression, 
Table 2 presents the net effects, or the 
characteristics of comparative influence of the 
regressors in the model (for more on this topic, 
see Lipovetsky &Conklin, 2001). Quality of 
regression can be estimated by the coefficient of 

multiple determination defined by the scalar 
product of the standardized coefficients of 
regression aj and the vector of pair correlations 
ryj of the dependent variable and each j-th 
independent variables, so ryj=(X’y)j. Items ryjaj 
in total R2 are called the net effects of each 

predictor: nynyy arararR ...2211
2 ++= . The net 

effects for core, two segment items, and their total 
(that is equal to the net effects obtained by the 
total coefficients of regression) are shown in 
Table 2.  

The net effects can be also used for 
finding the important predictors in each 
component of total regression. Summing net 
effects within their columns in Table 2 yields a 
splitting of total R2 =.485 into its core (R2 =.143), 
segment-1 (R2 =.271), and segment-3 (R2 =.071) 
components. In the last row of Table 2 we see 
that the core and two segments contribute to 
total coefficient of multiple determination by 
29%, 56%, and 15%, respectively. Thus, the 
main share in the regression is produced by 
segment-1 of the dissatisfaction influence.   
 

Conclusion 
 

Relations between linear discriminant analysis 
and multiple regression modeling were 
considered using decomposition of total matrix of 
second moments of predictors into pooled matrix 
and outer products of the vectors of segment 
means. It was demonstrated that regression 
coefficients can be presented as an aggregate of 
several items related to the pooled segments and 
Fisher discriminators. The relations between 
regression and discriminant analyses demonstrate 
how a total regression model is composed of the 
regressions by the segments with possible 
opposite directions of the dependency on the 
predictors. Using the suggested approach can 
provide a better understanding of regression 
properties and help to find an adequate 
interpretation of regression results. 
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Appendix: 
 
The Sherman-Morrison formula 
                                    

vAu

AvuA
AvuA

1

11
11

1
)( −

−−
−−

′+
′

−=′+                   (A1) 

is well known in various theoretical and practical 
statistical evaluations. It is convenient to use 

when the inverted matrix 1−A  is already known, 
so the inversion of vuA ′+  can be expressed via 

1−A  due to the formula (A1). 
We extend this formula to the inversion 

of a matrix with two pairs of vectors. Consider a 
matrix 2211 vuvuA ′+′+ , where A is a square non-

singular matrix of n-th order, and 2211 vuvu ′+′  is 
a matrix of the rank 2, arranged via two outer 
products 11vu ′  and 22vu ′  of the vectors of n-th 
order. Suppose we need to invert such a matrix to 
solve a linear system:   
                     
              bavuvuA =′+′+ )( 2211 ,                 (A2) 
 
where a is a vector of unknown coefficients and b 
is a given vector. Opening the parentheses, we 
get an expression: 
                   
                   bkukuAa =++ 2211 ,               (A3) 
 
where k1 and k2 are unknown parameters defined 
as scalar products of the vectors: 
         
              )(,)( 2211 avkavk ′=′= ,               (A4) 
 
Solution a can be found from (A3) as: 
          

  2
1

21
1

1
1 uAkuAkbAa −−− −−= .                  (A5) 

 
Substituting the solution (A5) into the system 
(A2) and opening the parentheses yields a vector 
equation: 
 

      1 1 2 2 1 11 1 2 12 1

1 21 2 2 22 2 1 1 2 2

k u k u k q u k q u

k q u k q u c u c u

+ + +
+ + = +

,            (A6) 

 
where the following notations are used for the 
known constants defined by the bilinear forms: 

          

1 1
11 1 1 12 1 2

1 1
21 2 1 22 2 2

1 1
1 1 2 2

, ,

, ,

, .

q v A u q v A u

q v A u q v A u

c v A b c v A b

− −

− −

− −

′ ′= =
′ ′= =

′ ′= =

         

                                                                        (A7) 
 
Considering equations (A6) by the elements of 
vector u1 and by the elements of vector u2, we 
obtain a system with two unknown parameters k1 
and k2: 
                                      

⎩
⎨
⎧

=++
=++

2222121

1212111

)1(

)1(

ckqkq

ckqkq
.                           (A8) 

 
So the solution for the parameters (A4) is: 
 

                 1 1 22 1 12 2

2 2 11 2 21 1

( ) / ,

( ) / ,

k c q c q c

k c q c q c

= + − ∆
= + − ∆

     (A9) 

 
with the main determinant of the system: 
 

11 22 12 21

1 1 1 1
1 1 2 2 1 2 2 1

(1 )(1 )

(1 )(1 )-( )( )

q q q q

v A u v A u v A u v A u− − − −

∆ = + + −
′ ′ ′ ′= + +

.  

                                                                      (A10) 
  
Using the obtained parameters (A9) in the vector 
a (A5), we get: 
 

1 1 1 1
1 1 22 2 2 11

1 1 1 1
1 1 2 12 2 1 21

(1 ) (1 )A u v A q A u v A q

A u v A q A u v A q
a A b

− − − −

− − − −
−

′ ′⎧ ⎫+ + +
⎪ ⎪

′ ′− −⎪ ⎪= −⎨ ⎬∆⎪ ⎪
⎪ ⎪
⎩ ⎭

                                                                      (A11) 
 
with the constants defined in (A7).  
          The expression in the figure parentheses 
(A11) defines the inverted matrix of the system 
(A2). It can be easily proved by multiplying the 
matrix in (A2) by the matrix in (A11), that yields 
the uniform matrix. In a simple case when both 
pairs of the vectors are equal, or 2211 vuvu ′=′ , 

they can be denoted as vuvuvu ′=′=′ 5.02211 , 
and the expression (A12) reduces to the formula 
(A1). We can explicitly present the inverted 
matrix (A11) as follows: 
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.

 
)(

1
21

1
12

11
12

1
21

1

1
11

1
22

11
22

1
11

1

1
22

11
11

1
11

2211

∆

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′′−′′−

′′+′′

+

∆
′+′

−=′+′+

−−−−−−

−−−−−−

−−−−
−−

AvuAvuAAvuAvuA

AvuAvuAAvuAvuA

AvuAAvuA
AvuvuA

  

                                                                      (A12) 
 
          For the important case of a symmetric 
matrix A, each of the bilinear forms (A7) can be 
equally presented by the transposed expression, 
for instance,    
                   

                  

1 1
11 1 1 1 1

1 1
12 1 2 2 1

1 1
21 2 1 1 2

1 1
22 2 2 2 2

,

,

,

.

q v A u u A v

q v A u u A v

q v A u u A v

q v A u u A v

− −

− −

− −

− −

′ ′= =
′ ′= =

′ ′= =
′ ′= =

     (A13) 

 
Using the property (A13) we simplify the 
numerator of the second ratio in (A12) to 
following:  
 

 

1 1 1 1 1 1
1 2 1 2 2 1 2 1

1 1 1 1 1 1
1 2 2 1 2 1 1 2

1 1 1
1 2 2 1 1 2 2 1( ) ( ) .

A u u A v v A A u u A v v A

A u u A v v A A u u A v v A

A u u u u A v v v v A

− − − − − −

− − − − − −

− − −

′ ′ ′ ′+
′ ′ ′ ′− −

′ ′ ′ ′= − −

 (A14) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So the formula (A12) for a symmetric matrix A 
can be represented as: 
 

 

,
 

)()(

)(

)(

1
1221

1
1221

1

1
2211

1

11
2211

∆

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−′′−′−

′+′

−

=′+′+

−−−

−−

−−

AvvvvAuuuuA

AvuvuA

AvuvuA

 

                  (A15) 
 
with the determinant defined in (A10). 
          In a special case of  the outer products of 
each vector by itself, when 11 vu =  and 22 vu = , 
the formula (A15) transforms into: 
 

.
 )(-)1)(1(

)()(

)(

)(

2
2

1
12

1
21

1
1

1
1221

1
1221

1

1
2211

1

11
2211

uAuuAuuAu

AuuuuAuuuuA

AuuuuA

AuuuuA

−−−

−−−

−−

−−

′′+′+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−′′−′−

′+′
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     (A16) 
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Local Power For Combining Independent Tests in The Presence of Nuisance 
Parameters For The Logistic Distribution 

 
W. A. Abu-Dayyeh      Z. R. Al-Rawi      M. MA. Al-Momani 
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Yarmouk University Irbid-Jordan 

 
 
Four combination methods of  independent tests for testing a simple hypothesis versus one-sided 
alternative are considered viz. Fisher, the logistic, the sum of P-values and the inverse normal method in 
case of logistic distribution. These methods are compared via local power in the presence of nuisance 
parameters for some values of α using simple random sample. 
 
Key words: combination method; independent tests; logistic distribution; local power; simple random 

sample; nuisance parameter. 
 
 

Introduction 
 
Combining independent tests of hypotheses is an 
important and popular statistical practice. 
Usually, data about a certain phenomena comes 
from different sources in different times, so we 
want to combine these data to study such 
phenomena. Many authors have considered the 
problem of combining (n) independent tests of 
hypotheses. For simple null hypotheses, Little 
and Folks (1971), studied four methods for 
combining a finite number of independent tests. 
They found that the Fisher method is better than 
the other three methods via Bahadur efficiency. 
Again, Little and Folks (1973) studied all 
methods of combining a finite number of 
independent tests and thy found that the Fisher's 
method is optimal under some mild conditions. 
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Brown, Cohen and Strawderman (1976) 
have shown that such all tests form a complete 
class. Abu-Dayyeh and Bataineh (1992) showed 
that the Fisher's method is strictly dominated by 
the sum of P-values method via Exact Bahadur 
Slop in case of combining an infinite number of 
independent shifted exponential tests when the 
sample size remains finite. Also, Abu-Dayyeh 
(1992) showed that under certain conditions that 
the local limit of the ratio of the Exact Bahadur 
efficiency of two tests equivalent to the Pitman 
efficiency between the two tests where these 
tests are based on sum of iid r.v’s. Again Abu-
Dayyeh and El-Masri (1994) studied the 
problem of combining (n) independent tests as     
(n →  ∞ ) in case of triangular distribution using 
six methods viz. sum of P-values, inverse 
normal, logistic, Fisher, minimum of P-values 
and maximum of P-values. They showed that the 
sum of P-values is better than all other methods. 

Abu-Dayyeh (1997) extended the 
definition of the local power of tests to the case 
of having nuisance parameters. He derived the 
local power for any symmetric test in the case of 
a bivariate normal distribution with known 
correlation coefficient, and then he applied it to 
the combination methods. 
 
Specific Problem 

Suppose there is (n) simple hypotheses:   
 
H0

(i) : θi = θ0i         vs     H1
(i)

 : θi > θ0i   i=1,2,…,n  
                                                                    (1) 
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Where θ0i is known for i=1,2,…,n and H0
(i) is 

rejected for sufficiently large values of some 
continuous real valued test statistic T(i) , 
i=1,2,…,n and we want to combine the (n) 
hypotheses into one hypothesis as follows: 
 
          H0: (θ1, θ2 , …, θn ) = (θ01 , θ02 , …, θ0n  )     
vs 

          H1: θi ≥ θ0i for all i, and θi > θ0i for 
some i, i=1,2, …, n                                          (2) 

             
            Many methods have been used for 
combining several tests of hypotheses into one 
overall test.  Among these methods are the non-
parametric (omnibus) methods that combine the 
P-values of the different tests.  The P-value of 
the i-th hypothesis is given by: 
  

          )(1)(
)(

0
)(

0

)( tFtTPP
ii H

i

H
i −=≥=           (3) 

 
where FH0

(i)(t) is the cdf of T (i)under H0
(i).  Note 

that Pi ~ U(0,1) under H0
(i). 

               
  Considered in this article is the case of 

ii θγθ =∗ , where 0,...,, 21 ≥rθθθ fixed 

constants and γ  is the unknown parameter. 

Then ( ) ( ) ( )rTTT ,...,, 21  are independent r.v’s 

such that for ri ,..,2,1= and we want to test  
 

0:0 =γH             vs 

0:1 >γH  `                                       (4) 
 
and therefore considered is the problem of 
combining a finite number of independent tests 
by looking at the Local Power of tests which is 
defined for a test φ by: 
       

    ( ) ( )
0P EinfL =γθγθ

ϕ
γ∂

∂=ϕ                      (5)                      

 
where  
 

( ) riir ,...,2,1,0,,...,,,0 21 =≥=≥ θθθθθγ , in 

case of logistic distribution. Compared (5) for 
the four methods of combining tests for the 
location family of distributions when 2=r and 

3=r . These methods are: Fisher, logistic, the 
sum of  p-values and the inverse normal 
methods.   

 
Methodology 

 
Now we will find expressions for the Local 
Power of the four combination methods of tests 
then compare them via the Local Power. 
 
Lemma 1  
 
 Let 21, XX  be independent r.v’s such 

that ( )1,~ ii LogisticX θγ for 2,1=i . Then  

A(1)    
 

( )( ) ( )21F0F2,1
KE θ+θ=ϕ

γ∂
∂

=γθθγ ,where 

∫
−

⎟
⎠
⎞⎜

⎝
⎛ −= −

a
c

F dy
y

y
yeK

1
3

2 2
1 , 2

c
ea =  and 

( ) ( )
2

1,4 αχ −=c  

 
A(2)   
 

( )( ) ( )21L
0y

L2,1
KE θ+θ=ϕ

γ∂
∂

=
θθγ , where 

( )( )
( )∫

∞

−+−
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1
31

12
dy

yey

yy
K

cL , and c satisfies the 

following 
( )

( )21

11
1

c

c

e

ce

−

−

−

+−=−α . 

 
A(3)  
 
 

( )( ) ( )21S
0

S2,1
KE θ+θ=ϕ

γ∂
∂

=γ
θθγ ,where 

 
( )

6

232 cc
KS

−= , and α2=c . 

 
 
A(4)  
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( )( ) ( )21N
0

N2,1
KE θ+θ=ϕ

γ∂
∂

=γ
θθγ ,where 

 

∫
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ−−Φ−−= −

a

N dy
y

y

y
cK

1
3

1 21
1 , 

( )c
a

−Φ
= 1

and ( )α−Φ= − 12 1c . 

  
Proofs of the previous lemma are similar to 
proofs of lemma 2, so we will not write it.   
 
Lemma 2  
 Let 321 ,, XXX  be independent r.v’s 

such that ( )1,~ ii LogisticX θγ for 3,2,1=i . 

Then  
 

B(1)   
( ) ( )

( )
1 2 3

3

, ,
0 1

1 2 3               where

F F i
i

F

E K

K

γ θ θ θ
γ

ϕ θ
γ

θ θ θ
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∂ =
∂
= + +

∑
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B(4) 

   ( ) ( )
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where 
          

( ) ( )( )( ) ( )1 1

1 1

1 1 2

N

a b

K

c u v v dudv− −

=

− −Φ − −Φ −Φ −∫∫
 

 

( )ca −Φ= , ( )( )vcb 1−Φ−−Φ= , and 

( )α−Φ= − 13 1c .   
  

Now, we will prove just B(1), because 
the proof of the others can be done in the same 
way.  
 
Proof of B(1): 
 

( ) ( ) ( )
1 2 3

3

, ,
1

,F F i i i
i

E f x dx
∞ ∞ ∞

γ θ θ θ
=−∞ −∞ −∞

ϕ = φ − γθ∏∫ ∫ ∫  

where ( )iixf γθ− is the 

fdp .. of  ( ) 3,2,11, =iforLogistic iγθ  

 
 It easy to show that: 

( ) ( )
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1 2 3, ,

3

1

1 1

F

F i i i
i

E

f x dx

γ θ θ θ ϕ

φ γθ
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=−∞ −∞ −∞

= − − −∏∫ ∫ ∫
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so, 
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completes the proof.   
 

Also, here for the logistic distribution 
we will compare the Local Power for the 
previous four tests numerically. So from tables 
(1) and (2) when 01.0=α and 2=r the sum of 
p-values method is the best method followed by 
the inverse normal method, the logistic method 
and Fisher method respectively, but for all of the 
other values of α and r the inverse normal 
method is the best method followed by the sum 
of p-values method followed by logistic method 
and the worst method is Fisher method. 
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The following tables explain the term AK  where { }NSLFA ,,,∈ for the logistic distributions. 
 

Table (1): Local power for the logistic distribution when ( )2=r  
 

α  
FK  LK  SK  NK  

0.010 0.0073833607 0.0081457298 0.0090571910 0.0089064740 
0.025 0.0174059352 0.0192749938 0.0212732200 0.0214554551 
0.050 0.0326662436 0.0361783939 0.0394590744 0.0415197403 

 
 

Table (2): Local power for the logistic distribution when ( )3=r  
 

α  
FK  LK  SK  NK  

0.010 0.0062419188 0.0071070250 0.0080425662 0.0083424342 
0.025 0.0144747833 0.0165023359 0.0183583839 0.0199610766 
0.050 0.0267771426 0.0304639648 0.0332641762 0.0381565019  
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Effect Of Position Of An Outlier On The Influence Curve Of The Measures  
Of Preferred Direction For Circular Data 
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Circular or angular data occur in many fields of applied statistics. A common problem of interest in 
circular data is estimating a preferred direction and its corresponding distribution. It is complicated by the 
wrap-around effect on the circle, which exists because there is no natural minimum or maximum. The 
usual statistics employed for linear data are inappropriate for directional data, as they do not account for 
its circular nature. The robustness of the three common choices for summarizing the preferred direction 
(the sample circular mean, sample circular median and a circular analog of the Hodges-Lehmann 
estimator) are evaluated via their influence functions. 
 
Key words: Circular distribution, directional data, influence function, outlier 
 
 

Introduction 
 
The notion of preferred direction in circular data 
is analogous to the center of a distribution for 
data on a linear scale. Unlike in linear data 
where a center always exists, if data are 
uniformly distributed around the circle, then 
there is no natural preferred direction. Therefore, 
it is appropriate and desirable that all sensible 
measures of preferred direction are undefined if 
the sample data are equally spaced around the 
circle. This article considers estimating the 
preferred direction for a sample of unimodal 
circular data. Three choices for summarizing the 
preferred direction are the mean direction, the 
median direction (Fisher 1993) and the Hodges-
Lehmann estimate (Otieno & Anderson-Cook, 
2003a). 
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The sample mean direction is a common 
choice for moderately large samples, because 
when combined with a measure of sample 
dispersion, it acts as a summary of the data 
suitable for comparison and amalgamation with 
other such information. The sample mean is 
obtained by treating the data as vectors of length 
one unit and using the direction of their resultant 
vector. Given a set of circular observations 1θ , . . 

., nθ , each observations is measured as a unit 

vector with coordinates from the origin of  
( ) ( )( )ii θθ sin,cos ,  i = 1, . . ., n. The resultant 

vector of these n unit vectors is obtained by 
summing them componentwise to get the 
resultant vector 

( ) ( ) ( )SCR
n

i

n

i
ii ,sin,cos

1 1

=⎟
⎠

⎞
⎜
⎝

⎛= ∑ ∑
= =

θθ , say. The 

sample circular mean is the angle corresponding 
to the mean resultant vector  

( )SC
n

S

n

C

n

R
R ,, =⎟

⎠

⎞
⎜
⎝

⎛== . That is, the angle 

corresponding to the mean resultant length  

( )22 SCR += .  

Jamalamadaka and SenGupta (2001), 
show that the sample circular mean direction is 
location invariant, that is, if the data are shifted 
by a certain amount, the value of the sample 
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circular mean direction also changes by that 
amount. 

An alternative, the sample median, can 
be thought of as the location of the 
circumference of the circle that balances the 
number of observations on the two halves of the 
circle, Otieno and Anderson-Cook (2003b). The 

sample median direction θ~  of angles 1θ , . . ., 

nθ , is defined to be the point P on the 

circumference of the circle that satisfies the 
following two properties: (a) The diameter PQ 
through P divides the circle into two semi-
circles, each with an equal number of observed 
data points and, (b) the majority of the observed 
data are closer to P than to the anti-median Q. 
See Mardia (1972, p.28-30) and Fisher (1993, p. 
35-36).  

Note, the antimedian can be thought of 
as the meeting point of the two tails of the 
distribution on the opposite side of the circle. 
Intuitively, fewer observations are expected at 
the tails. As with the linear case, for odd size 
samples the median is an observation, while for 
even sized samples the median is the midpoint 
of two adjacent observations. Observations 
directly opposite each other do not contribute to 
the preferred direction, since in such a case the 
observations balance each other for all possible 
choices of medians. The procedure for finding 
the circular median has the flexibility to find a 
balancing point for situations involving ties, by 
mimicking the midranking idea for linear data. 

Otieno and Anderson-Cook (2003b) 
describe a strategy for more efficiently dealing 
with non-unique circular median estimates 
especially for small samples, which are 
commonly encountered in circular data. Note 

that the angle θ~  which has the smallest circular 
mean deviation given by 

∑
=

−−−=
n

i
in

d
1

~1
)

~
( θθππθ  is the circular 

median, Fisher (1993). 
A third measure of preferred direction 

for circular data is the circular Hodges-Lehmann 
estimate of preferred direction, subsequently 
referred to as HL. This is the circular median of 
all pairwise circular means of the data (Otieno & 
Anderson-Cook, 2003a). As with the linear case, 
there are three possible methods for calculating 

this quantity based on which pairs of 
observations are considered.  

The three possible methods involve 
using the circular means of all distinct pairs of 
observations, all distinct pairs of observations 
plus the individual observations (which are 
essentially pairwise circular means of individual 
observations with themselves), and all possible 
pairwise circular means. The estimates obtained 
by all the three methods, divide the obtained 
pairwise circular means evenly on the two 
semicircles. All these estimates of preferred 
direction are location invariant, since they 
satisfy the definition of the circular median, 
which is also location invariant. The approach 
used is feasible regardless of sample size or the 
presence of ties. Note that no ranking is used in 
computing the new measure, since on the circle 
there is no uniquely defined natural 
minimum/maximum. Simulation results show 
that the three HL measures tend towards being 
asymptotically identical, Otieno (2002), as is the 
case of linear data, Huber (1981). 

Three choices are presented for 
estimating preferred direction for a single 
population of circular measures, and study their 
robustness via their influence curve. As with 
linear data, where the mean and the median 
represent different types of centers for data sets, 
the three estimates of preferred direction also 
have relative trade-offs for what they are trying 
to estimate as well as how they deal with lack of 
symmetry and outliers. The following data set is 
considered, which give a small overview of the 
types of data that may be encountered in practice 
by say, biologists. The data given in Table 1, 
relates the homing ability of the Northern cricket 
frog, Acris crepitans, as studied by Ferguson, et. 
al. (1967). 
 
Table 1: Frog Data-Angles in degrees measured 
due North. 
 
104  110  117  121  127  130  136  145  152  
178  184  192  200   316 
 

 
 
 
 



OTIENO & ANDERSON-COOK 83 

Methodology 
 

A circular distribution (CD) is a probability 
distribution whose total probability is 
concentrated on the circumference of a unit 
circle. A set of identically distributed 
independent random variables from such a 
distribution is referred to as a random sample 
from the CD. See Jammalamadaka & SenGupta 
(2001, p. 25-63) for a detailed discussion of 
circular probability distributions. Two frequently 
used families of distributions for circular data 
include the von Mises and the Uniform 
distribution. 

The von Mises distribution VM ( µ , 
κ ), is a symmetric unimodal distribution 
characterized by a mean direction µ ,and 
concentration parameter κ , with probability 
density function 

)]cos(exp[)](2[)( 1
0 µθκκπθ −= −If , 

πµθ 2,0 <≤  and ∞<≤ κ0 , where 

∫ ∑
∞

=

− −==
π κφφκπκ

2
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2

2
1

0 4
)](exp[)2()(

j
j

j

j
dxosI

is the modified Bessel function of order zero. 
The concentration parameter,κ , 

quantifies the dispersion. If κ  is zero, 

( )
π

θ
2

1=f  and the distribution is uniform with 

no preferred direction. As κ increase from 
zero, ( )θf  peaks higher about µ . The von 
Mises is symmetric since it has the 
property ( ) ( )θµθµ −=+ ff , for all θ , where 

addition or subtraction is modulo π2 . With the 
uniform or isotropic distribution, however, the 
total probability is spread out uniformly on the 
circumference of a circle; that is, all directions 
are equally likely. It thus represents the state of 
no preferred direction. 

The von Mises is similar in importance 
to the Normal distribution on the line, 
(Mardia,1972). When 2≥κ , the von Mises 
distribution VM ( µ , κ  ), can be approximated 
by the Wrapped Normal distribution  
WN ( )ρµ, , which is a symmetric unimodal 
distribution obtained by wrapping a normal 

N ( )2,σµ  distribution around the circle. A 

circular r.v θ  is said to have a wrapped normal 
(WN) distribution if its pdf is 

( ) ( ) ( )[ ]µθρππθ −+= ∑
∞

=

−− pf
p

p
W cos2

1

11 2

, 

πµ 20 ≤≤ , 10 ≤≤ ρ , where µ  and 

⎟
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⎞
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⎝

⎛ −= 2

2

1
exp σρ  are the mean direction and 

mean resultant length respectively. The value of 
0=ρ  corresponds to the circular uniform 

distribution, and as ρ  increases to 1, the 
distribution concentrates increasingly around µ . 
Stephens (1963) matched the first trigonometric 
moments of the von Mises and wrapped normal 
distributions, that is, 
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establishing that the two have a close 
relationship, where 
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are the modified Bessel functions of order zero 
and order one, respectively. Based on the 
difficulty in distinguishing the two distributions, 
Collett and Lewis (1981) concluded that 
decision on whether to use a von Mises model or 
a Wrapped Normal model, depends on which of 
the two is most convenient. 

The Wrapped Normal distribution WN 

( )ρµ,  is obtained by wrapping the N ( )2,σµ  
distribution onto the circle, where 

ρσ log22 −= , which implies 

that, ⎥
⎦

⎤
⎢
⎣

⎡−=
2

exp
2σρ . But for largeκ , in 

particular 2≥κ , (Fisher, 1987), VM ( )κµ,  is 

approximately equivalent to N ⎟
⎠

⎞
⎜
⎝

⎛

κ
µ 1

, , which in 

turn is approximately equivalent to 
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WN ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦

⎤
⎢⎣

⎡−
κ

µ
2

1
exp, . This approximation is very 

accurate for 10>κ  (Mardia & Jupp, 2000). 

Note ( )κσ Alog2ˆ 2 −=  and 
κ

σ 1
ˆ 2 =  

are the estimates of 2σ  when VM ( )κµ,  is 

approximated by WN ( )ρµ,  and N ⎟
⎠

⎞
⎜
⎝

⎛

κ
µ

2

1
,  

respectively. Figure 1 shows how the WN and N 
approximations are related for various values of 
concentration parameter,κ , using  the following 
approximation,  

( ) −−−−≈
32 8

1

8

1

2

1
1

κκκ
κA . . . , 

 Jammalamadaka & SenGupta (2001, p. 290). 
The circular median is rotationally 

invariant as shown by Ackermann (1997). Lenth 
(1981), and, Wehrly and Shine (1981) studied 
the robustness properties of both the circular 
mean and median using influence curves, and 
revealed that the circular mean is quite robust, in 
contrast to the mean for linear data on the real 
line. Durcharme and Milasevic (1987), show 
that in the presence of outliers, the circular 
median is more efficient than the mean 
direction. Many authors, including He and 
Simpson (1992), advocate the use of circular 
median as an estimate of preferred direction, 
especially in situations where the data are not 
from the von Mises distribution. 

The Hodges-Lehmann estimator, on the 
other hand is a compromise between the 
occasionally non-robust circular mean and the 
more robust circular median. Unlike the circular 
median which downweights outliers 
significantly but is sensitive to rounding and 
grouping (Wehrly & Shine, 1981), the HL 
estimate downweights outliers more sparingly 
and is more robust to rounding and grouping. 
The circular HL estimator has comparable 
efficiency to mean and is superior to median; see 
Otieno and Anderson-Cook (2003a). Other 
properties of this estimate are explored and 
compared to those of circular mean and circular 
median in Otieno and Anderson-Cook (2003a). 
S-Plus or R functions for computing this 
estimate are available by request from the 
authors. 

 
Consider a circular distribution F which 

is unimodal and symmetric about the unknown 
direction 0µ . The influence function (IF) for the 

circular mean direction is given by 

( ) ( )
ρ

µθθ 0sin −
=IF , where the mean resultant 

length is given by 

( ) ( )
( )κ
κκσρ
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2

1
exp

I

I
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⎠

⎞
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⎝

⎛ −= . For any 

given value of ρ , this influence function and its 

derivative are bounded by 1−± ρ , see Wehrly 
and Shine (1981). Another result due to Wehrly 
and Shine (1981) is the influence function of the 
circular median. Without loss of generality for 
notational simplicity, assume that [ ]πµ ,0∈ .  

The influence function for the circular 
median direction is given by  

 

( )
( )

( ) ( )[ ]πµµ

µθ
θ

+−

−
=

00

0sgn
2

1

ff
IF ,  

 
( )πµθπµ +<<− 00 , where ( )0µf  is the 

probability density function of the underlying 
distribution of the data at the hypothesized mean 
direction 0µ , and sgn(x) = 1, 0, or -1 as x > 0, x 

= 0, or  x < 0, respectively. 
Wehrly and Shine (1981) and Watson 

(1986) evaluated the robustness of the circular 
mean via an influence function introduced by 
Hampel (1968, 1974) and concluded that the 
estimator is somewhat robust to fixed amounts 
of contamination and to local shifts, since its 
influence function is bounded. The influence 
curve for the circular median, however, has a 
jump at the antimode. This implies that the 
circular median is sensitive to rounding or 
grouping of data (Wehrly & Shine, 1981). 
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Assume that iθ  and jθ  are iid, with 

distribution function F ( )θ . Let  
( )

2
ji θθ +

=Φ , 

ji ≤ . Φ  is equivalent to the pairwise circular 

mean of iθ  and jθ , Otieno and Anderson-

Cook,(2003a). The functional of the circular 

Hodges-Lehmann estimator HL
cθ̂  is the Pseudo-

Median Locational functional ⎟
⎠

⎞
⎜
⎝

⎛= −

2

11*FF , 

where ( ) ( ) ( ) ( ) θθθφφφ dhFPF ∫ −=≤Φ= 2 , 

Hettmansperger & McKean (1998, p.3,10-11). 
For a sample from a von Mises distribution with 
a limited range of concentrated parameter 
values, 2≥κ , the influence function of the 

circular HL estimator HL
cθ̂  is given by 
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4

2
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⎟
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⎝
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−
=

π
κ

θ
θ

F
IF , where F(.) is the 

cumulative density function of 1θ , . . ., nθ . Note 

that this influence function is a centered and 
scaled cdf and is therefore bounded. Note that, it 
is also discontinuous at the antimode, like the 
influence function of the circular median. 

Figure 2 are plots of the influence 
functions of the circular mean, circular median 
and the circular HL estimators for preferred 
direction for various concentration parameters. 

The range of the data values is 
2

π−
radians to 

2

π
radians and 4 dispersion values ranging from 

κ =1 to 8. 
 

 

Figure 1: Plot of ⎥
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Notice that all the estimators have curves which 
are bounded. Also, as the data becomes more 
concentrated (with κ  increasing), the influence 
function of the circular median changes least 
followed by the circular HL estimator. This is 
similar to the linear case. 

 
 
 

 
 
 
Also, as κ  increases, the bound for the 

influence function for all the three measures 
decreases, however, overall the bound of the 
influence function for the mean is largest for 

angles closest to 
2

π
 radians from the preferred 

direction. The maximum influence for the mean 

 
Figure 2: Influence Functions for measures of preferred direction, ( )81 ≤≤ κ . 
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occurs at 
2

π
 or 

2

π−
 from the mode for all κ , 

while for both the median and HL, the maximum 
occurs uniformly for a range away from the 
preferred direction. Overall, HL seems like a 
compromise between the mean and the median. 
 
A Practical Example  

Consider the following example of Frog 
migration data Collett (1980), shown in Figure 
3. The data relates the homing ability of the 
Northern cricket frog, Acris crepitans, as studied 
by Ferguson, et. al.(1967). A number of frogs 
were collected from mud flats of an abandoned 
stream meander and taken to a test pen lying to 
the north of the collection point. After 30 hours 
enclosure within a dark environmental chamber, 
14 of them were released and the directions 

taken by these frogs recorded (taking 00 to be 
due North), Table 1. 

In order to compute the sample mean of 
these data, consider them as unit vectors, the 
resultant vector of these 14 unit vectors is 
obtained by summing them componentwise to 

get ( ) ( ) ( )SCR
n

i

n

i
ii ,sin,cos

1 1

=⎟
⎠

⎞
⎜
⎝

⎛= ∑ ∑
= =

θθ , say. 

The sample circular mean is the angle 
corresponding to the mean resultant vector 

( )SC
n

S

n

C

n

R
R ,, =⎟

⎠

⎞
⎜
⎝

⎛== . That is, the angle 

corresponding to the mean resultant length 

( )22 SCR += .For this data the circular 

mean is -0.977 ( )0124 , the mean resultant 

length, 725.0=R , thus, the estimate of the 

concentration parameter, 21.2ˆ =κ  for the best 
fitting von Mises.(Table A.3, Fisher, 1993, p. 
224).  

The circular median is -0.816 ( )025.133  
and circular Hodges-Lehmann is -0.969 

( )05.124 . Using 21.2ˆ =κ , Figure 4 gives the 
influence curves of the mean, median and HL. 
Note that the measure least influenced by 
observation x, a presumed outlier, is the circular 
mean, since x is nearer to the antimode. 
However, the circular median is influenced most 

by observations nearest the center of the data 
followed by HL. The influence of an outlier on 
the sample circular median is bounded at either a 
constant positive or a constant negative value, 
regardless of how far the outlier is from the 
center of the data. On the other hand, the HL 
estimator is influenced less by observations near 
the center, and reflects the presence of the 
outlier. The influence curve for the circular 
mean is similar to that of the redescending Φ  
function (See Andrews et. al., 1972 for details). 

 
Conclusion 

 
Like in the linear case, it is helpful to decide 
what aspects of the data are of interest. For 
example, in the case of distributions that are not 
symmetric or have outliers, like in the case of 
the Frog migration data, the circular mean and 
circular median are measuring different 
characteristics of the data. Hence one needs to 
choose which aspect of the data is of most 
interest. For data that are close to uniformly 
distributed or have rounding or grouping, it is 
wise to avoid the median since its estimate is 
prone to undesirable jumps. Either of the other 
two measures perform similarly. For data spread 
on a smaller fraction of the circle, with a natural 
break in the data, the median is least sensitive to 
outliers. The mean is typically most responsive 
to outliers, while HL gives some, but not too 
much weight to outliers. 

Overall, the circular HL is a good 
compromise between circular mean and circular 
median, like its counterpart for linear data. The 
HL estimator is less robust to outliers compared 
to the median, however it is an efficient 
alternative, since it has a smaller circular 
variance, Otieno and Anderson-Cook, (2003a). 
The HL estimator also provides a robust 
alternative to the mean especially in situations 
where the model of choice of circular data (the 
von Mises distribution) is in doubt. Overall, the 
circular HL estimate is a solid alternative to the 
established circular mean and circular median 
with some of the desirable features of each. 
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Bias Of The Cox Model Hazard Ratio 
 

   Inger Persson                                    Harry Khamis 
                           TFS Trial Form Support AB                   Statistical Consulting Center 
                                  Stockholm, Sweden                              Wright State University 
 
 
The hazard ratio estimated with the Cox model is investigated under proportional and five forms of 
nonproportional hazards.  Results indicate that the highest bias occurs for diverging hazards with early 
censoring, and for increasing and crossing hazards under a high censoring rate. 
 
Key words: censoring proportion, proportional hazards, random censoring, survival analysis,  
                    type I censoring 
 
 

Introduction 
 
In recent decades, survival analysis techniques 
have been extended far beyond the medical, 
biomedical, and reliability research areas to 
fields such as engineering, criminology, 
sociology, marketing, insurance, economics, etc.  
The study of survival data has previously 
focused on predicting the probability of 
response, survival, or mean lifetime, and 
comparing the survival distributions. More 
recently, the identification of risk and/or 
prognostic factors related to response, survival, 
and the development of a certain condition has 
become equally important (Lee, 1992). 

Conventional statistical methods are not 
adequate to analyze survival data because some 
observations are censored, i.e., for some 
observations there is incomplete information 
about the time to the event of interest. A 
common type of censoring in practice is Type I 
censoring, where the event of interest is 
observed  only  if  it  occurs  prior  to  some  pre- 
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specified time, such as the closing of the study  
or  the  end  of  the  follow-up. The most 
common approach for modeling covariate 
effects in survival data uses the Cox 
Proportional Hazards Regression Model (Cox, 
1972), which takes into account the effect of 
censored observations.  As the name indicates, 
the Cox model relies on the assumption of 
proportional hazards, i.e., the assumption that 
the effect of a given covariate does not change 
over time.  If this assumption is violated, then 
the Cox model is invalid and results deriving 
from the model may be erroneous. 

A great number of procedures, both 
numerical and graphical, for assessing the 
validity of the proportional hazards assumption 
have been proposed over the years. Some of the 
procedures require partitioning of failure time, 
some require categorization of covariates, some 
include a spline function, and some can be 
applied to the untransformed data set.  

However, no method is known to be 
definitively better than the others in determining 
nonproportionality. Some authors recommended 
using numerical tests, e.g., Hosmer and 
Lemeshow (1999). Others recommended 
graphical procedures, because they believe that 
the proportional hazards assumption only 
approximates the correct model for a covariate 
and that any formal test, based on a large enough 
sample, will reject the null hypothesis of 
proportionality (Klein & Moeschberger, 1997, p. 
354).  

Power studies to compare some 
numerical tests have been performed; see, e.g., 
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Ng’andu, 1997; Quantin, et al., 1996; Song & 
Lee, 2000, and Persson, 2002. The goal of this 
article is to assess the bias of the Cox model 
estimate of the hazard ratio under different 
censoring rates, sample sizes, types of 
nonproportionality, and types of censoring. The 
second section reviews the Cox regression 
model and the proportional hazards assumption. 
The average hazard ratio, the principal criterion 
against which the Cox model estimates are 
compared, is described in the third section. The 
fourth section presents the simulation strategy. 
The results and conclusions are given in the 
remaining two sections. 
 
Cox proportional hazards model 

A central quantity in the Cox regression 
model is the hazard function, or the hazard rate, 
defined by: 
 
            P[t ≤ T < t + ∆t | T ≥ t] 
λ(t) =         lim     ____________________, 
            ∆t→0             ∆t 
 
where T is the random variable under study: 
time until the event of interest occurs. Thus, for 
small ∆t, λ(t)∆t is approximately the conditional 
probability that the event of interest occurs in 
the interval [t, t + ∆t], given that it has not 
occurred before time t. 

There are many general shapes for the 
hazard rate; the only restriction is λ(t) ≥ 0. 
Models with increasing hazard rates may arise 
when there is natural aging or wear. Decreasing 
hazard functions are less common, but may 
occur when there is a very early likelihood of 
failure, such as in certain types of electronic 
devices or in patients experiencing certain types 
of transplants.  

A bathtub-shaped hazard is appropriate 
in populations followed from birth. During an 
early period deaths result, primarily from infant 
diseases, after which the death rate stabilizes, 
followed by an increasing hazard rate due to the 
natural aging process. Finally, if the hazard rate 
is increasing early and eventually begins 
declining, then the hazard is termed “hump-
shaped.” This type of hazard rate is often used in 
modeling survival after successful surgery, 
where there is an initial increase in risk due to 
infection or other complications just after the 

procedure followed by a steady decline in risk as 
the patient recovers (see, e.g., Kline & 
Moeschberger, 1997). 

In the Cox model, the relation between 
the distribution of event time and the covariates 
z (a p x 1 vector) is described in terms of the 
hazard rate for an individual at time t:  
 
           λ(t,z) = λ0(t)exp(β'z),  (1) 
 
where λ0(t) is the baseline hazard rate, an 
unknown (arbitrary) function giving the value of 
the hazard function for the standard set of 
conditions z = 0, and β is a p x 1 vector of 
unknown parameters. The partial likelihood 
estimate of β is asymptotically consistent 
(Andersen & Gill, 1982; Cox, 1975, and Tsiatis, 
1981). 

The ratio of the hazard functions for two 
individuals with covariate values z and z* is 
λ(t,z)/λ(t,z*) = exp[β'(z – z*)], an expression that 
does not depend on t. Thus, the hazard functions 
are proportional over time. The factor exp(β'z) 
describes the hazard ratio for an individual with 
covariates z relative to the hazard at a standard z 
= 0. The usual interpretation of the hazard ratio, 
exp(β'z), requires that (1) holds. There is no 
clear interpretation if the hazards are not 
proportional.  
 Of principal interest in a Cox regression 
analysis is to determine whether a given 
covariate influences survival, i.e. to estimate the 
hazard ratio for that covariate. The behavior of 
the hazard ratio estimated with the Cox model 
when the underlying assumption of proportional 
hazards is false (i.e., when the hazards are not 
proportional) is investigated in this paper. To 
assess the Cox estimates under nonproportional 
hazards, the estimates are compared to an exact 
calculation of the geometric average of the 
hazard ratio described in the next section. An 
average hazard ratio does not reflect the truth 
exactly since the hazard ratio is changing with 
time when the proportionality assumption is not 
in force. However, it can provide an 
approximate standard against which to compare 
the Cox model estimates. Because the estimation 
of the hazard ratio from the Cox model cannot 
be done analytically (Klein & Moeschberger, 
1997), the comparison is made by simulations. 
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Average hazard ratio 
 The average hazard ratio (AHR) is 
defined as (Kalbfleisch & Prentice, 1981): 
           ∞ 

       θ(W) = - ∫ [λ1(t)/λ2(t)]dW(t),         (2) 
                   0 

where λ1(t) and λ2(t) are the hazard functions of 
two groups and W(t) is a survivor or weighting 
function. The weight function can be chosen to 
reflect the relative importance attached to hazard 
ratios in different time periods. Here, W(t) 
depends on the general shape of the failure time 
distribution and is defined as W(t) = S1

ε(t)S2
ε(t), 

where S1(t) and S2(t) are the survivor functions 
(i.e., one minus the cumulative distribution 
function) for the two groups, and ε > 0. The 
value ε = ½ weights the hazard ratio at time t 
according to the geometric average of the two 
survivor functions. Values of ε > ½ will assign 
greater weight to the early times while ε < ½ 
assigns greater weight to later times. Here, ε = ½ 
will be used.    
 For Weibull distributed lifetimes with 
scale parameter α and shape parameter γ, the 
survival function is S(t) = exp[-(αt)γ] and the 
AHR estimator (2) can be written 
 
    

θ(W) =  
   ∞ 

- ∫[(γ1α1
γ1)/(γ2α2

γ2)]d{exp[-½((α1t)
γ1 + (α2t)

γ2)]}. 
    0 

 
 When the parametric forms of the 
survivor functions are unknown, the AHR (2) 
can still be used; in this case, the Kaplan-Meier 
product-limit estimates for the two groups are 
used as the survivor functions (Kaplan & Meier, 
1958). However, (2) then only holds for 
uncensored data. The AHR function for 
censored data can be found in Kalbfleisch and 
Prentice, 1981.  
 

Methodology 
 

Simulation strategy 
 The hazard ratio estimates from the Cox 
model are evaluated under six scenarios:  
(1) proportional hazards, (2) increasing hazards, 
(3) decreasing hazards, (4) crossing hazards,  

(5) diverging hazards, and (6) converging 
hazards. The AHR is compared in the two-
sample case, corresponding to two groups with 
different hazard functions.   

Equal sample sizes of 30, 50, and 100 
observations per group are used along with 
average censoring proportions of 10, 25, and 50 
percent. Type I censoring is used along with 
early and late censoring. The number of 
repetitions used in each simulation is 10,000. 
For a given sample size, censoring proportion, 
and type of censoring (random, early, late), the 
mean Cox estimate is calculated for all scenarios 
except converging hazards. Because of the 
asymmetry in the distribution of values in the 
case of converging hazards, the median estimate 
is used. For interpretation purposes, the percent 
bias of the mean or median Cox estimate relative 
to the AHR is reported in tables.  
 For the case of random censoring, 
random samples of survival times ts are 
generated from the Weibull distribution. The 
hazard function for the Weibull distribution is 
λ(t) = αγ(αt)γ-1. The censoring times tc are 
generated from the exponential distribution with 
hazard function λ(t) = β, where the value of β is 
adjusted to achieve the desired censoring 
proportions. The time on study t is defined as: 
 

   
⎩
⎨
⎧

>
≤

=
csc

css

t tift

t tift
t  

 
The event indicator is denoted by d: 

⎩
⎨
⎧

=
occurred hasevent   theif1,

censored isn observatio  theif0,
d  

 
For early censoring, a percentage of the 

lifetimes are randomly chosen and multiplied by 
a random number generated from the uniform 
distribution. The percentage chosen is the same 
as the censoring proportion. The parameters of 
the uniform distribution are chosen so that the 
censoring times are short in order to achieve the 
effect of early censoring. For late censoring, a 
percentage of the longest lifetimes are chosen; 
this percentage is slightly larger than the 
censoring proportion. Of those lifetimes, a 
percentage corresponding to the censoring time 
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is the lifetime, ts, minus a random number 
generated from the uniform distribution. The 
parameters of the uniform distribution are now 
chosen so that the random numbers are relatively 
small in order to achieve the effect of late 
censoring. 

 
Results 

 
For each of the six scenarios concerning the 
hazard rates of the two groups, comparisons of 
the estimated hazards ratio from the Cox model 
to the AHR is made for random, early, and late 
censoring and for selected sample sizes and 
censoring rates. The comparison is made based 
on the percent difference (bias) between the 
average Cox hazard ratio estimate and the AHR; 
[(average Cox estimate – AHR)/AHR] x 100.  
 
Proportional Hazards 
 Survival times are generated from the 
Weibull distribution where γ=1, α=1 for group 1, 
and γ=1, α=2 for group 2. The AHR is 2.0 for 
this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 1. 

Under proportional hazards, the Cox 
model is correct. So, the estimated hazard ratio 
from the Cox model should be close to 2.0 in all 
cases. Table 1 reveals that the Cox estimate is 
slightly biased. This bias grows with decreasing 
sample size or increasing censoring proportion. 
Early censoring produces a more biased estimate 
than random or late censoring, especially for 
high censoring proportions.  
 
Increasing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=1.5, α=2 for group 
1, and γ=2, α=2 for group 2. The AHR is 1.2 for 
this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 2. 

The Cox estimates fall below the AHR 
for increasing hazards. The estimates closest to 
the AHR correspond to early censoring; these 
estimates are relatively stable regardless of 
censoring proportion or sample size. For random 
and late censoring the estimate decreases (higher 
bias) with increasing censoring proportion but 
remains stable relative to sample size. For early 

censoring the estimate is generally unbiased 
regardless of sample size or censoring 
proportion.   
 
Decreasing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=1 for group 
1, and γ=0.75, α=3 for group 2. The AHR is 0.44 
for this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 3. 

The Cox estimates fall below the AHR. 
These estimates decrease slightly with 
increasing censoring proportion. The estimates 
for early censoring are slightly less biased than 
for random or late censoring at the higher 
censoring proportions. The bias is not heavily 
influenced by sample size.  
 
Crossing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=2.5, α=0.3 for 
group 1, and γ=0.9, α=2 for group 2. The AHR 
is 15.4 for this situation. The percent of the bias 
for the mean Cox model estimate relative to the 
AHR is given in Table 4. 

The bias of the Cox estimates tends to 
be much smaller for 10% and 25% censoring 
proportions compared to the 50% censoring 
proportion. For 50% censoring, the Cox model 
tends to overestimate the AHR. The bias 
decreases with increasing sample size, especially 
for high censoring proportions.   
 
Diverging Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=1.0 for 
group 1, and γ=1.5, α=2 for group 2. The AHR 
is 0.536 for this situation. The percent of the bias 
for the mean Cox model estimate relative to the 
AHR is given in Table 5. 
 The Cox estimates are larger for random 
and late censoring than for early censoring at the 
highest censoring proportion. Generally, the 
sample size has little effect on the bias. For early 
censoring, the percent bias is approximately 
20% and is not strongly affected by sample size 
or censoring proportion. 
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Table 1. Proportional Hazards: percent bias of Cox model estimates relative to average hazard rate of 2.0. 

 
          Sample Size per Group 
 
Censoring % Censored     30     50    100 
 
Random 10%     5.5    4.0    2.0 
  25%     8.0    4.5    2.0 
  50%   11.0    5.5     3.0 
 
Early  10%     7.0    5.0    2.5 
  25%   10.0     6.0    3.5 
  50%   19.5   11.0     7.0 
 
Late  10%     5.5    4.0    2.0  
  25%     7.0    4.0    2.5 
  50%   10.5    6.5    3.5 
                                                                                                                      
 
Table 2. Increasing Hazards: percent bias of Cox model estimates relative to average hazard rate 
of 1.20. 

 
          Sample Size per Group 
 
Censoring % Censored      30       50     100 
 
Random 10%   -  6.7  -  7.5  -  8.3 
  25%   -  9.2  -10.8  -10.8 
  50%   -15.0  -17.5  -18.3 
 
Early  10%   -  4.2  -  5.8  -  6.7 
  25%   -  4.2  -  5.8  -  5.8 
  50%   -  1.7  -  5.0  -  5.8 
 
Late  10%   -  7.5  -  9.2  -10.0 
  25%   -12.5  -14.2  -15.0 
  50%   -20.8  -22.5  -23.3 
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Table 3. Decreasing Hazards: percent bias of Cox model estimates relative to average hazard rate 

of 0.441. 
 

          Sample Size per Group 
 
Censoring % Censored         30      50     100 
 
Random 10%   -  2.0  -  3.2  -  3.2 
  25%   -  4.3  -  5.7  -  5.9 
  50%   -  9.5  -11.3  -12.2 
 
Early  10%   -  1.4  -  2.5  -  2.3 
  25%   -  2.7  -  3.6  -  3.6 
  50%   -  5.4  -  5.9  -  6.6 
 
Late  10%   -  2.0  -  3.4  -  3.6 
  25%   -  4.9  -  6.8  -  7.3 
  50%   -10.9  -12.9  -13.8 
 
Table 4. Crossing Hazards: percent bias of Cox model estimates relative to average hazard rate of 
15.4. 

 
          Sample Size per Group 
 
Censoring % Censored       30       50    100 
 
Random 10%       5.8  -  7.1  -14.9 
  25%     19.5      4.5  -  5.2 
  50%     73.3    52.6    34.4 
 
Early  10%       1.3  -11.0  -18.8 
  25%       9.1  -  5.2  -15.6 
  50%     32.5      8.4  -  6.5 
 
Late  10%   -  1.9  -12.9  -19.5 
  25%   -  0.6  -  5.8  -  8.4 
  50%   100.6    81.8    67.5 
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Table 5. Diverging Hazards: percent bias of Cox model estimates relative to average 

hazard rate of 0.536. 
 

          Sample Size per Group 
 
Censoring % Censored      30     50    100 
 
Random 10%   -16.2  -18.3  -19.2 
  25%   -10.4  -12.9  -14.2 
  50%      7.8       3.7     1.1 
 
Early  10%   -19.0  -20.9  -22.0 
  25%   -19.0  -21.3  -22.6 
  50%   -18.8  -21.8  -23.7 
 
Late  10%   -16.4  -18.5  -19.4 
  25%   -  6.9  -  9.3  -10.4 
  50%    18.5     13.9    12.3 
 
 

Table 6. Converging Hazards: percent bias of Cox model estimates relative to average 
hazard rate of 7.15. 

 
          Sample Size per Group 
 
Censoring % Censored         30       50     100 
 
Random 10%   -  8.9  -11.2  -12.2 
  25%   -  5.6  -  8.3  -  9.4 
  50%      4.0       1.9  -  0.6 
 
Early  10%   -  9.4  -11.3  -12.4 
  25%   -  6.2  -  8.8  -10.2 
  50%      2.4    -  0.8  -  4.3 
 
Late  10%   -10.2  -12.4  -13.1 
  25%   -  7.3  -  8.4  -  8.1 
  50%    10.5       9.2     8.1 
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Converging Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=6.0 for 
group 1, and γ=1.2, α=1 for group 2.  The AHR 
is 7.15 for this situation.  The percent of the bias 
for the median Cox model estimate relative to 
the AHR is given in Table 6. The median Cox 
estimate increases with increasing censoring 
proportion.  The bias is not heavily influenced 
by sample size.  

 
Conclusion 

 
Just as with the classical maximum likelihood 
estimator, the maximum partial likelihood 
estimator is not unbiased, but it is asymptotically 
unbiased (Kotz & Johnson, 1985, p. 591-593).  
This behavior is evident in Table 1, where the 
Cox estimates can be seen to be larger than the 
AHR, but the bias decreases with increasing 
sample size regardless of the type of censoring 
or the censoring rate.   
 Table 7 shows those instances where the 
average percent bias exceeds 20% in absolute 
value; the entries are the percent bias averaged 
over sample size. 

There is no serious bias for the 
proportional hazards case regardless of type of 
censoring or censoring rate.   Similarly, there is 
no serious bias in the cases of decreasing or 
converging hazards.   
 Under-estimation occurs for increasing 
hazards at the 50% censoring rate with late 
censoring.  It also occurs for diverging hazards 
with early censoring regardless of censoring 
rate.  Over-estimation occurs for crossing 
hazards at the 50% censoring rate with random 
and late censoring.   

One might suspect that late censoring 
would render the least biased estimates since 
such a data structure contains more information 
than early or random censoring.  However, late 
censoring leads to severe bias for increasing and 
crossing hazards when the censoring proportion 
is high.  For lower censoring proportions (25% 
or lower), there is no severe bias for any of the 
nonproportionality models except diverging 
hazards. 
 As a practical matter, one can obtain 
descriptive statistics from a given data set, 
including percent censored, sample sizes, and a 

plot of the hazard curves.  From this 
information, one can approximate the magnitude 
and nature of the risk of biased estimation of the 
hazard ratio by the Cox model.  Generally, the 
least biased estimates are obtained for the lower 
censoring proportions (10% and 25%) except for 
diverging hazards.  In terms of bias, early 
censoring is problematic only for diverging 
hazards; late censoring is problematic for 
increasing and crossing hazards with the 50% 
censoring rate; and random censoring is 
problematic for crossing hazards with the 50% 
censoring rate.  The case corresponding to the 
least occurrence of severe bias is the one 
involving random censoring with a censoring 
rate of 25% or less. 
 In practice, the experimenter typically 
has some control over sample size and perhaps 
the censoring proportion.  For instance, the 
experimenter may be able to minimize censoring 
proportion, depending on the situation, through 
effective study design and experimental 
protocol.  Minimizing the censoring rate is 
generally recommended, especially for 
increasing and crossing hazards.  Early 
censoring is appreciably affected by censoring 
proportion only for constant and crossing 
hazards.  Sample size has the strongest effect on 
constant and crossing hazards, especially at 
higher censoring proportions, where higher 
sample sizes lead to less biased estimates. 
 In practical applications, the 
proportional hazards assumption is never met 
precisely.  If the deviation from the proportional 
hazards assumption is severe, then remedial 
measures should be taken.  However, in many 
instances the model diagnostics reveal only a 
small to moderate deviation from the 
proportional hazards assumption.  In these cases, 
the Cox model estimate of the hazard ratio is 
used for interpretation purposes in the presence 
of small to moderate assumption violations.  
This study characterizes the consequences of 
this interpretation in terms of bias, taking into 
account censoring rate, type of censoring, type 
of nonproportional hazards, and sample size.  
The general results indicate that the percent bias 
relative to AHR is under 20% in all but a few 
specific instances, as outlined above.   
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Table 7. Percent bias of the average Cox regression model estimates of the hazard ratio relative to 

the AHR averaged over sample size. 
 
          Censoring 
 
Hazards % censoring  random early  late  
 
constant  10  *  *  *      
   25  *  *  * 
   50  *  *  * 
 
increasing  10  *  *  * 
   25  *  *  * 
   50  *  *  -22   
 
decreasing  10  *  *  * 
   25  *  *  * 
   50  *  *  * 
 
crossing  10  *  *  * 
   25  *  *  * 
   50  53  *    83 
 
diverging  10  *   -21  * 
   25  *   -21  * 
   50  *   -21  * 
 
converging  10  *  *  * 
   25  *  *  * 
   50  *  *  * 
 
 
*under 20% in absolute value 
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Variants of Cohen’s d, in this instance dt and dadj, has the largest influence on U1 measures used with 
smaller sample sizes, specifically when n1 and n2 = 10. This study indicated that bias for variants of d, 
which influence U1 measures, tends to subside and become more manageable, in terms of precision of 
estimation, around 1% to 2% when n1 and n2 = 20. Thus, depending on the direction of the influence, both 
dt and dadj are likely to manage bias in the U1 measure quite well for smaller to moderate sample sizes. 
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Introduction 
 
In his seminal work on power analysis, Jacob 
Cohen (1969; 1988) derived an effect size 
measure, Cohen’s d, as the difference between 
two sample means. Using n, M, and SD from 
two sample groups, d provided “score distances 
in units of variability” (p. 21), by translating the 
means into a common metric of standard 
deviation units pertaining to the degree of 
departure from the null hypothesis.  

The common formula for Cohen’s d 
(1988) is 
 

                          1 2

^ pooled

X X
d

−=
σ

                      (1) 

 

where 1X and 2X are sample means and 
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 Cohen’s d can be calculated if no n, M, 
or SD for two groups is reported via t values and 
degrees of freedom, termed dt here, where it is 
assumed that n1 and n2 are equal (Rosenthal, 
1991): 

                                1

2t
d

df
=                         (2) 

 
where t = t value, and df = n1 + n2 - 2 

Kraemer (1983) noted that the 
distribution of Cohen’s d was skewed and heavy 
tailed, and Hedges (1981) found that d was a 
positively biased effect size estimate. Hedges 
proposed an approximate, modified estimator of 
d, which will be termed dadj here, where: 

 

                  ( ) 3
1

4 1
c m

m
≈ −

−
           (3) 

where m = n1 + n2 – 2. 
Cohen (1969; 1988) revisited the idea of 

group overlap, which was studied by Tilton 
(1937), and the degree of overlap (O) between 
two distributions;  and also in close proximity to 
the time of Cohen’s initial work (i.e., 1969) by 
Elster and Dunnete (1971). This resulted in the 
U1 measure, which was derived from d as a 
percent of non-overlap. As Cohen (1988) 
explained, “If we maintain the assumption that 
the populations being compared are normal and 
with equal variability, and conceive them further 
as equally numerous, it is possible to define 
measures of non-overlap (U1) associated with d” 
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(p. 21). 
Algebraically, U1 is related to the 

cumulative normal distribution and is expressed 
as (Cohen, 1988): 

                  

/ 2
1

/ 2

2

2

2 1

2 1

d

d

P
U

P

U

U

−
=

−=
                 (4)  

 

where d = Cohen’s d value, P = percentage of 
the area falling below a given normal deviate, 
and U2 = Pd/2. 

 In SPSS (Statistical Package for the 
Social Sciences) syntax, U1 is calculated using 
the following expressions: 
 
Compute U = CDF.NORMAL((ABS(d)/2),0,1). 
Compute U1 = (2*U-1)/U*100. 
Execute. 
 
where d = Cohen’s d value, ABS = absolute 
value, CDF. NORMAL = cumulative probability 
that a value from a normal distribution where M 
= 0 and SD = 1 is < the absolute value of d/2. 

Thus, the link between d and U1 was 
seen by Cohen (1988) in that, “d is taken as a 
deviate in the unit normal curve and P [from 
expression 4] as the percentage of the area 
(population of cases) falling below a given 
normal deviate” (p. 23). 

For Cohen (1998), non-overlap was the 
extent to which an experiment or intervention 
had had an effect of separating the two 
populations of interest. A high percentage of 
non-overlap indicated that the two populations 
were separated greatly. When d = 0, there was 
0% overlap and U1 = 0 also, or as Cohen (1988) 
noted “either population distribution is perfectly 
superimposed on the other” (p. 21). Therefore, 
the two populations were identical. 

The assumptions for the percentage of 
population non-overlap are: 1) the comparison 
populations have normality and 2) equal 
variability. Further, Cohen (1988) added that the 
U1 measure would also hold for samples from 
two groups if “the samples approach the 
conditions of normal distribution, equal 
variability, and equal sample size” (p. 68). 

Cohen (1988, p. 22) went on to produce 

Table 2.2.1, which consisted of non-overlap 
percentages for values of d. Assuming a normal 
distribution, this table showed that, for example, 
a value of d = .20 would have a corresponding 
U1 = 14.7%, or a percentage of non-overlap of 
just over 14%. That is, the distribution of scores 
for the treatment group overlapped only a small 
amount with the distribution of scores for the 
non-treatment group, which was manifested in 
the small effect size of .20. As the value of d 
increased, so would the percentage of non-
overlap between the two distributions of scores, 
which indicated that the two groups differed 
considerably. 
 

Methodology 
 
After an extensive review of the literature, it was 
found that very few studies included effect size 
indices with tests for statistical significance and 
none produced a U1 measure when any of the 
variants of d were reported. Further, beyond 
studies, for example, by Hedges (1981) or 
Kraemer (1983) related to the upward bias and 
skewness associated with d in small samples, it 
appears in the scholarly literature that d as a 
percent of non-overlap has not been studied to 
evaluate any bias affiliated with variants of d, dt 
and dadj, substituted for it in the calculation of 
U1, except for what has been provided by Cohen 
(1988).  

Thus, the intent of this research was to 
examine U1 under varying sizes of d and n (i.e., 
n1 = n2). That is, this research looked at d values 
of .2, .5, .8, 1.00, and 1.50, which represent in 
educational research typically small to extremely 
large effect sizes. The sizes of n were 10, 20, 40, 
50, 80, and 120, which represent in educational 
research small to large sample sizes. It should be 
noted, though, as was first discussed by Glass, 
McGaw, and Smith (1981), and reiterated by 
Cohen (1988), about the previously-mentioned d 
effect size target values and their importance:  
 

these proposed conventions were set forth 
throughout with much diffidence, 
qualifications, and invitations not to 
employ them if possible. The values 
chosen had no more reliable a basis than 
my own intuition. They were offered as 
conventions because they were needed in 



BIAS AFFILIATED WITH TWO VARIANTS OF COHEN’S d 102 

a research climate characterized by a 
neglect of attention to issues of magnitude 
(p. 532). 

 
Using the work of Aaron, Kromrey, and 

Ferron (1998), this study’s tables will display 
the bias and proportional bias found in each U1 
measure found via both dt and dadj. As noted in 
the Aaron et al. research, the current study 
defines bias as the difference between the tabled 
value of U1, derived from the standard d formula 
and presented by Cohen (1988) as Table 2.2.1, 
and the presented U1 value resultant from dt and 
dadj., respectively. Proportional bias, or the “size 
of [the] bias as a proportion of the actual effect 
size estimate” (Aaron et al., p. 9), will be 
defined as the bias found above divided by the 
presented estimate for U1 derived from both dt 
and dadj, respectively (see Tables 1 and 2). 

 
Results 

 
Using syntax written in SPSS v. 12.0 to obtain 
the results of the study, Tables 1 and 2 indicated, 
as would be expected, that regardless of the 
variant of d used, as the value of d increased, the 
bias in U1 decreased. For example, Table 1 
shows that at a small value of d = .2, and also at 
a moderate value of d  = .5,  the bias for small to 
moderate sample sizes ranged from about 1% to 
over 4%. As the value of d increased into the 
large effect size range of d = .8 to 1.50, the bias 
for the same sample sizes ranged from about 3% 
to under 1%. 
 The bias related to the U1 measure for 
both  forms  of  d used in this  study was  similar 
with both variants of d, the bias was constant 
with small sample sizes having 3% to 4% bias, 
moderate  sample  sizes  having  about  1%,  and  
 

large sample sizes having very small amounts of 
bias. More specifically, it did appear, though, 
that the bias related to dadj decreased more 
readily after d =.2 than was seen with dt. That is, 
when d = .20, the bias for dt = 4.5% and the bias 
for dadj = 4.3 %, which were very similar. 
However, when d = .5, dt incurred a bias of 
4.4%, while the bias for dadj = 3.5%. This trend 
continued to d = 1.50, with dadj incurring less 
bias than dt, or stated another way, dt had more 
of a biased effect on U1.  dt’s over-estimation 
property was also noted by Thompson and 
Schumacker (1997) in a study that assessed the 
effectiveness of the binomial effect size display. 
 

Conclusion 
 
Finally, as was found by Aaron et al. (1998), 
Hedges (1981), and Kraemer (1983), this study 
added to the literature that the biases found in 
variants of d, in this instance dt and dadj, had the 
largest influence on U1 measures used with 
smaller sample sizes, specifically when n1 and n2 
= 10. Although not looking at U1 measures per 
se, the Aaron et al., Hedges, and Kraemer 
studies showed the effect of small sample sizes 
on d and variants of d when n1 and n2 = 5 or 10. 
 The current study indicated that bias for 
variants of d tended to subside and become more 
manageable, in terms of precision of estimation, 
around 1% to 2% when n1 and n2 = 20, or 
beyond very small sample sizes of n1 and n2 = 5 
and 10. This is favorable for educational and 
behavioral sciences research designs that contain 
sample sizes typically of less than 100 
participants (Huberty & Mourad, 1980). Thus, 
both dt and dadj tended to manage bias in the U1 
measure quite well for smaller to moderate 
sample sizes. 

 

Table 1: Bias Affiliated with Estimates of  U1 Derived from dt 

 
n1 = n2 d U1 U1 via dt Bias 

(U1 – U1 dt) 
Proportional 

Bias 
(Bias / U1 dt) 

10 .2 14.7 15.4 .7 .045 
20 .2 14.7 15.1 .4 .026 
40 .2 14.7 14.9 .2 .013 
50 .2 14.7 14.8 .1 .007 
80 .2 14.7 14.8 .1 .007 
120 .2 14.7 14.7  0      0  
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Table 1 Continued. 
 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 .5 33.0 34.5 1.5 .044 
20 .5 33.0 33.7 .7 .021 
40 .5 33.0 33.4 .4 .012 
50 .5 33.0 33.3 .3 .009 
80 .5 33.0 33.2 .2 .006 
120 .5 33.0 33.1 .1 .003 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 .8 47.4 49.2 1.8 .037 
20 .8 47.4 48.3 .9 .019 
40 .8 47.4 47.8 .4 .008 
50 .8 47.4 47.7 .3 .006 
80 .8 47.4 47.6 .2 .004 
120 .8 47.4 47.5 .1 .002 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 1.00 55.4 57.4 2.0 .035 
20 1.00 55.4 56.4 1.0 .018 
40 1.00 55.4 55.9 .5 .009 
50 1.00 55.4 55.8 .3 .005 
80 1.00 55.4 55.6 .2 .004 
120 1.00 55.4 55.5 .1 .002 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 1.50 70.7 72.7 2.0 .028 
20 1.50 70.7 71.7 1.0 .014 
40 1.50 70.7 71.2 .5 .007 
50 1.50 70.7 71.1 .4 .006 
80 1.50 70.7 70.9 .2 .003 
120 1.50 70.7 70.8 .1 .001 
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Table 2: Bias Affiliated with Estimates of  U1 Derived from dadj 

 
n1 = n2 d U1 U1 via dadj Bias 

(U1 – U1 dadj) 
Proportional 

Bias 
(Bias / U1 dadj) 

10 .2 14.7 14.1 .6 .043 
20 .2 14.7 14.4 .3 .021 
40 .2 14.7 14.6 .1 .007 
50 .2 14.7 14.6 .1 .007 
80 .2 14.7 14.6 .1 .007 
120 .2 14.7 14.7  0      0 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 .5 33.0 31.9 1.1 .035 
20 .5 33.0 32.5 .5 .015 
40 .5 33.0 32.8 .2 .006 
50 .5 33.0 32.8 .2 .006 
80 .5 33.0 32.9 .1 .003 
120 .5 33.0 33.0 0      0 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 .8 47.4 45.9 1.5 .033 
20 .8 47.4 46.7 .7 .015 
40 .8 47.4 47.1 .3 .006 
50 .8 47.4 47.1 .3 .006 
80 .8 47.4 47.2 .2 .004 
120 .8 47.4 47.3 .1 .002 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 1.00 55.4 53.8 1.6 .030 
20 1.00 55.4 54.7 .7 .013 
40 1.00 55.4 55.1 .3 .005 
50 1.00 55.4 55.1 .3 .005 
80 1.00 55.4 55.2 .2 .004 
120 1.00 55.4 55.3 .1 .002 

 
n1 = n2 d U1 U1 via dadj Bias 

(U1 – U1 dadj) 
Proportional 

Bias 
(Bias / U1 dadj) 

10 1.50 70.7 69.1 1.6 .023 
20 1.50 70.7 69.9 .8 .011 
40 1.50 70.7 70.3 .4 .006 
50 1.50 70.7 70.4 .3 .004 
80 1.50 70.7 70.5 .2 .003 
120 1.50 70.7 70.6 .1 .001  
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Some Guidelines For Using Nonparametric Methods For 
Modeling Data From Response Surface Designs 

 
            Christine M. Anderson-Cook                       Kathryn Prewitt 
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Traditional response surface methodology focuses on modeling responses using parametric models with 
designs chosen to balance cost with adequate estimation of parameters and prediction in the design space. 
Using nonparametric smoothing to approximate the response surface offers both opportunities as well as 
problems. This article explores some conditions under which these methods can be appropriately used to 
increase the flexibility of surfaces modeled. The Box and Draper (1987) printing ink study is considered 
to illustrate the methods. 
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Introduction 
 
In his review of the current status and future 
directions in response surface methodology, 
Myers (1999) suggests that one of the new 
frontiers is to utilize nonparametric methods for 
response surface modeling. Explored in this 
article are some of the key issues influencing the 
success of these methods used together. 
Combining nonparametric smoothing 
approaches, which typically depend on space-
filling samples of points in the desired prediction 
region, with response surface designs, which 
primarily focus on an economy of points for 
adequate prediction of prespecified parametric 
models, presents some unique challenges. 
Nonparametric approaches are typically used 
either as an exploratory data analytic tool in 
conjunction with a parametric method or 
exclusively  because  a  parametric model  didn't 
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provide the necessary sensitivity to curvature. 
The number and location of design 

points impose a limitation on the order of the 
polynomial the parametric model can 
accommodate. This, in turn, imposes a limitation 
on the type of curvature of the fitted model. 
Standard response surface techniques using 
parametric models often assume a quadratic 
model. Nonparametric techniques assume a 
certain amount of smoothness, but do not 
impose a form for the curvature of the target 
function. Local polynomial models which fit a 
polynomial model within a window of the data 
can pick up important curvature, which a 
parametric fit typically cannot. Issues of what 
designs are suitable for utilizing nonparametric 
methods, appropriate choices of smoother types 
as well as bandwidth considerations will all be 
discussed. Important limitations exist for 
incorporating these methods into surface 
modeling, because ill-defined or nonsensical 
models can easily be generated without careful 
consideration of how to blend the method and 
design. 

Vining and Bohn (1998) utilized the 
Gasser-Mueller estimator (G-M) (see Gasser & 
Mueller, 1984) which is a kernel based 
smoothing method to estimate the process vari-
ance for a dual response system for the Box and 
Draper (1987) printing ink study. In that study, a 
full 33 factorial design was used with three 
replicates per combination of factors. Each 
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variable was considered in the range [-1, 1] for 
the coded variables. Dual models were 
developed to find an optimal location by 
modeling both the mean of the process, which 
has a desired target value of 500, and the 
variance of the process, which ideally would be 
minimized. Using a parametric model for the 
mean and a nonparametric model for the 
variance, Vining and Bohn (1998) obtained a 
location in the design space with a substantially 
improved estimate mean square error (MSE) 
over parametric models for both mean and 
variance presented by Del Castillo and 
Montgomery (1993) and Lin and Tu (1995). The 
estimated MSE was the chosen desirability 
function for simultaneously optimizing the mean 
and variances of the process. 

The Box and Draper (1987) example has 
some interesting features that suggest con-
sideration of nonparametric methods for 
modeling the variability of the data set. Because 
the mean response has been carefully studied 
and appears to be relatively straightforward to 
model, the focus is on the characteristics and 
modeling of the standard deviation. This is only 
half of the problem for the dual modeling 
approach, but the nonparametric issues here are 
many.  

First, an overview of the characteristics 
of that part of the data set is provided. Figure 1 
shows a plot of the 27 estimates of the standard 
deviation at the 33 factorial locations. Clearly, 
there is no easily discernible pattern in this 
response such as a simple function of the three 
factors. In addition, the range of the data should 
give us some concern. Within the range of the 
experimental design space, the standard 
deviation varies from a value of 0 (all three 
observations at each of (-1,-1,0) and (0,0,0) were 
measured to be exactly the same) to a value of 
158.2 at (1,0,1). 

This should alert one to a possible 
problem immediately as this range occurring in 
an actual process seems extreme. Figure 2 shows 
several different ranges of response standard 
deviations from 1 to 20. It is uncertain as to what 
a maximal proportional difference between 
minimum and maximum variance should be, 
however, a 1:10 or 1:20 ratio already seems 
excessive for most well-controlled industrial 
processes. Hence, one of the goals of the 

modeling should likely be to moderate this range 
of observed variability to more closely reflect 
what is believed to be realistic for the actual 
process. 

If the modeling undersmoothes the data 
(approaching interpolating between observed 
points), a risk exists of basing the dual response 
optimization on non-reproducible idiosyncrasies 
of the data. If the data is oversmoothed, 
important curvature is flattened making it 
difficult to find the best location for the process. 
This perpetual problem of modeling is doubly 
important here as the results of the model are 
being used to determine weights for the 
modeling of the mean of the process as well as 
for the optimization of the global process 
through the dual modeling paradigm. Hence, as 
different models for the variability are 
considered, predicted ranges will be noted 
throughout the design space. 

Reviewed in this article are some of the 
basics of nonparametric methods and their 
implications for the designed experiment are 
discussed with limited sample size and 
structured layout of design points. Then 
compared are different nonparametric 
approaches to the existing parametric choices 
and those presented in Vining and Bohn (1998) 
for this particular example, and conclude with 
some general recommendations for how to 
sensibly and appropriately use nonparametric 
methods for response surface designs 
 
Smoothing Methods 

Smoothing methods are distinct from 
traditional response surface parametric modeling 
in that they use different subsets of the data and 
different weightings for the selected points at 
different locations in the design space. There are 
several popular nonparametric smoothing 
methods such as the Nadaraya-Watson 
(Nadaraya, 1964) and Watson (1964) which fits 
a constant to the data in a window, the Gasser-
Mueller (Gasser & Mueller, 1984) which is a 
convolution-type estimator, spline smoothing 
(Eubank, 1999), and local polynomial methods 
(Fan & Gijbels, 1996) which fit polynomials in 
the local data window. 
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Figure 1: Printing Ink standard deviation raw data 
 

  
 

Figure 2: Range of observed responses likely with different values for a variety of 
standard deviations 

  
 
 



ANDERSON-COOK & PREWITT 109 

The local polynomial methods (lowess) 
have several positive properties for this problem. 
Generally, these methods fit a polynomial within 
a window of data determined by a bandwidth 
with the kernel function providing weights for 
the points. The estimators are linear 
combinations of the responses just as the 
familiar parametric regression estimators. The 
Nadaraya-Watson estimator fits a constant in the 
window so it is a special case of the local 
polynomial method. When fitting polynomials 
of order greater than one, these estimators have 
been shown to naturally account for the bias 
issues on the boundary (Ruppert & Wand, 
1994). In the problem, most of the data (26 of 27 
locations) are on the edge, so the concern should 
be with the behavior of estimators on the 
boundary.  

Typically the nonparametric literature 
differentiates between behavior on the boundary 
and behavior in the interior. The variance of this 
estimator conditioned on the data is unbounded. 
The unconditional variance of the estimator is 
actually infinite (Seifert & Gasser, 1996) if the 
number of points in the window is small (two or 
less in the local linear, univariate X case). 
Consequently, the number of points in the 
window should be greater than two in the 
univariate X case and in practice greater than the 
minimum necessary to calculate the estimator. 
The conditional unbounded variance is due to 
the fact that the coefficients of the iY ’s in the 

estimator can be positive or negative).  
Problem can be envisioned as all data 

points are on the edges of a cube with the 
exception of the point (0, 0, 0). The minimum 
bandwidth which would include at least 4 data 
points would be larger than 1 (half of the range 
of each coded variable) otherwise the number of 
points in the window would be too small to 
allow estimation. 

Observe n independent data points 
( , iYiX ) where 1 2( , , , )i i ipX X X= �iX  are the 

locations in the design space, and iY  is the 

response. The model assuming homoscedastic 
error for nonparametric function estimation is: 

    
 ( ) ( )i iY m σ ε= +i iX X         (1) 

where ( ) 0iE ε =  with ( ) 1iVar ε =  and 
2 ( ) ( | )x Var Y X xσ = = . The smoothing 

function, m(.) is also called the regression 
function, ( | )E Y X x= . It is assumed that the 
variance of the error term for the problem of 
modeling the printing ink standard deviations 
would be reasonably constant. 

Kernel smoothing nonparametric 
methods involve the choice of a kernel function 
and a bandwidth as a smoothing parameter 
which determines the window of data to be 
utilized in the estimation process. The idea is to 
weight the data according to its closeness to the 
target location, hence to estimate 0( )m x , greater 

weight is given to the iY  values with associated 

iX  values close to 0x . 

Spline smoothing methods are 
categorized as a nonparametric technique and 
involve a smoothing parameter but no kernel 
function. One of the few references to an 
application of nonparametric methods to 
response surface problems is Hardy et al. (1997) 
who explored the use of R-splines with a 
significantly larger number of design points and 
with the goal of selecting variables for the 
regression model rather than obtaining a 
plausible curve. 

There are special considerations when 
using nonparametric methods for the printing 
data problem which are next outlined. Most of 
the literature regarding nonparametric methods 
shows application to space-filling designs and a 
larger number of sample points. The printing 
example has 27 data points which is 
significantly smaller than the data typically seen 
in the smoothing literature. Most of these points 
are on the boundary or edge. It is known that 
nonparametric estimators can exhibit so-called 
boundary effects. If a method such as the 
Gasser-Mueller (Gasser & Mueller, 1984) is 
used, the bias is bounded but not decreasing with 
increased sample size as one would want unless 
kernel functions called boundary kernels are 
used. This means that a different kernel needs to 
be used when a point is on the boundary. 

Local polynomial methods of order 
greater than 1 incorporate naturally the boundary 
kernels necessary. These methods are easily 
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explained by comparing them to a weighted least 
squares problem where the kernel function 
provides the weights and the estimate is 
provided by solving a familiar looking matrix 
operation. Most of the nonparametric methods 
literature provides results and examples for 
sample sizes much larger than the printing data 
and also provides leading terms of the bias and 
variance to describe the behavior of the 
estimator which implies that there are negligible 
terms as n grows large. The problem then is 
much different than has been addressed before: 
the sample size is small, the design is not space-
filling and most of the points are on the edge. 
 
Bandwidth issues  

One of the most important choices to 
make when using a nonparametric method of 
function estimation is the smoothing parameter. 
For kernel methods, the bandwidth is such a 
parameter. Large bandwidths provide very 
smooth estimates and smaller bandwidths 
produce a more noisy summary of the 
underlying relationship. The reason for this 
behavior can be seen in the leading terms of the 
bias and variance for a point in the interior in the 
univariate explanatory variable case: 

 
2 21

2( ( )) ''( ) ( )Bias m x m x b K u u du≈ ∫
�

 

and   
 

          

2 2( )
( ( ))

( )

K u du
Var m x

nbf x

σ
≈ ∫�

         (2) 

 
where f(x) is the density of the X explanatory 
variable, K(.) the kernel function, and b the 
bandwidth. The effect of the bandwidth can be 
observed: large values of the bandwidth increase 
the bias and reduce the variance of the predicted 
function; small values decrease the bias and 
increase the variance. This difficulty is called 
the bias-variance tradeoff. Bandwidth selection 
methods can be local (potentially changing at 
each point at which the function is to estimated) 
or global (where a single bandwidth is used for 
the entire curve). Typically, the bandwidth is 
often chosen to minimize an optimality criterion, 
such as an estimate of the leading terms of the 
MSE or cross-validation (see Eubank, 1988, Fan 

& Gijbels, 1995; Prewitt & Lohr, 2002). The 
optimality quantities are more accurate when 
data sets are larger, i.e., the leading terms of the 
MSE leave out negligible terms which are often 
not negligible when n is small. In simulation 
studies with bivariate data, sample sizes of n < 
50 are not seen. The current problem, on the 
other hand, involves multivariate data with three 
explanatory variables and one response with a 
total of only 27 data points. Minimizing a 
quantity such as SSE where 
 

2

1

ˆ( ( ))
n

i
i

SSE Y m
=

= −∑ iX  (3) 

 
cannot be used for the purpose of goodness of fit 
because without a parametric form for m(.), SSE 
is minimized with ˆ ( )iY m= iX , i.e. the curve 

estimate which minimizes this quantity is 
obtained by connecting the points. The purpose 
of the bandwidth selection method is essentially 
to solve the bias-variance tradeoff difficulty 
described previously. The second derivative in 
the bias term suggests that these estimators 
typically underestimate peaks and overestimate 
valleys which is sometimes an argument for 
using a local bandwidth choice since the 
expectation would be to use a smaller bandwidth 
in regions where there are more curvature. 

Because the number of points in the 
problem is small, it would be more sensible to 
use a global bandwidth, one bandwidth for the 
entire curve. There are not enough points to 
justify accurate estimation of different local 
bandwidths. This is not to say that in the future 
it may be discovered that in fact different 
bandwidths should be used to estimate different 
portions of the surface, but existing methods 
(Fan & Gijbels, 1995; Prewitt, 2003) will not 
work. Methods for local bandwidth selection 
have relied on the fact that each candidate 
bandwidth for a particular point 0x  will 

incorporate additional data points as the 
bandwidth candidates become larger which may 
not be the case for the problem. 
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Methodology 
 
Nonparametric Methods for the Sparse Response 
Surface Designs 

Two methods were considered that take 
into account the special circumstances of the 
problem as previously outlined. The fitted 
constant (C) version of the local polynomial 
(Nadaraya, 1964; Watson, 1964) and the local 
linear version (LL) (see Fan & Gijbels, 1996) 
were used. The benefit of fitting these models is 
that curvature can be achieved without fitting 
higher order polynomials as is necessary when a 
completely parametric model is fit. There is the 
potential to capture different kinds of curvature 
consistent with what might be reasonable given 
the nature of the design implemented. The 
Epanechnikov kernel was used 

    

 2( ) 0.75(1 ) (| | 1)K u u I u= − ≤         (4) 
 
which is simple and has optimal properties 
(Mueller, 1988). 

At the point 1 2 3( , , )x x x=x  the 

weighted least squares estimate with a kernel 
function as the weight. The two methods can be 
described as follows where ˆ ( )Cm x is the local 

polynomial with fitted constant: Let the weight 
function be defined as:  

3

3
1

1
1

( , ) j ij
b b

j

x X
K x X K

b=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ .  

 
This is called a product kernel because it is the 
product of three univariate kernel functions. The 
kernel function equals zero when data points are 
outside the window defined by the bandwidth 
and has a nonzero weight when iX  is inside the 

window. It is appropriate to use the same 
bandwidth in each of the three directions 
because the scaling of the coded variables in the 
set-up of the response surface design makes 
units comparable in all directions. The definition 
below resembles a weighted least squares 
estimator when a constant is fit. 
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                                                                    (5) 
 
The second method considered is 

defined below and resembles a weighted least 
squares estimator where a plane is fit with the 
data centered at x so that the desired estimator is 

0β̂  and the "LL" stands for local linear with no 

higher order terms. 
 

0 0 1 1
1

ˆ ( )

arg min ( ( )

LL

n

i
i

m

Y xβ β β
=

= − − −∑ i1X

x

 

2
2 2 3 3( ) ( )) ( )bx x Kβ β− − − −i2 i3 iX X x, X  

                                                                         (6) 
One can also think of the above 

estimators as motivated by a desire to estimate 
( )m x  by using the first few terms of its Taylor 

expansion, ( )NWm x  is constructed by 

considering an interval around x and estimating 
the first term of the Taylor expansion around x 
where ( )LLm x uses estimates of first order terms 

of the Taylor expansion as an estimate of ( )m x . 
 
Printing Example Smoothing 

 It has already been noted that some 
particular issues concerning the application of 
nonparametric smoothing to a sparse small set of 
data with the vast majority of design locations 
on the edges. A related issue to consider is what 
type of surface is possible or likely. If the 
variability of the process can change very 
quickly and dramatically within the range of the 

design space, then the 33 factorial design is an 
inadequate choice and should be replaced by a 
much larger space filling design.  

However, if the surface should change 
moderately slowly throughout the region, then 

the 33 design may be adequate. As well, if the 
surface is likely to be relatively smooth and 
undergoes changes slowly, then a nonparametric 
method should be selected and bandwidth that 
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uses information from several nearby points to 
estimate the surface locally. Examined now are 
some of the implications of choosing different 

bandwidths for this 33 factorial design. 

The 33 factorial design is comprised of 
27 locations on the cube: 8 corner points, 12 
edge points, 6 face center points and one center 
point. Notably, all but one of the points are on 
the edge of the design space. This is standard 
practice for parametric estimation, because D- 
and G-efficiency both benefit from maximal 
spread of points to the edges of the design space.  

However, this set-up coupled with the 
extreme small sample size is highly unusual for 
nonparametric approaches. One of the 
advantages of the structured locations selected 
for a response surface design is that allows the 
investigation of the characteristics of estimation 
for different nonparametric bandwidth choices. 
For example, using the Epanechnikov kernel 
weighting function, the number of design points 
can be specified that will be used for estimation 
at each of the four categories of design points. 

Table 1 shows the effect of bandwidth 
on different locations as well as the range of the 
non-zero weights for particular bandwidths used 
for the local estimation. Bandwidths less than 
0.5 of the total range of each variable use only 
the observation at that location, while a 
bandwidth of 1 uses all observations. The 
weights associated with each design location 
change for different weights. As the bandwidth 
increases, not only do more locations get used, 
but also their relative contributions to the 
estimate become more comparable. For 
example, for a bandwidth of 0.6 at one of the 
design points, the observation at the location to 
be estimated is weighted approximately 35 times 
more (1.25 / 0.036) than the most distant non-
zero weighted observations. As well, for a 
design point and a bandwidth of 1, this ratio 
drops to 2.4 (0.75 / 0.316) and the points used 
are also further away. 

Various authors considered different 
models for the standard deviation for this data 
set. Parametric models considered include a 
linear model in all three factors on log(standard 

deviation +1), shown in Figure 3(a) with an R2 

of 29.4 %. The transformation of the standard 
deviation was done to improve fit, and to avoid 

negative predicted values. The range of 
predicted standard deviation values back on the 
original scale for this model range from 5.0 to 
113.5, which gives a ratio of maximum to 
minimum standard deviation of 22.7. A full 
quadratic model for log(standard deviation +1) 

yields an R2 of 40.6 % and is shown in Figure 
3(b). Here, the ratio of maximum to minimum 
standard deviation is 25.5 (145.1/5.7). 

Fitting the constant (C) and local first-
order polynomial (LL) methods for a variety of 
bandwidths to the data were also considered. 
Figures 4 (a), and (b), show predicted surfaces 
for the untransformed standard deviation with 
the constant C method and bandwidths of 0.8 
and 1.0, respectively. Figures 5(a), (b) and (c), 
show the LL method for the same response and 
bandwidths of 0.6, 0.8 and 1.0. For each of the 
parts of the figures, three slices of the design 
space are shown, with the third factor, C, at the 
low, middle and high value. Figures 6(a), (b) and 
7(a), (b) show the predicted surfaces when 
modeling using the log(standard deviation +1) 
response and bandwidths of 0.8 and 1.0. As the 
bandwidth increases, the surface becomes 
smoother, reflecting the idiosyncrasies of the 
data less.  

Tables 2 and 3 summarize the ranges of 
predicted values throughout the design space 
observed for the different methods for both the 
untransformed and log(standard deviation +1) 
responses. The C method tends to moderate the 
range of the predicted values considerably more 
than either the parametric or the lowess models. 
This is due the relative lack of influence of edge 
effects with extreme values. The transformation 
to the log-scale does not have a consistent effect 
on the range of prediction for the different 
approaches, with it moderating the range of 
predicted values for only some of the 
bandwidths. The LL method is susceptible to 
prediction of larger values near the edges of the 
design space, with a seeming sensitivity to edge 
effects. Notably missing from this comparison is 
the best Vining and Bohn (1998) smoother 
(Gasser-Mueller), which uses a bandwidth of 0.3 
of the total range. As noted in Table 1, this small 
bandwidth is essentially an interpolator with 
most regions having only a single observation 
used for the estimation. 
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Table 1: Number of points contributing to local estimation for 33 factorial, with Epanechnikov kernel. 

 

 
 
Table 2: Summary of Prediction Values for Lowess and Local Average on Untransformed Standard Deviations. 
 

 
 
Table 3: Summary of Prediction Values for Lowess and Local Average on Transformed Log (Standard 
Deviations+1). 
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Figure 3: Contour plots for best Linear and Quadratic parametric models based on the Box and Draper (1987) 
data for log (standard deviations + 1). 
 

 
 
Figure 4: Contour plots of local average models for untransformed response with bandwidths 0.8 and 1. 
 
(a) 

 
(b) 
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Figure 5: Contour plots of lowess models for untransformed response with bandwidths 0.6, 0.8 and 1. 

 
(a)  
 

 
(b) 
 

 
(c)  
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Figure 6: Contour plots of local average models for logarithm transformed response with bandwidths 0.8 and 1. 
 
(a) 

 
(b) 

 
Figure 7: Contour plots of lowess models for logarithm transformed response with bandwidths 0.8 and 1. 

(a) 

 
(b) 
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The fit was next considered by 

comparing the R2 values for the different 
methods in Table 4. Unlike parametric models, 

where minimizing the R2 is desirable, here the 
goal is to obtain a good fit without merely 
interpolating between points. This is a 
particularly appropriate strategy given the 
extreme ranges of values for the standard 
deviation observed. Also reported are the cross-

validation R2 values which were obtained by 
removing a single observation, refitting the 
model with 26 points, and then calculating the 
difference between the predicted value and what 
was observed.  

Typically in other regression settings, 
this is a way of measuring the robustness of the 
model for future prediction. However, in this 
case, with such a small sparse data set, removing 
a single point (almost all of which are on the 
edge of the design space) has the result of 
leading us to do extensive extrapolation to 
obtain the new predicted values. As a result, the 
values obtained were very discouraging. For a 
number of the cases, including the quadratic 
parametric model and the small bandwidth LL 

method, negative R2 values were obtained, 
which imply that the model has predicted less 
well than just using a constant for the entire 
surface. Again, the structure of the data and the 
extreme amount of extrapolation involved in this 
calculation should be considered in interpreting 
these values. The 0.3 bandwidth Vining and 
Bohn (1998) smoother cannot be considered in 
this comparison, because an empty region in the 
design space was obtained for all of the points, 

which does not allow the cross-validation R2 

value to be calculated. 
However, there are a few general 

conclusions that can be reached. First, one 
should be quite cautious with any of these 
models. Due to the sparsity of the data, they can 
be influenced considerably by a single value. 

Secondly, larger bandwidths give lower R2 

values, but generally perform better under the 
challenges of the cross-validation assessment. 
Finally, the LL method appears to outperform 

the C method for the R2 values, but consistently 

underperform C for the cross-validation R2. This 
reflects the sensitivity to edge effects of this 

method, which either yields good responsiveness 
if using the values near the edge, or wide 
extrapolation when this point is removed. This 
seems to imply some superiority for the C 
method, which outperforms both the parametric 
models, and appears to retain some useful 
predictive ability even when used for 
extrapolation. 

Based on an overall assessment of all 
characteristics of the methods considered, the 
Nadaraya-Watson local averaging (C) method 
with bandwidth of either 0.8 or 1.0 emerge as 
leading choices. The bandwidth of 1.0 uses all of 
the data, with diminishing weights for more 
distant points. The 0.8 bandwidth excludes 
points on the opposite side of the design space 
for corner, edge and face-center points. Both of 
these models allow for greater flexibility than 
either of the parametric models, by allowing 
greater adaptability of the shape of the surface, 
while also utilizing a significant proportion of 
the data for estimation. They provide enough 
smoothing to produce a surface that likely is 
consistent with underlying assumptions of how 
the standard deviation of the process might vary 
across the range of the design space 

 
Conclusion 

 
Based on sparseness of the data sets typical for 
many response surface designs, it should be 
evident that the use of nonparametric methods 
must be used with care to avoid nonsensical 
results. However, the printing ink example has 
demonstrated that nonparametric models have 
real potential for helping with modeling 
responses, when the restrictions of a parametric 
model are too limiting. The ability to adapt the 
shape of the surface locally is desirable, and can 
be done even when there are only a small 
number of values observed across the range of 
each variable. It is particularly important to 
consider a priori what the surface, range and 
ratio of maximum to minimum predicted values 
reasonably might be. The chosen method should 
balance optimizing fit, while still maintaining 
characteristics of the appropriate shape. 
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Due to a large number of points on the 
edge of the design space, which is highly 
desirable for D- and G-efficiency when using a 
parametric model, a smoother which is 
insensitive to edge effects is recommended. The 
local averaging smoother (C) performed quite 
well although the (LL) supposedly has superior 
boundary capability in the bias term both in 
order and boundary kernel adjustment. The 
reason for this apparent contradiction may be 
again that the sample size is small and the 
boundary order results depend on larger sample 
sizes or as pointed out in Ruppert and Wand 
(1994)  the  boundary  variance  of the (LL) may  

 
 

be larger than the boundary variance of the (C) 
estimator. Consequently the local averaging (C) 
estimator is recommended for this problem. 

The local first-order polynomial works 
well in many standard applications, where the 
proportion of edge points is small, but does not 
seem like a suggested choice for most response 
surface designs. 

To avoid near-interpolation, a moderate 
to large bandwidth needs to be used. Table 5 
considers perhaps the most popular class of 
response surface designs, the Central Composite 
Design. It gives the number of points used for 
estimation for the different types of points for a 

 
Table 4: Fit of models to Log (Standard Deviation +1) response. 

 
 

 
 

Table 5: Number of points contributing to local estimation for different Central Composite Designs and widths. 
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number of different bandwidths. A bandwidth of 
size less than 0.5, or half the range of the coded 
variables, yield estimates for some of the points 
using only a small number of observations. 

By coupling moderate to large 
bandwidths with the Epanechnikov kernel, it is 
possible to downweight but not eliminate the 
contribution of more distant points, and hence a 
balance between local adaptivity and moderating 
extreme values is retained. 

Symmetric designs, such as 3k factorials 
and Central Composite, are likely to perform 
better than non-symmetric designs, like Box-
Behnken or fractional factorial designs (with 
some corners of the design space unexplored). 
While the non-symmetric design performs well 
for parametric models, the surface will be 
disproportionately poorly estimated in some 
regions. 

Given the inherent different structure of 
response surface designs compared to more 
standard regression studies typically considered 
in the nonparametric smoothing literature, 
considerably more research is possible to 
determine not only reasonable, but optimal 
smoothing strategies in this context. 
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Determining The Correct Number Of Components To Extract From A Principal 
Components Analysis: A Monte Carlo Study Of The Accuracy Of The Scree Plot.  
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This article pertains to the accuracy of the of the scree plot in determining the correct number of 
components to retain under different conditions of sample size, component loading and variable-to-
component ratio. The study employs use of Monte Carlo simulations in which the population parameters 
were manipulated, and data were generated, and then the scree plot applied to the generated scores. 
 
Key words: Monte Carlo, factor analysis, principal component analysis, scree plot 
 
 

Introduction 
 
In social science research, one of the decisions 
that quantitative researchers make is determining 
the number of components to extract from a 
given set of data. This is achieved through 
several factor analytic procedures. The scree plot 
is one of the most common methods used for 
determining the number of components to 
extract. It is available in most statistical software 
such as the Statistical Software for the Social 
Sciences (SPSS) and Statistical Analysis 
Software (SAS). 

Factor analysis is a term used to refer to 
statistical procedures used in summarizing 
relationships among variables in a parsimonious 
but accurate manner. It is a generic term that 
includes several types of analyses, including (a) 
common factor analysis, (b) principal 
component analysis (PCA), and (c) confirmatory 
factor analysis (CFA). According to Merenda, 
(1997) common factor analysis may be used 
when a primary goal of the research is to 
investigate how well a new set of data fits a 
particular well-established model. On the other  
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hand, Stevens (2002) noted that principal 
components analysis is usually used to identify 
the factor structure or model for a set of 
variables. In contrast; CFA is based on a strong 
theoretical foundation that allows the researcher 
to specify an exact model in advance. In this 
article, principal components analysis is of 
primary interest. 
 
Principal component analysis  

Principal component analysis develops a 
small set of uncorrelated components based on 
the scores on the variables. Tabachnick and 
Fidell (2001) pointed that components 
empirically summarize the correlations among 
the variables. PCA is the more appropriate 
method than CFA if there are no hypotheses 
about components prior to data collection, that 
is, it is used for exploratory work. 

When one measures several variables, 
the correlation between each pair of variables 
can be arranged in a table of correlation 
coefficients between the variables. The 
diagonals in the matrix are all 1.0 because each 
variable theoretically has a perfect correlation 
with itself. The off-diagonal elements are the 
correlation coefficients between pairs of 
variables. The existence of clusters of large 
correlation coefficients between subsets of 
variables suggests that those variables are 
related and could be measuring the same 
underlying dimension or concept. These 
underlying dimensions are called components. 
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A component is a linear combination of 
variables; it is an underlying dimension of a set 
of items. Suppose, for instance a researcher is 
interested in studying the characteristics of 
freshmen students. Next, a large sample of 
freshmen are measured on a number of 
characteristics like personality, motivation, 
intellectual ability, family socio-economic 
status, parents’ characteristics, and physical 
characteristics. Each of these characteristics is 
measured by a set of variables, some of which 
are correlated with one another.  

An analysis might reveal correlation 
patterns among the variables that are thought to 
show the underlying processes affecting the 
behavior of freshmen students. Several 
individual variables from the personality trait 
may combine with some variables from 
motivation and intellectual ability to yield an 
independence component. Variables from family 
socio-economic status might combine with other 
variables from parents’ characteristics to give a 
family component. In essence what this means is 
that the many variables will eventually be 
collapsed into a smaller number of components. 
 Velicer et. al., (2000) noted that a 
central purpose of PCA is to determine if a set of 
p observed variables can be represented more 
parsimoniously by a set of m derived variables 
(components) such that m < p.  In PCA the 
original variables are transformed into a new set 
of linear combinations (principal components). 
Gorsuch (1983) described the main aim of 
component analysis as to summarize the 
interrelationships among the variables in a 
concise but accurate manner. This is often 
achieved by including the maximum amount of 
information from the original variables in as few 
derived components as possible to keep the 
solution understandable. 

Stevens (2002) noted that if we have a 
single group of participants measured on a set of 
variables, then PCA partitions the total variance 
by first finding the linear combination of 
variables that accounts for the maximum amount 
of variance. Then the procedure finds a second 
linear combination, uncorrelated with the first 
component, such that it accounts for the next 
largest amount of variance, after removing the 
variance attributable to the first component from 
the system. The third principal component is 

constructed to be uncorrelated with the first two, 
and accounts for the third largest amount of 
variance in the system.  This process continues 
until all possible components are constructed. 
The final result is a set of components that are 
not correlated with each other in which each 
derived component accounts for unique variance 
in the dependent variable. 
 
Uses of principal components analysis 

Principal component analysis is 
important in a number of situations. When 
several tests are administered to the same 
examinees, one aspect of validation may involve 
determining whether there are one or more 
clusters of tests on which examinees display 
similar relative performances. In such a case, 
PCA functions as a validation procedure. It 
helps evaluate how many dimensions or 
components are being measured by a test. 

Another situation is in exploratory 
regression analysis when a researcher gathers a 
moderate to a large number of predictors to 
predict some dependent variable. If the number 
of predictors is large relative to the number of 
participants, PCA may be used to reduce the 
number of predictors. If so, then the sample size 
to variable ratio increases considerably and the 
possibility of the regression equation holding up 
under cross-validation is much better (Stevens 
2002). Here, PCA is used as a variable reduction 
scheme because the number of simple 
correlations among the variables can be very 
large. It also helps in determining if there is a 
small number of underlying components, which 
might account for the main sources of variation 
in such a complex set of correlations. If there are 
30 variables or items, 30 different components 
are probably not being measured. It therefore 
makes sense to use some variable reduction 
scheme that will indicate how the variables or 
items cluster or “hang” together. 

The use of PCA on the predictors is also 
a way of attacking the multicollinearity problem 
(Stevens, 2002). Multicollinearity occurs when 
predictors are highly correlated with each other. 
This is a problem in multiple regression because 
the predictors account for the same variance in 
the dependent variable. This redundancy makes 
the regression model less accurate in as far as 
the number of predictors required to explain the 
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variance in the dependent variable in a 
parsimonious way is concerned. This is so 
because several predictors will have common 
variance in the dependent variable. The use of 
PCA creates new components, which are 
uncorrelated; the order in which they enter the 
regression equation makes no difference in 
terms of how much variance in the dependent 
variable they will account for.  

Principal component analysis is also 
useful in the development of a new instrument. 
A researcher gathers a set of items, say 50 items 
designed to measure some construct like attitude 
toward education, sociability or anxiety. In this 
situation PCA is used to cluster highly correlated 
items into components. This helps determine 
empirically how many components account for 
most of the variance on an instrument. The 
original variables in this case are the items on 
the instrument. 

Stevens (2002) pointed out several 
limitations (e.g., reliability consideration and 
robustness) of the k group MANOVA 
(Multivariate Analysis of Variance) when a 
large number of criterion variables are used. He 
suggests that when there are a large number of 
potential criterion variables, it is advisable to 
perform a PCA on them in an attempt to work 
with a smaller set of new criterion variables. 
 
The scree plot 
 The scree plot is one of the procedures 
used in determining the number of factors to 
retain in factor analysis, and was proposed by 
Cattell (1966). With this procedure eigenvalues 
are plotted against their ordinal numbers and one 
examines to find where a break or a leveling of 
the slope of the plotted line occurs. Tabachnick 
and Fidell (2001) referred to the break point as 
the point where a line drawn through the points 
changes direction. The number of factors is 
indicated by the number of eigenvalues above 
the point of the break. The eigenvalues below 
the break indicate error variance. An eigenvalue 
is the amount of variance that a particular 
variable or component contributes to the total 
variance. This corresponds to the equivalent 
number of variables that the component 
represents. Kachigan, (1991) provided the 
following explanation: a component associated 
with an eigenvalue of 3.69 indicates that the 

component accounts for as much variance in the 
data collection as would 3.69 variables on 
average. The concept of an eigenvalue is 
important in determining the number of 
components retained in principal component 
analysis. 
  The scree plot is an available option in 
most statistical packages. A major weakness of 
this procedure is that it relies on visual 
interpretation of the graph. Because of this, the 
scree plot has been accused of being subjective. 
Some authors have attempted to develop a set of 
rules to help counter the subjectivity of the scree 
plot. Zoski and Jurs (1990) presented rules for 
the interpretation of the scree plot. Some of their 
rules are: (a) the minimum number of break 
points for drawing the scree plot should be three, 
(b) when more than one break point exists in the 
curve, the first one should be used, and (c) the 
slope of the curve should not approach vertical. 
Instead, it should have an angle of 40 degrees or 
less from the horizontal. 

Previous studies found mixed results on 
the accuracy of the scree plot. Zwick and Velicer 
(1986) noted that “the scree plot had moderate 
overall reliability when the mean of two trained 
raters was used” (p.440). Cattell and Jaspers 
(1967) discovered that the scree plot displayed 
very good reliability. On the other hand, 
Crawford and Koopman (1979) reported very 
poor reliability of the scree plot.  
 
Monte Carlo study 

Hutchinson and Bandalos, (1997) 
pointed that Monte Carlo studies are commonly 
used to study the behavior of statistical tests and 
psychometric procedures in situations where the 
underlying assumptions of a test are violated. 
They use computer-assisted simulations to 
provide evidence for problems that cannot be 
solved mathematically. Robey and Barcikowski 
(1992) stated that in Monte Carlo simulations, 
the values of a statistic are observed in many 
samples drawn from a defined population.  
 Monte Carlo studies are often used to 
investigate the effects of assumption violations 
on statistical tests. Statistical tests are typically 
developed mathematically using algorithms 
based on the properties of known mathematical 
distributions such as the normal distribution. 
Hutchinson and Bandalos, (1997) further noted 
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that these distributions are chosen because their 
properties are understood and because in many 
cases they provide good models for variables of 
interest to applied researchers. Using Monte 
Carlo simulations in this study has the advantage 
that the population parameters are known and 
can be manipulated; that is, the internal validity 
of the design is strong although this will 
compromise the external validity of the results. 

According to Brooks et al. (1999), 
Monte Carlo simulations perform functions 
empirically through the analysis of random 
samples from populations whose characteristics 
are known to the researcher. That is, Monte 
Carlo methods use computer assisted 
simulations to provide evidence for problems 
that cannot be solved mathematically, such as 
when the sampling distribution is unknown or 
hypothesis is not true. 
 Mooney, (1997) pointed that the 
principle behind Monte Carlo simulation is that 
the behavior of a statistic in a random sample 
can be assessed by the empirical process of 
actually drawing many random samples and 
observing this behavior. The idea is to create a 
pseudo-population through mathematical 
procedures for generating sets of numbers that 
resemble samples of data drawn from the 
population. 

Mooney (1997) further noted that other 
difficult aspects of the Monte Carlo design are 
writing the computer code to simulate the 
desired data conditions and interpreting the 
estimated sampling plan, data collection, and 
data analysis. An important point to note is that 
a Monte Carlo design takes the same format as a 
standard research design. This was noted by 
Brooks et al., (1999) when they wrote “It should 
be noted that Monte Carlo design is not very 
different from more standard research design, 
which typically includes identification of the 
population, description of the sampling plan, 
data collection and data analysis” (p. 3). 
 

Methodology 
 

Sample size (n)  
Sample size is the number of 

participants in a study. In this study, sample size 
is the number of cases generated in the Monte 
Carlo simulation. Previous Monte Carlo studies 

by (Velicer et al. 2000, Velicer and Fava, 1998, 
Guadanoli & Velicer, 1988) found sample size 
as one of the factors that influences the accuracy 
of procedures in PCA. This variable had three 
levels (75, 150 and 225). These values were 
chosen to cover both the lower and the higher 
ends of the range of values found in many 
applied research situations. 
 
Component loading (aij) 

Field (2000) defined a component 
loading as the Pearson correlation between a 
component and a variable. Gorsuch, 1983 
defined it as a measure of the degree of 
generalizability found between each variable and 
each component. A component loading reflects a 
quantitative relationship and the further the 
component loading is from zero, the more one 
can generalize from that component to the 
variable. Velicer and Fava, (1998), Velicer et al., 
(2000) found the magnitude of the component 
loading to be one of the factors having the 
greatest effect on accuracy within PCA. This 
condition had two levels (.50 and .80). These 
values were chosen to represent a moderate 
coefficient (.50) and a very strong coefficient 
(.80).  
 
Variable-to-component ratio (p:m)  

This is the number of variables per 
component. The number of variables per 
component will be measured counting the 
number of variables correlated with each 
component in the population conditions. The 
number of variables per component has 
repeatedly been found to influence the accuracy 
of the results, with more variables per 
component producing more stable results. Two 
levels for this condition were used (8:1 and 4:1). 
Because the number of variables in this study 
was fixed at 24, these two ratios yielded three 
and six variables per factor respectively. 
 
Number of variables 
 This study set the number of variables a 
constant at 24, meaning that for the variable-to-
component ratio of 4:1, there were six variables 
loading onto one component, and for variable-
to-component ratio of 8:1, eight variables loaded 
onto a component (see Appendixes A to D). 
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Generation of population correlation matrices 
 A pseudo-population is an artificial 
population from which samples used in Monte 
Carlo studies are derived.  In this study, the 
underlying population correlation matrices were 
generated for each possible aij and p:m 
combination, yielding a total of four matrices 
(see Appendixes E to H).  

The population correlation matrices 
were generated in the following manner using 
RANCORR programme by Hong (1999): 

 
1. The factor pattern matrix was specified 
based on the combination of values for p:m and 
aij (see Appendixes A to D). 
2. After specifying the factor pattern 
matrix and the program is executed, a population 
correlation matrix was produced for each 
combination of conditions. 
3. The program was executed four times to 
yield four different population correlation 
matrices, one correlation matrix for each 
combination of conditions (see Appendixes E to 
H).  
 
 After the population correlation matrices 
were generated, the Multivariate Normal Data 
Generator (MNDG) program (Brooks, 2002) 
was used to generate samples from the 
population correlation matrices. This program 
generated multivariate normally distributed data. 
A total of 12 cells were created based on the 
combination of n, p: m and aij. For each cell, 30 
replications were done to give a total of 360 
samples, essentially meaning that 360 scree plots 
were generated. Each of the samples had a pre-
determined factor structure since the parameters 
were set by the researcher. The scree plots were 
then examined to see if they extracted the exact 
number of components as set by the researcher. 
 
Interpretation of the scree plots 

The scree plots were given to two raters 
with some experience in interpreting scree plots. 
These raters were graduate students in 
Educational Research and Evaluation and had 
taken a number of courses in Educational 
Statistics and Measurement.  

 
 

First, the raters were asked to look at the 
plots independently to determine the number of 
components extracted. Second, they were asked 
to interpret the scree plots together. The raters 
had no prior knowledge of how many 
components were built into the data. The 
accuracy of the scree plot was measured by how 
many times it extracted the exact number of 
components.  
 

Results 
 
The first research question of the study is: How 
accurate is the scree plot in determining the 
correct number of components? This question 
was answered in two parts. First, this question 
was answered by considering the degree of 
agreement between the two raters. Table 1 is of 
the measure of agreement between the two raters 
when component loading was .80. To interpret 
Table 1, the value of 1 indicates a correct 
decision and a value of 0 indicates a wrong 
decision by the raters as they interpreted the 
scree plots. A correct decision means that the 
scree plot extracted the correct number of 
components (either three components for 8:1 
ratio or six components for 4:1). Thus, from 
Table 1, the two raters agreed correctly 108 of 
the times while they agreed wrongly 52 times.  
 
Table 1. A cross tabulation of the measure of 
agreement when component loading was .80 
between rater 1 and rater 2. 
 
 Rater 2  

 0 1 Total 

Rater 1      0 52 11 63 

                  1 9 108 117 

Total 61 119 180 

 
An examination of Figures 1 and 2 show 

that when component loading was .80, it was 
relatively clear where the cut-off point was for 
determining the number of components to 
extract.    Figure 1  clearly   shows  that   six  the  
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components were extracted and in Figure 2, 
three components were extracted. These two 
plots show why it was easy for the raters to have 
more agreement for component loading of .80. 
This was not the case when component loading 
was .50 as the raters had few cases of agreement 
and more cases of disagreement. 
 
 

 

 
In Table 2, when component loading 

was .50, the two raters agreed correctly only 28 
times and agreed wrongly 97 times. Compared 
to component loading of .80, the scree plot was 
not as accurate when component loading was 
.50. This finding is consistent with that of Zwick 
and Velicer (1986) who noted in their study that, 
“The raters in this study showed greater 
agreement at higher than at lower component 

 
Figure 1. The scree plot for variable-to-component ratio of 4:1, component loading of .80 
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Figure 2.  The scree plot for variable-to-component ratio of 8:1, component loading of .80 
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loading levels.” (p. 440). Figures 1 and 2 show 
typical scree plots that were obtained for 
component loading of .50. In Figure 3, the 
number of components extracted was supposed 
to be six, but it is not clear from the plot were 
the cut-off point is for six components. One can 
see why there were a lot of disagreements 
between the two raters when component loading 
was low. In Figure 4, the plot was supposed to 
extract three components, but it is not quite clear 
even to an experienced rater, how many 
components to be extracted with this plot. These 
cases show how it is difficult to use the scree 
plots especially in exploratory studies when the 
researcher does not know the number of 
components that exist. 
 
Table 2. A cross tabulation of the measure of 
agreement when component loading was .50 
between rater 1 and rater 2. 
 
 Rater 2  

 0 1 Total 

Rater 1       0 97 50 147 

                  1 5 28 33 

Total 102 78 180 

 
Reports of rater reliability on the scree 

plot have ranged from very good (Cattell & 
Jaspers, 1967) to quite poor (Crawford & 
Koopman, 1979). This wide range and the fact 
that data encountered in real life situations rarely 
have perfect structure with high component 
loading makes it difficult to recommend this 
procedure as a stand-alone procedure for 
practical uses in determining the number of 
components. Generally, most real data have low 
to moderate component loading, which makes 
the scree plot an unreliable procedure of choice 
(Zwick & Velicer, 1986). 

The second part of question one was to 
consider the percentages of time that the scree 
plots were accurate in determining the exact 
number of components, and those percentages 
were computed for each cell (see table 5). In 

Table 5, results of the two raters are presented 
according to variable-to-component ratio, 
component loading and sample size. The table 
shows mixed results of the interpretation of the 
scree plot by the two raters. However, the scree 
plot appeared to do well when component 
loading was high (.80) with a small number of 
variables (three). When variable-to-component 
ratio was 8:1 and component loading was .80, 
the scree plot was very accurate. The lowest 
performance of the scree plot in this cell was 
87% for a sample size of 75. On the other hand, 
when variable-to-component ratio was 4:1, 
component loading was .80, and sample size was 
225, the scree plot was only accurate 3% of the 
time with rater 1. With rater 2 under the same 
conditions, the scree plot was correct 13% of the 
time.  

The second question was: Does the 
accuracy of the scree plot change when two 
experienced raters interpret the scree plots 
together? For this question, percentages were 
computed of how many times the two raters 
were correct when they interpreted the scree 
plots together. The results are presented in table 
5 in the row Consensus row. These results show 
that even if two raters work together, the 
accuracy of the scree plot does not necessarily 
improve when component loading was .50.  
When variable-to-component ratio was 8:1 and 
component loading was .50, rater 2 was actually 
better than when the two raters worked together. 
This is again an example of the mixed results 
obtained by the scree plot which makes it 
unreliable. On the other hand, the accuracy of 
the scree plot improved when component 
loading was .80, and variable-to-component 
ratio was 4:1. When component loading was .80, 
and variable-to-component ratio was 8:1, having 
two rates work together did not change anything 
since the scree plot was very accurate when the 
two raters work independently. 

The bottom line is in this study, the 
scree plot produced mixed results and this is 
mainly due to its subjectivity. Although it was 
100% accurate under certain conditions, it was 
also terrible under other conditions. It however 
emerged from this study that the accuracy of the 
scree plot improves when the component 
loading is high, and the number of variables per 
component is few.  
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Figure 3.  The scree plot for variable-to-component ratio of 4:1, component loading of .50 
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Figure 4.  The scree plot for variable-to-component ratio of 8:1, component loading of .50 
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Table 5. Performance of scree plot (as a percentage) under different conditions of variable-to-
component ratio, component loading and sample size. 

 
V-C-R   4: 1     8: 1   
Comp.loading  .50   .80   .50   .80  

Sample size 75 150 225 75 150 225 75 150 225 75 150 225 

Rater 1 73% 20% 10% 10% 16% 3% 33% 13% 27% 87% 100% 100% 

Rater 2 67% 10% 16% 26% 23% 13% 63% 57% 77% 100% 100% 100% 

Consensus  23% 20% 10% 75% 100% 100% 47% 23% 47% 100% 97% 100% 
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Conclusion 
 

Generally, the findings of this study are in 
agreement with previous studies that found 
mixed results on the scree plot. The subjectivity 
in the interpretation of the procedure makes it 
such an unreliable procedure to use as a stand-
alone procedure. The scree plot would probably 
be useful in confirmatory factor analysis to 
provide a quick check of the factor structure of 
the data. In that case the researcher already 
knows the structure of the data as opposed to 
using it in exploratory studies where the 
structure of the data is unknown. If used in 
exploratory factor analysis, the scree plot can be 
misleading even for experienced researcher 
because of its subjectivity.  

Based on the findings of this study, it is 
recommended that the scree plot not be used as a 
stand-alone procedure in determining the 
number of components to retain. Researchers 
should use it with other procedures like parallel 
analysis or Velicer’s Minimum Average Partial 
(MAP) and parallel analysis. In situations where 
the scree plot is the only procedure available, 
users should be very cautious in using it and 
they can do so in confirmatory studies but not 
exploratory studies.  
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Appendix: 
 

Appendix A : Population Pattern Matrix p:m = 8:1 (p = 24, m = 3 aij = .80). 
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Appendix B:  Population Pattern Matrix p:m = 8:1 (p = 24, m = 3 aij = .50). 
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Appendix C:  Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .80). 
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Appendix D: Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .50). 
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Appendix E. Population correlation matrix p:m = 8: 1 (p = 24, m = 3, aij = .80). 

 
 

 
Appendix F : Population correlation matrix p:m = 8:1 ( p= 24, m= 3, aij = .50) 
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Appendix G:  Population correlation matrix p:m = 4:1 (p = 24, m = 6, aij = .8). 

 
 

Appendix H:  Population matrix p: m = 4:1 (p = 24, m = 6, aij = .50). 
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Testing The Casual Relation Between Sunspots  
And Temperature Using Wavelets Analysis 

 
                           Abdullah Almasri                                                 Ghazi Shukur 
                         Department of Statistics                             Departments of Economics and Statistics 
                        Lund University, Sweden                          Jönköping University and Växjö University 
 
 
Investigated and tested in this article are the causal nexus between sunspots and temperature by using 
statistical methodology and causality tests. Because this kind of relationship cannot be properly captured 
in the short run (daily, monthly or yearly data), the relationship is investigated in the long run using a very 
low frequency Wavelets-based decomposed data such as D8 (128 - 256 months). Results indicate that 
during the period 1854-1989, the causality nexus between these two series is as expected of one-
directional form, i.e., from sunspots to temperature. 
 
Key words: Wavelets, time scale, causality tests, sunspots, temperature 
 
 

Introduction 
 
The Sun is the energy source that powers Earth’s 
weather and climate, and therefore it is natural to 
ask whether changes in the Sun could have 
caused past climate variations and might cause 
future changes. At some level the answer must 
be yes. Recently, concerns about human-induced 
global warming have focused attention on just 
how much climatic change the Sun could 
produce. Accordingly, many authors tried to 
investigate the relation between the sunspots and 
the climate change, e.g., Friis-Christensen 
(1997) compared observations of cloud cover 
and cosmic particles and concluded that 
variation in global cloud cover was correlated 
with the cosmic ray flux from 1980 to 1995. 
They  proposed  the  observed  variation in cloud  
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cover seemed to be caused by the varying solar 
activity related cosmic ray flux and postulated 
that an accompanying change in the earth’s 
albedo could explain the observed correlations 
between solar activity and climate. However, 
Jorgensen and Hansen (2000) showed that any 
evidence supporting that the mechanism of 
cosmic rays affecting the cloud cover and hence 
climate does not exist. 
 Nevertheless, most of these studies 
suffered from the lack of statistical 
methodology. In this study, well selected 
statistical tools are used to investigate the causal 
relation between the sunspots and the 
temperature. A vector autoregressive (VAR) 
model is constructed and applied, which allows 
for causality test, on low frequency Wavelets 
based decomposed data. Processing in this 
manner we can see the nature of the causal 
relation between these two variables. 
 Wavelet is a fairly new approach in 
analysing data (e.g. Daubechies, 1992) that is 
becoming increasingly popular for a wide range 
of applications (e.g. time series analyses). This 
subject is not really familiar in other areas such 
as in statistics with environmental application. 
The idea behind using this technique is based on 
the fact that the time period (time scale) of the 
analysis is very crucial for determining those 
aspects that are relatively more important, and 
those that are relatively less important. In time 
series one can envisage a cascade of time scales 
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within which different levels of information are 
available. Some information is with long 
horizons, others with short horizons. 
 In this article, the discrete wavelet 
transform (DWT) is used in studying the 
relationship between the sunspots and 
temperature in Northern Hemisphere 1854-1989 
(see Figures 1 and 2). The DWT has several 
appealing qualities that make it a useful method 
for time series, exhibiting features that vary both 
in time and frequency. By using the DWT, it is 
possible to investigate the role of time scale in 
sunspots and temperature relationships. 
 The article is organized as follows: 
After the introduction, the wavelets analysis is 
introduced. Next presented is the methodology 
and testing procedure used in this study. 
Estimated results follow, and finally, summary 
and the conclusion. 

 
Methodology 

 
The wavelet transform has been expressed by 
Daubechies (1992) as “a tool that cuts up data or 
functions into different frequency components, 
and then studies each component with a 
resolution matched to its scale.” Thus, with 
wavelet transform, series with heterogeneous 
(unlike Fourier transform) or homogeneous 
information at each scale may be analyzed. 
Unlike the Fourier transform, which uses only 
sins and cosines as basis functions, the wavelet 
transform can use a variety of basis functions. 
 The wavelet decomposition is made 
with respect to the so-called Symmlets basis. 
Thus, a brief presentation about this 
decomposition methodology, which called the 
discrete wavelete transform (DWT), is given.  

Let ),...,,( 120 ′= −TXXXX be a 

column vector containing T observations of a 
real-valued time series, and assume that T is an 
integer multiple of M2 , where M  is a positive 
integer. The discrete wavelet transform of level 
J  is an orthonormal transform of X  defined by 
 
 
   
 
 

WXsddddd =′= ) , ., . . , ., . . , ,( 21 JJj , 

where W  is an orthonormal TT ×  real-valued 

matrix, i.e. WW ′=−  1  so 

TIWWWW    =′=′ . }{ ,kjj d=d , 

Jj  , ... 1,2,  = , are 12/ ×jT  real-valued 
vectors of wavelet coefficients at scale j  and 

location k . 
The real-valued vector Js  is made up of 

JT 2/  scaling coefficients. Thus, the first 
JTT 2/ -  elements of d  are wavelet 

coefficients and the last JT 2/  elements are 
scaling coefficients, where MJ ≤ . Notice that 
the length of X  does coincide with the length of 
d (length of dj = 2M-j, and Js = 2M-J). 

The multiresolution analysis of the data 
leads to a better understanding of wavelets. The 
idea behind multiresolution analysis is to 
express dW′  as the sum of several new series, 
each of which is related to variations in X at a 
certain scale. Because the matrix W  is 
orthonormal, the time series may be constructed 
from the wavelet coefficients d  by using  

dWX ′= . 
Partition the columns of W′  

commensurate with the partitioning of d  to 
obtain 

[ ]JJ VWWWW   . . .  21=′ , 

 

where jW  is a jTT 2/×  matrix and JV  is a 
JTT 2/×  matrix. Define the multiresolution 

analysis of a series by expressing dW′  as a 
sum of several new series, each of which is 
related to variations in X  at a certain scale: 

∑∑
==

+=+=′=
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Figure 1: Monthly data of the sunspots. 

1860 1880 1900 1920 1940 1960 1980

0
50

10
0

15
0

20
0

25
0

 
Figure 2: Monthly data of the Northern Hemisphere temperature. 
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Monthly temperature for the northern hemisphere for the years 1854-1989, from the data base held at the Climate Research 
Unit of the University of East Anglia, Norwich, England (Briffa. & Jones, 1992). The numbers consist of the temperature 
(degrees C) difference from the monthly average over the period 1950-1979. 
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 The terms in the previous equation 
constitute a decomposition of X into orthogonal 
series components jD (detail) and JS  (smooth) 

at different scales, and the length of jD  and JS  

coincides with the length of X  ( 1×T  vector). 
Because the terms at different scales represent 
components of X at different resolutions, the 
approximation is called a multiresolution 
decomposition, see Percival and Mofjeld (1997). 
 As mentioned earlier the wavelet 
decompositions in this paper will be made with 
respect to the Symmlets basis. This has been 
done by using the S-plus Wavelets package 
produced by StatSci of MathSoft that was 
written by Bruce and Gao (1996). Figure 3 
shows the multiresolution analysis of order 

6=J  based on the Symmlets of length 8. 
 
The Causality Between the Sunspots and 
Temperature 
 Next the wavelets analysis is used in 
investigating the hypothesis that the sunspots 
may affect the temperature. This will mainly be 
done by using causality test. Because this kind 
of relationship can not properly be captured in 
the short run (daily, monthly or yearly data), 
only the relationship in the long run is 
investigated, either by using 10-20 years data 
(which is not available in this case) or a very 
low frequency Wavelets decomposed data like 
D8 (128 - 256 months). This is used in this 
article (see Figure 3). This will be done 
empirically by constructing a (VAR) model that 
allows for causality test in the Granger sense. 

Causality is intended as in the sense of 
Granger (1969). That is, to know if one variable 
precedes the other variable or if they are 
contemporaneous. The Granger approach to the 
question whether sunspots (Sun) causes 
temperature (Tem) is to see how much of the 
current value of the second variables can be 
explained by past values of the first variable. 
(Tem) is said to be Granger-caused by (Sun) if 
(Sun) helps in the prediction of (Tem), or 
equivalently, if the coefficients of the lagged 
(Sun) are statistically significant in a regression 
of (Tem) on (Sun). Empirically, one can test for 
causality in Granger sense by means of the 
following vector autoregressive (VAR) model: 
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where e1t and e2t are error terms, which are 
assumed to be independent white noise with zero 
mean. The number of lags, k, will be decided by 
using the Schwarz (1978) information criteria, in 
what follows referred to as SC.  

According to Granger and Newbold 
(1986) causality can be tested for in the 
following way: A joint F-tests is constructed for 
the inclusion of lagged values of (Sun) in (1) and 
for the lagged values of (Tem) in (2). The null 
hypothesis for each F-test is that the added 
coefficients are zero and therefore the lagged 
(Sun) does not reduce the variance of (Tem) 
forecasts (i.e. bi in (1) are jointly zero for all i), 
or that lagged (Tem) does not reduce the 
variance of (Sun) forecasts (i.e. fi in (2) are 
jointly zero for all i). If neither null hypothesis is 
rejected, the results are considered as 
inconclusive. 

However, if both of the F-tests rejected 
the null hypothesis, the result is labeled as a 
feedback mechanism. A unique direction of 
causality can only be indicated when one of the 
pair of F-tests rejects and the other accepts the 
null hypothesis which should be the case in the 
study.  

Moreover, before testing for causality, 
the augmented Dickey-Fuller (1979, 1981) is 
applied, in what follows referred to as ADF, test 
for deciding the integration order of each 
aggregate variable. When looking at the 
Wavelets decomposed data for sun and 
temperature used here, i.e. the D8 in Figure 3 
below, the ADF test results indicate that each 
variable is integrated of the same order zero, i.e., 
I(0), indicating the both of the series are 
stationary implying that the VAR model can be 
estimated by standard statistical tools. 
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Results 

 
According to the model selection criteria 
proposed by Schwarz (1978), it is found that the 
model that minimizes this criteria is the VAR(3). 
When this model is used to test for causality, the 
inference is drawn that only the (Sun) Granger 
causes the (Tem). The test results can be found 
in Table 1, below. This means that the causality 
nexus between these two series is a one-
directional form, i.e., from (Sun) to (Tem). This 
should be fairly reasonable, since it is not logical 
to assume that the temperature in the earth 
should have any significant effect on the 
sunspots. 
 
Table 1:  Testing results for the Granger 
causality. 

 
 
 

 
 

 
Conclusion 

 
The main purpose of this article is to model the 
causality relationship between sunspots and 
temperature. Although other studies exist for the 
similar purpose, they are not based on a careful 
statistical modeling. Moreover, these studies 
have sometimes shown to end up with 
conflicting results and inferences. Here, in this 
article, well selected statistical methodology for 
estimation and testing the causality relation 
between these two variables is used. 

A very low frequency Wavelets based 
decomposed data indicates that, during the 
period 1854-1989, the causality nexus between 
these two series is the expected one-directional 
form, i.e., from sunspots to temperature 
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Bayesian Wavelet Estimation Of Long Memory Parameter 
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A Bayesian wavelet estimation method for estimating parameters of a stationary I(d) process is 
represented as an useful alternative to the existing frequentist wavelet estimation methods. The 
effectiveness of the proposed method is demonstrated through Monte Carlo simulations. The sampling 
from the posterior distribution is through the Markov Chain Monte Carlo (MCMC) easily implemented in 
the WinBUGS software package. 
 
Key words: Bayesian method, wavelet, discrete wavelet transform (DWT),  I(d) process, long memory 
 
 

Introduction 
 
Stationary processes exhibiting long range 
dependence have been widely studied now since 
the works of Granger and Joyeux (1980) and 
Hosking (1981). The long range dependence has 
found applications in many areas, including 
economics, finance, geosciences, hydrology, and 
statistics. The estimation of the long-memory 
parameter of the stationary long-memory 
process is one of the important tasks in studying 
this process. 

There exist parametric, non-parametric 
and semi-parametric methods of estimation for 
the long-memory parameter in literature. In the 
parametric method, the long-memory parameter 
is one of the several parameters that determine 
the parametric model; hence the usual classical 
methods such as the maximum likelihood 
estimation can be applied. The non-parametric 
method, not assuming restricted parametric form 
of the model, usually uses regression methods 
by regressing the logarithm of some sampling 
statistics for estimation.  
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 The widely and often used Geweke and 
Poter-Hudak (1983) estimation method belongs 
to non-parametric methods. The semi-parametric 
method makes intermediate assumptions by not 
specifying the covariance structure at short 
ranges. The article by Bardet et al. (2003) 
surveyed some semi-parametric estimation 
methods and compared their finite sample 
performance by Monte-Carlo simulation.  

Wavelet has now been widely used in 
statistics, especially in time series, as a powerful 
mutiresolution analysis tool since 1990’s. See 
Vidakovic (1999) for reference from the 
statistical perspective. The wavelet’s strength 
rests in its ability to localize a process in both 
time and frequency scale simultaneously.   
  This article presents a Bayesian Wavelet 
estimation method of the long-memory 
parameter d and variance σ 2 of a stationary 
long-memory I(d) process implemented in the 
MATLAB computing environment and the 
WinBUGS software package. 

 
Methodology 

 
A time series {X t} is a fractionally integrated 
process, I(d), if it follows: 
 
                             (1-L)d Xt = εt , 
 
where εt ~ i.i.d. N(0, σε

2) and L is the lag 
operator defined by LX t=X t-1 .  The parameter d 
is not necessarily an integer so that fractional 
differencing is allowed.  The process {Xt} is 
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stationary if |d|< 0.5.   The fractionally 
differencing operator (1-L)d is defined by the 
general binomial expansion: 
 

                           (1-L)d= k

k
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d
)(

0

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

∞

=

 , 

where  
 

                    
)1()1(

)1(

+−Γ+Γ
+Γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

kdk

d

k

d
 

 
and )(⋅Γ  is the usual Gamma function.  

Denote the autocovariance function of 
{Xt} as )(kγ ,  that is )()( st XXEk =γ where 

k=|t-s|. The formula for )(kγ  of a stationary 
I(d) process is well-known (Beran 1994, pp. 63): 

 

           ),1(/)21()0( 22 dd −Γ−Γ= εσγ  

),1/())(()1( dkdkkk −++=+ γγ      

�,2,1,0=k  
 
When 0 < d < 0.5, the )(kγ  has a slow 
hyperbolic decay, hence the process {X t} is a 
long-memory process. 

The fractional difference parameter d 

and the nuisance parameter 2σ  are usually 
unknown in an I(d) process. They need to be 
estimated from the observed time series ,tX  

t=1,…, N.  
Assume N=2J for some positive integer 

J in order to apply the fast algorithm of the 
Discrete Wavelet Transform (DWT) on 

N
ttXX 1)( == .  Let WX=ω  denote the DWT of 

X, where .),,,( 11000

TT
J

T
j

T
j

T
j dddc −+=ω  The j0  is 

the lowest resolution level for which we use j0=0 
in this article. The smoothed wavelet coefficient 

vector T

jjjj jcccc ),,,(
12,1,0, 0

0000 −
= � . At the 

resolution level j, the detailed wavelet 

coefficient vector T

jjjj jdddd ),,,(
12,1,0, −

= �  

for j=0, 1,…, J-1. 
McCoy and Walden (1996) argued 

heuristically that the DWT coefficients of X  has 
the following distribution: 

 

                        ),,0(~ 2
, jkj Nd σ   

where ;1,,1,0 −= Jj �   ,12,,1,0 −= jk �  

),,0(~ 2
10,0 −σNc  and the kjd , ’s and 0,0c  are 

approximately uncorrelated due to the whitening 

property of the DWT. The 2
jσ ,  j=-1, 0, 1,…, J-

1 depend on  d and 2
εσ as  
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 When J-j ≥ 2, ,2 2−<f  then 

ff ππ ≈)sin( , so that 2
jσ  can be simplified as 

(see equation (2.10) of McCoy and Walden 
1996) 
 

2 2 2 2( ) 2(2 ) 2 (2 2 ) (1 2 )d J j d d
j d− −

εσ = π σ − −    (1)   

 
where .2,,0,1 −−= Jj �  
             McCoy and Walden (1996) used these 

facts to estimate d and 2
εσ by the Maximum 

Likelihood Method.  They demonstrated through 
simulation that d could be estimated as well, or 
better by wavelet methods than the best Fourier-
based method.  
         Jensen (1999) derived the similar result 
about the distribution of the wavelet coefficients, 

and by the fact that jd
kjdVar 2

, 2)( −∝ , he used 

the Ordinary Least Squares method to estimate 
d. That is, by regressing log of the sample 
variance of the wavelet coefficients at resolution 

level j, against )2log( 2 j−  for j=2,3, …, J-2, he 
obtained the OLS estimate of d.  The sample 
variance of the wavelet coefficients at resolution 
level j is estimated by the sample second 
moment of the observed wavelet coefficients at 
resolution level j. 

Vannucci and Corradi (1999) section 5 
proposed a Bayesian approach. They used 
independent priors and assumed Inverse Gamma 

distribution for 2
εσ  and a Beta distribution for 

2d. They did not use formula (1), instead, they 
used a recursive algorithm to compute the 
variances of wavelet coefficients. The posterior 
inference is done through Markov chain Monte 
Carlo (MCMC) sampling procedure. They did 
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not give details of the implementation in the 
paper.    

McCoy and Walden (1996) did not give 
the variance of their estimates. Jensen (1999) 
only estimated d using the OLS method, it is not 

clear how 2
εσ is estimated. In both cases, the 

estimated d can not be guaranteed in the range (-
0.5, 0.5).    

Here, we propose a Bayesian approach 

to estimate d and 2
εσ in the same spirit of  

Vannucci and Corradi (1999) section 5. The 
distinction of this article from Vannucci and 
Corradi (1999) is that firstly, we use the explicit 
formula (1) for the variances of wavelet 
coefficients at resolution level j instead the 
recursive algorithm to compute these variances; 
secondly, the MCMC is implemented in the 
WinBUGS software package.  

Denoting ),( 2
εσθ d= , the parameters 

of the models for the data ω.  If a prior 
distribution of )(⋅π of θ  is chosen, i.e., 

)(~ θπθ , then by Bayesian formula, the 
posterior distribution of θ is  

 
)()|()|( θπθωωθπ f∝  

 
where )|( θωf  is the likelihood of the data ω  
given the parameters θ, which is the density of 
the multivariate normal distribution ),0( ΣN  
with  
 

                  ),,,,( 110
2
1 −− ΣΣΣ=Σ Jdiag �σ  

 

and                  ),,( 22
jjdiag σσ �=Σ   

 

for 1,,1,0 −= Jj �  is a jj 22 ×  diagonal 
matrix. 

The inference of θ is based on the 
posterior distribution )|( ωθπ . The MCMC 
methods are popular to draw repeated samples 
from the intractable )|( ωθπ .   We focus on the 
implementation of the Gibbs sampling for 

estimating d and 2
εσ in the WinBUGS software. 

The easy programming in the WinBUGS 
software provides practitioners an useful and 

convenient tool to carry out Bayesian 
computation for long memory time series data 
analysis.   

The following priors will be used. The 
first prior is the Jefferys’ noninformative prior 
subject to the constraints of the range of model 
parameters: 
 

        [ ] ),()()()( )5.0,5.0(
2

),0(
2/1 dIIJ −+∞∝ εσθθπ  

 
where )(⋅I  is an indicator function for the 

subscripted set and )(θJ is the Fisher 

information for θ : 
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Simple calculation shows that 21)( εσθ ∝J . 

The second prior is the other independent priors 

on d and 2
εσ , i.e., 

 

                  )()()( 2
εσππθπ d= . 

 
The prior for d+0.5 is ),( βαBeta  where 

0>α , 0>β  are the hyperparameters. This 
prior restricts |d|<0.5, thus imposing stationarity 
for the time series. When 1== βα , the prior 
is the noninformative uniform prior. When 
historical information or expert opinion is 
available, α and β can be selected to reflect 
this extra information, thus obtaining an 
informative prior. Hyper priors can also be used 
on α and β  to reflect uncertainties on them, 
thus forming a hierarchical Bayesian model.  

A ),( 21 ααGamma  prior is chosen for 

the precision 22 1 εστ = , where 

0,0 21 >> αα  are the hyperparameters. When 

1α  and 2α  are close to zero, the prior for 2
εσ  is 

practically equivalent to 22 1)( εε σσπ ∝ , an 

improper prior. The non-informative prior 

)()( 2
),0(

2
εε σσπ +∞∝ I  can also be chosen.  
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Simulation 
 The MCMC sampling is carried out in 
the WinBUGS software package. WinBUGS is 
the current windows-based version of the BUGS 
(Bayesian inference Using Gibbs Sampling), a 
newly developed, user-friendly and free 
software package for general-purpose Bayesian 
computation, Lunn et al. (2000). It is developed 
by the MRC, Biostatistics Group, Institute of 
Public Health (www.mrc-bsu.cam.ac.uk/bugs), 
Cambridge. 

In WinBUGS programming, user only 
needs to specify the full proper data distribution 
and  prior distributions, WinBUGs will then use 
certain sophisticated sampling methods to 
sample the posterior distribution.  

In this Monte Carlo experiment, we 
compare the proposed Bayesian approach with 
the approach in McCoy and Walden (1996) and 
Jensen (1999). Different values of d, N and 
different prior distributions )(θπ are used to 
determine the effectiveness of the estimation 
procedure. Also used were two different wavelet 
bases to compare the effect of this choice.   

The Davis and Harte (1987) algorithm 
was used to generate an I(d) process because of 
its efficiency compared to other computationally 
intensive methods (McLeod & Hipel (1978).  
This algorithm generates a Gaussian time series 
with the specified autocovariances by discrete 
Fourier transform and discrete inverse Fourier 
transform. It is well known that Fast Fourier 
Transform (FFT) can be carried out in O(N log 
N) operations, so the computation is fast.  

The generation of the I(d) process using 
the Davis and Harte algorithm and the DWT of 
the generated I(d) process are carried out in the 
MATLAB 6.5 on a Pentium III running 
Windows 2000.  The DWT tool used is the 
WAVELAB802 developed by the team from the 
Statistics Department of Stanford University 
(http://www-stat.stanford.edu/~wavelab).  

The following two different wavelet 
basis for comparison were chosen: (a) Harr 
wavelet; (b)  LA(8): Daubechies least 
asymmetric compactly supported wavelet basis 
with four vanish moments, see p.198 of 
Daubechies (1992).  

The periodic boundary handling is used. 
The data of the discrete wavelet transformed I(d) 

process is first saved in a file in R data file 
format. Then WinBUGS1.4 is activated under 
MATLAB to run a script file that implements 
the proposed Bayesian estimation procedure. 
The estimation results from WinBUGS1.4 are 
then converted to the MATLAB variables for 
further uses. 

The model parameters are estimated 
under the following independent priors on d and 

2
εσ  

 

(a)                  
~ ( 0.5,0.5),

~ (0.01,0.01);

d Unif

Gamma

−
 

 

(b)  ).1000,0(~),5.0,5.0(~ 2 UnifUnifd εσ−  

 
The prior (a) is practically equivalent to 
Jefferys’ noninformative prior:  
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BUGS only allow the use of proper prior 
specification, so the non-informative or 
improper prior distribution can be regarded as 
the limit of a corresponding proper prior. 

The estimation results using the 
proposed Bayesian approach for the simulated 
I(d) process and the method by Jensen (1999) 
and McCoy and Walden (1996)  are found in 
Table 1 for Haar wavelets and Table 2 for LA(8) 
wavelets. For the chosen prior, it reports the 
estimated posterior mean, posterior standard 
deviation (SD). In addition, it also tabulated in 
the parenthesis below the value of Mean and SD 
the 95% credible intervals of the parameters 
using the 2.5% and 97.5% quantiles of the 
random samples.  

In all cases, two independent chains of 
10500 iterations each were run, keeping every 
tenth one, after burn-in 500, with random initial 
values.  The posterior inference is based on the 
actual random samples of 2000. For the case of  

N=256, d=0.1, 2
εσ =1.0 and prior (b), Figure 1 

shows the trace of the random samples and the 
kernel estimates of the posterior densities of the 
parameters. 
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The autocorrelation function of the 
random samples shows very little 
autocorrelations for the drawn series of the 
random samples.  The two parallel chains mix 
well after small steps of the initial stage. All 
other diagnostics for convergence indicate a 
good convergence behavior.  

In most cases, the Bayesian wavelet 

estimates of d and 2
εσ  are quite good. They are 

very close to the truth. The 95% credible interval 
 
 
 

 
 

given by the Bayesian wavelet approach is well 
centered around the true parameter and is also 
very tight. 

The estimation results using the two 
different priors (a) and (b) are very similar. The 
estimates by Jensen’s method differ most from 
those by the other methods. It seems that LA(8) 
generally gives better estimates than  Haar. This 
is in agreement with the results of McCoy and 
Walden (1996) section 5.2. 

Figure 1: Trace and Kernel Density Plot for d and 2
εσ . 
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Table 1: Estimation of the simulated I(d) process when N=256 Using Haar Basis. 

 

   Prior (a) Prior (b) 

Parameter Jensen MW Mean SD Mean SD 

d=0.1 0.1620 0.1629 0.1686 0.0499 0.1692 0.0499 

   (0.0739, 0.2711) (0.0768, 0.2674) 

=2
εσ 1.0  1.0226 1.0452 0.0931 1.0485 0.0977 

   (0.8801, 1.2460) (0.8791, 1.2540) 

d=0.25 0.1431 0.1858 0.1887 0.0465 0.1880 0.0462 

   (0.1049, 0.2827) 0.1008, 0.2854) 

=2
εσ 1.0  1.0789 1.1000 0.0972 1.1068 0.1021 

   (0.9331, 1.3150) (0.9289, 1.3220) 

d=0.4 0.4121 0.4384 0.4301 0.0351 0.4284 0.0364 

   (0.3567, 0.4902) (0.3489, 0.4901) 

=2
εσ 1.0  1.0189 1.0445 0.0934 1.0571 0.0975 

   (0.8775, 1.2395) (0.8822, 1.2640) 

d=0.1 0.1227 0.0681 0.0709 0.0470 0.0719 0.0472 

   (-0.0176, 0.1663) (-0.0172 0.1679) 

=2
εσ 2.0  2.1482 2.1787 0.1918 2.1943 0.1948 

   (1.8455, 2.5745) (1.8570, 2.5975) 

d=0.25 0.2468 0.1855 0.1858 0.0477 0.1847 0.0462 

   (0.0995, 0.2858) (0.0938, 0.2785) 

=2
εσ 2.0  1.9369 1.9674 0.1729 1.9791 0.1770   

   (1.6570, 2.3275) (1.6715, 2.3675) 

d=0.4 0.2154 0.3096 0.3127 0.0467 0.3105 0.0476 

   (0.2238, 0.4069) (0.2165, 0.4079) 

=2
εσ 2.0  1.7783 1.8130 0.1540 1.8305 0.1619 

   (1.5435, 2.1385) (1.5300, 2.1665) 
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Table 2: Estimation of the simulated I(d) process when N=256 Using LA(8) Basis. 

 

   Prior (a) Prior (b) 

Parameter Jensen MW Mean SD Mean SD 

d=0.1 0.0759 0.1701 0.1757 0.0466 0.1755 0.0446 

   (0.0894, 0.2734) (0.0936, 0.2707) 

=2
εσ 1.0  1.0037 1.0222 0.0935 1.0270 0.0899 

   (0.8529, 1.2295) (0.8626, 1.2190) 

d=0.25 0.0904 0.2611 0.2651 0.0508 0.2661 0.0502 

   (0.1681, 0.3680) (0.1705, 0.3741) 

=2
εσ 1.0  1.0154 1.0398 0.0916 1.0412 0.0888 

   (0.8791, 1.2295) (0.8824, 1.2255) 

d=0.4 0.4906 0.4369 0.4304 0.0359 0.4295 0.0362 

   (0.3548, 0.4905) (0.3536, 0.4895) 

=2
εσ 1.0  1.0148 1.0413 0.0953 1.0502 0.0932   

   (0.8669, 1.2370) (0.8826, 1.2450) 

d=0.1 0.0542 0.1110 0.1175 0.0529 0.1151 0.0535 

   (0.0166, 0.2278) (0.0183, 0.2298) 

=2
εσ 2.0  2.1233 2.1594 0.1926 2.1694 0.1894 

   (1.8185, 2.5765) (1.8235, 2.5650) 

d=0.25 0.1977 0.2609 0.2608 0.0535 0.2637 0.0540 

   (0.1556, 0.3697) (0.1630, 0.3761) 

=2
εσ 2.0  1.8372 1.8745 0.1609 1.8849 0.1709 

   (1.5870, 2.2165) (1.5795, 2.2420) 

d=0.4 0.2632 0.3111 0.3130 0.0454 0.3117 0.0463 

   (0.2257, 0.4045) (0.2236, 0.4040) 

=2
εσ 2.0  1.7469 1.7942 0.1635 1.7995 0.1595 

   (1.5080, 2.1510) (1.5145, 2.1225) 
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Figure 2: Box plots of the estimates for N=128. 
 

 
Figure 3: Box plots of the estimates for N=128. 
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Frequentist Comparison 
Also compared were the estimates of the 

three methods in repeatedly simulated I(d) 
process. Figure 2 is the box plots of the 

estimates for d and 2
εσ respectively of 200 

replicates with N=128, d=0.25 and 2
εσ =1.0. 

Figure 3 is the box plots of the estimates for 200 

replicates with N=128, d=0.40 and 2
εσ =1.0. 

The x-axis labels in the box plot read as follows: 
`JH’ denotes the case by the Jensen method 
using Haar; ‘JL’ denotes the case by the Jensen 
method using LA(8); and so forth.  Because of 
the long computation time associated with the 
Gibbs sampling for the large number of 
simulated I(d) processes, we limit the burn-in to 
100 iterations and the number of random 
samples to 500. Because only the posterior mean 
was calculated using the generated random 
samples, not much information was lost even 
when the slightly short chain was used.   
    For the estimates of d, the mean square 
errors of the McCoy and Walden and The 
Bayesian method using these two priors are very 
similar, and they are all smaller than the one by 
Jensen’s OLS. LA(8) gives less biased estimates 
than  Haar. The mean estimates for d given by 
the Bayesian method using LA(8) is similar to 
those by McCoy and Walden. In all methods, it 

seems the estimates for d and 2
εσ are a little 

biased in that d̂ tends to underestimate d and 
2ˆ εσ  tends to overestimate 2

εσ . 

 
Conclusion 

 
Bayesian wavelet estimation method for the 
stationary I(d) process provides an alternative to 
the existing frequentist wavelet estimation 
methods. Its effectiveness is demonstrated 
through Monte Carlo simulations implemented 
in the WinBUGS computing package.    

A future effort is to extend the Bayesian 
wavelet method to more general fractional 
process such as ARFIMA(p,d,q). The hypothesis 
testing problem for the I(d) process can also be 
explored via the Bayesian wavelet approach. 
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Appendix: 
 

This appendix includes the MATLAB code for first simulating the I(d) process, then transforming it by 
DWT, and  the WinBUGS program for the MCMC computation. In the WinBUGS programming, the 
symbol “~” is for the stochastic node which has the specified distribution denoted on the right side, the 
symbol “←” is for the deterministic node which has the specified expression denoted on the right side. 
All the likelihood function, the prior distributions  
and initial values of the nodes without parents must be specified in the programs.   
 
The MATLAB code: 
 
function x=Generatex(J, d, sig2eps) 
%Generate the I(d) process 
%input: 
%J: where N=2^J sample size 
%d:  long memory parameter of the I(d) process, abs(d)<0.5 
%sig2eps:     $\sigma_\epsilon^2$ 
 
%output: 
%x: the time series 
 
N=2^J; 
c=[]; 
% generate the autocovariance function by the formular of covariance 
% function for LRD 
c(1)=sig2eps*gamma(1-2*d)/((gamma(1-d))^2); 
%for i=1:N-1 c(i+1)=c(1)*gamma(i+d)*gamma(1-d)/(gamma(d)*gamma(i+1-d)); end; 
for i=1:N-1 c(i+1)=c(i)*(i+d-1)/(i-d); end; 
 
x=GlrdDH(c); 
 
 
function x=GlrdDH(c); 
%GlrdDH.m  Generating the stationary gaussion time seriess with specified  
%          autocovariance series c 
%          using Davis and Harte’s method, Appendix of `Tests for Hurst Effect’, 
%          Biometrika, V74, No. 1 (Mar., 1987), 95-101 
 
%c: autocovariance series 
 
[temp, N]=size(c);   %c is a row vector 
 
cCirculant=[]; 
for i=1:N-2  cCirculant(i)=c(N-i); end; 
 
cFull=[]; 
cFull=[c cCirculant]; 
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g=[]; 
g=fft(cFull);    
%Fast Fourier Transform of cFull 
 
Z=[]; 
Z=complex(normrnd(0,1,1,N), normrnd(0,1, 1,N)); 
Z(1)=normrnd(0,sqrt(2));   %Be careful to specify sqrt(2), if you want variance of Z(1) to be 2 
Z(N)=normrnd(0,sqrt(2)); 
 
ZCirculant=[]; 
for i=1:N-2  ZCirculant(i)=conj(Z(N-i)); end; 
 
ZFull=[]; 
ZFull=[Z ZCirculant]; 
 
X=[]; 
X=ifft(ZFull.*sqrt(g))*sqrt(N-1);  
 
x=[]; 
x=real(X(1:N)); 
 
function [dJensen, dMW, sigMW, dBS, sigBS]=GetdHatSig2Hat(x, j0, filter) 
%Wavelet estimation of Long Range Dependence parameters 
% 
%input: 
%x: the observed I(d) process 
%j0: lowest resolution level of the DWT 
%filter: wavelet filter 
 
%output: 
%dJensen: estimate of d by Jensen 1999 
%dMW: estimate of d by McCoy & Walden 1996 
%sigMW: estimate of $\sigma_\epsilon^2$ by McCoy & Walden 1996 
%dBS: estimate of d by Bayesian Wavelet Method for prior (a), (b) 
%dBS.a, dBS.b 
%sigBS: estimate of $\sigma_\epsilon^2$ by Bayesian Wavelet Method for prior (a), (b) 
%sigBS.a, sigBS.b 
 
N=length(x); 
J=log2(N); 
 
w=[]; 
 
w = FWT_PO(x,j0,filter)’; %w is a coulmn vector 
 
resolution=[];        % data used in WinBUGS14       
resolution(1:2^j0,1)=j0-1; 
for j = j0:(J-1) 
    resolution(2^j+1 : 2^(j+1),1)=j;  
end; 
 
vwj=[]; 
for j=j0+1:(J-1) 
   vwj(j, :)=[j, mean(w(dyad(j)).^2)]; 
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end; 
 
tempd=[]; 
tempd=-[ones(J-2,1), log(2.^(2*vwj(2:J-1,1)))]\log(vwj(2:J-1,2));   
dJensen=tempd(2); 
 
OPTIONS=optimset(@fminbnd); 
dMW=fminbnd(@NcllhMW, -0.5, 0.5, OPTIONS, j0, w, J); 
sigMW=findSig2epsHat(dMW, j0, w, J); 
 
n=N-2^(J-1);         %the first n data of w, approximation of variance 
 
%function mat2bugs() converts matlab variable to BUGS data file 
mat2bugs(‘c:\WorkDir\LRD_data.txt’, ‘w’,w,’ twopowl’, 2^j0, ‘n’, n, ‘N’, N,  
            ‘resolution’, resolution, ‘J’, J, ‘pi’, pi,’K’,500); 
 
%set the current directory at MATLAB to ‘C:\Program Files\WinBUGS14\’ 
cd ‘C:\Program Files\WinBUGS14\’;  
 
%prior (a) 
dos(‘WinBUGS14 /par BWIdSt_a.odc’); 
Sa=bugs2mat(‘C:\WorkDir\bugsIndex.txt’, ‘C:\WorkDir\bugs1.txt’);  
 
dBS.a=mean(Sa.d);        %the posterior mean as the estimate of d 
sigBS.a=mean(Sa.sig2eps);           %the posterior mean as the estimate of sig2eps 
 
%prior (b) 
dos(‘WinBUGS14 /par BWIdSt_b.odc’); 
Sb=bugs2mat(‘C:\WorkDir\bugsIndex.txt’, ‘C:\WorkDir\bugs1.txt’);  
 
dBS.b=mean(Sb.d);        %the posterior mean as the estimate of d 
sigBS.b=mean(Sb.sig2eps);           %the posterior mean as the estimate of sig2eps 
 
cd ‘C:\WorkDir’;  
 
function y=NcllhMW(d, j0, w, J); 
%NcllhMW.m --- Negative Concentrated log likelihood of McCoy & Walden 
% 
%input: 
%d: the long memory parameter, a value in (0,0.5) 
%j0: Lowest Resolution Level 
%w: w=Wx, x is the observed time series 
%J: N=2^J sample size 
% 
%output: 
%y: Negative Concentrated log likelihood for the given data w 
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   m=J-j; 
   bmP(j+1)=2*4^(-d)*quad(@sinf,2^(-m-1),2^(-m),[],[],d);  
   %by McCoy & Walden’s formula, P37, (2.9) 
   smP(j+1)=2^m*bmP(j+1); 
end; 
 
bpp1P=gamma(1-2*d)/((gamma(1-d))^2)-sum(bmP);    
%B_{p+1} in McCoy & Walden’s notation, p=J here 
spp1P=2^J*bpp1P*(bpp1P>0); 
%S_{p+1} in McCoy & Walden’s notation, it should be nonnegative 
 
if spp1P>0 
  sig2epsHat=w(1)^2/spp1P; 
else 
    sig2epsHat=0; 
end; 
sumlogsmP=0; 
for j = j0:(J-1) 
    sig2epsHat=sig2epsHat+sum(w(2^j+1 : 2^(j+1)).^2)/smP(j+1); 
    sumlogsmP=sumlogsmP+2^j*log(smP(j+1)); 
end; 
sig2epsHat=sig2epsHat/N; 
%McCoy & Walden, Page 49, formular (5.1) 
 
y=N*log(sig2epsHat)+log(spp1P)+sumlogsmP; 
%McCoy & Walden, Page 49 
 
function sig2epsHat=findSig2epsHat(d, j0, w, J); 
%find Sig2epsHat by McCoy & Walden Page 49, formular (5.1) 
% 
%input: 
%d: the long memory parameter, a value calculated by function NcllhMW(); 
%j0: Lowest Resolution Level 
%J: N=2^J sample size 
 
N=2^J; 
 
bmP=[]; 
smP=[]; 
for j=j0:(J-1)  %j is the resolution level  
   m=J-j; 
   bmP(j+1)=2*4^(-d)*quad(@sinf,2^(-m-1),2^(-m),[],[],d);     
   %by McCoy & Walden’s formula, P37, (2.9) 
   smP(j+1)=2^m*bmP(j+1); 
end; 
 
bpp1P=gamma(1-2*d)/((gamma(1-d))^2)-sum(bmP);    
%B_{p+1} in McCoy & Walden’s notation, p=J here 
spp1P=2^J*bpp1P*(bpp1P>0);                                
%S_{p+1} in McCoy & Walden’s notation, it should be nonnegative 
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N=2^J; 
bmP=[]; 
smP=[]; 
for j=j0:(J-1)  %j is the resolution level  
 
if spp1P>0 
   sig2epsHat=w(1)^2/spp1P; 
else 
    sig2epsHat=0; 
end; 
 
for j = j0:(J-1) 
    sig2epsHat=sig2epsHat+sum(w(2^j+1 : 2^(j+1)).^2)/smP(j+1); 
end; 
 
sig2epsHat=sig2epsHat/N;            
\end{verbatim} 
 
The WinBUGS script file: BWIdSt\_a.odc 
 
check(‘C:/MyDir/LRD_model_a.odc’) 
data(‘C:/MyDir/LRD_data.txt’) 
compile(1) 
gen.inits() 
update(100) 
set(d) 
set(sig2eps) 
update(500) 
coda(*, ‘C:/Documents and Settings/MyDir/bugs’) 
#save(‘C:/Documents and Settings/MyDirlog.txt’) 
quit()            
 
The WinBUGS model file: LRD_model_a.odc   
 
model { 
# This takes care of the father wavelet coefficients from level L+1 to J-1 
# which are detailed wavelet coefficients, $D$ 
for (i in twopowl+1:n) { 
    tau[i]<-1/(pow(2*pi, -2*d)*sig2eps*pow(2, 2*d*(J-resolution[i])) *(2-pow(2,2*d))/(1-2*d)) 
    w[i] ~ dnorm (0, tau[i]) 
   } 
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#The following takes care the wavelet coefficients at the resolution level J-1. 
#It uses the exact formula instead of the approximation. 
for (i in 1:K) { sinf[i]<-pow(sin(pi*(0.25+i/(4*K))),-2*d)} 
integration<-sum(sinf[])/(4*K) 
B1<-2*pow(4,-d)*sig2eps*integration 
 
tau1<-1/(2*B1)              #S_1=2*B_1   in McCoy & Walden 1996’s notation 
 
 
for (i in (n+1): N) { 
      w[i] ~ dnorm (0, tau1) 
  } 
 
# This takes care of the scaling coefficients on the lowest level $j_0=L$     
#  which are mother wavlelet coefficients, $C$ 
 
#  twopowl <- pow(2, L) 
 
for (jp1 in 1:J-1) {              #jp1=j+1, m=J-j 
    b[jp1]<-(2*pow(2*pi, -2*d)*sig2eps*pow(2, -(J-jp1+1)*(1-2*d)) *(1-pow(2,2*d-1))/(1-2*d)) 
 } 
    bpp1<-sig2eps*exp(loggam(1-2*d))/pow(exp(loggam(1-d)),2)-sum(b[])-B1;    
    #B_{p+1} in McCoy & Walden’s notation 
    spp1<-pow(2,J)*bpp1*step(bpp1)+1.0E-6;  
    #S_{p+1} in McCoy & Walden’s notation, this should be positive       
 
    tau0 <- 1/spp1 
    for (i in 1: twopowl) { 
     w[i] ~ dnorm(0, tau0) 
     } 
 
#note: m=J-resolution[i]  in McCoy & Walden’s 1996 paper 
 
# prior (a)  
   d~dunif(-0.5, 0.5) 
   sig2eps<-1/ tau2 
    tau2~dgamma(1.0E-2,1.0E-2) 
 
#prior (b) 
#   d~dunif(-0.5, 0.5) 
#  sig2eps~dunif(0,1000)   
} 
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Model-Selection-Based Monitoring Of Structural Change 
 

Kosei Fukuda 
College of Economics 

Nihon University, Japan 
 
 
Monitoring structural change is performed not by hypothesis testing but by model selection using a 
modified Bayesian information criterion. It is found that concerning detection accuracy and detection 
speed, the proposed method shows better performance than the hypothesis-testing method. Two 
advantages of the proposed method are also discussed. 
 
Key words: Modified Bayesian information criterion, model selection, monitoring, structural change 
 
 

Introduction 
 
Deciding whether a time series has a structural 
change is tremendously important for forecasters 
and policymakers. If the data generating process 
(DGP) changes in ways not anticipated, then 
forecasts lose accuracy. In the real world, not 
only historical analysis but also real-time 
analysis should be performed, because new data 
arrive steadily and the data structure changes 
gradually. Given a previously estimated model, 
the arrival of new data presents the challenge of 
whether yesterday’s model can explain today’s 
data. This is why real-time detection of 
structural change is an essential task. Such 
forward-looking methods are closely related to 
the sequential test in the statistics literature but 
receive little attention in econometrics except for 
Chu, Stinchcombe, and White (1996) and 
Leisch, Hornik, and Kuan (2000). 

Chu et al. (1996) has proposed two tests 
for monitoring potential structural changes: the 
fluctuation and CUSUM monitoring tests. In 
their fluctuation test, when new observations are 
obtained, estimates are computed sequentially 
from all available data (historical and newly 
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obtained sample) and compared to the estimate 
based only on the historical sample. The null 
hypothesis of no change is rejected if the 
difference between these two estimates becomes 
too large. One drawback of their test is however 
that it is less sensitive to a change occurring late 
in the monitoring period. 

Leisch et al. (2000) proposed the 
generalized fluctuation test which includes the 
fluctuation test of Chu et al. (1996) as a special 
case and shown that their tests have roughly 
equal sensitivity to a change occurring early or 
late in the monitoring period. Two drawbacks of 
their test are however that there is no objective 
criterion in selecting the window sizes, and that 
it has low power in the case of small samples. 

In this article, a model-selection-based 
monitoring of structural change is presented. 
The existence of structural change is examined, 
not by hypothesis testing but by model selection 
using a modified Bayesian information criterion 
proposed by Liu, Wu, and Zidek (1997). Liu et 
al. (1997) presented segmented linear regression 
model and proposed model-selection method in 
determining the number and location of 
changepoints. Their criterion has been applied to 
examine what happened in historical data sets 
while it has not been applied to examine what 
happens in real time.  

Therefore this criterion is applied to 
monitor structural change. In this method, 
whether the observed time series contains a 
structural change is determined as a result of 
model selection from a battery of alternative 
models with and without structural change. 
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Another contribution of this article is the 
introduction of minimum length of each segment 
( L ). Liu et al. (1997) pay little attention to this 
topic and make the minimum length equivalent 
to the number of explanatory variables. This 
possibly leads to over-fit problem in samples. In 
order to overcome this problem, 01=L is set 
arbitrarily and practically in simulations and 
obtain better performance than the Liu et al. 
method. 

The rest of the article is organized as 
follows. The hypothesis- testing method and the 
model-selection method are reviewed briefly.  
Next, simulation results are shown to illustrate 
the efficacy of the proposed method. Finally, 
conclusions and discussions are presented. 

 
Methodology 

 
Leisch et al. (2000) hypothesis-testing method 
considered the following regression model 
 

,...,1,,...,1, +=+′= TTixy iiii εβ                (1) 

 
where ix is the 1×n vector of explanatory 

variables, and iε is a i.i.d. disturbance term. 

Suppose an economist is currently at time T and 
has observed historical data .,...,1,),( Tixy ii =′′  

He takes as given that the parameter 
vector iβ was constant and unknown historically. 

Consider testing the null hypothesis 
that iβ remains constant against the alternative 

that iβ changes at some unknown point in the 

future. 
Leisch et al. (2000) first considered tests 

based on recursive estimates and show that Chu 
et al. (1996) fluctuation test is a special case of 
this class of tests. They write the Chu et al. 
fluctuation test as 
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where 0W is the generalized Brownian bridge on 
[ ]∞,0 , as shown by Chu et al. (1996), and 
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where .Tkt =  The limiting distribution of 

)(max τTRE−  is thus determined by the 

boundary crossing probability of 0W on ],1[ τ . 

Choosing 78.72 =a  and 25.62 =a  gives 95% 
and 90% monitoring boundaries, respectively. 

Leisch et al. (2000) next considered tests 
based on moving estimates. Define the moving 
OLS estimates computed from windows of a 
constant size ],[Th  where 10 ≤< h and ,][ nTh >  
as 
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They propose tests on the maximum and range 
of the fluctuation of moving estimates: 
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The following asymptotic results are obtained: 
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where 1log =+ t  if et ≤ , log log t t+ = if et > . 

In contrast with the boundary-crossing 
probability of (4), the )2,1( =iFi do not have 

analytic forms. Nevertheless, the critical values 
)(hz  can be obtained via simulations, and some 

typical values are shown in Leisch et al. (2000). 

Liu et al. model-selection method 
Liu et al. (1997) considered the 

following segmented linear regression model 
 

1,,1,,,1,, 1 +=+=+= − miTTtxy iititt ……εβ
                                                                       (10) 
where 00 =T and TTm =+1 .  

The indices ),...,( 1 mTT , or the 

changekpoints, are explicitly treated as 
unknown. In addition, the following conditions 
are newly imposed: 
 

nLTT ii ≥≥− −1  for all ).1,...,1( += mii                   
                                                                       (11) 
 
Changepoints too close to each other or to the 
beginning or end of the sample cannot be 
considered, as there are not enough observations 
to identify the subsample parameters.  

In subsequent simulations, comparisons 
are made between 1=L and 10=L in the case 
of ,1=n  and it is concluded that the latter 
shows better performance than the former. 

The purpose of this method is to 
estimate the unknown parameter vector iβ  
together with the changepoints when 
T observations on ty are available. Their 

estimation method is based on the least-squares 
principle. The estimates of the regressive 
parameters and the changepoints are all obtained 
by minimizing the sum of squared residuals 
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Liu et al. (1997) estimated ,m  the number of 

changepoints, and mTT ,...,1 , by minimizing the 

modified Schwarz’s criterion (Schwarz 1978)  
 
LWZ=      

02
1 0
ˆ ˆln ( ,..., ) /( ) (ln( ))T mT S T T T q qc T +δ− +  

                                                                      (13) 
where ,1)( mmnq ++=  and 0c  and 0δ  are 

some constants such as 00 >c  and 00 >δ . Liu 

et al. (1997) recommended 
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using 1.00 =δ and 299.00 =c ; here small 

simulations are implemented to examine how 
the structural change detection is affected by 
changing these two parameter values in the next 
Section. This criterion is an extended version of 
Yao (1988) such as 
 

YAO )ln(/)ˆ,...,ˆ(ln 1 TqTTTST mT += .                 

                                                                       (14) 
 
So, LWZ and YAO differ in the severity of their 
penalty for overspecification. In general, in 
model selection, a relatively large penalty term 
would be preferable for easily identified models. 
A large penalty will greatly reduce the 
probability of overestimation while not unduly 
risking underestimation. Because the optimal 
penalty is model dependent, however, no 
globally optimal pair of ( 00,δc ) can be 
recommended.  

In subsequent simulations, some 
alternative pairs of ( 00 ,δc ) are considered and 

compared in selecting structural change models. 
In the model-selection method using the LWZ 
criterion in the case of possibly one structural 
change, for example, the following procedure is 
carried out. First, the OLS estimation for no 
structural change model ( 0=m in equ. 10) is 
performed, and the LWZ value is stored. Next 
the OLS estimations for one structural change 
models obtained by changing the changepoint on 
the condition of (11) are carried out, and the 
LWZ values are stored. Finally, the best model 
is selected using the minimum LWZ procedure 
from alternative models with and without 
structural change. 
 

Results 
 
Historical analysis of the structural change using 
the Liu et al. criterion.  

Liu et al. recommended setting the 
parameters in their information criterion as 

1.00 =δ  and 299.00 =c , but they have not 

shown the efficacy of these parameter values via 
simulations in which several alternative pairs of 
( 00 ,δc ) are considered. Such simulations are 

implemented. The following two DGPs are 
considered: 
 
DGP 1: ,,...,1,2 Ttey tt =+=  

 
DGP 2: tt ey += 2 if 2Tt ≤ , tt ey += 8.2 if 

2Tt > , 
 
where te is generated from i.i.d. ).1,0(N  

Considered are historical samples of sizes 
=T 50, 100, 200, 400, =L 1, 10, =0c 0.01, 

0.05, 0.1, 0.3, 0.5, and =0δ 0.01, 0.05, 0.1, 0.2. 
The number of replications is 1,000. 

Table 1 shows frequency counts of 
selecting structural change models using the Liu 
et al. information criterion. First consider 
comparing the performances between two pairs 
of )05.0,1.0( 00 == δc  and 

)1.0,299.0( 00 == δc .  
The former significantly outperforms 

the latter, particularly in the structural-change 
cases of =T 50 and 100. The pair of 

)1.0,299.0( 00 == δc  imposes too heavy 

penalty to select structural change models 
correctly. Next consider comparing between 

1=L and .10=L  The latter outperforms the 
former, particularly in small samples of =T 50 
and 100. In the case of ,1=L  it happens to 
occur that a structural change is incorrectly 
detected in the beginning or end of the sample. 
 
Monitoring structural change via the Leisch et 
al. simulations 

In Leisch et al. (2000), the DGP for 
examining empirical size is the same as DGP 1. 
They show the performances of 

,max RE− ,max ME−  and MErange − tests 

and consider moving window sizes =h 0.25, 
0.5, 1, and 10=τ for the expected monitoring 
period ].[ τT   

However, the DGP for examining 
empirical power is not the same as DGP2. The 
mean changes from 2.0 to 2.8 at T1.1 or .3T  
Similarly to Leisch et al. (2000), only the results 
for the 10% significance level are reported. All 
experiments were repeated 1,000 times. 
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0.01 0.05 0.1 0.2 0.01 0.05 0.1 0.2

1 50 0.01 0.590 0.585 0.583 0.576 0.968 0.968 0.968 0.968
1 50 0.05 0.379 0.360 0.347 0.305 0.919 0.913 0.908 0.893
1 50 0.1 0.192 0.172 0.155 0.128 0.826 0.817 0.798 0.746
1 50 0.3 0.024 0.018 0.012 0.008 0.330 0.301 0.266 0.200
1 50 0.5 0.001 0.000 0.000 0.000 0.080 0.068 0.055 0.028
1 100 0.01 0.653 0.647 0.639 0.623 0.999 0.999 0.999 0.999
1 100 0.05 0.360 0.348 0.327 0.269 0.994 0.994 0.992 0.987
1 100 0.1 0.147 0.137 0.112 0.070 0.959 0.951 0.946 0.925
1 100 0.3 0.003 0.002 0.001 0.001 0.591 0.530 0.456 0.349
1 100 0.5 0.001 0.000 0.000 0.000 0.183 0.142 0.112 0.056
1 200 0.01 0.697 0.692 0.677 0.656 1.000 1.000 1.000 1.000
1 200 0.05 0.297 0.275 0.244 0.186 1.000 1.000 1.000 1.000
1 200 0.1 0.077 0.064 0.047 0.026 0.999 0.999 0.999 0.997
1 200 0.3 0.000 0.000 0.000 0.000 0.906 0.881 0.843 0.707
1 200 0.5 0.000 0.000 0.000 0.000 0.514 0.430 0.331 0.202
1 400 0.01 0.710 0.703 0.684 0.660 1.000 1.000 1.000 1.000
1 400 0.05 0.271 0.240 0.202 0.136 1.000 1.000 1.000 1.000
1 400 0.1 0.047 0.034 0.026 0.014 1.000 1.000 1.000 1.000
1 400 0.3 0.000 0.000 0.000 0.000 0.999 0.999 0.998 0.992
1 400 0.5 0.000 0.000 0.000 0.000 0.952 0.924 0.868 0.706

10 50 0.01 0.368 0.366 0.362 0.352 0.933 0.932 0.931 0.930
10 50 0.05 0.212 0.206 0.200 0.176 0.869 0.863 0.851 0.840
10 50 0.1 0.111 0.101 0.091 0.075 0.763 0.745 0.726 0.694
10 50 0.3 0.009 0.008 0.008 0.003 0.344 0.315 0.279 0.212
10 50 0.5 0.001 0.001 0.001 0.001 0.101 0.080 0.059 0.028
10 100 0.01 0.461 0.457 0.449 0.434 0.993 0.993 0.992 0.992
10 100 0.05 0.230 0.217 0.200 0.164 0.980 0.977 0.974 0.969
10 100 0.1 0.091 0.078 0.068 0.051 0.948 0.943 0.930 0.907
10 100 0.3 0.001 0.000 0.000 0.000 0.552 0.504 0.446 0.342
10 100 0.5 0.000 0.000 0.000 0.000 0.157 0.132 0.094 0.039
10 200 0.01 0.550 0.539 0.531 0.512 1.000 1.000 1.000 1.000
10 200 0.05 0.226 0.210 0.191 0.147 1.000 1.000 0.999 0.999
10 200 0.1 0.071 0.058 0.046 0.028 0.999 0.999 0.999 0.997
10 200 0.3 0.001 0.001 0.000 0.000 0.900 0.875 0.840 0.722
10 200 0.5 0.000 0.000 0.000 0.000 0.514 0.423 0.320 0.176
10 400 0.01 0.596 0.587 0.580 0.552 1.000 1.000 1.000 1.000
10 400 0.05 0.176 0.155 0.124 0.094 1.000 1.000 1.000 1.000
10 400 0.1 0.033 0.026 0.019 0.006 1.000 1.000 1.000 1.000
10 400 0.3 0.000 0.000 0.000 0.000 0.999 0.999 0.997 0.981
10 400 0.5 0.000 0.000 0.000 0.000 0.942 0.918 0.869 0.696

L

Table 1

Frequency counts of selecting structural change models

                         for DGP1                         for DGP2
T

0δ 0δ
0c
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One fundamental difference between the 
Leisch et al. method and the proposed method is 
whether the changepoint is estimated. In the 
Leisch et al. method, the changepoint estimation 
cannot be performed. In order to do so, another 
step is needed. As in Chu et al. (1996), for 
example, it is possible to define the changepoint 
by the point at which the maximum of the LR 
statistics is obtained for the period from the 
starting point to the first hitting point. In 
contrast, the proposed method presents not only 
the first hitting point but also the changepoint 
simultaneously. This is because in the proposed 
method, from a battery of alternative models 
obtained by changing the changepoint on the 
condition of (11), including no structural change 
model, the best model is selected in each 
monitoring point. Therefore, the proposed 
method is very computer intensive. 

Table 2 shows frequency counts of 
selecting structural change models. In the LWZ 
criterion used are a pair of 

)05.0,1.0( 00 == δc , considering the results of 

the preceding simulation results. In the cases of 
no structural change, the YAO criterion 
( 1=L and 10=L ) and the LWZ criterion 
( 1=L ) show poor performance. In contrast, the 
performance of the LWZ criterion ( 10=L ) is 
comparable to other hypothesis-testing methods. 
In addition, it is shown that the more samples 
are obtained, the better performances are 

realized, because larger penalty ( 05.2)ln(T ) is 
imposed in the LWZ criterion than in the YAO 
criterion ( )ln(T ). 
 In the cases of structural change, the 
proposed method using the LWZ criterion 
( 10=L ) outperforms other hypothesis-testing 
methods, particularly in the late change case. 
The max – ME, and range – ME tests with small 
window sizes of 41=h  and 21=h shows poor 
performances in small samples. 

More interesting features are shown in 
Table 3. Concerning the mean of detection 
delay, the proposed method using the LWZ 
criterion ( 10=L ) significantly outperforms 
other hypothesis-testing methods. One 
fundamental drawback of the Leisch et al. 
method is that it remains unknown how small 
h should be. The smaller h is used, the quicker 

detection is obtained, but the lower power is also 
realized. 

 
Conclusion 

 
In this article, a model-selection-based 
monitoring of structural change was presented. 
The existence of structural change was 
examined not by hypothesis testing but by 
model selection using a modified Bayesian 
information criterion proposed by Liu, Wu, and 
Zidek (1997). It was found that concerning 
detection accuracy and detection speed, the 
proposed method shows better performance than 
the hypothesis-testing method of Leisch, Hornik, 
and Kuan (2000). 

This model-selection-based method has 
two advantages in comparison to the hypothesis-
testing method. First, by the introduction of a 
modified Bayesian information criterion, the 
subjective judgment required in the hypothesis-
testing procedure for determining the levels of 
significance is completely eliminated, and a 
semiautomatic execution becomes possible. 
Second, the model-selection-based method frees 
time series analysts from complex works of 
hypothesis testing. In order to provide better 
data description, different alternative models 
should usually be considered by changing the 
number of structural changes. In the 
conventional framework of hypothesis testing, 
however, different alternative models lead to 
different test statistics (Bai & Perron, 1998). In 
the model-selection method, any model change 
can be made very simply and the performance of 
the new model is evaluated consistently using 
the information criterion. 
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L=1 L=10 L=1 L=10 h=1/4 h=1/2 h=1 h=1/4 h=1/2 h=1

25 0.838 0.401 0.424 0.146 0.088 0.091 0.104 0.121 0.058 0.065 0.081
50 0.822 0.472 0.245 0.104 0.078 0.090 0.108 0.105 0.051 0.064 0.049
100 0.852 0.538 0.138 0.067 0.073 0.109 0.109 0.109 0.065 0.055 0.061
200 0.840 0.582 0.054 0.031 0.084 0.090 0.105 0.108 0.054 0.053 0.045
300 0.868 0.590 0.020 0.012 0.087 0.090 0.098 0.103 0.060 0.055 0.042

25 28 0.986 0.961 0.941 0.890 0.931 0.685 0.832 0.925 0.108 0.277 0.660
50 55 1.000 0.999 0.994 0.989 0.996 0.948 0.992 1.000 0.206 0.640 0.950
100 110 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.607 0.966 0.999
200 220 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.955 0.999 1.000
300 330 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 1.000 1.000

25 75 0.999 0.996 0.994 0.994 0.691 0.445 0.660 0.823 0.034 0.100 0.417
50 150 1.000 1.000 1.000 1.000 0.953 0.828 0.966 0.992 0.072 0.386 0.858
100 300 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 0.320 0.847 0.999
200 600 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.824 0.998 1.000
300 900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.979 1.000 1.000
Note: CP denotes change point.

CPT max-RE

Table 2. Frequency counts of selecting structural change models

YAO LWZ max-ME range-ME
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L=1 L=10 L=1 L=10
25 28 16( 23) 25( 26) 17( 24) 25( 25) 28( 36)
50 55 15( 18) 21( 21) 20( 26) 27( 30) 25( 27)
100 110 15( 11) 19( 11) 22( 18) 25( 19) 24( 16)
200 220 16( 11) 19( 10) 24( 16) 26( 15) 27( 14)
300 330 16( 11) 19( 10) 27( 15) 27( 14) 30( 15)

25 75 15( 13) 19( 13) 21( 20) 25( 20) 69( 45)
50 150 15( 11) 19( 11) 23( 17) 25( 17) 104( 69)
100 300 16( 10) 19(  9) 26( 14) 27( 13) 127( 75)
200 600 17( 10) 19( 10) 30( 15) 31( 14) 147( 73)
300 900 18( 10) 20(  9) 34( 15) 34( 15) 165( 80)

h=1/4 h=1/2 h=1 h=1/4 h=1/2 h=1
25 28 22( 22) 23( 25) 24( 19) 32( 10) 30( 14) 33( 21)
50 55 30( 32) 26( 26) 32( 19) 49( 15) 44( 26) 46( 29)
100 110 25( 16) 30( 11) 44( 13) 73( 43) 60( 47) 58( 14)
200 220 30( 10) 42( 13) 62( 16) 75( 63) 66( 20) 82( 16)
300 330 37( 11) 53( 15) 76( 19) 71( 50) 80( 15) 102( 18)

25 75 26( 28) 27( 29) 29( 28) 37(  8) 35( 13) 40( 22)
50 150 39( 47) 34( 38) 37( 29) 48( 16) 55( 32) 61( 45)
100 300 30( 28) 33( 19) 47( 18) 74( 43) 77( 67) 69( 33)
200 600 31( 12) 45( 15) 64( 25) 98(114) 74( 24) 91( 17)
300 900 38( 12) 55( 18) 78( 30) 84( 86) 87( 17) 111( 19)
Note: The number in each parenthesis indicates standard deviation.

YAO LWZ

Table 3. The mean and standard deviation of detection delay

max-RE

max-ME range-ME
T Change  

point

T
Change  

point
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On The Power Function Of Bayesian Tests With Application To Design  
Of Clinical Trials: The Fixed-Sample Case 
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Using a Bayesian approach to clinical trial design is becoming more common. For example, at the MD 
Anderson Cancer Center, Bayesian techniques are routinely employed in the design and analysis of Phase 
I and II trials. It is important that the operating characteristics of these procedures be determined as part of 
the process when establishing a stopping rule for a clinical trial. This study determines the power function 
for some common fixed-sample procedures in hypothesis testing, namely the one and two-sample tests 
involving the binomial and normal distributions. Also considered is a Bayesian test for multi-response 
(response and toxicity) in a Phase II trial, where the power function is determined. 
 
Key words: Bayesian; power analysis; sample size; clinical trial 
 
 

Introduction 
 
The Bayesian approach to testing hypotheses is 
becoming more common. For example, in a 
recent review volume, see Crowley (2001), 
many contributions where Bayesian 
considerations play a prominent role in the 
design and analysis of clinical trials. Also, in an 
earlier Bayesian review (Berry & Stangl, 1996), 
methods are explained and demonstrated for a 
wide variety of studies in the health sciences, 
including the design and analysis of Phase I and 
II studies. 
 At our institution, the Bayesian 
approach is often used to design such studies. 
See Berry (1985,1987,1988), Berry and Fristed 
(1985), Berry and Stangl (1996), Thall and 
Russell (1998), Thall, Estey, and Sung (1999),  
Thall, Lee, and Tseng (1999), Thall and Chang 
(1999),and Thall et al. (1998), for some recent 
references  where  Bayesian  ideas have been the 
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primary consideration in designing  Phase I and 
II studies. Of related interest in the design of a 
trial is the estimation of sample size based on 
Bayesian principles, where Smeeton and Adcock 
(1997) provided a review of formal decision-
theoretic ideas in choosing the sample size.  
 Typically, the statistician along with the 
investigator will use information from previous 
related studies to formulate the null and 
alternative hypotheses and to determine what 
prior information is to be used for the Bayesian 
analysis. With this information, the Bayesian 
design parameters that determine the critical 
region of the test are given, the power function 
calculated, and lastly the sample size determined 
as part of the design process. In this study, only 
fixed-sample size procedures are used.  

First, one-sample binomial and normal 
tests will be considered, then two-sample tests 
for binomial and normal populations, and lastly 
a test for multinomial parameters of a multi-
response  Phase II will be considered. For each 
test, the null and alternative hypotheses will be 
formulated and the power function determined. 
Each case will be illustrated with an example, 
where the power function is calculated for 
several values of the Bayesian design 
parameters. 
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Methodology 
 

For the design of a typical Phase II trial, the 
investigator and statistician use prior 
information on previous related studies to 
develop a test of hypotheses. If the main 
endpoint is response to therapy, the test can be 
formulated as a sample from a binomial 
population, thus if Bayesian methods are to be 
employed, prior information for a Beta prior 
must be determined. However, if the response is 
continuous, the design can be based on a one-
sample normal population. Information from 
previous related studies and from the 
investigator’s experience will be used to 
determine the null and alternative hypotheses, as 
well as the other design parameters that 
determine the critical region of the test.  

The critical region of a Bayesian test is 
given by the event that the posterior probability 
of the alternative hypothesis will exceed some 
threshold value.  Once a threshold value is used, 
the power function of the test can be calculated. 
The power function of the test is determined by 
the sample size, the null and alternative 
hypotheses, and the above-mentioned threshold 
value.       
  

Results 
Binomial population 

Consider a random sample from a 
Bernoulli population with parameters n and θ , 
where n is the number of patients and θ  is the 
probability of a response. Let X be the number 
of responses among n patients, and suppose the 
null hypotheses is H: 0θθ ≤  versus the 

alternative A: θ > 0θ . From previous related 

studies and the experience of the investigators, 
the prior information for θ  is determined to be 
Beta(a,b), thus the posterioir distribution of θ  is 
Beta (x+a, n-x+b), where x is the observed 
number of responses among n patients. The null 
hypothesis is rejected in favor of the alternative 
when 
 
          Pr[θ > 0θ / x, n] > γ ,                        (1) 

 
where γ is usually some large value as .90, .95, 
or .99. The above equation determines the 

critical region of the test, thus the power 
function of the test is 

g(θ ) =  Pr θ/X
 {Pr[θ > 0θ / x, n] >γ },           (2)                     

 
where the outer probability is with respect to the 
conditional distribution of X given θ . The 
power (2) at a given value of θ  is interpreted as 
a simulation as follows:  
 
(a)  select (n,θ ), and set S=0, 
 
(b) generate a X~Binomial(n, θ ),  
 
(c) generate a θ ~Beta(x+a, n-x+b), 
 
(d) if Pr [θ > 0θ / x, n] > γ ,  let the counter S 

=S+1, otherwise let S=S, 
 
(e) repeat (b)-(d) M times, where M is ‘large’,  
 
and  
 
(f) select another θ  and repeat (b)-(d).  
 

The power of the test is thus S/M and 
can be used to determine a sample size by 
adjusting the threshold γ , the probability of a 

Type I error g( 0θ ), and the desired power at a 

particular value of the alternative. The approach 
taken is fixing the Type I error at α  and finding 
n so that the power is some predetermined value 
at some value of θ  deemed to be important by 
the design team. This will involve adjusting the 
critical region by varying the value of the 
threshold γ . An example of this method is 

provided in the next section. The above 
hypotheses are one-sided, however it is easy to 
adjust the above testing procedure for a sharp 
null hypothesis. 
 
Normal Population 

      Let N(
1, −τθ ) denote a normal 

population with mean θ  and precision τ , 
where both are unknown and suppose we want 

to test the null hypothesis H: 0θθ =  versus A: 

0θθ ≠ , based on a random sample X of size n 
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with sample mean 
_

x  and variance s
2

. Using a 

non-informative prior distribution for θ  and τ ,   
the Bayesian test is to reject the null in favor of 
the alternative if the posterior probability  P of 
the alternative hypothesis satisfies  
 
                  P > γ , where                                (3)   

 

                      P = D
2

/D                                   (4)  

and, D = D
1
+ D

2
. 

It can be shown that  
 

D
1
 =  { Γπ (n/2)}2

2/n
} /{(2π )

2/n
 

[ n( 0θ - 
_

x )
2

+ (n-1) 
2s ]

2/n
}                         (5) 

 
and 

D
2

  = {(1-π )Γ ((n-1)/2) 2
2/)1( −n

} 

/{n
2/1
(2π )

2/)1( −n
[(n-1) s

2
]

2/)1( −n
}             (6) 

 
where π  is the prior probability of the null 
hypothesis.  

The power function of the test is 

g( ),τθ  =  Pr τθ ,/X [ P > γ / n, ,
_

x 2s ],  

R∈θ and τ >0                                              (7) 
 
where P is given by (3) and the outer probability 
is with respect to the conditional distribution of  
X given θ  and τ . 

The above test is for a two-sided 
alternative, but the testing procedure is easily 
revised for one-sided hypotheses. This will be 
used to find the sample size in an example to be 
considered in a following section. 

In the case when the null and alternative 

hypotheses are H: 0θθ ≤   and A: 0θθ >  and 

the prior distribution for the parameters is 
f( τθ , ) τ/1∝  , where H is rejected in favor of  
A whenever  

                Pr[ 0θθ > /n, ,
_

x 2s ] > γ ,  

 

it can be shown that the power (size) of the test 

at 0θ  is 1-γ . Thus in this sense, the Bayesian 

and classical t-test are equivalent. 
 
Two binomial populations 

Comparing two binomial populations is 
a common problem in statistics and involves the 

null hypothesis H: 21 θθ =  versus the 

alternative A: 21 θθ ≠ , where 1θ  and 2θ  are 

parameters from two Bernoulli populations. 
Assuming uniform priors for these two 
populations, it can be shown that the Bayesian 
test is to reject H in favor of A if the posterior 
probability P of the alternative hypothesis 
satisfies    
 
                            P > γ , where                      (8)   

 

                                P = D
2

/D,                        (9)  

 

and  D = D
1
  +   D

2
. It can be shown that  

D
1
 = {π BC(n

1
:x

1
)BC(

22
: xn )  

)()1(
212121

xxnnxx −−+Γ++Γ } 

÷ )2(
21

++Γ nn ,  

 
where BC(n,x) is the binomial coefficient “x 

from n”. Also, D
2

= (1-π )(n
1
+1)

1−
(n

2
+1)

1−
, 

where π  is the prior probability of the null 

hypothesis.  X
1
 and X

2
are the number of 

responses from the two binomial populations 

with parameters (n
1
, 1θ ) and ( 22 ,θn ) 

respectively. The alternative hypothesis is two-
sided, however the testing procedure is easily 
revised for one-sided hypotheses. 

In order to choose sample sizes n
1
 and 

n
2

, one must calculate the power function 

 

g( 21,θθ ) = Pr
2121 ,/, θθxx [P > γ / 

2121
,,, nnxx ], ( 21,θθ ) )1,0(∈ x )1,0(  

                                                                       (10) 
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where P is given by  (9) and the outer 
probability is with respect to the conditional 

distribution of  X
1
 and X

2
, given  1θ  and 2θ . 

As given above, (10) can be evaluated by a 
simulation procedure similar to that described in 
3.1. 
 
Two normal populations 
 Consider two normal populations with 

means 1θ  and 2θ  and precisions  1τ  and 2τ  

respectively, and suppose the null and 

alternative hypotheses are H: 21 θθ ≤  and A: 

1θ > 2θ  respectively.  Assuming a non-

informative prior for the parameters, namely 

f( 2121 ,,, ττθθ ) = 1/ 21ττ ,  one can show that 

the posterior distribution of the two means is 

such that  1θ  and 2θ  are independent and iθ  

/data ~ t(n i -1, ix
_

 n i /
2

i
s ), where n i is the 

sample size and 
_

i
x and 

2

i
s are the sample mean 

and variance respectively.  

That is, the posterior distribution of  iθ  

is a t distribution with n i -1 degrees of freedom, 

mean ix
_

, and precision n i /
2

i
s . It is known that 

 ( iθ  - ix
_

)( n i /
2

i
s )

2/1
 has a Student’s t-

distribution with n i -1 degrees of freedom. 

Therefore the null hypothesis is rejected 
if  

                  Pr[ 1θ > 2θ /data]>γ .                   (11) 

 
 
Multinomial Populations 
 Consider a multinomial population with 

k categories and corresponding probabilities iθ , 

i= 1,2,…,k, where ∑
=

=

ki

i
i

1

θ  = 1 and 10 << iθ   

for i=1,2,…,k. Suppose there are n patients and 

that n i  belong to the i-th category.  

The multinomial model is quite relevant 
to the Phase II trial where the k categories 
represent various responses to therapy. Let 

),...,,( 21 kθθθθ = , then if a uniform prior 

distribution is appropriate, the posterior 
distribution is 

f(θ / data) ∝ ∏
=

=

ki

i

n

i
i

1

θ , ∑
=

=

ki

i
i

1

θ = 1, and 

10 << iθ  for i=1,2,…,k.                            (12) 

 
and the distribution is Dirichlet 

( )1,...,1,1 21 +++ knnn . 

A typical hypothesis testing problem, 
see [14], is given by the null hypothesis ( k=4), 
where  

H: 13311221 kork ≥+≤+ θθθθ   

versus the alternative  
 

A: 13311221 kandk <+>+ θθθθ . 

 
The null hypothesis states that the response rate 

21 θθ +  is less than some historical value or 

that the toxicity rate 31 θθ +  is greater than 

some historical value 13k . The null hypothesis 

is rejected if the response rate is larger than the 
historical or the toxicity rate is too low 
compared to the historical.  
 

              Pr[ A /data]>γ                                 (13) 

 
where  γ  is some threshold value.  This 

determines the critical region of the test, thus the 
power function is  

            g(θ )= Pr θ/n { Pr[ A / data] > γ },    (14)   

where the outer probability is with respect to the 
conditional distribution of  
 

                  ),...,,( 21 knnnn =  given  θ .  

     
The power function will be illustrated 

for the multinomial test of hypothesis with a 
Phase I trial, where response to therapy and 
toxicity are considered in designing the trial. 
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Examples 
The above problems in hypothesis 

testing are illustrated by computing the power 
function of some Bayesian tests that might be 
used in the design of a Phase II trial.  
 
 One-Sample Binomial 
 No prior information 

Consider a typical Phase II trial, where 
the historical rate for toxicity was determined as 
.20. The trial is to be stopped if this rate exceeds 
the historical value. See Berry (1993) for a good 
account of Bayesian stopping rules in clinical 
trials. Toxicity rates are carefully defined in the 
study protocol and are based on the NCI list of 
toxicities. The null and alternative hypotheses 
are given as 
 
H: 20.≤θ   and A: 20.>θ ,                    (15) 
 
where θ  is the probability of toxicity. The null 
hypothesis is rejected if the posterior probability 
of the alternative hypothesis is greater than the 
threshold value γ . 

The power curve for the following 
scenarios will be computed (see Equation 2), 
with sample sizes n = 125, 205, and 500, 
threshold values γ = .90, .95, .99, M=1000, and 

null value 0θ  = .20. 

It is seen that the power of the test at 
30.=θ  and γ = .95, is .841, .958, and .999 for 

n = 125, 205, and 500, respectively.  
  Note that for a given N and γ , the 

power increases with θ  and for given N and θ , 
the power decreases with γ , and for given γ  

and  θ ,  the power of course increases with N. 
 
 
 
 
 
 
 
 
 
 
  

The Bayesian test behaves in a 
reasonable way. For the conventional type I 
error of .05, a sample size of N=125 would be 
sufficient to detect the difference .3 versus .2 
with a power of .841. It is interesting to note that 
the usual binomial test, with alpha = .05 and 
power .841, requires a sample of size 129 for the 
same alternative value of θ . For the same alpha 
and power, one would expect the Bayesian (with 
a uniform prior for θ ) and the binomial tests to 
behave in the same way in regard to sample size.  
 
With prior information 

Suppose the same problem is considered 
as above, but prior information is available with 
50 patients, 10 of whom have experienced 
toxicity. The null and alternative hypotheses are 
as above, however the null is rejected whenever  
                Pr[θ  > φ / x, n] > γ ,                    (16) 

where θ  is independent of φ  ~ Beta(10,40). 

This can be considered as a one-sample problem 
where a future study is to be compared to a 
historical control. 

As above, compute the power function 
(see Table 2) of this Bayesian test with the same 
sample sizes and threshold values in Table 1. 
The power of the test is .758, .865, and .982 for 
θ = .4 for N= 125, 205, and 500, respectively. 
This illustrates how important is prior 
information in testing hypotheses. If the 
hypothesis is rejected with the critical region 
                   Pr[θ >.2 / x, n] > γ ,                   (17) 
the power (Table 1) will be larger than the 
corresponding power (Table 2) determined by 
the critical region (16), because of the additional 
posterior variability introduced by the historical 
information contained in φ . Thus, larger sample 

sizes are required with (16) to achieve the same 
power as with the test given by (17).  
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Two Binomial Populations   

The case of two binomial populations 
was introduced in section 4.2, where equation 
(10) gives the power function for testing H: 

21 θθ =  versus the alternative A: 21 θθ ≠ .  

In this example, let n
1
= 20 = n

2
be the 

sample sizes of the two groups and suppose the 
prior probability of the null hypotheses is π = 

.5. The power at each point ( ), 21 θθ  is 

calculated via simulation, using equation (10) 
with γ  = .90. Table 3 lists the power function 

for this test. 
 
 

 
When the power is calculated with the 

usual two-sample, two-tailed, binomial test with 

alpha = .013, sample sizes n
1
= 20 = n

2
, and 

( ), 21 θθ = (.3, .9), the power is .922, which is 

almost equivalent to the above Bayesian test. 
This is to be expected, because we are using a 
uniform prior density for both Bernoulli 
parameters. It is not too uncommon to have two 
binomial populations in a Phase II setting, where 

1θ  and 2θ are response rates to therapy. 

 
 
 

 
Table 1. Power function for H versus A, N=125,205,500. 

                                    γ  

θ  .90 .95 .99 

     0 0,0,0  0,0,0 0,0,0 
    .1 0,0,0 0,0,0 0,0,0 
    .2 .107,.099,.08 .047,.051,.05 .013,.013,.008 
   .3 .897,.97,1 .841,.958,.999 .615,.82,.996 
    .4 1,1,1 1,1,1 .996,1,1 
    .5 1,1,1 1,1,1 1,1,1 
    .6 1,1,1 1,1,1 1,1,1 
    .7 1,1,1 1,1,1 1,1,1 
    .8 1,1,1 1,1,1 1,1,1 
    .9 1,1,1 1,1,1 1,1,1 
 1.0 1,1,1 1,1,1 1,1,1 

 
Table 2. Power function for H versus A, N=125,205,500. 

                            γ  

θ  .90 .95 .99 
     0 0,0,0  0,0,0 0,0,0 
    .1 0,0,0 0,0,0 0,0,0 
    .2 .016,.001,.000 .002,.000,.000 .000,.000,.000 
   .3 .629,.712,.850 .362,.374,.437 .004,.026,.011 
    .4 .996,.999,1 .973,.998,1 .758,.865,.982 
    .5 1,1,1 1,1,1 .999,1,1 
    .6 1,1,1 1,1,1 1,1,1 
    .7 1,1,1 1,1,1 1,1,1 
    .8 1,1,1 1,1,1 1,1,1 
    .9 1,1,1 1,1,1 1,1,1 
 1.0 1,1,1 1,1,1 1,1,1 
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A Phase II trial with toxicity and response rates 

With Phase II trials, response to therapy 
is usually taken to be the main endpoint, 
however in reality one is also interested in the 
toxicity rate, thus it is reasonable to consider 
both when designing the study. Most Phase II 
trials are conducted not only to estimate the 
response rate, but to learn more about the 
toxicity. In such a situation, the patients can be 
classified by both endpoints as follows: 
 
Table 4. Number of  and Probability of Patients 
by Response and Toxicity. 
                                             Toxicity 

Response Yes No 
Yes (n 1 , 1θ ) (n

2
, 2θ ) 

No (n 3 , 3θ ) (n
4

, 4θ ) 

 
 

Let the response rate be rθ  = 21 θθ +  

and the rate of toxicity be 31 θθθ +=t , where 

1θ  is the probability a patient will experience 

toxicity and respond to therapy, and n
1
 is the 

number of patients who fall into that category. 
Following Petroni and Conoway (2001), let the 
null hypothesis be  

 

                         H: 0rr θθ ≤  or 0tt θθ ≥   

 
and the alternative hypothesis be 
        

                    A: 0rr θθ >  and 0tt θθ < , 

where 0rθ  and  0tθ  are given and estimated by 

the historical rates in previous trials.  

 
Table 3. Power for Bayesian Binomial Test. 

 

2θ  

1θ  .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

.1 
 

.004 .032 .135 .360 .621 .842 .958 .992 1 1 

.2 
 

.031 .011 .028 .106 .281 .536 .744 .913 .997 1 

.3 
 

.171 .028 .006 .029 .107 .252 .487 .767 .961 1 

.4 
 

.368 .098 .025 .013 .028 .075 .244 .542 .847 .999 

.5 
 

.619 .289 .100 .022 .007 .017 .108 .291 .640 .981 

.6 
 

.827 .527 .237 .086 .035 .005 .027 .116 .357 .882 

.7 
 

.950 .775 .464 .254 .113 .037 .013 .049 .171 .587 

.8 
 

.996 .928 .768 .491 .316 .132 .028 .010 .040 .205 

.9 
 

1 .996 .946 .840 .647 .359 .156 .037 .006 .014 

1 
 

1 1 1 1 .984 .873 .567 .200 .017 .000 
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In this example, let  0rθ  = .40 and  

0tθ = .30. That is, the alternative hypothesis is 

that the response rate exceeds .40 and the 
toxicity rate is less than .30, and the null is 
rejected in favor of the alternative if the latter 
has a posterior probability in excess of γ .  

Table 5 gives the power for n=100 patients and 
threshold γ = .90. 

From above, the power of the test is 

.818 when ( tr θθ , ) = (.7, .2), and the test 

behaves in a reasonable way.  When the 
parameter values are such that the response rate 
is in excess of .40 and the toxicity rate is less 
than or equal to .30, the power is higher, relative 
to those parameter values when the null 
hypothesis is true. 

 
Conclusion 

 
We have provided a way to assess the sampling 
properties of some Bayesian tests of hypotheses 
used in the design and analysis of Phase II 
clinical trials. 

The one-sample binomial scenario is the 
most common in a Phase II trial, where the 
response to therapy is typically binary. We think 
it is important to know the power function of a 
critical region that is determined by Bayesian 
considerations, just as it is with any other test.    

 

 
 
 

The Bayesian approach has one major 
advantage and that is prior information, and 
when this is used in the design of the trial, the 
power of the test will be larger then if prior 
information had not been used. 

We have confined this investigation to 
the fixed-sample case, but will seek to expand 
the results to the more realistic situation where 
Bayesian sequential stopping rules will be used 
to design Phase II studies.  
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Bayesian Reliability Modeling Using Monte Carlo Integration 
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The aim of this article is to introduce the concept of Monte Carlo Integration in Bayesian estimation and 
Bayesian reliability analysis. Using the subject concept, approximate estimates of parameters and 
reliability functions are obtained for the three-parameter Weibull and the gamma failure models. Four 
different loss functions are used: square error, Higgins-Tsokos, Harris, and a logarithmic loss function 
proposed in this article. Relative efficiency is used to compare results obtained under the above 
mentioned loss functions. 
 
Key words: Estimation, loss functions, Monte Carlo Integration, Monte Carlo Simulation, reliability  
                   functions, relative efficiency. 
 
 

Introduction 
 
In this article, the concept of Monte Carlo 
Integration (Berger, 1985) is used to obtain 
approximate estimates of the Bayes rule that is 
ultimately used to derive estimates of the 
reliability function. Monte Carlo Integration is 
used to first obtain approximate Bayesian 
estimates of the parameter inherent in the failure 
model, and using this estimate directly, obtain 
approximate Bayesian estimates of the reliability 
function. Secondly, the subject concept is used 
to directly obtain Bayesian estimates of the 
reliability function. 
 In the present modeling effort, the three-
parameter Weibull and the gamma failure 
models are considered, that are respectively 
defined as follows: 
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the computational aspect of modeling. Chris P. 
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Mathematics and Statistics. His research 
interests are in statistical analysis and modeling, 
operations research, reliability analysis-ordinary 
and Bayesian, time series analysis.   
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where α  and β  are respectively the shape and 
scale parameters.  

For these two failure models, consider 
the scale parameters b and β  to behave as 
random variables that follow the lognormal 
distribution which is given by 
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For each of the above underlying failure 

models, approximate Bayesian estimates will be 
obtained for the subject parameter and the 
reliability function with the squared error, the 
Higgins-Tsokos, the Harris, and a proposed 
logarithmic loss functions. The loss functions 

0,; >≥ cbax
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along with a statement of their key 
characteristics are given below. 

  
Square error loss function 

The popular square error loss function 
places a small weight on estimates near the true 
value and proportionately more weight on 
extreme deviation from the true value of the 
parameter. Its popularity is due to its analytical 
tractability in Bayesian reliability modeling. The 
squared error loss is defined as follows: 
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Higgins-Tsokos loss function 

The Higgins-Tsokos loss function places 
a heavy penalty on extreme over-or 
underestimation. That is, it places an exponential 
weight on extreme errors. The Higgins-Tsokos 
loss function is defined as follows: 
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Harris loss function 

The Harris loss function is defined as 
follows:  
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To our knowledge, the properties of the Harris 
loss function have not been fully investigated. 
However it is based on the premises that if the 
system is 0.99 reliable then on the average it 
should fail one time in 100, whereas if the 
reliability is 0.999 it should fail one time in 
1000. Thus, it is ten times as good.  
 
Logarithmic loss function 

The logarithmic loss function 
characterizes the strength of the loss 
logarithmically, and offers useful analytical 
tractability. This loss function is defined as:  
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It places a small weight on estimates whose 
ratios to the true value are close to one, and 
proportionately more weight on estimates whose 
ratios to the true value are significantly different 

from one. R t( )  and R t
Λ

( ) represent respectively 
the true reliability function and its estimate. 
 

Methodology 
 
Considering the fact that the reliability of a 
system at a given time t is the probability that 
the system fails at a time greater or equal to t, 
the reliability function corresponding to the 
three-parameter Weibull failure model is given 
by 
 

                
( )

( )
ct a

bR t e
−−

=  ,                      (8)                     
and for the gamma failure model 
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where γ ( , )l l1 2  denotes the incomplete gamma 
function. When α  is an integer, equation (9) 
becomes 
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Consider the situation where there are m 
independent random variables  X X X m1 2, ,...,  
with the same probability density function  
dF x( | )θ , and each of them having n 
realizations, that is, 
 X x x xn1 11 21 1: , , ..., ;    

X x x xn2 12 22 2: , , ..., ; …….  ; 

X x x xm m m nm: , , ...,1 2  
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The minimum variance unbiased estimate, 

MVUE, θ j

Λ

 of the parameter θ j  is obtained 

from the n realizations x x xj j nj1 2, ,... ,  where j 

= 1,...m. 
 Repeating this independent procedure k 
times, a sequence of  MVUE is obtained for the 

θ j s' , that is,  θ θ θ1 2

Λ Λ Λ

, ,..., m . Using the θ
Λ

j s'  

and their common probability density function, 
approximate Bayesian reliability estimates are 
obtained. 
 Let  );( θxL , g( )θ , π θ( )  and h( )θ  
represent respectively the likelihood function, a 
function of θ , a prior distribution of θ  and a 
probability density function of θ   called the 
importance function. Using the strong law of 
large numbers, [7], write 
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Note that hE  represents the expectation with 
respect to the probability density function h, and 
g( )θ  is any function of θ   which assures 

convergence of the integral; also, h( )θ  mimics 
the posterior density function. 
 For the special case where 1)( =θg , 
equation (10) yields 
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Equations (10) and (11) imply that the posterior 
expected value of g( )θ  is given by 
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This approach is used to obtain 

approximate Bayesian estimates of g( )θ , for 
the different loss functions under study. 
Approximate Bayesian estimates of the 
parameter θ   and the reliability are then 
obtained by replacing g( )θ   by θ  and R(t) 
respectively in the derived expressions 
corresponding to the approximate Bayesian 
estimates of g( )θ .  

The Bayesian estimates used to obtain 
approximate Bayesian estimates of the function 
g( )θ are the following when the squared error, 
the Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used:   

 

         
∫
Θ

∫
Θ=

Λ

θθπθ

θθπθθ
θ

dxL

dxLg

SEBg
)();(

)();()(

)()(  

 

     

,

1
( ) ( )

1 2
( )1 ( ; ) ( )

( )2 ( ; ) ( )

g B HT f f

f g
e L x d

Ln
f g

e L x d

θ

θ
θ π θ θ

θ
θ π θ θ

Λ
=

+

⎛ ⎞
∫⎜ ⎟
Θ⎜ ⎟

−⎜ ⎟
∫⎜ ⎟
Θ⎝ ⎠

 

.0, 21 �ff   
 

∫
Θ −

∫
Θ −=

Λ

θθπθ
θ

θθπθ
θ

θ

θ
dxL

g

dxL
g

g

HBg
)();(

)(1

1

)();(
)(1

)(

)()(  

 



CAMARA & TSOKOS 175 

∫
Θ

∫
Θ

=
Λ θθπθ

θθπθθ

θ
dxL

dxLgLn

eLnBg

)();(

)();())((

)()( (13). 

 
Using equation (12) and the above 

Bayesian decision rules, approximate Bayesian 
estimates of g( )θ corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
respectively given by the following expressions 
when m replicates are considered. 
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First, use the above general functional forms of 
the Bayesian estimates of g( )θ  to obtain 
approximate Bayesian estimates of the random 
parameter inherent in the underlying failure 
model. Furthermore, these estimates are used to 
obtain approximate Bayesian reliability 
estimates. Second, use the above functional 
forms to directly obtain approximate Bayesian 
estimates of the reliability function. 
   
Three-parameter Weibull underlying failure 
model 

In this case the parameterθ , discussed 
above, will correspond to the scale parameter b. 
The location and shape parameters a and c  are 
considered fixed. The likelihood function 
corresponding to n independent random 
variables following the three-parameter Weibull 
failure model is given by 
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Furthermore, it can be shown that nS  is a 

sufficient statistic for the parameter b, and a 
minimum variance unbiased estimator of b is 
given by 
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The probability density function of  

Y X a c= −( ) , where X   follows the Weibull 
probability density function, is  
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The moment generating function of Y is 

given by 
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Using equation (20) and the fact that the Xi ’s 
are independent, the moment generating 
function of the minimum variance unbiased 
estimator of the parameter b is 
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Equation (21) corresponds to the 

moment generating function of the gamma 

distribution G n
b

n
( , ) . Thus, the conditional 

probability density function of the MVUE of b is 
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Approximate Bayesian estimates for the scale 
parameter b and the reliability function R t( ) are 
obtained, with the use of equations (18) and 
(22), by replacing respectively g b( )  by b and 

R t( ) in equations (14), (15), (16) and (17). The 

b si

Λ
'  that are minimum variance unbiased 

estimates of the scale parameter b will play the 

role of the si '
Λ

θ . 

Considering the lognormal prior, 
equations (14), (15), (16) and (17) yield the 
following approximate Bayesian estimates of the 
scale parameter b corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and our proposed lognormal loss functions, after 

replacing bi by bi

Λ
in the expression of h bi1( )
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The approximate Bayesian estimates of the 
reliability corresponding to the first method are 
therefore given by   
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where b E

Λ
stands respectively for the above 

approximate Bayesian estimates of the scale 
parameter b.                                                                                                                                                                           

Approximate Bayesian reliability 
estimates corresponding to the second method 
are also derived by replacing )(θg by R(t) in 
equations (14), (15), (16) and (17). The obtained 
estimates corresponding respectively to the 
squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
respectively given by the following expressions, 

after replacing bi by bi
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in the expression of 
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Gamma underlying failure model 

The likelihood function corresponding 
to n independent random variables following the 
two-parameter gamma underlying failure model 
can be written under the following form:  
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Note that Sn
'  is a sufficient statistic for the scale 

parameter β . Furthermore,  
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is a minimum variance unbiased estimator of β , 
and its moment generating function is given by 
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which is the moment generating function of the 
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conditional density function of the MVUE of β  
is given by 
 

0,
)(

)(
)|,(

1

2 >⎟
⎠

⎞
⎜
⎝

⎛

Γ
=

Λ−−ΛΛ
Λ

ββ
βα

αβαβ
β

β
αα

α

α nn

n

n

e
n

n
h  

(34) 
 

Approximate Bayesian estimates for the 
scale parameter β  and the reliability function 
R(t) are obtained, with the use of equations (32) 
and (34)  by replacing respectively g( )θ  by β  
and R t( ) in equations (14), (15), (16) and (17). 

The β
Λ

i ’s that are the minimum variance 

unbiased estimates of the scale parameter β  will 

play the role of the si '
Λ
θ . 

Considering the lognormal prior, 
equation (14), (15), (16) and (17) yield the 
following approximate Bayesian estimates of the 
scale parameter β  corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and the proposed lognormal loss functions, after 

replacing βi  by β
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i  in the expression of 
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Approximate Bayesian estimates of the 
reliability corresponding to the first method are 
therefore given by   
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where  β
Λ

E   is the approximate Bayesian 

estimate of the scale parameter β . 
 The approximate Bayesian reliability 
estimates corresponding to the second method 
are obtained by replacing )(θg  by R t( )  in 
equations(14), (15), (16) and (17). The obtained 
estimates corresponding respectively to the 
squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
given by the following expressions, after 

replacing βi  by β
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i  in the expression of 
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Relative Efficiency with Respect to the Squared 
Error Loss 

To compare our results, the criterion of 
integrated mean square error, IMSE, of the 
approximate Bayesian reliability estimate 

R tE

~

( )  is used. That is, 
 

IMSE R t R t R t dtE E( ( )) ( ) ( )
~ ~

= −⎛
⎝
⎜ ⎞

⎠
⎟

∞

∫
2

0

  

(44) 
 
Define the relative efficiency as the ratio 

of the IMSE of the approximate Bayesian 
reliability estimates using a challenging loss 
function to that of the popular squared error loss. 
The relative efficiencies of the Higgins-Tsokos, 
the Harris and the proposed logarithmic loss are 
respectively defined as follows: 
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~
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and 
 

               
))((

))((
)(
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~

)(

~

tRIMSE

tRIMSE
LnEff

SEE

LnE=  

            =
−⎛

⎝
⎜ ⎞

⎠
⎟

−⎛
⎝
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∞
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∫

R t R t dt
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~
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~
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2

0

2

0

. 

 
 If the relative efficiency is smaller than 
one, the Bayesian estimate corresponding to the 
squared error loss is less efficient. The squared 
error will be more efficient if the relative 
efficiency is greater than one. If the relative 
efficiency is approximately equal to one, the 
Bayesian reliability estimates are equally 
efficient. 
 
Numerical Simulations 

In the numerical simulations, Bayesian 
and approximate Bayesian estimates of the scale 
parameter β  for the gamma failure model and 
the lognormal prior will be compared, when the 
squared error loss is used and the shape 
parameter α  is considered fixed. Second, the 
new approach will be implemented, and 
approximate Bayesian reliability estimates will 
be obtained for the three-parameter Weibull and 
the gamma failure model under the squared 
error, the Higgins-Tsokos (with 1,1 21 == ff ), 
the Harris, and the logarithmic loss functions, 
respectively.     
 
Comparison between Bayesian estimates and 
approximate Bayesian estimates  of the scale 
parameter β   
 Using the square error loss function, the 
gamma underlying failure model and the 
lognormal prior, Table 1 gives estimates of the 
scale parameter β  when the shape parameter α  
is fixed and equal to one.  
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Table 1. 

 
Lognormal 

prior  
 

True value 
of  β  

Bayesian 
estimate of  β  

Approximate 
Bayesian 

estimates of  
β  

Number of 
replicates 

m 
 

µ σ= =1 05, .      1 
 
 
 
 
 
 

1.1688 0.9795                
0.9883                
1.0796                
1.0625                
1.0385                
1.0899                
1.0779                
 

1 
2 
3 
4 
5 
6 
7 

µ σ= =4 9,  
 
 
 

1 1.0561 0.9795                
0.9880                
1.0351                
0.9943                
0.9665                
0.9945                
1.0017                

1 
2 
3 
4 
5 
6 
7 

µ σ= =3 08, .  
 
 
 
 

2 2.2808 1.9591                
1.9766                
2.1555                
2.1162                
2.0658                
2.1679                
2.1467 

1 
2 
3 
4 
5 
6 
7 

µ σ= =8 12,  
 
 

2 2.0376 1.9591                
1.9761                
2.0704                
1.9886                
1.9331                
1.9892                
2.0034                

1 
2 
3 
4 
5 
6 
7  
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The above results show that the obtained 
approximate Bayesian estimates of the 
parameter β   are as good if not better than the 
corresponding Bayesian estimates, because they 
are in general closer to the true state of nature. 

 
Approximate Bayesian Reliability Estimates of 
the Three-parameter Weibull and the Gamma 
Failure Models for the different Loss Functions 

Using Monte Carlo simulation, 
information has been respectively generated 
from the three-parameter Weibull W(a=1, b=1, 
c=2) and the two-parameter gamma 
G( , )α β= =1 1 . For each of the above 
underlying failure models, three different 
samples are generated of thirty failure times, and 
three minimum variance unbiased estimates of 
the scale parameter are obtained. 

 
Three-parameter Weibull W(a=1,b=1,c=2) 

A typical sample of thirty failure times 
that are randomly generated from 
W(a=1,b=1,c=2) is given below: 
 

 

1.9772260        2.6416950        2.1241180 
1.5575370        2.7714080        1.7158910 
1.3109790        2.2144780        2.2674890 
2.2136030        1.3422820        1.4691720 
1.3017910        1.7534080        1.9712720 
1.6897900        1.9609470        2.9533880 
1.5448060        1.4516050        1.1704900 
1.9409150        2.5030900        1.4788690 
2.1088060        1.7306430        1.8829980 
 1.8939380        1.8181710        2.7016010 

 
The obtained minimum variance unbiased 
estimates of the scale parameter b are given 
below 
 

b
Λ

1 11408084120= .  

b
Λ

2 10091278197= .  

b3 0 9991267092
Λ

= .  
 
These minimum variance unbiased estimates 
will be used along with likelihood function and 
the lognormal prior f b( ; . , . )µ σ= =0 34 0115  

to obtain approximate Bayesian reliability 
estimates. 
  

Let      
( ) ( ) ( )

( ) ( ) ( )

( ) , ( ) , ( ) ,

( ) , ( ) , ( )

Eb SE Eb SE Eb HT

Eb HT Eb H Eb H

R t R t R t

R t R t R t

≈ Λ ≈

Λ ≈ Λ
, 

                  )(, )( tR LnEb

≈

 and R tEb Ln

Λ

( ) ( )   
 
represent, respectively, the approximate 
Bayesian reliability estimates obtained with the 
approximate Bayesian reliability estimates of the 
scale parameter b, and the ones obtained by 
direct computation, when the squared error, the 
Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used. These 
estimates are given below in Table 2. Table 3 
gives the approximate Bayesian reliability 
estimates obtained directly using equations 
(28), (29), (30) and (31).  
 
Gamma failure model G( , )α β= =1 1   
 A typical sample of thirty failure times 
that are randomly generated from 
G( , )α β= =1 1  is given below. 
 

 

0.95497         0.09670         0.09107 
2.69516         1.47495         0.56762 
1.26364         1.60653         0.94337 
0.54999         0.64000         0.62536 
1.44922         0.78403         1.08172 
0.31084         1.47283         0.47580 
3.13788         0.11715         0.92341 
0.51249         0.22012         3.81572 
0.57911         0.50421         0.14532 

      0.77497         1.07792         1.08156 

 
The obtained minimum variance unbiased 
estimates of the scale parameter β  are given 
below. 

    β 1 1009127916
Λ

= .  

β 2 1140808468
Λ

= .  

β 3 0 9991268436
Λ

= .  
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Table 2. 
 

 R t( )  
)()( tR SEEb

≈

 )()( tR HTEb

≈

 )()( tR HEb

≈

 )()( tR LnEb

≈
 

Approximation  e t− −( )1 2

 
e

t− −
1

1 1251
1 2

.
( )

 e
t− −1

1 1251
1 2

.
( )

 e
t− −1

0 9758
1 2

.
( )

 e
t− −

1

1 1242
1 2

.
( )

 
IMSE 0 4103810.2 −  3106764.3 −  4104820.1 −  3106301.3 −  

Relative 
efficiency  
with respect to 

R tEb SE

≈

( ) ( )  

0 1.0 15.44 0.62 15.25 

 
       The above approximate Bayesian estimates yield good estimates of the true reliability function. 

 
Table 3.  

 
 

Time t 
R t
Λ

( )  )()( tR SEEb

Λ

 )()( tR HTEb

Λ

 )()( tR HEb

Λ

 )()( tR LnEb

Λ

 
   1.00001 
   1.25              
   1.50              
   1.75              
   2.00              
   2.25              
   2.50              
   2.75              
   3.00              
   3.25              
   3.50              
   3.75              
   4.00 
 
 

1.0000        
0.9394 
0.7788 
0.5698 
0.3679 
0.2096 
0.1054 
0.0468 
0.0183 
0.0063 
0.0019 
0.0005 
0.0001 

1.0000 
0.9459 
0.8005 
0.6062 
0.4108 
0.2492 
0.1354 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8005 
0.6062 
0.4108 
0.2492 
0.1354 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8008 
0.6066 
0.4112 
0.2495 
0.1355 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8005 
0.6061 
0.4105 
0.2488 
0.1349 
0.0655 
0.0284 
0.0110 
0.0038 
0.0012 
0.0003 
 

 
 



BAYESIAN RELIABILITY MODELING USING MONTE CARLO INTEGRATION 
 
184 

These minimum variance unbiased 
estimates will be used along with the likelihood 
function and the lognormal 
prior f x( ; . , . )µ σ= =0 0137 01054  to obtain 
approximate Bayesian reliability estimates.  

Let        
( ) ( ) ( )

( ) ( )

( ) , ( ) , ( ) ,

( ) , ( )

E SE E SE E HT

E HT E H

R t R t R t

R t R t

β β β

β β

≈ Λ ≈

Λ ≈
, 

              )(,)( )()( tRtR LnEHE ββ

≈Λ

 

and   R tE Ln

Λ

β ( ) ( )  represent respectively the 
approximate Bayesian reliability estimates 
obtained with the approximate Bayesian 
estimate of β , and the ones obtained by direct 
computation, when the squared error, the 

 
 
 
 
 

Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used. These 
estimates are given in Table 5 and Table 6. 

For computational convenience, the 
results presented in Table 3 are used to obtain 
approximate estimates of the analytical forms of 
the various approximate Bayesian reliability 
expressions under study. The results are given in 
Table 4. Table 6 gives the approximate Bayesian 
reliability estimates obtained directly by using 
equations (40), (41), (42) and (43).  

For computational convenience, the 
results presented in Table 6 are used to obtain 
approximate estimates of the analytical forms of 
the various approximate Bayesian reliability 
expressions under study. The results are given in 
Table 7. 
 
 
 
 

 

Table 4. 
 

 
)(tR  )()( tR SEEb

Λ

 )()( tR HTEb

Λ

 )()( tR HEb

Λ

 )()( tR LnEb

Λ

 
Approximation 2)1( −− te  2)1(

1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

IMSE 0 3103813.2 −  3103813.2 −  3103813.2 −  3103813.2 −  
Relative 
efficiency with 
respect to 

R tEb SE

Λ

( ) ( )  

0     1         1        1         1 

 

Table 5.  
 

)(tR  )()( tR SEEβ

≈

 )()( tR HTEβ

≈

 )()( tR HEβ

≈

 
 

)()( tR LnEβ
≈

 
 

Approximation e t−  
e

t−
1 0311.  e

t−
11250.  e

t−
0 9758.  e

t−
1 1242.  

IMSE 0.0 410381008.2 −  310676471.3 −  410482034.1 −  310630931.3 −  
 

Relative 
efficiency with 
respect to  

R tE SE

≈

β ( ) ( )  

0.0 1.0 15.44 0.62 15.25 
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Table 6. 

 
Time t 

R t
Λ

( )  )()( tR SEEβ

Λ

 )()( tR HTEβ

Λ

 )()( tR HEβ

Λ

 )(LnER β

Λ

 

10 100−               
  1.00              
  2.00               
  3.00               
  4.00               
  5.00               
  6.00               
  7.00               
  8.00               
  9.00               
 10.00 

1.0000            
0.3679           
0.1353           
0.9498            
0.0183           
0.0067           
0.0025           
0.0009           
0.0003           
0.0001           
0.0000 

1.0000            
0.3786            
0.1437            
0.0547            
0.0209            
0.0080            
0.0031             
0.0012            
0.0005            
0.0002             
0.0001 
  

1.0000            
0.4108            
0.1690            
0.0696             
0.0287            
0.0118            
0.0049            
0.0020            
0.0008            
0.0003            
0.0001 

1.0000            
0.4112           
0.1692           
0.0697            
0.0287           
0.0118           
0.0049           
0.0020           
0.0008           
0.0003           
0.0001 

1.0000  
0.4105 
0.1685 
0.0692  
0.0284 
0.0117 
0.0048 
0.0020 
0.0008 
0.0003 
0.0001 

 
Table 7. 

 
 

)()( tR SEEβ

Λ

 )()( tR HTEβ

Λ

 
 

)()( tR HEβ

Λ

 )()( tR LnEβ

Λ

 

Approximation 
0311.1

t

e
−

 1250.1

t

e
−

 1250.1

t

e
−

 1242.1

t

e
−

 
IMSE 410381008.2 −  310676471.3 −  310676471.3 −  310630931.3 −  
Relative 
efficiency 
 with respect to    

)()( tR SEEβ

Λ

 

1.0 15.44 15.44 15.25 

 
     The above approximate Bayesian estimates yield good estimates of the true reliability function. 
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Conclusion 
 

Using the concept of Monte Carlo Integration, 
approximate Bayesian estimates of the scale 
parameter b were analytically obtained for the 
three-parameter Weibull failure model under 
different loss functions.  Using these estimates, 
approximate Bayesian estimates of the reliability 
function may be obtained. Furthermore, the 
concept of Monte Carlo Integration may be used 
to directly approximate estimates of the 
Bayesian reliability function. 
 Second, similar results were obtained 
for the gamma failure model. Finally, numerical 
simulations of the analytical formulations 
indicate:  
 
(1) Approximate Bayesian reliability estimates 
are in general good estimates of the true 
reliability function. 
 
(2) When the number of replicates m increases, 
the approximate Bayesian reliability estimates 
obtained directly converge for each loss function 
to their corresponding Bayesian reliability 
estimates. 
 
(3) Approximate Bayesian  reliability estimates 
corresponding to the squared loss function do 
not always yield the best approximations to the 
true reliability function. In fact the Higgins-
Tsokos, the Harris and the proposed logarithmic 
loss functions are sometimes equally efficient if 
not better. 
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Right-tailed Testing of Variance for Non-Normal Distributions  
 

                                     Michael C. Long                                         Ping Sa 
                         Florida State Department of Health                Mathematics and Statistics 

                                                                         University of North Florida 
 
 
A new test of variance for non-normal distribution with fewer restrictions than the current tests is 
proposed. Simulation study shows that the new test controls the Type I error rate well, and has power 
performance comparable to the competitors. In addition, it can be used without restrictions. 
 
Key words: Edgeworth expansion, Type I error rate, power performance 
 
 

Introduction 
 
Testing the variance is crucial for many real 
world applications. Frequently, companies are 
interested in controlling the variation of their 
products and services because a large variation 
in a product or service indicates poor quality. 
Therefore, a desired maximum variance is 
frequently established for some measurable 
characteristic of the products of a company. 

In the past, most of the research in 
statistics concentrated on the mean, and the 
variance has drawn less attention. This article is 
about testing the hypothesis that the variance is 

equal to a hypothesized value 2
oσ  versus the 

alternative that the variance is larger than the 
hypothesized value. This statistical test will be 
referred to as a right-tailed test in further 
discussion. 

The chi-square test is the most 
commonly used procedure to test a single 
variance of a population. Once a random sample 
of  size n is  taken,  the individual values iX , the 
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sample mean X , the sample variance 2S , and 

specified ( 2
oσ ) are used to compute the chi-

squared test statistic 222
0/)1( σχ Sn −= , which 

is distributed 2
)1( −nχ  under 0H . The 2χ  statistic 

is used for hypothesis tests concerning 2σ  when 
a normal population is assumed. It is well 
known that the chi-square test statistic is not 
robust against departures from normality such as 
when skewness and kurtosis are present. This 
can lead to rejecting 0H  much more frequently 

than indicated by the nominal alpha level, where 
alpha is the probability of rejecting 0H  when 

0H  is true.  

 Practical alternatives to the 2χ  test are 
needed for testing the variance of non-normal 
distributions. There are nonparametric methods 
such as bootstrap and jackknife (see Efron & 
Tibshirani, 1993). The bootstrap requires 
extensive computer calculations and some 
programming ability by the practitioner making 
the method infeasible for some people. Although 
the jackknife method is easier to implement, it is 
a linear approximation to the bootstrap method 
and can give poor results when the statistic 
estimate is nonlinear.  
 Another alternative is presented in 
Kendall (1994) and Lee and Sa (1998). The 

robust chi-square statistic 2
rχ  which has the 

form ( ) 22ˆ1 σSdn −  and is chi-square 

distributed with ( )dn ˆ1−  degrees of freedom, 
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where 
1

2

ˆ
1ˆ

−

⎟
⎠

⎞
⎜
⎝

⎛ += η
d  and η̂  is the sample 

kurtosis coefficient. The critical value for test 

rejection is 2
,ανχ  where ν  is the smallest 

integer, which is greater than or equal to (n-

1) d̂ . Because d̂  is a function of the sample 
kurtosis coefficient η̂  alone, this could create 

performance problems for 2
rχ  test with skewed 

distributions. 
 Lee and Sa (1996) derived a new 
method for a right-tailed variance test of 
symmetric heavy-tailed distributions using an 
Edgeworth expansion (see Bickel & Doksum, 
1977), and an inversion type of Edgeworth 
expansion provided by Hall (1983), 
 

( )6/)1()ˆ(/)ˆ( 2
1 −+≤− xxP βθσθθ  

                         = )/1()( nox +Φ ,              (1) 

where θ̂  is any statistic, and θ , )ˆ(θσ  and 1β  
are the mean, standard deviation and coefficient 

of skewness of θ̂ , respectively. )(xΦ  is the 
standard normal distribution function. 

 They considered the variable 22 /σS , 
and the variable admitted the inversion of the 
Edgeworth expansion above as follows:   
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+≤

−
+

−
6/)1(

1
2

1
2

1

4
4

2

2

xx

nn

K

S

P β

σ

σ  

                     = )/1()( nox +Φ ,   (2) 
 

where 224
4 ))((3)( µµ −−−= XEXEK  and 

2
3222

322

1

))((

)(

σ

σβ
−

−=
SE

SE
, the coefficient of 

skewness of 2S , provided all the referred 
moments exist. The population coefficient of 

skewness equals 32
3 )(/ σK = 0 under 

symmetric and heavy-tailed assumptions, and 
the population coefficient of kurtosis equals 

4
4 /σK > 0, where iK  is the thi  cumulant (see 

Kendall & Stuart, 1969). This yielded a decision 
rule:  
 

Reject 0H : 2 2
0σ σ=  versus 2

0
2: σσ >aH  if 

6/)1(ˆ 2
1 −+> αα β zzZ ,                                 (3) 

 
where αz  is the upper α  percentage point of the 

standard normal distribution, 
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where ik  is the thi  sample cumulant. 

 They approximated their decision rule 
even further using a Taylor series expansion of 

)(1 Zf −  at a−  where 6/ˆ
1β=a . The new test 

became:  
 
Reject 0H  if  

1Z = αzZZaZaZ >−+−− )(2)1( 322 .      (4) 

 
After a simulation study, their study found their 
test provided a “controlled Type I error rate as 
well as good power performance when sample 
size is moderate or large” (p. 51).  
 Lee and Sa (1998) performed another 
study on a right-tailed test of variance for 
skewed distributions.  A method similar to the 
previously proposed study was employed with 
the primary difference being in the estimated 

coefficient of skewness, 1β̂ .  The population 

coefficient of skewness, 32
3 )(/ σK , was 

assumed zero in the heavy-tailed distribution 
study and estimated for the skewed distribution 
study. Their study performed a preliminary 
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simulation study for the best form of Z and 
found   

Z = 

1

2

1

2
0

2

4

2
0

2

−
+

−

nnS

k

S

σ

σ
 

 
to be the Z with controllable Type I error rates as 
well as good power performance.  
 Hence, the motivation for this study is to 
develop an improved method for right-tailed 
tests of variance for non-normal distributions. A 
test is desired which works for both skewed and 
heavy-tailed distributions and also has fewer 
restrictions from assumptions. This test should 
work well for multiple sample sizes and 
significance levels. The test proposed uses a 
general Edgeworth expansion to adjust for the 
non-normality of the distribution and considers 

the variable 2S  that admits an inversion of the 
general Edgeworth expansion.  
 A detailed explanation of the new 
method is provided in the next section. In the 
“Simulation Study” Section, the simulation 
study is introduced for determining whether the 
previously proposed tests or the new test has the 
best true level of significance or power. The 
results of the simulation are discussed in the 
section of Simulation Results. Conclusions of 
the study are rendered at the end. 
 

Methodology 
 

Let θ̂  be an estimate of an unknown quantity 

oθ . If ( )on θθ −ˆ  is asymptotically normally 

distributed with zero mean and variance 2σ , the 

distribution function of ( )on θθ −ˆ  may be 

expanded as a power series in n  (see Hall, 
1983),  
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Normal density function and 
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x
duux )(φ  is the Standard Normal 

distribution function. The functions jp  are 

polynomials with coefficients depending on 

cumulants of oθθ −ˆ . 

From Hall (1992), the Edgeworth 
expansion for the sample variance is 
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 The variable 2S  admits the inversion of 
the Edgeworth expansion as follows: 
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                                                             (7) 
 

 To test 22: ooH σσ =  versus 
22: oaH σσ > , one can adapt the inversion 
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formula of the Edgeworth expansion, and the 
result is an intuitive decision rule as follows: 
 

Reject oH  if Z > ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++

−

6

1ˆˆ
2

21
2

1
α

α
z

BBnz , 

                         (8) 
where αz  is the upper α  percentage point of the 

standard normal distribution,  
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Simulation Study 
  
Details for the simulation study are provided in 
this section. The study is used to compare Type I 
error rates and the associated power 
performance of the different right-tail tests for 
variance. 
 
Distributions Examined 
 Distributions were chosen to achieve a 
range of skewness (0.58 to 9.49) or kurtosis      
(-1.00 to 75.1) for comparing the test 
procedures. The skewed distributions considered 
in the study included Weibull with scale 
parameter =λ 1.0 and shape parameters = 0.5, 
0.8, 2.0 (see Kendall, 1994), 
Lognormal( )1,0 == σµ , (see Evans, Hastings, 
& Peacock, 2000), Gamma with scale parameter 
1.0 and shape parameters = 0.15,1.2,4.0 (see 
Evans, Hastings, & Peacock, 2000), 10 Inverse 
Guassian distributions with 0.1=µ , scale 

parameters =λ 0.1 to 25.0 with skewness 
ranging from 0.6 to 9.49 (see Chhikara & Folks, 
1989 and Evans, Hastings, & Peacock, 2000), 
Exponential with 0.1=µ  and =λ 1.0 (see 
Evans, Hastings, & Peacock, 2000), Chi-square 
with ν  degrees of freedom (ν = 1, 2, 3, 4, 8, 12, 
16, 24), and a polynomial function of the 
standard normal distribution Barnes2 (see 
Fleishman 1978). 

 The heavy-tailed distributions 
considered included Student’s T                    
(ν = 5,6,8,16,32,40), 10 JTB ( )τα ,  distributions 

with ( )1,0 == σµ  and various α , τ values 
including Laplace( α =2.0, τ =1.0) , (see 
Johnson, Tietjen, & Beckman, 1980), and 
special designed distributions which are 
polynomial functions of the standard normal 
distribution: Barnes1 and Barnes3 having 
kurtosis 6.0 and 75.1 respectively (see 
Fleishman 1978). All the heavy-tailed 
distributions are symmetric with the exception 
of Barnes3. Barnes3 has skewness of .374 which 
is negligible in comparison to the kurtosis of 
75.1. Therefore, Barnes3 was considered very 
close to symmetric. 
 
Simulation Description 
 Simulations were run using Fortran 90 
for Windows on an emachines etower 400i PC 
computer. All the Type I error and power 
comparisons for the test procedures used a 
simulation size of 100,000 in order to reduce 
experimental noise. Fortran 90 IMSL library was 
used to generate random numbers from these 
distributions: Weibull, Lognormal, Gamma, 
Exponential, Chi-square, Normal and Student’s 
T. In addition, the Inverse Gaussian, JTB, 
Barnes1, Barnes2, and Barnes3 random variates 
were created with Fortran 90 program 
subroutines using the IMSL library’s random 
number generator for normal, gamma, and 
uniform in various parts of the program. 
 The following tests were compared in 
the simulation study: 
 

1) 2
0

22 /)1( σχ Sn −= ; the decision rule is 

Reject 0H  if 2χ > 2
,1 αχ −n . 

 

2) 2
rχ  = ( ) 2

0
2ˆ1 σSdn − ; the decision rule is 

Reject 0H  if 2
rχ > 2

,ανχ , where ν  is the 

smallest integer that is greater than or equal to 

(n-1) d̂ . 
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 The equation 
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 in Z4 is 

the unbiased estimator for ( )2SV  = τ2/n. Sample 
sizes of 20 and 40 were investigated for Type I 
error rates along with the nominal alpha levels 
0.01, 0.02, 0.05, and 0.10 for each sample size. 
Furthermore, any test that used αz  also used 

2/)( ,1 αα −+ ntz  and α,1−nt  separately with each 

sample size and nominal level for further 
flexibility in determining the best test. For each 
sample size and nominal level, 100,000 
simulations were generated from each 
distribution. All the tests investigated were 
applied to each sample. The proportion of 
samples rejected from the 100,000 was then 
recorded based on the sample size, nominal 
level, and test procedure.  
 The steps for conducting the simulation 
were as follows: 
 
1. Generate a sample of size n from one parent 
distribution under 0H . 

 

2. Calculate: X , 2S , 3k , 4k , 6k , 1β̂ , 1B̂ , 2B̂ . 

 

3. Calculate all the test statistics: 2χ , 2
rχ , Zs, 

Zh, Zn, Z2, Z3, Z4, Z5, and Z6. 
 
4. Find the critical value for each test 
considered. 
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5. Determine for each test whether rejection is 
warranted for the current sample and if so, 
increment the respective counter. 
 
6. Repeat 1 through 5 for the remaining 99,999 
samples. 
 
7. Calculate the proportion of 100,000 rejected. 
  
 A power study was performed using five 
skewed distributions and five heavy-tailed 
distributions with varying degrees of skewness 
and kurtosis respectively. For each distribution 
considered, sample sizes of 20 and 40 were 
examined with nominal levels of 0.10 and 0.01, 
and k  = 1,2,3,4,5,6, where k  is a constant such 

that the k  is multiplied to each variate. 
 The traditional power studies were 
performed by multiplying the distribution 

observations by k  to create a new set of 
observations yielding a variance k  times larger 
than the 0H  value. Steps 1 through 6 above 

would then be implemented for the desired 
values of k , sample sizes, and significance 
levels. The power would then be the proportion 
of 100,000 rejected for the referenced value of 
k , sample size, and significance level. 
 This method has been criticized by 
many researchers since tests with high Type I 
error rates frequently have high power also. 
Tests with high Type I error rates usually have 
fixed lower critical points relative to other tests 
and therefore reject more easily when the true 
variance is increased. Hence, these tests tend to 
have higher power. 
 Some researchers are using a method to 
correct this problem. With k =1, the critical 
point for each test under investigation is 
adjusted till the proportion rejected out of 
100,000 is the same as the desired nominal level. 
The concept is that the tests can be compared 
better for power afterward since all the tests 
have critical points adjusted to approximately 
the same Type I error rate. Once this is 
accomplished, steps 1 through 7 above are 
performed for each k  under consideration to get 
a better power comparison between the different 
tests at that level of k . 

 The traditional power study and the new 
power study were used to provide a complete 
picture of the power performance by each test.  
 

Results 
 
Type I Error Comparison 
 Comparisons of Type I error rates for 
skewed and heavy-tailed distributions were 
made for sample size 40 and 20 with levels of 
significance 0.10, 0.05, 0.02, and 0.01. 
However, the results are very similar between 
the two higher levels of significance (0.10 and 
0.05) and the same situation holds for the two 
lower levels of significance. Therefore, only 
0.05 and 0.01 levels are reported here and they 
are summarized into Tables 1 through 4. Also, it 
can be observed that the Type I error 
performances are quite similar for the skewed 
distributions with similar coefficient of 
skewness or for the heavy-tailed distributions 
with similar coefficient of kurtosis. Therefore, 
only 11 out of the original 27 skewed 
distributions and 10 out of the 18 heavy-tailed 
distributions studied are reported in these tables. 
For the complete simulation results, please see 
Long and Sa (2003).  
 Comparisons were made between the 

tests 2χ , 2
rχ  (first and second number in the 

first column), and Zs, Zh, Z2, and Z6 with αz , 

2/)( ,1 αα −+ ntz , and α,1−nt as the first, second, 

and third number in the respective column. The 
tests Zn, Z3, Z4, and Z5 were left out of the 
table since they were either unstable over 
different distributions or had highly inflated 
Type I error rates. From Tables 1 through 4, the 
following points can be observed: 

 The traditional 2χ  test is more inflated 
than the other tests for all the distributions, 
sample sizes and significance levels. 

 The 2
rχ  test does not maintain the Type 

I error rates well for the skewed distribution 
cases. The Type I error rates can be more than 
300% inflated than the desired level of 
significance in some of the distributions. This is 
especially true for the distributions with a higher 

coefficient of skewness. However, the 2
rχ  test 

performs much better in the heavy-tailed 
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distributions. Although there are still some 
inflated cases, they are not severe. These results 

are understandable since the 2
rχ  test only 

adjusts for the kurtosis of the sampled 
distribution and not the skewness.  
 The Z2 test’s Type I error rates reported 
in Tables 1 and 2 were extremely conservative 
for most of the skewed distributions. It becomes 
even more conservative when the coefficient of 
skewness gets larger. In fact, the Z2 test is so 
conservative it is rarely inflated for any of the 
skewed or heavy-tailed distribution cases. 
 Similar to the Z2 test, test Zh performs 
quite conservatively in all the skewed 
distributions as well. However, it performs 
differently under heavy-tailed distributions. The 
Type I error rates become closer to the nominal 
level except for one distribution, and there are 
even a few inflated cases. The exception in the 
heavy-tailed distributions is the Barnes3. In this 
case, test Zh is extremely conservative for all the 
nominal levels. 

Under the skewed distribution, the Zs 
test performs well for the sample size 40 and the 
nominal level 0.05. However, the Type I error 
rates become more or less uncontrollable when 
either the alpha level gets small or the sample 
size is reduced. These results confirmed the 
recommendations of Lee and Sa (1998) that Zs 
is more suitable for moderate to large sample 
sizes and alpha levels not too small. Although 
Zs was specifically designed for the skewed 
distributions, it actually works reasonably well 
for the heavy-tailed distributions as long as the 
sample size and/or the alpha level are not too 
small.  
 Generally speaking, the proposed test 
Z6 controls Type I error rates the best in both 
the skewed distribution cases and the heavy-
tailed distribution cases. Only under some 
skewed distributions with both small alpha and 
small sample size were there a few inflated Type 
I error rates. However, the rates of inflation are 
at much more acceptable level than some others. 
 
Power Comparison Results 
 One of the objectives of the study is to 
find one test for non-normal distributions with 
an improved Type I error rate and power over 
earlier tests. It was suspected that tests with very 

conservative Type I error rates might have lower 
power than other tests since it is harder to reject 
with these tests. Because tests Zh and Z2 were 
extremely conservative for the skewed 
distributions, exploratory power simulations 
were run on a couple of mildly skewed 
distributions with Zs, Zh, Z2, and Z6 to further 
decrease the potential tests. The preliminary 
power comparisons confirmed our suspicion. 
Both Zh and Z2 have extremely low power even 
when k is as large as 6.0. Therefore, Z2 will not 
be looked at further since Z6 is the better 
performer of the new tests. Also, the Zh test’s 
power is unacceptable, but it will still be 
compared for the heavy-tailed distributions since 
that is what it was originally designed for. The 
results of the preliminary power study are 
reported in Long and Sa (2003). 
 Tables 5 and 6 provide the partial results 
from the new type of power comparisons, and 
Tables 7 and 8 consist of some results from the 
traditional type of power study. Based on the 
complete power study in Long and Sa (2003), 
the following expected similarities can be found 
for the power performance of the tests between 
the skewed and heavy-tailed distributions 
regardless of the type of power study.  When the 
sample size decreases from 40 to 20, the power 

decreases. As the k  in 2
0σ⋅k  increases, the 

power increases. When the significance level 
decreases from 0.10 to 0.01, the power decreases 
more than the decrease experienced with the 
sample size decrease. As the skewness of the 
skewed distribution decreases, the power 
increases. As the kurtosis of the heavy-tailed 
distribution decreases, the power increases 
overall with a slight decrease from the T(5) 
distribution to the Laplace distribution.  
 The primary difference overall between 
the skewed and heavy-tailed distributions is that 
the power is better for the heavy-tailed 
distributions when comparing the same sample 
size, significance level, and k . In fact, the 
power increases more quickly over the levels of 
k  for the heavy-tailed distributions versus the 
skewed distributions, with a more noticeable 
difference at the higher levels of kurtosis and 
skewness respectively.  
 Some specific observations are 
summarized as follows: 
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 It can be observed that the 2χ test 
performed worst overall with its power lower 
than the other tests’ power based on the new 
power study. There are several cases where the 

2χ  test’s power is lower than the other tests’ 
powers by 10% or more. As can be expected, the 

2χ  test has very good power performance under 
the traditional power study, which provides the 
true rejection power under the specific 
alternative hypothesis. However, since the test 
had uncontrollable and unstable Type I error 
rates, this test should not be used with 
confidence.  

  The 2
rχ  test has a better power 

performance than the 2χ test in the new power 

study, and it performs as well as the 2χ test in 
the traditional power study. But similar to 

the 2χ , the test is not recommended due to the 
unstable Type I error rates. 
 Differences between the power 
performances of the Z6 and Zs tests are very 

minor, and they are slightly better than the 2
rχ  

test in the new power study. More than 50% of 
the cases studied have differences in power 
within 2% between any two tests. In the 
traditional power study, the Z6 and Zs tests are 

not as powerful as either the 2χ test or the 2
rχ  

test for the skewed distributions studied. 
However, they perform quite well also. On the 
heavy-tailed distributions studied, the Z6 and Zs 
tests have very good power performance which 

is constantly as high as the power of the 2
rχ  

test, and sometimes almost as high as the power 

of the 2χ test. To further differentiate the two in 
the traditional power study, the Z6 test 
performed better than Zs when α = 0.10 and 
worse when α = 0.01. 
  The Zh test is studied only for 
the heavy-tailed distributions. With the adjusted 
critical values on the new power study, Zh has 
the most power among the five tests. However, 
as far as the true rejection power is concerned, it 
has the lowest power in almost all of the cases 
studied.  
 
 

More Comparisons of Type I Error Rates 
Between Zs and Z6 
 After reviewing the results from the 
Type I error rate comparison study and the 
power study, the tests Zs and Z6 are the best. 
Therefore, the two tests were examined for a 
Type I error rate comparison study of sample 
size 30. Looking at the skewed distributions and 
heavy-tailed distributions in Table 9, both tests 
held the Type I error rates well at α =0.10 and α 
=0.05. For the skewed distributions, the Zs test’s 
Type I error rates were much more inflated 
overall for the lower alpha levels of 0.02 and 
0.01. In fact, the number of inflated cases for Zs 
compared to Z6 was more than double. Breadth 
of the inflation was also larger with the Zs test 
having 22% of the cases greater than a 50% 
inflation rate (i.e. 50% higher than the desired 
nominal level), while the Z6 test had none. 
Similar results can be observed for the heavy-
tailed distributions as well. Clearly, the Z6 test 
controls Type I error rates better than the Zs test 
for sample sizes of 30 also. 
 Although most of the Type I error rates 
for the Z6 test are stable, there was some 
inflation. However, the inflation is still within a 
reasonable amount of the nominal level. It 
should be noted that the Z6 test’s Type I error 
rates for alpha 0.01 are in control if α,1−nt  is 

used in the critical values. Therefore, if the 
practitioner is very concerned with Type I error, 
it is recommended that the Z6 test with α,1−nt  

should be used for small alphas. In addition, 
since the method involves higher moments such 
as 6k  and has (n-5) in the denominator of 6k , it 

is recommended that sample sizes of 30 or more 
be used. Even so, the simulation study found the 
Type I error rates for the Z6 test to be reasonable 
for sample sizes of 20. 
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Table 1. Comparison of Type I Error Rates when n=40,  Skewed Distributions 

Distribution                 α =0.01                 
    ______________________ ____   
 
(skewness)             2χ , 2

rχ     Zs   Zh   Z2   Z6  
_____________________________________________________________________________ 
IG (1.0,0.1)   .1616 .0259 .0004 .0001 .0121   
(9.49)    .0429 .0250 .0003 .0000 .0110   
     .0237 .0003 .0000 .0100    
 
Weibull(1.0,0.5)  .1522 .0198 .0012 .0001 .0090   
 (6.62)    .0349 .0188 .0011 .0001 .0082   
     .0177 .0010 .0001 .0074    
 
LN(0,1)                .1325 .0156 .0012 .0001 .0073   
(6.18)    .0274 .0148 .0011 .0001 .0065   
     .0141 .0009 .0000 .0057    
 
IG(1.0,0.25)   .1671 .0192 .0014 .0002 .0093   
(6.00)    .0349 .0179 .0013 .0001 .0082   
     .0168 .0011 .0001 .0074    
 
Gamma(1.0,0.15)  .1704 .0166 .0025 .0003 .0092   
(5.16)    .0322 .0154 .0024 .0003 .0081   
     .0144 .0022 .0003 .0073    
 
IG(1.0,0.5)   .1538 .0135 .0032 .0005 .0077   
(4.24)    .0271 .0126 .0029 .0004 .0069    
     .0117 .0028 .0004 .0061    
 
Chi(1)    .1282 .0113 .0073 .0019 .0094    
(2.83)    .0194 .0102 .0069 .0017 .0085    
     .0094 .0065 .0015 .0077    
 
Exp(1.0)   .0949 .0119 .0115 .0045 .0116    
(2.00)    .0159 .0110 .0109 .0041 .0104   
     .0100 .0103 .0037 .0097    
 
Chi(2)    .0922 .0114 .0114 .0045 .0109    
(2.00)    .0150 .0103 .0107 .0041 .0099   
     .0095 .0100 .0038 .0091    
 
Barnes2   .0716 .0141 .0154 .0079 .0150   
(1.75)    .0127 .0127 .0146 .0072 .0137   
     .0116 .0138 .0065 .0124    
 
IG(1.0,25.0)   .0217 .0102 .0113 .0089 .0107   
(0.60)    .0092 .0090 .0104 .0078 .0095   
     .0081 .0093 .0067 .0084    
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in 

column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column 
22 , rχχ . 
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Table 1 (continued). Comparison of Type I Error Rates when n=40, Skewed Distributions 

Distribution                   α =0.05 
     _______________ ____  
  
(skewness)             2χ , 2

rχ     Zs   Zh   Z2   Z6            
______________________________________________________________________________ 
IG (1.0,0.1)   .1859 .0532 .0015 .0007 .0448 
(9.49)    .0761 .0520 .0015 .0007 .0433 
     .0509 .0014 .0006 .0419 
 
Weibull(1.0,0.5)  .1899 .0467 .0037 .0017 .0402 
(6.62)    .0683 .0454 .0035 .0016 .0387 
     .0442 .0033 .0015 .0372 
 
LN(0,1)                .1701 .0415 .0043 .0022 .0362 
(6.18)    .0610 .0404 .0040 .0021 .0347 
     .0392 .0039 .0019 .0331 
 
IG(1.0,0.25)   .1992 .0479 .0446 .0022 .0417 
(6.00)    .0719 .0467 .0437 .0019 .0401 
     .0454 .0418 .0017 .0385 
 
Gamma(1.0,0.15)  .2148 .0486 .0078 .0043 .0430 
(5.16)    .0743 .0469 .0075 .0039 .0412 
     .0454 .0072 .0035 .0397 
 
IG(1.0,0.5)   .1994 .0442 .0094 .0050 .0395 
(4.24)    .0672 .0423 .0090 .0046 .0378  
     .0408 .0087 .0043 .0360 
 
Chi(1)    .1906 .0439 .0203 .0136 .0431  
(2.83)    .0622 .0421 .0197 .0130 .0416  
     .0406 .0191 .0124 .0397 
 
Exp(1.0)   .1583 .0441 .0299 .0229 .0460  
(2.00)    .0559 .0424 .0289 .0218 .0442 
     .0408 .0279 .0209 .0425 
 
Chi(2)    .1557 .0430 .0293 .0226 .0453  
(2.00)    .0545 .0414 .0285 .0214 .0434 
     .0399 .0278 .0204 .0415 
 
Barnes2   .1414 .0485 .0388 .0340 .0531 
(1.75)    .0549 .0466 .0376 .0324 .0511    
     .0451 .0364 .0309 .0493 
 
IG(1.0,25.0)   .0732 .0429 .0407 .0429 .0498 
(0.60)    .0442 .0413 .0390 .0410 .0477 
     .0397 .0376 .0389 .0454 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, 
Zh, Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third 

numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on 
the column 22 , rχχ . 
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Table 2. Comparison of Type I Error Rates when n=20, Skewed Distributions 

Distribution                 α =0.01                 
    ______________________ ____   
 
(skewness)             2χ , 2

rχ      Zs   Zh   Z2   Z6             
______________________________________________________________________________ 
IG (1.0,0.1)        .1215    .0342    .0003 .0003 .0149   
(9.49)         .0443    .0321    .0003 .0003 .0122   
     .0302 .0003 .0002 .0104    
 
Weibull(1.0,0.5)  .1227 .0294 .0012 .0012 .0139   
 (6.62)    .0386 .0270 .0011 .0011 .0115    
     .0249 .0009 .0009 .0098    
 
LN(0,1)                .1082 .0246 .0013 .0014 .0119   
 (6.18)    .0316 .0226 .0012 .0012 .0100    
     .0209 .0010 .0011 .0083    
 
IG(1.0,0.25)   .1295 .0307 .0015 .0015 .0142   
(6.00)    .0406 .0281 .0014 .0014 .0120   
     .0258 .0013 .0012 .0098    
 
Gamma(1.0,0.15)  .1408 .0296 .0024 .0025 .0152   
(5.16)    .0396 .0269 .0021 .0021 .0128   
     .0243 .0019 .0018 .0108    
 
IG(1.0,0.5)   .1272 .0258 .0029 .0030 .0141   
(4.24)    .0336 .0231 .0024 .0026 .0119   
     .0208 .0022 .0023 .0102    
 
Chi(1)    .1096 .0228 .0067 .0079 .0185   
(2.83)    .0265 .0201 .0059 .0070 .0161   
     .0176 .0051 .0061 .0139    
 
Exp(1.0)   .0810 .0203 .0092 .0107 .0191   
(2.00)    .0202 .0175 .0079 .0093 .0165   
     .0153 .0067 .0080 .0144    
 
Chi(2)    .0825 .0206 .0095 .0111 .0196   
(2.00)    .0205 .0180 .0083 .0097 .0168   
     .0156 .0071 .0082 .0145    
 
Barnes2   .0680 .0228 .0127 .0159 .0238   
(1.75)                         .0192 .0198 .0112 .0137 .0206   
     .0171 .0097 .0119 .0180    
 
IG(1.0,25.0)   .0213 .0134 .0105 .0098 .0120   
(0.60)    .0095 .0113 .0087 .0079 .0095    
     .0095 .0072 .0064 .0076    
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for 
Zs, Zh, Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third 

numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) 
on the column 22 , rχχ . 
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Table 2 (continued). Comparison of Type I Error Rates when n=20, Skewed Distributions 

Distribution                  α =0.05 
     _______________ ____  
 
(skewness)                       2χ , 2

rχ    Zs   Zh   Z2   Z6 
______________________________________________________________________________ 
IG (1.0,0.1)            .1451    .0566    .0014 .0015 .0459 
(9.49)         .0736    .0547    .0013 .0014 .0430 
     .0530 .0011 .0012 .0399 
 
Weibull(1.0,0.5)  .1538 .0534 .0033 .0039 .0444 
(6.62)    .0706 .0514 .0031 .0035 .0412  
     .0493 .0028 .0031 .0385 
 
LN(0,1)                .1377 .0471 .0482 .0057 .0397 
(6.18)    .0603 .0451 .0435 .0051 .0369  
     .0431 .0406 .0046 .0343 
 
IG(1.0,0.25)   .1652 .0579 .0046 .0053 .0473 
(6.00)    .0760 .0552 .0041 .0047 .0437 
     .0528 .0038 .0043 .0407 
 
Gamma(1.0,0.15)  .1805 .0604 .0073 .0079 .0505 
(5.16)    .0575 .0568 .0069 .0072 .0471 
     .0549 .0064 .0064 .0438 
 
IG(1.0,0.5)   .1686 .0560 .0089 .0104 .0484 
(4.24)    .0725 .0535 .0083 .0095 .0446 
     .0509 .0077 .0087 .0416 
 
Chi(1)    .1635 .0545 .0176 .0215 .0523 
(2.83)    .0669 .0515 .0165 .0200 .0486 
     .0484 .0155 .0186 .0455 
 
Exp(1.0)   .1394 .0529 .0260 .0313 .0544 
 (2.00)    .0604 .0496 .0241 .0291 .0506 
     .0468 .0226 .0272 .0473 
 
Chi(2)    .1406 .0543 .0264 .0317 .0565 
(2.00)    .0605 .0511 .0245 .0293 .0524 
     .0482 .0229 .0273 .0489 
 
Barnes2   .1307 .0560 .0342 .0416 .0617 
(1.75)                 .0587 .0530 .0321 .0389 .0577 
     .0499 .0302 .0364 .0542 
 
IG(1.0,25.0)   .0687 .0449 .0377 .0433 .0507 
(0.60)    .0437 .0419 .0349 .0398 .0464  
     .0388 .0322 .0365 .0424 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for 
Zs, Zh, Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third 

numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) 
on the column 22 , rχχ . 
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Table 3. Comparison of Type I Error Rates when n=40, Heavy-tailed Distributions 

Distribution                 α =0.01                
    ______________________ ____   
 
(kurtosis)             2χ , 2

rχ     Zs   Zh   Z2   Z6             
______________________________________________________________________________ 
Barnes3   .1269 .0167 .0001 .0000 .0060   
 (75.1)    .0280 .0158 .0001 .0000 .0052   
     .0151 .0001 .0000 .0047    
 
T(5)    .0629 .0075 .0084 .0027 .0058   
(6.00)    .0111 .0066 .0079 .0024 .0050    
     .0059 .0074 .0021 .0045    
 
Barnes1   .1081 .0118 .0126 .0021 .0089   
 (6.00)    .0188 .0105 .0119 .0019 .0078   
     .0093 .0111 .0017 .0068    
 
T(6)    .0526 .0085 .0108 .0044 .0075   
(3.00)    .0103 .0076 .0100 .0040 .0067   
     .0067 .0092 .0034 .0059    
 
Laplace(2.0,1.0)  .0608 .0099 .0138 .0043 .0092   
 (3.00)    .0124 .0089 .0130 .0038 .0081   
     .0080 .0120 .0034 .0072    
 
JTB(4.0,1.0)   .0246 .0103 .0127 .0082 .0106   
(0.78)    .0098 .0092 .0118 .0074 .0095   
     .0084 .0109 .0067 .0084    
  
T(16)    .0198 .0103 .0118 .0088 .0104   
(0.50)    .0095 .0092 .0107 .0079 .0092   
     .0083 .0098 .0070 .0083    
 
JTB(1.25,0.5)   .0134 .0102 .0112 .0097 .0108   
(0.24)    .0089 .0091 .0101 .0086 .0095   
     .0081 .0090 .0075 .0083    
 
T(32)    .0139 .0091 .0100 .0084 .0093   
(0.21)    .0083 .0084 .0093 .0075 .0083   
     .0076 .0085 .0067 .0074    
 
JTB(2.0,0.5)   .0061 .0064 .0068 .0060 .0061   
(-0.30)    .0055 .0056 .0059 .0051 .0052   
     .0049 .0052 .0043 .0044    
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, Z2, 
and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in column Zs, 

Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 3 (continued). Comparison of Type I Error Rates when 
n=40, Heavy-tailed Distributions 

Distribution                 α =0.05 
     _______________ ____  
 
(kurtosis)                       2χ , 2

rχ      Zs   Zh   Z2   Z6 
______________________________________________________________________________ 
Barnes3   .1554 .0390 .0011 .0003 .0315 
(75.1)    .0590 .0380 .0011 .0002 .0302 
     .0371 .0010 .0002 .0290 
 
T(5)    .1184 .0362 .0262 .0198 .0369 
(6.00)    .0456 .0348 .0254 .0188 .0352  
     .0332 .0247 .0178 .0335 
 
Barnes1   .1786 .0492 .0327 .0201 .0484 
(6.00)    .0655 .0472 .0317 .0190 .0462 
     .0453 .0308 .0179 .0444 
 
T(6)    .1054 .0376 .0310 .0257 .0400 
(3.00)    .0449 .0360 .0300 .0243 .0381 
     .0345 .0290 .0231 .0363 
 
Laplace(2.0,1.0)  .1263 .0417 .0359 .0268 .0449 
(3.00)    .0500 .0400 .0349 .0254 .0431 
     .0385 .0338 .0241 .0413 
 
JTB(4.0,1.0)   .0770 .0447 .0428 .0429 .0506 
(0.78)    .0464 .0429 .0410 .0409 .0487 
     .0414 .0396 .0391 .0466 
  
T(16)    .0683 .0436 .0419 .0438 .0498 
(0.50)    .0448 .0419 .0402 .0420 .0479 
     .0402 .0388 .0401 .0457 
 
JTB(1.25,0.5)   .0577 .0445 .0431 .0481 .0515 
(0.24)    .0441 .0428 .0414 .0459 .0493 
     .0411 .0400 .0442 .0474 
 
T(32)    .0591 .0444 .0434 .0471 .0510 
(0.21)    .0444 .0425 .0419 .0448 .0489 
     .0407 .0402 .0430 .0467 
 
JTB(2.0,0.5)   .0381 .0344 .0355 .0396 .0405 
(-0.30)    .0348 .0327 .0338 .0377 .0385 
     .0312 .0323 .0359 .0366 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in 

column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column 
22 , rχχ . 
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Table 4. Comparison of Type I Error Rates when n=20, Heavy-tailed Distributions 

Distribution                 α =0.01                 
    ______________________ ____   
 
(kurtosis)             2χ , 2

rχ Zs   Zh   Z2   Z6             
______________________________________________________________________________ 
Barnes3   .0964 .0241 .0001 .0001 .0076   
 (75.1)    .0290 .0221 .0001 .0001 .0062   
     .0207 .0001 .0001 .0049    
 
T(5)    .0543 .0151 .0072 .0056 .0100   
(6.00)    .0147 .0125 .0060 .0046 .0082   
     .0107 .0052 .0037 .0063    
  
Barnes1   .0590 .0205 .0084 .0059 .0136   
 (6.00)    .0225 .0178 .0072 .0048 .0111    
     .0153 .0062 .0039 .0092    
 
T(6)    .0461 .0146 .0088 .0070 .0110   
(3.00)    .0131 .0122 .0075 .0055 .0088    
     .0104 .0062 .0044 .0070    
 
Laplace(2.0,1.0)  .0053 .0165 .0105 .0083 .0139   
 (3.00)    .0153 .0138 .0089 .0068 .0113   
     .0117 .0077 .0055 .0092    
 
JTB(4.0,1.0)   .0238 .0143 .0115 .0100 .0126   
(0.78)    .0107 .0118 .0096 .0079 .0098   
     .0098 .0081 .0061 .0076    
  
T(16)    .0184 .0128 .0104 .0092 .0108   
(0.50)    .0093 .0106 .0086 .0073 .0084   
     .0089 .0072 .0058 .0066    
 
JTB(1.25,0.5)   .0138 .0138 .0120 .0104 .0115   
(0.24)    .0094 .0114 .0099 .0079 .0087   
     .0096 .0081 .0062 .0069    
 
T(32)    .0134 .0121 .0103 .0087 .0101   
(0.21)    .0079 .0099 .0084 .0066 .0076   
     .0079 .0066 .0050 .0056    
 
JTB(2.0,0.5)   .0059 .0091 .0075 .0054 .0057   
(-0.30)    .0051 .0076 .0059 .0038 .0040   
     .0061 .0046 .0026 .0028    
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in 

column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column 
22 , rχχ . 
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Table 4 (continued). Comparison of Type I Error Rates  
when n=20, Heavy-tailed Distributions 

Distribution                 α =0.05 
     _______________ ____  
 
(kurtosis)                       2χ , 2

rχ  Zs   Zh   Z2   Z6 
______________________________________________________________________________ 
Barnes3   .1184 .0430 .0009 .0007 .0319 
(75.1)    .0544 .0414 .0008 .0005 .0294 
     .0397 .0007 .0005 .0268 
 
T(5)    .1034 .0439 .0233 .0249 .0440 
(6.00)    .0489 .0409 .0215 .0225 .0398 
     .0383 .0199 .0206 .0362 
 
Barnes1   .1509 .0570 .0244 .0243 .0544 
(6.00)    .0674 .0537 .0225 .0220 .0496  
     .0502 .0206 .0201 .0456 
 
T(6)    .0968 .0449 .0283 .0228 .0469 
(3.00)    .0482 .0417 .0260 .0279 .0428  
     .0388 .0240 .0254 .0395 
 
Laplace(2.0,1.0)  .1166 .0493 .0303 .0324 .0516 
(3.00)    .0537 .0458 .0281 .0298 .0475 
     .0427 .0261 .0271 .0439 
 
JTB(4.0,1.0)   .0742 .0468 .0386 .0436 .0520 
(0.78)    .0463 .0434 .0361 .0400 .0479 
     .0404 .0335 .0367 .0443 
  
T(16)    .0658 .0440 .0381 .0430 .0494 
(0.50)    .0429 .0408 .0350 .0391 .0454 
     .0377 .0324 .0355 .0415 
 
JTB(1.25,0.5)   .0587 .0457 .0417 .0483 .0529 
(0.24)    .0434 .0420 .0387 .0439 .0483 
     .0391 .0357 .0401 .0441 
 
T(32)    .0583 .0447 .0406 .0462 .0512 
(0.21)    .0430 .0415 .0375 .0421 .0468 
     .0382 .0344 .0382 .0423 
 
JTB(2.0,0.5)   .0387 .0359 .0350 .0394 .0410 
(-0.30)    .0338 .0325 .0320 .0350 .0364 
     .0298 .0291 .0313 .0325 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
Z2, and Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in 

column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column 
22 , rχχ . 
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Table 5. New Power Comparisons for Skewed Distribution Upper-Tailed  
Rejection Region when 2

0σσ kx =  , significance level 0.100, n = 40 

Distribution                           0.1=k            0.2=k                       0.3=k                  
      _______  ___    ________ ___    ________________     
 (skewness)         2χ , 2

rχ    Zs   Z6   2χ , 2
rχ   Zs      Z6  2χ , 2

rχ   Zs      Z6     
_________________________________________________________  __________ 
Weibull(1.0,0.5) .101       .102     .101   .280      .315   .315    .439    .499    .501  
 (6.62)        .098       .099     .098   .303      .309   .308    .485    .494    .493  
  
Gamma(1.0,0.15)    .099       .098    .100   .318      .339   .344    .490    .523   .528          
(5.16)           .100       .098     .101   .340      .340   .345    .523    .524    .528          
 
IG(1.0,0.6)         .100       .099 .099   .382      .439   .441    .612    .695    .698  
 (3.87)           .100       .099 .102   .432      .437   .447    .685    .694    .703  
 
Chi(2)                 .098       .098 .098   .634      .703   .704    .903    .940    .940         
(2.00)          .098       .098 .100   .697      .703   .708    .937    .940    .941         

 

n = 40 (continued) 

Distribution                  0.4=k   0.5=k   0.6=k  
         ________________      ________________  ________________ 
 (skewness)                        2χ , 2

rχ    Zs   Z6     2χ , 2
rχ    Zs  Z6    2χ , 2

rχ   Zs      Z6 
________________________________________     __________ 
Weibull(1.0,0.5)        .563     .634  .636      .623     .729   .731      .725     .797    .799 
(6.62)                  .619     .629  .629      .715     .725   .725      .784     .793    .794 
  
Gamma(1.0,0.15)       .611     .648  .653      .697     .731   .736      .763     .794    .798 
(5.16)                   .648     .649  .654       .731     .732   .737      .793      .794    .799 
 
IG(1.0,0.6)                     .762     .837  .839       .852     .912   .914      .906      .950    .951 
(3.87)           .828     .836   .842       .906     .912   .916      .946      .950    .952 
 
Chi(2)                           .975     .987   .988       .993     .997   .997      .998      .999    .999 
(2.00)                       .987     .987   .988       .997     .997   .997      .999      .999    .999 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and Z6 
test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs and Z6) and chi-

square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 5 (continued). New Power Comparisons for Skewed Distribution Upper-Tailed Rejection 

Region when 2
0σσ kx =  , significance level 0.100 

n = 20 

Distribution                           0.1=k            0.2=k                 0.3=k  
                                           _______  ___    ________ ___            ________________    

 (skewness)          2χ , 2
rχ    Zs   Z6   2χ , 2

rχ   Zs      Z6       2χ , 2
rχ   Zs      Z6    

________________________________________________________          ______            ____ 
Weibull(1.0,0.5)  .100       .101 .102      .231     .253  .255      .343    .382      .385        
(6.62)              .101        .100 .101      .248     .251  .254      .374   .380    .384        
 
Gamma(1.0,0.15)  .100       .101 .100      .254     .266  .265      .375      .394    .393        
(5.16)               .100       .101 .100      .263     .267  .266      .389      .395     .394         
  
IG(1.0,0.6)              .099       .098 .101      .295     .331  .340      .459      .519     .531         
(3.87)               .098       .098 .100      .325     .332  .337      .511      .520     .528         
 
Chi(2)               .099       .102 .102      .469     .525  .527       .729      .786     .788         
(2.00)               .099       .100 .098      .514     .521  .519       .777      .783    .781         
 
 

n = 20 (continued) 

Distribution                           4.0k =            5.0k =                                   6.0k =    
                                           ______  ___    ________ ___           ________________   

 (skewness)                    2χ , 2
rχ    Zs   Z6   2χ , 2

rχ   Zs      Z6   2χ , 2
rχ   Zs      Z6

    _________________________________________________________  __________ 
Weibull(1.0,0.5)              .432      .481 .484      .502    .557   .560         .570      .627 .631 
(6.62)             .471      .478 .483      .546    .554   .559         .616      .625 .629 
 
Gamma(1.0,0.15)   .465      .488 .487      .532    .557   .556         .585      .611 .610 
(5.16)          .483      .490 .488      .551    .558   .557         .606      .612 .610 
 
IG(1.0,0.6)            .586      .657 .667      .676    .748   .757         .742      .811 .818 
(3.87)           .648      .658 .665      .739    .748   .755         .802      .811 .816 
 
Chi(2)            .862      .903 .904      .925    .952   .952         .959      .975 .976 
(2.00)             .898      .901 .900      .949    .951   .950         .974      .975 .975 
 

 
 
NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and 
Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs and Z6) 

and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 6. New Power Comparisons for Heavy-tail Upper-Tailed Rejection Region  
when 2

0σσ kx =  and significance level 0.100 

n = 40 

Distribution              0.1=k              0.2=k            0.3=k                      
  _______  ___                ________ ___         ___________________    

(kurtosis)             2χ , 2
rχ Zs   Zh   Z6         2χ , 2

rχ Zs    Zh     Z6            2χ , 2
rχ Zs  Zh    Z6    

________________________________________________________________  _______ 
Barnes3   .101  .102 .100  .099 .266  .413  .460  .418       .457  .904   .934   .913  
 (75.1)                .099  .098   .098  .097 .381  .405  .457  .416       .874  .898   .933   .912       
 
T(5)                .099  .099 .099  .099 .775  .841  .853  .844       .978  .989   .991   .990  
 (6.00)             .101  .100  .101  .101 .840  .842  .856  .846       .989  .990   .991   .990       
  
Laplace(2,1)   .102  .101  .101  .101 .766  .801  .797  .801       .968  .978   .976   .979       
(3.00)    .101  .102   .102  .101 .798  .801  .821  .801       .978  .979   .980   .979       
 
T(8)       .097  .099   .099  .102 .845  .902  .903  .905       .995  .997   .997   .997       
(1.50)    .099  .101   .098  .102 .901  .904  .903  .905       .996  .997   .997   .997       
 
 

n = 40 (continued) 

Distribution         0.4=k                0.5=k                  0.6=k  
    __________________    ___________________       ___________________ 

(kurtosis)         2χ , 2
rχ  Zs  Zh    Z6     2χ , 2

rχ Zs Zh    Z6       2χ , 2
rχ  Zs   Zh     Z6 

________________________________________      _______ 
Barnes3   .737   .998   .999   .999    .963    1.00 1.00 1.00        .997   1.00   1.00   1.00 
(75.1)               .997   .998   .999    .998    1.00    1.00 1.00 1.00        1.00   1.00   1.00   1.00 
 
T(5)               1.00   .999   .999   .999     1.00   1.00  1.00 1.00        1.00   1.00   1.00   1.00  
(6.00)             .999   .999   .999   .999     1.00   1.00  1.00 1.00        1.00   1.00   1.00   1.00 
 
Laplace(2,1)   .995   .997   .996   .997     .999   1.00  1.00 1.00        1.00   1.00    1.00  1.00 
(3.00)    .997   .997   .998   .997     1.00   1.00  1.00 1.00        1.00   1.00    1.00  1.00 
 
T(8)       1.00   1.00   1.00   1.00     1.00   1.00  1.00  1.00       1.00   1.00   1.00  1.00 
(1.50)    1.00   1.00   1.00   1.00     1.00   1.00   1.00 1.00       1.00   1.00   1.00  1.00 
 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
and Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs, Zh, and 

Z6) and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 6 (continued). New Power Comparisons for Heavy-tail Upper-Tailed Rejection Region when 
2
0σσ kx =  and significance level 0.100 

n = 20 

Distribution             0.1=k                0.2=k              0.3=k         
  _______  ___                  ________ ___         ___________________    

(kurtosis)          2χ , 2
rχ Zs  Zh      Z6                2χ , 2

rχ Zs    Zh     Z6         2χ , 2
rχ Zs  Zh    Z6  

_______________________________________      _______ 
Barnes3 .100  .099  .099  .100  .217  .302  .323  .314           .355  .733  .778  .763       
(75.1)  .101  .101  .099  .098  .290  .306  .331  .309           .714  .739  .774  .755  
 
T(5)  .102  .102  .101  .101  .584  .646  .662  .648           .868  .907  .914  .908       
(6.00)  .100  .102  .101  .102  .637  .648  .662  .652           .900  .908  .914  .907  
 
Laplace(2,1) .099  .099  .101  .098  .565  .601  .613  .598      .834  .861  .863  .859           
(3.00)  .099  .102  .101  .099  .560  .608  .604  .598      .860  .864  .862  .858  
 
T(8)  .102  .100  .100  .100  .691  .714  .715  .714      .931  .940  .938  .940  
 (1.50)  .101  .102  .098  .098  .714  .716  .714  .711      .940  .941  .936  .939  
 
 

n = 20 (continued) 

Distribution         0.4=k           0.5=k                  0.6=k  
    __________________ ___________________   ___________________ 

(kurtosis)         2χ , 2
rχ  Zs  Zh    Z6   2χ , 2

rχ Zs Zh    Z6   2χ , 2
rχ  Zs   Zh     Z6 

________________________________________      _______ 
 
Barnes3 .656   .958   .967    .966   .899  .993   .996  .995     .975   .999   .999  .999  
(75.1)  .854   .960   .973    .964   .992  .993   .996  .994     .998   .999   .999  .999 
 
T(5)  .960   .973   .976    .974   .986  .992   .992  .992     .995   .997   .997  .997  
(6.00)  .972   .974   .976    .975   .992  .992   .992  .993     .997   .997   .997  .997 
 
Laplace(2,1) .936   .950   .951    .949   .973  .980   .978  .980     .988   .992   .990  .991 
(3.00)  .950   .951   .950    .949   .980  .981   .986  .980     .992   .992   .992  .991 
 
T(8)  .984   .986   .984    .986   .996  .997   .996  .997     .999   .999   .999  .999 
(1.50)  .986   .986   .984    .986   .997  .997   .996  .997     .999   .999   .999  .999 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
and Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs, Zh, and 

Z6) and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 7. Traditional Power Comparisons for Skewed Distribution Upper-Tailed Rejection Region 
when 2

0σσ kx =  , significance level 0.100, n = 40 

Distribution  0.1=k          0.2=k              0.3=k            
           ________ ___       ___ ____ __  ________________  

(skewness)             2χ , 2
rχ  Zs  Z6 2χ , 2

rχ  Zs Z6 2χ , 2
rχ  Zs   Z6 

__________________________________________     _______ 
Weibull(1.0,0.5)        .207     .078  .078    .464 .270   .272 .638 .448 .452  
 (6.62)           .100     .077  .077    .307 .267   .269 .488 .446 .448   
 
Gamma(1.0,0.15)      .245     .088  .089    .529 .318   .322 .694 .500 .503  
(5.16)           .114     .087  .087    .361 .315   .318 .542 .497 .500  
 
IG(1.0,0.6)         .229      .081  .083    .600 .403   .409 .805 .666 .674  
 (3.87)          .104      .079  .081    .440 .399   .406 .696 .663 .670  
 
Chi(2)          .201      .085  .092    .789 .680   .695 .959 .930 .935  
 (2.00)          .096      .083  .090    .698 .676   .692 .936 .929 .934  

 
n = 40 (continued) 

Distribution   4.0k =          5.0k =            6.0k =            
             ________ ___    ___ ____ __ ________________  

(skewness)       2χ , 2
rχ  Zs Z6 2χ , 2

rχ  Zs Z6 2χ , 2
rχ  Zs   Z6 

__________________________________________     _______ 
Weibull(1.0,0.5) .749 .585 .589 .822 .687    .691 .870 .762 .766 
(6.62)   .622 .582 .586 .717 .684    .688 .788 .762 .763 
 
Gamma(1.0,0.15) .786 .628 .631 .846 .715    .718 .883 .776 .779  
(5.16)   .664 .626 .628 .746 .713    .715 .802 .774 .776 
 
IG(1.0,0.6)  .902 .818 .823 .948 .899    .903 .971 .942 .944  
(3.87)   .837 .816 .821 .910 .898    .901 .949 .941 .943 
 
Chi(2)   .992 .986 .987 .998 .997    .997 1.00 .999 .999 
(2.00)   .987 .985 .987 .997 .997    .997 .999 .999 .999 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and 
Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs and Z6) 

and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 7 (continued). Traditional Power Comparisons for Skewed Distribution Upper-Tailed 
Rejection Region when 2

0σσ kx =  , significance level 0.100, n = 20 

Distribution   0.1=k          0.2=k            0.3=k            
   ________ ___    ___ ____ __ ________________  

(skewness)       2χ , 2
rχ  Zs   Z6 2χ , 2

rχ  Zs Z6 2χ , 2
rχ  Zs   Z6 

______________________________________________________________________________ 
Weibull(1.0,0.5) .173 .080 .080 .354 .218 .220 .482 .336 .340  
 (6.62)   .097 .078 .078 .245 .214 .215 .364 .332 .334  
 
Gamma(1.0,0.15) .206 .092 .093 .402 .252 .254 .533 .377 .380  
(5.16)   .112 .090 .090 .282 .248 .249 .408 .372 .374  
 
IG(1.0,0.6)  .197 .089 .091 .457 .310 .317 .628 .495 .504  
 (3.87)   .106 .086 .088 .335 .304 .310 .519 .489 .497  
 
Chi(2)   .183 .093 .103 .613 .503 .523 .833 .770 .785  
 (2.00)   .103 .090 .099 .518 .496 .515 .780 .765 .779  

 
n = 20 (continued) 

Distribution          0.4=k           0.5=k            0.6=k  
   ________________ ________________ ________________   

(skewness)       2χ , 2
rχ  Zs   Z6 2χ , 2

rχ  Zs Z6 2χ , 2
rχ  Zs   Z6 

______________________________________________________________________________ 
Weibull(1.0,0.5) .578 .439 .443 .646 .516 .521 .699 .577 .582 
(6.62)   .466 .433 .437 .541 .511 .514 .601 .572 .576 
 
Gamma(1.0,0.15) .615 .471 .473 .677 .546 .548 .722 .601 .604  
(5.16)   .502 .466 .467 .574 .541 .542 .627 .597 .598 
 
IG(1.0,0.6)  .741 .634 .643 .816 .731 .739 .863 .797 .805  
(3.87)   .653 .629 .637 .747 .727 .734 .810 .794 .800 
 
Chi(2)   .924 .893 .901 .964 .949 .953 .982 .973 .976 
(2.00)   .898 .890 .897 .951 .947 .951 .974 .972 .975 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and 
Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs and Z6) and 

chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 8. Traditional Power Comparisons for Heavy-tail Upper-Tailed Rejection Region  
when 2

0σσ kx =  and significance level 0.100, n = 40 

Distribution           0.1=k              0.2=k                0.3=k                     
                  ___________________     ___________________       ___________________ 

 (kurtosis)         2χ , 2
rχ  Zs    Zh    Z6       2χ , 2

rχ Zs     Zh     Z6       2χ , 2
rχ Zs     Zh     Z6     

______________________________________________________________________________ 
Barnes3 .171   .066   .005   .065      .432   .312   .116   .317 .840   .827   .666   .846 
 (75.1)  .088   .065   .004   .064      .344   .308   .113   .312 .836   .824   .659   .842  
  
T(5)  .159   .077   .053   .085       .863   .814   .768   .830 .990   .985   .972   .987 
 (6.00)  .086   .076   .052   .083       .820   .811   .765   .827 .986   .985   .971   .987     
 
Laplace(2,1) .178   .087   .067   .097     .857   .784   .736   .799 .954   .973   .958   .976 
 (3.00)  .094   .085   .066   .095     .793   .781   .733   .795 .975   .973   .958   .975  
 
T(8)  .141   .086   .073   .097     .916   .889   .873   .901 .997   .995   .993   .996 
 (1.50)  .090   .084   .071   .095     .891   .887   .871   .899 .995   .995   .993   .996  

 
n = 40 (continued) 

Distribution            0.4=k                   0.5=k      0.6=k  
             _______  ___                _______ ___           ___________________    

(kurtosis)           2χ , 2
rχ  Zs    Zh    Z6       2χ , 2

rχ Zs     Zh     Z6       2χ , 2
rχ Zs     Zh     Z6      

________________________________________________      
Barnes3 .994   .994   .871   .995       1.00   1.00   .894   1.00 1.00   1.00   .907   1.00 
(75.1)  .994   .993   .867   .995       1.00   1.00   .891   1.00 1.00   1.00   .903   1.00 
  
T(5)  .999   .999   .992   .999       1.00   1.00   .995   1.00 1.00   1.00   .996   1.00 
(6.00)  .999   .999   .992   .999         1.00   1.00   .995   1.00 1.00   1.00   .996   1.00 
 
Laplace(2,1) .998   .997   .992   .997       1.00   1.00   .997   1.00 1.00   1.00   .999   1.00 
(3.00)  .997   .997   .992   .997       1.00   1.00   .997   1.00 1.00   1.00   .999   1.00 
 
T(8)  1.00   1.00   .999   1.00       1.00   1.00   1.00   1.00 1.00   1.00   1.00   1.00 
(1.50)  1.00   1.00   .999   1.00       1.00   1.00   .999   1.00 1.00   1.00   1.00   1.00 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, and 
Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs, Zh, and Z6) and 

chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
 



RIGHT-TAILED TESTING OF VARIANCE FOR NON-NORMAL DISTRIBUTIONS  
 
210 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Table 8 (continued) Traditional Power Comparisons for Heavy-tail Upper-Tailed Rejection Region 
when 2

0σσ kx =  and significance level 0.100, n = 20 

Distribution           0.1=k             0.2=k                    0.3=k                  
 _______  ___                  ________ ___           ___________________    

 (kurtosis)         2χ , 2
rχ  Zs    Zh    Z6       2χ , 2

rχ Zs     Zh     Z6       2χ , 2
rχ Zs     Zh     Z6      

______________________________________________________________________________ 
Barnes3 .132   .063   .004   .062      .287   .225   .062   .230 .596   .581   .425   .609  
(75.1)              .078   .062   .004   .059      .238   .220   .058   .223 .588   .572   .410   .597  
 
T(5)  .143   .080   .050   .091      .678   .607   .519   .634 .913   .885   .823   .898 
 (6.00)  .086   .077    .047   .087      .614   .600   .508   .626 .888   .882   .815   .894  
 
Laplace(2,1) .164   .090   .061   .102      .679   .584   .482   .609 .895   .852   .769   .864 
 (3.00)  .096   .086   .058   .098      .594   .577   .471   .600 .857   .848   .759   .860  
 
T(8)  .134   .087   .068   .102      .741   .690   .636   .717 .945   .929   .899   .938 
 (1.50)  .090   .084   .065   .098      .692   .682   .627   .710 .931   .927   .894   .936  

 
n = 20 (continued) 

Distribution        0.4=k                                0.5=k        0.6=k  
          _______  ___                  ________ ___           ___________________    

 (kurtosis)         2χ , 2
rχ  Zs    Zh    Z6       2χ , 2

rχ Zs     Zh     Z6       2χ , 2
rχ Zs     Zh     Z6      

_______________________________________________       
Barnes3 .912   .908   .779   .925      .985   .983   .869   .987 .997   .996   .812   .997 
(75.1)  .910   .904   .768   .921      .984   .983   .862   .987 .996   .996   .886   .997 
 
T(5)  .976   .967   .927   .972      .993   .990   .963   .991 .998   .997   .976   .997 
(6.00)  .968   .966   .922   .970      .990   .989   .959   .991 .997   .996   .973   .997 
 
Laplace(2,1) .964   .947   .888   .952      .986   .979   .940   .982 .994   .991   .963   .992 
(3.00)  .949   .945   .881   .950      .980   .978   .935   .981 .992   .991   .959   .992 
 
T(8)  .988   .984   .967   .986      .997   .996   .986   .996 .999   .999   .992   .999 
(1.50)  .983   .983   .965   .985      .996   .995   .984   .996 .999   .999   .991   .999 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh, 
and Z6 test using αz , and 2/)( 1, −+ ntz αα  critical points (first, and second numbers in column Zs, Zh, and 

Z6) and chi-square and robust chi-square test (first and second) on the column 22 , rχχ . 
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Table 9. Comparisons of Type I Error Rates among Zs & Z6 when n=30       
Skewed Distributions 

Distribution    α =0.10  α =0.05  α =0.02  α =0.01 
  _________              __________   __   __ 
(skewness)      Zs Z6  Zs Z6  Zs Z6  Zs Z6 
______________________________________________________________________________ 
IG(1.0,0.1) .0805 .0792  .0549 .0454  .0378 .0224  .0301 .0138 
(9.49)  .0792 .0775  .0534 .0435  .0361 .0206  .0286 .0121 
  .0779 .0759  .0518 .0416  .0348 .0189  .0273 .0108 
 
Weibull(1,0.5) .0802 .0804  .0517 .0437  .0305 .0184  .0234 .0110 
(6.62)  .0788 .0786  .0500 .0416  .0288 .0168  .0219 .0095 
  .0775 .0769  .0484 .0396  .0273 .0150  .0204 .0082 
 
LN(0,1)  .0722 .0729              .0447 .0381              .0256 .0158              .0197 .0091 
(6.18)  .0706 .0710  .0431 .0361  .0243 .0145  .0181 .0078 
  .0693 .0693  .0415 .0342  .0231 .0132  .0166 .0069 
  
IG(1.0,0.25) .0833 .0835  .0512 .0432  .0324 .0198  .0231 .0104 
(6.00)  .0818 .0816  .0494 .0409  .0305 .0181  .0214 .0091 
  .0802 .0797  .0478 .0388  .0290 .0164  .0198 .0079 
 
Gamma(1,.15) .0877 .0890  .0538 .0472  .0298 .0200  .0212 .0110 
(5.16)  .0856 .0863  .0517 .0448  .0280 .0179  .0196 .0098 
  .0837 .0840  .0499 .0427  .0265 .0161  .0178 .0085
  
 
IG(1.0,0.5) .0828 .0864  .0503 .0447  .0264 .0175  .0182 .0101 
(4.24)  .0811 .0833  .0481 .0421  .0245 .0158  .0165 .0090 
  .0803 .0814  .0464 .0397  .0227 .0141  .0149 .0080 
 
Chi(1)  .0886 .0942  .0490 .0477  .0241 .0214  .0155 .0128 
(2.83)  .0864 .0915  .0468 .0453  .0221 .0193  .0138 .0115 
  .0843 .0890  .0448 .0430  .0203 .0176  .0126 .0102 
 
Exp(1.0) .0880 .0970  .0463 .0486  .0229 .0226  .0145 .0141 
 (2.00)  .0857 .0944  .0441 .0459  .0210 .0206  .0129 .0125 
  .0835 .0918  .0420 .0437  .0195 .0189  .0115 .0110 
 
Chi(2)  .0894 .0978  .0472 .0494  .0233 .0230  .0146 .0140 
(2.00)  .0872 .0951  .0450 .0468  .0214 .0210  .0128 .0123 
  .0848 .0930  .0428 .0446  .0196 .0191  .0116 .0111 
 
Barnes2 .0933 .1048  .0518 .0570  .0265 .0284  .0169 .0181 
(1.75)  .0912 .1022  .0497 .0546  .0245 .0262  .0151 .0161
  .0891 .0995  .0474 .0520  .0225 .0240  .0136 .0145 
 
IG(1.0,25.0) .0865 .1021  .0441 .0505  .0204 .0216  .0109 .0112 
(0.60)  .0841 .0990  .0418 .0478  .0185 .0198  .0098 .0094 
  .0816 .0963  .0398 .0452  .0168 .0178  .0087 .0081 
 
Chi(24)  .0868 .1017  .0420 .0483  .0187 .0202  .0110 .0109 
 (0.58)  .0845 .0990  .0399 .0456  .0169 .0180  .0097 .0094 
  .0821 .0963  .0377 .0433  .0153 .0163  .0086 .0079 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and 
Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in column 

Zs and Z6).  
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Table 9 (continued). Comparisons of Type I Error Rates among Zs & Z6 
when n=30   Heavy-tailed Distributions 

Distribution    α =0.10  α =0.05  α =0.02  α =0.01 
  _________            _________   __   __ 
(skewness)          Zs Z6  Zs Z6  Zs Z6  Zs Z6 
______________________________________________________________________________ 
Barnes3 .0644 .0631  .0390 .0303  .0261 .0135  .0196 .0067 
(75.1)  .0630 .0613  .0379 .0286  .0249 .0121  .0186 .0056 
  .0615 .0596  .0367 .0270  .0238 .0108  .0175 .0047 
 
T(5)  .0795 .0887  .0385 .0388  .0170 .0144  .0103 .0075 
(6.00)  .0775 .0861  .0365 .0365  .0157 .0128  .0088 .0065 
  .0754 .0835  .0347 .0342  .0143 .0113  .0077 .0054 
 
Barnes1 .1014 .1096  .0517 .0507  .0234 .0191  .0146 .0107 
(6.00)  .0988 .1066  .0490 .0477  .0215 .0169  .0128 .0091 
  .0965 .1035  .0468 .0448  .0197 .0151  .0113 .0076 
 
T(6)  .0823 .0932  .0407 .0431  .0180 .0170  .0102 .0088 
(3.00)  .0799 .0903  .0385 .0404  .0163 .0151  .0089 .0075 
  .0777 .0875  .0365 .0381  .0148 .0134  .0078 .0062 
 
Laplace(2,1) .0879 .0911  .0444 .0474  .0203 .0199  .0124 .0113 
(3.00)  .0857 .0893  .0423 .0448  .0186 .0179  .0108 .0098 
  .0836 .0879  .0401 .0422  .0170 .0161  .0096 .0084 
 
JTB(4.0,1.0) .0894 .1045  .0455 .0516  .0203 .0212  .0117 .0114 
(0.78)  .0872 .1008  .0431 .0490  .0185 .0193  .0103 .0099 
  .0851 .0979  .0409 .0461  .0168 .0172  .0092 .0083 
  
T(16)  .0882 .1035  .0441 .0504  .0195 .0205  .0112 .0107
  
(0.50)  .0859 .1007  .0417 .0476  .0179 .0184  .0099 .0092 
  .0836 .0977  .0397 .0450  .0160 .0165  .0087 .0078 
 
JTB(1.25,0.5) .0895 .1059  .0441 .0518  .0190 .0203  .0116 .0114 
(0.24)  .0856 .1017  .0419 .0486  .0172 .0183  .0100 .0098 
  .0827 .0988  .0398 .0459  .0156 .0163  .0087 .0081 
 
T(32)  .0884 .1049  .0436 .0501  .0186 .0196  .0107 .0103 
(0.21)  .0859 .1019  .0415 .0476  .0169 .0175  .0093 .0086 
  .0834 .0992  .0391 .0452  .0151 .0157  .0083 .0074 
 
JTB(2.0,0.5) .0769 .0943  .0350 .0408  .0131 .0131  .0067 .0055 
(-0.30)  .0743 .0903  .0327 .0382  .0117 .0113  .0059 .0044 
  .0705 .0868  .0306 .0355  .0105 .0098  .0049 .0034 
 

NOTE:  Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and 
Z6 test using αz , 2/)( 1, −+ ntz αα , and 1, −ntα  critical points (first, second, and third numbers in column 

Zs and Z6). 
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Conclusion 
 
This study proposed a new right-tailed test of the 
variance of non-normal distributions. The test is 
adapted from Hall’s inverse Edgeworth 
expansion for variance (1992) with the purpose 
to find a new test with fewer restrictions from 
assumptions and no need for the knowledge of 
the distribution type. To this end, the study 
compared Type I error rates and power of 
previously known tests to its own.  

 Of the previous tests and six new tests 
examined by the study, Z6 had the best 
performance for right-tailed tests. The Z6 test 

outperforms the 2χ  test by far while performing 

much better than the 2
rχ  test on skewed 

distributions and better with heavy-tailed 
distributions. The Z6 test does not need the 
original assumptions for the Zs test that the 
coefficient of skewness of the parent distribution 

is greater than 2  or that the distribution is 
skewed. 

 Additionally, the Z6 test performs better 
overall than the Zs test since Zs performs poorly 
with smaller alpha levels. Test Z6, unlike Zh, 
does not need the original assumptions that the 
population coefficient of skewness is zero in the 
heavy-tailed distribution or that the distribution 
is heavy-tailed. Also, the Z6 test performs better 
for skewed distributions than the Zh test, which 
has low power at lower alphas. Finally, when 
considering the Type I error rates, both 
distribution types, and power, the Z6 test is the 
best in performance overall. The Z6 test can be 
used for both types of distributions with good 
power performance and superior Type I error 
rates. Therefore, the Z6 test is a good choice for 
right-tailed tests of variance with non-normal 
distributions 
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A new method for estimating the parameters of scale mixtures of normals (SMN) is introduced and 
evaluated. The new method is called UNMIX and is based on minimizing the weighted square distance 
between exact values of the density of the scale mixture and estimated values using kernel smoothing 
techniques over a specified grid of x-values and a grid of potential scale values. Applications of the 
method are made in modeling the continuously compounded return, CCR, of stock prices. Modeling this 
ratio with UNMIX proves promising in comparison with other existing techniques that use only one 
normal component, or those that use more than one component based on the EM algorithm as the method 
of estimation. 
 
Key words: Expectation-Maximization algorithm, UNMIX, kernel density smoothing, expected return 
 
 

Introduction 
 
The study of univariate scale mixtures of 
normals, SMN, has long been of interest to 
statisticians continuously hunting for better 
methods to model probability density functions. 
Modeling using these mixtures has many 
applications from genetics and medicine to 
economic and populations studies. More 
specifically, one can use SMN to model any data 
that is seemingly normally distributed and has a 
high kurtosis. Using SMN allows for the tails of 
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the density to be heavier than those in the 
normal density, giving a better coverage for data 
that varies greatly from the mean. 
 The most common estimation of the 
parameters of the mixtures is the EM algorithm 
of by Dempster, Larid, and Rubin (1977). This 
method is based on finding the maximum 
likelihood estimate of the parameters of a given 
data set. The EM algorithm performs well in 
cases where the distance between means of the 
components is relatively large. However, when 
estimating the parameters of a mixture of 
normals where all of the components have the 
same mean but different variances, the EM 
algorithm gives a poor estimation when these 
variances are small and close.  

In this article, we elaborate on a new 
approach of estimation, UNMIX, proposed by 
Hamdan and Nolan (2004). The UNMIX 
program uses kernel smoothing techniques to get 
an empirical estimate of the density of the data. 
It then estimates the parameters of the mixture 
based on minimizing the weighted least squares 
of the distance between the values from the 
empirical density and the new scale mixture 
density over a pre-specified grid of x-values, and  
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potential grid of σ values called r-grid. The 
UNMIX method will be used to estimate the 
density of the continuously compound return, 
CCR. The estimation of the density function is 
pertinent to knowing the probability that the 
closing stock price will stay within a certain 
interval during a given time period. The density 
function was first estimated simply by using a 
normal curve.  

However, Mandelbrot (1963) and Fama 
(1965) showed that the normal estimation did 
not model market returns appropriately due to 
the excess kurtosis and volatility clustering that 
characterize returns in financial markets. Clark 
(1973) then tested the use of the lognormal 
distribution to estimate the density of the stock 
returns. This is analogous to using the normal 
distribution to estimate the density of the natural 
log of the stock returns (also called the 
continuously compounded return). Following 
Clark’s estimation, Epps and Epps (1976) found 
that a better estimation is obtained when using a 
mixture of distributions.  

However, their assumption used the 
transaction volume as the mixing variable thus 
introducing excess error. Another popular 
method evolved recently when Zangari (1996), 
Wilson (1998), and Glasserman, Heidelberger 
and Shahabuddin (2000), used the multivariate t 
distribution to estimate the stock return. 
Unfortunately, Glasserman, Heidelberger, and 
Shahabuddin (2000), pointed out that since most 
stock returns have equally fat tails, this model 
frequently comes up short. Additionally, the 
method involves solving non-linear equations to 
derive a numerical approximation of an input 
covariance matrix and requires the consuming 
and difficult job of inverting marginal 
distributions.  

As proposed by Clark (1973) and Epps 
and Epps (1976), we look deeper into modeling 
the CCR (the natural log of the stock returns), 
we find that modeling the distribution using a 
simple normal curve should be avoided due to 
the fact that the CCR of most stock prices are 
mound shaped but have a high kurtosis (also 
known as a high volatility). Therefore, these 
ratios can be modeled using a SMN with mean 
zero, since the mean of the CCR of the prices is 
close to zero. A brief explanation of the concept 
of a random variable X having a density 

function of the form of a SMN is introduced in 
Section 2. Next, in Section 3, techniques of 
estimation of SMN are listed and brief 
background on the common EM algorithm is 
also presented. In Section 4, the density of CCR 
is estimated for different stocks with SMN using 
the UNMIX program and using a single normal. 
Also, the density is also estimated using the EM 
algorithm and the results are compared. Finally, 
some suggestions for improving this method are 
made in the conclusion section. 
 

Methodology 
 
A random variable X  is a scale mixture of 

normals or SMN if AZX
d

= , where Z ∼ N(0,1), 

A > 0, A  and Z  independent. Here N(0,1) is 
the standard normal variable with mean 0 and 
standard deviation 1.  Therefore, X  has a 
probability density function  

         

( ) )1(,)/(
1

)(
0

σπσφ
σ

dxxf ∫
∞

=

 

where φ  is the standard normal density and the 

mixing measure π  is the distribution of A .   

An SMN can either be an infinite or a 
finite mixture, depending upon the mixing 
measure π. If our mixing measure is discrete and 
A  takes on a finite number of values, say 

mσσ ,...,1 with respective probabilities 

mππ ,...,1 then the probability density function 

can be rewritten as 

 

( ) )2(/
1
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1
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m
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xxf πσφ
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A common finite mixture, called the 
contaminated normal, occurs when A  takes on 
two values, with 21 σσ <  and 21 ππ > . In this 
case our density function can be simplified to  

( ) )/(1)/()( 2111 σφπσφπ xxxf −+= . 
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Some common examples of infinite SMN are the 
Generalized t distribution, Exponential power 
family, and Sub-Gaussian distributions. The 
following theorem gives the characteristics 
necessary for a distribution to be SMN with 
mean zero.  

Theorem: (Schoenberg, 1938) Given 
any random variable X  with density )(xf , X  
is a scale mixture of normals if and only if 

( )xfxh =)(  is a completely monotone 
function. See Feller (1971) for definition of 
completely monotone function. As we have seen 
above when A  takes on a finite number of 
values, the density of X  can be written more 
simply in the same manner as equation (2). 
When π is not concentrated at a finite number of 
points, Hamdan and Nolan (2004) give a 
constructive method on how to discretize π so 
that equation (2) is uniformly close to equation 
(1).     
 
Estimating Scale Mixtures of Normals 

 In estimating SMN one needs to find the 
following: number of components, estimated 
parameters of each component, and estimated 
weights of each component. We highlight some 
of the important developments in this area.  

This problem of estimating SMN has 
been the subject of a large diverse body of 
literature. Dempster, Larid, and Rubin (1977) 
introduced the EM algorithm for approximating 
the maximum likelihood estimates. Because 
other methods have been developed based on the 
EM algorithm. A robust powerful approach 
based on minimizing distance estimation is 
analyzed by Beran (1977) and Donoho and Liu 
(1988). Zhang (1990) used Fourier methods to 
derive kernel estimators and provided lower and 
upper bounds for the optimal rate of 
convergence. Priebe (1994) developed a 
nonparametric maximum likelihood technique 
from related methods of kernel estimation and 
finite mixtures.  
 
EM algorithm 
 The EM algorithm developed by 
Dempster, Larid, and Rubin (1977), is based on 
finding the maximum likelihood estimate of the 
components, parameters, and weights of a 

mixture of normals. It should be noted that 
though we will only use the EM algorithm for a 
mixture of normals, it can be generalized for 
other mixtures. However, differentiation 
problems become more complicated in the M 
step of the algorithm for non-normal mixtures. 
The EM algorithm does not assume that we are 
dealing with SMN and allows each density 
function to have a different mean. Therefore, 
given the data points, nxx ,...,1 , from the finite 

normal mixture of k components  

j
j

j
k

j j

x
π

σ
µ

φ
σ ⎟

⎟
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⎞

⎜
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⎝

⎛ −
∑
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1
 , 

the data are completed by letting each ix  

correspond to a iy . The new iy is a vector 

giving the initial value ix  and also a sequence of 

values kzz ,...,1  which tells the location of the 

x  value as follows:  

1

ij

if  is generated  by 
1

the jth component;

0 otherwise

( , ,..., ) 

where z

i

i i i ik

x

y x z z=

⎧
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⎪
⎪
⎪⎩

 

Therefore the only missing values are the labels, 

iki zz ,...,1 . Next the maximum likelihood 

estimate of each iy  is found in the in the 

Expectation Step of the EM algorithm. An initial 
guesses for the parameters 

         kkk σσµµππ ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ 111  

are taken. Then an estimate of probability of 
category membership of the ith observation, 
conditional on ix  is found based on using the 

parameter estimate 

( )kkk σσµµππ ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ 111 . 

This estimation is noted by  
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 The next step is to compute the 
weighted means and variances in the 
Maximization Step of the EM algorithm for 
mixtures of normals. Then the E and the M steps 
are iterated until the parameters converge, and 
the final values are used as the parameters 
estimates of the mixture of normals. The EM 
algorithm works well in modeling SMN where 
the variance of the components are relatively 
large, but as the variances approach zero, the 
algorithm shows a poor performance. In general, 
as shown in many simulation studies, when the 
components are not well-separated, estimation 
based on maximum likelihood is poor (Dick & 
Bowden, 1973). 

There are also many practical 
difficulties in estimating SMN using the EM. 
Some of these are computationally difficult and 
intractable. For example, when the MLE of the 
mixing measure in the finite case is found, a 
large local maxima might be found that occurs 
as a consequence of a fitted component having a 
very small (but nonzero) variance. Moreover, it 
is not clear how to initialize the estimates, 
especially when the mixture is a scale mixture. 
Though, methods have recently been developed 
by Biernacki, Celeux, & Govaert (2003) in order 
to find the most efficient initializing conditions. 
Another key problem in finite mixture models is 
determining the number of components in the 
mixture. Several criteria based on the penalized 
log-likelihood, such as Akaike Information 
Criterion, AIC, the Bayesian Information 
Criterion, BIC, and the Information Complexity 
Criterion introduced by Bozdogan (1993), have 
been used.   
 
UNMIX  

The next approach, UNMIX, uses kernel 
smoothing techniques to estimate the empirical 
density of a sample. It then minimizes the 
weighted square distance between the kernel 
smoothing estimate and the density computed by 

discretizing the mixture over a pre-specified grid 
of x-values and potential grid of sigma values. 
Given a sample of size n from the mixture, we 
fix a grid of possible sigma values (called the 
σ -grid), and possible x values (called the x-
grid), kxx ...1  , where .mk ≤   

  In order to obtain an estimate 

)( of )(ˆ xfxf for each x  in the x -grid, we use 
kernel smoothing techniques discussed briefly at 
the end of the section. Our model is  
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where iε  are independent with mean 0. That is 

solved for jπ  by minimizing  
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ij x σφ
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φ /
1=  and iw are weights. We 

will use iw =1 throughout. However, if the data 

are heavy-tailed then one can try different 
weights until he finds a good fit (in the heavy-
tailed case, a good strategy might be weighting 
the points that are close to the mean of the x-grid 
less than those that are far from the mean of the 
x-grid. Next consider the problem as a quadratic 
programming problem with two constraints: 

1=∑ jπ  and 0≥jπ  for all j. Expanding 

)(πS : 
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Because 2

1

2
1 i

k

i

yw∑
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 is independent of π , it is a 

constant. Reformulating the problem in a matrix 
environment, we let g  be the ( )1×m vector 
defined as  
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constant, resulting in the following formula for 
)(πS : 
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programming constraints 1
1
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0≥jπ , this latter constraint can be rewritten in 

matrix form as b≥πA  where 
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of order ( )mm ×  and )00( �=Tb  of order 

( )1×m  . A quadratic programming routine, 
QPSOLVE which is a Fortran subroutine, is 
used to solve this problem. UNMIX is a Splus 
program that takes the sample, x-grid, r-grid, 
and a vector of weights as the input and calls 

QPSOLVE. The program’s output is a vector of 
estimated weights over the given r-grid.  

In obtaining an estimate for ),(xf  
kernel smoothing techniques were used. One 
important variable in density estimates using 
kernel smoothing techniques is the bandwidth. 
In general, using a large bandwidth over-
smoothes the density curve, and small 
bandwidths can under-smooth the density curve. 
In essence, the bandwidth controls how wide the 
kernel function is spread about the point of 
interest. If there are a large number of values, ix  

near x , then the weight of x  is relatively large 
and the estimation of the density at x  will also 
be large.  
 There are four sources of variability 
involved when using UNMIX to estimate a 
SMN. The first is the sampling variability, the 
second is due to the method of density 
estimation and bandwidth used. The third 
variability is the choice of the x-grid and finally, 
the fourth is the choice of the r-grid.  

Controlling sampling variability can be 
done by increasing the sample size. However, 
controlling the variability introduced by the 
method of density estimation requires care and 
investigation of the sample and bandwidth used. 
For example, we can weight the observations by 
using their distance from the center. There is 
considerable literature on how to pick the most 
effective bandwidth including articles by Hardle 
and Marron (1985) and Muller (1985). For the 
purposes of this article, when using the UNMIX 
program, the default bandwidth based on the 
literature given in R-Software is used.  

UNMIX performs well for estimating 
distributions with a high kurtosis but losses 
accuracy for data that is extremely concentrated 
about the mean. However, these difficulties can 
be overcome due to the flexibility of the 
program in terms of fitting the data. In 
particular, the r-grid can be changed and the 
weights interactively in a systematic way until a 
good fit is found. We have found that the most 
useful x-grid is evenly distributed and 
symmetric about the mode, where the distance 
from the mode on both sides is the absolute 
maximum of the sample data because the mode 
is 0 in this case. This allows the x-grid to cover 
all data points. Also in creating the σ -grid, a 
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simple guideline is to make it evenly distributed 
from a point close to zero to a point at least three 
sample standard deviations away from zero. This 
again allows for the σ -grid to cover a large 
percentage of potential sigma values no matter 
what the original distribution of sigma is. Here, 
we assume that the values in the x-grid and the 
σ -grid are the only possible values for each x  
and ,σ therefore it is important to pick them 
within in the range of the sample. 
 

Results 
 
Estimating the density of stock returns has been 
important to statisticians and those interested in 
finance since the stock market opened. Fama 
(1965) and many others model stock prices 
based on simple random walk assumption. In 
other words the actual price of a stock will be a 
good estimate of its intrinsic value. The standard 
assumption is that the percentage changes in the 
stock price in a short period of time are normally 
distributed with parameters µ, expected return of 
the stock, and σ which is the volatility of the 
stock price. The expected return is estimated by  

∑ =
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the current stock price. Therefore, the 1 period 
volatility is estimated by 
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 The continuously compounded return, 
CCR, can now be estimated as follows with 

τ−TS  as the stock price τ  time units earlier: 
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Comparing Normal Estimate to UNMIX 
Estimate 

We now estimate and compare the 
density of the CCR using a single normal curve 
and a scale mixture of normals. Taking 
advantage of Yahoo’s (an internet search 
engine) intensive finance sources, three stocks 
were found whose price quotes showed 

relatively high volatility: Ciber Inc, 
ExxonMobil, and Continental Airlines. For each 
of the stocks, we sampled the weekly closing 
prices over the past four years, from July 14, 
2000 to July 14, 2004. The natural log of the 
return was taken to find the CCR for each stock.  
 Modeling with the single normal method 
described above and the UNMIX program, their 
performances were compared against the 
empirical density found using kernel smoothing 
techniques. The empirical density is then used to 
estimate the density over an x-grid of 51 
equally-spaced points between -4S and 4S, 
where S is the sample standard deviation. 
Because the empirical density can be made very 
close to the true density at any given point, it is 
considered as the true density in each of the 
following error calculations which are presented 
in Table 1, Table 2 and Table 3.  

Example 1: In this example, the density 
of the CCR, of Ciber Inc. stock, is estimated. 
The normal estimate based on the random walk 
assumption has a mean of -.00686 and standard 
deviation of .09041. The estimated SMN was 
found using the UNMIX program and has 4 
components with weight vector of 
(.52951,.07374,.39415,.00260) and an estimated 
σ-vector of (.12266,.06048,.03885,.03750). The 
estimated densities were evaluated on the same 
x-grid and the results are shown in Figure 1.  

The maximum and average error 
between each estimate and the empirical density 
can be seen in Table 1. In Figure 2, the three 
density estimates were found for an x-grid 
located in the tail of distribution of CCR and it 
consists 25 equally-spaced points between .2 and 
.45. Using the normal assumption, the 
probability of any sample point falling in such 
range is approximately .012 and approximately 
.035 when the scale mixture assumption is used. 
Though this probability is not high, most density 
estimation techniques do not recover the tails 
well where the most extreme occurrences can be 
found. This could be very problematic in finance 
and risk analysis. 
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Notice in Figure 2 that estimating with 

SMN produces a better fit in the tails. In contrast 
to overestimating the rate of return in the body, 
where around 95% of the data are located, the 
normal curve tends to underestimate the density 
in the tails. As in our examples, the distributions 
for the CCR tend to have fatter tails than the 
proposed normal has. Because the tails of the 
data are heavy, the scale mixture estimation will 
produce a better fit than the normal. 

 
 
 

 
Under the single normal assumption, the 

95% confidence interval for the mean of the 
CCR is (-.1767, .1767). Equivalently and by 
exponentiation, the interval for the mean rate of 
return is (.8381, 1.1933). The corresponding 
UNMIX estimate is found to be (.8469, 1.1808).  
In comparison to UNMIX, the normal curve 
tends to overestimate the rate of return in the 
body of the density. Though the gap does not 
seem large when investing a small amount, for 

Figure 1: Estimated Density of CCR for Ciber Inc stock. 
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Figure 2: Estimated Density in the right tail of CCR of Ciber Inc. 
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big time investors 1 penny off per dollar can 
translate to thousands of dollars lost when 
investing millions. In Table 4, we summarize the 
bounds for the middle 95% probability of the 
distribution for all three examples.  
 

Examples 2 & 3: In these two examples, 
estimate the densities for the CCR of 
ExxonMobil and Continental Airline stocks are 
found based on a single normal and using 
UNMIX. The single normal and UNMIX 
estimates are plotted against the empirical 
density, as described in the previous example, 
the results are shown in Figure 3 and Figure 4 
respectively. The single normal for the 
ExxonMobil case has an estimated mean of 
.000248 and an estimated standard σ of 0.038. 
The scale mixture for the ExxonMobile case has 
4 components with a weight vector of 
(.04734,.47208,.4412,.03938) and the 
corresponding estimated σ-vector of 
(.091,.02587,.02542,.01276). 

However, the single normal for the 
Continental Airline case has an estimated mean 
of -0.0076 and an estimated σ of 0.0930. Finally, 
the scale mixture for the Continental Airline 
case has 5 components with a weight vector of 
(.07006,.01495,.44468,.32486,.14544) and the 
corresponding estimated σ-vector of 
(.24215,.24074,.08372,.08232,.02343).  

Notice in Figures 3 and 5 the empirical 
density tends to be negatively skewed. This is 
common in the densities of CCR since there is a 
greater probability of the stock market to 
produce large downward movements than large 
upward movements. This can be explained by 
the public’s tendency to pull-out of a falling 
market thus causing prices to drop even further. 

In the following tables, the maximum 
absolute difference between the empirical 
density and the estimated density over the 
selected grid using a single normal is indicated 
by Max. Norm., and the average value is 
indicated by Avg. Norm. Similarly, Max. 
UNMIX and Avg. UNMIX are the 
corresponding values when a scale mixture, with 
UNMIX as a method of estimation, is used 
rather than one single normal as a model for 
CCR. 

 
 

Next, the performance of the UNMIX 
method is compared to the EM algorithm in 
estimating the density of the CCR of the same 
three stocks. The number of components to be 
used with the EM is also unknown, and there are 
many ways that can be used to estimate it. Here, 
we tried two, three, four and five component 
mixture. 

There was no noticeable difference 
between the four-component mixture and the 
five-component mixture. Therefore, the four-
component mixture was used for our examples. 
The parameters were then estimated using the 
EM algorithm and it was compared to that found 
using the UNMIX estimation. The initialization 
of the parameters was somewhat arbitrary 
because our goal is to find the best density fit 
and not to investigate the speed or the 
convergence of these estimation methods. The 
π’s were initialized such that each component 
has an equal weight of .25, and the µ’s were 
initialized such that = the mean of the sample, 

1µ  and 432  and , µµµ = .2,.4, and .8 times the 

mean of the sample respectively. 
Then, the σ’s were initialized for each 

component in the same manner as the µ’s. For 
each of the three examples, the process was 
repeated 50 times and the mean of the parameter 
estimate was taken as the final EM estimate. The 
estimated densities of the stocks are shown in 
Figure 7.  

Notice that the EM estimate tends to 
overestimate the mean of the empirical density 
which is a consequence of the fitted component 
having a very small variance. The EM captures 
the skewness of the density better but in general, 
UNMIX outperforms it. This is seen by the fact 
that in the three examples, the EM algorithm 
produces both a greater maximum and average 
error as summarized in Table 5. 
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Figure 3: Estimated Density of CCR for Exxon Mobile stock. 
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Figure 4: Estimated Density of CCR in the right tail of Exxon Mobile stock.  
Probability of being in the tail is approximately .0372. 
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Figure 5: Estimated Density of CCR for Continental Airline. 
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Figure 6: Estimated Density in the right tail of CCR for Continental Airlines stock. 
Probability of being in this tail is .0186. 
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Table 1: Maximum and average errors of the Normal and UNMIX estimates of CCR for Ciber Inc. 

 
      Error              Body. Den.        Tail Den. 
Max. Norm.           1.6440             .2630 
Max. UNMIX         .7874              .1188 
Avg. Norm.             .3645              .0499 
Avg. UNMIX          .1559              .0203 

 
Table 2: Maximum and average errors of the Normal and UNMIX estimates of CCR 

for ExxonMobile stock. 
 

              Error            Body. Den.        Tail Den. 
Max. Norm.           1.9545             1 .0582 
Max. UNMIX        1.7341                .4712        
Avg. Norm.             .5838                .2268 

     Avg. UNMIX          .4015               .1283       
 

Table 3: Maximum and average errors of the Normal and UNMIX estimates 
of CCR for Continental Airline stock. 

 
         Error                  Body. Den.        Tail Den. 

Max. Norm.              1.3104            .1897 
Max. UNMIX            .8375             .1410          
Avg. Norm.              .26911             .0699 
Avg. UNMIX           .02090            .0579    
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Table 4: Bounds for the middle 95% probability of the distribution for the CCR of Ciber Inc., 

ExxonMobil, and Continental Airlines in both the normal and UNMIX estimates. 
 

  Stock                     Normal                     UNIMIX 
Ciber Inc.           (.8381, 1.1933)       (.8469, 1.1808) 
ExxonMobile     (.9428,1.0607)        (.9462, 1.0569) 
Continental         (.8334, 1.200)         (.8416, 1.1882) 

 
Figure 7: Estimated Density of CCR using the UNMIX program and the 

EM algorithm for (a) Ciber Inc.; (b) ExxonMobil; (c) Continental Airlines. 
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Conclusion 
 
Estimation of the CCR of stocks has been an 
interest of both statisticians and financiers due to 
the importance of producing accurate models for 
the data. As evidenced by the previous 
examples, UNMIX allows for this analysis to 
occur with smaller error in comparison to the 
single normal assumption and the common 
methods based on the EM algorithm.  

Although the EM algorithm is well 
developed and allows for different location and 
different scales, sometimes it has some practical 
difficulties. For example, when trying to find the 
MLE of the parameters, it might find a large 
local maxima that occurs as a consequences of a 
fitted component having a very small (but non-
zero) variance. Also, there are still some 
problems associated with initializing the 
parameters including the number of components. 

However, UNMIX fitted the data better 
than the EM. We believe that it will always fit 
the data well, because it is based on minimizing 
the weighted distance between empirical density 
and the mixture over a given grid. However, in 
terms of estimating the actual parameters, more 
work needs to be done because the EM still does 
a better job in estimating the actual values as we 
have seen in many simulated examples where 
the actual mixtures are known.  

Here are some areas where we can 
improve UNMIX. First, make it most applicable 
is the possibility of handling not only scale, but 
location conditions. Also improvements to the 
program  can be  made by developing guidelines  
 

 
 

 
 
to choose the most optimal x-grid and r-grid. 
Finally, we can improve the empirical density 
estimate by using optimal kernel functions and 
bandwidths. Implications of the UNMIX 
program can apply beyond the scope of the stock 
market. This program can be used to model 
distributions with relatively high possibilities of 
outlying events. Staying in the realm of finance 
the program can be used to estimate exchange 
rates.  

However, there are also many examples 
outside of the finance field including fitting 
extreme data. For example, the UNMIX 
program was used to fit the density of some 
heavy-tailed data. These data were generated 
from the class of stable densities that have 
infinite variance and known to be infinite 
variance mixture of normals such as Cauchy 
density. Although more work needs to be done, 
but the UNMIX method looks promising in 
fitting such data. 
 

References 
 

Akaike, H. (1954). An approximation to 
the density function. Annals of the Institute of 
Statistical Mathematics, 6, 127-132.  

Beran, R. (1977). Minimum hellinger 
distance estimates for parametric models. Annals 
of Statistics, 5, 445-463. 

Biernacki, C., Celeux, G., & Govaert, G. 
(2003). Choosing starting values for the EM 
algorithm for getting the highest likelihood in 
multivariate Gaussian mixture models. 
Computational Statistics and Data Analysis, 41, 
561-575.  

 
Table 2: Maximum and average errors of the UNMIX and EM estimates of CCR for all examples. 
 

Error                 Ciber Inc.            ExxonMobile          Continental 
Max. EM            1.2832                       2.143                      1.2987 
Max. UNMIX       .7971                      1.7269                      .8320 
Av.  EM                .1592                       .4059                       .2193 
Avg. UNMIX        .1542                      .3985                       .2048     

 
 



MIXTURES TO MODEL CONTINUOUSLY COMPOUNDED RETURNS 226 

Bozdogan, H. (1993). Choosing the 
number of component clusters in the mixture-
model using a new informational complexity 
criterion of the Inverse-Fisher Information 
Matrix, Information and Classification, 40-54.  

Clark, P. K. (1973). A subordinated 
stochastic process model with finite variance for 
speculative prices. Econometrica, 41, 135-155.  

Dempster, A. P., Larid, N. M., & Rubin, 
D. B. (1977). Maximum likelihood from 
incomplete data via the EM algorithm. Journal 
of the Royal Statistical Society, 39, 1-38. 

Dick, N. P., & Bowden, D. C. 
(1973). Maximum likelihood estimation for 
mixtures of two Normal distributions. 
Biometrics, 29, 781-790.  

Donoho, D. L., & Liu, R. C., (1988). 
The ‘Automatic’ robustness of minimum 
distance functional. Annals of Statistics, 16, 552-
586. 

Epps, T. W., & Epps, M. L. (1976). The 
stochastic dependence of security price changes 
and transaction volumes: implications for the 
mixture-of-distributions hypothesis. Econome-
trica, 44, 305-321.  

Fama, E. F. (1965). The behavior of 
stock market prices. Journal of Business, 38, 34-
105.  

Feller, W. J. (1971). An introduction to 
probability and its applications. (2nd ed.). Vol. II. 
NY: Wiley. 

Fix, E., & Hodges, J. L. (1989). 
Discriminatory data analysis - nonparametric 
discrimination: consistency properties., 
International  Statistics Review, 57, 238-247.  

Glasserman, P., Heidelberger, P., & 
Shahabuddin, P. (2000). Portfolio value-at-risk 
with heavy-tailed risk factors. IBM Research 
Report.  

 
 
 
 
 
 
 
 
 
 
 
 

Hamdan, H., & Nolan, J. (2004). 
Approximating scale mixtures. Stochastic 
Processes and Functional Analysis, 283, 161-
169. 

Hamdan, H., & Nolan J (2004, in press). 
Estimating the parameters of infinite scale 
mixtures of normals. Computing Science & 
Statistics. 36, the proceeding of the 36th 
Symposium on the Interface.  

Hardle, W., & Marron, J. S. (1985). 
Optimal bandwidth selection in nonparametric 
regression function Estimation. Annals of 
Statistics, 13, 1465-1481.  

Mandelbrot, B. (1963). The variation of 
certain speculative prices. Journal of Business, 
36, 394-419.  

Muller, H. G. (1985). Empirical 
bandwidth choice for nonparametric kernel 
regression by means of pilot estimators. 
Statistical Decisions, 2, 193-206.   

Priebe, E. C. (1994). Adaptive mixtures. 
Journal of the American Statistical Association., 
89, 796-806. 

Schoenberg, I .J. (1938). Metric spaces 
and completely monotonic functions. Annals of 
Math, 39, 811-841.  

Wilson, T. C. (1998). Value at risk. Risk 
Management and Analysis, 1, 61-124. 

Zangari, P. (1996). An improved 
methodology for measuring VaR. Risk Metrics 
Monitor, 7-25.  

Zhang, C. (1990). Fourier methods for 
estimating mixing densities and distributions. 
Annals of Statistics, 18, 806-831.  
 



Journal of Modern Applied Statistical Methods   Copyright © 2005 JMASM, Inc. 
May, 2005, Vol. 4, No.1, 227-239                                                                                                                             1538 – 9472/05/$95.00 

227 

Enhancing The Performance Of A Short Run Multivariate Control Chart  
For The Process Mean 
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Short run production is becoming more important in manufacturing industries as a result of increased 
emphasis on just-in-time (JIT) techniques, job shop settings and synchronous manufacturing. Short run 
production or more commonly short run is characterized by an environment where the run of a process is 
short. To meet these new challenges and requirements, numerous univariate and multivariate control 
charts for short run have been proposed. In this article, an approach of improving the performance of a 
short run multivariate chart for individual measurements will be proposed. The new chart is based on a 
robust estimator of process dispersion. 
 
Key words: Short run, process mean, process dispersion, quality characteristic, in-control, out-of-control  
 
 

Introduction 
 

Let nX  = ( )′npnn XXX ,...,, 21  denotes the p × 1 

vector of quality characteristics made on a part. 
Assume that nX , n = 1, 2, …, are independent 
and identically distributed (i.i.d.) multivariate 
normal, ( )Σµ,pN , observations where njX  is 

the observation on variable (quality 
characteristic) j at time n. Define the estimated 
mean vector obtained from a sequence of 

nXXX ,...,, 21  random multivariate observations 

as nX  = ( )′pXXX ,...,, 21  where 

nXX
n

i
ijj ∑

=

=
1

 is the estimated mean for 

variable j made from the first n observations. 
Table 1 gives the additional notations that are 
required in the article. 
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The following four cases (see Khoo & 
Quah, 2002) of µ and Σ known and unknown 
give the standard normal V statistics for the short 
run multivariate chart based on individual 
measurements: Because V statistics follow a 
standard normal distribution, this feature makes 
it suitable for the limits of the chart to be based 
on the 1-of-1, 3-of-3, 4-of-5 and EWMA tests 
which will be discussed in the later section. 
 
Case KK: ,, 00 ΣΣµµ == both known 

       =2
nT  ( 0µ−nX )′ )( 0

1
0 µΣ −−

nX    
and 
       )},({ 21

npn THV −Φ= n = 1, 2, … 

             (1) 
 
Case UK: µ  unknown, 0ΣΣ =  known     

                 =2
nT  ( 1−− nn XX )′ )( 1

1
0 −
− − nn XXΣ   

and 

     ,
1 21

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
Φ= −

npn T
n

n
HV n = 2, 3, … 

                         (2) 
Case KU: 0µµ =  known, Σ  unknown 

                     =2
nT  ( 0µ−nX )′ )( 0

1
1,0 µ−−

− nn XS   
where       

      =nS ,0 n

1
∑

=

−−
n

i
ii XX

1
00 )(( µµ )′ 
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and 

,
)1(
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,

1
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⎪
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n = p + 1, p + 2, … 
(3) 

 
Case UU: µ and Σ both unknown 
  

=2
nT  ( 1−− nn XX )′ )( 1

1
1 −

−
− − nnn XXS  
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             n = p + 2, p + 3, …                                                 
(4) 

 
In Eq. (1) – (4), p represents the number of 
quality characteristics that are monitored 
simultaneously, i.e., p ≥ 2. 

 
 
 

 
 

 
 
 
 

 
Enhanced Short Run Multivariate Control Chart 
for Individual Measurements 
 The short run multivariate chart 
statistics in Eq. (1) and (2) are based on the 
known covariance matrix while that of Eq. (3) 
and (4) are based on the estimated covariance 
matrix, a.k.a., the sample covariance matrix. It is 
shown in Ref. 1 that the performance of the 
chart based on the V statistics in Eq. (3) and (4) 
are inferior to that of cases KK and UK in Eq. 
(1) and (2) respectively.  

Thus, in this article an approach to 
enhance the performance of the short run 
multivariate chart for cases KU and UU is 
proposed by replacing the estimators of the 
process dispersion, i.e., nS ,0  and nS  in Eq. (3) 

and (4) respectively with a robust estimator of 
scale based on a modified mean square 
successive difference (MSSD) approach. 
Holmes and Mergen (1993) and Seber (1984) 
provided discussion about the MSSD approach. 
The new estimator of the process dispersion is 
denoted by MSSDS  while the new V statistic is 

represented by .MSSDV   
 

 
 
 
 
 

 
 
 
 

 
Table 1. Notations for Cumulative Distribution Functions. 

(.)Φ      - The standard normal cumulative distribution function 

(.)1−Φ   - The inverse of the standard normal cumulative distribution   
                function 

(.)vH    - The chi-squared cumulative distribution function with v   
                degrees of freedom 

(.)
21,vvF -  The Snedecor-F cumulative distribution function with ),( 21 vv   

                 degrees of freedom   
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The following formulas give the new 
standard normal MSSDV  statistics for cases KU 
and UU: Note that all the notations which are 
used here are similar to that defined in the 
previous section. 
 
Case KU: 0µµ =  known, Σ  unknown 
For odd numbered observations, i.e., n, is an odd 
number, 
 

       2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX  
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           (5a) 
For even numbered observations, i.e., n, is an 
even number, 
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Case UU: µ and Σ both unknown 
For odd numbered observations, i.e., n, is an odd 
number, 

2
MSSD,nT  = ( ) ( )1

1
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For even numbered observations, i.e., n, is an 
even number, 
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                                                                       (6b) 
 
For the MSSDV  statistics in eqs. (5a), (5b), (6a) 
and (6b) above, p is the number of quality 
characteristics monitored simultaneously, hence 
p ≥ 2. 
 
Tests for Shifts in the Mean Vector µ 
 Because all the MSSDV  statistics are 
standard normal random variables, the following 
tests will be used in the detection of shifts in the 
mean vector. Given a sequence of MSSDV  

statistics, i.e., ..., , ..., , , MSSD,2,MSSD1MSSD, maa VVV ++  

where aVMSSD,  represents the control chart 

statistic, MSSDV , at observation a, the tests are 
defined as follow: 
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The 1-of-1 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if mVMSSD,  > 

3σ, i.e., mVMSSD,  > 3. 

The 3-of-3 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if mVMSSD, , 

1MSSD, −mV  and 2MSSD, −mV  all exceed 1σ (i.e., 1). 

This test requires the availability of three 
consecutive MSSDV  statistics. 

The 4-of-5 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if at least four 
of the five values mVMSSD, , 1MSSD, −mV , …, 

4MSSD, −mV  exceed 1σ (i.e., 1). This test can only 

be used if five consecutive MSSDV  statistics are 
available. 

In addition to these tests, the EWMA 
chart computed from a sequence of the MSSDV  
statistics is also considered. The EWMA chart is 
defined as follows: 
 

,)1( 1MSSD,MSSD,MSSD, −α−+α= mmm ZVZ    

 m = a, a + 1, …                       (7) 
 
where 01MSSD, =−aZ  and a is an integer 

representing the starting point of the monitoring 
of a process. The UCL of an EWMA chart is 

)2( α−αK , where α is the smoothing 

constant and K is the control limit constant. For 
the simulation study in this paper, the values of 
(α, K) used are (0.25, 2.90) which gives UCL = 
1.096, i.e., similar to that in Ref. 1. 
 
Evaluating the Performance of the Enhanced 
Short Run Multivariate Chart 
 A simulation study is performed using 
SAS version 8 to study the performance of the 
enhanced short run multivariate chart for 
individual measurements. To enable a 
comparison to be made between the 
performance of the new short run chart with the 
chart proposed in Ref. 1, the simulation study of 
the new bivariate chart is conducted under the 
same condition as that of Ref. 1. The on-target 
mean vector vector is 0µ  = (0, 0)′ while the in-

control covariance matrix is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
ρ

=
1

1
0Σ  where 

ρ is the correlation coefficient between the two 
quality characteristics. For every value of c ∈ 
{10, 20, 50}, c in-control observations are 
generated from a ( )002 , ΣµN  distribution 
followed by 30 additional observations from a 

( )02 ,Σµ SN  distribution. The MSSDV  statistics for 
cases KU and UU in Eq. (5a), (5b), (6a) and (6b) 
are computed as soon as enough values are 
available to define its statistics for the particular 
case.  

This procedure is repeated 5000 times 
and the proportion of times an o.o.c. signal is 
observed from c + 1 to c + 30 for the first time is 
recorded. All of the tests defined in the previous 
section are used in evaluating the performance 
of the chart. Note that the new chart is also 
directionally invariant. Thus, the chart’s 
performance is determined solely by the square 
root of the noncentrality parameter (see Ref. 1). 
Because of the directionally invariant property 
of the new short run multivariate chart, only Sµ  

= (δ,0)′ based on ρ = 0 and 0.5 are considered in 
the simulation study. 

The results of cases KU and UU for the 
enhanced short run multivariate chart are given 
in Tables 2 and 3 for ρ = 0 and 0.5 respectively. 
Tables 4 and 5 give the corresponding results of 
the short run multivariate chart proposed in Ref. 
1. The results show that the approach 
incorporating the new estimator of process 
dispersion, i.e., MSSDS , are superior to that 
proposed in Ref. 1. 

For example, if δ = 1.5, c = 10 and ρ = 
0, the probabilities of detecting an o.o.c. for case 
KU are 0.225, 0.721, 0.681 and 0.739 for the 
enhanced chart based on the 1-of-1, 3-of-3, 4-of-
5 and EWMA tests respectively (see Table 2). 
From the results in Table 4, the corresponding 
probabilities that are computed for these four 
tests are 0.056, 0.253, 0.172 and 0.157 
respectively. Clearly, these probabilities are 
much lower than those of the enhanced chart. 
Note also that the Type-I error of the enhanced 
chart based on the 3-of-3, 4-of-5 and EWMA 
tests are higher than those in Ref. 1. However, 
from Tables 2 and 3, it is observed that the 
probabilities of signaling a false o.o.c. for these 
three tests decrease as the values of c increase. 
The probabilities  of a false alarm  for the 1-of-1  
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Table 2. Simulation Results of the Enhanced Short Run Multivariate Chart for Cases KU and UU based on 

)0,0(0
′=µ , =Sµ (δ,0)′ and ρ = 0. 

 
 

ρ = 0 
c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             

0.0      KU 0.039 0.152 0.111 0.116 0.032 0.130 0.086 0.087 0.040 0.113 0.066 0.064 
           UU 0.036 0.156 0.111 0.118 0.035 0.123 0.079 0.087 0.037 0.113 0.063 0.069 
             
0.5      KU 0.055 0.220 0.169 0.173 0.049 0.194 0.130 0.140 0.070 0.187 0.121 0.126 
           UU 0.040 0.171 0.126 0.133 0.037 0.149 0.100 0.108 0.054 0.158 0.096 0.102 
             
1.0      KU 0.111 0.423 0.360 0.394 0.123 0.422 0.343 0.396 0.167 0.440 0.352 0.420 
           UU 0.049 0.221 0.168 0.174 0.063 0.239 0.171 0.189 0.114 0.305 0.228 0.266 
             
1.5      KU 0.225 0.721 0.681 0.739 0.277 0.746 0.703 0.779 0.390 0.790 0.746 0.846 
           UU 0.064 0.308 0.247 0.261 0.112 0.396 0.329 0.362 0.240 0.578 0.505 0.594 
             
2.0      KU 0.409 0.919 0.910 0.947 0.510 0.943 0.931 0.970 0.665 0.972 0.968 0.991 
           UU 0.091 0.434 0.371 0.387 0.189 0.611 0.550 0.609 0.431 0.841 0.813 0.893 
             
2.5      KU 0.611 0.986 0.986 1.000 0.740 0.994 0.994 0.998 0.882 0.999 0.998 1.000 
           UU 0.126 0.574 0.516 0.534 0.293 0.799 0.769 0.815 0.660 0.969 0.968 0.989 
             
3.0      KU 0.787 0.998 0.999 1.000 0.894 1.000 0.999 1.000 0.974 1.000 1.000 1.000 
           UU 0.173 0.718 0.678 0.681 0.430 0.927 0.914 0.939 0.849 0.997 0.998 1.000 
             
4.0      KU 0.965 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.292 0.910 0.897 0.897 0.695 0.996 0.995 0.998 0.988 1.000 1.000 1.000 
             
5.0      KU 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.423 0.980 0.981 0.978 0.883 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3. Simulation Results of the Enhanced Short Run Multivariate Chart for Cases KU and UU based 
on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0.5. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             

0.0      KU 0.039 0.152 0.111 0.116 0.032 0.130 0.086 0.087 0.040 0.113 0.066 0.064 
           UU 0.036 0.156 0.111 0.118 0.035 0.123 0.079 0.087 0.037 0.113 0.063 0.069 
             
0.5      KU 0.063 0.238 0.189 0.191 0.058 0.214 0.149 0.166 0.078 0.210 0.138 0.157 
           UU 0.040 0.179 0.132 0.137 0.040 0.163 0.113 0.118 0.061 0.171 0.108 0.120 
             
1.0      KU 0.141 0.513 0.459 0.499 0.164 0.520 0.447 0.519 0.227 0.546 0.462 0.571 
           UU 0.055 0.245 0.191 0.198 0.076 0.281 0.216 0.237 0.148 0.387 0.295 0.359 
             
1.5      KU 0.304 0.826 0.805 0.859 0.382 0.863 0.842 0.901 0.518 0.900 0.885 0.949 
           UU 0.078 0.364 0.307 0.317 0.144 0.498 0.429 0.484 0.322 0.709 0.662 0.760 
             
2.0      KU 0.525 0.971 0.968 0.988 0.648 0.988 0.985 0.995 0.821 0.995 0.996 0.999 
           UU 0.112 0.522 0.466 0.478 0.255 0.734 0.692 0.744 0.572 0.932 0.923 0.973 
             
2.5      KU 0.750 0.998 0.997 1.000 0.864 0.999 0.999 1.000 0.961 1.000 1.000 1.000 
           UU 0.157 0.679 0.639 0.645 0.404 0.900 0.888 0.924 0.810 0.994 0.995 0.999 
             
3.0      KU 0.894 1.000 1.000 1.000 0.965 1.000 1.000 1.000 0.997 1.000 1.000 1.000 
           UU 0.217 0.822 0.796 0.793 0.556 0.976 0.974 0.985 0.941 1.000 1.000 1.000 
             
4.0      KU 0.994 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.371 0.962 0.958 0.959 0.826 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
             
5.0      KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.537 0.996 0.995 0.996 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
 



KHOO & NG 233 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4. Simulation Results of the Short Run Multivariate Chart in Ref. 1 for Cases KU and UU 
based on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             
0.0      KU 0.041 0.102 0.052 0.038 0.037 0.103 0.046 0.044 0.042 0.103 0.056 0.042 
           UU 0.040 0.103 0.052 0.039 0.039 0.100 0.049 0.041 0.038 0.101 0.050 0.043 
             
0.5      KU 0.048 0.120 0.069 0.056 0.049 0.133 0.073 0.066 0.057 0.153 0.088 0.088 
           UU 0.041 0.100 0.054 0.040 0.040 0.106 0.053 0.049 0.051 0.131 0.070 0.069 
             
1.0      KU 0.052 0.178 0.110 0.093 0.072 0.233 0.149 0.151 0.113 0.312 0.221 0.263 
           UU 0.043 0.112 0.062 0.051 0.052 0.143 0.084 0.080 0.087 0.225 0.154 0.167 
             
1.5      KU 0.056 0.253 0.172 0.157 0.093 0.387 0.286 0.321 0.184 0.581 0.493 0.617 
           UU 0.041 0.128 0.074 0.065 0.067 0.216 0.141 0.148 0.144 0.417 0.320 0.393 
             
2.0      KU 0.069 0.340 0.248 0.247 0.132 0.558 0.469 0.536 0.292 0.821 0.785 0.903 
           UU 0.049 0.164 0.104 0.091 0.096 0.329 0.241 0.270 0.233 0.652 0.585 0.713 
             
2.5      KU 0.096 0.434 0.337 0.342 0.193 0.713 0.650 0.741 0.445 0.949 0.943 0.991 
           UU 0.064 0.215 0.145 0.133 0.151 0.468 0.381 0.428 0.368 0.841 0.809 0.921 
             
3.0      KU 0.131 0.522 0.425 0.442 0.290 0.833 0.789 0.882 0.617 0.991 0.991 1.000 
           UU 0.096 0.269 0.184 0.181 0.232 0.611 0.528 0.603 0.539 0.947 0.942 0.991 
             
4.0      KU 0.268 0.663 0.561 0.605 0.569 0.949 0.933 0.984 0.914 1.000 1.000 1.000 
           UU 0.194 0.372 0.258 0.292 0.484 0.804 0.733 0.854 0.873 0.996 0.997 1.000 
             
5.0      KU 0.473 0.747 0.652 0.730 0.832 0.984 0.980 0.999 0.996 1.000 1.000 1.000 
           UU 0.355 0.448 0.304 0.397 0.769 0.900 0.851 0.957 0.987 1.000 1.000 1.000 
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Table 5. Simulation Results of the Short Run Multivariate Chart in Ref. 1 for Cases KU and UU 
based on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0.5. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             
0.0      KU 0.041 0.102 0.052 0.038 0.037 0.103 0.046 0.044 0.042 0.103 0.056 0.042 
           UU 0.040 0.103 0.052 0.039 0.039 0.100 0.049 0.041 0.038 0.101 0.050 0.043 
             
0.5      KU 0.047 0.124 0.072 0.059 0.052 0.141 0.082 0.082 0.065 0.166 0.101 0.102 
           UU 0.042 0.102 0.055 0.041 0.041 0.115 0.063 0.049 0.054 0.144 0.079 0.079 
             
1.0      KU 0.054 0.196 0.124 0.120 0.077 0.274 0.190 0.201 0.129 0.391 0.295 0.355 
           UU 0.042 0.115 0.068 0.050 0.056 0.165 0.098 0.097 0.098 0.281 0.197 0.217 
             
1.5      KU 0.061 0.286 0.202 0.199 0.109 0.465 0.374 0.428 0.234 0.700 0.638 0.789 
           UU 0.047 0.139 0.087 0.077 0.079 0.266 0.181 0.199 0.181 0.527 0.440 0.553 
             
2.0      KU 0.085 0.399 0.308 0.305 0.171 0.650 0.588 0.679 0.387 0.916 0.903 0.976 
           UU 0.062 0.182 0.119 0.121 0.126 0.416 0.325 0.364 0.314 0.785 0.744 0.870 
             
2.5      KU 0.127 0.501 0.402 0.421 0.269 0.804 0.769 0.857 0.589 0.984 0.985 0.999 
           UU 0.091 0.250 0.167 0.173 0.218 0.578 0.495 0.564 0.508 0.927 0.922 0.983 
             
3.0      KU 0.187 0.590 0.490 0.527 0.418 0.900 0.884 0.951 0.789 0.998 0.998 1.000 
           UU 0.139 0.317 0.217 0.229 0.341 0.717 0.645 0.733 0.719 0.979 0.983 0.999 
             
4.0      KU 0.394 0.724 0.626 0.686 0.751 0.977 0.970 0.996 0.981 1.000 1.000 1.000 
           UU 0.293 0.424 0.288 0.354 0.678 0.883 0.831 0.935 0.965 1.000 1.000 1.000 
             
5.0      KU 0.653 0.801 0.700 0.802 0.944 0.995 0.993 1.000 1.000 1.000 1.000 1.000 
           UU 0.518 0.489 0.325 0.473 0.909 0.949 0.911 0.989 0.999 1.000 1.000 1.000 
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Table 6. MSSDV  and V Statistics for Case UU. 

Observation 
No., n 1X  2X  nV  nVMSSD,  Observation 

No., n 1X  2X  nV  nVMSSD,  

1 1.404 0.268 - - 21 0.819 -0.277 0.395 0.580 
2 0.624 1.392 - - 22 1.706 0.564 0.780 1.085 
3 0.454 0.755 - - 23 1.198 -1.313 2.181 2.434 
4 -1.768 -1.902 1.162 - 24 2.863 0.211 2.049 2.737 
5 -0.224 0.140 -1.452 -1.650 25 2.141 0.438 0.545 1.657 
6 -0.082 0.734 -0.585 -1.214 26 1.823 0.474 -0.023 0.987 
7 1.146 0.484 -0.190 -0.327 27 1.609 0.414 -0.366 0.630 
8 1.816 0.906 0.222 0.058 28 2.811 2.192 1.191 1.650 
9 -1.245 -1.555 0.482 0.296 29 0.170 -0.650 -0.987 -0.676 

10 -0.976 -0.340 -0.199 0.023 30 -0.776 -1.186 -0.193 0.347 
11 -0.621 -1.058 -0.266 -0.393 31 -0.111 -0.613 -1.216 -0.838 
12 -0.080 -0.710 -0.507 -0.800 32 1.400 0.302 -0.656 0.313 
13 0.742 -0.146 -0.202 0.042 33 1.584 0.337 -0.403 0.609 
14 -0.543 -0.818 -0.824 -0.654 34 2.047 0.585 0.080 1.203 
15 -2.335 -2.801 1.437 1.507 35 0.481 0.690 -0.153 0.667 
16 -0.848 -1.176 -0.808 -0.415 36 3.773 2.495 1.693 2.545 
17 -0.431 0.590 0.836 0.742 37 1.891 1.871 0.673 1.256 
18 1.369 1.863 0.769 0.955 38 2.169 1.073 -0.160 0.420 
19 0.283 0.197 -1.659 -1.405 39 1.761 1.191 -0.400 0.049 
20 0.850 0.149 -0.155 0.028 40 1.184 -0.113 -0.531 0.132 

 

Figure 1. Plotted MSSDV  Statistics for Case UU 

 

                      Observation Number 
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test in Tables 2, 3, 4 and 5 are almost the same. 
The results also show that the performance of 
the enhanced chart based on the basic 1-of-1 rule 
is superior to the chart proposed in Ref. 1. 
 
An Example of Application 

An example will be given to show how 
the proposed enhanced short run multivariate 
chart is put to work. To simulate an in-control 
process, 20 bivariate observations are generated 
using SAS version 8 from a ( )002 , ΣµN  
distribution. For an o.o.c. process, with a shift in 
the mean vector, the next 20 bivariate 
observations are generated from a ( )02 ,Σµ SN  

distribution. Here, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

0
0µ , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

3.1
Sµ , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
ρ

=
1

1
0Σ  where ρ = 0.8. The 40 

observations generated are substituted in eqs. 
(6a) and (6b) to compute the corresponding 

MSSDV  statistics for case UU. Similarly, these 40 
observations are substituted in Eq. (4) to  

 

 
 

compute the corresponding V statistics for case 
UU. The computed V and MSSDV  statistics are 
summarized in Table 6. Figures 1 and 2 show 
the plotted MSSDV  and V statistics respectively. 

For the enhanced chart based on the MSSDV  
statistics, the 3-of-3 test signals an o.o.c. at 
observation 24 while the 4-of-5 test signals at 
observation 25. The chart proposed in Ref. 1 
based on the V statistics fails to detect a shift in 
the mean vector. 

 
Conclusion 

 
It is shown in this paper that the enhanced chart 
based on a robust estimator of scale, i.e., MSSDS  
gives excellent improvement over the existing 
short run multivariate chart proposed in Khoo & 
Quah (2002). The proofs of how the MSSDV  
statistics for cases KU and UU are derived are 
shown in the Appendix. 
 
 

 

 
Figure 2. Plotted V Statistics for Case UU 

 

 
           Observation Number 
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Appendix 
 

In this section, it will be shown that the MSSDV  
statistics in eqs. (5a), (5b), (6a) and (6b) are 
N(0,1) random variables. All the notations used 
here are already defined in the earlier sections. 
The following theorems taken from Seber 
(1984) are used: 

Theorem A.  Suppose that y ∼ ),,( Σ0pN  

W ∼ ),,( ΣnWp  and y and W are statistically 

independent. Assumed that the distribution are 
nonsingular, i.e., Σ > O, and n ≥ p, so that 1−W  
exists with probability 1. 
 
Let  

=2T  ny′ 1−W y′,                        (A1) 
then    

n

T

p

pn 2)1( +−
 ∼ 1, +− pnpF                  (A2) 

 
Theorem B.  Suppose that nXXX ,...,, 21  are 
independently and identically distributed (i.i.d.) 
as ),,( Σ0pN  then  

 ∑
=

′n

i
ii XX

1

∼ ),( ΣnW p        (A3) 

where ),( ΣnWp  is the Wishart distribution with 

n degrees of freedom. 
 
Equation (5a): Case KU 

We need to show that for odd numbered 
observations, i.e., when n is an odd number, 

2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX   

∼ ( )12,
2
1

12

2
+−+− pnp

F
pn

p
 

 
Proof: 
If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN   

 
variables, then 
 
           1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

and 

 ( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, … . 

Thus, from eq. (A3) of Theorem B, 

( )( )∑
−

=
−−

′−−
1

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
W p , 

 
i.e.,  

 1MSSD, −nS  ∼ ⎟
⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
Wp .  

          (A4) 
Because 0µµ =  is known, then 

 0µ−nX  ∼ ( )Σ,0pN    

          (A5) 
 
Substituting Eq. (A4) and (A5) into Eq. (A1) 
and (A2) of Theorem A, 
  

⎟
⎠

⎞
⎜
⎝

⎛ −

⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛ +−−

2

1

2

1
1

2

1

n
p

n
p

n

( ) ( )0
1

1MSSD,0 µµ −′− −
− nnn XSX   

∼ 
1,

2
1 +−− pp nF  

i.e., 
  

p

pn

2

)12( +− ( ) ( )0
1

1MSSD,0 µµ −′− −
− nnn XSX   

∼ ( )12,
2
1 +− pnp

F . 

 
Define  

      2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX ;  

 
then 

2
MSSD,nT  ∼ ( )12,

2
1

12

2
+−+− pnp

F
pn

p
 for n > 2p – 1,  

i.e., n = 2p+1, 2p+3, … . 
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Equation (5b): Case KU 
We need to show that for even 

numbered observations, i.e., when n is an even 
number, 

2
MSSD,nT  = ( ) ( )0

1
2,MSSD0 µµ −′− −

− nnn XSX  

 ∼ ( )pnp
F

pn

p
2,

2
1

2

2
−−

 

 
Proof: 
 If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN  

variables, then 
 1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

and 

( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, … . 

 
Thus, from Eq. (A3) of Theorem B, 
 

( )( )∑
−

=
−−

′−−
2

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

2n
W p , 
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Equation (6b): Case UU 

We need to show that for even 
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This article builds on research regarding response shift effects and retrospective self-report ratings. 
Results suggest moderate evidence of a response shift bias in the conventional pretest-posttest treatment 
design in the treatment group. The use of explicitly worded anchors on response scales, as well as the 
measurement of knowledge ratings (a cognitive construct) in an evaluation methodology setting, helped to 
mitigate the magnitude of a response shift bias. The retrospective pretest-posttest design provides a 
measure of change that is more in accord with the objective measure of change than is the conventional 
pretest-posttest treatment design with the objective measure of change, for the setting and experimental 
conditions used in the present study.    
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Introduction 
 
More than 30 years after Cronbach and Furby 
(1970) posited their compelling question, “How 
we should measure change—or should we?,” the 
properties of the change score continue to attract 
much attention in educational and psychological 
measurement. Self-report evaluations are 
frequently used to measure change in treatment 
and educational training interventions. In using 
self-report instruments, it is assumed that a 
subject’s understanding of the standard of 
measurement for the dimension being measured 
will not change from pretest to posttest 
(Cronbach & Furby, 1970). 
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If the standard of measurement is not 
comparable between the pretest and posttest 
scores, however, then self-report evaluations in 
pretest-posttest treatment designs may be 
contaminated by a response shift bias (Howard 
& Dailey, 1979; Howard, Ralph, Gulanick, 
Maxwell, Nance, & Gerber, 1979; Maxwell & 
Howard, 1981). A response shift becomes a bias 
if the experimental intervention changes the 
subject's internal evaluation standard for the 
dimension measured and, hence, changes the 
subject's interpretation of the anchors of a 
response scale. 

When a response shift is presumably a 
result of the treatment, a treatment-induced 
response shift bias should occur in the treatment 
group and not in the control group. However, 
another possible source of contamination in 
response shifts, for both the treatment and 
control groups, is exposure to the conventional 
pretest, which could have a priming effect and 
confounding influence on subsequent self-report 
ratings (Hoogstraten, 1982; Spranger & 
Hoogstraten, 1989). A response shift, 
nevertheless, results in different scale units 
(metrics) at the posttest than at the pretest, which 
could produce systemic errors of measurement 
that threaten evaluation of the basic treatment 
effect.  
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When self-report evaluations must be 
used to measure change, the traditional pretest-
posttest treatment design can be modified to 
include a retrospective pretest at the time of the 
posttest (e.g., Howard & Dailey, 1979; Howard, 
Millham, Slaten, & O’Donnell, 1981; Howard, 
Ralph, Gulanick, Maxwell, Nance, & Gerber, 
1979; Howard, Schmeck, & Bray, 1979). After 
filling out the posttest, subjects then report their 
memory or perception of what their score would 
have been prior to the treatment (this is referred 
to as a retrospective self-report pretest).  

Because it is presumed that the self-
report posttest and the retrospective self-report 
pretest would be filled out with respect to the 
same internal standard, a comparison of the 
traditional pretest with the retrospective pretest 
scores within the treatment group would provide 
an indication of the presence of a response shift 
bias (Howard et al., 1979). If a response shift 
bias is present, as indicated by an appreciable 
mean difference between scores on the 
conventional pretest and the retrospective 
pretest, then comparison of the posttest with the 
retrospective pretest scores would eliminate 
treatment-induced response shifts and, thus, 
provide an unconfounded and unbiased estimate 
of the treatment effect (Howard et al. 1979).  

Thus, the retrospective self-report 
pretest is a method that can be used to obtain 
pretreatment estimates of subjects’ level of 
functioning (on cognitive, behavioral, and 
attitudinal dimensions) that are measured with 
respect to the same internal standard (i.e, in a 
common metric) as the posttest rating. 
Retrospective self-report pretests could be used 
in at least three evaluation research settings: (a) 
to attenuate a response shift bias (as mentioned 
above), (b) when conventional pretest data or 
concurrent data are not available, or (c) when 
researchers want to measure change on 
dimensions not included in earlier-wave 
longitudinal data.  

However, the use of retrospective self-
reports in the measurement of change has not 
gained popular acceptance among social 
scientists. There seem to be at least two possible, 
yet related, reasons for skepticism and 
reservation concerning the use of retrospective 
ratings. First, retrospective self-reports may be 
perceived to be counter to the paradigm of 

objective measurement that is rooted in the 
philosophy of logical positivism (an 
epistemology in the social sciences that views 
subjective measures as obstacles toward an 
objective science of measurement). Second, 
retrospective self-reports are susceptible to a 
response-style bias (e.g., memory distortion, 
subjects’ current attitudes and moods, subject 
acquiescence, social desirability), which could 
presumably affect ratings in both the treatment 
and control groups.  

Nonetheless, in self-report pretest-
posttest treatment designs, previous 
psychometric research has demonstrated 
empirical support for the retrospective pretest-
posttest difference scores over the traditional 
pretest-posttest change scores in providing an 
index of change more in agreement with 
objective measures of change on both cognitive 
and behavioral dimensions (e.g., Hoogstraten, 
1982; Howard & Dailey, 1979; Howard, 
Millham, Slaten, & O’Donnell, 1981; Howard, 
Ralph, Gulanick, Maxwell, Nance, & Gerber, 
1979; Howard, Schmeck, & Bray, 1979; 
Spranger & Hoogstraten, 1989).   

The purpose of this article is to build on 
a previous line of research, by Howard and 
colleagues and Hoogstraten and Spranger, on 
response shift effects and retrospective self-
report ratings. Specifically, the current study 
examined (a) response shift bias in the self-
report pretest-posttest treatment design in an 
evaluation setting, (b) the validity of the 
retrospective pretest-posttest design in 
estimating treatment effects, (c) the effect of 
memory distortion on retrospective self-report 
pretests, and (d) the effect of pretesting on 
subsequent and retrospective self-report ratings. 
 

Methodology 
 

A cross-sectional quasi-experimental pre-post 
treatment design (Cook & Campbell, 1979) with 
data from 240 participants was used to address 
the research objectives of this study. The design 
included a treatment group and a no-treatment 
comparison group. Participants in the treatment 
group were 124 students enrolled in an 
undergraduate epidemiology course (Class A) 
and participants in the no-treatment comparison 
group were 116 students enrolled in an 
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undergraduate health course (Class B). The 240 
participants were undergraduate students who 
attended a large public University in the state of 
Texas during the Spring semester of 2002 and 
who met the following criteria for inclusion in 
the study:  
 
(a) at least 18 years of age, 
(b) must not have taken an epidemiology course 
or a course that addressed infectious disease 
epidemiology, and 
(c) must not have been concurrently enrolled in 
Class A and Class B.  
 

Participants signed a consent form 
approved by the Institutional Review Board of 
the University and received bonus class points 
for participating. The gender composition was 
29 males and 211 females, and the age range 
was 18 to 28 years (with an average age of 20.61 
years, SD = 2.46). The racial distribution of the 
study sample included 181 (75.4 %) Caucasians, 
37 (15.4 %) African Americans, 13 (5.4 %) 
Hispanics, and 9 (3.8 %) Asians. Participant 
characteristics by group are reported in Table 1. 

The treatment in this design was a series 
of lectures on infectious disease epidemiology 
that was part of the course content in Class A, 
but not in Class B. Participants’ knowledge of 
infectious disease epidemiology—the basic 
construct in this study—was measured with a 
one-item self-report instrument and with a ten-
item objective instrument, and the same item-
scale instruments were used for both the 
treatment and no-treatment comparison groups. 
Each instrument was operationalized as the 
mean of the items measuring each scale, and was 
scored so that a higher score equaled more 
knowledge of infectious disease epidemiology. 

The conventional self-report instrument, 
which was used in both the pretest and posttest 
measurement settings, consisted of one-item that 
asked participants to respond to the following 
question: “How much do you know about the 
principles of Infectious Disease Epidemiology?” 
The current study measured this one-item using 
a six-point Likert-type scale that ranged from 0 
(not much at all) to 5 (very very much), with 
verbal labels for the intermediate scale points.  

The retrospective self-report pretest, 
which was similar to the conventional self-report 

pretest, consisted of one-item that asked 
participants to respond to the following 
question: “Three months ago, at the beginning of 
the semester, you were asked how much you 
knew about Infectious Disease Epidemiology. 
Thinking back 3 months ago, to the beginning of 
the semester, how much did you know about 
Infectious Disease Epidemiology at that time?” 

The current study measured this one 
retrospective item using a six-point Likert-type 
scale like that mentioned above. The objective 
instrument, which was used in both the pretest 
and posttest measurement settings, consisted of 
10 multiple choice items/questions that tapped 
the participants’ knowledge level of infectious 
disease epidemiology. 

Participants within each group—
treatment group and no-treatment comparison 
group—were randomly assigned to four 
pretesting conditions, which represented the 
pretesting main effect. Participants in condition 
1 completed both the self-report and objective 
pretests. Participants in condition 2 completed 
the objective pretest. Participants in condition 3 
completed the self-report pretest. Participants in 
condition 4 completed neither the self-report 
pretest nor the objective pretest.  

All participants, regardless of the 
assigned condition, completed the posttests as 
well as the retrospective and recalled self-report 
pretests. The sample size per condition by group 
was approximately equal, and the participants 
across the four conditions were not significantly 
different in age, F’s < .91, p’s > .43, gender, 
race, and academic classification (e.g., 
freshman, sophomore, junior, senior), 

respectively, 2χ ’s < 1.08, p’s > .29. 
At the outset of the academic semester 

(time 1), before the treatment, all participants in 
the assigned condition completed the pretest(s) 
which measured their baseline knowledge level 
of infectious disease epidemiology. The pretests 
were collected immediately after they were 
completed and then the treatment was begun (for 
participants in the treatment group). At the 
conclusion of the instruction on infectious 
disease epidemiology (the treatment), which 
occurred at about the end of the 12th week of 
classes   (time 2),  participants  in  the  treatment  
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group and participants in the no-treatment 
comparison group (who were not exposed to the 
treatment) completed the objective posttest. The 
objective posttest was identical to the objective 
pretest.  

One week after completion of the 
objective posttest (time 3), participants in both 
the treatment and no-treatment comparison 
groups completed the self-report posttest and the 
retrospective self-report pretest. Participants first 
completed the self-report posttest and, while 
keeping the posttest in front of them, they then 
filled out the retrospective self-report pretest.  
 
 

 
The self-report posttest was identical to 

the conventional self-report pretest. The 
retrospective self-report pretest was similar to 
the conventional self-report pretest, but the 
wording of the question accounted for the 
retrospective time frame.  

Lastly, about one month after 
completion of the self-report posttest and 
retrospective self-report pretest, at the end of the 
academic semester (time 4), participants in both 
the treatment and no-treatment comparison 
groups completed the recalled self-report pretest, 
which permitted a memory test of the 
initial/conventional self-report pretest completed 
at the outset of the academic semester (time 1) 

Table 1.  Participant Characteristics 
 

     Treatment Group (n = 124)    Comparison Group (n = 116)

Variable    Mean            SD           n (%)              Mean            SD           n (%)          p

Age (years)     20.5             1.9    124 (51.7)     20.6             2.9    116 (48.3)

Gender

   Male      16 (12.9)      13 (11.2)

   Female    108 (87.1)    103 (88.8)

Race

   White      91 (73.4)      90 (77.6)

   Black      21 (16.9)      16 (13.8)

   Hispanic      08 (06.5)      05 (04.3)

   Asian      04 (03.2)      05 (04.3)

Classification

   Freshman      17 (13.7)      22 (19.0)

   Sophomore      42 (33.9)      41 (35.3)

   Junior      49 (39.5)      40 (34.5)

   Senior      16 (12.9)      13 (11.2)

       .66a

       .68b

       .58b

       .65b

 
 
 aF statistic was used to test for mean age differences between the treatment group and the no-treatment 
comparison group.  
 bChi-Square statistic was used to test for differences between the treatment group and the no-treatment 
comparison group on gender, race and classification, respectively. 
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and, thus, yielded a test for a response-style bias 
of the retrospective self-report pretest rating. 

The recalled self-report pretest consisted 
of one-item that asked participants to respond to 
the following question: “Four months ago, at the 
beginning of the semester, you were asked how 
much you knew about Infectious Disease 
Epidemiology. Please recall, remember, and be 
as accurate as possible, how you responded at 
that time regarding your knowledge level of 
Infectious Disease Epidemiology (i.e., how did 
you respond at that time?).” The current study 
measured this one-item using a six-point Likert-
type scale similar to that described above. 

The research objectives of this study 
were addressed by analyzing the series of pretest 
and posttest ratings using the dependent t test, 
the Pearson product-moment correlation (r), and 
analysis of variance (ANOVA). Estimates of the 
magnitude of the effect size were also computed 
(Rosenthal, Rosnow, & Rubin, 2000). The effect 
size estimators that accompanied the dependent t 
test and the ANOVA were Cohen’s (1988) d and 

eta-square ( 2η ), respectively. 
The Pearson product-moment 

correlation (r) was also used as the effect size 
estimator in the specific regression analyses. To 
test the response shift hypothesis, the dependent 
t test was carried out comparing the 
retrospective self-report pretest to the 
conventional self-report pretest within the 
treatment and no-treatment comparison groups. 
The dependent t test also was used to compare 
the recalled self-report pretest to the 
conventional self-report pretest, which tested for 
the effect of memory distortion in the 
retrospective pretest-posttest design. 

The Pearson correlation between the 
recalled self-report pretest and the conventional 
self-report pretest and between the recalled self-
report pretest and the retrospective self-report 
pretest also was used to test for memory 
distortion. To examine the relative validity of 
the retrospective pretest-posttest design in 
estimating treatment effects, a simple correlation 
analysis was further used to assess the 
relationship between the self-reported measures 
of change and the objective measure of change 
in both the conventional and retrospective 

pretest-posttest designs for the treatment and no-
treatment comparison groups. 

One-way ANOVA was used to assess 
the pretesting main effect (the four pretesting 
conditions) on the conventional self-report 
posttest, the retrospective self-report pretest, and 
the recalled self-report pretest. The Ryan-Einot-
Gabriel-Welsch multiple-range test was used to 
carry out the cell means tests for the pretesting 
main effect for the ANOVA. A separate 
ANOVA was performed for the treatment group 
and the no-treatment comparison group.  

 
Results 

Response Shift 
Using the conventional pre/post self-

report change score and the objective pre/post 
change score, effects were found in the 
treatment group, t’s > 8.60, p’s < .0001, but not 
in the no-treatment group, t’s < .84, p’s > .40. 
The dependent t test, averaged across conditions 
1 and 3, revealed a marginally significant mean 
difference between the retrospective self-report 
pretest and the conventional self-report pretest in 
the treatment group, t(61) = -1.56, p < .10, M =  
-0.16, SD = .81, d = -0.20, and, unexpectedly, a 
significant mean difference in the no-treatment 
comparison group, t(54) = -2.99, p < .004, M =  
-0.30, SD = .76, d = -0.39. These findings 
provide moderate support for the response shift 
hypothesis. Means and standard deviations for 
the pretests and posttests by condition and group 
are reported in Table 2. 
 
Treatment Effects 

To assess the relative validity of the 
retrospective pretest-posttest design in 
estimating treatment effects, the self-reported 
measures of change were compared with the 
objective measure of change in both the 
conventional and retrospective pretest-posttest 
designs for the treatment and no-treatment 
comparison groups. For the treatment group, 
averaged across conditions 1 and 2, the Pearson 
correlation results indicated that the 
retrospective pre/post self-report change score 
was somewhat more in accord with the objective 
pre/post measure of change (r = .32, p < .01) 
than  was  the  conventional pre/post  self-report  
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Table 2.  Means and Standard Deviations for the Pretests and Posttests by Condition and Group. 

                              Treatment Group (n = 124)                           

                              Self-Report        Objective

Pretest Condition Pretest

Condition 1

   M   1.10               2.34     0.86              1.13 1.82 4.06

   SD   1.01               0.81     0.87              0.91 0.76 0.98

  

Condition 2  

   M 1.89 3.78

   SD 0.82 0.73

 

Condition 3

   M   0.99               2.21     0.91              1.30 3.48

   SD   1.14               0.92     0.80              0.95 1.01

 

Condition 4  

   M 3.66

   SD 0.93

Pretest          Posttest          Retro          Recalled      Posttest

                        2.81     1.18              1.65 

                        0.82     0.93              1.09 

                        2.43     1.03              1.26 

                        0.77     0.93              0.86 

 
               No-Treatment Comparison Group (n = 116)               

                              Self-Report        Objective

Pretest Condition Pretest

Condition 1

   M   0.79               0.86     0.52              0.83 1.67 1.50

   SD   0.82               0.87     0.78              0.85 0.66 0.79

Condition 2

   M     0.71              0.99 1.68 1.67

   SD     0.86              0.89 0.56 0.67

  

Condition 3

   M   1.07               1.19     0.73              1.03 1.82

   SD   0.84               0.75     0.87              0.91 0.61

Condition 4

   M     0.67              0.83 1.55

   SD     0.71              0.79 0.72

Pretest          Posttest          Retro          Recalled      Posttest

                       1.09

                        0.98 

                       1.43

                        0.89 

 
Note.  Retro = retrospective self-report pretest; Recalled = recalled self-report pretest (used to test for the 
threat of memory distortion).  Participants in condition 1 completed both the self-report and objective pretests; 
Participants in condition 2 completed the objective pretest; Participants in condition 3 completed the self-
report pretest; Participants in condition 4 completed neither the self-report pretest nor the objective pretest.  
All participants, regardless of the assigned condition, completed the posttests as well as the retrospective and 
recalled self-report pretests.  The sample size per condition by group was approximately equal.  
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change score with the objective pre/post 
measure of change (r = .26, p < .18). 

Conversely, as anticipated, for the no-
treatment comparison group averaged across 
conditions 1 and 2, the magnitude of the 
correlation between the conventional pre/post 
self-report change score and the objective 
pre/post measure of change, r = .27, p < .16, was 
greater than the correlation between the 
retrospective pre/post self-report change score 
and the objective pre/post change score, r = .04, 
p < .75, albeit neither was significant.  
 
Memory Distortion 

The effect of memory distortion within 
the retrospective pretest-posttest design was also 
examined. For the treatment group, averaged 
across conditions 1 and 3, the results of the 
dependent t test revealed no significant mean 
difference between the recalled self-report 
pretest (M = 1.22, SD = .93) and the 
conventional self-report pretest (M = 1.05, SD = 
1.07), t(61) = 1.56, p < .12, M = .17, SD = .89, d 
= 0.19 (Table 2). Further, the no-treatment 
comparison group had nearly identical average 
scores on the recalled self-report pretest (M = 
.933, SD = .882) and the conventional self-report 
pretest (M = .935, SD = .832), averaged across 
conditions 1 and 3, suggesting no significant 
mean difference, t(54) = -0.01, p < .99, M =        
-0.002, SD = .85, d = -0.002 (Table 2). The 
dependent t test results suggest no significant 
presence of memory distortion in the 
retrospective pretest-posttest treatment design.  

A simple correlation analysis also was 
used to test for memory distortion. The Pearson 
correlations between the recalled pre/post self-
report change score and the conventional 
pre/post self-report change score, averaged 
across conditions 1 and 3, and between the 
recalled pre/post self-report change score and 
the retrospective pre/post self-report change 
score, averaged across all four conditions, were 
significant and reasonably high in the treatment 
group (r = .64 and r = .63, respectively, p’s 
<.0001) and in the no-treatment comparison 
group (r = .54 and r = .56, respectively, p’s 
<.0001).  

Further, the Pearson correlations 
between the recalled self-report pretest and the 
conventional self-report pretest, averaged across 

conditions 1 and 3, and between the recalled 
self-report pretest and the retrospective self-
report pretest, averaged across all four 
conditions, were significant and fairly high in 
the treatment group (r = .61 and r = .62, 
respectively, p’s <.0001) and in the no-treatment 
comparison group (r = .60 and r = .68, 
respectively, p’s <.0001).  
 
Pretesting Effects 

The ANOVA revealed a significant 
pretesting effect on the conventional self-report 
posttest in the treatment group, F(3, 120) = 3.04, 

p < .03, 2η = .07, but not in the no-treatment 

comparison group, F(3, 112) = 2.11, p < .10, 2η  
= .05. The cell means tests, however, indicated 
no significant difference between the 
conventional self-report pretest condition and 
the no-pretest condition on the conventional 
self-report posttest score in the treatment and no-
treatment comparison groups, tis < 1.05, p’s > 
.30. Further, the ANOVA revealed no significant 
pretesting effect on the retrospective self-report 
pretest and on the recalled self-report pretest in 
the treatment group, Fis(3, 120) < 1.64, p’s > 

.18, 2η s < .04, and in the no-treatment 
comparison group, F’s(3, 112) < 0.46, p’s > .70,  

2η = .01. The ANOVA results suggest that 
pretesting had little effect on the subsequent and 
retrospective self-report ratings. Means and 
standard deviations for the pretests and posttests 
by condition and group are reported in Table 2.  
 
 Response Shift 

Do treatments in evaluation research 
alter participants’ perceptions in a manner which 
contaminates self-report assessment of the 
treatment? The findings of the current study 
indicate moderate evidence of a response shift 
bias in the conventional pretest-posttest 
treatment design in the treatment group, 
suggesting that the knowledge ratings from self-
report pretest to posttest were partially a result 
of respondents recalibrating their internal 
evaluation standard for the dimension measured. 
A plausible interpretation of this moderate 
response shift bias in the treatment group is that 
the use of explicitly worded anchors on response 
scales in measuring the participant’s self-
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reported knowledge of infectious disease 
epidemiology—a cognitive construct—in a 
classroom setting helped to mitigate the 
magnitude of a response shift effect. 

The degree of a response shift bias is, in 
part, conditional upon the experimental setting, 
the type of constructs measured, and the 
response scale anchors. Previous research (e.g., 
Collins et al., 1985; Finney, 1981; Howard, 
Schmeck, & Bray, 1979; Maisto et al., 1982) 
suggests that the magnitude of a response shift 
bias seems to be smaller when cognitive 
constructs are measured (such as knowledge 
ratings) and when questions and anchors on 
response scales are explicit.   

Although no treatment effects were 
found in the no-treatment comparison group, as 
expected, a significant mean difference between 
the retrospective self-report pretest and the 
conventional self-report pretest was found, 
suggesting a non-treatment-related response 
shift. Typically, a response shift is a result of 
respondents changing their internal evaluation 
standard for the dimension measured between 
pretest and posttest because of exposure to the 
treatment. There are, however, alternative 
sources of bias in response shifts—such as a 
pretesting effect, memory distortion, and subject 
acquiescence—which could presumably affect 
ratings in both the treatment and no-treatment 
comparison groups (Collins et al., 1985; Howard 
& Dailey, 1979; Sprangers & Hoogstraten, 
1989).  

Because the results of the current study 
suggest that memory distortion and pretesting 
had little effect on subsequent self-report ratings, 
a plausible explanation for the response shift 
bias in the no-treatment comparison group is 
subject acquiescence. In the case of subject 
acquiescence, participants in the no-treatment 
comparison group might have realized that their 
knowledge level had not changed since their 
initial pretest rating, but their desire to provide 
the experimenter with a favorable set of results 
(given that bonus grade points were given for 
participation in the study) led them to lower 
their retrospective self-report rating. The 
retrospective rating was administered at the 
same time as the self-report posttest, allowing 
participants in the no-treatment comparison 
group the opportunity to adjust their 

retrospective preratings in a downward 
direction.   
 
Treatment Effects in the Retrospective Pre/Post 
Design 

The principal focus of the current study 
was to evaluate the validity of the retrospective 
pretest-posttest design in estimating treatment 
effects. The findings of the present study favor 
the retrospective pre/post self-report measure of 
change in providing a measure of self-reported 
change that better reflects the objective index of 
change on a construct of knowledge rating. This 
finding is in line with previous psychometric 
research (e.g., Hoogstraten, 1982; Howard & 
Dailey, 1979; Howard et al., 1979; Howard, 
Schmeck, & Bray, 1979; Spranger & 
Hoogstraten, 1989), and is most likely a result of 
the self-report posttest and the retrospective self-
report pretest being filled out with respect to the 
same internal standard, the same metric. This, 
therefore, mitigates the treatment-induced 
response shift bias, minimizes errors of 
measurement, and provides an unconfounded 
and unbiased estimate of the treatment effect 
(Howard et al., 1979).  

Although there is empirical support for 
the retrospective pretest-posttest difference 
scores over the conventional pretest-posttest 
change scores in providing an index of change 
more in agreement with objective measures of 
change, this is not to suggest that the 
conventional self-report pretest should be 
substituted by the retrospective self-report 
rating. Rather, in light of the findings of this 
study as well as those from previous studies, the 
suggestion put forward is that retrospective self-
report pretests could be used in at least three 
evaluation research settings: (a) to test for and 
attenuate a response shift bias in the 
conventional pretest-posttest treatment design, 
(b) when conventional pretest data or concurrent 
data are not available, or (c) when researchers 
want to measure change on dimensions not 
included in earlier-wave longitudinal data. 
 
Testing for Threats to Validity 

Also evaluated were the potential threats 
of memory distortion and pretesting effect to the 
internal validity of the retrospective pretest-
posttest treatment design in the current study. 
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Retrospective self-report ratings could be limited 
by memory lapses and pretests could exert a 
confounding influence on subsequent self-report 
ratings, including retrospective ratings, which 
could threaten evaluation of the treatment effect 
(Collins et al., 1985; Howard & Dailey, 1979; 
Sprangers & Hoogstraten, 1989). In general, the 
present study found no significant presence of 
memory distortion or a pretesting effect in the 
retrospective pretest-posttest treatment design 
used in the current study.  

This is not to suggest that memory 
distortion or a pretesting effect should not be 
accounted for as potential threats to the basic 
retrospective pretest-posttest design. Rather, 
what this finding suggests is that memory 
distortion and pretesting are not influencing the 
interpretation of the treatment effect in the type 
of retrospective pretest-posttest design used in 
the present study. The conventional self-report 
pretest and the recalled self-report pretest were 
only separated by four months, which may have 
in part mitigated the effect of memory distortion. 
Previous research (e.g., Finney, 1981; Howard, 
Dailey, & Gulanick, 1979; Howard, Schmeck, & 
Bray, 1979; Maisto et al., 1982), nonetheless, 
suggests that a pretesting effect can be mitigated 
and moderate-to-high recall accuracy is possible 
when cognitive constructs are measured (such as 
knowledge ratings) and when retrospective 
questions are specific and anchors on response 
scales are explicit (these conditions are 
consistent with those used in this study). 
 
An Application of the Retrospective Pre/Post 
Design 

In this section, a study by Nakonezny, 
Rodgers, and Nussbaum (2003) which applied 
the retrospective pretest-posttest treatment 
design to a unique research setting is briefly 
described.  

Nakonezny et al. (2003) examined the 
effect of later life parental divorce on solidarity 
in the relationship between the adult child and 
older parent. This examination was achieved by 
testing the buffering hypothesis that greater 
levels of predivorce solidarity in the adult 
child/older parent relationship buffers damage to 
postdivorce solidarity. The unique and 
uncommon nature of the phenomenon of later 
life parental divorce, however, precluded access 

to these atypical divorcees prior to their divorce, 
which led to the necessity to use a retrospective 
pretest-posttest treatment design by Nakonezny 
et al. (2003).  

As mentioned earlier, one research 
scenario under which retrospective self-report 
pretests could be used is when conventional 
pretest data are not available, which was the case 
in the Nakonezny et al. (2003) study.  

In the retrospective design used in 
Nakonezny et al. (2003), predivorce/pretest 
solidarity included retrospective measures of the 
same scale-item instruments that were used to 
measure postdivorce/posttest solidarity. The 
wording of the questions, however, was changed 
to account for the retrospective time frame. 
Parents in the divorced group were asked to 
remember the period before their divorce and to 
provide a retrospective self-report account of 
solidarity in the relationship with their oldest 
living adult child during the predivorce period. 
The average number of years from the divorce 
decree to the date of data collection was about 8 
years.  

Also, parents in the intact two-parent 
family group (the no-treatment comparison 
group) were asked to remember back 
approximately five years from the date of 
participation in the study and to provide a 
retrospective self-report account of solidarity in 
the relationship with their oldest living adult 
child during that period, which represented the 
pretest period for the intact group. The basic 
findings of Nakonezny et al. (2003), using a 
retrospective pretest-posttest treatment design, 
were in the hypothesized directions for both 
groups. Nakonezny et al. (2003) can be 
consulted for a complete explanation of this 
application of the retrospective pretest-posttest 
treatment design in a social science evaluation 
research setting.    
 
Future Research 

The current study and previous research 
suggest that, under certain conditions, the 
retrospective pretest-posttest treatment design 
provides a more accurate assessment of change 
than that of the conventional pretest-posttest 
treatment design. However, the retrospective 
pretest-posttest treatment design still remains 
something of an enigma, and future research 
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concerning the validity of the retrospective 
pretest-posttest design is still needed. Further 
research is needed to address the effect of 
subject acquiescence and other extraneous 
sources of invalidity on self-report ratings in the 
retrospective pretest-posttest treatment design. 

Further research also is needed to 
determine the different types of retrospective 
pretest-posttest designs, experimental 
conditions, treatment interventions, constructs, 
and time lapses that are most susceptible to a 
response shift bias and that most affect recall 
accuracy of retrospective self-report ratings. 
Most importantly, a next step in this line of 
evaluation research is to continue to explore the 
research settings and applications in both the 
social and behavioral sciences under which 
retrospective self-report ratings are appropriate 
and under which the retrospective pretest-
posttest design produces unbiased estimates of 
treatment effects.  

 
Conclusion 

 
The empirical findings support that a moderate 
response shift bias occurred in the conventional 
pretest-posttest treatment design in the treatment 
group, and are highly suggestive that the 
knowledge ratings from self-report pretest to 
posttest were partially a result of respondents 
recalibrating their internal evaluation standard 
for the dimension measured (presumably 
because of exposure to the treatment). The 
results further suggest that the use of explicitly 
worded anchors on response scales as well as the 
measurement of knowledge ratings (a cognitive 
construct) in an evaluation methodology setting 
mitigated the magnitude of a response shift bias. 
Subject acquiescence is a likely explanation of 
the unexpected non-treatment-related response 
shift bias that occurred in the no-treatment 
comparison group.  

Further, the current study suggests that the 
retrospective pretest-posttest treatment design 
provides a more accurate assessment of change 
than that of the conventional pretest-posttest 
treatment design for the setting and experimental 
conditions used in the present study. Based on 
these results, it is suggested that researchers 
collect both a conventional self-report pretest 
and a retrospective self-report pretest when 

using a conventional pretest-posttest treatment 
design in evaluation research settings. 
Retrospective self-report pretests could be used, 
however, when conventional self-report pretest 
data are not available. In support of this 
scenario, we present an example of an 
innovative application of the retrospective 
pretest-posttest treatment design in a social 
science research setting. Finally, the ultimate 
value of this work may lie in its ability to renew 
interest in the retrospective pretest-posttest 
treatment design, to motivate future research, 
and to sharpen the empirical focus of that 
research.  
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Technology advances popularized large databases in education. Traditional statistics have limitations for 
analyzing large quantities of data. This article discusses data mining by analyzing a data set with three 
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Introduction 
 
In the last decade, with the availability of high-
speed computers and low-cost computer 
memory (RAM), electronic data acquisition and 
database technology have allowed data 
collection methods that are substantially 
different from the traditional approach 
(Wegman, 1995). As a result, large data sets and 
databases are becoming increasingly popular in 
every aspect of human endeavor including 
educational research. Different from the small, 
low-dimensional homogeneous data sets 
collected in traditional research activities, 
computer-based data collection results in data 
sets of large volume and high dimensionality 
(Hand,  Mannila, & Smyth, 2001; Wegman, 
1995). 
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Many statisticians (e.g., Fayyad, 1997; 
Hand et al., 2001; Wegman, 1995) noticed some 
drawbacks of traditional statistical techniques 
when trying to extract valid and useful 
information from a large volume of data, 
especially those of a large number of variables. 
As Wegman (1995) argued, applying traditional 
statistical methods to massive data sets is most 
likely to fail because “homogeneity is almost 
surely gone; any parametric model will almost 
surely be rejected by any hypothesis testing 
procedure; fashionable techniques such as 
bootstrapping are computationally too complex 
to be seriously considered for many of these data 
sets; random subsampling and dimensional 
reduction techniques are very likely to hide the 
very substructure that may be pertinent to the 
correct analysis of the data” (p. 292). Moreover, 
because most of the large data sets are collected 
from convenient or opportunistic samples, 
selection bias puts in question any inferences 
from sample data to target population (Hand, 
1999; Hand et al., 2001). 

The statistical challenge has stimulated 
research aiming at methods that can effectively 
examine large data sets to extract valid 
information (e.g., Daszykowski, Walczak, & 
Massart, 2002). New analytical techniques have 
been proposed and explored. Among them, some 
statisticians (e.g., Elder & Pregibon, 1996; 
Friedman, 1997; Hand, 1998, 1999, 2001; 
Wegman, 1995) paid attention to a new data 
analysis tool called data mining and knowledge 
discovery in database. Data mining is a process 
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of nontrivial extraction of implicit, previously 
unknown, and potentially useful information 
from a large volume of data (Frawley & 
Piatetsky-Shapiro, 1991).  

Although data mining has been used in 
business and scientific research for over a 
decade, a thorough literature review has found 
no educational study that used data mining as 
the method of analysis.  To explore the 
usefulness of data mining in quantitative 
research, the current study provides a 
demonstration of the analysis of a large 
education-related data set with several different 
approaches, including traditional statistical 
methods, data mining, and a combination of 
these two. With different analysis techniques 
laid side-by-side working on the same data set, 
the virtue of the illustrated methods, models, 
outputs, conclusions, and unique characteristics 
is ready for assessment. 
 
Research Background 

According to its advocates, data mining 
has prevailed as an analysis tool for large data 
sets because it can efficiently and intelligently 
probe through an immense amount of material to 
discover valuable information and make 
meaningful predictions that are especially 
important for decision-making under uncertain 
conditions. 

Data mining uses many statistical 
techniques, including regression, cluster 
analysis, multidimensional analysis, stochastic 
models, time series analysis, nonlinear 
estimation techniques, just to name a few 
(Michalski, Bratko, & Kubat, 1998). 

However, data mining is not a simple 
rework of statistics; it implements statistical 
techniques through an automated machine 
learning system and acquires high-level concepts 
and/or problem-solving strategies through 
examples (input data) in a way analogous to 
human knowledge induction to attack problems 
that lack algorithmic solutions or have only ill-
defined or informally stated solutions (Michalski 
et al., 1998).  

Data mining generates descriptions of 
rules as output using algorithms such as 
Bayesian probability, artificial neural networks,  

 
 

decision  trees,  and  generic  algorithms  that  do  
not assume any parametric form of the 
appropriate model. Automated analysis 
processes that reduce or eliminate the need for 
human interventions become critical when the 
volume of data goes beyond human ability of 
visualization and comprehension. 

Due to its applied importance, data 
mining as an academic discipline continues to 
grow with input from statistics, machine 
learning, and database management (Fayyad, 
1997; Zhou, 2003). One popular algorithm in 
recent research is the Bayesian Belief Network 
(BBN), which started from a set of probability 
rules discovered by Thomas Bayes in the 18th 
century.  The tree-like network based upon 
Bayesian probability can be used as a prediction 
model (Friedman et al., 1997). To build such a 
model, various events (variables) have to be 
defined, along with the dependencies among 
them and the conditional probabilities (CP) 
involved in those dependencies. 

Once the variables are ready and the 
topology is defined, they become the 
information used to calculate the probabilities of 
various possible paths being the actual path 
leading to an event or a particular value of a 
variable. Through an extensive iteration, a full 
joint probability distribution is to be constructed 
over the product state space (defined as the 
complete combinations of distinct values of all 
variables) of the model variables. The 
computational task is enormous because 
elicitation at a later stage in the sequence results 
in back-tracking and changing the information 
that has been elicited at an earlier point (Yu & 
Johnson, 2002). With the iterative feedback and 
calculation, a BBN is able to update the 
prediction probability, the so-called belief 
values, using probabilistic inference. 

BBN combines a sound mathematical 
basis with the advantages of an intuitive visual 
representation. The final model of a BBN is 
expressed as a special type of diagram together 
with an associated set of probability tables 
(Heckerman, 1997), as shown in the example in 
Figure 1. The three major classes of elements are 
a set of uncertain variables presented as nodes, a  
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set of directed edges (arcs) between variables 
showing the causal/relevance relationships 
between variables, and also, a CP table P(A| B1, 
B2,…, Bn) attached to each variable A with 
parents B1, B2, …, Bn. The CPs describe the 
strength of the beliefs given that the prior 
probabilities are true.  

Because in learning a previously 
unknown BBN, the calculation of the probability 
of any branch requires all branches of the 
network to be calculated (Niedermayer, 1998), 
the practical difficulty of performing the 
propagation, even with the availability of high-
speed computers, delayed the availability of 
software tools that could interpret the BBN and 
perform the complex computation until recently. 
Although the resulting ability to describe the 
network can be performed in linear time, given a 
relatively large number of variables and their 
product state space, the process of network 
discovery remains computationally impossible if 
an exhaustive search in the entire model space is 
required for finding the network of best 
prediction accuracy.  

As a compromise, some algorithms and 
utility functions are adopted to direct random 
selection of variable subsets in the BBN 
modeling process and to guide the search for the 
optimal subset with an evaluation function 
tracking  the  prediction accuracy  (measured  by   
 

 
the classification error rate) of every attempted 
model (Friedman et al., 1997). That is, a 
stochastic variable subset selection is embedded 
into the BBN algorithms. The variable selection 
function conducts a search for the optimal subset 
using the BBN itself as a part of the evaluation 
function, the same algorithm that will be used to 
induce the final BBN prediction model.  

Some special features of the BBN are 
considered beneficial to analyzing large data 
sets. For instance, to define a finite product state 
space for calculating the CPs and learning the 
network, all continuous variables have to be 
discretized into a number of intervals (bins). 
With such discretization, variable relationships 
are measured as associations that do not assume 
linearity and normality, which minimizes the 
negative impacts of outliers and other types of 
irregularities inherent in secondary data sources. 
Variable discretization also makes a BBN 
flexible in handling different types of variables 
and eliminates the sample size as a factor 
influencing the amount of computation.  

With large databases available for 
research and policy making in education, this 
study is designed to assess whether the data 
mining approach can provide educational 
researchers with extra means and benefits in 
analyzing large-scale data sets.  

 
 

 
Figure 1. An example of a BBN model. This graph illustrates the three major classes of elements of a 
Bayesian network; all variables, edges, and CP tables are for demonstration only and do not reflect the data 
and results of the current study in any way. 
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Methodology 
 

To examine the usefulness of data mining in 
educational research, the current study 
demonstrated the analysis of a large post-
secondary faculty data set with three different 
approaches, including data mining, traditional 
statistical methods, and a combination of these 
two. Because data mining shares a few common 
concerns with traditional statistics, such as 
estimation of uncertainty, construction of 
models in defined problem scope, prediction, 
and so on (Glymour, Madigan, Pregibon, & 
Smyth, 1997), in order to narrow down the 
research problem, prediction functions were 
chosen as a focus of this article to see whether 
data mining could offer any unique outlook 
when processing large data sets.  

To be specific, all three models were set 
to search for factors that were most efficient in 
predicting post-secondary faculty salary. On the 
statistical side, multiple linear regression was 
used because it is an established dynamic 
procedure of prediction; for data mining, 
prediction was performed with a BBN. Although 
the major concern of faculty compensation 
studies is the evaluation of variable importance 
in salary determination rather than prediction, 
the purpose of this study was to illustrate a new 
data analysis technique, rather than to advance 
the knowledge in the area of faculty 
compensation. Unless specified otherwise, α = 
.01 was used in all significance tests. 
 
Data Set 

In order to compare different data 
analysis approaches, the post-secondary faculty 
data set collected using the National Survey of 
Postsecondary Faculty 1999 (NSOPF:99) was 
chosen as a laboratory setting for demonstrating 
the statistical and data mining methods.  

The NSOPF:99 was a survey conducted 
by the National Center for Education Statistics 
(NCES) in 1999. The initial sample included 
960 degree granting postsecondary institutions 
and 27,044 full and part-time faculty employed 
at these institutions. Both the sample of 
institutions and the sample of faculty were 
stratified and systematic samples. 
Approximately 18,000 faculty and instructional 
staff questionnaires were completed at a 

weighted response rate of 83 percent. The 
response rate for the institution survey was 93 
percent.  

In this study, only faculty data were 
used which included 18,043 records and 439 
original and derived measures. Information was 
available on faculty demographic backgrounds, 
workloads, responsibilities, salaries, benefits, 
and more. The data set was considered 
appropriate because it is an education-related 
survey data set, neither too large for traditional 
analysis approaches nor too small for data 
mining techniques.  

To focus on the salary prediction of 
regular faculty in postsecondary institutions, 
only respondents who reported fulltime faculty 
status were included. Faculty assigned by 
religious order was excluded as well as those 
having affiliated or adjunct titles. Also, some 
respondents were removed from the data set to 
eliminate invalid salary measures. As a result, 
the total number of records available for analysis 
was 9,963. Two-thirds of the records were 
randomly selected as training data and used to 
build the prediction models; the remaining one-
third were saved as testing data for purpose of 
cross-validation.  

Variables in the data set were also 
manually screened so that only the most salient 
measures of professional characteristics were 
kept to quantify factors considered relevant in 
determining salary level according to the general 
guidelines of salary schema in postsecondary 
institutions and to the compensation literature in 
higher education. At the end, only 91 (including 
salary) were kept in the study out of the entire 
set of variables. 

Among them, a few variables were 
derived from the original answers to the 
questionnaire in order to avoid redundant or 
overly specific information. However, multiple 
measures were kept on teaching, publication, 
and some other constructs because they 
quantified different aspects of the underlying 
constructs; the redundant information among 
them also offered a chance of testing the 
differentiation power of the variable selection 
procedures. Table 1 provides a list of all the 91 
variables and their definitions. 
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Table 1.  Name, Definition, and Measurement Scale of the 91 Variables from NSOPF:99. 
 

Variable name Variable definition Scale 

Q25 Years teaching in higher education institution Interval 

Q26 Positions outside higher education during career Interval 

Q29A1 Career creative works, juried media  Interval 

Q29A2 Career creative works, non-juried media Interval 

Q29A3 Career reviews of books, creative works Interval 

Q29A4 Career books, textbooks, reports Interval 

Q29A5 Career exhibitions, performances Interval 

Q29B1 Recent sole creative works, juried media Interval 

Q29B2 Recent sole creative works, non-juried media Interval 

Q29B3 Recent sole reviews of books, works Interval 

Q29B4 Recent sole books, textbooks, reports Interval 

Q29B5 Recent sole presentations, performances Interval 

Q29C1 Recent joint creative works, juried media Interval 

Q29C2 Recent joint creative works, non-juried media Interval 

Q29C3 Recent joint reviews of books, creative works Interval 

Q29C4 Recent joint books, reports Interval 

Q29C5 Recent joint presentations, performances Interval 

Q2REC Teaching credit or noncredit courses Ordinal 

Q30B Hours/week unpaid activities at the institution Interval 

Q30C Hours/week paid activities not at the institution Interval 

Q30D Hours/week unpaid activities not at the institution Interval 
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Table 1 Continued. 
 

Variable name Variable definition Scale 

Q31A1 Time actually spent teaching undergrads (percentage) Ratio 

Q31A2 Time actually spent teaching graduates (percentage) Ratio 

Q31A3 Time actually spent at research (percentage) Ratio 

Q31A4 Time actually spent on professional growth (percentage) Ratio 

Q31A5 Time actually spent at administration (percentage) Ratio 

Q31A6 Time actually spent on service activity (percentage) Ratio 

Q31A7 Time actually spent on consulting (percentage) Ratio 

Q32A1 Number of undergraduate committees served on Interval 

Q32A2 Number of graduate committees served on Interval 

Q32B1 Number of undergraduate committees chaired Interval 

Q32B2 Number of graduate committees chaired Interval 

Q33 Total classes taught Interval 

Q40 Total credit classes taught Interval 

Q50 Total contact hours/week with students Interval 

Q51 Total office hours/week Interval 

Q52 Any creative work/writing/research Categorical 

Q54_55RE PI / Co-PI on grants or contracts Ordinal 

Q58 Total number of grants or contracts Interval 

Q59A Total funds from all sources Ratio 

Q61SREC Work support availability Ordinal 

Q64 Union status Categorical 
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Table 1 Continued. 
 

Variable name Variable definition Scale 

Q76G Consulting/freelance income Ratio 

Q7REC Years on current job Interval 

Q80 Number of dependents Interval 

Q81 Gender Categorical 

Q85 Disability Categorical 

Q87 Marital status Categorical 

Q90 Citizenship status Categorical 

Q9REC Years on achieved rank Interval 

X01_3 Principal activity Categorical 

X01_60 Overall quality of research index Ordinal 

X01_66 Job satisfaction: other aspects of job Ordinal 

X01_82 Age Interval 

X01_8REC Academic rank Ordinal 

X01_91RE Highest educational level of parents Ordinal 

DISCIPLINE Principal field of teaching/researching Categorical 

X02_49 Individual instruction w/grad &1st professional students Interval 

X03_49 Number of students receiving individual instructions Interval 

X04_0 Carnegie classification of institution Categorical 

X04_41 Total classroom credit hours Interval 

X04_84 Ethnicity in single category Categorical 

X08_0D Doctoral, 4-year, or 2-year institution Ordinal 
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Analysis 

Three different prediction models were 
constructed and compared through the analysis 
of NSOPF:99; each of them had a variable 
reduction procedure and a prediction model 
based on the selected measures.  The first model, 
Model I, was a multiple regression model with 
variables selected through statistical data 
reduction techniques; Model II was a data 
mining BBN model with an embedded variable 
selection procedure. A combination model, 
Model III, was also a multiple regression model, 
but built on variables selected by the data 
mining BBN approach.  

Model I. The first model started with 
variable reduction procedures that reduced the 
90 NSOPF:99 variables (salary measure 
excluded) to a smaller group that can be 
efficiently manipulated by a multiple regression  

 
 
 
 
procedure, and resulted in an optimal regression 
model based on the selected variables. 
According to the compensation theory and 
characteristics of the current data set, basic 
salary of the academic year as the dependent 
variable was log-transformed to improve its 
linear relationship with candidate independent 
variables.  
 The variable reduction for Model I was 
completed in two phases. In the first phase, the 
dimensional structure of the variable space was 
examined with Exploratory Factor Analysis 
(EFA) and K-Means Cluster (KMC) analysis; 
based on the outcomes of the two techniques, 
variables were classified into a number of major 
dimensions. Because EFA measures variable 
relationships by linear correlation and KMC by 
Euclidian distance, only 82 variables on 

Table 1 Continued. 
 

Variable name Variable definition Scale 

X08_0P Private or public institution Categorical 

X09_0RE Degree of urbanization of location city Ordinal 

X09_76 Total income not from the institution Ratio 

X10_0 Ratio: FTE enrollment / FTE faculty Ratio 

X15_16 Years since highest degree Interval 

X21_0 Institution size: FTE graduate enrollment Interval 

X25_0 Institution size: Total FTE enrollment Interval 

X37_0 Bureau of Economic Analysis (BEA) regional codes Categorical 

X46_41 Undergraduate classroom credit hours Interval 

X47_41 Graduate and First professional classroom credit hours Interval 

SALARY Basic academic year salary  Ratio 

  
Note.  All data were based on respondent’ reported status during the 1998-99 academic year. 
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dichotomous, ordinal, interval, or ratio scales 
were included. Two different techniques were 
used to scrutinize the underlying variable 
structure such that any potential bias associated 
with each of the individual approaches could be 
reduced. 

In EFA, different factor extraction 
methods were tried and followed by both 
orthogonal and oblique rotations of the set of 
extracted factors. The variable grouping was 
determined based on the matrices of factor 
loadings: variables that had a minimum loading 
of .35 on the same factor were considered as 
belonging to the same group. In the KMC 
analysis, the number of output clusters usually 
needs to be specified. When the exact number of 
variable clusters is unknown, the results of other 
procedures (e.g., EFA) can provide helpful 
information for estimating a range of possible 
number of clusters. Then the KMC can be run 
several times, each time with a different number 
of clusters specified within the range. The 
multiple runs of the KMC can also help to 
reduce the chance of getting a local optimal 
solution. Because variables were separated into 
mutually exclusive clusters, the interpretation of 
cluster identity was based on variables that had 
short distance from the cluster seed (the 
centroid). 

The results of the KMC analysis were 
compared with that of the EFA for similarities 
and differences. A final dimensional structure of 
the variable space was determined based on the 
consensus of the EFA and KMC outputs; each of 
the variable dimensions was labeled with a 
meaningful interpretation.  

During the second phase, one variable 
was selected from each dimension. Because of 
the different clustering methods used, variables 
in the same dimension might not share linear 
relationships. Taking into consideration that the 
final model of the analysis was of linear 
prediction, a method of extracting variables that 
account for more salary variance was desirable. 
Thus, for each cluster, the log-transformed 
salary was regressed on the variables within that 
cluster, and only one variable was chosen that 
associated with the greatest partial R2 change.   

Variables that did not show any strong 
relationships with any of the major groups, 
along with multilevel nominal variables that 

could not be classified, were carried directly into 
the second stage of  multiple regression 
modeling as candidate predictors and tested for 
their significance. Nominal variables were 
recoded into binary variables and possible 
interactions among the predictor variables were 
checked and included in the model if significant. 
Both forced entry and stepwise selection were 
used to search for the optimal model structure; if 
any of the variables was significant in one 
variable selection method, but nonsignificant in 
the other, a separate test on the variable was 
conducted in order to decide whether to include 
the variable in the final regression model. 
Finally, the proposed model was cross-checked 
with All Possible Subsets regression techniques 
including Max R and Cp evaluations to make 
sure the model was a good fit in terms of the 
model R2, adjusted R2, and the Cp value.  

Model II. The second prediction model 
was a BBN-based data mining model. To build 
the BBN model, all 91 original variables were 
input into a piece of software called the Belief 
Network Powersoft ; variables on interval and 
ratio scales were binned into category-like 
intervals because the network-learning 
algorithms require discrete values for a clear 
definition of a finite product state space of the 
input variables. Rather than logarithmical 
transformation, salary was binned into 24 
intervals for the following reasons: first, log-
transformation was not necessary because BBN 
is a robust nonmetric algorithm independent of 
any monotonic variable transformation. And 
second, a finite number of output classes is 
required in a Bayesian network construction. 
During the modeling process, variable selection 
was performed internally to find the subset with 
the best prediction accuracy.  

The BBN model learning was an 
automated process after reading in the input 
data. According to Chen and Greiner (1999), the 
authors of the software, two major tasks in the 
process are learning the graphical structure 
(variable relationships) and learning the 
parameters (CP tables). Learning the structure is 
the most computationally intensive task. The 
BBN software used in this study takes the 
network structure as a group of CP relationships 
(measured by statistical functions such as χ2 
statistic or mutual information test) connecting 



AN EXPLORATION OF USING DATA MINING IN EDUCATIONAL RESEARCH 
 
260 

the variables, and proceeds with the model 
construction by identifying the CPs that are 
stronger than a specified threshold value.  

The output of the BBN model was a 
network in which the nodes (variables) were 
connected by arcs (CP relationships between 
variables) and a table of CP entries (probability) 
for each arc. Only the subset of variables that 
was evaluated as having the best prediction 
accuracy stayed in the network. The prediction 
accuracy was measured by the percentage of 
correct classifications of all observations in the 
data set.  

Model III. Finally, a combination model 
was created that synchronized data mining and 
statistical techniques: the variables selected by 
the data mining BBN model were put into a 
multiple regression procedure for an optimal 
prediction model. The final BBN model 
contained a subset of variables that was expected 
to have the best prediction accuracy. Once the 
BBN model was available, the variables in that 
model were put through a multiple regression 
procedure for another prediction model. If it 
results in a better model, it would be evident that 
BBN could be used together with traditional 
statistical techniques when appropriate. As in 
Model I, categorical variables were recoded and 
salary as the dependent variable was log-
transformed. Multiple variable selection 
techniques were used including forced entry and 
stepwise selection. 

 
Model Comparison 

The algorithms, input variables, final 
models, outputs, and interpretations of the three 
prediction models were presented. The two 
multiple regression models were comparable 
because they shared some common evaluation 
criteria, including the model standard error of 
estimate, residuals, R2, and adjusted R2.  The 
data mining BBN model offered a different form 
of output, and is less quantitatively comparable 
with the regression models because they had 
little in common.  
 
Software 

SAS and SPSS were used for the 
statistical analyses. The software for learning the 
BBN model is called Belief Network Powersoft, 
a shareware developed and provided by Chen 

and Greiner (1999) on the World Wide Web. 
The Belief Network Powersoft was the winner 
of the yearly competition of the Knowledge 
Discovery and Data mining (KDD) – KDDCup 
2001 Data Mining Competition Task One, for 
having the best prediction accuracy among 114 
submissions from all over the world.  

 
Results 

 
Model I 
 The result of the variable space 
simplification through EFA and KMC was that 
70 of the 82 variables were clustered into 17 
groups. Ten of the groups were distinct clusters 
that did not seem to overlap with each other: 
academic rank, administrative responsibility, 
beginning work status, education level, 
institution parameter, other employment, 
research, teaching, experience, and work 
environment index. Another seven groups were 
1) teaching: undergraduate committee, 2) 
teaching: graduate, 3) teaching: individual 
instruction, 4) publications: books, 5) 
publications: reviews, 6) publication: 
performances and presentations, and 7) 
institutional parameters: miscellaneous. In 
general, the dimensional structure underlying the 
large number of variables provided a schema of 
clustering similar measures and therefore made 
it possible to simplify the data modeling by 
means of variable extraction.  

Following the final grouping of 
variables, one variable was extracted from each 
of the clusters by regressing the log-transformed 
salary on variables within the same cluster and 
selecting the variable that contributed the 
greatest partial R2 change in the dependent 
variable. The 17 extracted variables, along with 
the 20 variables that could not be clustered, are 
listed in Table 2 as the candidate independent 
variables for a multiple regression model.  

After a thorough model building and 
evaluation process, a final regression model was 
selected having 16 predictor variables (47 
degrees of freedom due to binary-coded nominal 
measures) from the pool of 37 candidates. The 
parameter estimates and model summary 
information are in Tables 3 and 5. The model R2 
is .5036 and adjusted R2 .5001. 
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Table 2. Candidate Independent Variables of Model I. 
 

Variable name Variable Definition df 

Variables from the clusters  

Q29A1 Career creative works, juried media  1 

X15_16 Years since highest degree 1 

Q31A1 Time actually spent teaching undergraduates (percentage) 1 

Q31A2 Time actually spent at teaching graduates (percentage) 1 

X02_49 Individual instruction w/grad &1st professional students 1 

Q32B1 Number of undergraduate committees chaired 1 

Q31A5 Time actually spent at administration (percentage) 1 

Q16A1REC Highest degree type 1 

Q24A5REC Rank at hire for 1st job in higher education 1 

Q29A3 Career reviews of books, creative works 1 

Q29A5 Career presentations, performances 1 

X08_0D Doctoral, 4-year, or 2-year institution 1 

Q29A4 Career books, textbooks, reports 1 

X10_0 Ratio: FTE enrollment / FTE faculty 1 

Q76G Consulting/freelance income 1 

X01_66 Job satisfaction: other aspects of job 1 

X01_8REC Academic rank 1 
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Table 2 Continued. 
 

Variable name Variable definition df 

Variables from the original set  

DISCIPLINE Principal field of teaching/research 10 

Q12A Appointments: Acting 1 

Q12E Appointments: Clinical 1 

Q12F Appointments: Research 1 

Q19 Current position as primary employment 1 

Q26 Positions outside higher education during career 1 

Q30B Hours/week unpaid activities at the institution 1 

Q31A4 Time actually spent on professional growth (percentage) 1 

Q31A6 Time actually spent on service activity (percentage) 1 

Q64 Union status 3 

Q80 Number of dependents 1 

Q81 Gender 1 

Q85 Disability 1 

Q87 Marital status 3 

Q90 Citizenship status 3 

X01_3 Principal activity 1 

X01_91RE Highest educational level of parents 1 

X04_0 Carnegie classification of institution 14 

X04_84 Ethnicity in single category 3 

X37_0 Bureau of Economic Analysis (BEA) region code 8 
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Table 3.  Parameter Estimates of Model I. 
 

Variable Label 
Parameter 
estimate 

Standard 
error 

t value p > |t| 

Intercept Intercept 10.0399 0.0485 207.10 <.0001 

Q29A1 Career creative works, juried media  0.0019 0.0002 11.87 <.0001 

X15_16 Years since highest degree 0.0077 0.0004 17.82 <.0001 

Q31A1 Time actually spent teaching undergrads (%) -0.0011 0.0002 -6.04 <.0001 

Q31A5 Time actually spent at administration (%) 0.0017 0.0003 5.95 <.0001 

Q16A1REC Highest degree type 0.0841 0.0050 16.68 <.0001 

Q29A3 Career reviews of books, creative works 0.0018 0.0004 4.22 <.0001 

Q76G Consulting/freelance income 0.0000037 0.0000 5.75 <.0001 

X01_66 Other aspects of job 0.0519 0.0058 8.89 <.0001 

X01_8REC Academic rank 0.0510 0.0031 16.27 <.0001 

Q31A4 Time actually spent on professional growth (%) -0.0023 0.0006 -3.86 0.0001 

Q31A6 Time actually spent on service activity (%) 0.0013 0.0003 3.80 0.0001 

Q81 Gender -0.0667 0.0084 -7.97 <.0001 

BEA region codes (Baseline: Far West)     

BEA1 New England -0.0608 0.0058 8.89 0.0021 

BEA2 Mid East 0.0082 0.0031 16.27 0.5788 

BEA3 Great Lakes -0.0545 0.0006 -3.86 0.0001 

BEA4 Plains -0.0868 0.0003 3.80 <.0001 
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Table 3 Continued. 
 

Variable Label 
Parameter 
estimate 

Standard 
error 

t value p > |t| 

BEA5 Southeast -0.0921 0.0084 -7.97 <.0001 

BEA6 Southwest -0.0972 0.0198 -3.07 <.0001 

BEA7 Rocky Mountain -0.1056 0.0148 0.56 <.0001 

BEA8 U.S. Service schools 0.1480 0.0142 -3.82 0.2879 

Principal field of teaching/research (Baseline: legitimate skip) 

DSCPL1 Agriculture & home economics -0.0279 0.0306 -0.91 0.3624 

DSCPL2 Business 0.1103 0.0228 4.84 <.0001 

DSCPL3 Education -0.0643 0.0216 -2.98 0.0029 

DSCPL4 Engineering 0.0695 0.0246 2.82 0.0048 

DSCPL5 Fine arts -0.0449 0.0241 -1.86 0.0627 

DSCPL6 Health sciences 0.0933 0.0182 5.12 <.0001 

DSCPL7 Humanities -0.0641 0.0195 -3.29 0.001 

DSCPL8 Natural sciences -0.0276 0.0190 -1.45 0.148 

DSCPL9 Social sciences -0.0249 0.0202 -1.23 0.2173 

DSCPL10 All other programs 0.0130 0.0194 0.67 0.502 

Carnegie classification (Baseline: Private other Ph.D.)     

STRATA1 Public comprehensive 0.0053 0.0236 0.22 0.8221 

STRATA2 Private comprehensive -0.0377 0.0263 -1.43 0.1525 

STRATA3 Public liberal arts -0.0041 0.0341 -0.12 0.9039 

STRATA4 Private liberal arts -0.0917 0.0260 -3.52 0.0004 
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Model II 
To make the findings of the data mining 

BBN model comparable to the result of 
regression Model I, the second model started 
without any pre-specified knowledge such as the 
order of variables in some dependence 
relationships, forbidden relations, or known 
causal relations. To evaluate variable 
relationships and simplify model structure, the 
data mining software makes it possible for users 
to provide a threshold value that determines how  

 
 
 
strong a mutual relationship between two 
variables is considered meaningful; relationships 
below this threshold are omitted from 
subsequent network structure learning (Chen & 
Greiner, 1999).   

In the current analysis, a number of 
BBN learning processes were completed, each 
with a different threshold value specified, in 
order to search for an optimal model structure. 
Because generalizability to new data sets is an 

Table 3 Continued. 
 

Variable Label 
Parameter 

estimate 

Standard 
error 

t value p > |t| 

STRATA5 Public medical 0.2630 0.0326 8.07 <.0001 

STRATA6 Private Medical 0.2588 0.0444 5.82 <.0001 

STRATA7 Private religious -0.1557 0.0523 -2.98 0.0029 

STRATA8 Public 2-year 0.0386 0.0247 1.56 0.1185 

STRATA9 Private 2-year -0.0061 0.0574 -0.11 0.9155 

STRATA10 Public other -0.0207 0.0563 -0.37 0.7127 

STRATA11 Private other -0.0879 0.0428 -2.06 0.0399 

STRATA12 Public research 0.0792 0.0228 3.47 0.0005 

STRATA13 Private research 0.1428 0.0259 5.51 <.0001 

STRATA14 Public other Ph.D. 0.0005 0.0254 0.02 0.984 

Primary activity (Baseline: others)     

PRIMACT1 Primary activity: teaching -0.0541 0.0169 -3.21 0.0013 

PRIMACT2 Primary activity: research -0.0133 0.0199 -0.67 0.5039 

PRIMACT3 Primary activity: administration 0.0469 0.0203 2.31 0.0211 

  

Note.  The dependent variable was log-transformed SALARY (LOGSAL). 
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important property of any prediction models, the 
model parameters were cross-validated with the 
testing data set. The results suggested that the 
model of best prediction power was the one 
having six variables connected by 10 CP arcs as 
shown in Figure 2. The prediction accuracy, 
quantified as the percentage of correct 
classification of the cases, was 25.66% for 
training data and 11.57% for testing data.  

 
Model III 

The final prediction model produced by 
the Belief Network Powersoft had six predictor 
variables. However, one of six, number of years 
since achieved tenure (Q10AREC), was only 
connected to another predictor variable (i.e., 
years since the highest degree), a strong 
relationship substantiated by their Pearson 
correlation (r = .64). Q10AREC also had a 
strong correlation with academic rank (r = .43), 
another variable in the model. After a test 
confirmed that Q10AREC was not a suppressor 
variable, it was excluded from the combination 
model. Therefore, Model III started with only 
five independent variables. Among them, the 
Carnegie classification of institutions as the only 
categorical measure was recoded into binary 
variables. With log-transformed salary as the 
dependent variable, the process of building 
Model III was straightforward because all five 
variables were significant at p < .0001 with both 
forced entry and stepwise variable selections. 
The model has R2 of .4214 and adjusted R2 
.4199 (summary information is presented in 
Tables 4 and 5).  
 
Model Comparison 

Model I and Model II are comparable in 
many ways. First, both models are result of data-
driven procedures; second, theoretically, they 
both selected the predictors from the original 
pool of 90 variables; and third, they share the 
same group of major variables even though 
Model I had a much larger group. With the 
common ground they share, the differences 
between the two models provide good insight to 
the differences between traditional statistics and 
data mining BBN in make predictions with 
large-scale data sets.  

The differences between Model I and 
Model III are informative about the effects of 

statistical and data mining approaches in 
simplifying the variable space and identifying 
the critical measures in making accurate 
prediction, given both models used multiple 
regression for the final prediction. Models II and 
III share the same group of predictor variables; 
their similarities and differences shed light on 
the model presentations and prediction accuracy 
of different approaches as well. 

  
Variable Selection and Transformation 
 Model I started with all 90 variables in 
the pool, and identified 17 of the 70 variables 
that could be clustered with EFA and KMC 
procedures. Along with the ungrouped 20 
variables, a total of 37 independent variables 
were available as initial candidates, and 16 of 
them stayed in the final model with an R2 of 
.5036 (df = 47 and adjusted R2 = .5001). With a 
clear goal of prediction, the modeling process 
was exploratory without theoretical 
considerations from variable reduction through 
model building. During this process, variable 
relationships were measured as linear 
correlations; consequently, the dependent 
variable was transformed to improve its linear 
relationships with the independent variables. 
Also, multilevel categorical measures were 
recoded into binary variables.  

The data mining model, Model II, also 
started with all 90 variables. An automated 
random search was performed internally to 
select a subset of variables that provided the 
most accurate salary prediction. In contrast to 
regression models that explicitly or implicitly 
recode categorical data, data mining models 
usually keep the categorical variables 
unchanged, but bin continuous variables into 
intervals. The information loss associated with 
variable downgrade in binning is a threat to 
model accuracy, but it helps to relax model 
assumptions and as a result BBN requires no 
linear relationships among variables. The 
network structure discovery uses some statistical 
tests (e.g., χ2 test of statistical independence) to 
compare how frequently different values of two 
variables are associated with how likely they 
happen to be together by random chance in order 
to build conditional probability statistics among 
variables (Chen, Greiner, Kelly, Bell, & Liu, 
2001).  
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Figure 2. The BBN model of salary prediction. Some of the directional relationships may be counterintuitive 
(e.g., Q31A1 � X04_0) as a result of data-driven learning. The CP tables are not included to avoid complexity. 
The definitions of the seven variables are  

a. SALARY: Basic salary of the academic year.   
b. Q29A1: Career creative works, juried media 
c. Q31A1: Percentage of time actually spent teaching undergrads 
d. X15_16: Years since highest degree 
e. X01_8REC: Academic rank 
f. X04_0: Carnegie classification of institutions 
g. Q10AREC: Years since achieved tenure 

 
 
 

Table 4. Parameter Estimates of Model III. 
 

Variable Label 
Parameter 
estimate 

Standard 
error 

t value p > |t| 

Intercept Intercept 10.5410 0.0272 387.28 <.0001 

Q29A1 Career creative works, juried media 0.0024 0.0002 15.34 <.0001 

Q31A1 Time actually spent teaching undergrads (%) -0.0030 0.0002 -20.06 <.0001 

X01_8REC Academic rank 0.0664 0.0032 21.01 <.0001 

X15_16 Years since highest degree 0.0088 0.0004 19.97 <.0001 
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Table 4 Continued. 
 

Carnegie classification (Baseline: Private other Ph.D.)     

STRATA1 Public comprehensive -0.0385 0.0250 -1.54 0.1236 

Variable Label 
Parameter 
estimate 

Standard 
error 

t value p > |t| 

STRATA2 Private comprehensive -0.0645 0.0281 -2.29 0.0218 

STRATA3 Public liberal arts -0.0315 0.0363 -0.87 0.3853 

STRATA4 Private liberal arts -0.1221 0.0276 -4.42 <.0001 

STRATA5 Public medical 0.2933 0.0339 8.66 <.0001 

STRATA6 Private Medical 0.2915 0.0471 6.20 <.0001 

STRATA7 Private religious -0.2095 0.0551 -3.80 0.0001 

STRATA8 Public 2-year -0.0403 0.0258 -1.56 0.1179 

STRATA9 Private 2-year -0.0371 0.0611 -0.61 0.544 

STRATA10 Public other -0.0245 0.0594 -0.41 0.6802 

STRATA11 Private other -0.0871 0.0456 -1.91 0.0563 

STRATA12 Public research 0.0479 0.0242 1.98 0.0472 

STRATA13 Private research 0.1543 0.0276 5.60 <.0001 

STRATA14 Public other Ph.D. -0.0496 0.0268 -1.85 0.0648 

  

Note.  The dependent variable was log-transformed SALARY (LOGSAL). 

 

Table 5. Summary Information of Multiple Regression Models I and III 
 

Source df Sum of squares Mean square F Pr > F 

Model I: Multiple regression with statistical variable selection 

Model 47 621.4482 13.2223 142.46 <.0001 

Error 6599 612.4897 0.0928   

Corrected total 6646 1233.9379    
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Given the measures of variable 

associations that do not assume any probabilistic 
forms of variable distributions, neither linearity 
nor normality was required in the analysis. 
Consequently, the non-metric algorithms used to 
build the BBN model binned the original 
SALARY measure as the predicted values. 

 
Model Selection 
 In the multiple regression analysis, 
every unique combination of the independent 
variables theoretically makes a candidate 
prediction model, albeit the modeling techniques 
produce candidate models that are mostly in a 
nested structural schema. Model comparison is 
part of the analysis process; human intervention 
is necessary to select the final model that usually 
has a higher R2 along with simple and stable 
structure. In contrast, the learning of an optimal 
BBN model is a result of search in a model 
space that consists of candidate models of 
substantially different structures. In the 
automated model discovery process, numerous 
candidate models were constructed, evaluated 
with criteria called score functions, and the one 
with best prediction accuracy is output as the 
optimal choice. 

  
Model Presentation 
 As a result of different approaches to 
summarizing data and different algorithms of 
analyzing    data,   the  outputs  of    the  multiple  

 
regression and the BBN models are different. 
The final result of a multiple regression analysis 
is usually presented as a mathematical equation. 
For example, Model III can be written as: 

 
Log (Salary)  =  10.5410 + 0.0024 ×  Q29A1 - 
0.0030 ×  Q31A1 + 0.0664 ×  X01_8REC + 
0.0088 ×  X15_16 - 0.0385 ×  STRATA1 - 
0.0645  ×  STRATA2 - 0.0315 ×  STRATA3 - 
0.1221 ×  STRATA4 + 0.2933 ×  STRATA5 + 
0.2915 ×  STRATA6 - 0.2095 ×  STRATA7 - 
0.0403 ×  STRATA8 - 0.0371 ×   STRATA9 - 
0.0245 ×  STRATA10 - 0.0871 ×  STRATA11    
+ 0.0479 ×  STRATA12 + 0.1543 ×  
STRATA13 - 0.0496 ×   STRATA14 + error. 
                                                       (1) 

 
If a respondent received the highest 

degree three years ago (X15_16 = 3), had three 
publications in juried media (Q29A1 = 3), spent 
20% of work time teaching undergraduate 
classes (Q31A1 = 20) as an assistant professor 
(X01_8REC = 4) in a public research institution 
(STRATA12 = 1 and all other STRATA 
variables were 0), the predicted value of this 
individual’s log-transformed salary should be 
10.83 according to Equation 1 (about $50,418), 
with an estimated standard error indicating the 
level of uncertainty.  

The result of the BBN model is 
presented in a quite different way. For the above 
case, the BBN model would make a prediction 

Table 5 Continued. 
 

           Source                         df           Sum of Squares    Mean square           F            Pr > F 

Model III: Multiple regression with variables selected through BBN 

Model 18 520.2949 28.90527 268.4 <.0001 

Error 6632 714.3279 0.10769   

Corrected total 6651 1234.6228    

  
Note: 
1. For Model I, R2 = .5036, adjusted R2 = .5001, and the standard error of estimate is 0.305. 
2. For Model II, R2 = .4214, adjusted R2 = .4199 and the standard error of estimate is 0.328 
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of salary for such faculty with a salary 
conditional probability table as shown in Table 
6. The predicted salary fell in a range between 
$48,325 and $50,035 because it has the highest 
probability (p= 15.9%) in the CP table for this 
particular combination of variable values. A CP 
table like this is available for every unique 
combination of variable values (i.e., an instance 
in the variable product state space).  

Using the conditional mean as a point 
estimator in most statistical predictions 
implicitly expresses the prediction uncertainty 
with a standard error of estimate based on the 
assumption of normal distribution. In contrast, 
the BBN model makes predictions based on the 
distributional mode of the posterior probability 
of the predicted variable. The prediction based 
on the mode of a probabilistic distribution is a 
robust feature of BBN; the mode is not sensitive 
to outliers or skewed distribution as the 
arithmetic mean is. Moreover, the presentation 
of posterior probability as a random variable 
explicitly expresses the prediction uncertainty in 
terms of probability. Without the assumption of 
normality, the conditional probability of a 
predicted value is the outcome of binning 
continuous variables and treating all variables as 
on a nominal scale in the computation. However, 
one problem of the classification approach is 
that it is difficult to tell how far the predicted 
value missed the observed value when a case 
was misclassified. 

  
Prediction Accuracy 
 In multiple regression, predication 
accuracy is usually quantified by residuals or 
studentized residuals. Also, the model R2 is an 
index of how well the model fits the data. For 
example, Model III had a R2 of .4214, which 
was considered an acceptable level of explained 
variance in regression given such a complex data 
set. The predication accuracy of the BBN model 
was the ratio of the number of correct 
classifications to the total number of predictions. 
In this study, the prediction accuracy of the BBN 
model was only 25.66% on the same training 
data.  

Several explanations are available for 
this relatively low prediction accuracy of Model 
II compared to that of Model III. First, 
information was lost when continuous variables 

were binned: five of the six predictors were on 
an interval or ratio scale. Second, the final class 
identity of an individual case was 
algorithmically  determined to be the salary bin 
that had the highest probability, which might not 
be substantially strong when the predictor 
variable was divided into many narrow bins (as 
in the above example p = .16). Third, when the 
bin widths are relatively narrow, 
misclassification may increase due to weakened 
differences among the levels of a variable. 
Finally, scoring functions used for model 
evaluation in the Bayesian network learning 
could be another factor. According to Friedman 
et al. (1997), when the structure of the network 
is not constrained with any prior knowledge as 
in the current case, nonspecialized scoring 
functions may result in a poor classifier function 
when there are many attributes. 

 
Dimensional Simplification 
 One important similarity between 
Models I and III is the final predictor variables. 
Model III had only five variables selected by the 
BBN model, and they were among the top six 
variables in the stepwise selection of Model I. 
Both models captured variables that shared 
strong covariance with the predicted variable. 
The overlap of the predictor variables is an 
indication that they both can serve the purpose 
of dimensional simplification. 
 In comparison to the automated process 
of variable selection and dimensional 
simplification in the BBN algorithms, the 
statistical approach was relatively laborious.  
However, the automation in BBN learning 
blinded researchers from having a detailed 
picture of variable relationships. In the statistical 
variable reduction, the clustering structure of 
variables was clear, and so were the variables 
that were similar or dissimilar to each other. 
Therefore, the high automation is only desirable 
when the underlying variable relationships are 
not of concern, or when the number of variables 
is extremely large.   

The BBN data mining Model II 
identified five predictor variables that were 
subsequently used in Model III for prediction, 
all five independent variables were significant at 
p < 0.0001, and resulted in a final model with an  
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              Table 6. An Example of the BBN  
 

Bin # Salary range Probability 

1 Salary < 29600 0.0114 

2 29600 < Salary < 32615 0.0012 

3 32615 < Salary < 35015 0.0487 

4 35015 < Salary < 37455 0.0655 

5 37455 < Salary < 39025 0.0254 

6 39025 < Salary < 40015 0.0263 

7 40015 < Salary < 42010 0.0460 

8 42010 < Salary < 44150 0.0950 

9 44150 < Salary < 46025 0.0894 

10 46025 < Salary < 48325 0.0552 

11 48325 < Salary < 50035 0.1590 

12 50035 < Salary < 53040 0.0728 

13 53040 < Salary < 55080 0.0081 

14 55080 < Salary < 58525 0.0672 

15 58525 < Salary < 60010 0.0985 

16 60010 < Salary < 64040 0.0140 

17 64040 < Salary < 68010 0.0321 

18 68010 < Salary < 72050 0.0142 

19 72050 < Salary < 78250 0.0228 

20 78250 < Salary < 85030 0.0098 

21 85030 < Salary < 97320 0.0005 

22 97320 < Salary < 116600 0.0170 

23 116600 < Salary < 175090 0.0190 

24 175090 < Salary  0.0005 
 
 
 

Conditional Probability Tables. 
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Note. Salary was binned into 24 intervals. For this particular case, the product state is that the highest 
degree was obtained three years ago (X15_16 = 3), had three publications in juried media (Q29A1 = 3), 
spent 20% of the time teaching undergraduate classes (Q31A1 = .2) as an untenured (Q10AREC = 0) 
assistant professor (X01_8REC = 5) in a public research institution (STRATA = 12 and all other binary 
variables were 0). 
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R2 = .4214 (df = 18 and adjusted R2 = .4199). 
Although Model I has a greater R2 than Model 
III, it also has more model degrees of freedom 
(47 vs. 18). Given an R2 about .0822 higher than 
that of Model III at the expense of 29 more 
variables, each additional variable in Model I 
only increased the model R2 by .0028 on 
average. 

One of the negative effects associated 
with large numbers of independent variables in a 
multiple regression model is the threat of 
multicollinearity caused by possible strong 
correlations among the predictors.  Model R2 

never decreases when the number of predictor 
variables increases, but if the variables bring 
along multicollinearity, estimated model 
parameters can have large standard errors, 
leading to an unreliable model. For the two 
regression models, Model I has 31 out of 47 
variable with a VIF > 1.5 (66%). Model II has 
10 out of 18 variables with a VIF > 1.5 (55%), 
and most of high VIF values are associated with 
the binary variables recoded from categorical 
variables.  

Because the ordinary least square (OLS) 
method in prediction analysis produces a 
regression equation that is optimized for the 
training data, model generalizability should be 
considered as another important index of good 
prediction models. Model generalizability was 
measured by cross validating the proposed 
models with the holdout testing data set. Model I 
and III were applied to the 3,311 records to 
obtain their predicted values, and the R2s of the 
testing data set were found to be .5055, and 
.4489, respectively, as compared with .5036 and 
.4214 in the original data set. 

    
Large Data Volume 
 Multiple regression models have some 
problems when applied to massive data sets. 
First, many graphical procedures, including 
scatter plots for checking variable relationships 
become problematic when the large number of 
observations turns the plots into indiscernible 
black clouds. Second, with a large number of 
observations the statistical significance tests are 
oversensitive to minor differences. For example, 
a few variables with extremely small partial R2s 
had significant p values in the stepwise selection 
of Model I. One particular case was the union 

status, which had a partial R2 = .0009, given a 
sample size of 6,652, the variable was still added 
at a significant p = 0.0073.  

Data mining models usually respond to 
large samples positively due to their inductive 
learning nature. Data mining algorithms rarely 
use significance tests, but rely on the abundant 
information in large samples to improve the 
accuracy of the rules (descriptions of data 
structure) summarized from the data. In 
addition, more data are needed to validate the 
models and to avoid optimistic bias (overfit).  

 
Conclusion 

 
In the field of education, large data sets recorded 
in the format of computer databases range from 
student information in a school district to 
national surveys of some defined population. 
Although data are sometimes collected without 
predefined research concerns, they become 
valuable resources of information for collective 
knowledge that can inform educational policy 
and practice. The critical step is how to 
effectively and objectively turn the data into 
useful information and valid knowledge. 
Educational researchers have not been able to 
take full advantage of those large data sets, 
partly because data sets of very large volume 
have presented practical problems related to 
statistical and analytical techniques.  

The objective of this article is to explore 
the potentials of using data mining techniques in 
studying large data sets or databases in 
educational research. Data analysis methods that 
can effectively handle a large number of 
variables is one of the major concerns in this 
study of 91 variables (one was salary, the 
predicted variable).  

The major findings are as follows. The 
multiple regression models were cumbersome 
with a large number of independent variables. 
Although the loss of degrees of freedom was not 
a concern given a large sample size, a thorough 
examination of variable interactions became 
unrealistic. The data mining model BBN needed 
much less human intervention in its automated 
learning and selection process. With the BBN 
algorithm inductively studying and summarizing 
variable relationships without probabilistic 
assumptions, the defense against normality and 
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linearity was dismissed, and significance tests 
were rarely necessary. However, the BBN model 
had some drawbacks as well. First, the BBN 
model, as most data mining models, is adaptive 
to categorical variables. Continuous measures 
had to be binned to be appropriately handled. 
The downgrade of measurement scale definitely 
cost information accuracy. 

It also became clear in the process of 
this study that the ability to identify the most 
important variable from a group of highly 
correlated measures is an important criterion for 
evaluating applied data analysis methods when 
handling a large number of variables because 
redundant measures on the same constructs are 
common in large data sets and databases. The 
findings of this study indicate that BBN is 
capable to perform such a task because Model II 
identified five variables from groups of 
measures on teaching, publication, experience, 
academic seniority, and institution parameter, 
the same five as those selected by the data 
reduction techniques in building Model I for the 
reason that the five variables accounted for more 
variance of the predicted variables than their 
alternatives. 

In general, data mining has some unique 
features that can help to explore and analyze 
enormous amount of data. Combining statistical 
and machine learning techniques in automated 
computer algorithms, data mining can be used to 
explore very large volumes of data with 
robustness against poor data quality such as 
nonnormality, outliers, and missing data. The 
inductive nature of data mining techniques is 
very practical to overcome limitations of 
traditional statistics when dealing with large 
sample sizes. The random selection of subset 
variables in making accurate predictions 
simplifies the problem associated with large 
number of variables. Nevertheless, the 
applicability of this new technique in 
educational and behavioral science has to be 
tailored for the specific needs of individual 
researchers and the goal of their studies.  

By introducing data mining, a tool that 
has been widely used in business management 
and scientific research, this study demonstrated 
an alternative approach to analyzing educational 
databases. A clear-cut answer is difficult 
regarding the differences and advantages of the 

individual approaches. However, looking at a 
problem from different viewpoints itself is the 
essence of the study, and hopefully it can 
provide critical information for researchers to 
make their own assessment about how well these 
different models work to provide insight into the 
structure of and to extract valuable information 
from large volumes of data. Using confirmatory 
analysis to follow up the findings generated by 
data mining, educational researchers can 
virtually turn their large collection of data into a 
reservoir of knowledge to serve public interests.  
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Manifestation Of Differences In Item-Level Characteristics  
In Scale-Level Measurement Invariance  

Tests Of Multi-Group Confirmatory Factor Analyses 
 

Bruno D. Zumbo                                                 Kim H Koh 
              University of British Columbia, Canada             Nanyang Technological University, Singapore 
 
 
If a researcher applies the conventional tests of scale-level measurement invariance through multi-group 
confirmatory factor analysis of a PC matrix and MLE to test hypotheses of strong and full measurement 
invariance when the researcher has a rating scale response format wherein the item characteristics are 
different for the two groups of respondents, do these scale-level analyses reflect (or ignore) differences in 
item threshold characteristics? Results of the current study demonstrate the inadequacy of judging the 
suitability of a measurement instrument across groups by only investigating the factor structure of the 
measure for the different groups with a PC matrix and MLE. Evidence is provided that item level bias can 
still be present when a CFA of the two different groups reveals an equivalent factorial structure of rating 
scale items using a PC matrix and MLE. 
 
Key words: multi-group confirmatory factor analysis, item response formats  
 
 

Introduction 
 
Broadly speaking, there are two general classes 
of statistical and psychometric techniques to 
examine measurement invariance across groups: 
(1) scale-level analyses, and (2) item-level 
analyses. The groups investigated for 
measurement invariance are typically formed by 
gender, ethnicity, or translated/adapted versions 
of a test.  In scale-level analyses, the set of items 
comprising  a test  are  often  examined  together  
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using multi-group confirmatory factor analyses 
(Byrne, 1998; Jöreskog, 1971) that involve 
testing strong and full measurement invariance 
hypotheses.  In the item-level analyses the focus 
is on the invariant characteristics of each item, 
one item at a time. 
 In setting the stage for this study, which 
involves a blending of ideas from scale- and 
item-level analyses (i.e., multi-group 
confirmatory factor analysis and item response 
theory), it is useful to compare and contrast 
overall frameworks for scale-level and item-
level approaches to measurement invariance. 
Recent examples of this sort of comparison can 
be found in Raju, Laffitte, & Byrne (2002), 
Reise, Widaman, & Pugh (1993), and Zumbo 
(2003). In these studies, the impact of scaling on 
measurement invariance has not been examined. 
Hence, it is important for the current study to 
investigate to what extent the number of scale 
points effects the tests of measurement 
invariance hypotheses in multi-group 
confirmatory factor analysis.  
 
Scale-level Analyses 

There are several expositions and 
reviews of single-group and multi-group 
confirmatory factor analysis (e.g., Byrne, 1998; 
Steenkamp & Baumgartner, 1998; Vandenberg 
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& Lance, 2000); therefore this review will be 
very brief. In describing multi-group 
confirmatory factor analysis, consider a one-
factor model: one latent variable and ten items 
all loading on that one latent variable. There are 
two sets of parameters of interest in this model: 
(1) the factor loadings corresponding to the 
paths from the latent variable to each of the 
items, and (2) the error variances, one for each 
of the items. The purpose of the multi-group 
confirmatory factor analysis is to investigate to 
what extent each, or both; of the two sets of 
model parameters (factor loadings and error 
variances) are invariant in the two groups.  

As Byrne (1998) noted, there are various 
hypotheses of measurement invariance that can 
be tested, from weak to strict invariance. That is, 
one can test whether the model in its entirety is 
completely invariant, i.e., the measurement 
model as specified in one group is completely 
reproduced in the other, including the magnitude 
of the loadings and error variances. At the other 
end of the extreme is an invariance in which the 
only thing shared between the groups is overall 
pattern of the model but neither the magnitudes 
of the loadings nor of the error variances are the 
same for the two groups, i.e., the test has the 
same dimensionality, or configuration, but not 
the same magnitudes for the parameters.  
 
Item-level Analyses 

In item-level analyses, the framework is 
different than at the scale-level. At the item 
level, measurement specialists typically consider 
(a) one item at a time, and (b) a unidimensional 
statistical model that incorporates one or more 
thresholds for an item response. That is, the 
response to an item is governed by referring the 
latent variable score to the threshold(s) and from 
this comparison the item response is determined.  

Consider the following example of a 
four-point Likert item, “How much do you like 
learning about mathematics?” The item 
responses are scored on a 4-point scale such as 
(1) Dislike a lot, (2) Dislike, (3) Like, and (4) 
Like a lot. This item, along with other items, 
serve as a set of observed ordinal variables, x’s, 
to measure the latent continuous variable x*, 
namely attitudes toward learning mathematics. 
For each observed ordinal variable x, there is an 
underlying continuous variable x*. If x has m 

ordered categories, x is connected to x* through 
the non-linear step function: x = i if   

 

,1 * ii x ττ ≤<−  ,,...,3,2,1 mi =  

 
where  
 
           ,..., 13210 −<<<−∞= mτττττ   

 
and                +∞=mτ  

 
are parameters called threshold values. For a 
variable x with m categories, there are m-1 
unknown thresholds. Given that the above item 
has four response categories, there are three 
thresholds with the latent continuous variable. If 
one approaches the item level analyses from a 
scale-level perspective, the item responding 
process is akin to the thresholds one invokes in 
computing a polychoric correlation matrix 
(Jöreskog & Sörbom, 1996).  

In an item-level analysis measurement 
specialists often focus on differences in 
thresholds across the groups. That is, the focus is 
on determining if the thresholds are the same for 
the two groups. If studying an achievement or 
knowledge test, it should be asked if the items 
are equally difficult for the two groups, with the 
thresholds being used as measures of item 
difficulty (i.e., an item with a higher threshold is 
more difficult). These differences in thresholds 
are investigated by methods collectively called 
“methods for detecting differential item 
functioning (DIF)”. In common measurement 
practice this sort of measurement invariance is 
examined, for each item, one item at a time, 
using a DIF detection method such as the 
Mantel-Haenszel (MH) test or logistic regression 
(conditioning on the observed scores), or 
methods based on item response theory (IRT).  

The IRT methods investigate the 
thresholds directly whereas the non-IRT 
methods test the difference in thresholds 
indirectly by studying the observed response 
option proportions by using categorical data 
analysis methods such as the MH or logistic 
regression methods (see Zumbo & Hubley, 2003 
for a review). 
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Although both item- and scale-level 
methods are becoming popular in educational 
and psychosocial measurement, many 
researchers are still recommending and using 
only scale-level methods such as multi-group 
confirmatory factor analysis (for example, see, 
Byrne, 1998; Steenkamp & Baumgartner, 1998; 
Vandenberg & Lance, 2000). There are, of 
course, scale-level methods that allow one to 
incorporate and test for item threshold 
differences in multi-group confirmatory factor 
analysis; however, these methods are not yet 
widely used. Instead, the popular texts on 
structural equation modeling by Byrne as well as 
the widely cited articles by Steenkaump and 
Baumgartner, and Vandenberg and Lance focus 
on and instruct users of structural equation 
modeling on the use of Pearson covariance 
matrices and the Chi-squared tests for model 
comparison based on maximum likelihood 
estimation (For an example see Byrne, 1998, 
Chapter 8 on a description of multi-group 
methods and p. 239 of her text for a 
recommendation on using ML estimation with 
the type of data we are describing above). 

The question that this article addresses 
is reflected in the title: Do Differences in Item-
Level Characteristics Manifest Themselves in 
Scale-Level Measurement Invariance Tests of 
Multi-Group Confirmatory Factor Analyses? 
That is, if a researcher applies the conventional 
tests of scale-level measurement invariance 
through multi-group confirmatory factor 
analysis of a Pearson covariance matrix and 
maximum likelihood estimation to test 
hypotheses of strong and full measurement 
invariance when the researcher has the ordinal 
(often called Likert) response format described 
above, do these scale-level analyses reflect (or 
ignore) differences in item threshold 
characteristics? If one were a measurement 
specialist focusing on item-level analyses (e.g., 
an IRT specialist), another way of asking this 
question is: Does DIF, or other forms of lack of 
item parameter invariance such as item drift, 
manifest itself in construct comparability across 
groups? 

The present study is an extension of 
Zumbo (2003). A limitation of his earlier work 
is that it focused on the population analogue and 
did not investigate, as in this, the pattern and 

characteristics of the statistical decisions over 
the long run; i.e., over many replications. We 
study the rejection rates for a test of the 
statistical hypotheses in multi-group 
confirmatory factor analysis. 

 
Methodology 

 
A computer simulation was conducted to 
investigate whether item-level differences in 
thresholds manifest themselves in the tests of 
strong and full measurement invariance 
hypotheses in multi-group CFA of a Pearson 
covariance matrix with maximum likelihood 
estimation.  

Simulated was a one-factor model with 
38 items. Obtained was a population covariance 
matrix based on the data reported in Zumbo 
(2000, 2003) that were based on the item 
characteristics of a sub-section of the TOEFL. 
Based on this covariance matrix, 100,000 
simulees were generated on these 38 items with 
a multivariate normal distribution with marginal 
(univariate) means of zero and standard 
deviations of one. The simulation was restricted 
to a one-factor model because item-level 
methods (wherein differences in item thresholds, 
called DIF in that literature, is widely discussed) 
predominantly assume unidimensionality of 
their items, for example, IRT, MH, or logistic 
regression DIF methods.  

The same item thresholds were used as 
those used by Bollen and Barb (1981) in their 
study of ordinal variables and Pearson 
correlation. In short, this method partitions the 
continuum ranging from –3 to +3. The 
thresholds are those values that divide the 
continuum into equal parts. The example in 
Figure 1 is a three-point scale using the notation 
described above for the x* and x. Item thresholds 
were applied to these 38 normally distributed 
item vectors to obtain the ordinal item 
responses. 
 The simulation design involved two 
completed crossed factors: (i) number of scale 
points ranging from three to seven, and (ii) the 
percentage of items with different thresholds 
(i.e., percentage of DIF items) ranging from zero 
to 42.1 (1, 4, 8 and 16 items out of the total of 
38). 
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Three to seven item scale points were 
chosen because in order to only deal with those 
scale points for which Byrne (1998) and others 
suggest the use of Pearson covariance matrices 
with maximum likelihood estimation for ordinal 
item data. The resulting simulation design is a 
five by five completely crossed design. 

The differences in thresholds were 
modeled based on suggestions from the item 
response theory (IRT) DIF literature for binary 
items. That is, the IRT DIF literature (e.g., 
Zumbo, 2003; Zwick & Ercikan, 1989) suggests 
that an item threshold difference of 0.50 
standard deviations is a moderate DIF. This idea 
was extended and applied to each of the 
thresholds for the DIF item(s). For example, for 
a three-point item response scale group one 
would have thresholds of -1.0 and 1.0 whereas 
group two would have thresholds of –0.5 and 
1.5. Note that for both groups the latent 
variables are simulated with a mean of zero and 
standard deviation of one. The same principle 
applies for the four to seven point scales.  

 
 
 

 
 
Given that both groups have the same 

latent variable mean and standard deviation, the 
difference thresholds for the two groups (i.e., the 
DIF) would imply that the item(s) that is (are) 
performing differently across the two groups 
would have different item response distributions. 
It should be noted that the Bollen and Barb 
methodology results in symmetric Likert item 
responses that are normally distributed. The 
results in Table 1 allow one to compare the 
effect of having different thresholds in terms of 
the skewness and kurtosis.  

The descriptive statistics reported in 
Table 1 were computed from a simulated sample 
of 100,000 continuous normal scores that were 
transformed with our methodology. For a 
continuous normal distribution the skewness and 
kurtosis statistics reported would both be zero. 
Focusing first on the skewness, it can be see in 
Table 1 that they range from -0.008 to 0.011 
(with a common standard error of 0.008) 
indicating that, as expected, the Likert responses 
were  originally  near symmetrical. Applying the  

 
Figure 1. A Three Category, Two Threshold x and its corresponding x*. 
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threshold difference, as described above, 
resulted in item responses that were nearly 
symmetrical for three, six, and seven scale 
points, and only small positive skew (0.125 and 
0.105) for the four and five scale points. In terms 
of kurtosis, there is very little change with the 
different thresholds, except for the three-point 
scale that resulted in the response distribution 
being more platykurtic with the different 
thresholds.  

The items on which the differences in 
thresholds were modeled were selected 
randomly.  Thus in the four item condition, the 
item from the one-item condition was included 
and an additional three items were randomly 
selected. In the eight-item condition, the four 
items were included an additional four items 
were randomly selected, and so on.   

The sample size for the multi-group 
CFA was three hundred per group, a sample size 
that is commonly see in practice.  The number of 
replications for each cell in the simulation 
design was 100. The nominal alpha was set at 
.05 for each invariance hypothesis test.  It is 
important to note that the rejection rates reported 
in this paper are, technically, Type I error rates 
only for the “no DIF” conditions. In the other 
cases, when DIF is present, the rejection rates 
represent the likelihood of rejecting the null 
hypothesis    (for   each  of  the   full  and  strong 

 
 
 
measurement invariance hypotheses) when the 
null is true at the unobserved latent variable 
level, but not necessarily true in the manifest 
variables because the thresholds are different 
across the groups.   

For each replication the strong and full 
measurement invariance hypotheses were tested. 
These hypotheses were tested by comparing the 
baseline model (with no between group 
constraints) to each of the strong and full 
measurement invariance models. That is, strong 
measurement invariance is the equality of item 
loadings – Lambda X, and the full measurement 
invariance is the equality of both item loadings 
and uniquenesses, Lambda X and Theta-Delta, 
across groups.  For each cell, we searched the 
LISREL output for the 100 replications for 
warning or error messages.  

A one-tailed 95% confidence interval 
was computed for each empirical error rate. The 
confidence interval is particularly useful in this 
context because we have only 100 replications 
so we want to take into account sampling 
variability of the empirical error rate.  The upper 
confidence bound was compared to Bradley’s 
(1978) criterion of liberal robustness of error. If 
the upper confidence interval was .075 or less it 
met the liberal criterion. 
 

Table 1.  Descriptive Statistics of the Items without and without Different Thresholds. 
 

 Skewness Kurtosis 

# of Scale 

Points 

Original Different  

Thresholds 

Original Different  

Thresholds 

3 -0.001 -0.004  0.144 -0.364 

4 -0.008  0.125 -0.268 -0.294 

5  0.011  0.105 -0.211 -0.277 

6 -0.005  0.084 -0.185 -0.261 

7 -0.003  0.082 -0.169 -0.238 

 
Note: These statistics were computed from a sample of 100,000 responses using SPSS 11.5.  
In all cases, standard errors of the skewness and kurtosis were 0.008 and 0.015, respectively. 
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Results 
 
To determine whether the tests of strong and full 
measurement invariance (using the Chi-squared 
difference tests arising from using a Pearson 
Covariance matrix and maximum likelihood 
estimation in, for example, LISREL) are 
affected by differences in item thresholds we 
examined the level of error rates in each of the 
conditions of the simulation design. Table 2 lists 
the results of the simulation study.  Each tabled 
valued is the empirical error rate over the 100 
replications with 300 respondents per group 
(upon searching the output for errors and 
warnings produced by LISREL, one case was 
found of a non-positive definite theta-delta (TD) 
matrix for the study cells involving three scale 
points for the 2.9 and 21.1 percent of DIF items. 
The one replication with this warning was 
excluded from the calculation of the error rate 
and upper 95% bound for those two cells, 
therefore the cell statistics were calculated for 99  

 
 
replications for those two cases). The values in 
the range of Bradley’s liberal criterion are 
indicated in plain text type. Values that do not 
even satisfy the liberal criterion are identified 
with symbol ⇑.   
 The results show that almost all of the 
empirical error rates are within the range of 
Bradley’s liberal criterion. Only two cells have 
empirical error rates that exceed the upper 
confidence interval of .075. These two cells are 
for the three-scale-point condition. This suggests 
that the differences of item thresholds may have 
an impact on the full measurement invariance 
hypotheses in some conditions for measures 
with a three-point item response format, 
although this finding is seen in only two of the 
four conditions involving differences in 
thresholds. For scale points ranging from four to 
seven, the empirical error rates are either at or 
near the nominal error. Interestingly, the 
empirical error rates of the three scale points are 

 
Table 2.  Rejection Rates for the Full and Strong Measurement Invariance Hypotheses, with and without DIF Present. 
 

Number of scale points for the item response format 
Percentage of 
items having 
different 
thresholds 
across the two 
groups (% of 
DIF items) 

3 pt. 4pt. 5pt. 6pt. 7pt. 

0 (no DIF items) FI    .07 (.074)  
SI    .03 (.033) 

FI    .01 (.012) 
SI    .03 (.033) 

FI     .01 (.012) 
SI     .04 (.043) 

FI     .05 (.054) 
SI     .03 (.033) 

FI     .02 (.022) 
SI     .06 (.064)  

2.9 (1 item) FI    .09 (.095) ⇑ 
SI    .07 (.074) 

FI    .02 (.022) 
SI    .02 (.022) 

FI     .01 (.012) 
SI     .01 (.012) 

FI     .00 (.000) 
SI     .03 (.033) 

FI     .02 (.022) 
SI     .03 (.033) 

10.5 (4 items) FI    .04 (.043)  
SI    .06 (.064)  

FI    .03 (.033) 
SI    .02 (.022) 

FI     .03 (.033) 
SI     .04 (.043) 

FI     .03 (.033) 
SI     .06 (.064)  

FI     .03 (.033) 
SI     .07 (.074)  

21.1 (8 items) FI    .08 (.084) ⇑ 
SI    .04 (.043) 

FI    .00 (.000) 
SI    .00 (.000) 

FI     .04 (.043) 
SI     .04 (.043)  

FI     .02 (.022) 
SI     .01 (.012) 

FI     .02 (.022) 
SI     .07 (.074)  

42.1 (16 items) FI    .07 (.074)  
SI    .04 (.043) 

FI    .02 (.022) 
SI    .02 (.022) 

FI     .02 (.022) 
SI     .06 (.064)  

FI     .02 (.022) 
SI     .05 (.054) 

FI     .02 (.022) 
SI     .02 (.022) 

 
 
Note. The upper confidence bound is provided in parentheses next to the empirical error rate. The empirical error rates in 
the range of Bradley’s liberal criterion are indicated in plain text type whereas empirical error rates that do not even satisfy 
the liberal criterion are identified with symbol ⇑ and in bold font. 
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slightly inflated when a measure has 10.5 and 
21.1 percent (moderate amount) of DIF items.    
 

Conclusion 
 

The conclusion from this study is that when one 
is comparing groups’ responses to items that 
have a rating scale format in a multi-group 
confirmatory factor analysis of measurement 
invariance by using maximum likelihood 
estimation and a Pearson correlation matrix, one 
should ensure measurement equivalence by 
investigating item-level differences in 
thresholds. In addition, giving consideration 
only to the results of scale-level methods as 
evidence may be misleading because item-level 
differences may not manifest themselves in 
scale-level analyses of this sort. 
 Of course, the conclusions of this study 
apply to any situation in which one is (a) using 
rating scale (sometimes called Likert) items, and 
comparing two or more groups of respondents in 
terms of their measurement equivalence, 
however, it also provides further empirical 
support for the recommendation found in the 
International Test Commission Guidelines for 
Adapting Educational and Psychological Tests 
that researchers carry out empirical studies to 
demonstrate factorial equivalence of their test 
across groups and to identify any item-level DIF 
that may be present (see Hambleton & Patsula, 
1999; van de Vijver & Hambleton, 1996) and is 
an extension of previous studies by Zumbo 
(2000; 2003) comparing and item- and scale-
level methods.  
 Overall, the results demonstrate the 
inadequacy of judging the suitability of a 
measurement instrument across groups by only 
investigating the factor structure of the measure 
for the different groups with a Pearson 
covariance matrix and maximum likelihood 
estimation. It has been common to assume that if 
the factor structure of a test remains the same in 
a second group, then the measure functions the 
same and measurement equivalence is achieved. 
Evidence is provided that item level bias can 
still be present when a CFA of the two different 
groups reveals an equivalent factorial structure 
of rating scale items using a Pearson covariance 
matrix and maximum likelihood estimation. 
Since it is the scores from a test or instrument 

that are ultimately used to achieve the intended 
purpose, the scores may be contaminated by 
item level bias and, ultimately, valid inferences 
from the test scores become problematic. 
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addressed were: (a) factor extraction methods, (b) factor retention rules, (c) factor rotation strategies, and 
(d) saliency criteria for including variables. Many authors continue to use principal components 
extraction, orthogonal (varimax) rotation, and retain factors with eigenvalues greater than 1.0.  
 
Key words: Factor analysis, principal components, current practice 
 
 

Introduction 
 
Factor analysis has often been described as both 
an art and a science. This is particularly true of 
exploratory factor analysis (EFA), where 
researchers follow a series of analytic steps 
involving judgments more reminiscent of 
qualitative inquiry, an irony given the 
mathematical sophistication underlying EFA 
models.  

A number of issues must be considered 
before invoking EFA, such as sample size and 
the relationships between measured variables 
(see Tabachnick & Fidell, 2001, for an 
overview). Once EFA is determined to be 
appropriate, researchers must consider carefully 
decisions related to: (a) factor extraction 
methods, (b) rules for retaining factors, (c) factor 
rotation strategies, and (d) saliency criteria for 
including variables. There is considerable 
latitude regarding which methods may be 
appropriate or desirable in a particular analytic 
scenario (Fabrigar, Wegener, MacCallum, & 
Strahan, 1999). 
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Factor Extraction Methods 
 There are numerous methods for 
initially deriving factors, or components in the 
case of principal component (PC) extraction. 
Although some authors (Snook & Gorsuch, 
1989) have demonstrated that certain conditions 
involving the number of variables factored and 
initial communalities lead to essentially the 
same conclusions, the unthinking use of PC as 
an extraction mode may lead to a distortion of 
results. Stevens (1992) summarizes the views of 
prominent researchers, stating that: 
 

When the number of variables is 
moderately large (say > 30), and the 
analysis contains virtually no variables 
expected to have low communalities 
(e.g., .4), then practically any of the 
factor procedures will lead to the same 
interpretations. Differences can occur 
when the number of variables is fairly 
small (< 20), and some communalities 
are low. (p. 400) 

 
Factor Retention Rules 

Several methods have been proposed to 
evaluate the number of factors to retain in EFA. 
Although the dominant method seems to be to 
retain factors with eigenvalues greater than 1.0, 
this approach has been questioned by numerous 
authors (Zwick & Velicer, 1986; Thompson & 
Daniel, 1996). Empirical evidence suggests that, 
while under-factoring is probably the greater 



EXPLORATORY FACTOR ANALYSIS 284 

danger, sole reliance on the eigenvalues greater 
than 1.0 criterion may result in retaining factors 
of trivial importance (Stevens, 1992). Other 
methods for retaining factors may be more 
defensible and perhaps meaningful in 
interpreting the data. Indeed, after reviewing 
empirical findings on its utility, Preacher and 
McCallum (2003) reported that “the general 
conclusion is that there is little justification for 
using the Kaiser criterion to decide how many 
factors to retain” (p. 23). 

 
Factor Rotation Strategies 

Once a decision has been made to retain 
a certain number of factors, these are often 
rotated in a geometric space to increase 
interpretability. Two broad options are available, 
one (orthogonal) assuming the factors are 
uncorrelated, and the second (oblique) allowing 
for correlations between the factors. Although 
the principal of parsimony may tempt the 
researcher to assume, for the sake of ease of 
interpretability, uncorrelated factors, Pedhazur 
and Shmelkin (1991) argued that both solutions 
should be considered. Indeed, it might be argued 
that it rarely is tenable to assume that 
multidimensional constructs, such as self-
concept, are comprised of dimensions that are 
completely independent of one another. 
Although interpretation of factor structure is 
somewhat more complicated when using oblique 
rotations, these methods may better honor the 
reality of the phenomenon being investigated. 

 
Saliency Criteria for Including Variables 

Many researchers regard a factor 
loading (more aptly described as a pattern or 
structure coefficient) of ⎥.3⎥ or above as worthy 
of inclusion in interpreting factors (Nunnally, 
1978). This rationale is predicated on a rather 
arbitrary decision rule that 9% of variance 
accounted for makes a variable noteworthy. In a 
similar vein, Stevens (1992) offered ⎥.4⎥ as a 
minimum for variable inclusion as this means 
the variable shares at least 15% of its variance 
with a factor. Others (Cliff & Hamburger, 1967) 
argue for the statistical significance of a variable 
as an appropriate criterion for inclusion. As 
Hogarty, Kromrey, Ferron, and Hines (in press) 
noted, “although a variety of rules of thumb of 

this nature are venerable, they are often ad hoc 
and ill advised.” 
 
Purpose of the Study 

This article does not attempt to provide 
an introduction to the statistical and conceptual 
intricacies of EFA techniques, as numerous 
excellent resources are available that address 
these topics (e.g., Gorsuch, 1983; Stevens, 1992; 
Tabachnick & Fidell, 2001; Thompson, 2004). 
Rather, the focus is on the practices of EFA 
authors with respect to the above issues. Three 
of the four important EFA analytic decisions 
described above are treated by default in SPSS 
and SAS. These programs are the most widely 
used analytic platforms in psychology. When 
conducting EFA in either program, one is guided 
to (a) use PC as the extraction method of choice, 
(b) use eigenvalues greater than 1.0 to retain 
factors, and (c) use orthogonal (varimax) 
procedures for rotation of factors. Only the 
fourth decision, variable retention, is left solely 
to the preference of the investigator. 

EFA practices in two prominent 
psychological measurement journals were 
examined: Educational and Psychological 
Measurement (EPM) and Personality and 
Individual Differences (PID) over a six-year 
period. These journals were chosen because of 
their prominence in the field of measurement 
and the prolific presence of EFA articles within 
their pages. In addition, EPM is known for 
publishing factor analytic studies across a 
diverse array of specialization areas in education 
and psychology. While PID is concerned 
primarily with the study of personality, it 
publishes a great deal of international studies 
from diverse institutions. These features 
strengthen the external validity of the present 
findings.  

 
Methodology 

 
An electronic search was conducted using the 
PsycInfo database for EPM and PID studies 
published from January of 1998 to October 2003 
that contained the key word ‘factor analysis.’ 
After screening out studies that employed only 
confirmatory factor analysis or examined the 
statistical properties of EFA or CFA approaches 
using simulated data sets, a total of 184 articles 
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were identified. In some instances the authors 
conducted two or more EFA analyses on split 
samples. For the present purposes these were 
coded as separate studies. This resulted in 212 
studies that invoked EFA models. Variables 
extracted from the EFA articles were: 

 
a) factor extraction methods; 
b) factor retention rules; 
c) factor rotation strategies; and 
d) saliency criteria for including variables. 

 
Results 

 
Factor Extraction Methods 

The most common extraction method 
employed (64%) was principal components 
(PC). The next most popular choice was 
principal axis (PA) factoring (27%). Techniques 
such as maximum likelihood were infrequently 
invoked (6%). A modest percentage of authors 
(8%) conducted both PC and PA methods on 
their data and compared the results for similar 
structure.  
 
Factor Extraction Rules 

The most popular method used for 
deciding the number of factors to retain was the 
Kaiser criterion of eigenvalues greater than 1.0. 
Over 45% of authors used this method. Close 
behind in frequency of usage was the scree test 
(42%). Use of other methods, such as percent of 
variance explained logics and parallel analysis, 
was comparatively infrequent (about 8% each). 
Many authors (41%) explored multiple criteria 
for factor retention. Among these authors, the 
most popular choice was a combination of the 
eigenvalues greater than 1.0 and scree methods 
(67%).  
 
Factor Rotation Strategies 

Virtually all of the EFA studies 
identified (96%) invoked some form of factor 
rotation solution. Varimax rotation was most 
often employed (47%), with Oblimin being the 
next most common (38%). Promax rotation also 
was used with a modest degree of frequency 
(11%). A number of authors (18%) employed 
both Varimax and Oblimin solutions to examine 
the influence of correlated factors on the 
resulting factor pattern/structure matrices. 

Saliency Criteria for Including Variables 
Thirty-one percent of EFA authors did 

not articulate a specific criterion for interpreting 
salient pattern/structure coefficients, preferring 
instead to examine the matrix in a logical 
fashion, considering not only the size of the 
pattern/structure coefficient, but also the 
discrepancy between coefficients for the same 
variable across different factors (components) 
and the logical “fit” of the variable with a 
particular factor. 

Of the 69% of authors who identified an 
a priori criterion as an absolute cutoff, 27% 
opted to interpret coefficients with a value of 
⎥.3⎥ or higher, while 24% chose the ⎥.4⎥ value. 
Other criteria chosen with modest frequency 
(both about 6%) included ⎥.35⎥ and ⎥.5⎥ as 
absolute cutoff values. For the remaining authors 
who invoked an absolute criterion, values ranged 
from ⎥.25⎥ to ⎥.8⎥. A few (3%) of these values 
were determined based on the statistical 
significance of the pattern/structure coefficient. 
 

Conclusion 
 

Not surprisingly, the hegemony of default 
settings in major statistical packages continues 
to dominate the pages of EPM and PID. The 
Little Jiffy model espoused by Kaiser (1970), 
wherein principal components are rotated to the 
varimax criterion and all components with 
eigenvalues greater than 1.0 is alive and well. It 
should be noted that this situation is almost 
certainly not unique to EPM or PID authors. An 
informal perusal of a wide variety of educational 
and psychological journals that occasionally 
publish EFA results easily confirms the status of 
current practice. 

The rampant use of PC as an extraction 
method is not surprising given its status as the 
default in major statistical packages. Gorsuch 
(1983) has pointed out that, with respect to 
extraction methods, PC and factor models such 
as PA often yield comparable results when the 
number of variables is large and communalities 
(h2) also are large. Although comforting, authors 
are well advised to consider alternative 
extraction methods with their data even when 
these assumptions are met. When these 
assumptions are not met, such as “when the rank 
of the factored matrix is small, there is 
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considerable measurement error, measurement 
error is not homogeneous across variables, and 
sampling error is small due to larger sample size, 
other extraction methods have more appeal” 
(Thompson & Daniel, 1996, p. 202, italics 
added).  

 The eigenvalues greater than 1.0 
criterion was the most popular option for EFA 
analysts. A number of researchers, however, 
combined both the eigenvalues greater than 1.0 
criterion and the scree test in combination, 
which is interesting inasmuch as both methods 
consult eigenvalues, only in different ways. A 
likely explanation is that both can be readily 
obtained in common statistical packages.  

Other approaches to ascertaining the 
appropriate number of factors (components) 
such as parallel analysis (Horn, 1965) and the 
bootstrap (Thompson, 1988) are available, as are 
methods based on standard error scree (Zoski & 
Jurs, 1996). Each of these methods, however, 
requires additional effort on the part of the 
researcher. However, EFA authors should 
consider alternatives for factor retention in much 
the same way that CFA authors consult the 
myriad fit indices available in model assessment. 
As Thompson and Daniel noted, “The 
simultaneous use of multiple decision rules is 
appropriate and often desirable” (p. 200). 

For authors invoking an absolute 
criterion for retaining variables, the ⎥.3⎥ level 
and the ⎥.4⎥ were by far the most popular. 
Researchers who feel compelled to set such 
arbitrary criteria often look to textbook authors 
to guide their choice. The latter criterion can be 
traced to Stevens (1992), who stated that “It 
would seem that one would want in general a 
variable to share at least 15% of its variance 
with the construct (factor) it is going to be used 
to help name. This means only using loadings 
(sic) which are about .4 or greater for 
interpretation purposes” (p. 384). The former 
rule appears to be attributable to Nunnally 
(1982), who claimed that “It is doubtful that 
loadings (sic) of any smaller size should be 
taken seriously, because they represent less than 
10 percent of the variance” (p. 423).  

One-third of EFA authors chose not to 
adhere to a strict, and ultimately arbitrary, 
criterion for variable inclusion. Rather, these 
researchers considered the pattern/structure 

coefficients within the context of the entire 
matrix, applying various logics such as simple 
structure and a priori inclusion of variables. A 
(very) few authors considered the statistical 
significance of the coefficients in their 
interpretation of salient variables. 

Two problems with this approach are 
that (a) with very large samples even trivial 
coefficients will be statistically significant, and 
(b) variables that are meaningfully influenced by 
a factor may be disregarded because of a small 
sample size. The issue of determining the 
salience of variables based on their contribution 
to a model mirrors that of the debate over 
statistical significance and effect size. If 
standards are invoked based solely on the 
statistical significance of a coefficient, or 
alternatively, are set based on a strict criterion 
related to the absolute size of a coefficient 
related to its variance contribution, it would 
seem that we would “merely be being stupid in 
another metric” (Thompson, 2002, p. 30). 

Despite criticisms that the technique is 
often employed in a senseless fashion (e.g., 
Preacher & MacCallum, 2003), EFA provides 
researchers with a valuable inductive tool for 
exploring the dimensionality of data provided it 
is used thoughtfully. The old adage that factor 
analysis is as much an art as a science is no 
doubt true. But few artists rely on unbending 
rules to create their work, and authors who 
employ EFA should be mindful of this fact.     
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Simulations were used to compare complete case analysis of ordinal data with including multivariate 
normal imputations. MVN methods of imputation were not as good as using only complete cases. Bias 
and standard errors were measured against coefficients estimated from logistic regression and a standard 
data set. 
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Introduction 

 
Surveys are important sources of information in 
epidemiologic studies and other research as well, 
but often encounter missing data (Patricia, 
2002). Ordinal variables are very common in 
survey research; however, they challenge 
primary data collectors who might need to 
impute missing values of these variables due to 
their hierarchical nature but with unequal 
intervals. 

The traditional approach, complete case 
analysis (CC), excludes from the analysis 
observations with any missing value among 
variables of interest (Yuan, 2000). CC remains 
the most common method in the absence of 
readily available alternatives in software 
packages. However, using only complete cases 
could result in losing information about 
incomplete cases, thus biasing parameter  
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estimates, and compromising statistical power 
(Patricia, 2002). Multiple imputation (MI) 
procedure replaces each missing value with m 
plausible values generated under an appropriate 
model. These m multiply imputed datasets are 
then analyzed separately by using procedures for 
complete data to obtain desired parameter 
estimates and standard errors. Results from the 
m analyses are then combined for inferences by 
computing the mean of the m parameter 
estimates and a variance estimate that include 
both a within-imputation and a between-
imputation component (Rubin, 1987).  

MI has some desirable features, such as 
introducing appropriate random error into the 
imputation process and making it possible to 
obtain unbiased estimates of all parameters; 
allowing use of complete-data methods for data 
analysis; producing more reasonable estimates 
of standard errors and thereby increasing 
efficiencies of estimates (Rubin, 1987). In 
addition, MI can be used with any kind of data 
and any kind of analysis without specialized 
software (Allison, 2000). MI appears to be a 
more attractive method handling missing data in 
multivariate analysis compared to CC (King et 
al., 2001; Little & Rubin, 1989).  

However, certain requirements should 
be met to have its attractive properties. First, the 
data must be missing at random (MAR). Second, 
the model used to generate the imputed values 
must be correct in some sense. Third, the model 
used for the analysis must catch up, in some 
sense, with the model used in the imputation 
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(Allison, 2000). All these conditions have been 
rigorously described by Rubin (1987) and 
Schafer (1997). The problem is that it is easy to 
violate these conditions in practice.  

The purpose of this study was to 
investigate how well multivariate normal 
(MVN) based MI deals with non-normal missing 
ordinal covariates in multiple logistic regression, 
while there is definite violation against the 
distributional assumptions of the missing 
covariates for the imputation model.  

Simulated scenarios were created for the 
comparison assuming various missing rates for 
the covariates (5%, 15% and 30%) and different 
missing data mechanisms: missing completely at 
random (MCAR), missing at random (MAR) 
and missing nonignorable (NI). The 
performance of MVN based MI was compared 
to CC in each scenario. 

 
Methodology 

 
The mechanism that leads to values of certain 
variables being missing is a key element in 
choosing an appropriate analysis and 
interpreting the results (Little & Rubin, 1987).  

In sample survey context, let Y denote 
an n × p matrix of multivariate data, which is 
not fully observed. Let Yobs denote the set of 
fully observed values of Y and Ymis denote the 
set containing missing values of Y, i.e., Y = 
(Yobs,Ymis ).  

Rubin (1976) introduced a missing data 
indicator matrix R. The (i, j)th element Rij = 1 if 
Yij is observed; and Rij = 0 if Yij is missing. The 
notation of missing data mechanisms was 
formalized in terms of a model for the 
conditional distribution P(R | Y, ζ) of R given Y 
according to whether the probability of response 
depends on Yobs or Ymis or both, where ζ is an 
unkown parameter.  

Data are MCAR, if the distribution of R 
does not depend on Yobs or Ymis; that is P(R |Y, 
ζ) = P(R | ζ) for all Y. In this case, the observed 
values of Y form a random subset of all the 
sampled values of Y. Data are MAR if the 
distribution of R depends on the data Y only 
through the observed values Yobs; that is, P(R|Y, 
ζ) = P(R|Yobs, ζ) for all Ymis. MAR implies 
missing depends on observed covariates and 
outcomes, or missingness can be predicted by 

observed information. MCAR is a special case 
of MAR. The missing data mechanism is 
ignorable for likelihood-based inferences for 
both MCAR and MAR (Little & Rubin, 1987). 
Missing NI occurs when the probability of 
response of Y depends on the value of Ymis and 
possibly the value of Yobs as well.  

The data used in this investigation are 
from the 1997 South Carolina Youth Risk 
Behavior Survey (SCYRBS). The total number 
of complete and partial questionnaires collected 
is 5545. The survey employed a two-stage 
cluster sampling with derived weightings 
designed to obtain a representative sample of all 
South Carolina public high school students in 
grades 9-12, with the exception of those in 
special education schools. The survey ran from 
March until June 1997. 

The questionnaire covers six categories 
of priority health-risk behaviors required by the 
Center for Disease Control and Prevention, and 
locally, two additional psychological categories 
of questions were added that include quality of 
life and life satisfaction (Valois, Zulling, 
Huebner & Drane, 2001). The six categories of 
priority health-risk behaviors among youth and 
young adults are those that contribute to 
unintentional and intentional injuries; tobacco 
use; alcohol and other drug use; sexual 
behaviors; dietary behaviors and physical 
inactivity (Kolbe, 1990).  

The items on self-report youth risk 
behaviors are Q10 through Q20. The six life-
satisfaction variables, Q99 through Q104, are 
based on six domains: family, friends, school, 
self, living environment and overall life 
satisfaction. Each of the questions has seven 
response options based on the Multidimensional 
Students’ Life Satisfaction Scale (Seligson, 
Huebner & Valois, 2003). The response options 
are from the Terrible-to-Delighted Scale: 1 - 
terrible; 2 - unhappy; 3 - mostly dissatisfied; 4 - 
equally satisfied and dissatisfied; 5 - mostly 
satisfied; 6 - pleased; and 7 - delighted (10).  

The four race-gender groups: White 
Females (WF, 26.7%), White Males (WM, 
26.0%), Black Females (BF, 26.0%) and Black 
Males (BM, 21.3%) accounted for almost equal 
percentage in the sample. The sample was due to 
the belief that the relationship between life 
satisfaction and youth risk behaviors varies 
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across different race-gender groups, as 
demonstrated in previous research (Valois, 
Zulling, Huebner & Drane, 2001). 
 
Multiple Logistic Regression Analysis  

Exploring the relationship between life 
satisfaction and youth risk behaviors powered 
this study. Three covariates in ordinal scale were 
selected from the 1997 SCYRBS Questionnaire 
(see the Appendix for details). They were 
dichotomized as Q10: DRKPASS (Riding with a 
drunk driver); Q14: GUNSCHL (Carrying a gun 
or other weapon on school property) and Q18: 
FIGHTIN (Physical fighting), respectively. Each 
of them was coded “1” for “never” (0 time) and 
“2” for “ever” (equal to or greater than 1 time), 
with “1” as the referent level. All the six ordinal 
variables of life satisfaction (Q99 ~ Q104) were 
pooled for each participant to form a pseudo-
continuous dependent variable ranging in score 
from 6 to 42, i.e., “Lifesat = Q99 + Q100 + 
Q101 + Q102 + Q103 + Q104”. The score was 
expressed as Satisfaction Score (SS) with lower 
scores indicative of reduced satisfaction with life 
(Valois, Zulling, Huebner & Drane, 2001). SS 
ranging from 6 to 27 was categorized as 
dissatisfied. For the dichotomized outcome 
variable D2, the students in dissatisfied group 
(D2 = 1) served as the risk group and the others 
as the referent group (D2 = 0).  

As defined, all the four variables used in 
logistic regression were dichotomized. 
DRKPASS, GUNSCHL and FIGHTIN were 
used as predictor variables while D2 was chosen 
as the response or criterion variable. The three 
predictor variables are each independently 
associated with life dissatisfaction with odds 
ratios (OR) ranging from 1.42 to 2.27; they are 
also associated with each other with odds ratios 
ranging from 2.22 to 4.52.  

To use the sampling design in multiple 
logistic regression analysis, dichotomous 
logistic regression (PROC MULTILOG) was 
conducted using SAS-callable Survey Data 
Analysis (SUDAAN) for weighted data at an 
alpha level of 0.05 (Shah, Barnwell & Bieler, 
1997) (See Appendix.). The analyses were done 
separately for the four race-gender groups, and 
the regression coefficient (β) and the standard 
error of the regression coefficient (Se (β)) for 
each covariate were obtained. 

Simulations  
Simulations were applied to compare the 

performance of CC and MI in estimating 
regression.  Create a complete standard dataset. 
The SAS MI procedure was used to impute the 
very few missing values in the youth risk 
behavior variables (Q10 through Q20) and the 
six life-satisfaction variables (Q99 through 
Q104) in the 1997 SCYRBS Dataset once, 
because missing percentages of these variables 
are very low, ranging from 0.13% to 4.11%. The 
resulting dataset was regarded as the Complete 
Standard Dataset in the simulations. This dataset 
was considered the true gold standard and some 
values of the three variables related to the three 
predictors in logistic regression were set to be 
missing. The PROC MI code (see Appendix) 
used to create the Complete Standard Dataset 
was the same as that used to impute values for 
missing covariates except that missing values 
were imputed five times in the simulations. The 
distributions of the three ordinal covariates in 
the Complete Standard Dataset were also 
examined. The three covariates are all highly 
skewed instead of being approximately normal 
(Figure 1). 

 
Simulating datasets with missing covariates 
 Three missing data mechanisms were 
simulated: MCAR, MAR and NI. For the case of 
MCAR, each simulated sample began by 
randomly deleting a certain percentage of the 
values of Q10, Q14 and Q18 from the Complete 
Standard Dataset such that the three covariates 
were missing at the same rate (5%, 15% and 
30%).  

For MAR, a certain percentage of values 
of Q10 were removed from the Complete 
Standard Dataset with a probability related to the 
outcome variable (D2) and the other two 
variables Q14 and Q18. For the NI condition, a 
certain percentage of values of Q10 were 
removed such that the larger values of Q10 were 
more likely to be missing, as in real datasets 
some covariates corresponding to sensitive 
matters, whether large or small, their responses 
are often more likely to be missing (Wu & Wu, 
2001). For all the scenarios assuming MAR and 
NI, Q14 and Q18 were randomly removed 
assuming MCAR at the same rate as Q10.  
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Figure 1. Distribution of the three covariates in the Complete Standard Dataset. 
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Nine scenarios were created where the 
covariates Q10 (DRKPASS), Q14 (GUNSCHL) 
and Q18 (FIGHTIN) were missing at the same 
rate (5%, 15% and 30%), the life-satisfaction 
variables (Q99 ~ Q104) were complete as in the 
Complete Standard Dataset, however. In each 
scenario 500 datasets with missing covariates 
were generated. Table 1 lists the missing data 
mechanisms for the covariates, and the average 
percentage of complete cases (all the three 
covariates complete) in the 500 datasets for each 
scenario. All the simulations were performed 
using SAS version 8.2 (2002).  

 
Multiple Imputation 

The missing covariates in each 
simulated dataset were then imputed five times 
using the SAS MI procedure (see Appendix). 
First, initial parameter estimates were obtained 
by running the Expectation-Maximization (EM) 
algorithm until convergence up to a maximum 
of 1000 iterations. Using the EM estimates as 
starting values, 500 cycles were ran of Markov 
Chain Monte Carlo (MCMC) full-data 
augmentation under a ridge prior with the 
hyperparameter set to 0.75 to generate five 
imputations. A multivariate normal model was 
applied to the data augmentation for the non-
normal ordinal data without trying to meet the 
distributional assumptions of the imputation 
model.  

Three auxiliary variables (Q11, Q13 and 
Q19) as well as the outcome variable D2 were 
entered into the imputation model as if they 
were jointly normal, to increase the accuracy of 
the imputed values of Q10, Q14 and Q18 
(Allison, 2000; Schafer, 1997 & 1998; Rubin, 
1996).  

The maximum and minimum values for 
the imputed values were specified, which were 
based on the scale of the response options for the 
1997 SCYRBS questions. These specifications 
were necessary so that the imputations were not 
made outside of the range of the original 
variables. The continuously distributed imputes 
for Q10, Q14 and Q18 were rounded to the 
nearest category using a cutoff value of 0.5.  
 
 
 
 

Inferences from CC and MI  
For inference from CC, multiple logistic 

regression analysis was performed for each of 
the 500 datasets with missing covariates. The 
estimates for β and Se (β) for CC in each 
scenario were the average of the 500 estimates 
from the 500 incomplete datasets, respectively. 
For inference from MI, The point estimate of β 
was first obtained from the five imputed dataset 
estimates; and Se (β) was obtained by 
combining the within-imputation variance and 
between-imputation variance from the five 
repeated imputations (Rubin, 1987; SAS 
Institute, 2002). The estimates for β and Se (β) 
for MI in each scenario were the average of the 
500 point estimates of β and the 500 combined 
Se (β), respectively.  
 
Comparison of complete case and multiple 
imputation model results  

To compare the performance of CC and 
MI, biases and standard errors of point estimates 
were mainly considered. Each regression 
coefficient calculated from the Complete 
Standard Dataset was taken as the true 
coefficient and those from CC and MI in each 
scenario were compared to the true ones. Bias is 
expressed as estimate from CC or MI minus the 
estimate from the Complete Standard Dataset, 
i.e., estimated β − β true value. The average 
absolute value of bias (AVB) of β for each 
covariate was compared between the two 
methods for the same race-gender group.  
 

Results 
 
The missing values in the risk behavior and life-
satisfaction variables were imputed, and the 
resulting dataset was defined as the Complete 
Standard Dataset as if it was originally 
complete. Table 2 contains the estimates and 
standard errors of the regression coefficients 
from the 1997 SCYRBS dataset together with 
those from the Complete Standard Dataset. 
Given the low percentages of missing variables 
in 1997 SCYRBS dataset and thus the few cases 
omitted from the CC, the results from the two 
datasets are very similar. 
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An example is presented from 

comparing CC and MI across the nine scenarios 
among White Females in table 3. The histogram 
of the average AVB of β for each covariate in 
this example is shown in figure 2. To evaluate 
the the imputation procedure, the absolute value 
of bias in point estimates and coverage 
probability were mainly considered. The 
coverage probability is defined as the possibility 
of the true regression coefficient β being 
covered by the actual 95 percent confidence 
interval. Further, the percent AVB of β for each 
covariate, calculated by dividing AVB by the 
corresponding true β, better compares the two 
methods with regard to bias. Greater or equal 
to10% of bias is beyond acceptance. 

 
Both CC and MI produced biased 

estimates of β in all the scenarios. CC showed 
little or no bias for all the scenarios under 
MCAR. The AVB of β for each covariate is 
consistently less than 0.05 for all the three 
covariates even with about 34% complete cases 
(30% missing for each covariate). However, CC 
showed larger AVB’s of β in the scenarios under 
MAR and NI than in those under MCAR with 
the same missing covariate rates. Further, MI 
was generally less successful than CC because 
MI showed larger AVB’s of β than CC in most 
of the scenarios regardless of missing data 
mechanism and missing covariate rate. (Results 
for the other three race-gender groups not shown 
here.) 

 
Table 1. Simulated scenarios for datasets with missing covariates. 

Missing data mechanism for each covariate 

Scenario 

Missing 
percentage of 

each 
covariate  

Average 
percentage of 

complete 
cases 

Q10 
(DRKPASS) 

Q14 
(GUNSCHL) 

Q18 
(FIGHTIN) 

1 5% 85.73% MCAR MCAR MCAR 
2 5% 85.42% MAR MCAR MCAR 
3 5% 85.55% NI MCAR MCAR 
4 15% 61.34% MCAR MCAR MCAR 
5 15% 61.19% MAR MCAR MCAR 
6 15% 62.54% NI MCAR MCAR 
7 30% 34.22% MCAR MCAR MCAR 
8 30% 34.30% MAR MCAR MCAR 
9 30% 34.10% NI MCAR MCAR 

 
Table 2. Logistic regression coefficients and standard error estimates in the 1997 SCYRBS Dataset and the 
Complete Standard Dataset. 

DRKPASS GUNSCHL FIGHTIN  
Group 

  β * Se( β ) †  β  Se( β )   β   Se( β )  

White female 
N=1359 (1361) ‡  

0.14 
(0.16) 

0.10 
(0.11) 

0.99 
(0.94) 

0.21 
(0.23) 

0.88 
(0.84) 

0.16 
(0.16) 

Black female 
N=1335 (1336) 

0.03 
(0.02) 

0.14 
(0.14) 

0.69 
(0.63) 

0.28 
(0.24) 

0.36 
(0.45) 

0.15 
(0.16) 

White male 
N=1338 (1340) 

0.32 
(0.25) 

0.17 
(0.16) 

0.10 
(0.32) 

0.17 
(0.15) 

0.43 
(0.53) 

0.13 
(0.11) 

Black male 
N=1119 (1119) 

0.43 
(0.35) 

0.16 
(0.14) 

0.95 
(0.94) 

0.20 
(0.23) 

0.32 
(0.52) 

0.11 
(0.11) 

* β, logistic regression coefficient. 
† Se (β), standard error of logistic regression coefficient.  
‡ Numbers in parentheses, sample size, logistic regression coefficient and standard error of logistic 
regression coefficient from the Complete Standard Dataset.  
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Figure 2. Average AVB’s (absolute value of bias) of logistic regression coefficients across the nine scenarios among 
White Females. S1 ~ S9 represent Scenario1 ~ Scenario 9, respectively. 
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Table 3. Comparison of complete case and multiple imputation model results across the nine scenarios among 
White Females. 
 

DRKPASS 
β *true value = 0.16 

Se (β) true value = 0.11 

GUNSCHL 
β true value = 0.94 

Se (β) true value = 0.23 

FIGHTIIN 
β true value = 0.84 

Se (β) true value = 0.16 
 

AVB ‡ Se(β) † AVB  Se(β) AVB  Se(β)  
CC 0.0082 0.1178 0.0075 0.2574 0.0033 0.1740 Scenario 1 
MI 0.0043 0.1088 0.0306 0.2414 0.0613 0.1627 
CC 0.0132 0.1190 0.0148 0.2725 0.0198 0.1768 

Scenario 2 
MI 0.0329 0.1094 0.0044 0.2448 0.0280 0.1602 
CC 0.0189 0.1162 0.0462 0.2712 0.0295 0.1759 

Scenario 3 
MI 0.0004 0.1061 0.0324 0.2470 0.0725 0.1593 
CC 0.0116 0.1467 0.0182 0.3302 0.0046 0.1964 

Scenario 4 
MI 0.0133 0.1151 0.0893 0.2591 0.1732 0.1574 
CC 0.0286 0.1521 0.0504 0.3666 0.0802 0.2039 

Scenario 5 
MI 0.1437 0.1166 0.0339 0.2610 0.0815 0.1555 
CC 0.0667 0.1451 0.0633 0.3517 0.0724 0.2105 

Scenario 6 
MI 0.0315 0.1137 0.0996 0.2628 0.1800 0.1556 
CC 0.0194 0.2097 0.0390 0.4840 0.0111 0.2478 

Scenario 7 
MI 0.0279 0.1237 0.1083 0.2704 0.3118 0.1523 
CC 0.0138 0.1991 0.0335 0.4312 0.1002 0.2347 

Scenario 8 
MI 0.2718 0.1227 0.0660 0.2738 0.0575 0.1500 
CC 0.0323 0.2227 0.0261 0.5611 0.0951 0.2661 

Scenario 9 
MI 0.0771 0.1344 0.1278 0.2828 0.3126 0.1506 

* β, logistic regression coefficient. 
† Se (β), standard error of logistic regression coefficient. 
‡ AVB, absolute value of bias  (| estimated β − β true value |).  

 
Table 4. Coverage probability in Scenarios 2 and 8 for White Females. 

 
 DRKPASS (%) GUNSCHL (%) FIGHTIN (%) 

CC 96.8 96.4 95.0 Scenario 2 
MI 94.2 99.0 93.8 
CC 95.0 94.0 87.0 

Scenario 8 
MI 77.0 90.4 88.2 

 
Table 5. Average Correct Imputation Rate for the three covariates. 

 
Original scale (%) Recoded (%) Transformation 

*  
Scenario 

Q10 Q14 Q18 DRKPASS GUNSCHL FIGHTIN 
2 15.94 83.20 31.40 47.81 86.77 49.20 Without  
8 21.25 83.22 29.21 41.05 86.75 47.39 
2 40.04 89.47 50.80 65.14 92.11 66.00 

With  
8 52.40 89.54 50.75 65.52 91.81 63.22 
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Also, in most scenarios the percent AVB 
of β from MI is far greater than that from CC 
and is greater than 10% of acceptance level. This 
discrepancy was especially obvious for all the 
scenarios under MCAR (Scenarios 1, 4 and 7). 
Moreover, the AVB’s and percent AVB’s from 
MI increase substantially as larger proportions 
of the covariates were missing. Interestingly, MI 
showed consistently decreased Se (β) for each 
covariate in all the scenarios, which is not 
surprising, because the standard error of MI is 
based on full datasets (Allison, 2001).  

Table 4 lists the coverage probabilities 
in Scenarios 2 and 8 among White Females as an 
example. In both scenarios, the coverage 
probabilities from MI are not all better than 
those from CC. 

Clearly, the current MVN based 
multiple imputation did not perform as well as 
CC in generating unbiased regression estimates. 
To investigate how well the present MI actually 
imputed the missing non-normal ordinal 
covariates, Scenarios 2 and 8 were used to check 
the imputation efficiency, as the two scenarios 
have the same setting for missing data 
mechanism but different missing covariate rates. 
The Average Correct Imputation Rate is 
calculated as the average proportion of correctly 
imputed observations among the missing 
covariates. Correct imputation occurs when the 
imputed value is identical to its true value in the 
Complete Standard Dataset. Table 5 displays the 
Average Correct Imputation Rates for the three 
covariates in both original scales (Q10, Q14 and 
Q18) and recoded scales (DRKPASS, 
GUNSCHL and FIGHTIN).  

The Average Correct Imputation Rates 
for Q10 and Q18 are lower than 32% in both 
scenarios. Recoding helped to improve 
imputation efficiency for all the three covariates, 
this can be explained by the loss of precision 
after recoding. Surprisingly, the Average Correct 
Imputation Rates for Q14 (GUNSCHL) are very 
close in the two scenarios. In addition, they are 
consistently and considerably higher than those 
for the other two covariates. This may be 
explained by the fact that a vast majority of its 
observations fall into one category (figure 1).  

Natural logarithmic transformation on 
the three covariates was also attempted before 
multiple imputation to approximate normal 

variables and to fit the distributional 
assumptions of the imputation model. The 
Average Correct Imputation Rates for Q10 and 
Q18 in original and recoded scales in both 
scenarios improved as compared to before the 
transformation, but still not satisfactory (below 
53%). Nevertheless, the majority of Q4 (above 
89%) in both scales have been correctly 
imputed.   

Also examined was the effect of 
rounding on imputation efficiency, because the 
continuously distributed imputes have been 
rounded to the nearest category using a cutoff 
value 0.5 to preserve their ordinal property. For 
illustration an example is presented using a 
random dataset with missing covariates created 
in Scenario 8. The 50th ~ 65th observations of 
Q10 in this dataset are listed in table 6 along 
with their five imputed values in the same 
manner as in the simulations but without 
rounding the continuous imputed values. A large 
proportion (34 out of 50) of the imputed values 
is in different categories from their true values 
after being rounded using the cutoff value 0.5.  

The prevalence of dissatisfaction, D2 = 
1, ranges from 0.58% to 6.95% among the four 
race-gender groups. Interestingly, even with 
such low frequencies of the outcome (D2 = 1), 
all the covariates are significantly related to the 
outcome with odds of dissatisfaction with the 
trait present ranges from 1.42 to 2.27 times the 
same odds when the trait is absent. The three 
traits DRKPASS, GUNSCHL and FIGHTIN are 
strongly associated with each other with odds 
ratios between the traits ranging from 2.22 to 
4.52. The significant associations between the 
four variables support these four variables as 
objects of our study of imputations on their 
values and whether imputation removes biases 
under these conditions. 

In this study, CC showed smaller bias in 
the scenarios assuming MCAR for each 
covariate than in those with MAR and NI, 
regardless of proportions of missing covariates. 
This is consistent with the study by Allison 
(2000). The finding that the scenarios under NI 
showed relatively large biases in CC as 
compared to the MCAR conditions is also in 
accordance with King et al. (2001).  
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Accumulating evidence suggests that MI 

is usually better than, and almost always not 
worse than CC (Wu & Wu, 2001; Schafer, 1998; 
Allison, 2001; Little, 1992). Evidence provided 
by Schafer (1997, 2000) demonstrated that 
incomplete categorical (ordinal) data can often 
be imputed reasonably from algorithms based on 
a MVN model. However, our study did not show 
consistent results with the findings from 
Schafer, this is mainly due to ignorance of 
assumption of normality.    

It is known that sensitivity to model 
assumptions is an important issue regarding the 
consistency and efficiency of normal maximum 
likelihood method applied to incomplete data. 
The improved, though unsatisfactory, imputation 
after natural logarithmic transformation 
presented a good demonstration of the 
importance of sensitivity to normal model 
assumption.  

Moreover, normal ML methods do not 
guarantee consistent estimates, and they are 
certainly not necessarily efficient when the data  
 

 
 
 
are non-normal (Little, 1992). The MVN based 
MI procedure not specifically tailored to highly 
skewed ordinal data may have seriously 
distorted the ordinal variables’ distributions or 
their relationship with other variables in our 
study, and therefore is not reliable when 
imputing highly skewed ordinal data.  

It was suggested that and highly skewed 
variables may well be transformed to 
approximate normality (Tabachnick & Fidell, 
2000). Nevertheless, highly skewed ordinal 
variables with only four or five values can 
hardly be transformed to nearly normal variables 
as shown by the unsatisfactory imputation 
efficiencies after natural logarithmic 
transformation. This study gives a warning that 
doing imputation without checking distributional 
assumptions of imputation model can lead to 
worse trouble than not imputing at all. 

In addition, rounding after MI should be 
further explored in terms of appropriate cutoff 
values. One is cautioned that rounding could 
also bring its own bias into regression analysis 
in multiple imputations of categorical variables.  

 
Table 6. Five Imputations for missing Q10 without rounding on imputed values from one random dataset in 
Scenario 8. 
 

Imputation number 
Obs. Q10 

True 
value 1 2 3 4 5 

50 2 2      
51 . 1 1.7823 * 1.6022 * 1.7633 * 1.8180 * 1.3918 
52 2 2      
53 . 1 1.3587 2.0277  1.8274 * 1.6079 * 1.4763 
54 . 2 2.1264 2.4809 2.3249 2.0099 2.0358 
55 . 1 1.7062 * 1.6104 * 1.6476 * 1.5978 * 1.6790 * 
56 1 1      
57 . 1 1.4641 1.8700 * 1.5210 * 1.2140 1.5401 * 
58 . 1 1.9022 * 1.8579 * 1.6802 * 1.7611 * 1.5634 * 
59 1 1      
60 1 1      
61 . 1 1.5195 * 1.6148 * 1.5551 * 1.9029 * 1.5423 * 
62 . 1 1.6313 * 1.6186 * 1.7034 * 1.4602 1.8294 * 
63 . 1 1.6788 * 1.6553 * 1.6355 * 1.6657 * 1.5695 * 
64 . 2  1.7022  2.0307  1.7366 1.4447 *  1.8448 
65 1 1      
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Conclusion 
 

Applied researchers can be reasonably confident 
in utilizing CC to generate unbiased regression 
estimates even when large proportions of data 
missing completely at random. For ordinal 
variables with highly skewed distributions, 
MVN based MI cannot be expected to be 
superior to CC in generating unbiased regression 
estimates. It is cautionary that researchers doing 
imputation without checking distributional 
assumptions of imputation model can get into 
worse trouble than not imputing at all. 
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Appendix A: 1997 SCYRBS Questionnaire items associated with the three covariates in regression analysis 
  
Question 10 (Q10). During the past 30 days, how many times did you ride in a car or other vehicle driven by 
someone who had been drinking alcohol?  
1. 0 times  
2. 1 time  
3. 2 or 3 times  
4. 4 or 5 times  
5. 6 or more times  
 
Question 14 (Q14). During the past 30 days, on how many days did you carry a weapon such as a gun, knife, or 
club on school property?  
1. 0 days  
2. 1 day  
3. 2 or 3 days  
4. 4 or 5 days  
5. 6 or more days 
  
Question 18 (Q18). During the past 12 months, how many times were you in a physical fight?  
1. 0 times  
2. 1 time  
3. 2 or 3 times  
4. 4 or 5 times  
5. 6 or 7 times  
6. 8 or 9 times  
7. 10 or 11 times  
8. 12 or more times  
 

Appendix B: SAS Code 
SAS PROC MI code for multiple imputation  
proc mi data=first.c&I out=outmi&I seed=6666 nimpute=5 
minimum=1 1 1 1 1 1 0  maximum=5 5 5 5 8 5 1 round=1 noprint; 
em maxiter=1000 converge=1E-10; 
mcmc impute=full initial=em prior=ridge=0.75 niter=500 nbiter=500; 
freq weight; 
var Q10 Q11 Q13 Q14 Q18 Q19 D2;  
run; 
 

Appendix C: SUDAAN Code 
SUDAAN PROC MULTILOG code for multiple logistic regression analysis  
Proc multilog data=stand filetype=sas design=wr noprint;   
nest stratum psu; 
weight weight; 
subpopn sexrace=1  / name=”white female”; 
subgroup D2 drkpass gunschl fightin; 
levels 2 2 2 2; 
reflevel drkpass=1 gunschl=1 fightin=1; 
model D2 = drkpass gunschl fightin; 
output beta sebeta/filename=junk_2 filetype=sas; 
run;  
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JMASM16: Pseudo-Random Number Generation In R For Some Univariate 

Distributions 
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An increasing number of practitioners and applied researchers started using the R programming system in 
recent years for their computing and data analysis needs. As far as pseudo-random number generation is 
concerned, the built-in generator in R does not contain some important univariate distributions. In this 
article, complementary R routines that could potentially be useful for simulation and computation 
purposes are provided. 
 
Key words: Simulation; computation; pseudo-random numbers 
 
 

Introduction 
 
Following upon the work of Demirtas (2004), 
pseudo-random generation functions written in 
R for some univariate distributions are 
presented. The built-in pseudo-random number 
generator in R does not have routines for some 
important univariate distributions. Built-in codes 
are available only for the following univariate 
distributions: uniform, normal, chi-square, t, F, 
lognormal, exponential, gamma, Weibull, 
Cauchy, beta, logistic, stable, binomial, negative 
binomial, Poisson, geometric, hypergeometric 
and Wilcoxon.  

The purpose of this article is to provide 
complementary R routines for generating 
pseudo-random numbers from some univariate 
distributions. In the next section, eighteen R 
functions of which the first thirteen correspond 
to the distributions that are not contained in the 
generator (Codes 1-13) are presented. The 
quality of the resulting variates have not been 
tested in the  computer  science sense.  However, 
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the first three moments for each distribution 
were rigorously tested. For the purposes of most 
applications, fulfillment of this criterion should 
be a reasonable approximation to reality. The 
last 5 functions (Codes 14-18) address already 
available univariate distributions; the reason for 
their inclusion is that variates generated with 
these routines are of a slightly better quality than 
those generated by the built-in code in terms of 
above-mentioned criterion.  

 
Functions for random number generation 
 The following abbreviations are used: 
PDF stands for the probability density function; 
PMF stands for the probability mass function; 
CDF stands for the cumulative distribution 
function; GA stands for the generation algorithm 
and EAA stands for an example of application 
areas; nrep stands for the number of identically 
and independently distributed random variates. 
The formal arguments other than nrep reflect the 
parameters in PDF or PMF. E(X) and V(X) 
denote the expectation and the variance of the 
random variable X, respectively. 
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Left truncated normal distribution 
 

PDF: 

2 2( ) /(2 )

( | , , )
2 (1 ( ))

xe
f x

µ σ

µ σ τ τ µπσ
σ

− −

= −− Φ
 

for τ≤x<∞ where Φ() is the standard normal 
CDF, µ, σ and τ are the mean, standard 
deviation and left truncation point, respectively. 
EAA: Modeling the tail behavior in simulation 
studies. GA: Robert’s (1995) acceptance/ 
rejection algorithm with a shifted exponential as 
the majorizing density. For µ=0 and σ=1, 
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, V(X) is a complicated 

function of τ (see Code 1). 
 
 
 
 
 
 
 

 
 
 
 
 
 

Left truncated gamma distribution 
 
PDF: 

1 /

/

1
( | , )
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xf x x eα β

α
τ β

α β
α α β

− −=
Γ − Γ

 

for τ≤x<∞, α>1 and min(τ,β)>0 where α and β 
are the shape and scale parameters, respectively, 
τ is the cutoff point at which truncation occurs 
and Γτ/β is the incomplete gamma function. 

EAA: Modeling left-censored data. GA: An 
acceptance/rejection algorithm (Dagpunar, 
1978) where the majorizing density is chosen to 
be a truncated exponential.  
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. 

The procedure works best when τ is small (see 
Code 2). 
 
 

 
 

 
 
 
 

 
Code 1.  Left truncated normal distribution: 

 
draw.left.truncated.normal<-function(nrep,mu,sigma,tau){ 
if (sigma<=0){ 
stop("Standard deviation must be positive!\n")} 
lambda.star<-(tau+sqrt(tau^2+4))/2 
accept<-numeric(nrep) ; for (i in 1:nrep){ 
sumw<-0 ; while (sumw<1){ 
y<-rexp(1,lambda.star)+tau 
gy<-lambda.star*exp(lambda.star*tau)*exp(-lambda.star*y) 
fx<-exp(-(y-mu)^2/(2*sigma^2))/(sqrt(2*pi)*sigma*(1-pnorm((tau-
mu)/sigma))) 
ratio1<-fx/gy ; ratio<-ratio1/max(ratio1) 
u<-runif(1); w<-(u<=ratio) ; accept[i]<-y[w]; sumw<-sum(w)}} 
accept} 
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Laplace (double exponential) distribution 

 PDF: f(x)= 
λ
2e-λ|x-α|  for λ>0, where 

α and λ are the location and scale parameters, 
respectively. EAA: Monte Carlo studies of robust 
procedures, because it has a heavier tail than the 
normal distribution. GA: A sample from an 
exponential distribution with mean λ is 
generated, then the sign is changed with 1/2 
probability and the resulting variates get shifted 

by α. E(X)=α, V(X)=2/λ2 (see Code 3).  
 
Inverse Gaussian distribution 
 PDF: 

2

2

( )

1/ 2 3/ 2 2( | , ) ( )
2

x

xf x x e
λ µ

µλµ λ
π

−−
−=  for x≥0, 

µ>0, λ>0, where µ and λ are the location and 
scale parameters, respectively. EAA: Reliability 
studies. GA: An acceptance/rejection algorithm 
developed by Michael et al. (1976). E(X)=µ, 

V(X)=µ3/λ (see Code 4).  
 

 
 
 
 
 
 
 

 
 
Von Mises distribution 

 PDF: ( )

0

1
( | )

2 ( )
Kcos xf x K e

I Kπ
=  for -

π≤x≤π and K>0, where I0(K)  is a modified 

Bessel function of the first kind of order 0. EAA: 
Modeling directional data. GA: 
Acceptance/rejection method of Best and Fisher 
(1979) that uses a transformed folded Cauchy 
distribution as the majorizing density. E(X)=0 
(see Code 5).  
 
Zeta (Zipf) distribution 

 PDF: 
1

( | )
( )

f x
xαα

ζ α
=  for 

x=1,2,3,... and α>1, where 
1

( )
x

x αζ α
∞

−
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=∑  

(Riemann zeta function). EAA: Modeling the 
frequency of random processes. GA: 
Acceptance/rejection algorithm of Devroye 
(1986). 
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(see Code 6). 
 

 
Code 2:  Left truncated gamma distribution 

 
draw.left.truncated.gamma<-function(nrep,alpha,beta,tau){ 
if (tau<0){stop("Cutoff point must be positive!\n")} 
if ((alpha<=1)){stop("Shape parameter must be greater than 1!\n")} 
if ((beta<=0)){stop("Scale parameter must be positive!\n")} 
y<-numeric(nrep); for (i in 1:nrep){ 
index<-0 ; scaled.tau<-tau/beta 
lambda<-(scaled.tau-alpha+sqrt((scaled.tau-
alpha)^2+4*scaled.tau))/(2*scaled.tau) 
while (index<1){ 
u<-runif(1); u1<-runif(1) ; y[i]<-(-log(u1)/lambda)+tau 
w<-((1-lambda)*y[i]-(alpha-1)*(1+log(y[i])+log((1-lambda)/(alpha-
1)))<=-log(u)) 
index<-sum(w)}} ; y<-y*beta 
y} 
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Code 3.  Laplace (double exponential) distribution: 

 
draw.laplace<-function(nrep, alpha, lambda){ 
if (lambda<=0){stop("Scale parameter must be positive!\n")} 
y<-rexp(nrep,lambda) 
change.sign<-sample(c(0,1), nrep, replace = TRUE) 
y[change.sign==0]<--y[change.sign==0] ; laplace<-y+alpha 
laplace} 
 
 

 
Code 4.  Inverse Gaussian distribution: 

 
draw.inverse.gaussian<-function(nrep,mu,lambda){ 
if (mu<=0){stop("Location parameter must be positive!\n")} 
if (lambda<=0){stop("Scale parameter must be positive!\n")} 
inv.gaus<-numeric(nrep); for (i in 1:nrep){ 
v<-rnorm(1) ; y<-v^2 
x1<-mu+(mu^2*y/(2*lambda))-(mu/(2*lambda))*(sqrt(4*mu*lambda*y+mu^2*y^2)) 
u<-runif(1) ; inv.gaus[i]<-x1 
w<-(u>(mu/(mu+x1))) ; inv.gaus[i][w]<-mu^2/x1} 
inv.gaus} 

 
 

Code 5.  Von Mises distribution: 
 

draw.von.mises<-function(nrep,K){ 
if (K<=0){stop("K must be positive!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
u1<-runif(1) ; u2<-runif(1); u3<-runif(1) 
tau<-1+(1+4*K^2)^0.5 ; rho<-(tau-(2*tau)^0.5)/(2*K) 
r<-(1+rho^2)/(2*rho) ; z<-cos(pi*u1) 
f<-(1+r*z)/(r+z) ; c<-K*(r-f) 
w1<-(c*(2-c)-u2>0) ; w2<-(log(c/u2)+1-c>=0) 
y<-sign(u3-0.5)*acos(f) ; x[i][w1|w2]<-y 
index<-1*(w1|w2)}} 
x} 
 

 
Code 6.  Zeta (Zipf) distribution 

 
draw.zeta<-function(nrep,alpha){ 
if (alpha<=1){stop("alpha must be greater than 1!\n")} 
zeta<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
u1<-runif(1) ; u2<-runif(1) 
x<-floor(u1^(-1/(alpha-1))) ; t<-(1+1/x)^(alpha-1) 
w<-x<(t/(t-1))*(2^(alpha-1)-1)/(2^(alpha-1)*u2) 
zeta[i]<-x ; index<-sum(w)}} 
zeta} 

 



PSEUDO-RANDOM NUMBER GENERATION IN R 304 

Logarithmic distribution 

 PMF: ( | )
(1 )

x

f x
xlog

θθ
θ

= −
−

 for 

x=1,2,3,... and 0<θ<1. EAA: Modeling the 
number of items processed in a given period of 
time. GA: The chop-down search method of 

Kemp (1981). 
1

( )
(1 ) (1 )

E X
log

θ
θ θ

−=
− −

, 

2

2 2

(1 )
( )

(1 ) ( (1 ))

log
V X

log

θ θ θ
θ θ

− − −=
− −

 (see Code 7).  

 
 
 

 
 
 
 

 
 
 
 
 
 
 

Beta-binomial distribution 

PMF: 
1! 11( | , , ) (1 )

!( )! ( , )0

n n xxf x n d
x n x B

βαα β π π π
α β

+ − −− += −∫−
 

for x=0,1,2,..., α>0 and β>0, where n is the 
sample size, α and β are the shape parameters 
and B(α,β) is the complete beta function. EAA: 
Modeling overdispersion or extravariation in 
applications where clusters of separate binomial 
distributions. GA: First π is generated as the 
appropriate beta and then it is used as the 

success probability in binomial. E(X)= 
nα

α+β

, 2

( )
( )

( ) ( 1)

n n
V X

αβ α β
α β α β

+ +=
+ + +

 (see Code 8).  

 
 
 
 

 
 
 
 
 
 
 

 
Code 7. Logarithmic distribution: 

 
draw.logarithmic<-function(nrep,theta){ 
if ((theta<=0)|(theta>1)){stop("theta must be between 0 and 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; x0<-1 ; u<-runif(1) 
while (index<1){t<--(theta^x0)/(x0*log(1-theta)) 
px<-t ; w<-(u<=px) ; x[i]<-x0 ; u<-u-px 
index<-sum(w) ; x0<-x0+1}} 
x} 

 
 

Code 8.  Beta-binomial distribution: 
 

draw.beta.binomial<-function(nrep,alpha,beta,n){ 
if ((alpha<=0)|(beta<=0)){stop("alpha and beta must be positive!\n")} 
if (floor(n)!=n){stop("Size must be an integer!\n")} 
if (floor(n)<2){stop("Size must be greater than 2!\n")} 
beta.variates<-numeric(nrep) ; beta.binom<-numeric(nrep) 
for (i in 1:nrep){ 
beta.variates[i]<-rbeta(1,alpha,beta) 
beta.binom[i]<-rbinom(1,n,beta.variates[i])} 
beta.binom} 
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Rayleigh distribution 

PDF: 
2 2/ 2

2
( | ) xx

f x e σσ
σ

−=  for x≥0 

and σ>0, where σ is the scale parameter. EAA: 
Modeling spatial patterns. GA: The inverse CDF 

method. E(X)=σ π/2 , 

V(X)=σ2(4-π)/2 (see Code 9).  
 
Pareto distribution 

PDF: f(x|a,b)= 
aba

xa+1  for 

0<b≤x<∞ and a>0, where a and b are the shape 
and location parameters, respectively. EAA: 
Gene filtering in microarray experiments. GA: 

The inverse CDF method. E(X)= 
ab
a-1 , 

2

2( )
( 2)( 1)

ab
V X

a a
=

− −
. The procedure works 

best when a and b are not too small (see Code 
10). 

 
 

Non-central t distribution 

Describes the ratio 
Y

 U/ν
 where U is a 

central chi-square random variable with ν 
degrees of freedom and Y is an independent 
normally distributed random variable with 
variance 1 and mean λ. EAA: Thermodynamic 
stability scores. GA: Based on arithmetic 

functions of normal and χ2 variates. 
(( 1) / 2)

( ) / 2
( / 2)

E X
νλ ν

ν
Γ −=

Γ
, 

2 2( ) (1 ) ( )V X v Xλ= + − Ε (see Code 11). 
 
 
 
 
 
 
 
 
 

 
Code 9.  Rayleigh distribution: 

 
draw.rayleigh<-function(nrep,sigma){ 
if (sigma<=0){stop("Standard deviation must be positive!\n")} 
u<-runif(nrep); rayl<-sigma*sqrt(-2*log(u)) 
rayl} 
 
 

Code 10:  Pareto distribution: 
 

draw.pareto<-function(nrep,shape,location){ 
if (shape<=0){stop("Shape parameter must be positive!\n")} 
if (location<=0){stop("Location parameter must be positive!\n")} 
u<-runif(nrep) ; pareto<-location/(u^(1/shape)) 
pareto} 

 
 

Code 11.  Non-central t distribution: 
 

draw.noncentral.t<-function(nrep,nu,lambda){ 
if (nu<=1){stop("Degrees of freedom must be greater than 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
x[i]<-rt(1,nu)+(lambda/sqrt(rchisq(1,nu)/nu))} 
x} 
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Non-central chi-squared distribution 
PDF: 

( ) / 2 / 2 1

/ 2
0

( )
( | , )

2 4 ! ( / 2)
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k
k

e x x
f x

k k

λ ν

ν
λλ ν

ν

− + − ∞

=
=

Γ +∑

 for 0≤x≤∞, λ>0 and ν>1, where λ is the non-
centrality parameter and ν is degrees of freedom. 
Both λ and ν can be non-integers. EAA: 
Wavelets in biomedical imaging. GA: Based on 
the sum of squared standard normal deviates. 
E(X)=λ+ν, V(X)=4λ+2ν (see Code 12).  
 
 
 
 
 
 
 
 
 

 

Doubly non-central F distribution 
 Describes the ratio of two scaled non-

central χ2 variables; that is, F= 
X

2
1/n

X
2
2/m

 for 

X
2
1∼χ2(n,λ1)  and X

2
2∼χ2(m,λ2) , where n 

and m are numerator and denumerator degrees of 
freedom, respectively; λ1 and λ2 are the 

numerator and denumerator non-centrality 
parameters, respectively. EAA: Biomedical 
microarray studies. GA: Simple ratio of non-

central χ2 variables adjusted by corresponding 
degrees of freedom. E(X) and V(X) are too 
complicated to include here (see Code 13).  
 

 
 

 

 
Code 12.  Non-central chi-squared distribution: 

 
draw.noncentral.chisquared<-function(nrep,df,ncp){ 
if (ncp<0){stop("Non-Centrality parameter must be non-negative!\n")} 
if (df<=1){stop("Degrees of freedom must be greater than 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
df.int<-floor(df) ; df.frac<-df-df.int 
mui<-sqrt(ncp/df.int) ; jitter<-0 
if (df.frac!=0){jitter<-rchisq(1,df.frac)} 
x[i]<-sum((rnorm(df.int)+mui)^2)+jitter} 
x} 

 
 

Code 13.  Doubly non-central F distribution: 
 

draw.noncentral.F<-function(nrep,df1,df2,ncp1,ncp2){ 
if (ncp1<0){stop("Numerator non-centrality parameter must be non-
negative!\n")} 
if (ncp2<0){stop("Denominator non-centrality parameter must be non-
negative!\n")} 
if (df1<=1){stop("Numerator degrees of freedom must be greater than 
1!\n")} 
if (df2<=1){ 
stop("Denominator degrees of freedom must be greater than 1!\n")} 
x<-draw.noncentral.chisquared(nrep,df1,ncp1)/ 
draw.noncentral.chisquared(nrep,df2,ncp2) 
x} 
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Standard t distribution 
 PDF: 

2
( 1) / 2

1
( )

2( | ) (1 )
( )
2

x
f x ν

ν

ν ν ννπ
− +

+Γ
= +

Γ
 for  

-∞<x<∞, where ν is the degrees of freedom and 
Γ() is the complete gamma function. GA: A 
rejection polar method developed by Bailey 

(1994). E(X)=0, ( ) ,
2

v
V X

v
=

−
(see Code 14). 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Weibull distribution 

 PDF: 1 ( / )( | , ) xf x x e
αα β

α
αα β
β

− −=  for 

0≤x<∞ and min(α,β)>0, where α and β are the 
shape and scale parameters, respectively. EAA: 
Modeling lifetime data. GA: The inverse CDF 
method.   

          2 2

E(X)= (1+1/ )  ,  

( ) (1 2 / ) (1 1/ )V X

α β
α α β⎡ ⎤= Γ + − Γ +⎣ ⎦

, 

(see Code 15).   
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
Code 14.  Standard t distribution: 

 
draw.t<-function(nrep,df){ 
if (df<=1){stop("Degrees of freedom must be greater than 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
v1<-runif(1,-1,1) ; v2<-runif(1,-1,1); r2<-v1^2+v2^2 
r<-sqrt(r2) ; w<-(r2<1) 
x[i]<-v1*sqrt(abs((df*(r^(-4/df)-1)/r2))) 
index<-sum(w)}} 
x} 
 
 

Code 15.  Weibull distribution: 
 

draw.weibull<-function(nrep, alpha, beta){ 
if ((alpha<=0)|(beta<=0)){ 
stop("alpha and beta must be positive!\n")} 
u<-runif(nrep) ; weibull<-beta*((-log(u))^(1/alpha)) 
weibull} 
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Gamma distribution when α<1 

PDF: 1 /1
( | , )

( )
xf x x eα β

αα β
α β

− −=
Γ

 

for 0≤x<∞, min(α,β)>0, where α and β are the 
shape and scale parameters, respectively. EAA: 
Bioinformatics. GA: An acceptance/rejection 
algorithm developed by Ahrens and Dieter 
(1974) and Best (1983). It works when α<1. 

E(X)=αβ, V(X)=αβ2 (see Code 16).  
 
 

Gamma distribution when α>1 
 PDF: Same as before. EAA: 
Bioinformatics. GA: A ratio of uniforms method 
introduced by Cheng and Feast (1979). It works 

when α>1. E(X)=αβ, V(X)=αβ2 (see Code 
17). 
 
 
 
 
 
 

 
Code 16.  Gamma distribution when α<1 

 
draw.gamma.alpha.less.than.one<-function(nrep,alpha,beta){ 
if (beta<=0){stop("Scale parameter must be positive!\n")} 
if ((alpha<=0)|(alpha>=1)){ 
stop("Shape parameter must be between 0 and 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
u1<-runif(1) ; u2<-runif(1) 
t<-0.07+0.75*sqrt(1-alpha) ; b<-1+exp(-t)*alpha/t 
v<-b*u1 ; w1<-(v<=1) ; w2<-(v>1) 
x1<-t*(v^(1/alpha)) ; w11<-(u2<=(2-x1)/(2+x1)) 
w12<-(u2<=exp(-x1)) ; x[i][w1&w11]<-x1[w1&w11] 
x[i][w1&!w11&w12]<-x1[w1&!w11&w12] 
x2=-log(t*(b-v)/alpha) ; y<-x2/t 
w21<-(u2*(alpha+y*(1-alpha))<=1) 
w22<-(u2<=y^(alpha-1)) ; x[i][w2&w21]<-x2[w2&w21] 
x[i][w2&!w21&w22]<-x2[w2&!w21&w22] 
index<-1*(w1&w11)+1*(w1&!w11&w12)+1*(w2&w21)+1*(w2&!w21&w22)}} 
x<-beta*x 
x} 
 
 

Code 17.  Gamma distribution when α>1: 
 
draw.gamma.alpha.greater.than.one<-function(nrep,alpha,beta){ 
if (beta<=0){stop("Scale parameter must be positive!\n")} 
if (alpha<=1){stop("Shape parameter must be greater than 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
u1<-runif(1); u2<-runif(1) 
v<-(alpha-1/(6*alpha))*u1/((alpha-1)*u2) 
w1<-((2*(u2-1)/(alpha-1))+v+(1/v)<=2) 
w2<-((2*log(u2)/(alpha-1))-log(v)+v<=1) 
x[i][w1]<-(alpha-1)*v ; x[i][!w1&w2]<-(alpha-1)*v 
index<-1*w1+1*(!w1&w2)}} 
x<-x*beta 
x} 
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Beta distribution when max(α,β)<1 
 PDF: 

1 11
( | , ) (1 )

( , )
f x x x

B
α βα β

α β
− −= −  for 

0≤x≤1, 0≤α<1 and 0≤β<1, where α and β are 
the shape parameters and B(α,β) is the complete 
beta function. EAA: Analysis of biomedical 
signals. GA: An acceptance/rejection algorithm 
developed by Johnk (1964). It works when both 

parameters are less than 1. E(X)= 
α

α+β , 

2
( )

( ) ( 1)
V X

αβ
α β α β

=
+ + +

 (see Code 18).  

 
 

 
 
Results for arbitrarily chosen parameter values 

For each distribution, the parameters can 
take infinitely many values and first two 
moments virtually fluctuate on the entire real 
line. The quality of random variates was tested 
by a broad range of simulations to see any 
potential aberrances and abnormalities in some 
subset of the parameter domains and to avoid 
any selection biases. The empirical and 
theoretical moments for arbitrarily chosen 
parameter values are reported in Table 1 and 2. 

Table 1 tabulates the theoretical and 
empirical means for each distribution for 
arbitrary values. Throughout the table, the 
number of replications (nrep) is chosen to be 
10,000. A similar comparison is made for the 
variances, as shown in Table 2. In both tables, 
the deviations from the expected moments are 

found to be negligible, suggesting that random 
number generation routines presented are 
accurate. These routines could be a handy 
addition to a practitioner’s set of tools given the 
growing interest in R. However, the reader is 
invited to be cautious about the following issues: 
1) It is not postulated that algorithms presented 
are the most efficient. Furthermore, 
implementation of a given algorithm may not be 
optimal. Given sufficient time and resources, 
one can write more efficient routines. 2) Quality 
of every random number generation process 
depends on the uniform number generator.  

 
 
 
 

 
 
McCullough (1999) raised some 

questions about the quality of Splus generator. 
At the time of this writing, a source that tested 
the R generator is unknown to the author. In 
addition, the differences between empirical and 
distributional moments have merely been 
examined for each distribution. More 
comprehensive and computer science-minded 
tests are needed possibly using DIEHARD suite 
(Marsaglia, 1995) or other well-regarded test 
suites.  
 
 
 
 
 
 
 

 
Code 18.  Beta distribution when max(α,β)<1: 

 
draw.beta.alphabeta.less.than.one<-function(nrep,alpha,beta){ 
if ((alpha>=1)|(alpha<=0)|(beta>=1)|(beta<=0)) { 
stop ("Both shape parameters must be between 0 and 1!\n")} 
x<-numeric(nrep) ; for (i in 1:nrep){ 
index<-0 ; while (index<1){ 
u1<-runif(1) ; u2<-runif(1) 
v1<-u1^(1/alpha) ; v2<-u2^(1/beta) 
summ<-v1+v2 ; w<-(summ<=1) 
x[i]<-v1/summ ; index<-sum(w)}} 
x} 
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Table 1:   Comparison of theoretical and empirical means for arbitrarily chosen parameter values. 
 

Distribution Parameter(s) Theoretical mean Empirical mean 
Left truncated normal µ=0, σ=1, τ=0.5 1.141078 1.143811 
Left truncated gamma α=4, β=2, τ=0.5 8.002279 8.005993 

Laplace α=4, λ=2 4 3.999658 
Inverse Gaussian µ=1, λ=1 1 1.001874 

Von Mises K=10 0 0.002232 
Zeta (Zipf) α=4 1.110626 1.109341 

Logarithmic θ=0.6 1.637035 1.637142 
Beta-binomial α=2, β=3, n=10 4 4.016863 

Rayleigh σ=4 5.013257 5.018006 
Pareto a=5, b=5 6.25 6.248316 

Non-central t ν=5, λ=1 1.189416 1.191058 
Non-central Chi-

squared 
ν=5, λ=2 7 7.004277 

Doubly non-central F n=5, m=10, λ
1
=2, λ

2
=3 0.667381 0.666293 

Standard t ν=5 0 0.001263 
Weibull α=5, β=5 4.590844 4.587294 

Gamma with α<1 α=0.3, β=0.4 0.12 0.118875 
Gamma with α>1 α=3, β=0.4 1.2 1.200645 

Beta with α<1 and β<1 α=0.7, β=0.4 0.636363 0.636384 
 

Table 2:   Comparison of theoretical and empirical variances for arbitrarily chosen parameter values. 

 
Distribution Parameter(s) Theoretical variance Empirical variance 

Left truncated normal µ=0, σ=1, τ=0.5 0.603826 0.602914 
Left truncated gamma α=4, β=2, τ=0.5 15.98689 15.86869 

Laplace α=4, λ=2 0.5 0.502019 
Inverse Gaussian µ=1, λ=1 1 0.997419 

Zeta (Zipf) α=4 0.545778 0.556655 
Logarithmic θ=0.6 1.412704 1.4131545 

Beta-binomial α=2, β=3, n=10 6 6.001696 
Rayleigh σ=4 6.867259 6.854438 
Pareto a=5, b=5 2.604167 2.604605 

Non-central t ν=5, λ=1 1.918623 1.903359 
Non-central Chi-

squared 
ν=5, λ=2 18 18.09787 

Doubly non-central F n=5, m=10, λ
1
=2, λ

2
=3 0.348817 0.346233 

Standard t ν=5 1.666667 1.661135 
Weibull α=5, β=5 1.105749 1.098443 

Gamma with α<1 α=0.3, β=0.4 0.048 0.047921 

Gamma with α>1 α=3, β=0.4 0.48 0.481972 

Beta with α<1 and β<1 α=0.7, β=0.4 0.110193 0.110126  
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JMASM17: An Algorithm And Code For Computing Exact Critical Values 
 For Friedman’s Nonparametric ANOVA 

 
Sikha Bagui     Subhash Bagui 

The University of West Florida, Pensacola                   
 
 
Provided in this article is an algorithm and code for computing exact critical values (or percentiles) for 
Friedman’s nonparametric rank test for k  related treatment populations using Visual Basic (VB.NET). 
This program has the ability to calculate critical values for any number of treatment populations ( k ) and 
block sizes ( )b at any significance level ( )α . We developed an exact critical value table for 2(1)5k =  and 

2(1)15b = . This table will be useful to practitioners since it is not available in standard nonparametric 
statistics texts. The program can also be used to compute any other critical values. 
 
Key words: Friedman’s test, randomized block designs (RBD), ANOVA, Visual Basic 
 
 

Introduction 
 
While experimenting (or dealing) with 
randomized block designs (RBDs) (or one-way 
repeated measures designs), if the normality of 
treatment populations or the assumptions of 
equal variances are not met, or the data are in 
ranks, it is recommended that Friedman’s rank-
based nonparametric test be used as an 
alternative to the conventional F  test for the 
RBD (or one-way repeated measures analysis of 
variance) for k  related treatment populations. 
This test was developed by Friedman (1937), 
and was designed to test the null hypothesis that 
all the k  treatment populations are identical 
versus the alternative that at least two of the 
treatment populations differ in location. This test 
is based on a  statistic  that  is  a rank analogue  
of   SST (total  sum of squares)  for the RBD and 
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is computed in the following manner. After the 
data from a RBD are obtained, the observed 
values in each block b are ranked from 1 (the 
smallest in the block) to k  (the largest in the 
block). Let iR  denote the sum of the ranks of 

the values corresponding to treatment population 
i , 1, 2, ,i k= � . Then the Friedman’s test 
statistic is given by 
 

 2

1

12
3 ( 1)

( 1)

k

r i
i

F R b k
bk k =

= − +
+ ∑ . 

 
If the null hypothesis is true, it is expected that 
the rankings be randomly distributed within each 
block. If that is the case, the sum of the rankings 
in each treatment population will be 
approximately equal, and the resulting value of 

rF  will be small.  

If the alternative hypothesis is true, the 
expectation is that this will to lead to differences 
among the iR  values and obtain correspondingly 

large values of rF . Thus, the null hypothesis is 

rejected in favor of the alternative hypothesis for 
large values of rF . Exact null sampling 

distribution of rF  is not known. But, as with the 

Kruskal-Wallis (1952) statistic, the null 
distribution of the Friedman’s  rF  can be 

approximated by a chi-square 2( )χ  distribution 
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with ( 1)k −  degrees of freedom as long as b  is 
large. Empirical evidence indicates that the 
approximation is adequate if the number of 
blocks b  and /or the number of treatment 
populations k  exceeds 5.  

Again, in small sample situations, the 
chi-square approximation will not be adequate. 
Common statistics books with a chapter on 
nonparametric statistics do not provide exact 
critical values for Friedman’s rF  test. Conover 

(1999) did not provide exact critical values for 
the Friedman’s rF  test, but Hollander and Wolf 

(1973) and Lehmann (1998) provided a partial 
exact critical values table for Friedman’s rF  

test. Most commonly used statistical software 
such as MINITAB and SPSS provide only the 
asymptotic P-value for Friedman’s rF  statistic. 

In view of this, in this article, we provide a 
VB.NET program that computes the exact 
critical values of Friedman’s rF  statistic for any 

number of blocks b and any number of 
treatment populations k , at any significance 
level (α ).  

Also provided is an exact critical values 
table for the Friedman’s rF  test for various 

combinations of (small) block sizes b  and 
(small) treatment population sizes k . Headrick 
(2003) wrote an article for generating exact 
critical values for the Kruskal-Wallis 
nonparametric test using Fortran 77. We used 
his idea to generate exact critical values for 
Friedman’s rF  test using VB.NET. VB.NET is 

user friendly and more accessible. Our VB.NET 
program works well with reasonable values of 
b  and k . 

 
Methodology 

 
In order to generate the critical values of 
Friedman’s rF  statistic, we need to have the null 

distribution for rF . In Friedman’s test, the null 

hypothesis is that the effect of all k  treatment 
populations are identical. Thus it is reasonable to 
use such types of null distributions for the rF  

statistic that are derived under the assumption 

that all observations for treatment populations 
are from the same population.  

Therefore, to find the null distribution of 
the rF  statistic, first, generate b  uniform 

pseudo-random numbers from the interval (0,1) 
for each of the k  treatment populations. Assume 
that the probability of a tie is zero. Then random 
variates within each block are ranked from 1 to 
k . The program then calculates rank sums of 
each treatment population, iR , and computes the 

value of the rF  statistic 

 

    2

1

12
3 ( 1)

( 1)

k

r i
i

F R b k
bk k =

= − +
+ ∑ . 

 
This process is replicated a sufficient number of 
times until the null distribution of the rF  

statistic is modeled adequately. Then the 
program returns a critical value that is associated 
with a percentile fraction of 0.90, 0.95, 0.975, or 
0.99 (or equivalently a significance level alpha 
of 0.10, 0.05, 0.025, or 0.01). In some cases 
returned values may be true for a range of P-
values. 

With adequate number of runs, this 
VB.NET program yields the same values 
reported by Lehmann (1998) in Table M. In 
Table 1 below, we provide critical values for the 

rF  test for 2(1)15b = , 2(1)5k =  and  α = 0.1, 

0.05, 0.025, 0.01. The notation 1F α−  in the Table 

1 means (1 )100%α−  percentile of the rF  

statistic which is equivalent to α  level critical 
value of the rF  statistic. This table will be 

useful to the practitioners since it is not available 
in standard statistics texts with a chapter on 
nonparametric statistics. The critical values in 
Table 1 are generated using 1 million 
replications in each case. 
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Table 1. Critical values for Friedman’s  rF  test. 

Rows ( )b  Columns 

( )k  
0.90F  0.95F  0.975F  0.99F  

2 2 2.0000 2.0000 2.0000 2.0000 
3 2 3.0000 3.0000 3.0000 3.0000 
4 2 4.0000 4.0000 4.0000 4.0000 
5 2 1.800 5.0000 5.0000 5.0000 
6 2 2.6667 2.6667 2.6667 2.6667 
7 2 3.5714 3.5714 3.5714 7.0000 
8 2 2.0000 4.5000 4.5000 4.5000 
9 2 2.7778 2.7778 5.4444 5.4444 
10 2 3.6000 3.6000 3.6000 6.4000 
11 2 2.2727 4.4545 4.4545 7.3636 
12 2 3.000 3.0000 5.3333 5.3333 
13 2 1.9231 3.7692 3.7692 6.2308 
14 2 2.5714 4.5714 4.5714 7.1429 
15 2 3.2667 3.2667 5.4000 5.4000 
2 3 4.0000 4.0000 4.0000 4.0000 
3 3 4.6667 4.6667 6.0000 6.0000 
4 3 4.5000 6.0000 6.5000 6.5000 
5 3 4.8000 5.2000 6.4000 7.6000 
6 3 4.3333 6.3333 7.0000 8.3333 
7 3 4.5714 6.0000 7.1429 8.0000 
8 3 4.7500 5.2500 7.0000 7.7500 
9 3 4.6667 6.0000 6.8889 8.6667 
10 3 4.2000 5.6000 7.4000 8.6000 
11 3 4.9091 5.6364 7.0909 8.9091 
12 3 4.6667 6.1667 7.1667 8.6667 
13 3 4.5841 5.9469 7.2920 9.0796 
14 3 4.4286 5.5714 7.0000 9.0000 
15 3 4.8000 5.7333 6.9333 8.5333 
2 4 5.4000 5.4000 6.0000 6.0000 
3 4 5.8000 7.0000 7.4000 8.2000 
4 4 6.0000 7.5000 8.1000 9.3000 
5 4 6.1200 7.3200 8.2800 9.7200 
6 4 6.2000 7.4000 8.6000 10.0000 
7 4 6.2571 7.6286 8.6571 10.3714 
8 4 6.1500 7.5000 8.8500 10.3500 
9 4 6.0667 7.5333 8.7333 10.4667 
10 4 6.2400 7.5600 8.8800 10.6800 
11 4 6.1636 7.5818 8.8909 10.6364 
12 4 6.1000 7.6000 9.0000 10.7000 
13 4 6.0462 7.6154 9.0000 10.7539 
14 4 6.2571 7.6286 9.0000 10.8857 
15 4 6.2000 7.5600 9.0800 10.7600 
2 5 6.8000 7.2000 7.6000 7.6000 
3 5 7.2000 8.2667 9.3333 9.8667 
4 5 7.4000 8.6000 9.6000 11.0000 
5 5 7.5200 8.8000 10.0800 11.5200 
6 5 7.6000 8.9333 10.2667 11.8667 
7 5 7.6571 9.0286 10.5143 12.0043 
8 5 7.7000 9.2000 10.6400 12.2000 
9 5 7.6444 9.1556 10.5778 12.3556 
10 5 7.6800 9.2000 10.6400 12.4000 
11 5 7.7091 9.2363 10.7636 12.5818 
12 5 7.6667 9.2667 10.7333 12.5333 
13 5 7.6923 9.2923 10.7692 12.7385 
14 5 7.7143 9.3143 10.8000 12.7429 
15 5 7.6800 9.3333 10.8267 12.7467 
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Conclusion 
 

In case of large values of b  and k , the program 
needs a large number of replications in order to 
adequately model the null distribution for 
Friedman’s rF  statistic. The replication 

numbers should be in increasing order such as 
10,000, 50,000, 100,000, 500,000, and 
1,000,000 etc. and the process stopped once two 
consecutive values are almost the same. If there 
are b  blocks and k  treatment populations, then 

at least ( !)bk  are necessary for a near fit for 

the rF  statistic.  

For a good fit of rF , one needs many 

more replications than  ( !)bk . The VB.NET 
program is given in the Appendix. This program 
allows the user to provide values for replication 
numbers, block sizes, treatment population 
numbers, and the percentile fractions. Based on 
this, the program will return a critical value. 
Also, remember that distribution of Friedman’s 

rF  statistic is discrete, so it not possible to 

achieve the exact level of significance. Thus the 
critical values obtained here correspond to 
approximate level of significance 0.01, 0.025, 
0.05, and 0.10.  
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Appendix: 

 
Imports System.Windows.Forms 
 
Public Class Form1 
    Inherits System.Windows.Forms.Form   
 
Dim sum = 0, squared = 0, square_sum = 0, m = 0, n = 0, i = 0, j = 0, k = 0, 
l = 0, p = 0, q = 0, r As Integer 
    Dim count = 0, v = 0, z As Integer 
    Dim num As Single 
    Dim percentile As Single 
    Dim f As Single 
    Dim file1 As System.IO.StreamWriter 
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Dim array1(,) As Single = New Single(,) {} 
    Dim array6(,) As Single = New Single(,) {} 
    Dim array3() As Single = New Single() {} 
    Dim array4() As Single = New Single() {} 
    Dim array5() As Integer = New Integer() {} 
    Dim array7() As Integer = New Integer() {} 
    Dim array8() As Single = New Single() {} 
    Dim array9() As Single = New Single() {} 
 
    Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles MyBase.Load 
        'Calling the random number generator 
        Randomize() 
    End Sub 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Button1.Click 
        m = Val(TextBox1.Text) 'm is the number of rows(blocks) 
        n = Val(TextBox2.Text)  'n is the number of columns 
        z = Val(TextBox3.Text)  'z is the number of runs 
        percentile = Val(TextBox4.Text)  'percentile value 
 
        'Defining the arrays 
        Dim array1(m, n) As Single 
        Dim array6(m, n) As Single 
        Dim array3(n) As Single 
        Dim array4(n) As Single 
        Dim array5(n) As Integer 
        Dim array7(n) As Integer 
        Dim array8(z) As Single 
        Dim array9(z) As Single 
 
        Dim row, col As Integer 
        Dim output As String 
 
        For p = 1 To z 
            output = " " 
            'creating initial m x n random array 
            For row = 1 To m 
                For col = 1 To n 
                    array1(row, col) = Rnd() 
                    output &= array1(row, col) & " " 
                Next 
                output &= vbCrLf 
            Next 
 
            j = 1 
            k = 1 
            For r = 1 To array1.GetUpperBound(0) 
 
                'pulling out one row 
                For col = 1 To n 'array1.GetUpperBound(0) 
                    num = array1(j, col) 
                    array3(col) = num 
                    output &= array3(col) & " " 
                Next 
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                j = j + 1 
 
                'copying one row into new array 
                For row = 1 To array3.GetUpperBound(0) 
                    array4(row) = array3(row) 
                Next 
 
                'sorting one row 
                Array.Sort(array3)  'Array3 - is sorted array 
 
                'ranking row 
                For row = 1 To array4.GetUpperBound(0) 
                    For i = 1 To array3.GetUpperBound(0) 
                        If array4(row) = array3(i) Then 
                            array5(row) = i 
                        End If 
                    Next 
                Next 
 
                'putting row back into two dimensional array 
                For row = 1 To array5.GetUpperBound(0) 
                    output &= array5(row) & " " 
                    array6(k, row) = array5(row) 
                Next 
                output &= vbCrLf 
                k = k + 1 
            Next 
            output = " " 
 
            'displaying two dimensional array 
            For row = 1 To array6.GetUpperBound(0) 
                For col = 1 To n 'array6.GetUpperBound(0) 
                    output &= array6(row, col) & " " 
                Next 
                output &= vbCrLf 
            Next 
 

            'summing columns in two dimensional array 
            l = 1 
            sum = 0 
            square_sum = 0 
            For col = 1 To n 'array6.GetUpperBound(0) 
                For row = 1 To array6.GetUpperBound(0) 
                    sum += array6(row, l) 
                Next 
                output = sum 
                square_sum = sum * sum 
                array7(l) = square_sum 
                output &= vbCrLf 
                output &= array7(l) & " " 
                l = l + 1 
                sum = 0 
                square_sum = 0 
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   Next 
 

            f = 0 
            squared = 0 
 
= 1 To array7.GetUpperBound(0) 
                squared += array7(row) 
            Next 
            output = squared 
            output = " " 

f = Convert.ToSingle(12 / (m * n * (n + 1)) * squared - 3 * m * 
(n + 1)) 

            array8(p) = f 
            output &= array8(p) & " " 
            f = 0 
            squared = 0 
        Next 
        output = " " 
 
        For row = 1 To array8.GetUpperBound(0) 
            output &= array8(row) & " " 
        Next 
 
        For row = 1 To array8.GetUpperBound(0) 
            array9(row) = array8(row) 
            output &= array9(row) & " " 
        Next 
         
        Array.Sort(array9) 'Array9 - sorted F values 
 
        For row = 1 To array9.GetUpperBound(0) 
            output &= array9(row) & " " 
        Next 
 
        output = " " 
  
        count = 0 
        For row = 1 To array9.GetUpperBound(0) 
            count += 1 
        Next 
 
        output = count 
 
        v = percentile * count 
 
        output = " " 
 
        output = array9(v) 
 
        MessageBox.Show(output, "95% percentile value") 
 
    End Sub 
 
End Class 
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An Algorithm For Generating Unconditional Exact Permutation  
Distribution For A Two-Sample Experiment 

 
J. I. Odiase          S. M. Ogbonmwan 

Department of Mathematics 
University of Benin, Nigeria 

 
 
An Algorithm that generates the unconditional exact permutation distribution of a 2 x n experiment is 
presented. The algorithm is able to handle ranks as well as actual observations. It makes it possible to 
obtain exact p-values for several statistics, especially when sample sizes are small and the application of 
large sample approximation is unreliable. An illustrative implementation is achieved and leads to the 
computation of exact p-values for the Mood test when the sample size is small. 
 
Key words: permutation test, Monte Carlo test, p-value, rank order statistic, Mood test 
 
 

Introduction 
 
An important part of Statistical Inference is the 
representation of observed data in terms of a p-
value. In fact, the p-value plays a major role in 
determining whether to accept or reject the null 
hypothesis. The p-value assists in establishing 
whether the observed data are statistically 
significant and so, any statistical approach that 
will guarantee its proper computation should be 
developed and employed in inferential statistics 
so that the probability of making a type I error is 
exactly α. 
 In practice, data are usually collected 
under varied conditions with some distributional 
assumptions such as that the data came from a 
normal distribution. It is advisable to avoid as 
much as possible making so many distributional  
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assumptions because data are usually never 
collected under ideal or perfect conditions, that 
is, do not conform perfectly to an assumed 
distribution or model being employed in its 
analysis. The p-value obtained through the 
permutation approach turns out to be the most 
reliable because it is exact, see Agresti (1992) 
and Good (2000). 
 If the experiment to be analyzed is made 
up of small or sparse data, large sample 
procedures for statistical inference are not 
appropriate (Senchaudhuri et al., 1995; Siegel & 
Castellan, 1988). In this article, consideration is 
given to the special case of 2 x n tables with row 
and column totals allowed to vary with each 
permutation – this seems more natural than 
fixing the row and column totals. This is the 
unconditional exact permutation approach which 
is all-inclusive rather than the constrained or 
conditional exact permutation approach of fixing 
row and column totals. This later approach 
mainly addresses contingency tables (Agresti, 
1992). 
 Several approaches have been suggested 
as alternatives to the computationally intensive 
unconditional exact permutation see Fisher 
(1935) and Agresti (1992) for a discussion on 
exact conditional permutation distribution. Also 
see Efron (1979), Hall and Tajvidi (2002), Efron 
and Tibshirani (1993), Opdyke (2003) for Monte 
Carlo approaches. Other approaches like the 
Bayesian and the likelihood have also been 
found useful in obtaining exact permutation 
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distribution (Bayarri & Berger, 2004; 
Spiegelhalter, 2004). 
 Large sample approximations are 
commonly adopted in several nonparametric 
tests as alternatives to tabulated exact critical 
values. The basic assumption required for such 
approximations to be reliable alternatives is that 
the sample size should be sufficiently large. 
However, there is no generally agreed upon 
definition of what constitutes a large sample size 
(Fahoome, 2002). 
 Available software for exact inference is 
expensive, with varied restrictions in the 
implementation of exact permutation procedures 
in the software. Computational time is highly 
prohibitive even with very fast processor speed 
of available personal computers. R. A. Fisher 
compiled by hand 32,768 permutations of 
Charles Darwin’s data on the height of cross-
fertilized and self-fertilized zea mays plants. The 
enormity of this task possibly discouraged 
Fisher from probing further into exact 
permutation tests (Ludbrook & Dudley, 1998). 
 Permutation tests provide exact results, 
especially when complete enumeration is 
feasible. A comprehensive documentation of the 
properties of permutation tests can be found in 
Pesarin (2001). The problem with permutation 
tests has been high computational demands, viz 
space and time complexities. Sampling from the 
permutation sample space rather than carrying 
out complete enumeration of all possible distinct 
rearrangements is what most of the available 
permutation procedures do, see Opdyke (2003) 
for a detailed listing of widely available 
permutation sampling procedures.  

Opdyke (2003) however observed that 
most of the existing procedures can perform 
Monte Carlo sampling without replacement 
within a sample, but none can avoid the 
possibility of drawing the same sample more 
than once, thereby reducing the power of the 
permutation test. 
 The purpose of this article is to fashion 
out a sure and efficient way of obtaining 
unconditional exact permutation distribution by 
ensuring that a complete enumeration of all the 
distinct permutations of any 2-sample 
experiment is achieved. This will produce exact 
p-values and therefore ensure that the 
probability of making a type I error is exactly α. 

This article also provides computer algorithms 
for achieving complete enumeration. 
  

Methodology 
 
Good (2000) considered the tails of permutation 
distribution in order to arrive at p-values, though 
he never carried out complete enumeration 
required for a permutation test. This approach 
has no precise model for the tail of the 
distribution from which data are drawn, (Hall & 
Weissman, 1997). The five steps for a 
permutation test presented in Good (2000) can 
be summarized thus: 
 

1.     Analyze the problem. 
2. Choose a statistic and establish a 
rejection rule that will distinguish the 
hypothesis from the alternative. 
3. Compute the test statistic for the 
original observations. 

 4.     Rearrange the observations, compute 
the test statistic for every new 
arrangement and repeat this process until 
all permutations are obtained. 
5. Construct the distribution for the test 
statistic based on Step 4. 
 

Step 4 is where the difficulty in 
permutation test lies because a complete 
enumeration of all distinct permutations of the 
experiment is required. A 2-sample experiment 
with 15 variates in each sample requires 
155,117,520 permutations. Clearly, the 
enumeration cannot be done manually, even if 
the computer produces 1000 permutations in a 
second, over 43 hours will be required for a 
complete enumeration. When this is achieved, p-
values can be computed. Good (2000) identified 
the sufficient condition for a permutation test to 
be exact and unbiased against shifts in the 
direction of higher values as the exchangeability 
of the observations in the combined sample. 

 Let ( )T
ini2i1i i

x,,x,xX �= , i = 1, 2 

and ni is the ith sample size. Also, let XN = (X1, 
X2), where N = n1 + n2. XN is composed of N 
independent and identically distributed random 

variables. We have 
!!
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21
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nn +
 = 
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possible permutations of the N variates of the 2 
samples of size n, i = 1, 2 which are equally 
likely, each having the probability 

1

!2n!1n

!N
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
. 

 
For equal sample sizes, n = n1 = n2, the 

number of permutations = 
( )
( )2n!

2n !
 or 

( )2n!

!N
 and  

 

the probability of each permutation = 
( )

!N

2n!
. 

  
 
 
 
 

For all possible permutations of the N 
variates, systematically develop a pattern 
necessary for the algorithm required for the 
generation of all the distinct permutations. The 
presentation of the systematic generation of all 
the possible permutations of the N variates now 
follows. 

Examine an experiment of two samples 
(treatments), each with two variates, i.e., 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2212

2111

xx

xx
, where x11, x12, x21 and x22 

represent sample values. Number of distinct 

arrangements = 6
2!2!

4! =  (permutations) as 

listed in Table 1. 
 
 
 

 
Table 1: Permutations of a 2 x 2 Experiment. 

 

2212

2111

xx

xx

1

 

2212

1121

xx

xx

2

 

1112

2122

xx

xx

3

 

2221

1211

xx

xx

4

 

1222

2111

xx

xx

5

 

1222

1121

xx

xx

6

 

 
Numbers 1 – 6 on top of the permutations represent the permutation numbers 
 The actual process of permuting the variates of the experiment reveals the following. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2212

2111

xx

xx
 original arrangement of the experiment 1 permutation 

x11 ← x2i, i = 1, 2     2 permutations 
x12 ← x2i, i = 1, 2     2 permutations 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1222

1121

xx

xx
 exchange the samples (columns)  1 permutation 

 In an attempt to offer a mathematical explanation for the method of exchanges of variates leading 
to the algorithm, observe that 
 

1   1  x  1
0

2

0

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation (original arrangement of the experiment) 

4    2  x  2
1

2

1

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutations (using one variate from first sample) 

1   1  x  1
2

2

2

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation (exchange the samples, i.e., 2 variates) 

Total = 1 + 4 + 1 = 6 
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Observe that permutation (1) is the 
original arrangement, permutations (2) to (5) are 
obtained by using the elements of the first 
column to interchange the elements of the 
second column, one at a time. Permutation (6) is 
obtained by interchanging the columns of the 
original arrangement of the experiment, making 
use of the two elements in the first column. 
 Examine a 2-sample experiment, where 

each sample has 3 variates, i.e. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2313

2212

2111

xx

xx

xx

. 

The expectation is to have 20
3!3!

6! =  

permutations, which are given in Table 2. 
The process of permuting the variates 

reveal the following: 
 

                                 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2313

2212

2111

xx

xx

xx

 original 

arrangement of the experiment 1 permutation 
 
x11 ← x2i, i = 1, 2, 3  3 permutations 
x12 ← x2i, i = 1, 2, 3 3 permutations 
x13 ← x2i, i = 1, 2, 3 3 permutations 
 

                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

t

s

x

x

1

1  ← ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

j

i

x

x

2

2
;  

s ≠ t, i ≠ j (3 x 3)  9 permutations 
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⎞

⎜
⎜
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⎝

⎛

1323

1222

1121
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exchange the samples (columns) 1 permutation 
Again, observe that 

1   1  x  1
0

3

0

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation  

(original arrangement of the experiment) 

9    3  x  3
1

3

1

3
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⎞
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⎛
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⎛
 Permutations  

(using one variate from first sample) 

9    3  x  3
2

3

2

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutations  

(using two variates from first sample) 

1    1  x  1
3

3

3

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation  

(exchange samples, i.e., three variates) 
Total = 1 + 9 + 9 + 1 = 20 
 

Similarly, observe that permutation (1) 
is the original matrix, permutations (2) to (10) 
are obtained by using the elements of the first 
column to interchange the elements of the 
second column, one at a time. Permutations (11) 
to (19) are obtained by using 2 elements of the 
first column to interchange the elements of the 
second column, and permutation (20) is obtained 
by interchanging the columns of the original 
arrangement of the experiment. 
 Continuing in the above fashion, clearly, 
the number of permutations for any 2-sample 
experiment can be written as 
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for equal sample sizes. An adjustment for 

unequal sample sizes yields 
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permutations, because ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

b

a
 = 0 for b > a. 

 After obtaining all the distinct 
permutations from a complete enumeration, the 
statistic of interest is computed for each 
permutation. Each value of the statistic obtained 
from a complete enumeration occurs with 

probability 

1

!2n!1n

!N
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
 for sample sizes, n1 

and n2, N = n1 + n2, this translates to
( )

!N

2n!
 for n 

= n1 = n2. The distribution of the statistic is  
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thereafter obtained by simply tabulating the 
distinct values of the statistic against their 
probabilities of occurrence in the complete 
enumeration. 
 This method of obtaining unconditional 
exact permutation distribution also suffices 
when ranks of observations of an experiment are 
used instead of the actual observations. In 
handling ranks with this approach, tied 
observations do not pose any problems because 
the permutation process will be implemented as 
if the tied observations or ranks are distinct. 
 Given an n x p experiment,  
 

XN = 
⎟
⎟
⎟

⎠
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pnn

p

xx

xx

�

���
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111

, N = np 

 
 
 

 
with xij as actual observations, i = 1, 2, …, p, j = 
1, 2, …, n for some rank order statistic, replace 
these observations with ranks. In order to 
achieve this, do a combined ranking from the 
smallest to the largest observation. For equal 
sample sizes, this yields an n x p matrix of ranks 
represented as follows: 
 

 RN = 
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N = np and ( )j
iR  is the ith rank for sample j, see 

Sen and Puri (1967) for an expository discussion 
of rank order statistics. At this stage, the method 
can now be applied to this matrix of ranks. Note 
that any rearrangement or permutation of this 
matrix of ranks can be used in generating all the 
other distinct permutations. 

 

Table 2: Permutations of a 2 x 3 Experiment. 
 

2313

2212

2111

xx

xx

xx

1

 

2313

2212

1121

xx

xx

xx

2

 

2313

1112

2122

xx

xx

xx

3

 

1113

2212

2123

xx

xx

xx

4

 

2313

2221

1211

xx

xx

xx

5

 

2313

1222

2111

xx

xx

xx

6

 

1213

2223

2111

xx

xx

xx

7

 

2321

2212

1311

xx

xx

xx

8

 

2322

1312

2111

xx

xx

xx

9

 

1323

2212

2111

xx

xx

xx

10

 

2313

1222

1121

xx

xx

xx

11

 

1213

2223

1121

xx

xx

xx

12

 

1213

1123

2122

xx

xx

xx

13

 

2322

1312

1121

xx

xx

xx

14

 

1323

2212

1121

xx

xx

xx

15

 

1323

1112

2122

xx

xx

xx

16

 

2322

1321

1211

xx

xx

xx

17

 

1323

2221

1211

xx

xx

xx

18

 

1323

1222

2111

xx

xx

xx

19

 

1323

1222

1121

xx

xx

xx

20

 

 

Numbers 1 – 20 on top of the permutations represent the permutation numbers. 
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The first step in developing the 
algorithm is to formulate the matrix of ranks, by 
adopting the trivial permutation, because it does 
not matter what rearrangement of the actual 
matrix of ranks is used in initiating the process 
of permutation, that is, 

 

                     

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+
+

211

1

1

1

nnn

3n3

2n2

1n1

��

  

 

and in the case of n1 =  n2 = n, 
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For the above matrix of ranks, ensure 

that ties are taken care of, by replacing ranks of 
tied observations with the mean of their ranks. 
 In designing the computer algorithm for 
the method of complete enumeration via 
permutation described so far, it is intended that 
all statements should be read like sentences or as 
a sequence of commands. We write Set T ←  1, 
where Set is part of the statement language and 
T is a variable. Words that form the statement 
language required for this work include: do, od, 
else, for, if, fi, set, then, through, to, as used in 
Goodman and Hedetniemi (1977). To 
distinguish variable names from words in the 
statement language, variable names appear in 
full capital letters. 
  
 
 
 
 
 
 
 
 
 
 

As a way of illustration, in formulating 
the computer algorithm for unconditional exact 
permutation distribution, a consideration is 
given to rank order statistic. The computer 
algorithm for the generation of the “trivial” 
matrix of ranks is presented in the next session 
for equal sample sizes. 
 
 

Results 
 
Algorithm (RANK) Generation of the trivial 
matrix of ranks 
 

Step 1. Set P ←  number of treatments;  
                  K ←  Number of variates 
Step 2. For I ←  1 to P do through Step 4 
Step 3. For J ←  1 to K do through Step 4 
Step 4. [X is the matrix of ranks]  
             Set X(J, I) ←  (I – 1)K + J od 

 
 For all possible permutations of the N 
samples of p subsets of size n, the model of the 
number of permutations required for the 
computer algorithm for an experiment of two 
samples is: 
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where n is the number of variates in each sample 
(column) i.e., the balanced case. The computer 
algorithm now follows. 
 
 
 

 
 
 
 
 
 
 
 
 
 



ODIASE & OGBONMWAN 325 

 
Algorithm (PERMUTATION) 

 
Step 1  For J1 ←  1 to K do through Step 5 
Step 2  Set TEMP ←  X(J1, P - 1), I1 ←  P 
Step 3  For J2 ←  1 to K do Step 5 
Step 4  Set X(J1, P - 1) ←  X(J2, I1), X(J2, I1) ←  TEMP 
Step 5  [Compute statistic and restore original values of X] od 
Step 6  For I ←  1 to K – 1 do through Step 16 
Step 7  Set TEMP1 ←  X(I, P - 1) 
Step 8  For J ←  I + 1 to K do through Step 16 
Step 9  Set TEMP2 ←  X(J, P - 1) 
Step 10  For L ←  P to P do through Step 16 
Step 11  For I1 ←  1 to K do through Step 16 
Step 12  For L1 ←  L to P do through Step 16 
Step 13  If L ←  L1 then Set T ←  I1 + 1 
                                             else Set T ←  1 fi 
Step 14  For J1 ←  T to K do Step 16 
Step 15 Set X(I, P - 1)← X(I1, L), X(I1, L) ← TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2 
Step 16  [Compute statistic and restore original values of X] od 
Step 17  For I ←  1 to K – 2 do through Step 32 
Step 18  Set TEMP1 ←  X(I, P - 1) 
Step 19  For J ←  I + 1 to K – 1 do through Step 32 
Step 20  Set TEMP2 ←  X(J, P - 1) 
Step 21  For M ←  J + 1 to K do through Step 32 
Step 22  Set TEMP3 ←  X(M, P - 1) 
Step 23  For L ←  P to P do through Step 32 
Step 24  For I1 ←  1 to K do through Step 32 
Step 25  For L1 ←  L to P do through Step 32 
Step 26  If L ←  L1 then Set T ←  I1 + 1 
                                             else Set T ←  1 fi 
Step 27  For J1 ←  T to K do through Step 32 
Step 28  For L2 ←  L1 to P do through Step 32 
Step 29  If L1 ←  L2 then Set T1 ←  J1 + 1 
                                               else Set T1 ←  1 fi 
Step 30  For J2 ←  T1 to K do Step 32 
Step 31 Set X(I, P - 1)← X(I1, L), X(I1, L) ←  TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2, 
X(M, P - 1) ←  X(J2, L2), X(J2, L2) ←  TEMP3 

Step 32  [Compute statistic and restore original values of X] od 
Step 33  For I ←  1 to K – 3 do through Step 53 
Step 34  Set TEMP1 ←  X(I, P - 1) 
Step 35  For J ←  I + 1 to K – 2 do through Step 53 
Step 36  Set TEMP2 ←  X(J, P - 1) 
Step 37  For M ←  J + 1 to K – 1 do through Step 53 
Step 38  Set TEMP3 ←  X(M, P - 1) 
Step 39  For N ←  M + 1 to K do through Step 53 
Step 40  Set TEMP4 ←  X(N, P - 1) 
Step 41  For L ←  P to P do through Step 53 
Step 42  For I1 ←  1 to K do through Step 53 
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The PERMUTATION algorithm was 

translated to FORTRAN codes and implemented 
in Intel Visual FORTRAN for a 2 x 5 
experiment. The 252 distinct permutations 
generated are presented in the Appendix.  The 
algorithm can be extended to any sample size, 
depending on the processor speed and memory 
space of the computer being used to implement 
the algorithm. For an optimal management of 
computer memory (space complexity), the 
permutations are not stored, they are discarded 
immediately the statistic of interest is computed. 
 By way of illustration, generate the p-
values for a 2 x 5 experiment for the Mood test. 
Fahoome (2002) noted that when α = 0.05, 
sample size should exceed 5 for the large sample 
approximation to be adopted for the Mood test. 
The unconditional permutation approach makes 
it possible to obtain exact p-values even for 
fairly  large  sample  sizes.  Given  two  samples, 
 
 
 
 
 
 

 
 
 
 
y11, y12, …, y1n and y21, y22, …, y2n, the test 
statistic for the Mood test is 
 

 M = 
2n
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1i 2
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for equal sample sizes. 
R1i is the rank of y1i, i = 1, 2, …, n obtained after 
carrying out a combined ranking for the two 
samples. The large sample approximation for 
equal samples is 
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where N = 2n and M the Mood test statistic. 

The p-values obtained are presented in 
Table 3 and the distribution of the test statistic is 
represented graphically in Figure 1. 
 

 
 
 

 

 
Step 43  For L1 ←  L to P do through Step 53 
Step 44  If L ←  L1 then Set T ←  I1 + 1 
                     else Set T ←  1 fi 
Step 45  For J1 ←  T to K do through Step 53 
Step 46  For L2 ←  L1 to P do through Step 53 
Step 47  If L1 ←  L2 then Set T1 ←  J1 + 1 
           else Set T1 ←  1 fi 
Step 48  For J2 ←  T1 to K do through Step 53 
Step 49  For L3 ←  L2 to P do through Step 53 
Step 50  If L2 ←  L3 then Set T2 ←  J2 + 1 
           else Set T2 ←  1 fi 
Step 51  For J3 ←  T2 to K do Step 53 
Step 52 Set X(I, P - 1)← X(I1, L), X(I1, L) ← TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2, 
X(M, P - 1) ←  X(J2, L2), X(J2, L2) ←  TEMP3, 
X(N, P - 1) ←  X(J3, L3), X(J3, L3) ←  TEMP4 od 

Step 53  [Compute statistic and restore original values of X] od 
Step 54  [Interchange samples and compute statistic] 
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Table 3. p-values for Mood Statistic. 

 
M p(M) p-value M p(M) p-value 
11.25 0.0079 0.0079 43.25 0.0397 0.6032 
15.25 0.0079 0.0159 45.25 0.0476 0.6508 
17.25 0.0159 0.0317 47.25 0.0714 0.7222 
21.25 0.0317 0.0635 49.25 0.0397 0.7619 
23.25 0.0317 0.0952 51.25 0.0397 0.8016 
25.25 0.0159 0.1111 53.25 0.0476 0.8492 
27.25 0.0397 0.1508 55.25 0.0397 0.8889 
29.25 0.0476 0.1984 57.25 0.0159 0.9048 
31.25 0.0397 0.2381 59.25 0.0317 0.9365 
33.25 0.0397 0.2778 61.25 0.0317 0.9682 
35.25 0.0714 0.3492 65.25 0.0159 0.9841 
37.25 0.0476 0.3968 67.25 0.0079 0.9921 
39.25 0.0397 0.4365 71.25 0.0079 1.0000 
41.25 0.1270 0.5635    
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Figure 1. Exact distribution of Mood test statistic for a 2 x 5 experiment. 
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Clearly, results obtained from using 
Normal distribution, which is the large sample 
asymptotic distribution for the Mood test, will 
certainly not be exactly the same as using the 
exact permutation distribution, especially for 
small sample sizes. The permutation approach 
produces the exact p-values. 
 
Example 
 Consider the following example on page 
278 of Freund (1979) on difference of means. 
Table 2: Heat-producing capacity of coal in 
millions of calories per tonne 
 

Mine1 Mine2 
8400 7510 
8230 7690 
8380 7720 
7860 8070 
7930 7660 

 
 

Subjecting the data in Table 2 to Mood 
test, the test statistic (M) is 39.25 and from 
Table 3 containing unconditional exact 
permutation distribution of Mood test statistic, 
the corresponding p-value is 0.4365 which 
exceeds α = 0.05, suggesting that we cannot 
reject the null hypothesis of no difference 
between  the   heat-producing  capacity  of  coal 
from the two mines. Adopting the large sample 
Normal approximation for Mood test, z 
calculated is –0.17 which gives a p-value of 
0.4325 and this exceeds α/2 = 0.025, meaning 
that the observed data are compatible with the 
null hypothesis of no difference as earlier 
obtained from the exact permutation test. 

 
Conclusion 

 
Several authors have attempted to obtain exact 
p-values for different statistics using the 
permutation approach. Two things have made 
their attempts an uphill task. First is the speed of 
computer required to perform a permutation test. 
Until recently, the speed of available computers 
has been grossly inadequate to handle complete 
enumeration for even small sample sizes. Recent 
advances in computer design has drawn 
researchers in this area closer to the realization 
of complete enumeration even for fairly large 

sample sizes. Secondly, the intensive looping in 
computer programming required for complete 
enumeration for unconditional exact permutation 
test demands a good programming skill. 

 In this article, a straight forward but 
computer intensive approach has been adopted 
in creating an algorithm that can carryout a 
systematic enumeration of distinct permutations 
of a 2-sample experiment. With this algorithm, 
the p-values for statistics involving two samples 
can be accurately generated, thereby ensuring 
that the probability of making a type I error is 
exactly α 
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Appendix:  Permutations of a 2 x 5 Experiment. 
 

1 
 1  6 
 2  7 
 3  8 
 4  9 
 5  10 

2 
 6  1 
 2  7 
 3  8 
 4  9 
 5  10 

3 
 7  6 
 2  1 
 3  8 
 4  9 
 5  10 

4 
 8  6 
 2  7 
 3  1 
 4  9 
 5  10 

5 
 9  6 
 2  7 
 3  8 
 4  1 
 5  10 

6 
 10  6 
 2  7 
 3  8 
 4  9 
 5  1 

7 
 1  2 
 6  7 
 3  8 
 4  9 
 5  10 

8 
 1  6 
 7  2 
 3  8 
 4  9 
 5  10 

9 
 1  6 
 8  7 
 3  2 
 4  9 
 5  10 

10 
 1  6 
 9  7 
 3  8 
 4  2 
 5  10 

11 
 1  6 
 10 7 
 3  8 
 4  9 
 5  2 

12 
 1  3 
 2  7 
 6  8 
 4  9 
 5  10 

13 
 1  6 
 2  3 
 7  8 
 4  9 
 5  10 

14 
 1  6 
 2  7 
 8  3 
 4  9 
 5  10 

15 
 1  6 
 2  7 
 9  8 
 4  3 
 5  10 

16 
 1  6 
 2  7 
 10 8 
 4  9 
 5  3 

17 
 1  4 
 2  7 
 3  8 
 6  9 
 5  10 

18 
 1  6 
 2  4 
 3  8 
 7  9 
 5  10 

19 
 1  6 
 2  7 
 3  4 
 8  9 
 5  10 

20 
 1  6 
 2  7 
 3  8 
 9  4 
 5  10 

21 
 1  6 
 2  7 
 3  8 
 10 9 
 5  4 

22 
 1  5 
 2  7 
 3  8 
 4  9 
 6  10 

23 
 1  6 
 2  5 
 3  8 
 4  9 
 7  10 

24 
 1  6 
 2  7 
 3  5 
 4  9 
 8  10 

25 
 1  6 
 2  7 
 3  8 
 4  5 
 9  10 

26 
 1  6 
 2  7 
 3  8 
 4  9 
 10 5 

27 
 6  1 
 7  2 
 3  8 
 4  9 
 5  10 

28 
 6  1 
 8  7 
 3  2 
 4  9 
 5  10 

29 
 6  1 
 9  7 
 3  8 
 4  2 
 5  10 

30 
 6  1 
 10 7 
 3  8 
 4  9 
 5  2 

31 
 7  6 
 8  1 
 3  2 
 4  9 
 5  10 

32 
 7  6 
 9  1 
 3  8 
 4  2 
 5  10 

33 
 7  6 
 10 1 
 3  8 
 4  9 
 5  2 

34 
 8  6 
 9  7 
 3  1 
 4  2 
 5  10 

35 
 8  6 
 10 7 
 3  1 
 4  9 
 5  2 

36 
 9  6 
 10 7 
 3  8 
 4  1 
 5  2 

37 
 6  1 
 2  3 
 7  8 
 4  9 
 5  10 

38 
 6  1 
 2  7 
 8  3 
 4  9 
 5  10 

39 
 6  1 
 2  7 
 9  8 
 4  3 
 5  10 

40 
 6  1 
 2  7 
 10 8 
 4  9 
 5  3 

41 
 7  6 
 2  1 
 8  3 
 4  9 
 5  10 

42 
 7  6 
 2  1 
 9  8 
 4  3 
 5  10 

43 
 7  6 
 2  1 
 10 8 
 4  9 
 5  3 

44 
 8  6 
 2  7 
 9  1 
 4  3 
 5  10 

45 
 8  6 
 2  7 
 10 1 
 4  9 
 5  3 

46 
 9  6 
 2  7 
 10 8 
 4  1 
 5  3 

47 
 6  1 
 2  4 
 3  8 
 7  9 
 5  10 

48 
 6  1 
 2  7 
 3  4 
 8  9 
 5  10 
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Appendix Continued: 
 

49 
 6  1 
 2  7 
 3  8 
 9  4 
 5  10 

50 
 6  1 
 2  7 
 3  8 
 10 9 
 5  4 

51 
 7  6 
 2  1 
 3  4 
 8  9 
 5  10 

52 
 7  6 
 2  1 
 3  8 
 9  4 
 5  10 

53 
 7  6 
 2  1 
 3  8 
 10 9 
 5  4 

54 
 8  6 
 2  7 
 3  1 
 9  4 
 5  10 

55 
 8  6 
 2  7 
 3  1 
 10 9 
 5  4 

56 
 9  6 
 2  7 
 3  8 
 10 1 
 5  4 

57 
 6  1 
 2  5 
 3  8 
 4  9 
 7  10 

58 
 6  1 
 2  7 
 3  5 
 4  9 
 8  10 

59 
 6  1 
 2  7 
 3  8 
 4  5 
 9  10 

60 
 6  1 
 2  7 
 3  8 
 4  9 
 10 5 

61 
 7  6 
 2  1 
 3  5 
 4  9 
 8  10 

62 
 7  6 
 2  1 
 3  8 
 4  5 
 9  10 

63 
 7  6 
 2  1 
 3  8 
 4  9 
 10 5 

64 
 8  6 
 2  7 
 3  1 
 4  5 
 9  10 

65 
 8  6 
 2  7 
 3  1 
 4  9 
 10 5 

66 
 9  6 
 2  7 
 3  8 
 4  1 
 10 5 

67 
 1  2 
 6  3 
 7  8 
 4  9 
 5  10 

68 
 1  2 
 6  7 
 8  3 
 4  9 
 5  10 

69 
 1  2 
 6  7 
 9  8 
 4  3 
 5  10 

70 
 1  2 
 6  7 
 10 8 
 4  9 
 5  3 

71 
 1  6 
 7  2 
 8  3 
 4  9 
 5  10 

72 
 1  6 
 7  2 
 9  8 
 4  3 
 5  10 

73 
 1  6 
 7  2 
 10 8 
 4  9 
 5  3 

74 
 1  6 
 8  7 
 9  2 
 4  3 
 5  10 

75 
 1  6 
 8  7 
 10 2 
 4  9 
 5  3 

76 
 1  6 
 9  7 
 10 8 
 4  2 
 5  3 

77 
 1  2 
 6  4 
 3  8 
 7  9 
 5  10 

78 
 1  2 
 6  7 
 3  4 
 8  9 
 5  10 

79 
 1  2 
 6  7 
 3  8 
 9  4 
 5  10 

80 
 1  2 
 6  7 
 3  8 
 10 9 
 5  4 

81 
 1  6 
 7  2 
 3  4 
 8  9 
 5  10 

82 
 1  6 
 7  2 
 3  8 
 9  4 
 5  10 

83 
 1  6 
 7  2 
 3  8 
 10 9 
 5  4 

84 
 1  6 
 8  7 
 3  2 
 9  4 
 5  10 

85 
 1  6 
 8  7 
 3  2 
 10 9 
 5  4 

86 
 1  6 
 9  7 
 3  8 
 10 2 
 5  4 

87 
 1  2 
 6  5 
 3  8 
 4  9 
 7  10 

88 
 1  2 
 6  7 
 3  5 
 4  9 
 8  10 

89 
 1  2 
 6  7 
 3  8 
 4  5 
 9  10 

90 
 1  2 
 6  7 
 3  8 
 4  9 
 10 5 

91 
 1  6 
 7  2 
 3  5 
 4  9 
 8  10 

92 
 1  6 
 7  2 
 3  8 
 4  5 
 9  10 

93 
 1  6 
 7  2 
 3  8 
 4  9 
 10 5 

94 
 1  6 
 8  7 
 3  2 
 4  5 
 9  10 

95 
 1  6 
 8  7 
 3  2 
 4  9 
 10 5 

96 
 1  6 
 9  7 
 3  8 
 4  2 
 10 5 

97 
 1  3 
 2  4 
 6  8 
 7  9 
 5  10 

98 
 1  3 
 2  7 
 6  4 
 8  9 
 5  10 

99 
 1  3 
 2  7 
 6  8 
 9  4 
 5  10 

100 
 1  3 
 2  7 
 6  8 
 10 9 
 5  4 

101 
 1  6 
 2  3 
 7  4 
 8  9 
 5  10 

102 
 1  6 
 2  3 
 7  8 
 9  4 
 5  10 

103 
 1  6 
 2  3 
 7  8 
 10 9 
 5  4 

104 
 1  6 
 2  7 
 8  3 
 9  4 
 5  10 

105 
 1  6 
 2  7 
 8  3 
 10 9 
 5  4 

106 
 1  6 
 2  7 
 9  8 
 10 3 
 5  4 

107 
 1  3 
 2  5 
 6  8 
 4  9 
 7  10 

108 
 1  3 
 2  7 
 6  5 
 4  9 
 8  10 

109 
 1  3 
 2  7 
 6  8 
 4  5 
 9  10 

110 
 1  3 
 2  7 
 6  8 
 4  9 
 10 5 

111 
 1  6 
 2  3 
 7  5 
 4  9 
 8  10 

112 
 1  6 
 2  3 
 7  8 
 4  5 
 9  10 

113 
 1  6 
 2  3 
 7  8 
 4  9 
 10 5 

114 
 1  6 
 2  7 
 8  3 
 4  5 
 9  10 

115 
 1  6 
 2  7 
 8  3 
 4  9 
 10 5 

116 
 1  6 
 2  7 
 9  8 
 4  3 
 10 5 

117 
 1  4 
 2  5 
 3  8 
 6  9 
 7  10 

118 
 1  4 
 2  7 
 3  5 
 6  9 
 8  10 

119 
 1  4 
 2  7 
 3  8 
 6  5 
 9  10 

120 
 1  4 
 2  7 
 3  8 
 6  9 
 10 5 

121 
 1  6 
 2  4 
 3  5 
 7  9 
 8  10 

122 
 1  6 
 2  4 
 3  8 
 7  5 
 9  10 

123 
 1  6 
 2  4 
 3  8 
 7  9 
 10 5 

124 
 1  6 
 2  7 
 3  4 
 8  5 
 9  10 

125 
 1  6 
 2  7 
 3  4 
 8  9 
 10 5 

126 
 1  6 
 2  7 
 3  8 
 9  4 
 10 5 

127 
 6  1 
 7  2 
 8  3 
 4  9 
 5  10 

128 
 6  1 
 7  2 
 9  8 
 4  3 
 5  10 

129 
 6  1 
 7  2 
 10 8 
 4  9 
 5  3 

130 
 6  1 
 8  7 
 9  2 
 4  3 
 5  10 

131 
 6  1 
 8  7 
 10 2 
 4  9 
 5  3 

132 
 6  1 
 9  7 
 10 8 
 4  2 
 5  3 

 
 



ODIASE & OGBONMWAN 331 

 
 
 
 
 

 
 
 
 
 

Appendix Continued: 
 

133 
 7  6 
 8  1 
 9  2 
 4  3 
 5  10 

134 
 7  6 
 8  1 
 10 2 
 4  9 
 5  3 

135 
 7  6 
 9  1 
 10 8 
 4  2 
 5  3 

136 
 8  6 
 9  7 
 10 1 
 4  2 
 5  3 

137 
 6  1 
 7  2 
 3  4 
 8  9 
 5  10 

138 
 6  1 
 7  2 
 3  8 
 9  4 
 5  10 

139 
 6  1 
 7  2 
 3  8 
 10 9 
 5  4 

140 
 6  1 
 8  7 
 3  2 
 9  4 
 5  10 

141 
 6  1 
 8  7 
 3  2 
 10 9 
 5  4 

142 
 6  1 
 9  7 
 3  8 
 10 2 
 5  4 

143 
 7  6 
 8  1 
 3  2 
 9  4 
 5  10 

144 
 7  6 
 8  1 
 3  2 
 10 9 
 5  4 

145 
 7  6 
 9  1 
 3  8 
 10 2 
 5  4 

146 
 8  6 
 9  7 
 3  1 
 10 2 
 5  4 

147 
 6  1 
 7  2 
 3  5 
 4  9 
 8  10 

148 
 6  1 
 7  2 
 3  8 
 4  5 
 9  10 

149 
 6  1 
 7  2 
 3  8 
 4  9 
 10 5 

150 
 6  1 
 8  7 
 3  2 
 4  5 
 9  10 

151 
 6  1 
 8  7 
 3  2 
 4  9 
 10 5 

152 
 6  1 
 9  7 
 3  8 
 4  2 
 10 5 

153 
 7  6 
 8  1 
 3  2 
 4  5 
 9  10 

154 
 7  6 
 8  1 
 3  2 
 4  9 
 10 5 

155 
 7  6 
 9  1 
 3  8 
 4  2 
 10 5 

156 
 8  6 
 9  7 
 3  1 
 4  2 
 10 5 

157 
 6  1 
 2  3 
 7  4 
 8  9 
 5  10 

158 
 6  1 
 2  3 
 7  8 
 9  4 
 5  10 

159 
 6  1 
 2  3 
 7  8 
 10 9 
 5  4 

160 
 6  1 
 2  7 
 8  3 
 9  4 
 5  10 

161 
 6  1 
 2  7 
 8  3 
 10 9 
 5  4 

162 
 6  1 
 2  7 
 9  8 
 10 3 
 5  4 

163 
 7  6 
 2  1 
 8  3 
 9  4 
 5  10 

164 
 7  6 
 2  1 
 8  3 
 10 9 
 5  4 

165 
 7  6 
 2  1 
 9  8 
 10 3 
 5  4 

166 
 8  6 
 2  7 
 9  1 
 10 3 
 5  4 

167 
 6  1 
 2  3 
 7  5 
 4  9 
 8  10 

168 
 6  1 
 2  3 
 7  8 
 4  5 
 9  10 

169 
 6  1 
 2  3 
 7  8 
 4  9 
 10 5 

170 
 6  1 
 2  7 
 8  3 
 4  5 
 9  10 

171 
 6  1 
 2  7 
 8  3 
 4  9 
 10 5 

172 
 6  1 
 2  7 
 9  8 
 4  3 
 10 5 

173 
 7  6 
 2  1 
 8  3 
 4  5 
 9  10 

174 
 7  6 
 2  1 
 8  3 
 4  9 
 10 5 

175 
 7  6 
 2  1 
 9  8 
 4  3 
 10 5 

176 
 8  6 
 2  7 
 9  1 
 4  3 
 10 5 

177 
 6  1 
 2  4 
 3  5 
 7  9 
 8  10 

178 
 6  1 
 2  4 
 3  8 
 7  5 
 9  10 

179 
 6  1 
 2  4 
 3  8 
 7  9 
 10 5 

180 
 6  1 
 2  7 
 3  4 
 8  5 
 9  10 

181 
 6  1 
 2  7 
 3  4 
 8  9 
 10 5 

182 
 6  1 
 2  7 
 3  8 
 9  4 
 10 5 

183 
 7  6 
 2  1 
 3  4 
 8  5 
 9  10 

184 
 7  6 
 2  1 
 3  4 
 8  9 
 10 5 

185 
 7  6 
 2  1 
 3  8 
 9  4 
 10 5 

186 
 8  6 
 2  7 
 3  1 
 9  4 
 10 5 

187 
 1  2 
 6  3 
 7  4 
 8  9 
 5  10 

188 
 1  2 
 6  3 
 7  8 
 9  4 
 5  10 

189 
 1  2 
 6  3 
 7  8 
 10 9 
 5  4 

190 
 1  2 
 6  7 
 8  3 
 9  4 
 5  10 

191 
 1  2 
 6  7 
 8  3 
 10 9 
 5  4 

192 
 1  2 
 6  7 
 9  8 
 10 3 
 5  4 

193 
 1  6 
 7  2 
 8  3 
 9  4 
 5  10 

194 
 1  6 
 7  2 
 8  3 
 10 9 
 5  4 

195 
 1  6 
 7  2 
 9  8 
 10 3 
 5  4 

196 
 1  6 
 8  7 
 9  2 
 10 3 
 5  4 

197 
 1  2 
 6  3 
 7  5 
 4  9 
 8  10 

198 
 1  2 
 6  3 
 7  8 
 4  5 
 9  10 

199 
 1  2 
 6  3 
 7  8 
 4  9 
 10 5 

200 
 1  2 
 6  7 
 8  3 
 4  5 
 9  10 

201 
 1  2 
 6  7 
 8  3 
 4  9 
 10 5 

202 
 1  2 
 6  7 
 9  8 
 4  3 
 10 5 

203 
 1  6 
 7  2 
 8  3 
 4  5 
 9  10 

204 
 1  6 
 7  2 
 8  3 
 4  9 
 10 5 

205 
 1  6 
 7  2 
 9  8 
 4  3 
 10 5 

206 
 1  6 
 8  7 
 9  2 
 4  3 
 10 5 

207 
 1  2 
 6  4 
 3  5 
 7  9 
 8  10 

208 
 1  2 
 6  4 
 3  8 
 7  5 
 9  10 

209 
 1  2 
 6  4 
 3  8 
 7  9 
 10 5 

210 
 1  2 
 6  7 
 3  4 
 8  5 
 9  10 

211 
 1  2 
 6  7 
 3  4 
 8  9 
 10 5 

212 
 1  2 
 6  7 
 3  8 
 9  4 
 10 5 

213 
 1  6 
 7  2 
 3  4 
 8  5 
 9  10 

214 
 1  6 
 7  2 
 3  4 
 8  9 
 10 5 

215 
 1  6 
 7  2 
 3  8 
 9  4 
 10 5 

216 
 1  6 
 8  7 
 3  2 
 9  4 
 10 5  
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217 
 1  3 
 2  4 
 6  5 
 7  9 
 8  10 

218 
 1  3 
 2  4 
 6  8 
 7  5 
 9  10 

219 
 1  3 
 2  4 
 6  8 
 7  9 
 10 5 

220 
 1  3 
 2  7 
 6  4 
 8  5 
 9  10 

221 
 1  3 
 2  7 
 6  4 
 8  9 
 10 5 

222 
 1  3 
 2  7 
 6  8 
 9  4 
 10 5 

223 
 1  6 
 2  3 
 7  4 
 8  5 
 9  10 

224 
 1  6 
 2  3 
 7  4 
 8  9 
 10 5 

225 
 1  6 
 2  3 
 7  8 
 9  4 
 10 5 

226 
 1  6 
 2  7 
 8  3 
 9  4 
 10 5 

227 
 6  1 
 7  2 
 8  3 
 9  4 
 5  10 

228 
 6  1 
 7  2 
 8  3 
 10 9 
 5  4 

229 
 6  1 
 7  2 
 9  8 
 10 3 
 5  4 

230 
 6  1 
 8  7 
 9  2 
 10 3 
 5  4 

231 
 7  6 
 8  1 
 9  2 
 10 3 
 5  4 

232 
 6  1 
 7  2 
 8  3 
 4  5 
 9  10 

233 
 6  1 
 7  2 
 8  3 
 4  9 
 10 5 

234 
 6  1 
 7  2 
 9  8 
 4  3 
 10 5 

235 
 6  1 
 8  7 
 9  2 
 4  3 
 10 5 

236 
 7  6 
 8  1 
 9  2 
 4  3 
 10 5 

237 
 6  1 
 7  2 
 3  4 
 8  5 
 9  10 

238 
 6  1 
 7  2 
 3  4 
 8  9 
 10 5 

239 
 6  1 
 7  2 
 3  8 
 9  4 
 10 5 

240 
 6  1 
 8  7 
 3  2 
 9  4 
 10 5 

241 
 7  6 
 8  1 
 3  2 
 9  4 
 10 5 

242 
 6  1 
 2  3 
 7  4 
 8  5 
 9  10 

243 
 6  1 
 2  3 
 7  4 
 8  9 
 10 5 

244 
 6  1 
 2  3 
 7  8 
 9  4 
 10 5 

245 
 6  1 
 2  7 
 8  3 
 9  4 
 10 5 

246 
 7  6 
 2  1 
 8  3 
 9  4 
 10 5 

247 
 1  2 
 6  3 
 7  4 
 8  5 
 9  10 

248 
 1  2 
 6  3 
 7  4 
 8  9 
 10 5 

249 
 1  2 
 6  3 
 7  8 
 9  4 
 10 5 

250 
 1  2 
 6  7 
 8  3 
 9  4 
 10 5 

251 
 1  6 
 7  2 
 8  3 
 9  4 
 10 5 

252 
 6  1 
 7  2 
 8  3 
 9  4 
 10 5 

Numbers 1 – 252 on top of the permutations represent the permutation numbers 
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JMASM19: A SPSS Matrix For Determining Effect Sizes From Three Categories: 
 r And Functions Of r, Differences Between Proportions,  

And Standardized Differences Between Means 
 

David A. Walker 
Educational Research and Assessment Department  

Northern Illinois University 
 
 
The program is intended to provide editors, manuscript reviewers, students, and researchers with an SPSS 
matrix to determine an array of effect sizes not reported or the correctness of those reported, such as r-
related indices, r-related squared indices, and measures of association, when the only data provided in the 
manuscript or article are the n, M, and SD (and sometimes proportions and t and F (1) values) for two-
group designs. This program can create an internal matrix table to assist researchers in determining the 
size of an effect for commonly utilized r-related, mean difference, and difference in proportions indices 
when engaging in correlational and/or meta-analytic analyses. 
 
Key words: SPSS, syntax, effect size 
 
 

Introduction 
 
Cohen (1988) defined effect size as “the degree 
to which the phenomenon is present in the 
population” (p. 9) or “the degree to which the 
null hypothesis is false” (p. 10). For many years, 
researchers, editorial boards, and professional 
organizations have called for the reporting of 
effect sizes with statistical significance testing 
(Cohen, 1965; Knapp, 1998; Levin, 1993; 
McLean & Ernest, 1998; Thompson, 1994; 
Wilkinson & The APA Task Force on Statistical 
Inference, 1999). However, research applied to 
this issue has indicated that most published 
studies do not supply measures of effect size 
with results garnered from statistical 
significance testing (Craig, Eison, & Metze, 
1976; Henson & Smith, 2000; Vacha-Hasse, 
Nilsson, Reetz, Lance, & Thompson, 2000). 
When   reported   with   statistically   significant 
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results, effect size can provide information 
pertaining to the extent of the difference 
between the null hypothesis and the alternative 
hypothesis. Furthermore, effect sizes can show 
the magnitude of a relationship and the 
proportion of the total variance of an outcome 
that is accounted for (Cohen, 1988; Kirk, 1996; 
Shaver, 1985). 

Conversely, there have long been 
cautions affiliated with the use of effect sizes. 
For instance, over 20 years ago, Kraemer and 
Andrews (1982) pointed out that effect sizes 
have limitations in the sense that they can be a  

 
measure that clearly indicates clinical 
significance only in the case of normally 
distributed control measures and under 
conditions in which the treatment effect is 
additive and uncorrelated with 
pretreatment or control treatment 
responses. (p. 407)  

 
Hedges (1981) examined the influence 

of measurement error and invalidity on effect 
sizes and found that both of these problems 
tended to underestimate the standardized mean 
difference effect size. In addition, Prentice and 
Miller (1992) ascertained that, “The statistical 
size of an effect is heavily dependent on the 
operationalization of the independent variables 
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and the choice of a dependent variable” (p. 160). 
Robinson, Whittaker, Williams, and Beretvas 
(2003) warned that “depending on the choice of 
which effect size is reported, in some cases 
important conclusions may be obscured rather 
than revealed” (p. 52). Finally, Kraemer (1983), 
Sawilowsky (2003), and Onwuegbuzie and 
Levin (2003) cautioned that effect sizes are 
vulnerable to various primary assumptions. 
Onwuegbuzie and Levin cited nine limitations 
affiliated with effect sizes and noted generally 
that these measures: 

 
are sensitive to a number of factors, such 
as: the research objective; sampling 
design (including the levels of the 
independent variable, choice of treatment 
alternatives, and statistical analysis 
employed); sample size and variability; 
type and range of the measure used; and 
score reliability. (p. 135) 
 

Effect sizes fall into three categories: 1) product 
moment correlation (r) and functions of r; 2) 
differences between proportions; and 3) 
standardized differences between means 
(Rosenthal, 1991). The first category of effect 
size, the r-related indices, can be considered as 
based on the correlation between treatment and 
result (Levin, 1994). For this group, “Effect size 
is generally reported as some proportion of the 
total variance accounted for by a given effect” 
(Stewart, 2000, p. 687), or, as Cohen (1988) 
delineated this effect size, “Another possible 
useful way to understand r is as a proportion of 
common elements between variables” (p. 78). 
Cohen (1988) suggested that for r-related 
indices, values of .10, .30, and .50 should serve 
as indicators of small, medium, and large effect 
sizes, while for r-related squared indices, values 
of .01, .09, and .25 should serve as indicators of 
small, medium, and large, respectively.  

The differences between proportions 
group is constituted in measures, for example, 
such as the differences between independent 
population proportions (i.e., Cohen’s h) or the 
difference between a population proportion and 
.50 (i.e., Cohen’s g) (Cohen, 1988). Finally, the 
standardized differences between means 
encompasses measures of effect size in terms of 
mean difference and standardized mean 

difference such as Cohen’s d and Glass’ delta. 
Cohen (1988) defined the values of effect sizes 
for both the differences between proportions and 
the standardized differences between means as 
small = .20, medium = .50, and large = .80. It 
should be mentioned, however, that it is at the 
discretion of the researcher to note the context in 
which small, medium, and large effects are 
being defined when using any effect size index. 
As was first discussed by Glass, McGaw, and 
Smith (1981), and reiterated by Cohen (1988), 
about these effect size target values and their 
importance:  
 

these proposed conventions were set forth 
throughout with much diffidence, 
qualifications, and invitations not to 
employ them if possible. The values 
chosen had no more reliable a basis than 
my own intuition. They were offered as 
conventions because they were needed in 
a research climate characterized by a 
neglect of attention to issues of 
magnitude. (p. 532) 

 
The purpose of this article is to provide 

editors, manuscript reviewers, students, and 
researchers with an SPSS (Statistical Package 
for the Social Sciences) program to determine an 
array of effect sizes not reported or the 
correctness of those reported, such as r-related 
indices, r-related squared indices, and measures 
of association, when the only data provided in 
the manuscript or article are n, M, and SD (and 
sometimes proportions and t and F(1) values) for 
between-group designs. 

Another intention is that this software 
will be used as an educational resource for 
students and researchers. That is, the user can 
run quickly this program and determine the size 
of the effect. It is not the purpose of this research 
to serve as an effect size primer and, thus, 
discuss in-depth the various indices’ usage, 
limitations, and importance. Rather, this 
program can assist users who have the minimal, 
proper statistics present to enter into the matrix 
to derive an effect size index of interest. 

In meta-analytic research, it is often 
difficult to convert study outcomes, via formulae 
that are accessible over a vast array of the 
scholarly literature, into a common metric. Thus, 
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yet another purpose of this program is to offer 
researchers software that contains many of the 
formulae used in meta-analyses.  
 

Methodology 
 
The presented SPSS program will create an 
internal matrix table to assist researchers and 
students in determining the size of an effect for 
commonly utilized r-related, mean difference, 
and difference in proportions indices when 
engaging in correlational and/or meta-analytic 
analyses. Currently, the program produces 
nearly 50 effect sizes (see appendix A for 
truncated results of the program’s ability). 
 This software program employs mostly 
data from published articles, and some simulated 
data, to demonstrate its uses in terms of effect 
size calculations. Most of the formulae 
incorporated into this program come from 
Aaron, Kromrey, and Ferron (1998), Agresti and 
Finlay (1997), Cohen (1988), Cohen and Cohen 
(1983), Cooper and Hedges (1994), Hays (1963; 
1981), Hedges (1981), Hedges and Olkin (1985), 
Kelley (1935), Kraemer (1983), Kraemer and 
Andrews (1982), McGraw and Wong (1992), 
Olejnik and Algina (2000), Peters and Van 
Voorhis (1940), Richardson (1996), Rosenthal 
(1991), and Rosenthal, Rosnow, and Rubin 
(2000).  

It should be noted that with the r-related 
and the standardized differences between means 
effect sizes, there are numerous, algebraically-
related methods concerning how to calculate 
these indices, of which some of been provided, 
but not all since the same value(s) would be 
repeated numerous times (see Cooper & Hedges, 
1994 or Richardson, 1996 for the various 
formulae). 

Because this matrix is meant for 
between-group designs, k = 2, there are some 
specific assumptions that should be addressed. 
To run the program, it is assumed that the user 
has access to either n, M, and, SD or t or F(1) 
values from two-group comparisons. Also, this 
program was intended for post-test group 
comparison designs and not, for example, a one-
group repeated measures design, which can be 
found in meta-analytic data sets as well. 

Certain effect sizes produced by the 
program that the user does not wish to view, or 

that may be nonsensical pertaining to the 
research of study, should be disregarded. As 
well, a few of the measures developed for very 
specific research conditions, such as the 
Common Language effect size, may not be 
pertinent to many research situations and should 
be ignored if this is the case. The Mahalanobis 
Generalized Distance (D2) is an estimated effect 
size with p = .5 implemented as the proportion 
value in the formula. Some of the r-related 
squared indices may contain small values that 
are negative. This can occur when the MS 
(treatment) is < the MS (residual) (Peters & Van 
Voorhis, 1940), or when the t or F values used in 
the formulae to derive these effect size indices 
are < 1.00 (Hays, 1963). Finally, even with exact 
formulas, some of the computed values may be 
slightly inexact, as could the direction of a value 
depending on the user’s definition of the 
experimental and control groups. 

 
Program Description and Output 
 As presented in the program output 
found in appendix A, the reader should note that 
they enter the M, SD, and n for both groups in 
the first lines of the syntax termed ‘test’. If they 
want to run just one set of data, they put it next 
to test 1. If more than one set of data are desired, 
they put the subsequent information in test 2 to 
however many tests they want to conduct.  
 The matrix produced will group the 
effect sizes by the three categories noted 
previously and also related to an appropriate 
level of measurement. In parenthesis, after an 
effect size is displayed in the matrix, is a general 
explanation of that particular measure and any 
notes that should be mentioned such as used 
when there are ESS (equal sample sizes) or 
PEES (populations are of essentially equal size), 
yields a PRE (proportional reduction in error) 
interpretation, or examines the number of CP 
(concordant pairs) and DP (discordant pairs). 

Further, the matrix generates power 
values, based on calculations of alpha set at the 
.05 level, related to indices such as Cohen’s d, 
Glass’ delta, and Hedges’ g. Finally, because 
some of the standardized differences between 
means indices produce biased values under 
various conditions; numerous measures of effect 
for this group are provided for the user to obtain 
the proper measure(s) pertaining to specific 
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circumstances within the research context. The 
accuracy of the program was checked by an 
independent source whose hand calculations 
verified the formulas utilized throughout the 
program via various situations employing two-
group n, M, SD. Appendix B provides the full 
syntax for this program. To obtain an SPSS copy 
of the syntax, send an e-mail to the author. 
 

Reference 
 

Aaron, B., Kromrey, J. D., & Ferron, J. 
M. (1998, November). Equating r-based and d-
based effect size indices: Problems with a 
commonly recommended formula. Paper 
presented at the annual meeting of the Florida 
Educational Research Association, Orlando, FL. 

Agresti, A., & Finlay, B. (1997). 
Statistical methods for the social sciences (3rd 
ed). Upper Saddle River, NJ: Prentice Hall. 

Cohen, J. (1965). Some statistical issues 
in psychological research. In B.B. Wolman 
(Ed.), Handbook of clinical psychology (pp. 95-
121). New York: Academic Press. 

Cohen, J. (1988). Statistical power 
analysis for the behavioral sciences (2nd ed.). 
Hillsdale, NJ: Lawrence Erlbaum Associates, 
Publishers. 

Cohen, J., & Cohen, P. (1983). Applied 
Multiple Regression/Correlation Analysis for the 
Behavioral Sciences (2nd ed.). Hillsdale, NJ: 
Lawrence Erlbaum Associates, Publishers. 

Cooper, H., & Hedges, L. V. (Eds.). 
(1994). The handbook of research synthesis. 
New York: Russell Sage Foundation. 

Craig, J. R., Eison, C. L., & Metze, L. P. 
(1976). Significance tests and their 
interpretation: An example utilizing published 
research and ω2. Bulletin of the Psychonomic 
Society, 7, 280-282. 

Glass, G. V., McGaw, B., & Smith, M. 
L. (1981). Meta-analysis in social research. 
Beverly Hills, CA: Sage. 

Hays, W. L. (1963). Statistics. New 
York: Holt, Rinehart & Winston. 

Hays, W. L. (1981). Statistics (3rd ed.). 
New York: Holt, Rinehart & Winston. 

Hedges, L. V. (1981). Distribution 
theory for Glass’ estimator of effect size and 
related estimators. Journal of Educational 
Statistics, 6, 107-128. 

Hedges, L. V., & Olkin, I. (1985). 
Statistical methods for meta-analysis. New 
York: Academic Press. 

Henson, R. K., & Smith, A. D. (2000). 
State of the art in statistical significance and 
effect size reporting: A review of the APA Task 
Force report and current trends. Journal of 
Research and Development in Education, 33, 
285-296. 

Kelley, T. L. (1935). An unbiased 
correlation ratio measure. Proceedings of the 
National Academy of Sciences, 21, 554-559. 

Kirk, R. (1996). Practical significance: 
A concept whose time has come. Educational 
and Psychological Measurement, 56, 746-759. 

Knapp, T. R. (1998). Comments on the 
statistical significance testing articles. Research 
in Schools, 5, 39-41. 

Kraemer, H. C. (1983). Theory of 
estimation and testing of effect sizes: Use in 
meta-analysis. Journal of Educational Statistics, 
8, 93-101. 

Kraemer, H. C., & Andrews, G. (1982). 
A nonparametric technique for meta-analysis 
effect size calculation. Psychological Bulletin, 
91(2), 404-412. 

Levin, J. R. (1993). Statistical 
significance testing from three perspectives. The 
Journal of Experimental Education, 61, 378-
382. 

Levin, J. R. (1994). Crafting educational 
intervention research that’s both credible and 
creditable. Educational Psychology Review, 6, 
231-243. 

McGraw, K. O., & Wong, S. P. (1992). 
A common language effect size statistic. 
Psychological Bulletin, 3 (2), 361-365. 

McLean, J. E, & Ernest, J. M. (1998). 
The role of statistical significance testing in 
educational research. Research in Schools, 5, 15-
23. 

Olejnik, S., & Algina, J. (2000). 
Measures of effect size for comparative studies: 
Applications, interpretations, and limitations. 
Contemporary Educational Psychology, 25, 
241-286. 

 
 
 
 



DAVID A. WALKER 337 

Onwuegbuzie, A. J., & Levin, J. R. 
(2003). Without supporting statistical evidence, 
where would reported measures of substantive 
importance lead? To no good effect. Journal of 
Modern Applied Statistical Methods, 2(1), 133-
151. 

Peters, C. C., & Van Voorhis, W. R. 
(1940). Statistical procedures and their 
mathematical bases. New York: McGraw-Hill. 

Prentice, D. A., & Miller, D. T. (1992). 
When small effects are impressive. 
Psychological Bulletin, 112(1), 160-164. 

Richardson, J. T. E. (1996). Measures of 
effect size. Behavior Research Methods, 
Instruments, & Computers, 28(1), 12-22. 

Robinson, D. H., Whittaker, T. A., 
Williams, N. J., & Beretvas, S. N. (2003). It’s 
not effect sizes so much as comments about their 
magnitude that mislead readers. The Journal of 
Experimental Education, 72(1), 51-64. 

Rosenthal, R. (1991). (Series Ed.), 
Meta-analytic procedures for social research. 
Newbury Park, CA: Sage Publications. 

Rosenthal, R., Rosnow, R. L., & Rubin, 
D. B. (2000). Contrasts and effect sizes 
inbehavioral research: A correlational 
approach. Cambridge, England: Cambridge 
University Press. 

 
 
 
 

 
 
 
 
 

Sawilowsky, S. S. (2003). 
Deconstructing arguments from the case against 
hypothesis testing. Journal of Modern Applied 
Statistical Methods, 2, 467-474 

Shaver, J. (1985). Chance and nonsense. 
Phi Delta Kappan, 67, 57-60. 

Stewart, D. W. (2000). Testing 
statistical significance testing: Some 
observations of an 
agnostic. Educational and Psychological 
Measurement, 60, 685-690. 

Thompson, B. (1994). Guidelines for 
authors. Educational and Psychological 
Measurement, 54, 837-847. 

Vacha-Hasse, T., Nilsson, J, E., Reetz, 
D. R., Lance, T. S., & Thompson, B. (2000).  
 Reporting practices and APA editorial 
policies regarding statistical significance 
and effect size. Theory & Psychology, 10, 413-
425. 

Wilkinson, L., & The APA Task Force 
on Statistical Inference. (1999). Statistical 
methods in psychology journals: Guidelines and 
explanations. American Psychologist, 54, 594-
604. 
 

 
 
 
 
 

 

 
 
 

 
 
 

 
Appendix A: A Sample of the Program Output. 

 
Descriptive Statistics 

 
    Test        M1         SD1         n1         M2         SD2         n2 
  ________  __________  __________  ________  __________  __________  ________ 
 
         1       9.160       3.450        31       5.350       3.090        31 
         2      15.950       3.470        20      13.050       3.270        20 
         3      31.150      10.830        27      30.370       9.410        27 
         4     105.000      15.000        24      95.000      15.000        24 
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Standardized Differences Between Means, % of Nonoverlap (with d), and Power 
 
  Glass 
  Delta 
(Used When 
There are 
 Unequal                           Hedges g 
Variances                          (Used 
   and                             When 
Calculated   Cohens d   Cohens d   There are  Hedges g 
 with the    (Using M   (Using t   Small      (Using t   Hedges g 
 Control     & SD       Value      Sample     Value      (Using     U % of 
Group SD)    Pooled)    n1=n2)     Sizes)     n1=n2)     Cohens d)  Nonoverlap    Power 
__________  _________  _________  _________  _________  _________  __________  _________ 
 
    1.2330     1.1634     1.1826     1.1488     1.1634     1.1445     61.0362      .9945 
     .8869      .8602      .8825      .8431      .8602      .8384     49.9468      .7552 
     .0829      .0769      .0784      .0758      .0769      .0754      5.9506      .0589 
     .6667      .6667      .6810      .6557      .6667      .6526     41.4105      .6183 
 
 
   Proportion of Variance-Accounted-For Effect Sizes: 2x2 Dichotomous/Nominal 
 
           Phi (The 
             Mean                         Pearsons         Sakodas 
           Percent                       Coefficient       Adjusted 
          Difference    Tetrachoric          of           Pearsons C 
           Between      Correlation      Contingency     (Association 
             Two        (Estimation        (C) (A        Between Two 
          Variables     of Pearsons        Nominal       Variables as 
             with          r for        Approximation    a Percentage 
            Either       Continuous        of the          of Their 
          Considered     Variables       Pearsonian        Maximum 
           Causing       Reduced to      correlation       Possible 
          the Other)    Dichotomies)         r)           Variation) 
          __________    ____________    _____________    ____________ 
 
               .4492          .4492           .4098            .5795 
               .3674          .3674           .3449            .4878 
               .0384          .0384           .0384            .0542 
               .3015          .3015           .2887            .4082 
 
Proportion of Variance-Accounted-For Effect Sizes: Measures of Relationship(PEES) 
 
                                                Pearsons 
   Point                                        r (If no 
Biserial r                                       t Value   Pearsons 
(Pearsons r  Biserial r              Pearsons    and for   r (Using   Pearsons 
    for        (r for     Pearsons   r (Using   Equal n;    t Value   r (Using 
Dichotomous   Interval    r (Using   Cohens d   Corrected   and for   Hedges g 
    and          and      Cohens d     with     for Bias   Equal n;     with 
Continuous   Dichotomous    with      Unequal      in      Corrected   Unequal 
Variables)   Variables)   Equal n)      n)      Formula)   for Bias)     n) 
___________  ___________  _________  _________  _________  _________  _________ 
 
     .5028      .6300       .5028      .5028      .5090      .5090      .5042 
     .3951      .4950       .3951      .3951      .4037      .4037      .3970 
     .0384      .0481       .0384      .0384      .0391      .0391      .0386 
     .3162      .3962       .3162      .3162      .3223      .3223      .3176 
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Proportion of Variance-Accounted-For Effect Sizes: Univariate Analyses (k=2, ESS) 
 
                      R Square 
                      (If no t 
                      Value and    R Square                  Adjusted 
                         for       (Using t                  R Square 
                      Unequal n    Value and                 (Using t 
                      Corrected       for                    Value and 
                      for Bias     Unequal n    Adjusted        for 
         R Square        in        Corrected    R Square      Unequal 
         (d Value)    Formula)     for Bias)    (d Value)       n) 
         _________    _________    _________    _________    _________ 
 
           .2528        .2591        .2591        .2275        .2339 
           .1561        .1630        .1630        .1105        .1177 
           .0015        .0015        .0015       -.0377       -.0376 
           .1000        .1039        .1039        .0600        .0641 
 
 
Proportion of Variance-Accounted-For Effect Sizes: Univariate Analyses (k=2, ESS) 
 
 Eta Square 
  (Squared 
 Correlation 
  Ratio or                                              Epsilon 
     the                                                Square 
 Percentage                    Omega                  (Percentage 
     of                        Square                     of 
  Variation                  (Corrected                Variation      Epsilon 
   Effects     Eta Square    Estimates                  Effects       Square 
 Uncorrected   (Calculated    for the     Estimated   Uncorrected   (Calculated 
    for a        with F      Population     Omega        for a        with F 
   Sample)       Value)       Effect)      Square       Sample        Value) 
 ___________   ___________   __________   _________   ___________   ___________ 
 
      .2528         .2591         .2528       .2437        .2404         .2467 
      .1561         .1630         .1561       .1379        .1339         .1409 
      .0015         .0015         .0015      -.0173       -.0177        -.0177 
      .1000         .1039         .1000       .0828        .0804         .0844 
 
Appendix B: Program Syntax 
 
* Data enter *. 
data list list /testno(f8.0) exprmean exprsd(2f9.3) exprn(f8.0)contmean contsd(2 
f9.3) contn(f8.0). 
* Put the M, SD, n for the Experimental Group followed by the Control Group. 
Begin data           
   
1 9.16 3.45 31  5.35 3.09 31 
2   15.95 3.47  20    13.05 3.27 20 
3 31.15 10.83 27  30.37 9.41 27 
4 105 15 24  95 15 24 
end data. 
***************************************************************************** 
Example References 
1   Example of t and Cohen's d  JEE (2002), 70(4),356-357 
2   Example of F, Cohen's d, and Eta2  JEE (2002), 70(3),235 
3   Example of t and Eta2   JEE (2002), 70(4),305-306 
4   Example of d, r, r2, and CL  Psych Bulletin (1992), 111(2),363  
*****************************************************************************. 
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compute poold = ((exprn-1)*(exprsd**2)+(contn-1)*(contsd**2))/((exprn+contn)-2) . 
compute glassdel = (exprmean-contmean)/contsd. 
compute cohend = (exprmean-contmean)/sqrt(poold). 
compute clz = (exprmean-contmean)/sqrt(exprsd**2 + contsd**2). 
compute cl = CDFNORM(clz)*100. 
compute akf1 = (exprn+contn)**2. 
compute akf2 = 2*(exprn+contn). 
compute akf3 = akf1-akf2. 
compute akf4 = (akf3)/(exprn*contn).  
compute r2akf = (cohend**2)/(cohend**2+akf4). 
compute rakf = SQRT (r2akf).  
compute hedgesg = cohend*(1-(3/(4*(exprn+contn)-9))). 
compute ub = CDF.NORMAL((ABS(cohend)/2),0,1). 
compute U = (2*ub-1)/ub*100. 
compute critical = 0.05. 
compute h = (2*exprn*contn)/(exprn+contn). 
compute ncp = ABS((cohend*SQRT(h))/SQRT(2)). 
compute alpha = IDF.T(1-critical/2,exprn+contn-2). 
compute power1 = 1-NCDF.T(alpha,exprn+contn-2,NCP). 
compute power2 = 1-NCDF.T(alpha,exprn+contn-2,-NCP). 
compute B = power1 + power2. 
compute f2 = cohend ** 2 / 4 . 
compute f = ABS(cohend/2). 
compute eta2 = (f2) / (1 + f2) . 
compute eta = SQRT(eta2). 
compute epsilon2 = 1-(1-eta2) * (exprn  +  contn-1) / (exprn  +  contn-2). 
compute ttest = cohend  * SQRT((exprn  *  contn) /( exprn  +  contn)). 
compute cohenda = 2*ttest/SQRT(exprn  +  contn-2). 
compute hedgesa = 2*ttest/SQRT(exprn  +  contn). 
compute hedgesb = cohend*SQRT((exprn  +  contn-2)/(exprn + contn)). 
compute hedgesn = (exprn  +  contn)/(2). 
compute hedgesnh = 1/(.5*((1/exprn) + (1/contn))). 
compute hedgesnn = sqrt(hedgesn/hedgesnh). 
compute r1= ttest/SQRT((ttest**2)+ exprn  +  contn-2). 
compute r = cohend/SQRT(cohend ** 2 + 4) . 
compute rd = cohend/SQRT((cohend ** 2 + 4*(hedgesnn))). 
compute rg = hedgesg/SQRT((hedgesg ** 2 + 4*(hedgesnn)*((exprn  +  contn-2)/(exprn + contn)))). 
compute phi = (r **2/(1+r **2)) **.5. 
compute phi2 = phi **2. 
compute taub = SQRT(phi **2). 
compute gktau = phi **2. 
compute zr = .5 * LN((1 + r) / (1 - r)) . 
compute zrbias = r/(2*(exprn + contn-1)). 
compute zrcor = zr - zrbias. 
compute rsquare = r **2 . 
compute rsquare1 = r1**2. 
compute adjr2 = rsquare - ((1-rsquare)*(2/(exprn  +  contn -3)))  . 
compute adjr2a = rsquare1 - ((1-rsquare1)*(2/(exprn  +  contn -3)))  . 
compute adjr2akf = r2akf - ((1-r2akf)*(2/(exprn  +  contn -3)))  . 
compute k = SQRT(1-r **2). 
compute k2 = k **2. 
compute lambda = 1-rsquare. 
compute rpbs = SQRT(eta2). 
compute rbs = rpbs*1.253. 
compute rpbs2 = rpbs **2. 
compute ftest = ttest **2. 
compute omega2 = ftest / ((exprn  +  contn) + ftest). 
compute estomega = (ttest**2-1)/(ttest**2 + exprn + contn -1). 
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compute eta2f = (ftest)/(ftest + exprn + contn -2). 
compute esticc = (ftest-1)/(ftest + exprn + contn -2). 
compute c = SQRT(chi/ (exprn + contn+chi)). 
compute adjc = c/SQRT(.5). 
compute cramer = SQRT(chi/ (exprn + contn*1)). 
compute cramer2 = cramer **2. 
compute t = SQRT(chi/ (exprn + contn*1)). 
compute t2 = cramer **2. 
compute d2 = r **2/(r **2+1). 
compute w = SQRT (c **2/(1-c **2)). 
compute w2 = w **2. 
compute percenta = exprmean/(exprmean+contmean). 
compute percentb = exprsd/(exprsd+contsd). 
compute percentd = percenta-percentb. 
compute p = (exprmean*contsd)-(exprsd*contmean). 
compute q = (exprmean*contsd)+(exprsd*contmean). 
compute yulesq = p/q. 
compute taua = ((p-q)/((exprn+contn)*(exprn + contn-1)/2)). 
compute rr = (exprmean/(exprmean+contmean))/(exprsd/(exprsd+contsd)). 
compute rrr = 1-rr. 
compute odds = (exprmean/contmean)/(exprsd/contsd). 
compute tauc = 4*((p-q)/((exprn+contn)*(exprn+contn))). 
compute zb = SQRT(chi). 
compute coheng = exprsd - .50. 
compute cohenh = 2 * ARSIN(SQRT(.651)) - 2 * ARSIN(SQRT(.414)).  
compute cohenq = .55-zr. 
execute. 
 
* FINAL REPORTS *. 
FORMAT poold to cohenq (f9.4). 
VARIABLE LABELS testno 'Test'/ exprmean 'M1'/ exprsd 'SD1'/ exprn 'n1'/contmean 'M2'/ contsd 'SD2'/contn 'n2' 
/glassdel 'Glass Delta'/ cohend 'Cohens d (Using M & SD)'/ U 'U % of Nonoverlap'/ B 'Power'/ hedgesg 'Hedges g' 
/cohenda 'Cohens d (Using t Value n1=n2)'/hedgesa 'Hedges g (Using t Value n1=n2)'/hedgesb 'Hedges g (Using Cohens 
d)'/rd 'Pearsons r (Using Cohens d with Unequal n)'/ rg 'Pearsons r (Using Hedges g with Unequal n)'/ f2 'f Square (Proportion 
of Variance Accounted for by Difference in Population Membership)' /r2akf 'R Square (If no t Value and for Unequal n 
Corrected for Bias in Formula)'/eta2 'Eta Square (Squared Correlation Ratio or the Percentage of Variation Effects 
Uncorrected for a Sample)' /epsilon2 'Epsilon Square (Percentage of Variation Effects Uncorrected for a Sample' / omega2 
'Omega Square (Corrected Estimates for the Population Effect)' /r 'Pearsons r (Using Cohens d with Equal n)' /r1 'Pearsons r 
(Using t Value and for Equal n; Corrected for Bias)' /rakf 'Pearsons r (If no t Value and for Equal n; Corrected for Bias in 
Formula)' /phi 'Phi (The Mean Percent Difference Between Two Variables with Either Considered Causing the Other)' /phi2 
'Phi Coefficient Square (Proportion of Variance Shared by Two Dichotomies)' /zr 'Fishers Z (r is Transformed to be Distributed 
More Normally)'/w2 'w Square (Proportion of Variance Shared by Two Dichotomies)' /coheng 'Cohens g (Difference Between a 
Proportion and .50)' /cohenh 'Cohens h (Differences Between Proportions)' /cohenq 'Cohens q (One Case & Theoretical Value 
of r)' /rsquare 'R Square (d Value)' /rsquare1 'R Square (Using t Value and for Unequal n Corrected for Bias)'/adjr2 'Adjusted R 
Square (d Value)'/adjr2a 'Adjusted R Square (Using t Value and for Unequal n)'/adjr2akf 'Adjusted R Square (Unequal n and 
Corrected for Bias)'/ lambda 'Wilks Lambda (Small Values Imply Strong Association)' / t2 'T Square (Measure of Average 
Effect within an Association)' /d2 'D2 Mahalanobis Generalized Distance (Estimated with p = .5 as the Proportion of Combined 
Populations)' /rpbs 'Point Biserial r (Pearsons r for Dichotomous and Continuous Variables)' /rbs 'Biserial r (r for Interval and 
Dichotomous Variables)'/rpbs2 'r2 Point-Biserial (Proportion of Variance Accounted for by Classifying on a Dichotomous 
Variable Special Case Related to R2 and Eta2)' / f 'f (Non-negative and Non-directional and Related to d as an SD of 
Standardized Means when k=2 and n=n)' /k2 'k2 (r2/k2: Ratio of Signal to Noise Squared Indices)' / k 'Coefficient of Alienation 
(Degree of Non-Correlation: Together r/k are the Ratio of Signal to Noise)' /c 'Pearsons Coefficient of Contingency (C) (A 
Nominal Approximation of the Pearsonian correlation r)' /adjc 'Sakodas Adjusted Pearsons C (Association Between Two 
Variables as a Percentage of Their Maximum Possible Variation)' /cramer 'Cramers V (Association Between Two Variables as 
a Percentage of Their Maximum Possible Variation)'/odds 'Odds Ratio (The Chance of Faultering after Treatment or the Ratio 
of the Odds of Suffering Some Fate)'/ rrr 'Relative Risk Reduction (Amount that the Treatment Reduces Risk)'/ rr 'Relative Risk 
Coefficient (The Treatment Groups Amount of the Risk of the Control Group)'/ percentd 'Percent Difference'/ yulesq 'Yules Q 
(The Proportion of Concordances to the Total Number of Relations)'/ t 'Tshuprows T (Similar to Cramers V)' /w 'w (Amount of 
Departure from No Association)' /chi 'Chi Square(1)(Found from Known Proportions)' /eta 'Correlation Ratio (Eta or the Degree 
of Association Between 2 Variables)'/eta2f 'Eta Square (Calculated with F Value)'/epsilonf 'Epsilon Square (Calculated with F 
Value)'/esticc 'Estimated Population Intraclass Correlation Coefficient'/estomega 'Estimated Omega Square'/zrcor 'Fishers Z  
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Corrected for Bias (When n is Small)'/cl 'Common Language (Out of 100 Randomly Sampled Subjects (RSS) from Group 1 will 
have Score > RSS from Group 2)'/ taua 'Kendalls Tau a (The Proportion of the Number of CP and DP Compared to the Total 
Number of Pairs)'/ tetra 'Tetrachoric Correlation (Estimation of Pearsons r for Continuous Variables Reduced to 
Dichotomies)'/taub 'Kendalls Tau b (PRE Interpretations)'/ gktau 'Goodman Kruskal Tau (Amount of Error in Predicting an 
Outcome Utilizing Data from a Second Variable)'/cramer2 'Cramers V Square'/ tauc 'Kendalls Tau c (AKA Stuarts Tau c or a 
Variant of Tau b for Larger Tables)'/. 
 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=testno exprmean exprsd exprn contmean contsd contn 
  /TITLE "Descriptive Statistics". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=glassdel cohend cohenda hedgesg hedgesa hedgesb U B 
  /TITLE "Standardized Differences Between Means, % of Nonoverlap (with d), and Power". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= percentd yulesq  
/TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 Dichotomous Associations". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= rr rrr odds 
/TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 Dichotomous Associations". 
REPORT FORMAT=LIST AUTOMATIC ALIGN (LEFT) 
MARGINS (*,90) 
  /VARIABLES= chi phi tetra c adjc  
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 Dichotomous/Nominal". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= cramer w t  
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 Dichotomous/Nominal". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= taub tauc taua 
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 Ordinal Associations". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=gktau  
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes: 2x2 PRE Measures". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= phi2 cramer2 w2 t2  
  /TITLE"Proportion of Variance-Accounted-For Effect Sizes: Squared Associations". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=coheng cohenh cohenq   
  /TITLE "Differences Between Proportions". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= f zr zrcor eta esticc 
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes:Measures of Relationship(PEES)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= rpbs rbs r rd rakf r1 rg 
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes:Measures of Relationship(PEES)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= k cl 
  /TITLE "Proportion of Variance-Accounted-For Effect Sizes:Measures of Relationship(PEES)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=rsquare r2akf rsquare1 adjr2 adjr2a  
  /TITLE"Proportion of Variance-Accounted-For Effect Sizes:Univariate Analyses (k=2, ESS)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=eta2 eta2f omega2 estomega epsilon2 epsilonf 
  /TITLE"Proportion of Variance-Accounted-For Effect Sizes:Univariate Analyses (k=2, ESS)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES= rpbs2 k2  
  /TITLE"Proportion of Variance-Accounted-For Effect Sizes:Univariate Analyses (k=2, ESS)". 
REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER) 
  /VARIABLES=f2 lambda d2 
  /TITLE"Proportion of Variance-Accounted-For Effect Sizes:Multivariate Analyses(k=2,ESS)". 
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Five readily available software packages were tested on nonlinear regression test problems from the NIST 
Statistical Reference Datasets. None of the packages was consistently able to obtain solutions accurate to 
at least three digits. However, two of the packages were somewhat more reliable than the others. 
 
Key words: nonlinear regression, Levenberg – Marquardt, NIST StRD 
 
 

Introduction 
 
The goal of this study is to compare the 
nonlinear regression capabilities of several 
software packages using the nonlinear regression 
datasets available from the National Institute of 
Standards and Technology (NIST) Statistical 
Reference Datasets (National Institute of 
Standards and Technology [NIST], 2000). 
 The nonlinear regression problems were 
solved by the NIST using quadruple precision 
(128 bits) and two public domain programs with 
different algorithms and different 
implementations; the convergence criterion was 
residual sum of squares (RSS) and the tolerance 
was 1E-36. Certified values were obtained by 
rounding the final solutions to 11 significant 
digits. Each of the two public domain programs, 
using only double precision, could achieve 10 
digits of accuracy for every problem. 
(McCullough, 1998). 
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The software packages considered in this study 
are: 
 
1. MATLAB codes by Hans Bruun Nielsen 
(2002). 
2. GaussFit (Jeffreys, Fitzpatrick, McArthur, & 
McCartney, 1998). 
3. Gnuplot (Crawford, 1998). 
4. Microsoft    Excel    (Mathews    &   Seymour, 
(1994). 
5. Minpack (More, Garbow, & Hillstrom, 1980). 
 
 Hiebert (1981) compared 12 Fortran 
codes on 36 separate nonlinear least squares 
problems. Twenty-eight of the problems used by 
Hiebert are given by Dennis, Gay, and Welch 
(1977) with the other eight problems given by 
More, Garbow, and Hillstrom, (1978).  In their 
paper, More et al. (1978) used Fortran 
subroutines to test 35 problems. These 35 
problems were a mixture of systems of nonlinear 
equations, nonlinear least – squares, and 
unconstrained minimization. We are not aware 
of any other published studies in which codes 
were tested on the NIST nonlinear regression 
problems.  
 

Methodology 
 
Following McCullough (1998), accuracy is 
determined using the log relative error (LRE) 
formula, 
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where q is the value of the parameter estimated 
by the code being tested and c is the certified 
value. In the event that q = c exactly then qλ  is 

not formally defined, but we set it equal to the 
number of digits in c. It is also possible for an 
LRE to exceed the number of digits in c; for 
example, it is possible to calculate an LRE of 
11.4 even though c contains only 11 digits. This 
is because double precision floating point 
arithmetic uses binary, not decimal arithmetic. 
In such a case, qλ  is set equal to the number of 

digits in c. Finally, any qλ less than one is set to 

zero. 
 Robustness is an important 
characteristic for a software package. In terms of 
accuracy, there is concern with each specific 
problem as individuals. Robustness, however, is 
a measure of how the software packages 
performed on the problems as a set. In other 
words, there must be a sense of how reliable the 
software package is so there may be some level 
of confidence that it will solve a particular 
nonlinear regression problem other than those 
listed in the NIST StRD.  
 In this sense, robustness may very well 
be more important to the user than accuracy. 
Certainly the user would want parameter 
estimates to be accurate to some level, but 
accuracy to 11 digits is often not particularly 
useful in practical application. However, the 
user would want to be confident that the 
software package they are using will generate 
parameter estimates accurate to perhaps 3 or 4 
digits on most any problem they attempt to 
solve. If, on the other hand, a software package 
is extremely accurate on some problems, but 
returns a solution which is not close to actual 
values on other problems, the user would want 
to use this software package with extreme 
caution. 
 The codes were not compared on the 
basis of CPU time, for the reason that all of 
these codes solve (or fail to solve) all of the 

NIST test problems within a few seconds. CPU 
time comparisons would certainly be of interest 
in the context of problems with many variables, 
or in problems for which the model and 
derivative computations are extremely time 
consuming.  
 A closer look at the various software 
packages chosen for this comparative study 
follows. Some of the packages are parts of a 
larger package, such as Microsoft Excel. In this 
case, the parts of the larger package which were 
used in the completion of this study are 
considered. Others in the set of packages used 
are designed exclusively for solving nonlinear 
least – squares problems. 
 
HBN MATLAB Code 
 The first software package used in this 
study is the MATLAB code written by Hans 
Bruun Nielson (2002). Nielson’s code can work 
with a user supplied analytical Jacobian or it can 
compute the Jacobian by finite differences. The 
Jacobian was calculated analytically for the 
purpose of this study. 
  
GaussFit 
 GaussFit (Jeffreys et al., 1998) was 
designed for astrometric data reduction with data 
from the NASA Hubble Space Telescope. It was 
designed to be a flexible least squares package 
so that astrometric models could quickly and 
easily be written, tested and modified. In this 
study, version 3.53 of GaussFit was used. 
 A unique feature of GaussFit is that 
although it is a special purpose system designed 
for estimation problems, it includes a full-
featured programming language which has all 
the power of traditional languages such as C, 
Pascal, and Fortran. This language possesses a 
complete set of looping and conditional 
statements as well as a modern nested statement 
structure. Variables and arrays may be freely 
created and used by the programmer. There is 
therefore no theoretical limit to the complexity 
of model that can be expressed in the GaussFit 
programming language.  
 One of the onerous tasks that faces the 
implementer of a least squares problem is the 
calculation of the partial derivatives with respect 
to the parameters and observations that are 
required in order to form the equations of 
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condition and the constraint equations. GaussFit 
solves this problem automatically using a built-
in algebraic manipulator to calculate all of the 
required partial derivatives. Every expression 
that the user’s model computes will carry all of 
the required derivative information along with it. 
No numerical approximations are used.  
  
Gnuplot 
 Gnuplot (Crawford, 1998) is a 
command-driven interactive function plotting 
program capable of a variety of tasks. Included 
among these tasks are plotting both two- or 
three-dimensional functions in a variety of 
formats, computations in integer, floating point, 
and complex arithmetic, and support for a 
variety of operating systems. 
 The ‘fit’ command can fit a user-defined 
function to a set of data points (x,y) or (x,y,z), 
using an implementation of the nonlinear least-
squares Marquardt – Levenberg algorithm. Any 
user-defined variable occurring in the function 
body may serve as a fit parameter, but the return 
type of the function must be real.  
 For this study, gnuplot version 3.7 
patchlevel 3 was used. Initially, gnuplot 
displayed only approximately 6 digits in its 
solutions to the estimation of the parameters. 
The source code was modified to display 20 
digits in its solutions. For the purposes of this 
study, FIT_LIMIT was set to 1.0e-15, with the 
default values for the other program parameters.  
 
Microsoft Excel 
 Microsoft Excel is a multi-purpose 
software package. As only a small part of its 
capabilities were used during the process of this 
study, discussion of Excel is limited to its 
‘Solver’ capabilities. The Excel Solver function 
is a self-contained function in that all of the data 
must be located somewhere on the spreadsheet. 
The Solver allows the user to find a solution to a 
function that contains up to 200 variables and up 
to 100 constraints on those variables. A Quasi-
Newton search direction was used with 
automatic scaling and a tolerance of 1.0e-15. 
(Mathews & Seymour, 1994). 
 
 
 
 

MINPACK 
 Minpack (More et al., 1980) is a library 
of Fortran codes for solving systems of 
nonlinear equations and nonlinear least squares 
problems. Minpack is freely distributed via the 
Netlib web site and other sources. The 
algorithms proceed either from an analytic 
specification of the Jacobian matrix or directly 
from the problem functions. The paths include 
facilities for systems of equations with a banded 
Jacobian matrix, for least squares problems with 
a large amount of data, and for checking the 
consistency of the Jacobian matrix with the 
functions. 
 For the problems involved in this study 
a program and a subroutine had to be written. 
The main program calls the lmder1 routine. The 
lmder1 routine calls two user written subroutines 
which compute function values and partial 
derivatives. 

 
Results 

 
The problems given in the NIST StRD dataset 
are provided with two separate initial starting 
positions for the estimated parameters. The first 
position, Start 1, is considered to be the more 
difficult because the initial values for the 
parameters are farther from the certified values 
than are the initial values given by Start 2. For 
this reason, one might expect that the solutions 
generated from Start 2 to be more accurate, or 
perhaps for the algorithm to take fewer 
iterations. It is interesting to note that in several 
cases the results from Start 2 are not more 
accurate based upon the minimum LRE 
recorded. 
 The critical parameter used in the 
comparison of these software packages is the 
LRE as calculated in (1). The number of 
estimated parameters for these problems range 
from two to nine. It was decided that it would be 
beneficial for the results table to be as concise as 
possible, yet remain useful. As a result, after 
running a particular package from both starting 
values, the LRE for each estimated parameter 
was calculated. The minimum LRE for the 
estimated parameters from each starting position 
was then entered into the results table.  
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Table 1.  Minimum Log Relative Error of Estimated Parameters. 

 
Problem Start Excel Gnuplot GaussFit HBN Minpack 
 
  1 4.8 5.8              10.0  11.0 7.7   
Misra1a 
  2 6.1 5.8  10.0  10.3 7.7   
 
  1 4.2 4.9  7.4  10.6 2.4   
Chwirut2 
  2 4.6 4.9  8.6  9.1 2.4  
 
  1 4.0 4.2  8.0  10.3 7.5   
Chwirut1 
  2 4.9 4.3  8.5  10.1 7.5   
 
  1 0.0 3.9  0.0  4.9 3.3   
Lanczos3 
  2 0.0 3.9  7.9  5.1 3.3   
 
  1 4.7 5.1  8.7  6.9 8.0   
Gauss1 
              2 4.6 5.1  8.6  6.9 3.3  
 
 
  1  4.5 4.9  0.0  6.8 7.8   
Gauss2 
  2  4.4 4.9  0.0  6.8 7.2   
 
  1  4.6 5.1  NS  10.2 6.6   
DanWood 
  2  4.7 5.1  NS  8.7 6.6   
 
  1 4.4 5.8  0.0  10.9 2.7   
Misra1b 
  2 6.4 5.8  9.7  11.0 2.5   
 
  1 1.0 4.8  7.4  10.3 6.2   
Kirby2 
  2 1.9 4.9  7.9  10.4 6.2 
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Problem Start Excel Gnuplot GaussFit HBN Minpack 
  
               1 0.0 4.0  0.0  9.5 NS   
Hahn1 
  2 0.0 4.0  0.0  9.7 NS   
 
  1 0.0 0.0  0.0  0.0 0.0   
Nelson 
  2 0.0 0.0  1.4  0.0 0.0   
 
  1 0.0 NS  NS  0.0 7.6   
MGH17 
  2 1.4 3.7  NS  0.0 7.5   
 
  1 0.0 10.0  0.0  4.9 4.3   
Lanczos1 
  2 0.0 10.0  10.0  5.8 4.3   
 
  1 0.0 5.4  0.0  5.7 3.5   
Lanczos2 
  2 0.0 5.4  9.1  5.3 3.5 
 
  1 4.3 4.8  9.2  6.5 2.4   
Gauss3 
  2 4.1 5.0  9.1  6.5 2.4   
 
  1 0.0 5.9  0.0  10.8 7.6   
Misra1c 
  2 0.0 5.9  10.0  10.2 7.6   
 
  1 5.2 5.8  0.0  11.0 7.6   
Misra1d 
  2 4.4 5.9  8.9  11.0 7.6   
 
  1 3.5 4.1  8.7  4.0 0.0   
Roszman1 
  2 0.0 5.1  8.6  4.0 0.0   
 
  1 0.0 1.6  3.7  6.5 0.0   
ENSO 
  2 0.0 2.2  3.7  6.6 0.0 
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Problem Start Excel Gnuplot Gaussfit HBN Minpack 
 

 1 0.0 3.6  0.0  5.0 6.3   
MGH09 
  2 5.0 3.6  0.0  5.2 6.4   
 
  1 1.7 3.2  0.0  7.8 0.0   
Thurber 
  2 1.5 4.4  6.4  7.5 0.0   
 
  1 0.0 4.5  NS  9.7 0.0   
BoxBOD  
  2 5.6 3.8  NS  8.6 9.1   
 
  1 5.3 4.2  8.0  10.3 7.1   
Rat42 
  2 5.2 4.1  8.3  11.2 7.1 
 

 1 0.0 NS  0.0  0.0 10.8   
MGH10 
  2 0.0 4.4  0.0  0.0 11.0   
 
  1 0.0 0.0  0.0  8.1 0.0   
Eckerle4 
  2 5.1 4.8  8.3  7.2 1.2   
 
  1 0.0 NS  NS  0.0 6.9   
Rat43 
  2 3.2 2.6  NS  1.3 7.0   
 
  1 0.0 6.4  NS  3.7 0.0   
Bennett5 
  2 0.0 6.7  NS  3.7 1.5 
 
Notes: NS – Software package was unable to generate any numerical solution. A score of 
0.0 implies that the package returned a solution in which at least one parameter was accurate 
to less than one digit. 
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 An entry of 0.0 in the results table is 
given if a software package generated estimates 
for the parameters but the minimum LRE was 
less than 1.0. For example if the minimum LRE 
was calculated to be 8.0e-1, rather than entering 
this, a 0.0 was entered. This practice was 
followed in an effort to be consistent with 
established practices (McCullough, 1998). If a 
software package did not generate a numerical 
estimate for the parameters, then an entry of 
‘NS’ is entered into the results table. 
 
Accuracy 
 As stated in the introduction, the 
accuracy of the solutions was evaluated in terms 
of the log relative error (LRE) using equation 
(1). Essentially the LRE gives the number of 
leading digits in the estimated parameter values 
that correspond to the leading digits of the 
certified values. Again, it should to be noted that 
the values given in the results table are the 
minimum LRE values for those problems. In 
other words, if a problem has five parameters to 
be estimated and four of the parameters are 
estimated accurately to seven digits, but the fifth 
is only accurate to one digit, it is reasonable to 
say that the problem was not accurately solved. 
On the other hand, if all five parameters were 
estimated to at least five digits, then one could 
feel confident that the package had indeed 
solved the problem. 
 Nielsen’s MATLAB code had an 
average LRE score of 6.8 for the problems. For 
the problems this package was able to solve, the 
starting position did not seem to be of much 
importance. In fact, it is quite interesting that for 
several problems the LRE generated using the 
first set of initial values is larger than the LRE 
generated using the second set of initial values. 
This is interesting because the second set of 
initial values is closer to the certified values of 
the parameter estimates. Of the twenty-three 
problems that the parameters were estimated 
correctly to at least two digits, the average LRE 
was 7.96. This shows us that the accuracy of the 
estimated parameters was very high on those 
problems which this package effectively solved. 
 GaussFit had an average LRE score of 
4.9. Unlike Nielsen’s MATLAB code, GaussFit 
was very dependent upon the initial values given 
to the parameters. On eight of the problems 

GaussFit was unable to estimate all of the 
parameters to even one digit from the first 
starting position. From the second starting 
position GaussFit was able to estimate all of the 
parameters to over six digits correctly. This 
seemingly high dependence upon the starting 
values is a potential problem when using 
GaussFit for solving these nonlinear regression 
problems. There is no guarantee that one can 
find a starting value which is sufficiently close 
to the solution for GaussFit to effectively solve 
the problem. 
 Gnuplot has an average LRE score of 
4.6. While this is actually lower than the average 
LRE score for GaussFit, gnuplot is not so 
heavily dependent upon the starting position in 
order to solve the problem. Rather, much like 
Nielsen’s code, gnuplot seems quite capable of 
accurately estimating the parameter values to 
four digits whether the starting position is close 
or far from the certified values. 
 Microsoft Excel did not solve these 
problems well at all. The average LRE score for 
Excel is 2.32. Excel did perform reasonably well 
on the problems with a lower level of difficulty. 
For the eight problems with a lower level of 
difficulty the average LRE was 4.18. While 
these are probably reasonable results for these 
problems, we can see that for the problems with 
a moderate or high level of difficulty Excel did 
very poorly. Such results as this would cause 
one to have serious questions as to Excel being 
able to solve any particular least squares 
regression problem. 
 The Minpack library of Fortran codes 
also performed poorly on these particular 
problems. The average LRE for the twenty-six 
problems that Minpack did solve is 4.51. 
Minpack was significantly less accurate than the 
other packages on four of the problems, 
Misra1b, ENSO, Thurber, and Eckerle4. On the 
other hand, Minpack was considerably more 
accurate on the MGH10 problem. Minpack did 
not seem to be overly dependent upon starting 
position as in only two of the problems was 
there a significant difference in the minimum 
LRE for the different starting positions. 
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Robustness 
 Although the accuracy to which a 
particular software package is able to estimate 
the parameters is an important characteristic of 
the package, the ability of the package to solve a 
variety of nonlinear regression problems to an 
acceptable level of accuracy is perhaps more 
important to the user. Most users would like to 
have confidence that the particular software 
package in use is likely to estimate those 
parameters to an acceptable level of accuracy. 
 What is an acceptable level of accuracy? 
Such a question as this might elicit a variety of 
responses simply depending upon the nature of 
the study, the data, the relative size of the 
parameters, and many other variables which may 
need to be considered. For the purposes of this 
study we will consider an acceptable level of 
accuracy to be three digits. In Table 2, the 
various software packages are compared by the 
number (and percentage) of the problems which 
they were able to estimate the parameters 
accurately to at least three digits from either 
starting position. 

Here, N is the number of problems 
which the package accurately estimated the 
parameters to at least three digits. P is the 
percentage of the problems which the package 
accurately estimated the parameters to at least 
three digits. 

It can easily be seen here that as far as 
the robustness of the packages is concerned 
there   are   two    distinct    divisions.   Nielsen’s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

MATLAB code, and Gnuplot were both able to 
attain the 3 digit level of accuracy for over 80% 
of the problems. GaussFit, Excel, and Minpack, 
on the other hand were able to attain that level of 
accuracy on less than 65% of the problems. 

 
Conclusion 

 
The robustness of the codes tested in this study 
is surprisingly poor. In many cases, the results 
were quite accurate from one starting point, and 
completely incorrect from another starting point.  
In some cases the codes failed with an error 
message indicating that no correct solution had 
been obtained, while in other cases an incorrect 
solution was returned without warning. 
 Although some problems seemed to be 
easy for all of the codes from all of the starting 
points, there were other problems for which 
some codes easily solved the problem while 
other codes failed. In general, when reasonably 
accurate solutions were obtained, the solutions 
were typically accurate to five digits or better.   

It is suggested that users of these and 
other packages for nonlinear regression would 
be well advised to carefully check the results 
that they obtain. Some obvious strategies for 
checking the solution include running a code 
from several different starting points and solving 
the problem with more than one package.   
 
 
 

 
Table 2. Comparison of Robustness 

  Package   N      P(%) 

  Gnuplot   24   88.89% 

  Nielsen’s MATLAB Code 23   85.19% 

  GaussFit   17   62.96% 

  Minpack   17   62.96% 

  Excel    15   55.56% 
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Letter To the Editor 
 
Abelson’s Paradox And The Michelson-Morley 
Experiment 
 
Sawilowsky, S. (2003). Deconstructing 
arguments from the case against hypothesis 
testing. Journal of Modern Applied Statistical 
Methods, 2(2), 467- 474. 
 
Email correspondence was submitted to the 
Editorial Board pertaining to Sawilowsky’s 
(2003) counter to the ‘Einstein Gambit’ in 
interpreting the 1887 Michelson-Morley 
experiment. To review, Carver (1978) claimed 
that hypothesis testing is detrimental to science, 
and educational research would be “better off 
even if [hypothesis tests are] properly used” (p. 
398). Carver imagined (1993) that Albert 
Einstein would have been set back many years if 
he had relied on hypothesis tests. See 
Sawilowsky (2003) on why this gambit should 
be declined. 
 Carver (1993) obtained an effect size 
(eta squared) of .005 on some aspect of the 
Michelson-Morley data, although there was 
insufficient information given to replicate his 
results. Carver (1993) concluded “if Michelson 
and Morley had been forced … to do a test of 
statistical significance, they could have 
minimized its influence by reporting this effect 
size measure indicating that less that 1% of the 
variance in the speed of light was associated 
with its direction” (p. 289). 

Sawilowsky (2003) noted that the 
experimental results were between 5 – 7.5 km/s. 
Although this did not support the static model of 
luminiferous ether that Michelson and Morley 
were searching for, which required 30 k/s, at 
more than 16,750 miles per hour it does 
represent a speed that exceeds the Earth’s 
satellite orbital velocity. Thus, there is no 
legitimate reason to minimize this experimental 
result, which is clearly not zero, by dubbing it 
with the moniker of the most famous experiment 
in physics with a null result. 
 The author of the email correspondence 
noted that the magnitude of the speed is 
impressive, but perhaps Sawilowsky (2003) 
invoked a Huffian (Huff, 1954) maneuver in 
changing from the magnitude of variance 

explained to the speed in km/s. Although an 
invitation was declined to formalize the 
comment into a Letter to the Editor, the concern 
does merit a response. 
 Abelson (1985) sought to determine the 
contribution of past performance in explaining 
successful outcomes in the sport of professional 
baseball. There is no theory of success in 
baseball that denigrates the importance of the 
batting average. Yet, in Abelson’s study, the 
amount of variance in successful outcomes that 
was due to batting average was a mere .00317. 
 Cohen (1988) emphasized “this is not a 
misprint – it is not .317, or even .0317. It is 
.00317, not quite one third of 1%” (p. 535)! 
Although a model that explains so little variance 
is probably misspecified, the response to the 
email query is to invoke Cohen’s (1988) adage: 
“The next time you read that ‘only X% of the 
variance is accounted for,’ remember Abelson’s 
Paradox” (p. 535). 
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NCSS 
329 North 1000 East 
Kaysville, Utah 84037 

Announcing NCSS 2004 
Seventeen New Procedures 

NCSS 2004 is a new edition of our popular statistical NCSS package that adds seventeen new procedures. 
 

Meta-Analysis 
Procedures for combining studies 
measuring paired proportions, means, 
independent proportions, and hazard 
ratios are available. Plots include the 
forest plot, radial plot, and L’Abbe plot. 
Both fixed and random effects models 
are available for combining the results. 
 

Curve Fitting 
This procedure combines several of our 
curve fitting programs into one module. 
It adds many new models such as 
Michaelis-Menten. It analyzes curves 
from several groups. It compares fitted 
models across groups using computer-
intensive randomization tests. It 
computes bootstrap confidence intervals. 
 

Tolerance Intervals 
This procedure calculates one and two 
sided tolerance intervals using both 
distribution-free (nonparametric) 
methods and normal distribution 
(parametric) methods. Tolerance 
intervals are bounds between which a 
given percentage of a population falls. 
 

Comparative Histogram 
This procedure displays a comparative 
histogram created by interspersing or 
overlaying the individual histograms of 
two or more groups or variables. This 
allows the direct comparison of the 
distributions of several groups. 
 

Random Number Generator 
Matsumoto’s Mersenne Twister random 
number generator (cycle length > 
10**6000) has been implemented. 
 

Binary Diagnostic Tests 
Four new procedures provide the 
specialized analysis necessary for 
diagnostic testing with binary outcome 
data. These provide appropriate specificity 
and sensitivity output. Four experimental 
designs can be analyzed including 
independent or paired groups, comparison 
with a gold standard, and cluster 
randomized. 
 
ROC Curves 
This procedure generates both binormal 
and empirical (nonparametric) ROC 
curves. It computes comparative measures 
such as the whole, and partial, area under 
the ROC curve. It provides statistical tests 
comparing the AUC’s and partial AUC’s 
for paired and independent sample designs.  
 

Hybrid (Feedback) Model 
This new edition of our hybrid appraisal 
model fitting program includes several new 
optimization methods for calibrating 
parameters including a new genetic 
algorithm. Model specification is easier. 
Binary variables are automatically 
generated from class variables. 
 

New Procedures 
Two Independent Proportions 
Two Correlated Proportions 
One-Sample Binary Diagnostic Tests 
Two-Sample Binary Diagnostic Tests 
Paired-Sample Binary Diagnostic Tests 
Cluster Sample Binary Diagnostic Tests 
Meta-Analysis of Proportions 
Meta-Analysis of Correlated Proportions 
Meta-Analysis of Means 
Meta-Analysis of Hazard Ratios 
Curve Fitting 
Tolerance Intervals 
Comparative Histograms 
ROC Curves 
Elapsed Time Calculator 
T-Test from Means and SD’s 
Hybrid Appraisal (Feedback) Model 

Documentation 
The printed, 330-page manual, called 
NCSS User’s Guide V, is available for 
$29.95. An electronic (pdf) version of 
the manual is included on the distribution 
CD and in the Help system. 
 

Two Proportions 
Several new exact and asymptotic 
techniques were added for hypothesis 
testing (null, noninferiority, equivalence) 
and calculating confidence intervals for 
the difference, ratio, and odds ratio. 
Designs may be independent or paired. 
Methods include: Farrington & Manning, 
Gart & Nam, Conditional & 
Unconditional Exact, Wilson’s Score, 
Miettinen & Nurminen, and Chen. 
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Statistical Innovations Products 
Through a special arrangement with 
Statistical Innovations (S.I.), NCSS 
customers will receive $100 discounts on: 
  Latent GOLD - latent class modeling 
  SI-CHAID -  segmentation trees  
  GOLDMineR -  ordinal regression 

For demos and other info visit: 
www.statisticalinnovations.com 



 Please rush me the following products: 
Qty 
___ NCSS 2004 CD upgrade from NCSS 2001, $149.95 .................. $_____ 

___ NCSS 2004 User’s Guide V, $29.95............................................. $_____ 

___ NCSS 2004 CD, upgrade from earlier versions, $249.95........... $_____ 

___ NCSS 2004 Deluxe (CD and Printed Manuals), $599.95........... $_____ 

___ PASS 2002 Deluxe, $499.95 ......................................................... $_____ 

___ Latent Gold® from S.I., $995 - $100 NCSS Discount = $895..... $_____ 

___ GoldMineR® from S.I., $695 - $100 NCSS Discount = $595 ..... $_____ 

___ CHAID® Plus from S.I., $695 - $100 NCSS Discount = $595.... $_____ 

Approximate shipping--depends on which manuals are ordered (U.S: $10 
ground, $18 2-day, or $33 overnight) (Canada $24) (All other countries 
$10) (Add $5 U.S. or $40 International for any S.I. product) ........ $_____ 

 Total.......... $_____ 

TO PLACE YOUR ORDER 
CALL: (800) 898-6109 FAX: (801) 546-3907 

ONLINE: www.ncss.com 
MAIL: NCSS, 329 North 1000 East, Kaysville, UT 84037 

My Payment Option: 
___ Check enclosed 
___ Please charge my: __VISA   __ MasterCard ___Amex 
___ Purchase order attached___________________________  

Card Number ______________________________________Exp ________ 

Signature______________________________________________________ 

Telephone: 
(        ) ____________________________________________________ 

Email: 
____________________________________________________________ 

Ship to: 
NAME ________________________________________________________ 

ADDRESS ______________________________________________________ 

ADDRESS_________________________________________________________________________ 

ADDRESS_________________________________________________________________________ 

CITY _____________________________________________ STATE _________________________ 

ZIP/POSTAL CODE _________________________________COUNTRY ______________________ 

Analysis of Variance / T-Tests 
Analysis of Covariance 
Analysis of Variance 
Barlett Variance Test 
Crossover Design Analysis 
Factorial Design Analysis 
Friedman Test 
Geiser-Greenhouse Correction 
General Linear Models 
Mann-Whitney Test 
MANOVA 
Multiple Comparison Tests 
One-Way ANOVA 
Paired T-Tests 
Power Calculations 
Repeated Measures ANOVA 
T-Tests – One or Two Groups 
T-Tests – From Means & SD’s 
Wilcoxon Test 
 
Time Series Analysis 
ARIMA / Box - Jenkins 
Decomposition 
Exponential Smoothing 
Harmonic Analysis 
Holt - Winters 
Seasonal Analysis 
Spectral Analysis 
Trend Analysis 
 
*New Edition in 2004 
 

Regression / Correlation 
All-Possible Search 
Canonical Correlation 
Correlation Matrices 
Cox Regression 
Kendall’s Tau Correlation 
Linear Regression 
Logistic Regression 
Multiple Regression 
Nonlinear Regression 
PC Regression 
Poisson Regression 
Response-Surface 
Ridge Regression 
Robust Regression 
Stepwise Regression 
Spearman Correlation 
Variable Selection 
 
Quality Control 
Xbar-R Chart  
C, P, NP, U Charts 
Capability Analysis 
Cusum, EWMA Chart 
Individuals Chart 
Moving Average Chart 
Pareto Chart 
R & R Studies 
 

 

Plots / Graphs 
Bar Charts 
Box Plots 
Contour Plot 
Dot Plots 
Error Bar Charts 
Histograms 
Histograms: Combined* 
Percentile Plots 
Pie Charts 
Probability Plots 
ROC Curves* 
Scatter Plots 
Scatter Plot Matrix 
Surface Plots 
Violin Plots 
 
Experimental Designs 
Balanced Inc. Block 
Box-Behnken 
Central Composite 
D-Optimal Designs 
Fractional Factorial 
Latin Squares 
Placket-Burman 
Response Surface 
Screening 
Taguchi 
 

Survival / Reliability  
Accelerated Life Tests 
Cox Regression 
Cumulative Incidence 
Exponential Fitting 
Extreme-Value Fitting 
Hazard Rates 
Kaplan-Meier Curves 
Life-Table Analysis 
Lognormal Fitting 
Log-Rank Tests 
Probit Analysis 
Proportional-Hazards  
Reliability Analysis 
Survival Distributions 
Time Calculator* 
Weibull Analysis 

 
Multivariate Analysis 
Cluster Analysis 
Correspondence Analysis 
Discriminant Analysis 
Factor Analysis 
Hotelling’s T-Squared 
Item Analysis 
Item Response Analysis 
Loglinear Models 
MANOVA 
Multi-Way Tables 
Multidimensional Scaling 
Principal Components 

 

Curve Fitting  
Bootstrap C.I.’s* 
Built-In Models 
Group Fitting and Testing* 
Model Searching 
Nonlinear Regression 
Randomization Tests* 
Ratio of Polynomials 
User-Specified Models 

 
Miscellaneous 
Area Under Curve 
Bootstrapping 
Chi-Square Test 
Confidence Limits 
Cross Tabulation 
Data Screening 
Fisher’s Exact Test 
Frequency Distributions 
Mantel-Haenszel Test 
Nonparametric Tests 
Normality Tests 
Probability Calculator 
Proportion Tests 
Randomization Tests 
Tables of Means, Etc. 
Trimmed Means 
Univariate Statistics 

 

Statistical and Graphics Procedures Available in NCSS 2004 
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Meta-Analysis* 
Independent Proportions* 
Correlated Proportions* 
Hazard Ratios* 
Means* 
 
Binary Diagnostic Tests* 
One Sample* 
Two Samples* 
Paired Samples* 
Clustered Samples* 
 
Proportions 
Tolerance Intervals* 
Two Independent* 
Two Correlated* 
Exact Tests* 
Exact Confidence Intervals* 
Farrington-Manning* 
Fisher Exact Test 
Gart-Nam* Method 
McNemar Test 
Miettinen-Nurminen* 
Wilson’s Score* Method 
Equivalence Tests* 
Noninferiority Tests* 
 
Mass Appraisal 
Comparables Reports 
Hybrid (Feedback) Model* 
Nonlinear Regression 
Sales Ratios 





Analysis of Variance
Factorial AOV
Fixed Effects AOV
Geisser-Greenhouse
MANOVA*
Multiple Comparisons*
One-Way AOV
Planned Comparisons
Randomized Block AOV
New Repeated Measures AOV*
Regression / Correlation
Correlations (one or two)
Cox Regression*
Logistic Regression
Multiple Regression
Poisson Regression*
Intraclass Correlation
Linear Regression

Proportions
Chi-Square Test
Confidence Interval
Equivalence of McNemar*
Equivalence of Proportions
Fisher's Exact Test
Group Sequential Proportions
Matched Case-Control
McNemar Test
Odds Ratio Estimator
One-Stage Designs*
Proportions – 1 or 2
Two Stage Designs (Simon’s)
Three-Stage Designs*
Miscellaneous Tests
Exponential Means – 1 or 2*
ROC Curves – 1 or 2*
Variances – 1 or 2

T Tests
Cluster Randomization
Confidence Intervals
Equivalence T Tests
Hotelling’s T-Squared*
Group Sequential T Tests
Mann-Whitney Test
One-Sample T-Tests
Paired T-Tests
Standard Deviation Estimator
Two-Sample T-Tests
Wilcoxon Test
Survival Analysis
Cox Regression*
Logrank Survival -Simple
Logrank Survival - Advanced*
Group Sequential - Survival
Post-Marketing Surveillance
ROC Curves – 1 or 2*

Group Sequential Tests
Alpha Spending Functions
Lan-DeMets Approach
Means
Proportions
Survival Curves
Equivalence
Means
Proportions
Correlated Proportions*
Miscellaneous Features
Automatic Graphics
Finite Population Corrections
Solves for any parameter
Text Summary
Unequal N's

*New in PASS 2002

NCSS Statistical Software • 329 North 1000 East • Kaysville, Utah  84037
Internet (download free demo version): http://www.ncss.com • Email: sales@ncss.com

Toll Free: (800) 898-6109 • Tel: (801) 546-0445 • Fax: (801) 546-3907

PASS comes with two manuals that contain
tutorials, examples, annotated output,
references, formulas, verification, and
complete instructions on each procedure.
And, if you cannot find an answer in the
manual, our free technical support staff
(which includes a PhD statistician) is
available.

System Requirements
PASS runs on Windows 95/98/ME/NT/
2000/XP with at least 32 megs of RAM and
30 megs of hard disk space.

PASS sells for as little as $449.95.

Power vs N1 by Alpha with M1=20.90 M2=17.80
S1=3.67 S2=3.01 N2=N1 2-Sided T Test
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PASS performs power analysis and
calculates sample sizes. Use it before
you begin a study to calculate an
appropriate sample size (it meets the
requirements of government agencies
that want technical justification of the
sample size you have used). Use it after
a study to determine if your sample size
was large enough. PASS calculates the
sample sizes necessary to perform all of
the statistical tests listed below.

A power analysis usually involves
several “what if” questions. PASS lets
you solve for power, sample size, effect
size, and alpha level. It automatically
creates appropriate tables and charts of
the results.
PASS is accurate. It has been
extensively verified using books and
reference articles. Proof of the
accuracy of each procedure is included
in the extensive documentation.

PASS is a standalone system. Although
it is integrated with NCSS, you do not
have to own NCSS to run it. You can use
it with any statistical software you want.

PASS Beats the Competition!
No other program calculates sample
sizes and power for as many different
statistical procedures as does PASS.
Specifying your input is easy, especially
with the online help and manual.

PASS automatically displays charts and
graphs along with numeric tables and
text summaries in a portable format that
is cut and paste compatible with all word
processors so you can easily include the
results in your proposal.

Choose PASS. It's more comprehensive,
easier-to-use, accurate, and less
expensive than any other sample size
program on the market.

Trial Copy Available
You can try out PASS by downloading it
from our website. This trial copy is
good for 30 days. We are sure you will
agree that it is the easiest and most
comprehensive power analysis and
sample size program available.

PASS 2002
Power Analysis and Sample Size Software from NCSS



PASS calculates sample sizes for...

PASS 2002 adds power analysis and sample size to your statistical toolbox

WHAT’S NEW IN PASS 2002?
Thirteen new procedures have been added
to PASS as well as a new home-base
window and a new Guide Me facility.

MANY NEW PROCEDURES
The new procedures include a new multi-
factor repeated measures program that
includes multivariate tests, Cox
proportional hazards regression, Poisson
regression, MANOVA, equivalence
testing when proportions are correlated,
multiple comparisons, ROC curves, and
Hotelling’s T-squared.

TEXT STATEMENTS
The text output translates the numeric
output into easy-to-understand
sentences. These statements may be
transferred directly into your grant
proposals and reports.

GRAPHICS
The creation of charts and graphs is
easy in PASS. These charts are easily
transferred into other programs such
as MS PowerPoint and MS Word.

NEW USER’S GUIDE II
A new, 250-page manual describes each new
procedure in detail. Each chapter contains
explanations, formulas, examples, and
accuracy verification.

The complete manual is stored in PDF
format on the CD so that you can read and
printout your own copy.
GUIDE ME
The new Guide Me facility makes it easy for
first time users to enter parameter values.
The program literally steps you through those
options that are necessary for the sample size
calculation.
NEW HOME BASE
A new home base window has been added just
for PASS users. This window helps you
select the appropriate program module.
COX REGRESSION
A new Cox regression procedure has been
added to perform power analysis and sample
size calculation for this important statistical
technique.
REPEATED MEASURES
A new repeated-measures analysis module
has been added that lets you analyze designs
with up to three grouping factors and up to
three repeated factors. The analysis includes
both the univariate F test and three common
multivariate tests including Wilks Lambda.
RECENT REVIEW
In a recent review, 17 of 19 reviewers
selected PASS as the program they would
recommend to their colleagues.

Please rush me my own personal license of PASS 2002.
Qty
___ PASS 2002 Deluxe  (CD and User's Guide): $499.95..............$ _____

___ PASS 2002 CD (electronic documentation): $449.95..........$ _____

___ PASS 2002 5-User Pack (CD & 5 licenses): $1495.00........$ _____

___ PASS 2002 25-User Pack (CD & 25 licenses): $3995.00....$ _____

___ PASS 2002 User's Guide II (printed manual): $30.00.........$ _____

___ PASS 2002 Upgrade CD for PASS 2000 users: $149.95 .......$ _____

Typical Shipping & Handling: USA: $9 regular, $22 2-day, $33
overnight. Canada: $19 Mail. Europe: $50 Fedex.......................$ _____
Total: ...................................................................................$ _____

My Payment Options:
___ Check enclosed
___ Please charge my: __VISA __MasterCard __Amex
___ Purchase order enclosed

Card Number
_______________________________________________Expires_______

Signature____________________________________________________
Please provide daytime phone:

(       )_______________________________________________________

Ship my PASS 2002 to:

NAME

COMPANY

ADDRESS

CITY/STATE/ZIP

COUNTRY (IF OTHER THAN U.S.)

FOR FASTEST DELIVERY, ORDER ONLINE AT
WWW.NCSS.COM

Email your order to sales@ncss.com
Fax your order to (801) 546-3907

NCSS, 329 North 1000 East, Kaysville, UT 84037
(800) 898-6109 or (801) 546-0445





Introducing GGUM2004 
Item Response Theory Models for Unfolding

The new GGUM2004 software system
estimates parameters in a family of item
response theory (IRT) models that unfold
polytomous responses to questionnaire
items.  These models assume that persons
and items can be jointly represented as
locations on a latent unidimensional
continuum.  A single-peaked,
nonmonotonic response function is the key
feature that distinguishes unfolding IRT
models from traditional, "cumulative" IRT
models.  This response function suggests

that a higher item score is more likely to the extent that an individual is located close to a given
item on the underlying continuum.  Such single-peaked functions are appropriate in many
situations including attitude measurement with Likert or Thurstone scales, and preference
measurement with stimulus rating scales.  This family of models can also be used to determine
the locations of respondents in particular developmental processes that occur in stages.
 
The GGUM2004 system estimates item parameters using marginal maximum likelihood, and
person parameters are estimated using an expected a posteriori (EAP) technique.  The program
allows for up to 100 items with 2-10 response categories per item, and up to 2000 respondents. 
GGUM2004 is compatible with computers running updated versions of Windows 98 SE,
Windows 2000, and Windows XP.  The software is accompanied by a detailed technical
reference manual and a new Windows user's guide.  GGUM2004 is free and can be downloaded
from:
 

http://www.education.umd.edu/EDMS/tutorials

GGUM2004 improves upon its predecessor (GGUM2000) in several important ways:
- It has a user-friendly graphical interface for running commands and 

               displaying output.
- It offers real-time graphics that characterize the performance of a given model.
- It provides new item fit indices with desirable statistical characteristics.
- It allows for missing item responses assuming the data are missing at random.
- It allows the number of response categories to vary across items.
- It estimates model parameters more quickly.

Start putting the power of unfolding IRT models to work in your attitude and preference
measurement endeavors.  Download your free copy of GGUM2004 today!







 
 
 
 
 
 
 
 
 
 
 

    The fastest, most comprehensive and robust   
   permutation test software on the market today. 
       
       Permutation tests increasingly are the statistical method of choice for addressing business questions and research 
hypotheses across a broad range of industries.  Their distribution-free nature maintains test validity where many parametric 
tests (and even other nonparametric tests), encumbered by restrictive and often inappropriate data assumptions, fail 
miserably.  The computational demands of permutation tests, however, have severely limited other vendors’ attempts at 
providing useable permutation test software for anything but highly stylized situations or small datasets and few tests.  
PermuteItTM addresses this unmet need by utilizing a combination of algorithms to perform non-parametric permutation tests 
very quickly – often more than an order of magnitude faster than widely available commercial alternatives when one sample is 
large and many tests and/or multiple comparisons are being performed (which is when runtimes matter most).  PermuteItTM 
can make the difference between making deadlines, or missing them, since data inputs often need to be revised, resent, or 
recleaned, and one hour of runtime quickly can become 10, 20, or 30 hours. 
 
In addition to its speed even when one sample is large, some of the unique and powerful features of PermuteItTM include: 
  
•      the availability to the user of a wide range of test statistics for performing permutation tests on continuous, count, & 
binary data, including: pooled-variance t-test; separate-variance Behrens-Fisher t-test, scale test, and joint tests for scale and 
location coefficients using nonparametric combination methodology; Brownie et al. “modified” t-test; skew-adjusted 
“modified” t-test; Cochran-Armitage test; exact inference; Poisson normal-approximate test; Fisher’s exact test; Freeman-
Tukey Double Arcsine test 
 
•      extremely fast exact inference (no confidence intervals – just exact p-values) for most count data and high-frequency 
continuous data, often several orders of magnitude faster than the most widely available commercial alternative 
 
•      the availability to the user of a wide range of multiple testing procedures, including: Bonferroni, Sidak, Stepdown 
Bonferroni, Stepdown Sidak, Stepdown Bonferroni and Stepdown Sidak for discrete distributions, Hochberg Stepup, FDR, 
Dunnett’s one-step (for MCC under ANOVA assumptions), Single-step Permutation, Stepdown Permutation, Single-step and 
Stepdown Permutation for discrete distributions, Permutation-style adjustment of permutation p-values 
 
•      fast, efficient, and automatic generation of all pairwise comparisons 
 
•      efficient variance-reduction under conventional Monte Carlo via self-adjusting permutation sampling when confidence 
intervals contain the user-specified critical value of the test  
 
•      maximum power, and the shortest confidence intervals, under conventional Monte Carlo via a new sampling optimization 
technique (see Opdyke, JMASM, Vol. 2, No. 1, May, 2003) 
 
•      fast permutation-style p-value adjustments for multiple comparisons (the code is designed to provide an additional speed 
premium for many of these resampling-based multiple testing procedures)  
 
•      simultaneous permutation testing and permutation-style p-value adjustment, although for relatively few tests at a time 
(this capability is not even provided as a preprogrammed option with any other software currently on the market)  
 
       For Telecommunications, Pharmaceuticals, fMRI data, Financial Services, Clinical Trials, Insurance, Bioinformatics, and 
just about any data rich industry where large numbers of distributional null hypotheses need to be tested on samples that are 
not extremely small and parametric assumptions are either uncertain or inappropriate, PermuteItTM is the optimal, and only, 
solution. 
 
       To learn more about how PermuteItTM can be used for your enterprise, and to obtain a demo version, please contact its 
author, J.D. Opdyke, President, DataMineItSM, at JDOpdyke@DataMineIt.com or www.DataMineIt.com. 
 
       DataMineItSM is a technical consultancy providing statistical data mining, econometric analysis, and data warehousing 
services and expertise to the industry, consulting, and research sectors.  PermuteItTM is its flagship product. 
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 JOIN DIVISION 5 OF APA! 
 
 The Division of Evaluation, Measurement, and Statistics of the American Psychological 
Association draws together individuals whose professional activities and/or interests include 
assessment, evaluation, measurement, and statistics.  The disciplinary affiliation of division 
membership reaches well beyond psychology, includes both members and non-members of 
APA, and welcomes graduate students. 
 
 Benefits of membership include: 
$  subscription to Psychological Methods or Psychological Assessment (student members, 

who pay a reduced fee, do not automatically receive a journal, but may do so for an 
additional $18) 

$  The Score – the division’s quarterly newsletter 
$  Division’s Listservs, which provide an opportunity for substantive discussions as well as 

the dissemination of important information (e.g., job openings, grant information, 
workshops) 

 
 Cost of membership: $38 (APA membership not required); student membership is only $8 
 
 For further information, please contact the Division’s Membership Chair, Yossef Ben-Porath 
(ybenpora@kent.edu) or check out the Division’s website: 
 
  http://www.apa.org/divisions/div5/ 
______________________________________________________________________________ 
 

ARE YOU INTERESTED IN AN ORGANIZATION DEVOTED TO 
EDUCATIONAL AND BEHAVIORAL STATISTICS? 

 
Become a member of the Special Interest Group - Educational Statisticians of the 

American Educational Research Association (SIG-ES of AERA)! 
 

The mission of SIG-ES is to increase the interaction among educational researchers interested 
in the theory, applications, and teaching of statistics in the social sciences. 

 
Each Spring, as part of the overall AERA annual meeting, there are seven sessions sponsored 

by SIG-ES devoted to educational statistics and statistics education. 
We also publish a twice-yearly electronic newsletter. 

 
Past issues of the SIG-ES newsletter and other information regarding SIG-ES can be found at 

http://orme.uark.edu/edstatsig.htm 
 

To join SIG-ES you must be a member of AERA. Dues are $5.00 per year. 
 

For more information, contact Joan Garfield, President of the SIG-ES, at jbg@umn.edu. 
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Instructions For Authors 
 
 Follow these guidelines when submitting a manuscript: 
 
 1. JMASM uses a modified American Psychological Association style guideline. 
 2. Submissions are accepted via e-mail only. Send them to the Editorial Assistant at 
ea@edstat.coe.wayne.edu. Provide name, affiliation, address, e-mail address, and 30 word biographical 
statements for all authors in the body of the email message. 
 3. There should be no material identifying authorship except on the title page. A statement should be 
included in the body of the e-mail that, where applicable, indicating proper human subjects protocols were 
followed, including informed consent. A statement should be included in the body of the e-mail indicating the 
manuscript is not under consideration at another journal. 
 4. Provide the manuscript as an external e-mail attachment in MS Word for the PC format only. 
(Wordperfect and .rtf formats may be acceptable - please inquire.) Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of text. They are not 
amenable to the editing process, and are not acceptable for manuscript submission. 
 5. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and references. Use  
11 point Times Roman font. 
 6. Create tables without boxes or vertical lines. Place tables, figures, and graphs “in-line”, not at the end of 
the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable by Adobe Illustrator or 
Photoshop. 
 7. The manuscript should contain an Abstract with a 50 word maximum, following by a list of key words 
or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and References. Center 
headings. Subheadings are left justified; capitalize only the first letter of each word. Sub-subheadings are left-
justified, indent optional. 
 8. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) emphasis 
within a table, figure, or graph. Do not number sections. Number all formulas, tables, figures, and graphs, but 
do not use italics, bold, or underline. Do not number references. Do not use footnotes or endnotes. 
 9. In the References section, do not put quotation marks around titles of articles or books. Capitalize only 
the first letter of books. Italicize journal or book titles, and volume numbers. Use “&” instead of “and” in 
multiple author listings. 
 10. Suggestions for style: Instead of “I drew a sample of 40” write “A sample of 40 was selected”. Use 
“although” instead of “while”, unless the meaning is “at the same time”. Use “because” instead of “since”, 
unless the meaning is “after”. Instead of “Smith (1990) notes” write “Smith (1990) noted”. Do not strike 
spacebar twice after a period. 
 

Print Subscriptions 
 Print subscriptions including postage for professionals are US $95 per year; for graduate students are US 
$47.50 per year; and for libraries, universities, and corporations are US $195 per year. Subscribers outside of 
the US and Canada pay a US $10 surcharge for additional postage. Online access is currently free at 
http://tbf.coe.wayne.edu/jmasm. Mail subscription requests with remittances to JMASM, P. O. Box 48023, 
Oak Park, MI, 48237. Email journal correspondence, other than manuscript submissions, to 
jmasm@edstat.coe.wayne.edu. 
 

Notice To Advertisers 
 Send requests for advertising information to jmasm@edstat.coe.wayne.edu. 



NEW IN 2004

Further information including submission guidelines, subscription information

and details of how to obtain a free sample copy are available at

Special Introductory Offer:
25% discount on a new personal subscription
Plus Great Discounts for Students!

The new magazine of the 

Royal Statistical Society

Edited by Helen Joyce

Significance is a new quarterly magazine for anyone interested in statistics

and the analysis and interpretation of data. It aims to communicate and

demonstrate, in an entertaining and thought-provoking way, the practical use

of statistics in all walks of life and to show how statistics benefit society.

Articles are largely non-technical and hence accessible and appealing, not only

to members of the profession, but to all users of statistics. 

As well as promoting the discipline and covering topics of professional

relevance, Significance contains a mixture of statistics in the news, case-

studies, reviews of existing and newly developing areas of

statistics, the application of techniques in practice and

problem solving, all with an international flavour. 

www.blackwel lpubl i sh ing.com/SIGN
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  STATISTICIANS 
 

HAVE YOU VISITED THE 
 

Mathematics Genealogy Project? 
 

The Mathematics Genealogy Project is an 
ongoing research project tracing the intellectual 
history of all the mathematical arts and sciences 
through an individual’s Ph.D. advisor and Ph.D. 
students.  Currently we have over 80,000 
records in our database.  We welcome and 
encourage all statisticians to join us in this 
endeavor.  

 
 

Please visit our web site 
 

http://genealogy.math.ndsu.nodak.edu 
 

The information which we collect is the following: 
The full name of the individual, the school where he/she earned a Ph.D., the 
year of the degree, the title of the dissertation, and, MOST 
IMPORTANTLY, the full name of the advisor(s). E.g., Fuller, Wayne 
Arthur; Iowa State University; 1959; A Non-Static Model of the Beef and 
Pork Economy; Shepherd, Geoffrey Seddon 

 
For additions or corrections for one or two people a link is available on the 
site.  For contributions of large sets of names, e.g., all graduates of a given 
university, it is better to send the data in a text file or an MS Word file or an 
MS Excel file, etc. Send such information to: 
 

harry.coonce@ndsu.nodak.edu 
The genealogy project is a not-for-profit endeavor supported by donations from individuals and sales of 
posters and t-shirts.  If you would like to help this cause please send your tax-deductible contribution to: 
Mathematics Genealogy Project, 300 Minard Hall, P. O. Box 5075, Fargo, North Dakota 58105-5075E 

 


	Journal of Modern Applied Statistical Methods
	5-1-2005

	Vol. 4, No. 1 (Full Issue)
	JMASM Editors
	Recommended Citation



