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Invited Articles 
Optimal Trimming and Outlier Elimination 
 

 
 

 

 

Philip H. Ramsey 
Queens College of CUNY, Flushing 

Patricia P. Ramsey 
Fordham University 

              
 
Five data sets with known true values are used to determine the optimal number of pairs that should be 
trimmed in order to produce the minimum relative error. The optimal trimming in the five data sets is 
found to be 1%, 5%, 7%, 10% and 28%. The 28% rate is shown to be an outlier among the five data sets. 
Results of four data sets are used to establish cutoff values for outlier detection in two robust methods of 
outlier detection. 
 
Key words: Median absolute deviation, Box-and-whisker plot, MAD statistic. 
 

 
Introduction 

 
Outliers have been considered a serious problem 
for the application of many statistical 
procedures, especially when assuming an 
underlying normal distribution. Barnett and 
Lewis (1978) provided a detailed treatment of 
outliers and a number of procedures for outlier 
detection. Barnett and Lewis state, “We shall 
define   an   outlier  in  a  set  of data   to    be  an 
 
 
Philip H. Ramsey is Professor of Psychology. E-
mail him at Philip.Ramsey@qc.cuny.edu. This 
research was supported in part by a PSC-CUNY 
grant. Patricia P. Ramsey is Professor of 
Management Systems. Email her at 
ramseyphd@fordham.edu. 
 
 
 

 
observation (or set of observations) which 
appears to be inconsistent with the remainder of 
that set of data” (p. 4). Similar definitions have 
been provided by others (Everitt, 2002; Marriott, 
1990). 

The presence of outliers has been shown 
to seriously bias traditional statistical procedures 
(Wilcox, 2001). Symmetric trimming of a data 
set by removing a specified percentage of data 
points from each tail of a distribution is a simple 
method of removing outliers. A 10% trim would 
remove the top and bottom 10% of the data. In 
general, 100α% trimming of a sample of size N 
would remove [100αN] from the top and bottom 
of the N ordered observations where [ ] implies 
the greatest lower integer. 

Trimming the data biases the standard 
deviation of a data set but that problem can be 
overcome (Wilcox, 2001). However, the number 
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of pairs trimmed (i.e. the value of α) must be 
determined. Wilcox as argued for α = .20. Some  
researchers may find eliminating 40% of the 
data to be excessive. Some others may even 
resist any trimming unless outlier detection can 
be objectively confirmed. Trimming has been 
found to be beneficial in testing differences in 
means (Kowalchuk, Keselman, Wilcox, & 
Algina, 2006; Lix & Keselman, 1998). 

 
Methodology 

 
One of the simplest methods for evaluating an 
observation as a possible outlier would be to 
divide the deviation from the mean by the 
standard deviation. The problem is that an 
outlier biases the standard deviation upward thus 
reducing the ratio and making the observation 
appear less extreme. This “masking” effect is 
particularly strong when more than one outlier is 
present (Barnett & Lewis, 1978; Wilcox, 2001). 

If a set of N observations, X1, …, XN, is 
placed in order by size, the set can be identified 
by the order statistics, X(1), …, X(N). If N is odd, 
the median, M, becomes the middle value, 
X N +1

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
. 

If N is even, M becomes the midpoint of 

the middle two values, X N
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
+ X N +2

2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
/2 . The 

median of the absolute deviations from the 
median (MAD), can be taken as a measure of 
variability. In particular, MAD/.6745 can be 
taken as an estimate of the population standard 
deviation, σ, in a normal distribution. Dividing 
an observation’s absolute deviation from M by 
MAD/.6745, defines the MAD statistic which 
can be taken as an estimated value in a standard 
normal deviate (Wilcox, 2001. p. 36). Wilcox 
suggests that a ratio exceeding 2.0 identifies the 
observation as an outlier. The use of the MAD 
statistic removes the problem of masking. 
However, the criterion value, 2.0, may be too 
small, identifying too many observations as 
outliers. For example, if one is drawing random 
samples from a perfectly, normally distributed 
population then the probability of a standard 
normal deviate exceeding 2.0 is .0455. A sample 
of size, N = 100, could be expected to have four 

or five observations identified as outliers (i.e. 4 
or 5 false positives). 

Another approach using the median, M, 
can be raced back to Tukey’s (1977) box-and-
whisker plots. For N even, the ordered values, 
X(i), are divided into the top and bottom half. 
The median of the bottom half is Q1, the first 
quartile of the original data. The median of the 
top half is Q3, the third quartile of the original 
data. For N odd, the ordered values, X(i), are 
again divided into the top and bottom halves but 
the middle value (i.e. M) is included in both the 
top and bottom half. The values of Q1 and Q3 are 
again taken as the medians of the respective 
subgroups. 

The interquartile range, IR, is Q3 – Q1. 
Any observation Xi exceeding Q3 + mIR (with m 
usually taken to be 1.5), is identified as an 
outlier. Likewise, any observation Xi less than 
Q1 - mIR, is identified as an outlier. In sampling 
from a normal distribution, the probability of 
obtaining a single observation outside this 
interval (with m = 1.5) would be .0070. In a 
sample of size, N = 100, one  should expect only 
about one such observation identified as an 
outlier (i.e. one false positive). The multiplier, 
m, could be increased to reduce the number of 
false positives but how high should it be and 
what balance should be set between false 
positives and false negatives? 

Some authors have presented illustrative 
data sets when defining outliers. Everitt (2002, 
p. 274) identified the value 198 as an outlier in 
the data set {125. 128, 130, 131, 198}. For that 
data set, M = 130 and MAD = 2. The MAD 
statistic for the observation, 198, would be 22.5 
and well above the 2.0 cutoff value. If Everitt’s 
data set were to be taken as a defining criterion 
for an outlier then the MAD statistic would need 
to exceed 22.5. The values Q3 = 131 and IR = 3 
would require an IR multiplier of m = 22.4 to 
match the value 198. It is unlikely that Everitt or 
any other author intended to use a data set to 
define a cutoff point for an outlier but Everitt is 
using a much more extreme example than has 
been recommended for outlier detection. 
 

Results 
 

Stigler (1977) reported 24 data sets that may be 
of use in the present investigation. Most of the 
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data sets were subsets of larger sets. Each data 
set contained observations of 18th and 19th 
century investigations of physical phenomena 
for which nearly exact values are now known. 
Such data sets make it possible to compare 
statistical estimates to ‘true values’ in real data. 
Data Sets 1 to 8 all estimated the parallax of the 
sun with a ‘true value’ of 8.798. The 158 values 
were combined and designated Data Set 25 for 
the present investigation. Data Set 17 included 
23 observations from Michelson’s 1882 data 
estimating the velocity of light with a ‘true 
value’ of 710.5. Data Set 23 included 66 
observations from Newcomb’s measurements of 
the passage of light with a ‘true value’ of 33.02. 
Data Set 19 included 29 observations from 
Cavendish’s 1798 determinations of the density 
of the earth with a ‘true value’ of 5.517. Data 
Set 24 included 100 observations from 
Michelson’s 1879 estimation of the velocity of 
light in air with a ‘true value’ of 734.5. These 
five data sets include all of the data reported by 
Stigler. 

Stigler (1977) reported trimming at 
10%, 15%, and 25%. Stigler included eight other 
robust estimators for a total of 11. For each data 
set the 11 estimators were used to estimate the 
true value. The mean absolute deviation of the 
11 estimators from the true value was designated 
sj for data set j. For a given data set j, each of the 
eleven estimators had a relative error computed 
as the deviation of the estimated value and true 
value then divided by sj. These relative errors 
were one criterion used to compare the 11 
estimators. 

The five data sets selected for the 
present investigation were used to evaluate 
various degrees of trimming. The present 
approach is to remove one observation from 
each end of the ordered data set and calculate the 
relative error just as was done by Stigler. 
Additional pairs were removed until the 
minimum relative error was determined. The 
minimum relative error satisfied two objectives. 
First, it established an ideal degree of trimming 
for each data set. Second, it provided an 
estimator of an outlier detection   criterion.   
That   is,   if   outliers are responsible for poor 
estimation then the point at which estimation is 
best might be taken as the point at which an 
outlier or multiple outliers have been eliminated. 

Table 1 presents all 23 observations for 
Data Set 17 and the analysis needed for outlier 
detection. The largest observation, 1051, 
produces a MAD statistic of 4.061 as the most 
extreme of the 23 observations. Table 2 presents 
the relative errors (REs) for the mean, trimmed 
means eliminating one to five pairs of 
observations, and the median. The minimum RE 
is .8418 and occurs with a single pair of means 
removed or 5% trimming.  

From Table 1 the largest and smallest 
observations, 1051 and 573, are considered to be 
potential outliers. Their elimination produces the 
minimum RE. The criterion for MAD statistic 
must be less than 4.061 in order to ensure that 
this most extreme pair is rejected. However, if 
the criterion is less than 2.874 then a second pair 
of means would be trimmed. The midpoint, 
3.468, of 4.062 and 2.874 could be taken as the 
best estimate for outlier detection for Data Set 
17 to reject one and only one pair of means.  

The interquartile range, IR, in Table 1 is 
IR = 803 – 703.5 = 99.5. The maximum IR 
multiplier, m, to ensure that either Q3 + mIR or 
Q1 - mIR will lead to the rejection of the most 
extreme pair, 1051 and 573, is 2.5. Similarly, the 
minimum value of m to prevent the detection of 
a second pair of means is 1.261. The midpoint is 
m = (1.261 + 2.5)/2 = 1.88. 

Applying the same analysis as was 
applied to Data Set 17 to the other four data sets 
produces the results summarized in Table 3. 
Averages are calculated for four data sets (17, 
19, 23 & 25). Data Set 24 is separated and 
appears to be a possible outlier among the five 
data sets. The averages of the four relevant data 
sets are shown and the midpoints of maximum 
and minimum averages are presented as well. 
The value of 3.5 for MAD statistic cutoffs is 
well above the 2.0 value suggested by Wilcox. 
The 2.0 value for m, the IR multiplier, is well 
above the original value of 1.5.   

The optimal trimming percentages of the 
five data sets are 1, 5, 7, 10, and 28. The MAD 
statistic for the value 28 is 4.72. That exceeds 
the original 2.0 criterion as well as the 3.5 
criterion derived from the other four data sets. 
The cutoff point for the IR multiplier, m = 2.0, 
would be Q3 + 2.0IR = 10 + 2.0(5) = 20.0. The 
28% trimming of Data Set 24 is well above this 
20.0 cutoff. 
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Table 1. Analysis of Data Set 17, Michelson’s 1882 Data Estimating the Velocity of Light with a 
‘true value’ of 710.5 

 
  Order D = Ordered 

 X Sequence |X-M| D Values D(.6745/MAD) 

 1051 1 277 277 4.061 
 883 2 109 201 1.598 
 851 3 77 196 1.129 
 820 4 46 175 0.674 
 816 5 42 163 0.616 
Q3 = 803 809 6 35 109 0.513 
 797 7 23 92 0.337 
 796 8 22 78 0.323 
 796 9 22 77 0.323 
 781 10 7 63 0.103 
 778 11 4 51 0.059 
M = 774 774 12 0 46 0.000 
 772 11 2 42 0.029 
 748 10 26 35 0.381 
 748 9 26 26 0.381 
 723 8 51 26 0.748 
 711 7 63 23 0.924 
Q1 = 703.5 696 6 78 22 1.144 
 682 5 92 22 1.349 
 611 4 163 7 2.390 
 599 3 175 4 2.566 
 578 2 196 2 2.874 
 573 1 201 0 2.947 
 
 MAD = 46 
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Conclusions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Table 2. Trimmed Means and Relative Errors (REs) for Data Set 17 with sj = 48 with RE Calculated for 

the Mean and Up to Five Pairs of Values Trimmed. Optimal trimming occurs at 5% with RE = 0.8418. 

 
 
 
 

 Value RE Trimming 

Mean = 756.217 .9524 0% 

Mean – 1 = 750.905 0.8418 5% 

Mean – 2 = 753.053 0.8865 10% 

Mean – 3 = 756.353 0.9553 15% 

Mean – 4 = 761.800 1.0688 20% 

Mean – 5 = 763.769 1.1098 25% 

Median = 774 1.3229 

Table 3. Maximum and Minimum Values Needed for the Optimal Trimming 
 
 
         DS25         DS 17        DS23 DS19 Ave. DS24 
 
Opt. Trim 1% 5% 7% 10% 5.75% 28% 

 

MAD-MAX 7.05 4.062 2.474 1.64 3.805 0.5395 

Midpoint 6.695 3.468 2.2485 1.58 3.5 0.5395 

MAD-MIN 6.34 2.874 2.023 1.52 3.189 0.5395 

 

IR-MAX 5.479 2.5 1.143 0.646 2.439 -0.0556 

Midpoint 4.6175 1.8805 0.9285 0.549 2.0 -0.11 

IR-MIN 3.756 1.261 0.714 0.452 1.547 -0.1667 
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The cutoff from the original, m = 1.5, would be 
Q3 + 1.5IR = 10 + 1.5(5) = 17.5. Of course, 
28exceeds this more conservative value of 17.5. 

 
Conclusion 

 
In sampling from a standard normal distribution 
the probability of exceeding a value of 3.5 is 
approximately .0005. Even in a sample of size, 
N = 1000, a single, false-positive indication of 
an outlier would not be expected. Again 
sampling from a standard normal distribution the 
probability of identifying an outlier with the m = 
2.0 multiplier for IR would be approximately 
0.0008. In that case a sample of size, N = 1000, 
might be expected to produce one, false-positive 
observation. 

As a final point, note that Data Set 24 
does suggest that trimming even in excess of 
20% may sometimes be justified. However, to 
the extent that present results are applicable, 
trimming by no more than 10% is more likely to 
be optimal. 
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An Omnibus Test When Using A Regression Estimator  
With Multiple Predictors 
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In quantile regression, the goal is to estimate theγ  quantile of Y  given values for p  predictors. Methods 
for making inferences about the individual slope parameters have been proposed, some of which have 
been found to perform very well in simulations. But for an omnibus test that all slope parameters are zero, 
it appears that little is known about how best to proceed. For the special case γ =.5, a drop-in-dispersion 
test has been recommended, but it requires a large sample size to control the probability of a Type I error 
and it assumes that the usual error term is homoscedastic. The article suggests an alternative method that 
performs well in simulations, it allows heteroscedasticity, and it can be used when γ ≠ .5. 
 
Key words: Robust regression, tests of independence, bootstrap methods. 
 

 
Introduction 

 
Consider the random variables 1, , ,pX X Y…  
having some unknown (p+1)-variate distribution 
and let Yγ  be the conditional γ  quantile of Y  

given 1, , pX X… .  When using the Koenker and 
Bassett (1978) quantile regression method, the 
goal is to estimate Yγ  assuming that  

  1 1 ... pY X Xγ γ γ γ γα β β= + + +          (1) 
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where the unknown parameters 1 ,..., pγ γβ β and  

γα  are estimated based on the random sample 

1( ,..., , )i ip iX X Y , 1,...,i n= . The special case 
γ =.5 corresponds to what is called the least 
absolute value regression estimator, meaning 
that the estimates of the parameters are chosen 
so as to minimize the sum of the absolute values 
of the residuals. This special case predates 
ordinary least squares by about a half century 
and offers protection against the deleterious 
effects of outliers among the Y values.  As is 
probably evident, choices for γ  other than .5 
can be revealing and help add perspective on the 
association among the variables under study.  

As a simple example, consider data from 
a     study    conducted    by Williams, Stanchina,  
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Bezdjian,  Skrok,  Raine and Baker (2005).  A 
portion of the study   dealt   with the  association  
between a so-called Q score resulting from the 
Porteus maze test, which is used to evaluate 
intelligence and executive functioning, and how 
this Q score is related to a measure of 
delinquency.  Figure 1 shows a scatterplot of the 
data. The sample size is n=943. Also shown are 
the regression lines corresponding to γ =.5, .8 
and .9.  As is evident, based on the typical 
response, as measured by the median or even the 
.8 quantile, there is little or no indication of 
an association. (The p-value when γ =.8 is 
approximately .36.) But for γ =.9, the regression 
line has a positive slope that is significantly 
different from zero at the .05 level.  (For another 
recent illustration of the practical value of 
quantile regression methods, see Angrist, 
Chernozhukov & Fernandez-Val, 2006.) 

The goal in this article is to suggest and 
study a method for testing 

 

                  0 1: ... 0pH γ γβ β= = = .               (2) 
 
For the related problem of testing  
                    

0 : 0jH β =  
 

for each j (j=1,...,p), there is a well-known 
method that appears to perform relatively well in 
simulations (Koenker, 1994, cf. Koenker & 
Xiao, 2002, cf. Koenker & Machado, 1999).  
But when γ  differs from .5, it seems that there 
are no results or even suggested methods for 
testing (2). 

 

 
For the special case γ =.5, Birkes and 

Dodge (1993) suggest testing (2) using a drop in  
dispersion method. They note that the method 
requires a relatively large sample size, but they 
do not specify just how large the sample size 
must be to achieve reasonably accurate control 
over the probability of a Type I error.  When 
testing at the .05 level, Bradley (1978) suggests 
that at a minimum, the actual Type I error 
probability should be between .025 and .075.  
When examining the drop in dispersion method 
(in the simulations described in section 3), it was 
found that to achieve Bradley's criterion, a 
sample size of n=100 is required, even under 
normality.  Another concern is that the method 
assumes a homoscedastic error term.  So one 
goal here is search for a method that gives better 
results when the sample size is small and 
another goal is to suggest a method that might be 
used when the error term is heteroscedastic.   

Yet another approach to testing (2) is to 
use the percentile bootstrap method stemming 
from results in Liu and Singh (1997). When 
working with various robust estimators, this 
approach appears to perform quite well, even 
with fairly small sample sizes and when there is 
heteroscedasticity (e.g., Wilcox, 2005). 
However, this approach was found to be 
unsatisfactory in the simulations considered 
here, so it was abandoned. 
 
                         Methodology 
 
The Koenker and Bassett (1978) quantile 
regression method arises as follows. 
 
 

Table. 1 Values for 0d  and 1d  
 

                                   p                                0d                                      1d  
     α =.1  α =.05   α =.025 α =.01  α =.1   α =.05 α =.025  α =.01 

 
2  .2179   .1203   .0588    .0430  -.00196 -.00117 -00056   -.00055 
3  .2814   .1840   .1143    .0364  -.00300 -.00223 -.00149  -.00044 
4  .4478   .3356   .2624    .1546  -.00580 -.00476 -.00396  -.00240 
5  .6373   .4250   .3097    .1590  -.00896 -.00630 -.00474  -.00248 
6  .7699   .5648   .4111    .2734  -.01120 -.00858 -.00640  -.00439 
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For some γ , 0<γ <1, let  
 

0( ) ( )uu u Iγρ γ <= −  
 
where the indicator function 0uI < =1 if u<0; 
otherwise 0uI < =0.  Assuming that the γ  
quantile of Y, given X, is given by (1), the 
Koenker-Bassett quantile regression method 
estimates the unknown parameters 1 ,..., pγ γβ β  

and γα  with the values 1 ,..., pb bγ γ  and aγ , 
respectively, that  minimize  
                          

                              ( )irγρ∑ ,                        (3) 
 
where 1 1 ....i i i p ipr Y b X b X aγ γ γ= − − − − are the 
residuals.  Here, the values that minimize (3) 
were determined with the function rq that is 
included in the robust library that comes with 
the software S-PLUS. 

The proposed method for dealing with 
small sample sizes stems in part from the classic 
generalized 2T  statistic used to test the 
hypothesis that a multivariate normal 
distribution has a mean vector of zero (e.g., 
Anderson, 1958, chapter 5).  One difficulty here 
is getting an estimate of the appropriate 
covariance matrix, and the strategy is to use a 
bootstrap estimate. (For general results on 
bootstrap estimates of the standard error, see 
Buchinsky, 1991; Hahn, 1995.) Results for the 
special case p=1, reported by Koenker (1994), 
suggest that this approach will result in an actual 
Type I error probability that can be substantially 
less than the nominal level, and this was found 
to be the case for n<60.  However, a simple 
adjustment is found that corrects this problem in 
the simulations to be described.   

Let * * *
1( ,..., , )i ipX X Y , 1,...,i n= , be a 

bootstrap sample obtained by randomly 
sampling, with replacement, n vectors of 
observations from 1, ,i ipX X… , iY . Given γ , 

label the resulting estimate of the slopes *
kb , 

1,...,k p= .  Repeat this process B times 
yielding * *

1 ,...,k Bkb b .  Then from basic principles, 

an estimate of the variances and covariances 
associated with 1 ,..., pb bγ γ  is 

* * 2

1

1 ( )
1

B

c
c

S b b
B =

= −
− ∑ , 

 
where * * *

1( ,... )c c cpb b b= , and * * /k ckb b B=∑ .  
Then, proceeding in an obvious fashion, the test 
statistic used here is  
 

2 ' 1T nb S b−= . 
 
Again from basic principles, a natural strategy is 
to reject if 
 

2
,

1
p n p

nT f
n p −

−≥
−

, 

 
where ,p n pf −  is the 1-α  quantile of an F 
distribution with p and n-p degrees of freedom. 
But as previously indicated, preliminary 
simulations indicated that the actual probability 
of Type I error is less than the nominal level 
when the sample size is small. For example, 
when   γ =.5, p=2, n=20, α =.05, and if 1X  and 

2X  have a bivariate normal distribution with 
correlation ρ =0, the actual Type I error 
probability was estimated to be .026. Increasing 
p to 6, the estimate is now .001. Very similar 
results were obtained when γ =.8.  But in all 
cases considered, with n=60, the actual 
probability of a Type I error was estimated to be 
reasonably close to .05. 

The results just described suggest the 
following modification when n<60. 

Temporarily assume that the error term 
is homoscedastic and has a normal distribution.  
The strategy is to determine an adjusted p-value, 

ap , so that for n=20, the actual Type I error 
probability will be approximately α  if the null 
hypothesis is rejected ˆ ap p≤ whenever the 

observed p-value (based on 2T ) is less than or 
equal to ap .  (In essence, use Gosset’s strategy 
when dealing with the problem of making 
inferences about means.)  For sample sizes 
between 20 and 60, interpolation is used to  
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determine ap .  First consider γ =.5. For α =.1, 
.05, .025 and .01, simulations   indicate   that the 
adjusted p-value is given by ap = 1 0d n d+ , 
where 1d  and 0d  are given in Table 1.  That is, 

letting p̂  be the p-value based on 2T , and 
assuming that (n-p) 2T /(n-1) has an F 
distribution with p and n-p degrees of freedom, 
reject if ˆ ap p≤ .  Additional simulations  
indicate that this adjustment continues to 
perform reasonably well when γ =.8, provided 
B=200 is used, as will be seen. 
 
A Simulation Study 

Simulations were used to study the 
small-sample properties of the method just 
described.  The distribution for X was taken to 
be multivariate normal withcommon correlation 
ρ , and the distribution for Y was  taken to be 
one of four  g-and-h distributions (Hoaglin, 
1985), which contains the standard  normal 
distribution as a special case.  If Z has a standard 
normal distribution, then 
             

21exp( ) exp( / 2)gZY hX
g
−=  

 
 if   g>0 
 

2exp( / 2)Y Z hZ=  
 
if    g=0 has a g-and-h distribution where g and h 
are parameters that determine the first four 
moments.  The four distributions used here were 
the standard normal (g=h=0.0), a symmetric 
heavy-tailed distribution (h=0.2, g=0.0), an 
asymmetric distribution with relatively light tails 
(h=0.0, g=0.2), and an asymmetric distribution  

 
 
with heavy tails (g=h=0.0).  Table 2 shows the 
skewness ( 1κ )    and   kurtosis   ( 2κ )   for   each  
distribution considered. Additional properties of 
the g-and-h distribution are summarized by 
Hoaglin (1985). The two choices for ρ  were 0 
and .8.  It was found that altering ρ  had no 
effect on the simulation results, so for brevity, 
only results for ρ =0 are reported. 

To get some indication of the effects of 
heteroscedasticity, data were also generated 
according to the model 
  

1( )Y Xλ ε=  
 

for some specified function λ , where ε  is 
independent of 1X  and ε  has one of the g-and-
h distributions already described.  Of course 

1( )Xλ =1 corresponds to homoscedasticity. The 
other two choices were 1( )Xλ = 1| |X +1 and 

1( )Xλ =1/( 1| |X +1).  For convenience, these 
three choices will be called variance patterns 
VP1, VP2 and VP3, respectively. Note that for 
all three patterns, the slope remains zero even 
when γ ≠ .5. 

Table 3 shows the estimated probability 
of a Type I error when testing at the .05 level 
with n=20, γ =.5 and .8, and p=2 and 6. For the 
moment, B=100 is used. It will be seen that 
generally this suffices, in terms of controlling 
the probability of a Type I error, but in some 
cases, B=200 is required.  The estimated Type I 
error probabilities are based on 1,000 
replications. 

From Robey and Barcikowski (1992), 
1,000 replications is sufficient from a power 
point of view. More specifically, if one tests the 
hypothesis that the actual Type I error rate is .05,  

Table 2. Some properties of the g-and-h distributions 
 

g h 1κ  2κ  

0 0 0 3 
0 0.2 0 21.46 

0.2 0 0.61 3.68 
0.2 0.2 2.81 155.98 
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and if one wants power to be .9 when testing at 
the .05 level   and the true α  value  differs 
from.05 by .025, then 976 replications are 
required.  As is evident, all indications are that 
reasonable control over the probability of a Type 
I error is obtained in nearly all of the situations 
considered. The main exception is when p=2, 
γ =.8 and sampling is from a light-tailed 
distribution (h=0), in which case, for variance 
pattern VP2, the estimated probability of a Type 
I error can exceed .075. The least satisfactory 
result was obtained when g=.2, in which case the 
estimate is .089.  However, increasing B to 200, 
the estimate drops to .061.  (Leaving B=100 and 
increasing n to 30 and 40, the estimates were 
.072 and .06, respectively.) Thus, to be safe, 
B=200 or larger is recommended.  

 
Conclusion 

 
The main result is that for the bootstrap method 
studied here, among all situations considered, 
the estimated level of the test did not exceed 
.075 when testing at the .05 level provided 
B ≥ 200 is used, even with n=20. With B=100, 
exceptions occur, as indicated in Table 3, but 
given the speed of modern computers, using 
B=200 seems practical.  In contrast, the drop-in-
dispersion method requires a sample size of at  
 

 
least n=100 to avoid an estimated Type I error 
probability greater than .075. 

It was mentioned that the bootstrap 
method stemming from Liu and Singh (1997) 
was unsatisfactory in simulations; the actual 
probability of a Type I error was well below the 
nominal level.  Perhaps an adjusted p-value,  
similar to one used here, would correct this 
problem in a satisfactory manner, but this 
has not been investigated.  

Finally, R and S-Plus software is 
available from the author for applying the 
bootstrap method studied here. Ask for the 
function rqtest. 
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The ITSACORR method (Crosbie, 1993, 1995) is evaluated for the analysis of two-phase interrupted 
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Introduction 
 
Researchers and practitioners working in the 
behavioral sciences frequently employ 
interrupted time-series designs to determine the 
effectiveness of various interventions in both 
clinical and natural settings. Currently, several  
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methods are available for statistically analyzing 
data from interrupted time-series designs. 
Among these methods, autoregressive integrated 
moving average (ARIMA) intervention models 
have a long history of endorsement by 
methodologists (e.g., Glass, Willson, & 
Gottman, 1975; McCleary & Hay, 1980). 
Nevertheless, some authors (e.g., Gorman & 
Allison, 1997) have noted that certain properties 
of ARIMA models, particularly their analytical 
complexity and requirement of relatively large 
sample sizes, make the use of these models 
troublesome for many behavioral researchers. 
Concerns regarding these undesirable properties 
of ARIMA models have prompted the 
development of several alternatives. These 
alternatives reportedly (a) reduce the difficulty 
of analyzing time-series data and (b) enable the 
analysis of series with relatively few 
observations, a characteristic of many 
applications of time-series designs in the 
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behavioral sciences. Two commonly cited 
alternatives to ARIMA intervention models are 
Gottman’s ITSE (Gottman,1981; Rushe & 
Gottman, 1993) and Crosbie’s ITSACORR 
(Crosbie, 1993, 1995).  
 Both of these alternatives use the same 
underlying model and estimate the same 
intervention parameters. Despite recent 
corrections, the current version of ITSE does not 
provide a satisfactory method for analyzing 
time-series data because it still contains several 
major defects. These defects are not software 
bugs; rather, they are problems with the method 
that are described in a recent critique (Huitema, 
2004).  
 The ITSACORR method builds on the 
ITSE method; it was designed to analyze short 
series that likely have autocorrelated errors and 
that may have trend within one phase or within 
both phases (Crosbie, 1995). In proposing 
ITSACORR as a suitable method for analyzing 
time-series data, Crosbie (1993, 1995) described 
several supposed advantages of ITSACORR 
over both ARIMA intervention methods and 
Gottman’s ITSE. First, unlike ARIMA, 
ITSACORR allegedly yields appropriate results 
with small sample sizes even in the presence of 
high levels of autocorrelation (Crosbie, 1995, p. 
392). Second,  ITSACORR reportedly provides 
results that agree with those of ARIMA when a 
large number of observations is available 
(Crosbie, 1995, pp. 391-392). Third, 
ITSACORR supposedly has better small-sample 
inferential properties than does ITSE (Crosbie, 
1995).   
 These claims combined with readily 
available and uncomplicated software have led 
to considerable attention for ITSACORR from 
methodologists and practitioners. Writers in 
applied fields such as aphasiology, applied 
behavior analysis, clinical psychology, 
counseling psychology, and school psychology 
have strongly encouraged its use. For example, 
Gottman and Rushe (1993) described 
ITSACORR as “a new, powerful method for 
single-case analysis of change over time using 
the interrupted time-series design . . . this can be 
done without needing to know sophisticated 
time-series modeling methods and with very few 
data before and after the intervention” (p. 909). 
They further state that ITSACORR  “. . . makes 

time-series methods available to the general 
clinician for the first time” and that “This 
approach will have widespread importance in 
the evaluation of change in patients in clinical 
trials where it is possible to study people on a 
case-by-case basis, or in the case work of 
quantitatively oriented clinical practitioners” (p. 
909). This initial endorsement has been followed 
by additional support (e.g., Gottman, 1995), and 
ITSACORR has received many positive 
evaluations published in single-case 
methodology books (e.g., Franklin, Allison, & 
Gorman, 1997). Gorman and Allison (1997), for 
instance, have stated that ITSACORR 
“combines the best of ARIMA and regression 
approaches” (p. 94). Similarly, a widely used 
research methodology textbook (Christensen, 
2007) states (p. 345) that Crosbie’s method is an 
effective replacement for the well established 
methods of Box and Jenkins (1970), Box and 
Tiao (1965), and Glass, Willson, and Gottman 
(1975).  
       In addition to these recommendations from 
methodologists, ITSACORR has received 
additional endorsement in expository articles 
written for practitioners. For example, 
researchers in the area of aphasiology have 
stated that “ITSACORR should be the 
procedure-of-choice, and essentially the 
standard, for applying hypothesis testing logic to 
single-subject data” (Robey, Schultz, Crawford, 
& Sinner, 1999, p. 466). Several other authors 
(some outside the behavioral sciences) have 
cited ITSACORR as one of several credible 
methods for time-series analysis (e.g., Ellis, 
1999, p. 573; Hogenraad, McKenzie, & 
Martindale, 1997, pp. 433-35).    
 A recent expository article on the design 
and analysis of time-series studies appeared in 
The International Journal of Clinical and 
Experimental Hypnosis; it includes the 
following endorsement: “ITSACORR is 
eminently easy to use; it corrects for 
autocorrelation; it generates statistics that are 
familiar to reviewers and editors; and it is 
acceptable for use with as few as 7 to 10 data 
points per phase” (Borckardt & Nash, 2002, 
p.127). Following this and other statements, the 
article presents a half-dozen examples of the use 
of ITSACORR (pp. 132-142).   



HUITEMA, MCKEAN, LARAWAY 
 

369

 It appears that the effect of these books 
and articles has been widespread acceptance of 
ITSACORR. One can find many published 
examples of the application of ITSACORR in 
journals such as Aphasiology (e.g., Robey et al. 
1999; Spencer, Doyle, McNeil, Wambaugh, 
Park, & Carroll, 2000), British Journal of 
Clinical Psychology (e.g., Davidson & Tyrer, 
1996), Journal of Consulting and Clinical 
Psychology (e.g., Lucyshyn, Albin, & Nixon, 
1997), and School Psychology Review (e.g., 
Stage & Quiroz, 1997). Because ITSACORR is 
widely recommended and used the descriptive 
and inferential properties of this method must be 
understood by methodologists, research workers, 
and journal editors. The purpose of this article is 
to explicate these properties.    
 
Logic of the Two Phase Design 
  An understanding of the essential 
descriptive properties associated with the 
analysis of the interrupted time-series 
experiment rests on the logic of this design. 
Consider the simple two-phase (A-B) interrupted 
time-series design. The data of the first phase 
can provide a prediction of what would occur 
during the second phase in the absence of an 
intervention. The researcher’s interest lies in the 
difference between the predicted 
(counterfactual) second phase behavior and the 
behavior that actually occurs during the second 
phase. There exist two major statistics that 
characterize this difference. The first is known 
as level change and the second is known as slope 
change. Although the interpretation of both of 
these measures is straightforward, level change 
is frequently misunderstood and incorrectly 
computed (Huitema & McKean, 2000a; 
Huitema, 2004).  
 
Level Change 

One possible measure of level change 
indicates the amount by which the intervention 
changes the expected value of the response at 
the beginning of the intervention phase. If there 
are n1 observations in the first phase and n2 
observations in the second phase, the first 
observation in the intervention phase occurs at 
time n1 + 1. The level change can reasonably be 
defined (under the assumption that an adequate 
model describes the data for each phase) as the 

difference between (a) the predicted 
(counterfactual) value of Y at time n1 +1 based 
on a model of the first phase data and (b) the 
expected value of Y at time n1 +1 based on a 
model of the second-phase data. It is crucial to 
understand that both of these estimates must be 
associated with exactly the same time point 
(viz., n1 +1).  Although various time-series 
intervention models may use different 
procedures to compute the two level estimates, 
all acceptable procedures estimate level change 
at a common time point. It is important to be 
aware that the concept of level change does not, 
in general, refer to the difference between the 
means of the two phases. Level change refers to 
a shift in elevation that is unexplained by 
possible within-phase trends.  
 
Slope Change 
 Slope change provides the second major 
way of characterizing the effect of an 
intervention.  Here the term slope has its 
traditional meaning. It simply refers to the 
average change in Y given a one-unit change in 
X, where the X variable is time. If the 
intervention has an effect, it may produce a 
change in level, a change in slope, or both. 
Because a reasonable representation of 
intervention effects often requires measures of 
both level change and slope change, an adequate 
descriptive analysis will usually provide 
accurate estimates of both of them. Although 
interventions can also interrupt the structure of 
time-series data by changing the variance or in 
other more subtle ways (see, e.g., Stoline, 
Huitema, & Mitchell, 1980), level change and 
slope change provide two of the most basic 
effect measures. The adequacy of ITSACORR 
with respect to these measures is the focus of 
this article.       

Methodology 
 

Four linked issues that are relevant in 
evaluating the adequacy of intervention analyses 
were studied. First, at the most elementary level, 
whether ITSACORR produces measures that are 
consistent with the logic of time-series 
intervention designs was evaluated. Second, the 
consistency between the logic of the design and 
the ITSACORR structural model was examined. 
Third, the consistency between the ITSACORR 
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structural model and the ITSACORR design 
matrix was evaluated. Last, the inferential 
properties of the tests provided by ITSACORR 
was evaluated. Details regarding these issues 
and methods used to study them are described in 
this section.  

 
Correspondence Between the Logic of the 
Design and the Parameter Estimates Produced 
by ITSACORR 

The correspondence of the level change 
and slope change estimates produced by 
ITSACORR with level change and slope change 
estimates produced by methods that are 
consistent with the logic of the interrupted time-
series design was evaluated. Three methods that 
are known to provide parameter estimates 
consistent with the logic of the interrupted time-
series design utilize the same design matrix. 
This design matrix differs greatly from the 
matrix used by both ITSE and ITSACORR. 
Described is the appropriate matrix (denoted as 
the H-M matrix) in detail elsewhere (e.g., 
Huitema & McKean, 2000a, 2000b; Huitema, 
McKean, & McKnight, 1994; McKnight, 
McKean, & Huitema, 2000). The three methods 
that use the H-M matrix differ from each other 
in terms of assumptions and/or method of 
estimation. The first method (H-M OLS) 
assumes independent errors and uses ordinary 
least-squares (OLS) as its estimation procedure. 
Although some researchers believe that OLS 
models are never appropriate in the case of  
time-series designs, this is not true (see Huitema 
and McKean, 1998). The second and third 
methods assume first-order autoregressive 
errors. They differ from each other in that the 
second method (H-M M-L) uses a maximum-
likelihood estimation procedure, whereas the 
third method (H-M Bootstrap) uses a double 
bootstrap approach (McKnight et al., 2000).  

After results from the first three 
methods were obtained ITSACORR was applied 
to the same data and made comparisons among 
the results of the different methods. All of these 
comparisons used data from four published 
studies (see Figure 1). These data are of the type 
for which ITSACORR was specifically 
designed. Indeed, all of these data were obtained 
from expository articles that illustrate and 
promote the use of ITSACORR (i.e., Borckardt, 

2002; Crosbie, 1995; Robey et al., 1999; 
Spencer et al., 2000). 

    
Correspondence Between the Logic of the 
Intervention Design and the ITSACORR 
Structural Model 

The evaluation of how well the 
ITSACORR model corresponds to the logic of 
the interrupted time-series design involved 
comparing the level- and slope-change 
parameters defined in the structural model with 
the change parameters of interest in the 
intervention design. This involved answering 
two questions: (a) Does the ITSACORR model 
define level change as the difference between 
the counterfactual level and the observed level? 
and (b) Does the model define slope change as 
the difference between the counterfactual slope 
and the observed slope?    
Correspondence Between the Structural Model 
and the Design Matrix 

A coherent methodology will have 
consistency between the parameters specified in 
the structural model and the parameters implied 
by the associated design matrix. This 
consistency was evaluated by comparing the 
level change, slope change, and first order 
autocorrelation parameters specified in the 
ITSACORR structural model with the 
corresponding parameters defined by the 
ITSACORR design matrix.         
 
Evaluation of Inferential Performance 

ITSACORR provides inferential tests on 
the difference between intercepts and slopes.  

The inferential aspects of greatest 
interest in evaluating the performance of 
hypothesis testing procedures are Type I error 
and power. A small computer simulation was 
used to empirically evaluate these properties. 
The simulation study evaluated these properties 
under two levels of autocorrelation (.50 and .80) 
and two intercept change effect sizes (0 and 10 
sigma); total sample size (n1 + n2) was set at 20. 
No slope change was included in any of the 
simulations. 1,000 simulations were performed 
under each condition; a was set at the nominal 
value of .05.    
 



HUITEMA, MCKEAN, LARAWAY 
 

371

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 

Figure 1. Panel A: Perceptual speed data (Holtzman, 1963) that illustrate an apparent change in both level and slope. 

Panel B: Aphasia data (Robey, et al., 1991) that illustrate an apparent change in both level and slope. Panel C: 

Weekly diastolic blood pressure readings (Borckardt, 2002) that illustrate little if any change in level and negative 

change in slope. Panel D: Oral naming accuracy data (Spencer et al., 2000) illustrating a trending series that was not 

subject to an intervention. 
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Table 1   

Summary of Level Change, Slope Change, and Autocorrelation Estimates Associated with ITSACORR, ITSE, 

and Three Alternative Methods (H-M OLS, and H-M M-L, and  H-M Bootstrap) Applied to Data (Illustrated in 

Figure 1) from Four Published Sources   

Method of Analysis 
                                 _____________________________________________________________ 
                                 ITSACORR       ITSE          H-M OLS          H-M M-L         H-M Bootstrap         

Study A              

     Level change:        -5.90                 -0.96              -31.07***        -30.87***            -30.61*** 

     Slope change:        -0.87*               -0.99**            -1.01***           -1.01***             -1.00*** 

     Autocorrelation:        .68                    .17                (.15)*                 .15                         .22 

 

Study B               

     Level change:       65.91**           45.13***          39.51***         40.89***             39.71*** 

     Slope change:         0.74                  2.98*               3.65*               3.73*                   3.48* 

     Autocorrelation:       .54                    .13               ( -.33)                 -.35                     -.18 

 

Study C            

     Level change:      -75.28*              -9.14***         -4.33***           -2.77                     -2.68         

     Slope change:         1.05                -1.65*             -1.83***           -1.85***               -1.96*** 

     Autocorrelation:      -.01                   .56***          (.51)***              .61***                   .71* 

 

Study D    

     Level change:        55.55***          55.55***         -6.82                 -7.08                    -5.34 

     Slope change:        -0.24                  -0.25                 -.26                   -.25                     -.26    

     Autocorrelation:       .12                    -.01                (-.04)                  -.04                      .13 

_____________________________________________________________________________ 

     Note: *p <  .05; **p <  .01; ***p <  .001 
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Results 
 

Inconsistency Between the Logic of the Design 
and the Estimates Produced by ITSACORR   

The intervention effects and 
autocorrelation estimates associated with 
ITSACORR, ITSE, and the three methods based 
on the H-M design matrix appear in Table 1 for 
the data illustrated in the four panels of Figure 1. 

The columns of the table list the 
methods of analysis and the major rows identify 
the study; the level change, slope change, and 
autocorrelation estimates appear in the body of 
the table. 
 
Study A.  

The data illustrated in panel A of Figure 
1 are perceptual speed measures obtained from a 
schizophrenic patient each day before and after 
the administration of chlorpromazine. These 
data have appeared in publications by several 
writers (e.g., Crosbie,1995; Glass, et al., 1975; 
Holtzman, 1963) to illustrate time-series 
procedures. Crosbie (1995) used these data to 
support the claim that, in the case of a large 
number of observations, ITSACORR, ITSE, and 
ARIMA methods all reach the same conclusion. 
An examination of Table 1 reveals that 
ITSACORR and ITSE provided level decrease 
estimates of 5.90 and 0.96 points, respectively (p 
> .50 for both methods), whereas each of the 
three remaining methods estimated the level 
decrease as about 31 points (p ≤ .001). An 
ARIMA analysis of these data by Glass, et al. 
(1975) (not included in Table 1) estimated a 
drop in level of approximately 22 points ( p ≤ 
.001). Visual inspection of the data suggests a 
level decrease in the neighborhood of 20 - 30 
points. All methods included in Table 1 yielded 
similar slope change estimates. Because the 
ARIMA model used by Crosbie (1995) as a 
basis of comparison with ITSACORR and ITSE 
does not estimate slopes, one could not compare 
this ARIMA model with the other analyses in 
terms of slope change. The autocorrelation 
estimate produced by ITSACORR was a value 
of .68 while the other procedures yielded 
autocorrelation estimates that range from .15 to 
.22.   
 
 

Study B.  
The data in panel B appeared in an 

article by Robey et al. (1999) that strongly 
promoted the use of ITSACORR. After applying 
ITSACORR to the data these authors stated that 
“The t test for a change in level is also 
significant (i.e., t = 3.341, p = .005); the t test for 
a change in slope does not achieve statistical 
significance (i.e., t = 0.187, p = .855)” (p. 460). 
Unfortunately, Robey et al. (1999) did not 
present the descriptive statistics (i.e., intercept 
and slope estimates) associated with these t and 
p values.  These descriptive statistics are listed 
in Table 1.  

Notice that ITSACORR estimated the 
level change as approximately 66 points. If one 
examines panel B of Figure 1 one can see the 
elevation of the phase 1 line at time point 9 and 
the elevation of the phase 2 line for the same 
time point; it is obvious that they differ by 
approximately 40 points. Indeed, an inspection 
of the level change statistic for each analysis 
shown in Table 1 indicates that only the estimate 
provided by ITSACORR deviates far from 40 
points.    
 The slope-change and autocorrelation 
estimates provided by ITSACORR also deviate 
greatly from the results provided by the other 
methods. In contrast, all of the other methods 
provide slope-change estimates that are 
consistent with the visual impression. Table 1 
also shows that ITSACORR provides a higher 
value for the autocorrelation estimate (i.e., .54) 
than the estimates provided by the other methods 
(range = -.35 through .13).   
 
Study C.  

Borckardt (2002) was written to 
demonstrate “how clinicians can efficiently 
conduct scientific analyses of a patient’s 
response to such interventions using time-series 
designs supported by newly developed analytic 
procedures.” (p. 190). One of the analytic 
procedures to which he referred was 
ITSACORR. Weekly diastolic blood pressure 
data from this study appear in panel C of Figure 
1. These data were obtained before and after 
participants received a multimodal 
psychotherapy intervention. A visual inspection 
of the data reveals a minor negative slope during 
the baseline phase, essentially no level change 
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after intervention, and a strong negative shift in 
slope beginning immediately after the 
intervention. These visual impressions concur 
with the results of the statistical methods listed 
in Table 1, with one exception. ITSACORR 
estimates a huge decrease in level (over 75 
points) and a positive shift in slope. Both of 
these estimates are grossly inconsistent with the 
visual appearance of the data. Visual inspection 
suggests that the drop in level can be no more 
than a few points. Moreover, as the difference 
between the minimum and maximum values in 
the entire series is only 32 points, a level change 
estimate of 75 points can have no real meaning. 
The easily discerned visible decrease in slope in 
the second phase suggests that, even in the 
absence of supporting statistical evidence (e.g., 
that produced by the other methods described in 
Table 1), there is strong reason to question the 
validity of the positive slope-change estimate 
produced by ITSACORR. Clearly, the level (or 
intercept) change, slope change, and 
autocorrelation estimates associated with the 
ITSACORR method do not describe these data 
to any reasonable degree.            
 
Study D.  

Spencer et al. (2000) applied 
ITSACORR to a multiple-baseline design that 
contained three experimental series and one 
control series. A visual inspection of their 
complete data (not illustrated here) reveals a 
major shift to each experimental phase following 
the intervention and very little change 
throughout the control series. Although they did 
not apply ITSACORR to the control series, such 
an analysis is illuminating. The control data 
appear in panel D of Figure 1. 

If ITSACORR provides reasonable level 
change and slope change estimates it should 
confirm the visual impression of little change in 
the control series other than an upward trend that 
is quite consistent throughout the duration of the 
experiment. Although no intervention 
interrupted this series, a vertical line was 
inserted to show the time point at which the 
intervention interrupted one of the experimental 
series. As seen in Table 1, the level change 
estimate provided by ITSACORR is almost 56 
points (p < .001) even though the intervention 
was not applied to this series. ITSE yielded 

essentially the same results. In contrast, the other 
methods estimate a minor decrease in level that 
fails to reach statistical significance (p > .05). 
All methods essentially agree with respect to the 
degree of slope change and autocorrelation.  
 
Summary of Observed Differences Between  
ITSACORR and Other Methods Regarding 
Parameter Estimates.   

A comparison of the ITSACORR level-
change estimates with those provided by three 
acceptable statistical methods (as well as by 
visual analysis) reveals major inconsistencies for 
each published study illustrated in Figure 1. In 
some cases the ITSACORR estimate 
approximates the estimate provided by ITSE (an 
unacceptable method), but often these two 
methods produce very different estimates. A 
comparison of results from all analyses reveals 
level-change estimates for ITSACORR that are 
as much as 50 times as large as the others. In 
some cases, the ITSACORR estimate is far 
larger than the difference between the highest 
and lowest values in the entire series.  Although 
the discrepancies among level change estimates 
tended to be larger than the discrepancies among 
slope change and autocorrelation estimates, 
discrepancies among the latter measures are also 
pronounced. Because the results of ITSACORR 
differ so much from those associated with both 
visual analysis and acceptable statistical 
methods it is reasonable to ask why. The next 
two sections provide answers to this question.  
 
Inconsistency Between the Logic of the Design 
and the Parameters of the Structural Model  
 This section focuses on the comparison 
of the intercept parameters specified in the 
ITSACORR structural model with the level 
change parameter dictated by the logic of the 
two phase design. The ITSACORR structural 
model [identical to the Gottman (1981) ITSE 
model] comprises two parts, one for the pre 
intervention data and one for the post 
intervention data, as shown below. 
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ITSACORR Model 
 
                          Pre intervention                     (1) 

Yt = m1t + b1 + aiYt − i
i =1

P

∑ + et
 

                       
                        Post intervention                   (2) 

Yt = m2t + b2 + aiYt− i
i =1

P

∑ + et
 

 
where, using Gottman’s notation, m1 and m2 are 
the process slopes for phases 1 and 2, 
respectively, b1 and b2 are the process intercepts 
for phases 1 and 2, respectively, ai is the ith 
autoregressive coefficient, P is the 
autoregressive order of the model, and et is the 
error. The time indicator t associated with the 
outcome variable Y takes on values 1, 2, . . ., n1  
for observations in the first phase, and values n1 
+ 1, . . . , n1 + n2  for observations in the second 
phase (Gottman, 1981, p. 349). The numbering 
of the time indicator is crucial in understanding 
the nature of the intercepts defined for this 
model.     
 The difference between the two 
intercept parameters (i.e. b1 and b2) in this 
model does not measure the change in level at 
(or near) the appropriate time point n1 + 1. Both 
b1 and b2 measure elevation at the time point 
before the first observation in the first phase 
(i.e., time period zero). The value of b1 results 
from extrapolating back only one time point, 
whereas the value of b2 results from 
extrapolating from time point n1 + 1 all the way 
back to time point zero. Although both 
intercepts are associated with the same time 
point (i.e., zero), the difference between these 
two measures does not, in general, yield a 
measure of level change. One can, however, 
derive the correct level change parameter from 
the parameters of the ITSACORR model 
(Huitema & McKean, 2000a, p. 57). The correct 
expression for the level change parameter is: (b2 
- b1) + (n1 + 1)(m2 - m1). It can be seen from 
this expression that the intercept difference (b2 - 
b1) is equivalent to the level change parameter 
only if the two slopes are exactly the same. 
Because the intercepts in the ITSACORR 
structural model define elevation at time period 
zero rather than time period n1 + 1, the model 

defines change effects that do not coincide with 
the logic of the two-phase interrupted time-
series design.   
 
Inconsistency Between the Structural Model and 
the Design Matrix   
 The first stage in the estimation of the 
parameters of the ITSACORR structural model 
can be carried out using the full model ITSE-
ITSACORR design matrix shown in the 
Appendix (panel A) . Nevertheless, this matrix is 
not consistent with the design matrix that 
conforms to the structural model. The 
inconsistency can be seen in the numbering of 
the time periods for the second phase of the 
design. The second phase numbering follows the 
sequence t = n1 + 1, . . . , n1 + n2  in the 
structural model (presented above), whereas the 
design matrix actually employed in the 
ITSACORR analysis (see column four in panel 
A of the Appendix) uses the sequence t = 1, 2,  . 
. . , n2 . This inconsistency means that the 
ITSACORR method and the resulting parameter 
estimates deviate from the ITSACORR 
structural model (which is also inconsistent with 
the logic of the design) and the intercept 
parameters it implies. This distinction between 
the model and the design matrix serves as an 
important step in conceptually decomposing the 
problems with the method.     
 
Unacceptable Inferential Performance  
 It has been shown that ITSACORR 
provides unacceptable descriptive results. This 
outcome eliminates most interest in the 
inferential aspects of the analysis because there 
is little reason to consider hypothesis tests (or 
confidence intervals) applied to invalid 
parameter estimates. Nevertheless, for the sake 
of completeness, it is shown in this section that 
the inferential aspects of the analysis remain 
invalid even if one ignores the unacceptable 
descriptive properties of the ITSACORR 
method. 
 The inferential approach recommended 
for ITSACORR comprises a two-stage 
procedure. First, a preliminary omnibus F-test is 
carried out to test the following compound 
hypothesis: H0: m1 = m2 and b1 = b2. This 
hypothesis states that both slopes are identical 
and both intercepts are identical for the two 
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phases of the study. The test is based on a 
comparison of results obtained using the full and 
reduced model design matrices shown in the 
Appendix.  Rejection of the compound 
hypothesis is typically interpreted to mean that 
an intervention effect has occurred in the form 
of either a slope change or an intercept change 
(or both). A separate t-test on each sub 
hypothesis (i.e., H0: m1 = m2 and H0: b1 = b2) 
is then carried out. Many researchers, however, 
ignore the preliminary test and attend to only the 
t’s.  
 At first glance this two stage approach 
appears consistent with conventional statistical 
practice outside the time-series context. Upon 
close inspection, however, it can be seen that the 
ITSACORR preliminary F-test on the compound 
hypothesis contains fatal flaws. There has been 
provided a formal mathematical proof elsewhere 
(Huitema, McKean, & Laraway, 2007) that 
illustrates the problem with this test. The 
essential idea can be conveyed simply. Suppose 
one has a situation in which there is no level 
change whatsoever and the slopes are identical 
(i.e., there is a common slope). As the common 
slope approaches infinity the difference between 
ITSACORR intercepts approaches infinity even 
though the level has not changed. It follows that 
the difference between intercepts can be 
infinitely large even though the value of the 
preliminary F is zero. Because the F-test does 
not provide information relevant to the 
evaluation of differences between the intercepts 
defined for the ITSACORR method, this test has 
been ignored in the analyses presented in Table 
1.       
 Simulation results regarding the 
empirical Type I error relevant to the 
preliminary F-test and the t-tests on change 
between intercepts and change between slopes 
are as follows: Type I error for the preliminary 
omnibus F-test on both intercept and slope 
change = .25 and .37 when autocorrelation is set 
at .50 and .80, respectively. The corresponding 
error rates on the individual test for intercept 
change equaled .16 and .20, and the 
corresponding results for the test on slope 
change equaled .21 and .33. Because the 
empirical Type I error rates greatly exceed the 
nominal value the tests do not possess 
satisfactory inferential properties and the results 

regarding power are of no interest. 
Consequently, power results are not provided. 
Other results, not presented here, show that if 
realistic levels of slope exist in the first phase, 
the Type I error rate for the t on intercept change 
is approximately 1.0.   

 
Conclusion 

 
The ITSACORR method begins with Gottman’s 
ITSE procedure and adds to it some well-
intended modifications. Unfortunately, the 
descriptive and inferential properties are 
unacceptable. Each aspect of the whole 
framework (including the structural model, the 
design matrix, the autocorrelation estimator, the 
ultimate parameter estimation scheme, and the 
inferential method) contains fatal flaws. It can 
thus be concluded that the ITSACORR method 
does not provide information that is relevant to 
the purposes of the interrupted time-series 
design. Moreover, there is no situation in which 
one can recommend the use of ITSACORR. 
This conclusion is clearly at odds with recent 
recommendations in the literature. Some 
comments on these published recommendations 
are in order.    
 An examination of the foundation 
supporting the recommendations to use 
ITSACORR rather than Gottman’s ITSE or 
ARIMA intervention models reveals little more 
than restatements of claims contained in the 
original descriptions of the method. Crosbie 
(1995, p. 391) compared the results produced by 
ITSACORR with those produced by Gottman’s 
ITSE and an ARIMA moving averages 
intervention model that Glass et al. (1975) had 
previously applied to a portion of  Holtzman’s 
(1963) perceptual speed data.  Crosbie 
concluded that “all three procedures reach the 
same conclusion” (p. 392). These methods are 
not based on the same assumptions regarding the 
nature of the underlying time-series process and 
they do not estimate the same parameters. These 
differences are reflected in the parameters 
modeled. This is why there are no slopes in the 
cited ARIMA analysis. Therefore, the claim that 
ITSACORR, ITSE, and ARIMA procedures 
“reach the same conclusion” (Crosbie, p. 392) is 
without foundation. Unfortunately there are 
several textbooks (e.g., Franklin, Allison, & 
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Gorman, 1997 and Christensen, 2007) and many 
recent journal articles that perpetuate this 
mistaken notion.  
 Another misunderstanding regarding 
ITSACORR relative other procedures have 
recently appeared. Jenson, Clark, Kircher, and 
Kristjansson (2007) have stated that 
“ITSACORR yields conservative estimates of 
intervention effects” (p. 488). Examples 
presented have been based on published data 
where this is far from true. Studies C and D  in 
the present article yield ITSACORR estimates of 
intervention effects that are approximately 10 to 
25 times the size of the correct estimates.     
 Because it has been shown that both the 
descriptive and inferential properties of  
ITSACORR are unacceptable it is recommend 
that this method not be used. More adequate 
methods include certain ARIMA and regression-
based approaches cited in this article; it is 
recommended that they be given serious 
consideration when choosing an analysis for 
interrupted time-series designs.    

 
References 

 
Borckardt, J. J. (2002). Case study 

examining the efficacy of a multi-modal 
psychotherapeutic intervention for hypertension. 
International Journal of Clinical and 
Experimental Hypnosis, 50, 189-201.  

Borckardt, J. J., & Nash, M. R. (2002). 
How practitioners (and others) can make 
scientifically viable contributions to clinical-
outcome research using the single-case time-
series design. International Journal of Clinical 
and Experimental Hypnosis, 50, 114-148. 

Box, G. E. P., & Jenkins, G. M. (1970). 
Time-series analysis: Forecasting, and control. 
San Francisco: Holden-Day. 

Box, G. E. P., & Tiao, G. L. (1965). A 
change in level of a non-stationary time series. 
Biometrics, 52, 181-192. 

Christensen, L. B. (2007). Experimental 
Methodology (10th ed.). Boston: Allyn and 
Bacon. 

Crosbie, J. (1993). Interrupted time-
series analysis with brief single-subject data. 
Journal of Consulting and Clinical Psychology, 
61, 966-974. 

Crosbie, J. (1995). Interrupted time-
series analysis with short series:  Why it is 
problematic; How  it can be  improved. In J. M. 
Gottman (Ed.), The Analysis of Change (p. 361-
395). Mahwah, NJ: Lawrence Erlbaum.   

Davidson, K. M., & Tyrer, P. (1996). 
Cognitive therapy for antisocial and borderline 
personality disorders: Single case study series. 
British Journal of Clinical Psychology, 35, 413-
429. 

Ellis, M.V. (1999). Repeated measures 
designs. The Counseling Psychologist, 27, 552-
578.   

Franklin, R. D., Allison, D. B., & 
Gorman, B. S. (Eds.). (1997). Design and 
analysis of single-case research. Mahwah, NJ: 
Lawrence Erlbaum.  

Glass, G. V., Willson, V. L., & 
Gottman, J. M. (1975). Design and analysis of 
time-series experiments. Boulder, CO: Colorado 
Associated University Press. 

Gorman, B. S., & Allison, D. B. (1997). 
Statistical alternatives for single-case designs. In 
R. D. Franklin, D. B. Allison, & B. S. Gorman 
(Eds.), Design and Analysis of Single-case 
Research (p. 159-214). Mahwah, NJ: Lawrence 
Erlbaum.  

Gottman, J. M. (1981). Time-series 
analysis: A comprehensive introduction for 
social scientists. New York: Cambridge 
University Press.  

Gottman, J. M. (Ed.). (1995). The 
analysis of change. Mahwah, NJ: Lawrence 
Erlbaum.  

Gottman, J. M., & Rushe, R. H. (1993). 
The analysis of change: Issues, fallacies, and 
new ideas. Journal of Consulting and Clinical 
Psychology, 61, 907-910. 

Hogenraad, R., McKenzie, D. P., & 
Martindale, C. (1997). The enemy within: 
Autocorrelation bias in content analysis of 
narratives. Computers and the Humanities, 30, 
433-439. 

Holtzman, W. (1963). Statistical models 
for the study of change in the single case. In C. 
W.  Harris (Ed.) Problems in Measuring Change 
(p. 99-211). Madison: University of Wisconsin 
Press. 

 
 



TIME-SERIES INTERVENTION ANALYSIS & ITSACORR 378 

Huitema, B. E. (2004). Analysis of 
interrupted time-series experiments using ITSE: 
A critique. Understanding Statistics: Statistical 
Issues in Psychology, Education, and the Social 
Sciences, 3, 27-46. 

Huitema, B. E. & McKean, J. W. 
(1998). Irrelevant autocorrelation in least-
squares intervention models. Psychological 
Methods, 3, 104-116. 

Huitema, B. E., & McKean, J. W. 
(2000a). Design specification issues in time-
series intervention models. Psychological 
Measurement, 60, 38-58. 

Huitema, B. E. & McKean, J. W. 
(2000b). A simple and powerful test for 
autocorrelated errors in  OLS intervention. 
Psychological Reports, 87, 3-20. 

Huitema, B. E. & McKean, J. W. 
(2007). Time-Series Intervention Analysis using 
ITSACORR: Fatal Flaws Expanded version. 
Unpublished Manuscript. 

Huitema, B. E., McKean, J. W., & 
McKnight, S. (1994, August). Small-sample 
time-series intervention analysis: Problems and 
solutions. Paper presented at the meeting of the 
American Psychological Association, Los 
Angeles, CA. 

Jenson, W. R., Clark, E., Kircher, J. C., 
& Kristjansson, S. D. (2007). Statistical reform: 
Evidence-based practice, meta-analyses, and 
single subject designs. Psychology in the 
Schools, 44, 483-493. 

Lucyshyn, J. M., & Albin, R. W. (1997). 
Embedding comprehensive behavioral support 
in family ecology: An experimental, single-case 
analysis. Journal of Consulting and Clinical 
Psychology, 65, 241-251. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

McCleary, R., & Hay, R. A., Jr. (1980). 
Applied time series analysis for the social 
sciences. Newbury Park, CA: Sage. 

McKnight, S., McKean, J. W., & 
Huitema, B. E. (2000). A double bootstrap 
method to analyze linear models with 
autoregressive error terms. Psychological 
Methods, 5, 87-101. 

Robey, R. R., Schultz, M. C., Crawford, 
A. B., & Sinner, C. A. (1999). Single-subject 
clinical-outcome research: designs, data, effect 
sizes, and analyses. Aphasiology, 13, 445-473.  

Rushe, R. H., & Gottman, J. M. (1993). 
Essentials in the design and analysis of time-
series experiments. In G. Keren & C. Lewis 
(Eds.), A handbook for data analysis in the 
behavioral sciences: Statistical Issues (p. 493-
528). Hillsdale, NJ:  Lawrence Erlbaum 
Associates, Inc.   

Spencer, K. A., Doyle, P. J., McNeil, M. 
R., Wambaugh, J. L., Park, G., & Carroll, B. 
(2000). Examining the facilitative effects of 
rhyme in a patient with output lexicon damage. 
Aphasiology, 14, 567-584. 

Stage, S. A., & Quiroz, D. R. (1997). A 
meta-analysis of interventions to decrease 
disruptive classroom behavior in education 
settings. School Psychology Review, 26, 333-
368. 

Stoline, M. R., Huitema, B. E., & 
Mitchell, B. (1980). Intervention time-series 
model with different pre- and post-intervention 
first-order autoregressive parameters. 
Psychological Bulletin, 88, 46-53. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



HUITEMA, MCKEAN, LARAWAY 
 

379

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Appendix 
 

(A) 
ITSE - ITSACORR Full  Model Design Matrix (X) and Y Vector 
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ITSE - ITSACORR Reduced Model Design Matrix (XR) and Y Vector 
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Three procedures for analyzing within-subjects effects in multivariate repeated measures designs are 
compared when group covariances are heterogeneous: the multiple regression model (MRM) with a 
structured covariance, Johansen’s (1980) procedure, and the multivariate Brown and Forsythe (1974) 
procedure. A preliminary likelihood ratio test of a Kronecker product covariance structure is sensitive to 
sample size and derivational assumption violations. Error rates of the procedures are generally well-
controlled except when the distribution is skewed. The MRM procedure displayed few power advantages 
over the other procedures.  
 
Key words: doubly multivariate data; robustness; Kronecker product; assumption violations; general 
linear model; Kenward-Roger approximation. 
 
 

Introduction 
 
Multivariate repeated measures data arise when 
measurements are obtained from study 
participants on P dependent variables at each of 
T occasions. The choice of a procedure for 
testing multivariate within-subjects main and 
interaction effects depends, in part, on the 
assumptions made about cov(Yij) =  Ωij, where 
Yij = [Yij11 Yij12 …  Yij1P … YijTP]T, the vector of 
measurements for the ith subject      (i = 1 ,…, 
nj) in the jth group (j = 1 ,…, J), and T is the 
transpose operator. 

Two procedures for testing within-
subjects effects in multivariate repeated 
measures data are the doubly multivariate model 
(DMM) and multivariate mixed model (MMM) 
procedures (Boik, 1988, 1991; Crawford & 
Johnson, 1994; Naik & Rao, 2001; Thomas,  
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1983), which are extensions of multivariate 
analysis of variance (MANOVA) and analysis of  
variance (ANOVA) for repeated measurements, 
respectively, to the case of two or more 
dependent variables. Both procedures define the 
multivariate mean response as a function of the 
measurement occasions and the between-
subjects (i.e., grouping) factor levels. The DMM 
makes no assumptions about the structure of Ωij 
= Ω, where Ω is the pooled covariance, other 
than it is positive definite. The MMM assumes a 
multivariate spherical (M-spherical) structure for 
Ω, in which pairs of repeated measurements 
exhibit a common variance across the dependent 
variables. The MMM is more powerful than the 
DMM for testing multivariate within-subjects 
effects if the assumption of M-sphericity is 
satisfied and the data follow a multivariate 
normal distribution (Boik, 1988; 1991). 
However if M-sphericity is not a tenable 
assumption, Type I error rates of the MMM tests 
may be substantially inflated; the magnitude of 
the deviation from the nominal level of 
significance, α, will increase as the degree of 
departure from an M-spherical structure 
increases (Boik, 1988). Accordingly, Boik 
recommended the DMM over the MMM 
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provided that total sample size is sufficiently 
large. 

The multiple regression model (MRM) 
with a structured covariance is one alternative to 
the ANOVA and MANOVA procedures for the 
analysis of repeated measures data. Jennrich and 
Schluchter (1986) and Zimmerman and Nunez-
Anton (2001) (see also Fitzmaurice, Laird, & 
Ware, 2004; Littell, Pendergast, & Natarajan, 
2000) have described this procedure for the case 
of a single dependent variable. The MRM 
procedure allows the researcher to specify a 
parametric form for both the mean and 
covariance of the repeated measurements. When 
a parsimonious structure is specified for the 
covariance, the MRM procedure should result in 
a more powerful test of within-subjects effects 
than the MANOVA procedure because there are 
fewer parameters to estimate and greater 
denominator degrees of freedom. However if the 
covariance structure is incorrectly specified, 
tests of within-subjects effects may be biased 
(Guerin & Stroup, 2000). 

In multivariate repeated measures data, 
a parsimonious structure for Ω in the MRM 
procedure is a Kronecker product structure 
(Galecki, 1994), that is, PT ΣΣΩ ⊗=  
(Chaganty & Naik, 2002; Mitchell, Genton, & 
Gumpertz, 2006; Naik & Rao, 2001), where ΣT 
is the covariance of the repeated measurements, 
ΣP is the covariance of the dependent variables 
and ⊗  is the Kronecker product operator. This 
structure is also referred to as a separable 
covariance structure (Mitchell et al., 2006). A 
likelihood ratio test (LRT) of a Kronecker 
product structure has been proposed for 
choosing between the MRM and DMM 
procedures (Naik & Rao, 2001; Roy & Khattree, 
2005; Timm, 2002). If the MRM procedure is 
adopted, selection of the best-fitting model from 
the set of candidate models with different 
covariance structures is accomplished either by 
assessing the statistical significance of a LRT for 
two nested models, or by comparing the values 
of a penalized log likelihood-based information 
criterion, such as the Akaike criterion (Akaike, 
1974), for these candidate models (Fitzmaurice 
et al., 2004; Littell et al., 2000).  

There has been only limited 
investigation of the MRM with a structured 

covariance when P ≥ 2 (e.g., Chinchilli & 
Carter, 1984; Reinsel, 1982), and not for the 
case when group covariances are heterogeneous. 
Previous research on methods for the analysis of 
multivariate repeated measures data when 
covariances are heterogeneous has focused on 
the properties of DMM tests of multivariate 
within-subjects main and interaction effects and 
robust alternatives to DMM tests. Robust 
alternatives include Johansen’s (1980) 
approximate degrees of freedom (ADF) 
multivariate test and a multivariate extension of 
the Brown and Forsythe (1974) ADF test 
(Keselman & Lix, 1997; Lix, Algina, & 
Keselman, 2003; Vallejo, Fidalgo, & Fernandez, 
2001). These ADF tests have been implemented 
with least-squares estimators when the data 
follow a multivariate normal distribution, as well 
as with trimmed estimators (i.e., trimmed means 
and Winsorized covariances) for the case when 
the data follow a multivariate heavy-tailed or 
skewed distribution. While the Johansen and 
Brown and Forsythe ADF tests are insensitive to 
covariance heterogeneity, they assume an 
unstructured form for Ω and should, in theory, 
be less powerful than the MRM, provided that 
all procedures can control the rate of Type I 
errors to α. However, Johansen’s procedure is 
also known to produce inflated error rates when 
sample size is small (Keselman & Lix, 1997). 
Thus, at present it is not clear which 
procedure(s) should be recommended for 
analyzing multivariate repeated measurements 
data when covariances are heterogeneous. 

The objectives of this article are to: (a) 
examine the Type I error performance of a LRT 
of a Kronecker product structure for Ω, and (b) 
compare the Type I error and power of the 
MRM, Johansen (1980), and multivariate Brown 
and Forsythe (1974) procedures for testing 
multivariate within-subjects main and 
interaction effects when covariances are 
heterogeneous. As part of the second objective, 
several information criteria are investigated for 
selecting the best-fitting model from amongst 
candidate models with different covariance 
structures for the MRM in the presence of 
covariance heterogeneity.  
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Description of Procedures 
 
Notation 

The procedures are described for a 
multivariate design with T repeated 
measurements, P dependent variables, and J 
levels of a between-subjects factor. Consider the 
general linear model  

 
               ,+= εβXY                         (1) 

 

where [ ]TTT
11 ... JnJ

YYY =  is the N x TP matrix of 
responses with Yij as defined previously, X is an 
N x q design matrix, β is the q x TP matrix of 
fixed effect parameters to be estimated, and ε is 
the N x TP matrix of residual errors. The rows of 
ε are assumed to be independent and to follow a 
normal distribution with mean 0 and covariance 
Ωij = Ωj, the covariance for the jth group.  
 
Likelihood Ratio Test of a Kronecker Product 
Structure for Ω 

There are T(T + 1)/2 + P(P + 1)/2 
parameters to estimate when Ω has a Kronecker 
product structure, compared to TP(TP + 1)/2 
parameters to estimate when Ω is unstructured. 
For example, with   T = 4 and P = 2, there are a 
total of 10 + 3 = 13 parameters to be estimated 
in the former case, compared to 8(9)/2 = 36 
parameters to be estimated in the latter case. 

Tests of different forms of a Kronecker 
product structure have been described in the 
literature (e.g., Boik, 1991; Naik & Rao, 2001). 
Mitchell et al. (2006) derived a LRT for a 
general Kronecker product structure, which 
makes no assumptions about the form of either 
ΣT or ΣP. To test the null hypothesis 

PTH ΣΣΩ ⊗=:01  against the alternative 

PTAH ΣΣ  ⊗≠Ω:1      the test     statistic       is  
 

 

               2/

2/2/ ˆˆ

N

NT
P

NP
T

λ
E

ΣΣ
=                     (2) 

 
where 
 

      [ ]YXXXXIYE 1TTT )(1 −−= NN
          (3)   

 
and IN  is an identity matrix of dimension N. The 
statistic -2lnλ asymptotically follows a 

2
fχ distribution, where f = PT(PT + 1)/2 – P(P + 

1)/2 – T(T + 1)/2, under the assumptions of a 
multivariate normal distribution of responses 
and covariance homogeneity. Maximum 
likelihood (ML) estimates of ΣP and ΣT can be 
obtained via algorithms proposed by Boik 
(1991), Dutilleul (1999), or Mardia & Goodall 
(1993). 
 
The Multiple Regression Model, Johansen 
(1980), and Multivariate Brown and Forsythe 
(1974) Procedures 

For multivariate repeated measures data, 
the MRM procedure with a structured 
covariance is defined as 

 
    ( ) )vec()(vec)(vec TTT εβIXY +⊗= TP  (4) 
 
where vec ( )⋅  is the vec operator, and 
 

                
,

))(veccov( T

V
ΩIY

=
⊗= N               (5) 

when homogeneity of group covariances is 
assumed. If V is known, the least-squares 
estimator of β is  
 

( ) ( ) ( )

T

1T T1 1 T

ˆvec(

vec( )TP TP TP

−
− −

=

⎡ ⎤⊗ ⊗ ⊗⎣ ⎦

β )

X I V X I X I V Y
  (6) 

 
When the data follow a multivariate normal 
distribution, β̂  also follows a multivariate 
normal distribution with mean β and covariance  
 

        ( ) ( )[ ] .)ˆ(
1T −1− ⊗⊗= TPTP IXVIXβΣ    (7) 

 
When V is unknown, covariance 

parameters (i.e., V̂ ) are estimated using ML or 
restricted maximum likelihood (REML). Then 
V̂  is substituted for V in equations 6 and 7. 
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When this substitution is made, β̂  is an unbiased 
estimate of β under asymptotic theory 
(Fitzmaurice et al., 2004). Kackar and Harville 
(1981) have also shown that, provided the 
population distribution is symmetric, β̂  is an 
asymptotically unbiased estimate of β. However, 
for small sample sizes, the accuracy of the 
approximation may be poor, particularly when T 
and/or P are large. When covariances are not 
assumed homogeneous across groups, separate 
parameters are estimated for each level of the 
between-subjects factor, such that jΩ̂ denotes 
the estimated covariance for the jth group. 

Hypotheses about multivariate within-
subjects main and interaction effects are of the 
form H02: Lvec(βT) = 0 where L of dimension r 
x qTP contains weights that define one or more 
linear contrasts among the elements of β. To test 
hypotheses about the individual βm (m = 1 ,…, 
qTP), a number of different test statistics may be 
adopted (Fouladi & Shieh, 2004), including an 
approximate t statistic. If the rank of L is greater 
than one, an F statistic to test the null hypothesis 
is, 
 

     
( ) ( )T 1T T1 ˆ ˆ ˆˆvec( ( ) vec(

rank( )

F
−

=

⎡ ⎤
⎣ ⎦L β ) LΣ β L L β)

L

  (8) 

 
where )ˆ(ˆ βΣ  estimates )ˆ(βΣ . This statistic is 
compared to the critical value, F[(1 – α); ν1, ν2], 
where ν1 = rank(L) and ν2 is approximated from 
the data (Kenward & Roger, 1997; 
Satterthwaite; 1946). Guerin and Stroup (2000) 
recommend adopting the Kenward-Roger 
approximation because the former can result in 
inflated error rates for small sample sizes. 

As noted previously, for the MRM 
procedure applied to P ≥ 2 dependent variables, 

PT ΣΣΩ ⊗=  defines a parsimonious structure 
for Ω. The matrix ΣP is typically assumed to 
have an unstructured form with P(P + 1)/2 
unique elements σll′ (l, l′ = 1 ,…, P), while the 
parameters in ΣT are assumed to be a function of 
the measurement occasions u and v (u, v = 1 ,…, 
T) and the levels of one or more between-
subjects factor(s) when covariance homogeneity 
is not assumed (Zimmerman & Nunez-Anton, 

2001). Examples of possible structures for ΣT 
have been enumerated in several sources, 
including Fitzmaurice et al. (2004), Littell et al. 
(2000), and Littell, Stroup, and Freund (2002). 
For example, the compound symmetric (CS) 
structure has the following variance and 
correlation specification: σkk = σ2 and ρkk′ = ρ (k = 
1 ,…, T ; k ≠ k′). This parsimonious structure 
assumes constant variances and correlations 
across measurement occasions. Multivariate 
compound symmetry is a more restrictive 
assumption than that of M-sphericity (Crawford 
& Johnson, 1994). The variance and correlation 
specifications for the first order autoregressive 
(AR-1) structure is σkk = σ2, for k = 1 ,…, T and 
ρkk′ = ρk′- k for k′ > k and  k′  = 2, …, T. The 
unstructured (UN) covariance has T(T + 1)/2 
unique elements denoted σkk′ (k, k′ = 1 ,…, T). 

Several information criteria for 
assessing model fit have been proposed, 
including the Akaike (AIC; Akaike, 1974), 
Bayesian-Schwarz (BIC: Schwarz, 1978), finite 
population-corrected AIC (CAIC; Bozdogan, 
1987), and Hannan & Quinn (HQIC; Hannan & 
Quin, 1979) criteria. These are respectively 
defined as  

 

    

*),log(log22HQIC
),1*log(2CAIC

*),log(2BIC
,22AIC

Ndl
Ndl

Ndl
dl

+−=
++−=

+−=
+−=

    (9) 

 
where l is the logarithm of the ML or REML 
function for the specified model, d is the number 
of covariance parameters to be estimated, N*= N 
for ML estimation and N* = N – q for REML 
estimation. Amongst candidate models with 
different covariance structures, the best-fitting 
model is the one with the smallest value for the 
selected information criterion. The criteria will 
not always select the same model. For example, 
the BIC penalizes the model more severely for 
the number of parameters than does the AIC, 
and therefore tends to choose less complex 
models than the AIC. 
 Computational formulae for the 
Johansen (1980) and multivariate Brown and 
Forsythe (1974) ADF procedures have been 
enumerated in a number of sources, and 
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therefore have not been repeated in this 
manuscript (e.g., Keselman & Lix, 1997; Lix et 
al., 2003). Vallejo, Fidalgo, and Fernandez 
(2001) extended the Brown and Forsythe (1974) 
procedure to the case of multivariate repeated 
measurements, but a recent modification 
proposed by Vallejo and Ato (2006), to address 
the conservative Type I error properties of this 
procedure for testing within-subjects effects, 
was adopted in the current study. 
 

Methodology 
 

Methods for Investigating the Properties of a 
Likelihood Ratio Test of a Kronecker Product 
Covariance Structure 

Monte Carlo techniques were used to 
investigate the Type I error properties of the 
LRT for testing the null hypothesis that Ω has a 
Kronecker product structure. The data were 
generated for a multivariate design containing a 
single between-subjects factor with two levels 
and a single within-subjects factor. The 
parameters manipulated in the study were: (a) 
total sample size, (b) number of repeated 
measurements, (c) number of dependent 
variables, (d) degree of covariance 
heterogeneity, and (e) degree of departure from 
a multivariate normal distribution. The value of 
the LRT statistic does not depend on the form of 
either ΣT or ΣP (Mitchell et al., 2003), so the 
data were generated from a population in which 
both ΣT or ΣP had CS covariance structures. 

Dutilleul’s (1999) algorithm (see also 
Dutilleul & Pinel-Alloul, 1996) was used to 
obtain ML estimates of ΣT and ΣP. This 
algorithm finds solutions to the following 
system of equations, 
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and 
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where Wij is the P x T matrix obtained by re-
shaping Yij, and W  is the matrix of means 
obtained by averaging across all such 
observation matrices.  

Three levels of total sample size were 
investigated: N = 40, 60, and 100. The number 
of repeated measurements was set at T = 4 and 
6, while the number of dependent variables was 
set at P = 2, 3, 4, and 6.  These conditions reflect 
the range of simulation parameters that have 
been investigated in previous research on 
methods for the analysis of multivariate repeated 
measures data (Boik, 1991; Lix et al., 2003; 
Vallejo et al., 2001).  

The tests were investigated for 
homogeneous covariances (i.e., Ω1 = Ω2), as 
well as for two cases of covariance 
heterogeneity: Ω1 = 5Ω2, and  Ω1 = 9Ω2. 

Multivariate data were generated from 
both normal and non-normal distributions. 
Pseudorandom observation vectors Yij from a 
multivariate normal distribution with mean 
vector jβ  and covariance matrix Ωj were 
obtained by the following method. A column 
vector of standard normal deviates (i.e., dij) was 
transformed to a vector of multivariate 
observations via ijjij RdβY += where R is an 
upper triangular matrix of dimension TP with 
the property jΩRR =T .  

Two multivariate non-normal 
distributions were investigated (Lix, Keselman, 
& Hinds, 2005). The first was a symmetric 
distribution with a mild degree of heavy-
tailedness and skewness (γ1) and kurtosis (γ2) 
values of 0 and 1.7 respectively, (the normal 
distribution has γ1 = 0 and γ2 = 0) while the 
second distribution had γ1 = 2.0 and γ2 = 6.0, 
which are equivalent to the shape parameters of 
an exponential distribution. A vector of 
constants w = [a b c d]T was obtained using 
Fleishman’s (1978) method, to provide the 
desired degree of skewness and kurtosis for each 
of these distributions. An intermediate 
covariance matrix (i.e., ζ) was then computed so 
that Yij would have the desired final covariance 
structure. Elements of this intermediate matrix 
were computed using Vale and Maurelli’s 
(1983) method. The vector of univariate deviates 
was transformed to a vector of multivariate 
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normal deviates via, ,)( ijjij dRβζZ ζ+=  where 
Z(ζ)ij is the vector of transformed variates, and 
Rζ is an upper triangular matrix such that 

ζRR =ζ
Τ
ζ . Next, each element of Yij was 

obtained by computing the zero through third 
powers of the corresponding elements of Z(ζ)ij, 
so that ])()()(1[( 32

ijmijmijmijm ζZζZζZζZ =)  (m 
= 1 ,…, TP) represents the vector of powers. 
From this, Yijkl = Z(ζ)imw  (k = 1 ,…, T; l = 1 ,…, 
P). 

Five thousand replications of each 
combination of conditions were performed using 
α = .05 as the criterion for assessing statistical 
significance. The simulation program was 
written in SAS/IML (SAS Institute Inc., 2004a).  
Descriptive techniques were used to summarize 
the Type I error rates. 
 
Methods for Investigating the Properties of the 
Multiple Regression Model, Johansen, and 
Multivariate Brown and Forsythe Procedures 

Monte Carlo techniques were used to 
evaluate the Type I error and power of the 
MRM, Johansen (1980), and multivariate Brown 
and Forsythe (1974) procedures for testing 
multivariate within-subjects main and 
interaction effects as well as to investigate the 
properties of the information criteria for 
assessing model fit. The data were generated for 
a design with a single between-subjects factor 
with two levels, a single within-subjects factor 
with four levels, and three dependent variables. 
The simulation parameters were: (a) total sample 
size, (b) degree of group size imbalance, (c) 
degree of covariance heterogeneity, (d) pairing 
of group sizes and covariances, (e) degree of 
departure from a multivariate normal 
distribution, (f) structure of Ω, and (g) 
configuration of the population means.  

The analyses were conducted for total 
sample size conditions of 60 and 100. Group 
sizes were both equal and unequal. Table 1 lists 
the group sizes that were investigated for each 
value of N. The tests were investigated for 
homogeneous covariances (i.e., Ω1 =  Ω2), as 
well as for  two cases of covariance 
heterogeneity: Ω1 =  5Ω2, and  Ω1 =  9Ω2. 

Positive and negative pairings of group 
sizes and group covariances were investigated. 

A positive pairing refers to the case in which the 
largest nj is associated with the covariance 
matrix containing the largest element values; a 
negative pairing refers to the case in which the 
largest nj is associated with the covariance 
matrix with the smallest element values.  

Multivariate normal and non-normal 
data were generated using the method described 
in the previous section. Two multivariate non-
normal distributions were investigated. The first 
was a symmetric heavy-tailed distribution with 
shape parameters equivalent to those of a double 
exponential distribution (i.e., γ1 = 0; γ2 = 3.0.) 
The second was a skewed distribution that 
represented an extreme degree of departure from 
multivariate normality, with shape parameters 
equivalent to those of a multivariate lognormal 
distribution (i.e., γ1 = 6.2; γ2 = 110.9). 

In this phase of the study, ΣT had either 
a CS or AR-1 structure. Both structures had σ2 = 
1 and ρ = 0.5. ΣP had a CS structure with σ2 = 1 
and ρ = 0.4.  

All procedures were investigated when 
the configuration of population means was null 
and non-null. For the non-null case, the 
following configuration of means was 
investigated: β1 = [.25 0 0 -.25 0 0 0 0 .25 0 0 -
.25]T and β2 = [.25 0 0 .25 0 0 0 0 .25 0 0 .25]T. 

Multivariate datasets were generated 
using a program written in SAS/IML (SAS 
Institute Inc., 2004a). A SAS/IML program was 
also written to analyze each dataset with the 
Johansen (1980) and multivariate Brown and 
Forsythe (1974) procedures. A PROC MIXED 
(SAS Institute Inc., 2004b) macro was written to 
analyze each dataset using the MRM procedure, 
and output the F statistics, p-values, and degrees 
of freedom for tests of the within-subjects main 
and interaction effects, as well as the numeric 
values for each of the four investigated 
information criterion. Only one thousand 
replications were performed for each 
combination of conditions because of the 
lengthy execution time required for PROC 
MIXED. The syntax to implement the MRM  
procedure is reported in Appendix A; it is the 
same as that reported by Timm (2002) and 
Thiebaut, Jacquim-Gadda, Chene, Leport and 
Commenges (2002). All parameters were 
estimated using REML. In the PROC MIXED 
macro, each dataset was analyzed using 
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Three different models; each model had the 
same fixed effects, but a different Kronecker 
product covariance structure in the REPEATED 
statement (see Appendix A). The best-fitting 
model, among the three models that were fit to 
the data, was the model that resulted in the 
lowest numeric value of an information 
criterion. The percentage of times that the best-
fitting model had the same covariance structure 
as the population covariance structure was 
recorded for each criterion; this is denoted as the 
percentage of correct model selection.  

Type I error and power rates were 
calculated for the MRM, Johansen (1980), and 
multivariate Brown and Forsythe (1974) 
procedures. The percent bias in Type I error 
rates, ( ) α/ˆ100 ααB −= , where α̂ is the 
empirical error rate for a test, was also 
calculated. Type I error rates, percentages of 
bias, and power rates were summarized 
descriptively. For each of the three procedures, 
regression analyses were used to model the 
effect of the simulation parameters on the Type I 
error rates. For the MRM, the regression model 
had a random simulation effect, because there 
were repeated measurements on each model 
covariance structure. For each procedure, 
separate models were defined for equal and 
unequal group size cases for within-subjects 
main and interaction effects, respectively. All  
models included main effects as well as two-way 
interactions among the simulation parameters.  
 

 
 
 

Results 
 

Likelihood Ratio Test of a Kronecker Product 
Covariance Structure 

Figure 1 contains the empirical Type I 
error rates for the LRT for each of the 
investigated values of P when T = 4 and Ω1 = 
Ω2. The sensitivity of the LRT to total sample 
size is apparent. When the data were 
multivariate normal and P = 2, the empirical 
error rate was 0.11 for N = 40, but quickly 
converged to 0.05 when N = 100. As the 
dimension of Ω increased from TP = 8 to 36, 
error rates also increased across the range of 
values of N. For example, with P = 3 and N = 
100, the error rate was 0.09. As the dimension of 
the data increased, Type I error rates of the LRT 
rapidly approached the upper bound of 1.00. 

Error rates were also highly sensitive to 
the presence of multivariate non-normality. For 
example, when the data were sampled from a 
heavy-tailed distribution when P = 2, the error 
rate was 0.18 for N = 40 and 0.12 for N = 100. 
Error rates were also more inflated for the 
skewed distribution than the heavy-tailed 
distribution. For the latter distribution, error 
rates attained or approached the upper bound of 
1.00 for many of the investigated conditions.  

When the number of repeated 
measurements increased to six and Ω1 = Ω2, the 
same pattern of results was observed, although 
error rates were even more inflated than for T = 
4. For example, for N = 100, the empirical error  
 

Table 1. Group Sizes Investigated in the Simulation Study 
 

N n1, n2 Δnj 
60 30, 30 0.0 

 24, 36 0.2 
 20, 40 0.3 

100 50, 50 0.0 
 40, 60 0.2 
 35, 65 0.3 

 
Note. N = total sample size. jnΔ is the coefficient of variation for group sizes (see Lix & Keselman, 1997). 

 
 



MULTIVARIATE REPEATED MEASUREMENTS 387

rate was 0.07 for P = 2 but increased to 0.89 for 
P = 6 when the data were sampled from a 
multivariate normal distribution. When the data 
were from multivariate non-normal 
distributions, error rates always exceeded α and 
frequently attained the upper bound of 1.00. 

When covariances were heterogeneous,  
the error rates of the LRT were always inflated  
regardless of the total sample size, dimension of 
Ω, or degree of departure from a multivariate 
normal distribution. For example, when the data 

were multivariate normal with T = 4 and P = 2, 
the error rate was 0.52 for N = 40 and 0.37 for N 
= 100. 
 
Information Criteria for Assessing Model Fit 

The results for the four information 
criteria are reported in Table 2; they have been 
averaged over the conditions of total sample 
size, degree of covariance heterogeneity, and 
degree of group size imbalance because a similar 

 
  
 

Figure 1. Type I Error Rates for the Likelihood Ratio Test (LRT) of a Kronecker Product Structure, Ω1 = 
Ω2, T = 4 
Note.  Heavy-tailed distribution has γ1 = 0 and γ2 = 1.7. Skewed distribution has γ1 = 2.0 and γ2 = 6.0. 
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pattern of results was observed for these 
conditions. 

When the data followed a multivariate 
normal distribution and Ω1 = Ω2, the differences 
among the four criteria were small and on 
average, the correct (i.e., population) covariance 
structure was selected in as many as 96.4% of 
the models. When covariances were 
heterogeneous and the distribution was 
multivariate normal, the percentages of correct 
model selection were lower when ΣT had a CS 
structure (approximately 65% for all criteria) 
than when ΣT had an AR-1 structure 
(approximately 90% for all criteria). 

When Ω1 = Ω2 and the data were 
sampled from non-normal distributions, the 
average percentages of correct model selection 
were lower than when the data were sampled 
from a multivariate normal distribution. For the 
heavy-tailed distribution when ΣT had a CS 
structure, correct model selection was observed, 
on average, for 64.8% of the models for the AIC 
and 75.2% of the models for the BIC. When ΣT  
had an AR-1 structure, the average percentages 
for the AIC and BIC were 77.4% and 90.3%, 
respectively, for this distribution. For the 
skewed distribution, the percentages were 
substantially lower; for example, when ΣT had a 
CS structure, correct model selection was 
observed for only 22.2% of the models for the 
AIC. Moreover, the AIC and HQIC were more 
sensitive to multivariate non-normality than the 
BIC and CAIC. The latter two procedures 
always resulted in higher average percentages of 
correct models than the former two procedures 
when the data were obtained from heavy-tailed 
or skewed distributions. 

When covariances were heterogeneous 
and the data were obtained from multivariate 
non-normal distributions, a similar pattern of 
results was observed. All four information 
criteria produced similar average percentages of 
correct model selection regardless of whether 
group sizes were equal or unequal. The values 
obtained when ΣT had an AR-1 structure were 
higher than those obtained when ΣT had a CS 
structure. The AIC and HQIC were more 
sensitive to multivariate non-normality than the 
BIC and CAIC. 
 

Tests of Multivariate Within-Subjects Main and 
Interaction Effects 
 
Type I error rates 

 Percentages of bias in Type I error rates 
are reported in Tables 3 and 4; the results are 
averaged across the two values of total sample 
size because a similar pattern of results was 
observed. For both the main and interaction 
effect tests when group sizes were equal (Table 
3), the average bias was small for Johansen’s 
(1980) procedure as well as for the multivariate 
Brown and Forsythe (1974) procedure when the 
data were from symmetric distributions. For 
Johansen’s test, average bias ranged from 10.0% 
to 19.5% for the within-subjects main effect and 
from -1.5% to 22.0% for the within-subjects 
interaction effect. For the Brown and Forsythe 
(1974) test, average bias ranged from         -2.0% 
to 13.0% for the within-subjects main effect and 
from -11.0% to 7.5% for the within-subjects 
interaction. Overall, the Type I error rates of the 
MRM procedure were more biased than error 
rates of either ADF procedure when the 
distribution was symmetric. Average bias ranged 
from -28.0% to 29.0% for the within-subjects 
main effect and from -15.0% to 23.0% for the 
within-subjects interaction effect. However, the 
results for symmetric distributions reveal that 
the magnitude of bias varied across the three 
model covariance structures. As expected, when 
ΣT had a CS structure, there was generally less 
bias in the error rates when a model with a CS or 
UN covariance structure for the repeated 
measurements was adopted than when a model 
with an AR-1 structure was adopted. Similarly, 
when ΣT had an AR-1 structure, there was less 
bias when a model with either an AR-1 or UN 
structure was selected than when a model with a 
CS structure was selected. However, for the 
former case, the AR-1 structure tended to result 
in negatively biased error rates for the within-
subjects main effect and positively biased results 
for the within-subjects interaction effect, while 
in the latter case the CS structure results in  
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positively biased error rates for both main and 
interaction tests. For the multivariate skewed 
distribution, Type I error rates were almost 
always negatively biased for all procedures 
when group sizes were equal. This finding was 
observed for both main and interaction effects. 
For example, for the multivariate within-subjects 
interaction, average bias for Johansen’s (1980) 
procedure ranged from -23.0% to -48.0% and for 
the multivariate Brown and Forsythe (1974) 
procedure average bias ranged from -31.0% to  

 

 
-51.0%.  For the MRM procedure, average bias 
was similar, and ranged from -13.5% to -45.0% 
across the three models for the interaction effect. 

Percentages of bias for unequal group 
sizes are reported in Table 4; separate 
summaries are given for positive and negative 
pairings of group sizes and covariances and the 
results are averaged across conditions of total 
sample size, degree of covariance heterogeneity, 
and degree of group size imbalance because  

Table 2. Average Percentages of Correct Model Selection for Four Information Criteria 
 

  AIC HQIC BIC CAIC 
  ΣT = CS 
Nor =nj/=Ωj 86.4 87.5 87.5 87.5 
 =nj/≠Ωj 63.0 63.2 63.3 63.3 
 + pair 65.9 66.3 66.3 66.3 
 - pair 64.9 65.3 65.3 65.3 
HT =nj/=Ωj 64.8 73.7 75.2 75.3 
 =nj/≠Ωj 59.2 63.8 64.5 64.5 
 + pair 58.9 64.5 65.2 65.2 
 - pair 58.9 64.5 65.3 65.3 
SK =nj/=Ωj 22.2 24.3 30.6 38.4 
 =nj/≠Ωj 20.6 22.4 29.2 36.5 
 + pair 21.6 23.4 30.4 37.9 
 - pair 21.5 23.6 31.0 38.8 
  ΣT = AR-1 
Nor =nj/=Ωj 95.6 96.4 96.4 96.4 
 =nj/≠Ωj 89.9 90.4 90.4 90.4 
 + pair 92.1 92.8 92.8 92.8 
 - pair 90.5 91.1 91.1 91.1 
HT =nj/=Ωj 77.4 88.5 90.3 90.4 
 =nj/≠Ωj 75.5 83.5 84.6 84.6 
 + pair 75.4 85.8 87.3 87.4 
 - pair 75.6 83.0 84.1 84.2 
SK =nj/=Ωj 20.4 23.1 30.5 38.4 
 =nj/≠Ωj 19.8 22.0 30.0 37.8 
 + pair 20.0 22.9 31.9 40.1 
 - pair 20.8 23.7 31.9 40.7 

 
 

 
Note. CS = compound symmetric; AR-1 = first-order autoregressive. Nor = multivariate normal 
distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed distribution with γ1 = 0 and γ2 = 3; 
SK= multivariate skewed distribution with γ1 = 6.2 and γ2 = 110.9. =nj/=Ωj = equal group sizes and 
equal group covariances; =nj/≠Ωj = equal group sizes and unequal covariances; + pair = positive 
pairing of group sizes and covariances; - pair = negative pairing of group sizes and covariances. 
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similar patterns of results were observed. For 
Johansen’s (1980) procedure, bias was almost 
always positive for the multivariate normal and 
heavy-tailed distributions for both within-
subjects main and interaction effects; it was 
highest for negative pairings, where average bias 
ranged from 31.8% to 51.5%. For the 
multivariate Brown and Forsythe (1974) 
procedure, bias was small for the normal and 
heavy-tailed distributions and ranged from            
-9.0% to 8.5% across the main and interaction 
effects. For the MRM procedure, average bias 
ranged from -29.0% to 23.5% for the main effect 
and from -14.4% to 28.3% for the interaction 
effect for symmetric distributions across the 
three model covariance structures. The same 
pattern of results was observed for unequal 
group sizes as was observed for equal group  
 

 

 
sizes. When ΣT = AR-1 and a model with a CS 
structure was adopted, positive bias was  
observed for both the multivariate normal and 
heavy-tailed distributions. However, when ΣT = 
AR-1 and a model with either an AR-1 or UN  
covariance structure was adopted, error rates 
were less biased and ranged from -6.0% to  
10.8% for the main effect and from 1.5% to 
14.8% for the interaction effect. When  ΣT = CS 
and a model  with an AR-1 structure was  
adopted, bias ranged from -29.0% to -19.9% for 
the main effect and from -5.9% to 7.1% for the 
interaction effect.  

When the distribution was multivariate 
skewed and group sizes were unequal, error 
rates were almost always negatively biased for 
the three multivariate procedures. For example, 
for the MRM procedure, bias ranged from          
-50.8% to -5.6% for the main effect and from      

 
 
 
 
 
 
 

Table 4. Average Percentages of Bias in Type I Error Rates for Multivariate Within-Subjects Effects  
when Group Sizes are Unequal 

 
  

 

  ΣT = CS ΣT = AR-1 
  MRM 

CS 
MRM 
AR-1 

MRM 
UN J BF 

MRM 
CS 

MRM 
AR-1 

MRM 
UN J BF 

  Main Effect 
Nor Ω1 = Ω2 7.0 -4.0 4.0 18.0 13.0 24.0 7.0 16.0 6.0 4.0
 Ω1 ≠ Ω2 9.7 -23.2 6.6 11.5 4.0 29.0 4.0 17.0 19.5 7.5
HT Ω1 = Ω2 -5.0 -28.0 -22.0 11.0 7.0 27.0 10.0 -1.0 10.0 9.0
 Ω1 ≠ Ω2 -11.9 -23.4 -11.4 10.0 -1.5 19.0 -4.0 8.0 11.0 -2.0
SK Ω1 = Ω2 -17.0 -47.0 -24.0 -39.0 -39.0 -16.0 -29.0 -32.0 -44.0 -46.0
 Ω1 ≠ Ω2 -36.0 -54.0 -40.5 -22.0 -29.0 4.5 -12.0 -31.5 -26.5 -35.5
  Interaction Effect 
Nor Ω1 = Ω2 10.0 13.0 -11.0 5.0 1.0 13.0 -4.0 -14.0 10.0 6.0
 Ω1 ≠ Ω2 -3.6 9.6 -3.1 9.0 -1.5 21.5 2.0 10.0 22.0 7.5
HT Ω1 = Ω2 -15.0 12.0 -10.0 8.0 4.0 8.0 -11.0 -4.0 3.0 0.0
 Ω1 ≠ Ω2 -7.6 -7.7 -9.1 -1.5 -11.0 23.0 -0.5 8.5 8.5 -2.5
SK Ω1 = Ω2 -23.0 -14.0 -36.0 -46.0 -50.0 -19.0 -44.0 -45.0 -48.0 -51.0
 Ω1 ≠ Ω2 -29.5 -31.5 -39.0 -24.5 -33.0 -13.5 -20.5 -32.0 -23.0 -31.0

 

Note. CS = compound symmetric; AR-1 = first-order autoregressive; UN = unstructured. MRM = multiple 
regression model; J = Johansen’s (1980) procedure; BF = multivariate Brown and Forsythe (1974) 
procedure; Nor = multivariate normal distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed 
distribution with γ1 = 0 and γ2 = 3; SK = multivariate skewed distribution with γ1 = 6.2 and γ2 = 110.9. + 
pair = positive pairing of group sizes and covariances; - pair = negative pairing of group sizes and 
covariances. 
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-86.5% to -19.0% for the interaction effect. The 
range of values for average bias was similar for 
equal and unequal group sizes. 

As noted previously, for both balanced 
and unbalanced designs, it was generally the 
case that less bias was observed in Type I error 
rates when the model covariance structure 
corresponded to the population covariance 
structure. For MRM tests of the multivariate 
within-subjects main effect, the average bias 
across equal group sizes for ΣT = CS when the 
data were multivariate normal was 8.8% for the 
model with the CS covariance structure, -16.8% 
for the AR-1 model, and 5.8% for the UN 
structure. When ΣT = AR-1 under a normal 
multivariate distribution, the average bias across 
equal group size conditions was 5.0% for the 
model with the AR-1 covariance structure, 
27.3% for the model with the CS structure, and 
16.7% for the model with the UN covariance 
structure. The average percentages of bias were 
similar for multivariate within-subjects main and 
interaction effects. As sample size increased 
from N = 60 to 100 when group sizes were 
equal, bias tended to decrease for both the 
normal and skewed distributions under either 
population covariance structure while bias 
tended to increase when data were from a heavy-
tailed distribution. When group sizes were 
unequal and sample size increased from N = 60 
to 100, bias tended to increase when data was 
from a normal distribution while bias tended to 
decrease when data was from a skewed 
distribution. For data from a heavy-tailed 
distribution, a trend in average bias values was 
not evident. 

When group sizes were equal, the 
regression model for Johansen’s (1980) 
procedure accounted for 87.7% of the variation 
in Type I error rates for the within-subjects main 
effect and 90.5% of the variation in error rates 
for the within-subjects interaction effect. For the 
multivariate Brown and Forsythe (1974) 
procedure, the model accounted for 87.5% of the 
variation in Type I error rates for the within-
subjects main effect and 86.2% of the variation 
in Type I error rates for the interaction effect. 
For both procedures, the majority of this 
variation was attributed to the main effect of 
population distribution (i.e., between 85.5% and 
99.0% of the total explained variation). For 

Johansen’s procedure for the test of the within-
subjects interaction, total sample size and the 
two-way interaction of population distribution 
and degree of covariance heterogeneity 
accounted for 6.1% and 5.1% of the variation in 
error rates, respectively. Other main and two-
way interaction effects in the models accounted 
for a small percentage of the explained variation.   

For the MRM when group sizes were 
equal, the regression model that contained main 
effects and two-way interactions accounted for 
92.8% of the variation in Type I error rates for 
the within-subjects main effect test and 91.5% of 
the variation in error rates for the within-subjects 
interaction effect test. For the main effect test, 
population distribution, population covariance 
structure for ΣT, and model covariance structure 
respectively accounted for 39.1%, 20.1%, and 
12.1% of the explained variation. None of the 
other model effects individually accounted for 
more than 5% of the variation. For the within-
subjects interaction effect test, the type of 
population distribution, two-way interaction 
between total sample size and degree of 
covariance heterogeneity, two-way interaction 
between population covariance structure and 
model covariance structure, and two-way 
interaction of total sample size and type of 
population distribution accounted for 47.5%, 
6.6% and 5.7%, and 5.4% of the explained 
variance, respectively. None of the other model 
effects accounted for more than 5% of the 
variation. 

When group sizes were unequal, the 
regression analyses for Johansen’s (1980) 
procedure revealed that the model containing 
main effects and two-way interactions accounted 
for 90.2% of the variation in Type I error rates 
for the within-subjects main effect and 89.3% of 
the variation for the within-subjects interaction. 
For both tests, the majority of the explained 
variation was due to the main effects of 
population distribution, total sample size, and 
pairing of group sizes and covariances, and to 
the two-way interaction of total sample size and 
pairing of group sizes and covariances for the 
within-subjects interaction effect tests. For the 
multivariate Brown and Forsythe (1974) 
procedure, the regression model accounted for 
80.3% and 84.3% of the variation in Type I error 
rates for the multivariate within-subjects main 
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and interaction effects, respectively. Almost all 
of this explained variation (i.e., > 90%) was due 
to the main effect of population distribution, 
although the two-way interaction of degree of 
covariance heterogeneity and degree of group 
size imbalance also accounted for slightly more 
than 5% of the explained variation.  

For the MRM procedure, the regression 
model accounted for 91.5% of the variation in 
Type I error rates for the test of the within-
subjects main effect and 93.9% of the variation 
in error rates for the within-subjects interaction 
effect. The model effects that accounted for the 
most explained variation for the within-subjects 
main effect were population type (34.1%), 
population covariance structure (21.2%), and 
model covariance structure (10.8%). For the 
within-subjects interaction, variables that 
accounted for most of the explained variance 
were population type (55.2%) and population 
covariance structure (6.8%). 
 
Power 

 Percentages of power are reported in 
Table 5. They are summarized separately for 
equal and unequal group sizes for multivariate 
normal and heavy-tailed distributions. Power 
results are not reported for the skewed 
distribution because the three procedures could 
not control the Type I error rate for this 
condition. Only the results for N = 60 are 
reported because the pattern of results was 
similar for N = 100, and because power 
approached its upper bound for several of the 
simulation conditions for this latter value.  

The Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures 
produced similar percentages of power for all 
conditions, except when group sizes and 
covariances were negatively paired. In this case, 
the Johansen (1980) procedure was more 
powerful than the multivariate Brown and 
Forsythe (1974) procedure. This is likely a result 
of the slightly liberal Type I error rates that were 
observed for the former procedure for negative 
pairing conditions. Average power was 56.9% 
and 56.2% for Johansen’s procedure for the 
within-subjects main and interaction effects, 
respectively, and the corresponding values for 
the multivariate Brown and Forsythe (1974) 
procedure were 53.3% and 51.9%. 

In general, the MRM procedure resulted 
in lower power than either the Johansen (1980) 
or multivariate Brown and Forsythe (1974) 
procedures for the within-subjects main effect; 
the average differences ranged between 5% and 
20% for most of the investigated conditions 
although the difference was occasionally greater 
than this.  For the interaction effect, the MRM 
procedure was often more powerful than either 
of the ADF tests, although the differences were 
never more than 10%. However, Johansen’s 
procedure for testing the interaction effect was, 
on average, more powerful than the MRM 
procedure when group sizes and covariances 
were negatively paired. 

When ΣT  = CS, the MRM procedure 
with either a CS or UN model covariance 
structure resulted in substantially higher power 
than the MRM with an AR-1 model structure. 
For example, when the data were normally 
distributed and group sizes were equal, the 
average power was 41.1% and 40.2%, 
respectively for the CS and UN model 
covariance structures, and only 26.5% for the 
AR-1 structure. This large difference in power 
was observed for both equal and unequal group 
sizes regardless of the shape of the population 
distribution. In contrast, when ΣT  = AR-1, the 
MRM procedure resulted in similar percentages 
of power for the CS, UN, and AR-1 structures.  
For example, when the data were from a heavy-
tailed distribution and group sizes and 
covariances were negatively paired, the average 
power was 33.1%, 32.7%, and 33.2% for the 
multivariate interaction effect under CS, AR-1 
and UN structures respectively. 

 
                  Conclusion 

Multivariate repeated measurements arise in the 
social, behavioral, and health sciences when 
researchers collect data on multiple 
psychological or physiological characteristics of 
study participants over time or across multiple 
experimental conditions. Global tests of 
hypotheses for multivariate within-subjects main 
or interaction effects take account of the 
correlation that exists among the repeated 
measurements and dependent variables. These 
tests may be conducted within the context of the  
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general linear model using one of several 
procedures, including multivariate extensions of  
ANOVA and MANOVA. The choice of a 
procedure depends, in part, on the assumptions  
the researcher is willing to make about the 
covariance structure of the data.  

A likelihood ratio test of a Kronecker 
product covariance structure, which might be 
used as a preliminary test to choose between the 
multiple regression model procedure that 
assumes a structured covariance and a procedure 
that makes no assumptions about the structure of 
the covariance matrix, requires a large sample 
size, relative to the dimension of the data, to 
control the rate of Type I errors to the nominal 
level of significance when the data are sampled 
from a multivariate normal distribution and 
covariances are homogeneous. When 
covariances are heterogeneous or the data are 
sampled from multivariate non-normal  

 
 

distributions, this test can result in severely 
inflated Type I error rates. Thus, the likelihood 
ratio test is not useful as a preliminary test 
because it will almost always reject the null  
hypothesis of a Kronecker product structure in 
favor of the alternative hypothesis of an 
unstructured covariance.  

Consistent with the results of previous 
research, the Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures provided 
good control of the Type I error rate across the 
majority of the investigated conditions when the 
data were sampled from multivariate normal and 
heavy-tailed distributions. When group sizes and 
covariance matrices were negatively paired, 
Johansen’s (1980) test produced slightly inflated 
Type I error rates, although the magnitude of 
this positive bias decreased as total sample size 
increased. Both procedures produced 
conservative Type I error rates when the data 

Table 5. Average Percentages of Power for Multivariate Within-Subjects Effects when Group Sizes are 
Equal and Unequal, N = 60 

 
Note. CS = compound symmetric; AR-1 = first-order autoregressive; UN = unstructured. MRM = multiple 
regression model; J = Johansen’s(1980) procedure; BF = multivariate Brown and Forsythe (1974) procedure; 
Nor = multivariate normal distribution with γ1 = 0 and γ2 = 0; HT = multivariate heavy-tailed distribution 
with γ1 = 0 and γ2 = 3. =nj =  equal group sizes; + pair = positive pairing of group sizes and covariances; - 
pair= negative pairing of group sizes and covariances. 

 
 

  ΣT = CS ΣT = AR-1 
  

 
MRM 

CS 
MRM 
AR-1 

MRM 
UN J BF 

MRM 
CS 

MRM 
AR-1 

MRM 
UN J BF 

  Multivariate Main Effect 
Nor = nj 41.1 26.5 40.2 50.2 47.3 30.9 30.7 30.1 38.2 35.5 

 + pair 47.3 31.0 46.1 57.5 55.8 35.5 34.2 33.5 43.9 42.2 
 - pair 31.3 19.5 30.0 41.2 32.6 24.1 22.5 22.0 32.2 24.3 

HT = nj 39.1 25.5 38.6 52.2 49.4 31.5 30.2 29.9 40.1 37.2 
 + pair 47.1 32.3 46.6 59.3 57.9 36.8 35.0 35.8 44.7 42.9 
 - pair 30.8 19.7 30.6 42.5 34.5 24.9 23.1 23.3 33.2 25.8 
  Multivariate Interaction Effect 

Nor = nj 55.5 42.2 53.6 50.7 48.3 42.5 43.9 41.5 37.23 34.8 
 + pair 61.8 48.7 60.2 58.5 57.2 50.4 51.2 48.0 43.8 42.5 
 - pair 39.4 29.3 38.0 42.3 31.1 31.7 32.0 29.6 31.5 22.7 

HT = nj 54.0 42.2 54.8 53.0 50.4 42.5 42.4 42.2 39.8 36.9 
 + pair 61.5 47.9 60.2 59.8 58.6 50.2 51.7 49.6 45.0 43.9 
 - pair 40.7 31.5 38.8 43.9 33.8 33.1 32.7 33.2 33.5 24.6 
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were sampled from a multivariate skewed 
distribution.  

The multiple regression model 
procedure also provided good control of Type I 
error rates across the majority of the investigated 
conditions when the data were sampled from 
multivariate normal and heavy-tailed 
distributions. Like the other two procedures, it 
resulted in conservative error rates when the data 
were sampled from a multivariate skewed 
distribution. As expected, Type I error rates 
deviated less from the nominal level of 
significance when the selected model covariance 
structure corresponded to the population 
covariance structure, or when an unstructured 
covariance was selected.  

For tests of the within-subjects main 
effect, the Johansen (1980) and multivariate 
Brown and Forsythe (1974) procedures were 
more powerful than the multiple regression 
model procedure regardless of which model 
covariance structure was selected for the latter. 
The differences in power were moderate to 
large. For the multiple regression model, power 
was higher when the selected model covariance 
structure was the same as the population 
covariance structure, than when an unstructured 
covariance model was selected, but the 
differences were small (i.e., less than five 
percentage points). For tests of the within-
subjects interaction effect, the multiple 
regression model procedure was often more 
powerful than the other two procedures, but the 
differences were modest. Moreover, the multiple 
regression model procedure could also be less 
powerful than the Johansen or the multivariate 
Brown and Forsythe procedures if the 
covariance structure was misspecified. 

For both within-subjects main and 
interaction effects, the magnitude of power 
differences among the multiple regression model 
procedures when the three model covariance 
structures for the repeated measurements were 
compared indicated that the power advantages 
gained by correctly specifying the covariance 
structure varies as a function of the form of the 
population covariance. When the population 
covariance structure of the repeated 
measurements was compound symmetric, the 
model with a compound symmetric structure 
was much more powerful than the model with an 

autoregressive structure. However, when the 
population covariance structure of the repeated 
measurements was autoregressive, there was 
only a small difference in power between the 
models with compound symmetric and 
autoregressive covariance structures.  

Comparison of four penalized log-
likelihood information criteria for assessing 
model fit revealed that all of the criterion 
performed better when group covariances were 
homogeneous than when they were 
heterogeneous, and when the data were sampled 
from symmetric distributions than when they 
were sampled from skewed distributions. The 
BIC and CAIC more often selected the model 
with the correct covariance structure than the 
AIC and HQIC. 

Given these results, there appear to be 
limited benefits associated with adopting a 
multiple regression model procedure for testing 
multivariate within-subjects main and 
interaction effects in multivariate repeated 
measurement designs when covariances are 
heterogeneous and sample size is small or 
moderate. The Johansen (1980) and multivariate 
Brown and Forsythe (1974) approximate degrees 
of freedom procedures controlled the Type I 
error rates and were often more powerful than 
the multiple regression model procedures. 
Moreover, previous research has demonstrated 
that when the distribution is non-normal, robust 
versions of both procedures can control the rate 
of Type I errors to the nominal level of 
significance and can result in increased power to 
detect within-subjects effects.  

While the results of this study suggest 
that either of the Johansen (1980) or multivariate 
Brown and Forsythe (1974) procedures could be 
recommended for analyzing within-subjects 
effects, researchers should be cautious in 
generalizing these results to all data-analytic 
conditions encountered in the analysis of 
multivariate repeated measures data.  First, the 
properties of the three test procedures were only 
examined when the covariance of the repeated 
measurements and dependent variables had a 
Kronecker product structure. There have been no 
studies of the degree to which data encountered 
in the social, behavioral, and health sciences 
conform to a Kronecker product structure, nor of 
the magnitude of positive or negative bias in 
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error rates of the multiple regression model 
procedure when the data do not conform to a 
Kronecker product structure. Second, the test 
procedures were compared only for datasets 
with no missing observations. Unbiased 
estimates of regression parameters can be 
obtained for the multiple regression model 
procedure provided the observations are either 
missing completely at random or missing at 
random (Little & Rubin, 1987). The other two 
procedures investigated in this research do not 
accommodate study participants with missing 
observations; rather, incomplete cases are 
removed from the analysis, which can result in 
reduced power to detect within-subjects effects. 
Finally, power analyses were conducted only for 
a single effect size and a single configuration of 
the population means. 

A number of opportunities for further 
research arise from this study. A likelihood ratio 
test of a Kronecker product structure that is less 
sensitive to sample size and is robust to 
multivariate non-normality and/or covariance 
heterogeneity requires investigation. Boik 
(1991) proposed an approximate likelihood ratio 
test of multivariate sphericity for small or 
moderate sample sizes under the assumption of a 
multivariate normal distribution. The 
approximation is based on the work of Box 
(1949), who proposed finding the moments of 
the likelihood statistics to derive the 
approximation. Mitchell et al. (2006) proposed a 
bootstrap likelihood ratio test that is less 
sensitive to sample size, but did not investigate 
its properties in the presence of covariance 
heterogeneity or multivariate non-normality. 
Zhu, Ng, and Jing (2002) compared likelihood 
ratio tests based on bootstrap and permutation 
re-sampling methods to test equality of 
covariances in the presence of multivariate non-
normality. They found that the permutation test 
performed better than the bootstrap test.  

Graphic techniques and statistical tests 
to assess model fit and select among candidate 
model covariance structures for the multiple 
regression model also need to be investigated 
and described for the case of multivariate 
repeated measures data. Littell et al. (2000) and 
Zimmerman and Nunez-Anton (2001) provide a 
thorough discussion of graphic and descriptive 
techniques for the case of a single dependent 

variable, but they have not been extended to 
multivariate data. Techniques for assessing 
model fit in the presence of multivariate non-
normality include bias-corrected versions of the 
AIC and empirical cross-validation techniques, 
have been proposed (e.g., Yanagihara, 2006), 
and could be investigated in the context of 
multivariate repeated measurements. 

Parametric and non-parametric 
procedures for the analysis of multivariate 
repeated measurements with structured 
covariances which are robust to the presence of 
non-normal distributions and covariance 
heterogeneity require development and 
evaluation (Wang & Zhu, 2006; Reilly, 2005). 
Furthermore, comparisons among these 
procedures under the types of data-analytic 
conditions that may be encountered in practice 
are necessary to develop recommendations on 
choosing a statistical procedure.  

Finally, models with structured 
covariances that bridge the gap between the 
restrictive compound symmetric Kronecker 
product structure and the less efficient 
unstructured Kronecker product structure require 
further development for the multivariate case. 
One flexible covariance structure described by 
Zimmerman and Nunez-Anton (2001) for 
models with a single dependent variable is the 
antedependence structure. It allows for a pattern 
of monotonically decreasing correlation among 
the repeated measurements, which is common in 
repeated measurements, as well as for non-
constant variances of the repeated 
measurements. The authors describe software to 
implement a multiple regression model with the 
antedependence covariance structure for the case 
of a single dependent variable, and this could be 
investigated for possible extension to the 
multivariate case.  
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Appendix A. PROC MIXED Code to Implement the MRM 
 

This is the syntax that was used to implement the MRM when the data are assumed to have a Kronecker 
product covariance structure, with an unstructured model for ΣT as well as an unstructured model for ΣP.  
 

 
 

proc sort data=datafin; 
by id; 
run; 
 
proc mixed data=datafin method=reml ic; 
class group id dv rm; 
model val=group dv rm dv*rm group*dv*rm /noint 
ddfm=kenwardroger; 
repeated dv rm / type=un@un subject=id(group) group=group; 
run; 

 
 

 
Where: 
id = subject identification variable 
group = variable to identify levels of between-subjects grouping factor 
dv = variable to identify “levels” of the dependent variable factor 
rm = variable to identify levels of within-subjects factor 

 
The data are assumed to be arranged in a “long” structure, with one value of the dependent 

variable val per line. Accordingly, each row of datafin contains a single observation and the 
corresponding values of the variables id, group, dv, and rm. 

A model with a compound symmetric form for ΣT is obtained by specifying type = cs@un in the 
repeated statement. A model with a first-order autoregressive form for ΣT is obtained by specifying type 
= ar(1)@un in the repeated statement. The only available model for ΣP is unstructured (UN).  
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Multiple Comparison Of Medians Using Permutation Tests 
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A robust method is proposed for simultaneous pairwise comparison using permutation tests and median 
differences. The new procedure provides strong control of familywise error rate and has better power 
properties than the median procedure of Nemenyi/Levy. It can be more powerful than the Tukey-Kramer 
procedure using mean differences, especially for nonnormal distributions and unequal sample sizes. 
 
Key words: Simultaneous inference, pairwise comparisons, median difference, permutation test. 
 
 

Introduction 
 
The technique of using permutation methods for 
multiple comparisons has received relatively 
little attention in the literature. Nemenyi (1963) 
and later Levy (1979) proposed a procedure 
using medians, with the maximum of the 
differences of pairwise Mood statistics used to 
construct the reference distribution. Miller 
(1966, 1981), and more recently Higgins (2004), 
proposed a permutation version of the Tukey-
Kramer method (Tukey, 1949; Kramer, 1956), 
where the range of the sample means is 
calculated for each permutation of observations 
among the k groups to obtain the reference 
distribution. The mean difference for each pair 
of means is then compared to this reference 
distribution to determine statistically significant 
differences. However, when distributions are 
skewed or there are outliers in the data, it may 
be desirable to make comparisons of medians 
rather than means. Thus, a logical extension of 
Miller’s procedure is to replace means by 
medians. Consider the following example.   
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Example 

Manly (1997) reported the data in Table 
1 based on articles by Powell & Russell (1984, 
1985) and Linton et al (1989). The data 
represent dry biomass (in mg) of ants for 24 
eastern horned lizards, taken in three months in 
1980. 

It is desired to determine which, if any, 
of the months have different consumptions. The 
relation between the means and medians for 
each month suggests that the distributions of 
biomass are skewed, and that the means may not 
be representative of monthly consumption. Thus, 
comparisons based on medians may be more 
appropriate. 

Both the median procedure of Nemenyi 
and Levy and Miller’s procedure permute freely 
across all groups (unrestricted randomization). 
However, this unrestricted randomization 
scheme has been criticized. Petrondas and 
Gabriel (1983) contend that Miller’s approach 
does not control the familywise error rate 
(FWE): the probability of making at least one 
false declaration of inequality, since the test for 
any subset hypothesis that a pair of means is 
equal should be based on permuting 
observations only among the groups whose 
distributions are assumed equal under the null 
hypothesis. The FWE actually is controlled 
under the overall null hypothesis that all k 
distributions have the same location—that is, in 
the weak sense (Hochberg & Tamhane, 1987), 
but not necessarily under a subset pairwise null 
hypothesis that requires only the two 
distributions being   considered   to   have   equal  
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location, that is, in the strong sense (Hochberg & 
Tamhane, 1987). Accordingly, both Petrondas 
and Gabriel (1983) and Hochberg and Tamhane 
(1987) suggest performing each pairwise test 
separately using a Bonferroni adjustment. 
Similarly, Hochberg and Tamhane (1987) and 
Ryan and Ryan (1980) note that the median 
procedure of Nemenyi/Levy is not based on a 
joint testing family, and thus does not control the 
FWE. Hochberg and Tamhane (1987) instead 
suggest permuting separately within each pair 
(restricted randomization) and utilizing the 
maximum of pairwise Mood statistics to derive 
the reference distribution.  

A new testing procedure is proposed 
based on the procedure of Nemenyi/Levy, using 
median difference statistics instead of 
differences between Mood statistics, and  Type I 
error and power properties are compared to the 
new procedure to those of the Nemenyi/Levy 
procedure, pairwise tests using a Bonferroni 
adjustment, and also to the Tukey-Kramer 
procedure based on mean differences, which 
assumes normally distributed populations.  
 

Methodology 
 
Throughout, consider a one-way layout with k 
groups, where iF  is the common continuous 
distribution function for the ith group, in  is the 
sample size of the ith group, and 

1 2 kN n n n= + + ⋅⋅⋅+ . Further, let iμ  be the 
location parameter associated with the ith 

distribution and ˆiμ  be the sample median for 
the ith group. Distributions are assumed identical 
for all treatments except for possible location 
differences. 
 

 
Permutation-based Multiple Comparison 
Procedures: 
 Miller (1966, 1981) proposed a 
permutation analog to the Tukey-Kramer 
procedure for multiple pairwise comparison of 
several means. The reference distribution for 
Miller’s method was based on the statistic, 

1max i j k i jY Y≤ < ≤ − , where iY  and jY  are the 

respective sample means of groups i and j . The 
reference distribution consists of the values of 

this statistic for all 
1 2

!
! ! !k

N
n n n⋅ ⋅ ⋅

 possible 

permutations of the observed data. Each 
pairwise absolute difference is compared to this 
distribution to determine statistical significance. 
Bonferroni-adjusted pairwise tests suggested by 
Hochberg and Tamhane (1987) and Petrondas 
and Gabriel (1983) will also be considered. 

Nemenyi (1963) and later Levy (1979) 
also proposed an analog to the Tukey-Kramer 
procedure, but based on Mood’s (1950) median 
test, as follows. First, calculate the grand median 
for the pooled sample of 1 2 kN n n n= + + ⋅⋅⋅+  
observations. Then determine iM , the number 
of observations in the ith sample that exceed the 
grand median. The test statistic for comparing 

any pair is ji

i j

MM
n n

− . The reference 

distribution is based on the distribution of 

1max ji
i j k

i j

MM
n n≤ < ≤ − , the maximum value of 

the test statistic over all pairs, which is 
calculated for a large set of random 
reassignments of observations to groups. As 
with Miller’s method, an observation may be 

Table 1.  Dry biomass of ants for 24 eastern horned lizards, taken in three months in 1980. 

 
Month 

 
Dry biomass (mg) 

 
Median 

 
Mean 

June 13, 242, 105 105.0 120.0 
July 8, 59, 20, 2, 245 20.0 66.8 

August 515, 488, 88, 233, 50, 600, 82, 40, 52, 1889 160.5 403.7  
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reassigned to any of the k groups to form a new 
permutation. Hochberg and Tamhane (1987) 
suggest computing a separate grand median for 
each pair and calculating the test statistic above. 
The maximum over all pairs is then found for a 
large set of random reassignments, where 
reassignments are restricted to within each pair, 
and these values form the reference distribution.  
 
A New Method Using Median Differences: 

In situations involving skewed 
distributions or outliers it may be more 
appropriate to consider medians instead of 
means. Thus, we propose multiple comparison 
procedures based on median differences. The 
method of Nemenyi/Levy, based on Mood 
statistics, does utilize medians, but does not 
incorporate the magnitude of the difference 
between medians. It is believed that there may 
be situations when incorporating this 
information could lead to a more sensitive 
procedure.   
 Analogous to the mean-based procedure 
of Miller, the reference distribution for our new 
procedure is based on the distribution of 

1 ˆ ˆmax i j k i jμ μ≤ < ≤ − , the maximum of all 

pairwise median differences, calculated for a 
large set of random reassignments of 
observations to groups. Each pairwise absolute 
median difference is compared to this reference 
distribution to determine statistical significance. 
Both methods of permuting discussed in Section 
2.1, namely restricted and unrestricted, are 
investigated. 
 
Restricted Randomization Guarantees FWE 
Control: 
 The strongest argument against 
unrestricted permuting is that it does not 
necessarily provide strong control of the FWE. 
Restricted permuting, however, does provide 
strong control. 

Consider k  independent samples from 
distributions that differ by at most a location 
parameter. That is, for 
, 1, 2,...,  with ,i j k i j= <  

( )( )i j ijF x F x= − Δ . (Throughout Section 2.3 

let , 1, 2,...,  with i j k i j= < .) The null 

hypothesis then involves 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairwise 

hypotheses of the form 0 : 0ij ijH Δ = . Now 
consider the permutation distribution of median 
differences from samples i  and j , and let 

( )ijD α  be the 1 α−  percentile of this 
permutation distribution. Similarly, define 

max ( )D α  to be the 1 α−  percentile of the 
permutation distribution for the maximum 

median difference among all 
2
k⎛ ⎞
⎜ ⎟
⎝ ⎠

 pairs.  

First consider the case under the 
complete null hypothesis where all 0ijΔ = . Let 
the calculated median difference from samples i  
and j  be denoted by ijD . Under the complete 
null hypothesis the probability that a calculated 
median difference from a particular pair of 
samples in a given permutation is the maximum 

difference is 
1

2
k −
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Thus, each pair of samples 

will contribute 
1

2
k −
⎛ ⎞

α ⎜ ⎟
⎝ ⎠

 of the values from the 

pairwise difference permutation distribution to 
the maximum difference permutation 
distribution. 
Consequently, the probability that any observed 
difference from a particular pair exceeds 

max ( )D α , the comparisonwise error rate, is 
1

2
k −
⎛ ⎞

α ⎜ ⎟
⎝ ⎠

. Alternatively, the familywise error rate 

is given by 
            

    
( )

( )
max

, 1,..., , 2

(declare at least one pair different in location 
| all pairs have equal location)

( ) /
2 2

.

ij
ki j i j

P

k k
P D D α α

α

⎡ ⎤= <⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ≥ =∑ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

=

 

 
This shows that using the permutation 
distribution of the maximum difference controls 
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the FWE in the weak sense (Hochberg & 
Tamhane, 1987). 

Now consider the case where only 

2
k

t ⎛ ⎞
< ⎜ ⎟
⎝ ⎠

 of the pairwise null hypotheses are 

indeed true. For any permutation, a difference 
from one of these t pairs with a true pairwise 
null hypothesis is less likely to be the maximum 

difference than differences from the 
2
k

t⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

pairs where 0ijΔ ≠ . Consequently, the 
comparisonwise error rate is 

( )( )
1

max 2ij

k
P D D

−
⎛ ⎞

≥ α ≤ α ⎜ ⎟
⎝ ⎠

. Thus, the 

familywise error rate, the probability of rejecting 
at least one of the t  true null hypotheses, is    
 

(reject at least one true null hypothesis |

 true null hypotheses) / .
2

P

k
t t α α

⎛ ⎞⎛ ⎞
≤ <⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

 
Thus, the FWE is controlled at level α  

for any combination of t true and 
2
k

t⎛ ⎞
−⎜ ⎟

⎝ ⎠
 false 

hypotheses, and the FWE is controlled in the 
strong sense (Hochberg & Tamhane, 1987).  
 
Alternatively, the FWE may be controlled by 
performing separate two-sample permutation 

tests and utilizing 
1

2
k

α
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

, a Bonferroni 

adjustment, as the significance level for each 
individual comparison. Based on their 
performance in the normal theory setting, it is 
expected that a Tukey-type permutation 
procedure will generally be less conservative 
than a procedure utilizing pairwise permutation 
tests with a Bonferroni adjustment. 
 
Simulation Study 

A simulation was conducted to evaluate 
five permutation procedures: 

 
1. A modification of Miller’s (1966, 1981) 

procedure, using medians instead of 

means and unrestricted randomization 
(MEDUR); 

2. A modification of (1) using restricted 
randomization (MEDR); 

3. Separate Bonferroni-adjusted pairwise 
permutation tests for median differences 
(MEDBON); 

4. The procedure of Nemenyi (1963)/Levy 
(1979) based on differences between 
Mood statistics and unrestricted 
randomization (MOODUR); 

5. A modification of (4), using restricted 
randomization (MOODR). 
 
The following model was assumed to 

generate the data:  
ij i ijy eμ= + , 

where ijy =  the jth observation for the ith 

treatment iμ =  the location parameter for the ith 
treatment ije =  the random error associated with 
the jth observation for the ith treatment. The 

ije are assumed independent and identically 
distributed.  
 
Several different error distributions were 
examined: 
 

• Normal ( 20, 1μ σ= = );  
• Uniform [-3,3];  
• Exponential ( 3λ = );  
• Double exponential (Exp( 3λ = ) – E

 xp( 3λ = ));  
• Location-contaminated normal (N (0,1) 

with 10% contamination from N (9,1)).  
 
These choices encompass two symmetric, 
nonnormal distributions: the uniform (lighter-
tailed than normal) and the double exponential 
(heavier-tailed than normal); and two skewed 
distributions: the exponential and contaminated 
normal. Models contained either three or five 
groups, and both equal and unequal sample sizes 
were examined. In most cases the total number 
of permutations possible is prohibitive, and thus 
a random sample of permutations was used to 
estimate the p-value for any given test. Keller-
McNulty and Higgins (1987) examined the issue 
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of randomly sampling the permutations, and 
concluded that little is to be gained by taking 
more than 1600 randomly sampled 
permutations. Thus, each permutation test was 
based on a reference distribution estimated via a 
slightly conservative 2000 randomly sampled 
permutations, and the estimated proportions of 
rejections were based on 2000 randomly 
generated samples. The simulations were 
implemented using Resampling Stats version 5.0 
(Resampling Stats Inc., 2000). 

The familywise error rate (FWE) and 
any-pair power (Shaffer, 1995), the probability 
of detecting at least one true difference, are 
reported in the Tables 2-12. For the Tukey-type 
procedures based on medians, in cases where 
either all groups have identical locations or all 
groups had different locations, these were 
estimated by comparing the maximum pairwise 
difference from among the samples to the 
respective reference distribution, and counting 
the number of random samples where this 
maximum was in the top 5% of the reference 
distribution. In cases where some pairs had 
identical locations while others pairs differed in 
location, the FWE was estimated as the 
proportion of permutations where at least one of 
the true null hypotheses was rejected (strong 
FWE). 
 

Results 
 

Comparison of Median-based Procedures 
Type I Error 

All median-based procedures controlled 
the FWE in the strong sense (See Tables 2-4). In 
fact, in the cases where some pairs had equal 
locations and some did not, the probability of at 
least one false rejection was usually lower than 
the case where all locations were equal. As 
Petrondas and Gabriel (1983) admitted, their 
counterexample was very small, and, “for 
realistic, larger examples the corresponding tests 
(using unrestricted permuting) may be both valid 
and useful.” It is also worth noting, however, 
that even though the unrestricted permuting 
method did not exhibit inflated FWE rates for 
either the median difference statistic or the 
Mood statistic, in cases where there was a 
difference between unrestricted and restricted 
FWE rates, the unrestricted FWE was almost 

always higher. This was true especially with 
unequal sample sizes, where error rates more 
than twice as large for unrestricted permuting 
were not uncommon. As we shall see in the next 
section, however, higher FWE rates did not 
typically lead to more powerful tests. In light of 
this evidence and the earlier cited criticisms of 
unrestricted randomization, as well as the fact 
that power is generally at least as good under 
restricted randomization, only procedures using 
restricted randomization will be considered in 
the remainder of the discussion. 
 
Power 

Consider first the case of equal sample 
sizes. With small group sample size ( 5n = ) and 
small location differences ( 1 2 30, 2Δ = Δ = Δ =  
or 1 2 3 4 52, 0Δ = Δ = Δ = Δ = Δ = ), MEDR 
always had the highest power among the median 
procedures (See Tables 5 and 7). When there 
were larger location differences 
( 1 2 32, 5Δ = Δ = Δ = or 1 2 32,Δ = Δ = Δ

4 53, 0= Δ = Δ = ),MOODR often had highest 
power for normal and contaminated normal data 
(e.g., see Table 6). On the other hand, 
MEDBON had no power with 5n =  (See 
Tables 5-7). With group sample size 10n =  
(e.g., see Table 8), MEDR was often most 
powerful for heavier-tailed distributions 
(exponential, double exponential), especially 
with larger location differences and more groups 
(e.g., 3 groups, 10n = , 1 2 32, 5Δ = Δ = Δ = ; 5 
groups, 10,n = 1 2 3 4 52, 0Δ = Δ = Δ = Δ = Δ = ) 
while MOODR was most powerful for the latter 
five group scenarios for contaminated normal 
data. MEDBON often had higher power than 
MOODR, but always trailed MEDR. For 

20n = , MEDBON was most powerful for 
uniform and exponential data, and all three 
median-based procedures had similar power for 
the other distributions (See Table 9). MEDR 
performed most consistently across different 
scenarios, was never   much less   powerful  than  
any other procedure for nonnormal data, and 
was often substantially more powerful. For 
example, in Table 11, MEDR had power  almost 
200 times the power of MOODR (0.591 versus 
0.003), while the largest power advantage for  
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Table 2.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 
three groups, 5in = , locations 1 2 3 0Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.053 0.046 0.047 0.037 0.027 
MEDUR 0.035 0.041 0.054 0.040 0.019 
MOODR 0.013 0.018 0.017 0.019 0.007 
MOODUR 0.009 0.013 0.011 0.013 0.003 
TUKEY 0.053 0.059 0.060 0.044 0.026 

 
 

Table 3.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 
five groups, 5in = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.000 0.009 0.009 0.014 0.000 
MEDUR 0.000 0.023 0.017 0.021 0.001 
MOODR 0.001 0.008 0.005 0.003 0.001 
MOODUR 0.001 0.008 0.005 0.003 0.001 
TUKEY 0.024 0.025 0.025 0.023 0.025 

 
Table 4.  FWE – Proportion of times at least one true null hypothesis was rejected at 0.05α = , 

five groups, 1 2 3 4 53, 4, 5, 6, 7n n n n n= = = = = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.001 0.005 0.008 0.006 0.003 
MEDUR 0.003 0.013 0.025 0.014 0.026 
MOODR 0.001 0.005 0.007 0.001 0.002 
MOODUR 0.001 0.005 0.007 0.001 0.002 
TUKEY 0.000 0.000 0.000 0.001 0.001  



RICHTER & MCCANN 
 

405

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

Table 5.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 5in = , locations 1 2 30, 2Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.579 0.269 0.098 0.151 0.336 
MEDUR 0.487 0.256 0.095 0.113 0.297 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.238 0.064 0.049 0.080 0.133 
MOODUR 0.131 0.045 0.039 0.055 0.070 
TUKEY 0.818 0.342 0.125 0.186 0.478 

 
Table 6.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 5in = , locations 1 2 30, 2, 5Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform D-Exp Exponential Cont-Normal 

MEDR 0.786 0.707 0.262 0.410 0.455 
MEDUR 0.976 0.716 0.220 0.422 0.581 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.888 0.469 0.156 0.302 0.537 
MOODUR 0.820 0.377 0.127 0.248 0.499 
TUKEY 1.000 0.979 0.350 0.620 0.590 

 
Table 7.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

five groups, 5in = , locations 1 2 3 4 52; 0Δ = Δ = Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 0.637 0.369 0.059 0.137 0.396 
MEDUR 0.400 0.293 0.078 0.104 0.245 
MEDBON 0.000 0.000 0.000 0.000 0.000 
MOODR 0.477 0.112 0.096 0.135 0.303 
MOODUR 0.477 0.112 0.096 0.135 0.303 
TUKEY 0.886 0.422 0.000 0.186 0.540  
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Table 8.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 10in = , locations 1 2 30, 2, 5Δ = Δ = Δ = . 

  
Distribution 

 
Procedure 

Normal Uniform Double-Exp. Exponential Cont.-Normal 

MEDR 1.000 0.996 0.661 0.949 0.923 
MEDUR 1.000 0.990 0.635 0.904 0.911 
MEDBON 1.000 1.000 0.574 0.947 0.854 
MOODR 0.888 0.469 0.156 0.302 0.537 
MOODUR 0.820 0.377 0.127 0.248 0.499 
TUKEY 1.000 1.000 0.627 0.890 0.940 

 
Table 9.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 20in = , locations 1 2 30, 2Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double-Exp. Exponential Cont-Normal 

MEDR 1.000 0.664 0.374 0.664 0.991 
MEDUR 1.000 0.676 0.361 0.676 0.979 
MEDBON 1.000 0.776 0.342 0.776 0.983 
MOODR 0.998 0.569 0.384 0.648 0.996 
MOODUR 0.997 0.529 0.352 0.614 0.992 
TUKEY 1.000 0.550 0.278 0.550 0.436 

 
Table 10.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 

three groups, 1 2 34, 5, 6n n n= = = , locations 1 3 20, 2Δ = Δ = Δ = . 
  

Distribution 
 
Procedure 

Normal Uniform Double–Exp. Exponential Cont.-Normal 

MEDR 0.607 0.260 0.090 0.129 0.287 
MEDUR 0.558 0.262 0.093 0.121 0.264 
MEDBON 0.332 0.108 0.047 0.100 0.203 
MOODR 0.147 0.041 0.060 0.070 0.125 
MOODUR 0.147 0.041 0.060 0.070 0.125 
TUKEY 0.220 0.035 0.005 0.012 0.051 
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MOODR was less than 1.2 times that of MEDR, 
0.537 versus 0.455 See Table 6). Table 8 shows, 
however, that when the sample size increased 
from 5n =  to 10,n =  MOODR no longer had a 
power advantage over MEDR (in fact had 
substantially less power) for the same location 
pattern as in Table 6. 

When sample sizes were unequal and 
group locations were different, the power of all 
tests depended on the pattern of location 
parameters. MOODR was by far the most 
affected by the pattern of differences, with 
virtually no power in the most extreme case 
(smallest samples with nonzero location 
parameters and largest with zero location  

 
 

 
 

 
parameters), while sometimes having the highest 
power with the situation reversed. In contrast, 
MEDR maintained respectable power for all 
location patterns (See Tables 11 and 12). 
MEDBON displayed low power when sample  
sizes were small, especially with five groups (10  
comparisons). Power was higher with larger 
sample sizes, but still generally trailed the other 
two procedures. Many other scenarios were 
examined. These results are available at 
www.uncg.edu/~sjricht2/Research.html. 
 

Table 11.  Power – Proportion of times at least one pairwise difference detected at 0.05α = , 
three groups, 1 2 34, 5, 6n n n= = = , normally distributed data. 

  
Location pattern 

 
Procedure 

1 2 32, 0Δ = Δ = Δ =  1 3 20, 2Δ = Δ = Δ =  1 2 30, 2Δ = Δ = Δ =  

MEDR 0.591 0.607 0.711 
MEDUR 0.656 0.558 0.478 
MEDBON 0.302 0.332 0.458 
MOODR 0.003 0.147 0.654 
MOODUR 0.003 0.147 0.654 
TUKEY 0.219 0.220 0.228 

 
Table 12.  Power – Proportion of times at least one difference detected at 0.05α = , five groups, 

1 2 3 4 53, 4, 5, 6, 7n n n n n= = = = = , normally distributed data. 
  

Location pattern 
 
 
 
Procedure 

1 2

3 4 5

2;
0

Δ = Δ =
Δ = Δ = Δ =

 1 2 3

4 5

0; 2;
0

Δ = Δ = Δ =
Δ = Δ =

1 2

3 4 5

0;
2; 0

Δ = Δ =
Δ = Δ = Δ =

  1 2 3

4 5

0;
2

Δ = Δ = Δ =
Δ = Δ =

MEDR 0.546 0.451 0.556 0.702 
MEDUR 0.516 0.372 0.322 0.298 
MEDBON 0.003 0.000 0.041 0.002 
MOODR 0.001 0.001 0.416 0.832 
MOODUR 0.001 0.001 0.430 0.831 
TUKEY 0.000 0.032 0.025 0.024 
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Power Advantages of Median-based Procedures 

The power of the median-based 
procedures was compared to that of the Tukey-
Kramer procedure using means. For normally 
distributed data and equal sample sizes, TUKEY  
always had higher power than the median-based 
procedures (See Tables 4-6). However, with 
unequal sample sizes, the median based 
procedures often had higher power even for 
normally distributed data (See Tables 10, 11 and  
12). This may not be surprising, since the 
Tukey-Kramer procedure has been shown to be 
conservative for unequal sample sizes (Hayter, 
1984). For nonnormally distributed data, the 
median-based procedures often had higher 
power, especially with larger sample sizes. 

 
 
 

 
Conclusion 

The maximum median difference test (MEDR) 
is recommended as a robust pairwise 
comparison procedure when strong control of 
FWE is desired. The maximum Mood difference 
test (MOODR) is not recommended, due to poor 
power properties, especially for unequal sample 
sizes. Likewise, the procedure of using separate 
median difference tests with a Bonferroni 
adjustment (MEDBON) generally had less 
power and no power in some cases with small 
sample sizes. Tukey’s HSD (TUKEY) is 
preferred when groups have small and equal 
samples sizes ( 5n = ), even for nonnormal data, 
and also with normal data, regardless of the 
sample size. In all other cases, the maximum 
median difference test (MEDR) is preferred. 
With nonnormal data and large ( 20n ≥ ) equal 

Table 13.  P-values for pairwise comparisons. 

     
 

Procedure 
Comparison 
 

Median 
difference MEDR MOODR MEDUR MOODUR TUKEY 

1vs2 85.0 0.950 1.000 0.794 0.974 0.985 
1vs3 55.5 0.996 0.566 0.834 0.534 0.605 
2vs3 140.5 0.691 0.295 0.645 0.345 0.372 

 
Table 14.  Average times to complete an interview for four interviewers. 

 
Interviewer 

 
Average time (min.) 

 
Median 

 
Mean 

1 10.0, 25.0, 40.1, 29.2, 4.1 25.0 21.6 
2 15.0, 5.2, 55.3, 15.1, 23.2 15.1 22.8 
3 19.1, 25.4, 8.3 19.1 17.6 
4 5.1, 9.2, 14.1 9.2 9.5 

 
Table 15.  P-values for pairwise comparisons. 

     
 

Procedure 
Comparison 

 
Median 

difference MEDR MOODR MEDUR MOODUR TUKEY 
1vs2 9.9 0.851 1.000 0.920 1.000 0.999 
1vs3 5.9 1.000 1.000 0.978 0.915 0.980 
1vs4 15.8 0.211 0.450 0.525 0.362 0.666 
2vs3 4.0 1.000 1.000 1.000 0.915 0.961 
2vs4 5.9 1.000 0.450 0.978 0.362 0.607 
3vs4 9.9 0.851 0.824 0.920 0.915 0.900 
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sample sizes, and in all cases with unequal 
sample sizes, MEDR had higher power than 
TUKEY. MEDR never performed poorly with 
regard to power, and was often much more 
powerful than the other median-based 
procedures considered. 
 
Example 1 

The first example is based on the data in 
the Introduction (See Table 1.) Table 13 gives p-
values for the three pairwise comparisons, for 
the MEDR, MEDUR, MOODR, MOODUR and 
TUKEY procedures. Notice that the Mood tests 
yield the most evidence for a difference between 
months two and three. This is an example of a 
scenario studied in the simulations, namely 
small samples with differences between all pairs, 
with larger differences associated with the larger 
samples, a case where the Mood tests often had 
the highest power. 
 
Example 2: 

Consider data reported by Gibbons 
(1985, p. 202) in Table 14. The data represent 
average times spent to complete an interview for 
four interviewers. 

It is desired to test if there is evidence 
that certain interviewers tend to have longer 
interview times. Table 15 gives p-values for the 
six pairwise comparisons. Here MEDR provides 
the strongest evidence of location difference 
between the pair with the largest observed 
difference, interviewers 1 and 4. Resampling 
Stats code for calculating the permutation p-
values in this example is provided in the 
Appendix. 
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Appendix 

 
Below is Resampling Stats® code to calculate 
the permutation p-values in Example 2. The 
program can be modified to handle different 
numbers of groups. 
 
'set maximum vector size 
 maxsize default 500000 
 seed 1234 
 
'create data vectors 
 data (10 25 40.1 29.2 4.1) d1 
 data (15 5.2 55.3 15.1 23.2) d2 
 data (19.1 25.4 8.3) d3 
 data (5.1 9.2 14.1) d4 
  
'combine data vectors for unrestricted 
randomization 
 concat d1 d2 d3 d4 dat 
 
'create pairwise data vectors for restricted 
randomization 
 concat d1 d2 dat12 
 concat d1 d3 dat13 
 concat d1 d4 dat14 
 concat d2 d3 dat23 
 concat d2 d4 dat24 
 concat d3 d4 dat34 
 
'obtain permutation distribution 
 let nrand=2000 
 repeat nrand 
 
'unrestricted randomization  
 shuffle dat sdat 
 take sdat 1,5 sdat1 
 take sdat 6,10 sdat2 
 take sdat 11,13 sdat3 
 take sdat 14,16 sdat4 

'restricted randomization 
 shuffle dat12 sdat12 
 take sdat12 1,5 sdat121 
 take sdat12 6,10 sdat122 
 shuffle dat13 sdat13 
 take sdat13 1,5 sdat131 
 take sdat13 6,8 sdat133 
 shuffle dat14 sdat14 
 take sdat14 1,5 sdat141 
 take sdat14 6,8 sdat144 
 shuffle dat23 sdat23 
 take sdat23 1,5 sdat232 
 take sdat23 6,8 sdat233 
 shuffle dat24 sdat24 
 take sdat24 1,5 sdat242 
 take sdat24 6,8 sdat244 
 shuffle dat34 sdat34 
 take sdat34 1,3 sdat343 
 take sdat34 4,6 sdat344 
 
'compute medians of shuffled data 
              median sdat1 med1 
              median sdat2 med2 
              median sdat3 med3 
 median sdat4 med4 
              median sdat121 med121 
              median sdat122 med122 
              median sdat131 med131 
              median sdat133 med133 
 median sdat141 med141 
 median sdat144 med144 
              median sdat232 med232 
              median sdat233 med233 
 median sdat242 med242 
 median sdat244 med244 
 median sdat343 med343 
 median sdat344 med344 
 
'compute median differences of shuffled data,  
unrestricted randomization 
              subtract med1 med2 med12 
 subtract med1 med3 med13 
 subtract med1 med4 med14 
 subtract med2 med3 med23 
 subtract med2 med4 med24 
 subtract med3 med4 med34 
 
'create one vector, take absolute values 
 concat med12 med13 med14 med23 
med24 med34  
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 medvec abs medvec medvec 
 
'compute median differences of shuffled data,  
restricted randomization 
              subtract med121 med122 med12r 
 subtract med131 med133 med13r 
 subtract med141 med144 med14r 
 subtract med232 med233 med23r 
 subtract med242 med244 med24r 
 subtract med343 med344 med34r 
 
'create one vector, take absolute value 
 concat med12r med13r med23r medvecr 
 abs medvecr medvecr 
 
'compute maximum absolute difference 
              max medvec qmedsim 
              max medvecr qmedsimr 
 
'compute Mood statistics, unrestricted 
randomization 
 median sdat grndmed 
 count sdat1 >= grndmed m1 
 count sdat2 >= grndmed m2 
 count sdat3 >= grndmed m3 
 count sdat4 >= grndmed m4 
 median sdat12 gm12 
 count sdat1 >= gm12 m121 
 count sdat2 >= gm12 m122 
 median sdat13 gm13 
 count sdat1 >= gm13 m131 
 count sdat3 >= gm13 m133 
 median sdat14 gm14 
 count sdat1 >= gm14 m141 
 count sdat4 >= gm14 m144 
 median sdat23 gm23 
 count sdat2 >= gm23 m232 
 count sdat3 >= gm23 m233 
 median sdat24 gm24 
 count sdat2 >= gm24 m242 
 count sdat4 >= gm24 m244 
 median sdat34 gm34 
 count sdat3 >= gm34 m343 
 count sdat4 >= gm34 m344 
 subtract m1 m2 m12 
 subtract m1 m3 m13 
 subtract m1 m4 m14 
 subtract m2 m3 m23 
 subtract m2 m4 m24 
 subtract m3 m4 m34 
 

'Mood statistics are m12-m34 
 
'create one vector, take absolute values 
 concat m12 m13 m14 m23 m24 m34 
mood 
 abs mood mood 
 
'compute maximum absolute difference 
 max mood maxmood 
 
'Compute Mood statistics, restricted 
randomization 
 subtract m121 m122 m12r 
 subtract m131 m133 m13r 
 subtract m141 m144 m14r 
 subtract m232 m233 m23r 
 subtract m242 m244 m24r 
 subtract m343 m344 m34r 
 
'Mood statistics are m12r-m34r 
 
'create one vector, take absolute values 
 concat m12r m13r m14r m23r m24r 
m34r  
 moodr abs moodr moodr 
 
'compute maximum absolute difference 
 max moodr maxmoodr 
 
'save statistic values for reference distributions 
              score qmedsim qmddist 
 score qmedsimr qmddistr 
 score maxmood qmood 
 score maxmoodr qmoodr 
        end 
 
'compute medians and differences of observed 
data                
 median d1 obsmed1 
 median d2 obsmed2 
 median d3 obsmed3 
 median d4 obsmed4 
 
 subtract obsmed1 obsmed2 mddiff12 
 abs mddiff12 mddiff12 
 subtract obsmed1 obsmed3 mddiff13 
 abs mddiff13 mddiff13 
 subtract obsmed1 obsmed4 mddiff14 
 abs mddiff14 mddiff14 
 subtract obsmed2 obsmed3 mddiff23 
 abs mddiff23 mddiff23 
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 subtract obsmed2 obsmed4 mddiff24 
 abs mddiff24 mddiff24 
 subtract obsmed3 obsmed4 mddiff34 
 abs mddiff34 mddiff34 
 
'compute Mood statistic for observed data 
 median dat grndmed 
 count d1 >= grndmed obsm1 
 count d2 >= grndmed obsm2 
 count d3 >= grndmed obsm3 
 count d4 >= grndmed obsm4 
 subtract obsm1 obsm2 obsm12 
 abs obsm12 obsm12 
 subtract obsm1 obsm3 obsm13 
 abs obsm13 obsm13 
 subtract obsm1 obsm4 obsm14 
 abs obsm14 obsm14 
 subtract obsm2 obsm3 obsm23 
 abs obsm23 obsm23 
 subtract obsm2 obsm4 obsm24 
 abs obsm24 obsm24 
 subtract obsm3 obsm4 obsm34 
 abs obsm34 obsm34 
 
'compute p-values 
*************************************** 
'MEDUR 
 count qmddist >=  mddiff12 mdsg12q 
 divide mdsg12q nrand medur12 
 count qmddist >=  mddiff13 mdsg13q 
 divide mdsg13q nrand medur13 
 count qmddist >=  mddiff14 mdsg14q 
 divide mdsg14q nrand medur14 
 count qmddist >=  mddiff23 mdsg23q 
 divide mdsg23q nrand medur23 
 count qmddist >=  mddiff24 mdsg24q 
 divide mdsg24q nrand medur24 
 count qmddist >=  mddiff34 mdsg34q 
 divide mdsg34q nrand medur34 
'MEDR 
   count qmddistr >= mddiff12 mdsg12qr 
 divide mdsg12qr nrand medr12 
 count qmddistr >= mddiff13 mdsg13qr 
 divide mdsg13qr nrand medr13 
 count qmddistr >= mddiff14 mdsg14qr 
 divide mdsg14qr nrand medr14 
 count qmddistr >= mddiff23 mdsg23qr    
 divide mdsg23qr nrand medr23 
 count qmddistr >= mddiff24 mdsg24qr    
 divide mdsg24qr nrand medr24 

 count qmddistr >= mddiff34 mdsg34qr    
 divide mdsg34qr nrand medr34 
'MOODUR 
 count qmood >= obsm12 mood12q 
 divide mood12q nrand moodur12 
 count qmood >= obsm13 mood13q 
 divide mood13q nrand moodur13 
 count qmood >= obsm14 mood14q 
 divide mood14q nrand moodur14 
 count qmood >= obsm23 mood23q 
 divide mood23q nrand moodur23 
 count qmood >= obsm24 mood24q 
 divide mood24q nrand moodur24 
 count qmood >= obsm34 mood34q 
 divide mood34q nrand moodur34 
'MOODR 
 count qmoodr >= obsm12 mood12qr 
 divide mood12qr nrand moodr12 
 count qmoodr >= obsm13 mood13qr 
 divide mood13qr nrand moodr13 
 count qmoodr >= obsm14 mood14qr 
 divide mood14qr nrand moodr14 
 count qmoodr >= obsm23 mood23qr 
 divide mood23qr nrand moodr23  
 count qmoodr >= obsm24 mood24qr 
 divide mood24qr nrand moodr24 
 count qmoodr >= obsm34 mood34qr 
 divide mood34qr nrand moodr34 
 
*************************************** 
'print output here 
print medur12   medur13   medur14   medur23   
medur24    medur34 
print medr12     medr13     medr14     medr23     
medr24      medr34 
print moodur12 moodur13 moodur14 moodur23 
moodur24 moodur34  
print moodr12   moodr13   moodr14   moodr23   
moodr24   moodr34 
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The Non-Parametric Difference Score: A Workable Solution for Analyzing 
Two-Wave Change When The Measures Themselves Change Across Waves 
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The non-parametric difference score is introduced. It is a workable solution to the problem of analyzing 
change over two waves (i.e., a pretest-posttest design) when the measures themselves vary over time. An 
example highlighting the solution’s implementation is provided, as is a discussion of the solution’s 
assumptions, strengths, and limitations. 
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Introduction 
 
Individual change is the subject of significant 
attention in education, health, and the social 
sciences. The analysis of such change is aimed 
at quantifying the amount by which individuals 
grow, mature, improve, and progress over time. 
By measuring and tracking changes, it is 
possible to reveal the temporal nature of 
development (Singer & Willett, 2003). 

This temporal nature of development 
may be studied over varied spans of time: hours, 
days, weeks, months, and even years. Waves are 
the   measurement  occasions  or  periods of data 
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This temporal nature of development 

may be studied over varied spans of time: hours, 
days, weeks, months, and even years. Waves are 
the measurement occasions or periods of data 
collection that are plan-fully interspersed 
throughout these spans of time. Two-wave 
designs, often known as pretest-posttest designs, 
are the specific focus of this article. Such 
designs allow for relatively straightforward 
appraisal of a treatment effect by detecting 
differences   in a     given outcome    across two 
waves – typically before the treatment and after 
it. Such differences normally represent the 
comparison of test-takers’ scores at the second 
wave of data collection to their respective 
baseline or initial measure scores (Zumbo, 
1999). Lloyd (2006) and Lloyd, Zumbo, and 
Siegel (2007) explore the problem of analyzing 
change and growth when the measures 
themselves change across multiple (i.e., three or 
more) waves. 
 
Repeated Measures Analyses: Three Research 
Scenarios 

Several familiar parametric 
methodologies, called repeated measures 
analyses, centre upon quantifying change over 
time. As described by Lloyd (2006) and Lloyd, 
Zumbo, and Siegel (2006), these methodologies 
are generally used in three research scenarios:    

 
Scenario 1: Exact same measure across both 
waves  

In this scenario, one’s construct of 
choice makes possible the use and re-use of the 
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exact same measure across both waves, 
regardless of the ever-emergent age, cognitive 
development, and personal and scholarly 
experiences of one’s test-takers. The measures’ 
content, item wording, response categories, and 
response formats do not change whatsoever 
across waves.  
 
Scenario 2: Linkable time-variable measures 

Time-variable measures are those whose 
content, wording, response categories, and/or 
response formats vary across waves in repeated 
measures designs. In this scenario, although the 
time-variable measures are not completely 
identical across waves, there is at least one 
anchor item shared by each of the measures, on 
whose linked (or equated) scores traditional 
analyses can be performed (Kolen & Brennan, 
2004).  
 
Scenario 3: Non-linkable time-variable measures  

This scenario involves using measures 
whose content, item wording, response 
categories, and/or response formats vary 
completely across waves. Imagine, for example, 
a reading achievement test administered at 
Grade 5 and then Grade 6: The measure 
administered at Grade 5 cannot be same as that 
used in Grade 6. If they were the same, the 
reliability and validity of the test scores would 
likely be compromised, rendering the study 
ineffectual (Singer & Willett, 2003). This 
scenario may also be encountered when one’s 
sample size is small or when one cannot 
compare the sample’s scores to those of a 
norming group. In such cases, even if the 
measures share common items, it is not always 
advisable to link or equate the measures’ scores.  
 
Objective 

Repeated measures analyses are often 
characterized by one set of individuals being 
measured more than once on the same or 
commensurable dependent variable. Many 
researchers understand the phrase “same or 
commensurable dependent variable” to mean 
that the exact same measure must be used across 
all waves study.  

As Scenario 1 (exact same measure 
across both waves) illustrates, some constructs 
can in fact be measured using the exact same 

measure over time. As Scenario 2 (linkable 
time-variable measures) and particularly 
Scenario 3 (non-linkable time-variable 
measures) describe, however, there are often 
situations in which one’s construct of choice 
makes the use and re-use of the exact same 
measure across waves difficult – and even 
impossible. Seeing as traditional 
linking/equating techniques are not possible 
when the measures cannot be made to be 
identical (Kolen & Brennan, 2004), what is a 
researcher to do, then, if the use of time-variable 
measures is necessary?  

Therefore, this article focuses on the 
analysis of two-wave change with linkable – and 
particularly non-linkable – time-variable 
measures. Many of the current strategies used to 
handle time-variable measures (such as vertical 
scaling and item response theory techniques; see 
Kolen & Brennan, 2004) are often only useful to 
large testing organizations that have access to 
very large numbers of test-takers and expansive 
item pools, or in those situations in which the 
time-variable measures share some number of 
common items. Therefore, the objective of this 
article is to introduce a workable solution to the 
problem of analyzing change with time-variable 
measures administered over two waves – a 
solution that can be implemented easily in 
everyday research settings. 
 
The Non-Parametric Difference Score (NPAR-
DIFF) 

The NPAR-DIFF involves rank 
transforming or ordering individuals’ original 
test scores within wave, and then using the 
change (difference) score computed from the 
respective ranks as the dependent variable in 
subsequent parametric independent sample t-
tests. It is this use of ranks, instead of original 
scores, that makes the NPAR-DIFF a non-
parametric solution. 

Lloyd (2006) and Lloyd, Zumbo, and 
Siegel (2007) refer to the general approach of 
converting original scores into ranks pre-
analysis as the Conover solution, in recognition 
of the influential work of W. J. Conover (e.g., 
Conover, 1999; Conover & Iman, 1981), whose 
research not only inspired the NPAR-DIFF, but 
also provides evidence for the solution’s 
viability.  
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A rank represents the position of a test-
taker on a variable relative to the positions held 
by all other test-takers on that same variable. 
Ranking or rank transforming refers to the 
process of transforming a test-taker’s original 
score to rank relative to other test-takers – 
suggesting a one-to-one function f from the 
sample values [e.g.,{X1, X2, …, XN}] to the first 
N positive integers [e.g., {1, 2,…, N}], 
(Zimmerman & Zumbo, 1993). 

For example, if Test-taker X earned a 
score of 20 on a given variable, Test-taker Y 
earned a score of 21, and Test-taker Z earned a 
score of 22, then the test-takers’ respective ranks 
would be 1, 2, and 3 (where a rank of 1 is given 
to the test-taker with the lowest score). One may 
also assign ranks such that the test-taker with the 
highest score receives a rank of 1; however, it is 
often easier to think of test-takers receiving the 
highest score as also receiving the highest rank 
value.  
 
The NPAR-DIFF’s Assumptions 
 As with all methodological tools, the 
NPAR-DIFF comes with its own set of 
assumptions. First, the scales for the measures’ 
original scores must be at least ordinal in nature. 
Second, the ranks must show heterogeneous 
change, meaning that all test-takers do not 
change the same amount across waves (Zumbo, 
1999). Imagine that Test-Taker X earns a rank 
score = 1 across both waves and Test-Taker Y 
earns a rank score = 2 across both waves. For 
both test-takers, the change scores computed 
from the rank equal zero, suggesting 
homogeneous change – which, for reasons 
outlined by Zumbo (1999), cannot be used in 
change analyses. It should be noted that an 
inability to handle homogeneous change is not a 
problem endemic to the NPAR-DIFF; 
homogeneous change also renders ineffectual 
the calculation of simple difference scores. 
 Finally, the NPAR-DIFF requires that a 
commensurable (or comparable or similar) 
construct is measured across all waves of the 
study. Commensurability is generally thought to 
mean that the same primary dimension or latent 
variable is driving the test-takers’ responses at 
each wave. A latent variable is an unobserved 
variable that accounts for the correlation among 
one’s observed or manifest variables. In ideal 

circumstances, measures are designed such that 
the latent variable that drives test-takers’ 
responses represents the construct of interest.  
 
Example 

Suppose a researcher is interested in 
exploring whether there are gender differences 
in test-takers’ rank-based numeracy assessment 
difference scores (scores that represent the 
comparison of test-takers’ scores at the second 
wave of data collection to their respective 
baseline or initial measure scores). Note that the 
research question changes slightly when one 
applies the NPAR-DIFF: No longer are the 
inferences made from the original scores; rather 
they are made from the ranks.  

To illustrate the implementation of the 
NPAR-DIFF, Foundation Skills Assessment 
(FSA) numeracy subtest data from the British 
Columbia Ministry of Education were obtained. 
The FSA, an annual assessment administered by 
the Ministry, is designed to measure the reading 
comprehension, writing, and numeracy skills of 
4th- and 7th-grade students throughout British 
Columbia. The FSA is administered in public 
and funded independent schools across the 
province in late April/early May of each year. 
Approximately 40,000 students per grade level 
write the FSA each year.  

Obtained was the entire population of 
standardized numeracy subtest scores of 41,675 
test-takers who wrote the FSA in both 
1999/2000 (Wave 1, Grade 4) and 2002/2003 
(Wave 2, Grade 7). Test-takers who were 
missing a wave of FSA data were excluded from 
analyses. Of this population of test-takers, a 
random 10% convenience sample of 4097 test-
takers (nfemale = 2055; nmale = 2042) was retained 
for analyses. Each test-taker’s record included 
an arbitrary case number, and a gender flag. The 
Ministry has standardized test-takers’ FSA 
scores such that each wave’s score distribution 
has M = 0 and SD = 1.  

Willett, Singer, and Martin (1998) state 
that standardized test scores should never be 
used in the place of raw scores in individual 
growth modeling analyses (readers are referred 
to their article for the specific reasons why). In 
this case, however,   ranks are  being  used in the  
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place of the original test scores. Thus, it is 
unimportant whether or not the original test 
scores come in the form of standardized scores. 
Furthermore, the Ministry of Education does not 
supply researchers with raw FSA scores – only 
standardized scores. 

As Table 1 illustrates, the descriptive 
statistics for each wave of FSA original scores 
vary across gender and wave. When performing 
the NPAR-DIFF, data must be entered into the 
data matrix (spreadsheet) in person-level format,  
in which one row represents one individual, with 
time-related variables represented along the 
horizontal of the spreadsheet (as in Table 2). The 
key to implementing the NPAR-DIFF is that one 
first   rank transforms the data within wave, with 
the mean rank being assigned to ties. Table 2 
illustrates that Test-Taker X, for example, earns 
a Rank = 2 for Wave 1 (Grade 4) because his 
original Wave 1 score (0.20) is between those of 
Test-Taker Y (-.15, Rank = 1) and Test-Taker Z 
(1.45, Rank = 3). Recall from an earlier section 
that a Rank = 1 is assigned to the test-taker with 
the lowest within-wave score.  
 
Two-Wave Designs: Two Common Change 
Scores 

As described earlier, two-wave designs 
are characterized by some comparison of an 
individual’s score at the second wave of data 

collection to some baseline or initial measure 
score. The most common change (difference)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

scores involved in two-wave designs are: 
 
(a) the simple  difference score   and  
(b) the residualized change score (Zumbo, 
1999).  
 
Simple difference score 

The most common of all change indices 
is the simple difference score, which is 
calculated by simply subtracting a test-taker’s 
score at Wave 1 from his or her score at Wave 2. 
A positive simple difference score typically 
indicates an increase over time, whereas a 
negative score indicates a decrease over time.  

 
Residualized change score 

 As Zumbo (1999) describes more fully, 
it has been argued that simple difference scores 
are unfair because of their base-dependence (i.e., 
scores at Wave 2 are correlated negatively with 
scores at Wave 1). As such, the residualized 
change score was developed as an alternative to 
the simple difference score. Although there are 
different ways to create such scores, the most 
common residualized change score is estimated 
from the regression analysis of the Wave 2 score 
on the Wave 1 score. In other words, the 
estimated Wave 2 score is subtracted from the 
actual Wave 2 score (whether it be an original or 
rank). 

 
Table 1 

Descriptive Statistics for Each of the Two Waves of FSA Original Scores (N = 4097) 

Gender Original 

Variable Name 

Min Max M SD Skew Kurtosis 

Female  grade4original -4.83 4.66 -.26 1.10 -.88 4.30 

(n = 2055) grade7original -2.08 2.85 .06 .90 .31 -.30 

        

Male grade4original -4.83 5.33 -.16 1.11 -.78 4.21 

(n = 2042) grade7original -2.58 2.85 .11 .92 .31 -.25 
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The intrinsic fairness, usefulness, 

reliability, and validity of the two-wave research  
design have been debated for decades (Zumbo, 
1999). In their seminal article, Cronbach and 
Furby (1970) disparage the use of two-wave 
designs, arguing that change scores are rarely 
useful, no matter how they are adjusted or 
refined (Cronbach & Furby, 1970). Their disdain 
of two-wave designs was so strong that they 
stated that researchers who ask questions using 
simple difference scores are better advised to 
frame their questions in other ways (Cronbach & 
Furby, 1970). As Zumbo (1999) notes, it is 
somewhat puzzling that there exists the notion 
that one should avoid two-wave designs at “all 
costs”, given that variations of the difference 
score lie at the heart of various widely-used and 
commonly-accepted statistical tests, such as the 
paired samples t-test. 
 
Determining the Appropriate Change Score to 
Serve as the Dependent Variable 

In order to determine which specific 
change score should serve as the dependent 
variable in this particular FSA example, it is 
necessary to follow the guidelines of Zumbo 
(1999), who writes that “one should utilize the 
simple difference score instead of the 
residualized difference if and only if ρ(X1, X2) > 
σX1/ σX2” (p. 293) – that is, if the correlation 
between the Wave 1 and 2  scores is greater than 

  

 

 
the ratio of the respective standard deviations. It 
is important to stress that, when implementing 
the NPAR-DIFF solution for two-wave data, 
one’s decision about using the simple difference 
and residualized change score must be based on 
test-takers’ ranks– not their original scores. 
 The computed across-gender correlation 
between the Grade 4 and 7 ranks [ρ(X1,X2)] was 
computed as 0.66, compared to 0.99 
(1182.84/1182.84) for the ratio of the two 
standard deviations of rank scores [σX1/ σX2]. 
Because the correlation value is less than the 
ratio value, the rank-based residualized change 
score is used in the place of the rank-based 
simple difference score as the dependent 
variable in the subsequent parametric analysis 
(Zumbo, 1999). 
 
Explanation of the Statistical Output 

A regular independent samples t-test 
was then performed on test-takers’ rank-based 
residualized change scores, with gender 
identified as the predictor variable. It should be 
reiterated that the unique aspect of the analysis 
is that test-takers’ rank-based change scores are 
used in the place of the change scores computed 
from test-takers’ original scores. Original scores 
are, in a sense, only collected as a means of 
computing test-takers’ ranks. The research 
question, results, and inferences made from the 
results must reflect the fact that the scores have 

Table 2. An example person-level data matrix showing two waves of hypothetical original FSA scores and 
their corresponding within-wave rank scores. 

  Example Original Variables 

 

Corresponding Rank Variables 

 grade4original grade7original grade4rank grade7rank 

Test-Taker X 0.20 0.45 2 1.5 

Test-Taker Y -.15 1.35 1 3 

Test-Taker Z 1.45 0.45 3 1.5 
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been transformed and, hence, the focus is no 
longer on the original scores.  

The independent sample’s t-test output 
revealed that the mean rank-based residualized 
change score for males was -7.64 (SD = 882.31) 
as opposed to 7.59 for females (SD = 876.71), 
meaning that the average Wave 2 rank  less the 
rank at Wave 2 predicted from the Wave 1 rank 
score is higher for females than for males. This 
finding suggests that the female test-taker gained 
7.5 points in relative standing across the two 
waves, whereas the average male test-taker’s 
relative standing decreased approximately 7.6 
points. 

Despite the mean differences in 
residualized change scores for males and 
females, the independent samples t-test results 
showed that there is no statistically significant 
gender difference in the residualized change 
scores, t(4095) = -.555, p = .579 (assuming 
equal variances; two-tailed). Thus, the male test-
takers’ mean rank-based residualized change 
score did not differ significantly from that of the 
female test-takers – suggesting that neither 
gender’s relative standing over time differ 
significantly from the other.  

Even though there was no statistically-
significant gender difference found, an effect 
size was still computed, for reasons outlined by 
Zumbo and Hubley (1998). A Cohen’s d effect 
size was calculated by subtracting the mean 
residualized change score of one group 
(females) from that of the other group (males) 
and dividing that difference by the pooled rank-
based standard deviation. The resultant effect 
size was computed as 0.02, which represents a 
small effect size (Cohen, 1988).  
 
Strengths of the NPAR-DIFF 

The non-parametric difference score, a 
solution for the problem of analyzing change 
and growth with time-variable measures 
collected over two waves is an effective tool for 
researchers in everyday research settings for the 
following reasons:  

 
Ease of use 

 One strength of the NPAR-DIFF is that 
it is easy to implement. As Conover and Iman 
(1981) observe, it is often more convenient to 
use ranks in a parametric statistical program than 

it is to write a program for a non-parametric 
analysis. Furthermore, all of the steps required 
for the implementation of the NPAR-DIFF (i.e., 
rank transforming data within waves, conducting 
independent samples t-tests, etc.) can be easily 
performed using commonly-used statistical 
software packages.  

 
Marries non-parametric and parametric methods: 
 Second, by rank transforming the data 
pre-analysis, parametric and non-parametric 
statistical methods are combined, providing “a 
vehicle for presenting both the parametric and 
nonparametric methods in a unified manner” 
(Conover & Iman, 1981, p. 128).  
 
Makes use of the ordinal nature of data 

 Third, the NPAR-DIFF makes use of 
the ordinal nature of continuous-scored data: A 
test-taker with a low original score relative to 
other test-takers in his wave will also yield a low 
relative rank. Similarly, a test-taker with a high 
test-score will also yield a high rank. As a result, 
within-wave order among the test-takers is 
preserved.  

 
Requires no common/linkable items 

Unlike many of the traditional test 
linking methods and strategies, the NPAR-DIFF 
can be implemented not only in situations in 
which one’s study involves time-variable 
measures that can be linked (Scenario 2), but 
also situations in which the time-variable 
measures share no linkable items whatsoever 
(Scenario 3). Hence, unlike vertical scaling, 
equating, and their linking counterparts, the 
NPAR-DIFF provides a means by which 
researchers can study change – whether or not 
the measures contain linkable items.  

 
Requires no norming group 

 Due to time and financial constraints, it 
is not always possible to compare the scores of 
one’s sample to those of an external norming 
sample. As such, an additional strength of the 
NPAR-DIFF is that it can be conducted using 
simply the scores of the sample of test-takers, 
thereby eliminating the need for a group to 
which to compare the sample’s scores.   
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Limitations of the NPAR-DIFF 
As with any methodological tool, the 

NPAR-DIFF has various limitations. Within-
wave ranks are bounded. Rank transforming 
refers to the process of converting a test-taker’s 
original score to rank relative to other test-
takers. The values assigned by the function to 
each sample value in its domain are the number 
of sample values having lesser or equal 
magnitude. Consequently, the ranks are bounded 
from above by N. As a result, “any outliers 
among the original sample values are not 
represented by deviant values in the rank” 
(Zimmerman & Zumbo, 1993, p. 487). 

Suppose on a standardized test of 
intelligence, Test-Taker W earns a score 100, 
Test-Taker X earns a score of 101, Test-Taker Y 
earns a score of 102, and Test-Taker Z earns a 
score of 167. Test-Taker Z’s score, relative to 
the other test-takers, is exceptional. Despite the 
exceptional performance on the measure, the test 
score is masked by the application of ranks: 
Test-taker W = 1, Test-taker X = 2, Test-taker Y 
= 3, and Test-taker Z = 4. 

As a result, one limitation of the NPAR-
DIFF is that there may be problems associated 
with the inherent restriction of range it places on 
data. Differences between any two ranks range 
between 1 and N – 1, whereas the differences 
between original sample values range between 0 
and infinity (Zimmerman & Zumbo, 1993). 
 
Difficulties associated with handling missing 
data 

Recall that only those test-takers for 
whom data were available at both waves were 
retained in the analyses. As most educational, 
health, and social science researchers will agree, 
no discussion about change and growth is 
complete without a complementary discussion 
about one unavoidable problem: missing data. In 
longitudinal designs, particularly those that span 
months or years, it is extremely common to face 
problems associated with participant dropout, 
attrition, and as well as participants who join, or 
return to the study, in later waves.  
 One possible strategy for circumventing, 
or at least mitigating the effect of, missing data 
is to impute the missing original scores prior to 
rank-transforming the data within-wave pre-

analysis. Schumacker and Lomax (2004) discuss 
various missing data imputation methods.  
 
Makes use of the ordinal nature of data: 

 Recall that the fact that the NPAR-
DIFF makes use of the ordinal nature of 
continuous-scored data was previously identified 
as one of the solution’s strengths. As Lloyd 
(2006) and Lloyd, Zumbo, and Siegel (2007) 
observe, precisely what the NPAR-DIFF wins 
by, it also loses by: Because of the rank 
transformation of the original scores, differences 
between raw scores are not necessarily 
preserved by the corresponding ranks. For 
example, a difference between the raw scores 
corresponding to the 15th and the 16th ranks is 
not necessarily the same as the difference 
between the raw scores corresponding to the 
61st and 62nd ranks in a collection of 500 test 
scores (Zimmerman & Zumbo, 2005, p. 618).  

 
Conclusion 

 
Investigating the problem of analyzing change 
and growth with time-variable measures is 
important for two reasons. First, as Willett et al. 
(1998) and von Davier, Holland, and Thayer 
(2004) describe, the rules about which tests are 
permissible for repeated measures designs are 
precise and strict. Given these conditions, it is 
necessary to investigate how repeated measures 
analyses can be made possible – 
psychometrically and practically – when the 
measures themselves change across waves.  

Second, given the sizeable growth in 
longitudinal large-scale testing in recent years, it 
is necessary to find a viable and coherent 
solution to the problem so that researchers can 
make the most accurate inferences possible 
about their test scores.  

Recognizing the importance of this 
problem, this article introduced a workable 
solution for handling the analysis of change over 
two waves, when the measures used at each 
wave are not the same. Although useful in many 
research settings, the non-parametric difference 
score (NPAR-DIFF) is by no means a universal 
panacea and should, therefore, be used 
judiciously and in accordance with the 
aforementioned assumptions. Given that the 
problem of time-variable measures has, to date, 
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gone relatively unaddressed in the 
change/growth and test linking literatures, it is 
imperative that future research explores this 
profoundly important, problem to a much fuller 
degree.  
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Probability Coverage and Interval Length for Welch’s and Yuen’s Techniques: 
Shift in Location, Change in Scale, and (Un)Equal Sizes 

 
S. Jonathan Mends-cole 

Walden University 
 

 
Coverage for Welch’s technique was less than the confidence-level when size was inversely proportional 
to variance and skewness was extreme. Under negative kurtosis, coverage for Yuen’s technique was 
attenuated. Under skewness and heteroscedasticity, coverage for Yuen’s technique was more accurate 
than Welch’s technique. 
 
Key words: Yuen's procedure, Welch's procedure, confidence interval, interval length, probability 
coverage, Monte Carlo simulation 
 
 

Introduction 
 
When assessing how well the sample effect 
( 21 XX − ) estimates the population effect 
( 21 μμ − ), a confidence interval is the 
appropriate statistical technique. The interval-
length conveys the magnitude of the standard 
error of the effect. When comparing intervals for 
measuring an effect, wider interval-lengths 
imply greater standard errors. The confidence-
level expresses the long-run probability that the 
limits include the population parameter. 
 The use of confidence intervals has been 
strongly suggested in some disciplines (Cohen, 
1994; Wilkinson & Task Force on Statistical 
Inference, 1999). Some spurious reasons include 
(a) they provide statistical inference without 
specifying an a priori threshold and (b) it is 
presumed that confidence intervals provide a 
degree of certainty about the population 
parameter that hypothesis tests do not. However, 
Sawilowsky (2003) was opposed to (a) as being 
contrary to the principles of the scientific 
method, and noted that the Type I and Type II 
probabilities of hypothesis tests are the same as 
for confidence intervals. 

Type I and  Type  II  errors do   apply to  
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confidence intervals as follows. 
 

1. Is zero truly within the interval yet 
the interval does not enclose zero 
(Type I error)? 

 
2. Is zero not truly within the interval 

yet the interval does enclose zero 
(Type II error)? 

 
 Monte Carlo simulations have been used 
to assess the extent to which the Type I and 
Type II error rates deviate from the α and β 
levels. Magnitudes of interval-length and 
probability-coverage ( α̂1− ) serve as criteria 
concerning the appropriateness of confidence 
intervals. The traditional test for bi-group 
comparisons is the independent samples t-test. 
The calculation of the confidence interval for the 
mean difference is outlined as follows. Where ni 
is the sample size for group i, iX  is the mean 
for group i, and jiX  is the jth observation for 
group i, the standard error of the effect is given 
as follows: 
 
        )( 1

2
1

1
2

21
−−

− += nnSSE xx
        (1) 

 
( ) ( )

2

2 2
1 21 2 1 2( 2)j j

S

X X X X n n

=

⎡ ⎤− + − + −⎢ ⎥⎣ ⎦∑ ∑
(2) 
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Where 2/1 α−t  refers to the critical value of the 
test distribution with 221 −+ nn  degrees of 
freedom, the confidence interval is: 
 
       212/121 xxSEtXX −−− α∓        (3) 
 
Along with the assumptions that observations 
were randomly sampled from defined 
populations and that the samples were 
independent, some assumptions of parametric 
tests are homoscedasticity and normality 
(Wilcox, 1996). When heteroscedasticity and 
skewness are present in data, the error rates for a 
technique are inaccurate. 
 
Violations of Parametric Test Assumptions   
Skewness  

Samples from skewed populations occur 
with some frequency as observed by Blair 
(1981) and Micceri (1989). Specifically, Micceri 
(1989) surveyed 440 published data sets. The p-
value of the Kolmogorov-Smirnov test showed 
the distributions of each data set to be 
significantly different from a normal distribution 
(p < .01). Monte Carlo Type I error results 
(Sawilowsky & Blair, 1992) suggested that the 
probability-coverage would be greater than 

α−1  for skewed distributions, i.e., for 
skewness ranging from 1.25 to 1.75. Setting the 
alpha level at 0.05, if Type I error rate is less 
than 0.05, probability-coverage is greater than 
0.95. Sawilowsky and Blair observed that the 
independent samples t-test was robust: (a) if the 
test was two tailed rather than one tailed, (b) if 
sample sizes were about equal, and (c) if sample 
sizes were 25 or more. 

 
Heteroscedasticity  

Usually, when group means differ, 
group variances also differ (Sawilowsky & 
Blair, 1992, p. 358; Wilcox, 1996, p. 149). Why 
is heteroscedasticity likely to occur? Edwards 
(1972) attributed it to the absence of random 
assignment. If the variable for the treatment 
group exhibited greater variation before the 
application of the treatment after applying the 
treatment the difference is likely to remain 
unchanged. Another possibility is the 
multiplicative effect of the treatment. That is, if 

prior to the application of the treatment, 
12 / σσ <2.0, but after applying the treatment 

12 / σσ ≥2.0, the treatment may have acted 
multiplicatively to increase the variance. 

 
Skewness & Heteroscedasticity 
 Heteroscedasticity has different effects 
on probability-coverage (Algina, Oshima, & 
Lin, 1994; Penfield, 1994). (a) If sizes are equal, 
the effect on probability-coverage is negligible, 
i.e., 975.0ˆ1925.0 ≤−≤ α . (b) Small group 
sizes, e.g., )15,5(),( 21 =nn , skewness, and 
proportional heteroscedasticity augment 
probability-coverage (Penfield, 1994). (c) Small 
sizes, extreme skewness, and disproportional 
heteroscedasticity attenuate probability-
coverage. If the confidence level was set at 0.95, 
the t-test displayed coverage-probabilities of 
0.90 or less (Algina, Oshima, & Lin, 1994; 
Penfield, 1994). Although increasing sample 
sizes decreases the magnitude of separation 
between the Type I error rate and alpha level, 
Bradley (1978) observed that group sample sizes 
as large as 1,024 were needed for the 
independent samples t-test to maintain a 0.01 
Type I error rate, if the application of the 
treatment increases the variance, 
heteroscedasticity increases interval-length. The 
larger group variance increases the standard 
error, thereby increasing the interval-length. 
 
Use of Transformations 
  Using transformations to remedy the 
error rate problems of skewness and 
heteroscedasticity is problematic. The 
interpretation of statistical significance for the 
transformed scale no longer holds for the 
untransformed scale (Games, 1983). Yet, the 
untransformed scale was selected based upon an 
underlying rationale for doing the study. 
 
Welch’s and Yuen’s Techniques 
  Both Welch’s and Yuen’s techniques 
have been recommended for amending the Type 
I and Type II error rate problems resulting from 
heteroscedasticity and skewness (Wilcox, 1996). 
The confidence interval for Welch’s technique 
uses a separate variance estimate of the standard 
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error. Where 2
is  is the variance for group i, and 

iiix nss 22 = , the standard error is estimated as 
 

       2
2

2
121 xxxx ssSE +=−            (4) 

 
The degrees of freedom are calculated as 
  

   ( )2 2 2 2 2 2 2
1 21 2 1 2( ) ( ) ( 1) ( ) ( 1)

wlch

x x x x

df

s s s n s n

=

+ − + −
     (5) 

 
 Yuen’s technique assesses the difference 
between the trimmed means. The technique is 
outlined as follows. Trimming a group sample 
involves omitting a fixed proportion of the 
largest scores and an equivalent number of the 
smallest scores from the sample. Winsorization 
involves replacing a fixed proportion of the 
largest scores with the maximum score for the 
trimmed version of the same sample, and 
replacing an equivalent number of the smallest 
scores with the minimum score for the trimmed 
version of the same sample. Wilcox (2003) 
suggested that 20% trimming is “a good choice 
for general use” (p. 251). (a) Where tau ( iτ ) is 
the integer portion of )(20.0 in , the trimmed 
sample size is )(2 iii nh τ−= . The trimmed 

mean )( tiX  is the mean of observations for the 
trimmed sample size. (b) The Winsorized mean 

)( wiX  is the mean of observations for the 
Winsorized sample. The Winsorized sum of 
squared deviations is estimated as 
 

1
2 2 2

( 1) ( ) ( )
2

( 1)[( ) ( ) ] ( )

wi
n

w w wn i
i

SSD

X X X X X X
τ

τ τ
τ

τ
− −

+ −
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=
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Note that the subscripts in parentheses, e.g., 
( 1+τ ), ( τ−n ), and (i) represent the ascending 
order of the X values. (c) Where the Winsorized 
variance is estimated as )1(2 −= iwiwi hSSDS  
and the standard error of the trimmed mean is 

iwitix hSS 22 = , the standard error of the effect is 
estimated by: 
 

   2
2

2
121 txtxtxxt SSSE +=

−
           (7) 

 
The degrees of freedom is calculated as follows. 
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The confidence interval of trimmed means for 
bi-groups (Wilcox, 1996) is: 
 
       212/121 )( txtxtt SEtXX −−− α∓       (9) 
 
Welch’s and Yuen’s techniques exhibited 
appropriate coverage for extreme skewness, and 
homoscedasticity, i.e., 975.0ˆ1925.0 ≤−≤ α  
(Algina et al., 1994; Wilcox, 1994). Under 
conditions of skewness and disproportional 
heteroscedasticity, Welch’s coverage was less 
than 0.925 (Luh & Guo, 2000). Yuen’s coverage 
was less than the confidence-level but to a lesser 
extent than Welch’s technique was, i.e., 

=−α̂1 0.92 versus 0.85. The probabilities of 
coverage were outlined in the table below. 

Objections to the studies of Table 1 are 
related to the random samples assessed and the 
outcome measures used.  The first objection is 
that the techniques were recommended based on 
random numbers generated using mathematical 
functions. The skewness and kurtosis properties 
of the random numbers may not generalize to 
the samples observed in applied situations in 
education and psychology. To the extent that 
Monte Carlo samples represent applied 
situations, the results are generalizable to similar 
situations (Sawilowsky & Fahoome, 2003). 

The second objection with the manner in 
which the preceding studies were conducted is 
that the techniques were recommended based on 
Type I and Type II error rates alone. The Type I 
and the Type II error rates indirectly relate to 
confidence intervals; whereas, the probability-
coverage and interval-length serve as outcome 
measures for confidence intervals. Though 
interval-length serves as an outcome measure for 
confidence intervals, journals in education and 
in psychology did not provide the interval-length 
for assessing Welch’s and Yuen’s techniques.  
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Table 1. Probability of Coverage of Yuen’s & Welch’s Techniques Reported in the Literature. 
 

Test Citation n1 n2 σ1 σ2 Skew. Kurt. PC 

Welch's Yuen (1974) 10 10 1.00 0.71 0.00 -1.20 0.95 

  20 10 1.00 0.71 0.00 -1.20 0.95 

  20 20 1.41 0.71 0.00 -1.20 0.95 

  10 20 4.00 1.00 0.00 0.00 0.95 

  10 10 2.00 1.00 0.00 0.00 0.95 

 Algina (1994) 33 67 3.00 1.00 6.10 np 0.88 

 et al. 33 67 2.00 1.00 6.10 np 0.90 

  33 67 1.00 1.00 6.10 np 0.94 

 Penfield (1994) 10 20 1.00 1.00 0.00 np 0.96 

  10 20 1.00 1.00 1.50 np 0.96 

  20 20 1.00 2.00 0.00 np 0.95 

  20 20 1.00 2.00 1.50 np 0.95 

  10 20 1.00 2.00 1.50 np 0.95 

Welch’s  10 20 1.00 2.00 1.00 np 0.95 

  10 20 2.00 1.00 0.00 np 0.95 

 Penfield (1994) 10 20 2.00 1.00 1.50 np 0.96 

 Luh & Guo (2000) 12 24 1.00 4.00 6.20 111.00 0.91 

  12 24 4.00 1.00 6.20 111.00 0.85 

 Guo & Luh (2000) 18 12 1.00 6.00 1.75 5.90 0.92 

  18 12 1.00 6.00 6.20 111.00 0.85 

Yuen's Luh & Guo (2000) 12 24 1.00 4.00 6.20 111.00 0.95 

  12 24 4.00 1.00 6.20 111.00 0.92 

 Wilcox (1994) 12 12 1.00 1.00 2.00 6.00 0.95 

  40 12 1.00 1.00 2.00 6.00 0.95 

  80 20 1.00 1.00 2.00 6.00 0.94 

  12 12 1.00 1.00 3.90 42.20 0.95 

  40 12 1.00 1.00 3.90 42.20 0.95 

  80 20 1.00 1.00 3.90 42.20 0.95 
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Purpose 
 The purpose of the study was to assess 
the probability-coverage and the interval-length 
for Welch’s and Yuen’s techniques. The 
techniques were assessed (a) using empirical 
data sets that were not normally distributed (i.e., 
Sawilowsky & Blair, 1992), (b) under conditions 
of heteroscedasticity, and (c) for unequal group 
sample sizes. 
 

Methodology 
 

Micceri (1986) identified eight distributions 
prevalent in educational and psychological 
research. Table 2 provides the means, standard 
deviations and third and fourth moment 
estimates of skewness and kurtosis of the eight 
distributions. The kurtosis was adjusted so that 
the value for a normal distribution would be 
0.00.  Estimates of interval-length and 
probability-coverage were obtained by sampling 
from the seven distributions. Random samples 
were obtained independently and with 
replacement using the International 
Mathematical and Statistical Libraries (1998): 
RNUND and RNSET subroutines. One million 
repetitions were performed. 

The procedure involved obtaining 
random samples from the empirical 
distributions, standardizing the scores, modeling 
the effect and modeling heterogeneity, trimming 
and Winsorizing the dataset, computing the 
interval, summing values of interval length and 
probability-coverage, and averaging values of 
interval length and the values of probability-
coverage. 
 Sample size ratios of 1:1, 3:1, and 1:3 
were selected. The respective sample sizes were 
(n1, n2) = (13, 13), (13, 39), (39, 13), and (39, 
39). Variance ratios of 1:1, 1:2 and 1:4 allowed 
for a comparison of the probability-coverage and 
interval-lengths for each technique under 
homoscedasticity and heteroscedasticity. 
Coverage-probabilities and interval-length were 
examined at the 0.01, and 0.05 alpha levels. 

Where 'μ is the mean for the 
transformed score, 'σ  is the standard deviation 
for the transformed score, and Z  is a standard 
score, the transformed score was obtained as 
follows. 

                           ZX ''' σμ +=                           (10) 
 
The mean of the second group was set to one. 
The levels of skewness, size, variance, and 
effect under study represent a subset of 
conditions in applied situations. 
 The ratio of the average length for 
Student's technique divided by the average 
length for the comparison technique, i.e., 
Welch's or Yuen's technique, was calculated to 
compare interval lengths. 

 
Results 

 
Probability-coverage 
 The results showed inflated probability-
coverage for Yuen’s techniques was observed 
with extreme skewness. Probability-coverage 
was greater than the confidence-level when 
skewness was above 1.25, sample sizes were 
equal and less than 25 or sample sizes were 
unequal. The results were observed under 
homoscedasticity. In addition, probability-
coverage was greater than the confidence-level 
when skewness was above 1.25 and 
heteroscedasticity was proportional to size or 
sample sizes were equal, less than 25, and 
heteroscedastic. The probability-coverage 
exceeded the upper bound of the Bradley- 
criterion, i.e., )5.01()ˆ1( αα −>− . The results 
were not observed where =12 /σσ  4. Results 
were presented in Table 3 through Table 9. 
 
Welch’s technique: 

 Attenuated coverage-probabilities were 
observed for both extreme skewness (i.e., 
absolute skewness greater than 1.25) and 
heteroscedasticity ( =12 /σσ  4). That is, 
coverage-probabilities were less than 0.925 
( 05.0=α ) or 0.985 ( 01.0=α ). The results 
occurred where sample sizes were inversely 
proportional to variances; alternatively, the 
results occurred where group sample sizes were 
less than 25. 
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Table 2. Descriptive Information Pertaining to Eight Real World Distributions. 
 

Distribution M SD Skew. Kurt. 
   

Mass at Zero 12.92 4.42 -0.03 0.31 

   

Extreme Asymmetry-Psychometric 13.67 5.75 1.64 1.52 

   

Extreme Asymmetry-Achievement 24.5 5.79 -1.33 1.11 

   

Extreme Bimodality 2.97 1.69 -0.08 -1.70 

   

Multimodal & Lumpy 21.15 11.9 0.19 -1.20 

   

Digit Preference 536.95 37.64 -0.07 -0.24 

   

Smooth Symmetric 13.19 4.91 0.01 -0.34 

Note. Adapted from "A More Realistic Look at the Robustness and Type II Error 
Properties of the t Test to Departures From Population Normality”, by S. S. 
Sawilowsky and R. C. Blair, 1992, Psychological Bulletin, 2, p. 353. Copyright 
1992 by the American Psychological Association 
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Table 3. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and 
Alpha Levels when Sampling from an Extreme Asymmetry – Achievement Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.952 0.956a 0.964a 0.992a 0.994a 0.995a 

13 39 1 0.952 0.937c 0.948 0.991 0.980d 0.988c 

39 13 1 0.952 0.937c 0.948 0.991 0.980d 0.988c 

39 39 1 0.950 0.950 0.955 0.990 0.991 0.993a 

13 13 2 0.933c 0.935c 0.947 0.978d 0.979d 0.988c 

13 39 2 0.986b 0.952 0.958a 0.997b 0.992a 0.994a 

39 13 2 0.838d 0.922d 0.932c 0.934d 0.965d 0.974d

39 39 2 0.945 0.946 0.948 0.986c 0.986c 0.988c 

13 13 4 0.914d 0.921d 0.931c 0.961d 0.965d 0.974d

13 39 4 0.992b 0.945 0.948 0.998b 0.986c 0.988c 

39 13 4 0.753d 0.918d 0.929c 0.863d 0.962d 0.972d

39 39 4 0.938c 0.941c 0.943c 0.981d 0.982d 0.983d

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα   
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 4. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from an Extreme Bimodal Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.962a 0.962a 0.961a 0.994a 0.994a 0.993a 

13 39 1 0.959a 0.958a 0.952 0.994a 0.993a 0.988c 

39 13 1 0.959a 0.958a 0.952 0.994a 0.993a 0.988c 

39 39 1 0.950 0.950 0.949 0.990 0.990 0.989 

13 13 2 0.958a 0.961a 0.953 0.993a 0.994a 0.989 

13 39 2 0.993b 0.955 0.953 0.999b 0.991 0.990 

39 13 2 0.857d 0.960a 0.948 0.949d 0.994a 0.984d

39 39 2 0.948 0.950 0.947 0.989 0.989 0.987c 

13 13 4 0.953 0.961a 0.949 0.991 0.994a 0.984d

13 39 4 0.997b 0.951 0.948 1.000b 0.990 0.987c 

39 13 4 0.781d 0.961a 0.949 0.893d 0.994a 0.982d

39 39 4 0.946 0.949 0.946 0.988c 0.989 0.985c 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 5. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Digit Preference Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.951 0.951 0.990 0.991 0.990 

13 39 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 13 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 39 1 0.950 0.950 0.949 0.990 0.990 0.990 

13 13 2 0.946 0.950 0.948 0.988c 0.990 0.989 

13 39 2 0.991b 0.950 0.949 0.999b 0.990 0.989 

39 13 2 0.846d 0.949 0.945 0.940d 0.989 0.988c

39 39 2 0.948 0.950 0.948 0.989 0.990 0.989 

13 13 4 0.941c 0.949 0.945 0.985c 0.989 0.988c

13 39 4 0.998b 0.950 0.949 1.000b 0.990 0.989 

39 13 4 0.765d 0.949 0.946 0.881d 0.989 0.988c

39 39 4 0.947 0.950 0.948 0.989 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 6. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Mass at Zero Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.951 0.951 0.990 0.991 0.990 

13 39 1 0.950 0.950 0.947 0.990 0.990 0.988c

39 13 1 0.950 0.950 0.947 0.990 0.990 0.988c

39 39 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 13 2 0.947 0.951 0.948 0.989 0.990 0.989 

13 39 2 0.991b 0.950 0.950 0.999b 0.990 0.990 

39 13 2 0.847d 0.950 0.945 0.941d 0.990 0.987c

39 39 2 0.949 0.950 0.948 0.990 0.990 0.989 

13 13 4 0.942c 0.950 0.945 0.986c 0.990 0.987c

13 39 4 0.998b 0.950 0.948 1.000b 0.990 0.989 

39 13 4 0.765d 0.950 0.945 0.882d 0.990 0.988c

39 39 4 0.947 0.950 0.948 0.989 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 7. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Smooth Symmetric Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 39 1 0.950 0.948 0.946 0.990 0.989 0.988c

39 13 1 0.950 0.949 0.947 0.990 0.989 0.988c

39 39 1 0.950 0.950 0.950 0.990 0.990 0.990 

13 13 2 0.945 0.949 0.947 0.988c 0.989 0.988c

13 39 2 0.991b 0.950 0.950 0.999b 0.990 0.990 

39 13 2 0.846d 0.949 0.945 0.939d 0.989 0.987c

39 39 2 0.949 0.950 0.949 0.989 0.990 0.989 

13 13 4 0.941c 0.949 0.946 0.985c 0.989 0.988c

13 39 4 0.998b 0.950 0.949 1.000b 0.990 0.989 

39 13 4 0.765d 0.949 0.946 0.881d 0.989 0.988c

39 39 4 0.947 0.950 0.948 0.988c 0.990 0.989 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 8. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and Alpha 
Levels when Sampling from a Multimodal Lumpy Distribution. 

    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.949 0.949 0.949 0.989 0.989 0.989 

13 39 1 0.950 0.947 0.939c 0.990 0.987c 0.981d

39 13 1 0.950 0.947 0.939c 0.990 0.987c 0.981d

39 39 1 0.950 0.950 0.950 0.990 0.990 0.989 

13 13 2 0.944c 0.947 0.937c 0.986c 0.987c 0.980d

13 39 2 0.991b 0.950 0.948 0.999b 0.989 0.989 

39 13 2 0.845d 0.947 0.930c 0.937d 0.986c 0.972d

39 39 2 0.948 0.949 0.947 0.989 0.989 0.987c 

13 13 4 0.938c 0.946 0.929c 0.982d 0.986c 0.971d

13 39 4 0.997b 0.950 0.948 1.000b 0.989 0.987c 

39 13 4 0.767d 0.946 0.929c 0.880d 0.986c 0.971d

39 39 4 0.947 0.949 0.946 0.988c 0.989 0.986c 

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 9. Coverage-probabilities for Each Technique by Sizes, Standard Deviations, and 
Alpha Levels when Sampling from a Extreme Asymmetry - Psychometric Distribution. 

 
    05.0=α   01.0=α   

n1 n2 σ2/σ1 Student Welch Yuen Student Welch Yuen 

13 13 1 0.969a 0.973a 0.989b 0.996b 0.998b 0.999b

13 39 1 0.961a 0.949 0.979b 0.991 0.985c 0.998b

39 13 1 0.960a 0.948 0.979b 0.991 0.985c 0.998b

39 39 1 0.952 0.953 0.969a 0.992a 0.992a 0.997b

13 13 2 0.943c 0.946 0.982b 0.983d 0.984d 0.999b

13 39 2 0.983b 0.960a 0.976b 0.996b 0.995a 0.998b

39 13 2 0.861d 0.928c 0.958a 0.950d 0.965d 0.994a 

39 39 2 0.944c 0.945 0.947 0.985c 0.985c 0.989 

13 13 4 0.921d 0.925c 0.952 0.961d 0.963d 0.995a 

13 39 4 0.989b 0.944c 0.944c 0.997b 0.984d 0.987c 

39 13 4 0.779d 0.923d 0.940c 0.880d 0.960d 0.987c 

39 39 4 0.936c 0.938c 0.927c 0.977d 0.979d 0.968d

a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  
b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  
c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  
d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 10. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Asymmetry – Achievement 

Distribution. 
 

   05.0=α  01.0=α  
n1 n2 σ2/σ1 Welch Yuen Welch Yuen 

13 13 1 0.993a 0.733a 0.989a 0.712a 
13 39 1 0.975c 0.727 0.954d 0.696c 
39 13 1 0.975c 0.727 0.954d 0.696c 
39 39 1 0.999 0.763 0.999 0.757a 
13 13 2 0.979c 0.724 0.966d 0.695c 
13 39 2 1.359 1.023a 1.353a 1.005a 
39 13 2 0.694d 0.514c 0.667d 0.480d 
39 39 2 0.994 0.760 0.991c 0.751c 
13 13 4 0.960d 0.709c 0.935d 0.670d 
13 39 4 1.610 1.224 1.608c 1.211c 
39 13 4 0.573d 0.424c 0.547d 0.390d 
39 39 4 0.987c 0.755c 0.980d 0.742d 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 11. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Bimodal Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.999a 0.886a 0.999a 0.870a 
13 39 1 0.964a 0.840 0.943a 0.809c 
39 13 1 0.964a 0.840 0.944a 0.809c 
39 39 1 1.000 0.827 1.000 0.822 
13 13 2 0.981a 0.864 0.969a 0.833 
13 39 2 1.360 1.162 1.356 1.148 
39 13 2 0.682a 0.594 0.655a 0.556d 
39 39 2 0.994 0.820 0.991 0.811c 
13 13 4 0.959a 0.837 0.934a 0.790d 
13 39 4 1.613 1.343 1.612 1.330c 
39 13 4 0.568a 0.493 0.542a 0.455d 
39 39 4 0.987 0.811 0.980 0.797c 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 12. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Digit Preference Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.996 0.768 0.994 0.750 
13 39 1 0.971 0.749 0.950 0.718c 
39 13 1 0.971 0.749 0.950 0.718c 
39 39 1 1.000 0.775 0.999 0.770 
13 13 2 0.980 0.753 0.968 0.725 
13 39 2 1.361 1.054 1.356 1.038 
39 13 2 0.688 0.527 0.662 0.492c 
39 39 2 0.994 0.769 0.991 0.761 
13 13 4 0.959 0.733 0.935 0.692c 
13 39 4 1.612 1.247 1.610 1.234 
39 13 4 0.570 0.435 0.544 0.400c 
39 39 4 0.987 0.763 0.980 0.749 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 13. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and Yuen’s 
Techniques when Sampling from a Mass at Zero Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.995 0.812 0.993 0.793 
13 39 1 0.972 0.793 0.951 0.761c 
39 13 1 0.972 0.794 0.951 0.761c 
39 39 1 1.000 0.824 0.999 0.819 
13 13 2 0.980 0.796 0.967 0.767 
13 39 2 1.360 1.119 1.355 1.102 
39 13 2 0.690 0.558 0.663 0.521c 
39 39 2 0.994 0.819 0.991 0.809 
13 13 4 0.959 0.775 0.935 0.731c 
13 39 4 1.611 1.325 1.610 1.312 
39 13 4 0.571 0.460 0.545 0.423c 
39 39 4 0.987 0.811 0.980 0.797 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 14. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Smooth Symmetric Distribution. 

 
   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.996 0.735 0.994 0.718 
13 39 1 0.971 0.716 0.950 0.687c 
39 13 1 0.971 0.716 0.950 0.687c 
39 39 1 1.000 0.742 0.999 0.738 
13 13 2 0.980 0.721 0.968 0.694c 
13 39 2 1.361 1.009 1.356 0.994 
39 13 2 0.688 0.504 0.661 0.470c 
39 39 2 0.994 0.737 0.991 0.729 
13 13 4 0.959 0.702 0.935 0.662c 
13 39 4 1.612 1.195 1.611 1.183 
39 13 4 0.570 0.416 0.544 0.383c 
39 39 4 0.987 0.731 0.980 0.718 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα   

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 15. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from a Multimodal Lumpy Distribution. 

 
.   05.0=α  01.0=α  

n1 n2 σ2/σ1 Welch Yuen Welch Yuen 
13 13 1 0.998 0.808 0.997 0.790 
13 39 1 0.968 0.777c 0.947c 0.747d 
39 13 1 0.968 0.777c 0.947c 0.747d 
39 39 1 1.000 0.784 1.000 0.779 
13 13 2 0.980 0.790c 0.969c 0.762d 
13 39 2 1.362 1.085 1.357 1.071 
39 13 2 0.685 0.548c 0.658c 0.512d 
39 39 2 0.994 0.778 0.991 0.769c 
13 13 4 0.959 0.768c 0.935c 0.725d 
13 39 4 1.613 1.268 1.612 1.256c 
39 13 4 0.569 0.454c 0.543c 0.418d 
39 39 4 0.987 0.770 0.980 0.756c 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Table 16. Ratio of the Average Lengths for Student’s Technique to that for Welch’s and 
Yuen’s Techniques when Sampling from an Extreme Asymmetry – Psychometric 

Distribution. 
 

   05.0=α  01.0=α  
n1 n2 σ2/σ1 Welch Yuen Welch Yuen 

13 13 1 0.992a 0.698b 0.988b 0.673b 
13 39 1 0.967 0.702b 0.946c 0.669b 
39 13 1 0.967 0.702b 0.945c 0.668b 
39 39 1 0.999 0.772a 0.999a 0.765b 
13 13 2 0.978 0.696b 0.965d 0.666b 
13 39 2 1.349a 0.998b 1.343a 0.974b 
39 13 2 0.691c 0.501a 0.664d 0.467a 
39 39 2 0.994 0.774 0.990c 0.765 
13 13 4 0.960c 0.692 0.935d 0.654a 
13 39 4 1.605c 1.230c 1.604d 1.213c 
39 13 4 0.573d 0.416c 0.547d 0.383c 
39 39 4 0.988c 0.777c 0.980d 0.763d 
a. 05.0,955.0ˆ1 =>− αα  or 01.0,991.0ˆ1 =>− αα  

b. 05.0,975.0ˆ1 =>− αα  or 01.0,995.0ˆ1 =>− αα  

c. 05.0,945.0ˆ1 =<− αα  or 01.0,989.0ˆ1 =<− αα  

d. 05.0,925.0ˆ1 =<− αα  or 01.0,985.0ˆ1 =<− αα  
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Yuen’s technique 
 For Yuen’s techniques, attenuated 

coverage-probabilities were observed for 
extreme negative kurtosis. For the population 
defined by the trimmed mean, kurtosis values 
less than –1.25 were observed with coverage-
probabilities less than 0.985. Given extreme 
bimodality, coverage-probabilities that were 
within the range of 0.925-0.975 ( 05.0=α ) 
were below 0.985 ( 01.0=α ). The kurtosis of 
the extreme bimodal distribution after trimming 
was –1.454. The results occurred under both 
homoscedastic and heteroscedastic conditions. 
Where size was inversely paired with variance, 
under a multimodal lumpy distribution, 
coverage-probabilities were within the range 
0.925-0.975 at the 0.05 alpha level. At the 0.01 
alpha level, coverage-probabilities were less 
than 0.985. The kurtosis of the multimodal 
lumpy distribution after trimming was -1.269.  
 
Interval Length 
 The results for interval length showed 
where 2

minS  was divided by minn , the interval-
lengths for Welch’s and Yuen’s techniques were 
less than the interval-lengths for Student’s 
technique. If 2

maxS  was divided by minn , the 
reverse was true. Results were presented in 
Table 10 through Table 16. Second, interval-
lengths for Yuen’s technique were wider than 
the interval-lengths for Welch’s technique. The 
interval-length ratios for Yuen’s technique were 
smaller than the ratios of Welch’s technique. 
Larger interval-lengths were observed for the 
heteroscedastic than for the homoscedastic 
condition. 
 

Conclusion 
 
Similar to findings by Sawilowsky and Blair 
(1992, p. 359) showing that skewness attenuated 
the Type I error rates for the t-test, the results of 
the present study showed that if skewness was 
above 1.25, e.g., skewness of the extreme 
asymmetric - psychometric distribution was 
1.417 after trimming, coverage-probabilities 
were augmented (i.e., )5.01()ˆ1( αα −>− ). 
  Similar to findings by Luh and Guo 
(2000) and Algina et al. (1994) showing that 

when size was inversely proportional to 
heteroscedasticity and skewness was greater or 
equal to 2.00, Welch’s technique displayed 
coverage-probabilities less than the confidence-
level when size was inversely proportional to 
heteroscedasticity and skewness was –1.33 or 
1.64. 
  Finally, the augmentation or attenuation 
of probability-coverage for both techniques 
occurred more at 0.01 than at 0.05 alpha levels; 
this finding was consistent with results from 
Bradley (1978, p. 147) showing that larger 
sample sizes were required for the t-test to 
exhibit robustness at the 0.01 level than at the 
0.05 level.  
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The Effect Of Different Degrees Of Freedom Of The Chi-square Distribution  
On The Statistical Power Of The t, Permutation t, And Wilcoxon Tests 
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The Chi-square distribution is used quite often in Monte Carlo studies to examine statistical power of 
competing statistics. The power spectrum of the t-test, Wilcoxon test, and permutation t test are compared 
under various degrees of freedom for this distribution. The two t tests have similar power, which is 
generally less than the Wilcoxon.  
 
Key words: t-test, Wilcoxon test, permutation test, Chi Square, Monte Carlo simulation 
 
 

Introduction 
 
Weber (2006) found that the power of the 
Wilcoxon test was only somewhat higher than 
that of the t and permutation t-tests in the Chi-
square distribution with 6 degree of freedom. It 
was expected that the Wilcoxon test is much 
more powerful than the t-test under non-
normality (Blair & Higgins, 1985; Hodges & 
Lehmann, 1956; Sawilowsky, 1990; Sawilowsky 
& Fahoome, 2003). 
 

Purpose 
   
This study investigates the effect on statistical 
power of the t, permutation t and Wilcoxon tests 
when data are sampled from the Chi squared 
distribution. 
 

Methodology 
 
A Monte Carlo simulation was used to study the 
properties of the two independent samples 
Student’s t test, the permutation t test, and the 
Wilcoxon Rank Sum test with regard to their 
statistical power.  
 

 
Michèle Weber, PhD, LMSW, LMFT, is an 
independent researcher, who resides in San Jose, 
California. Her areas of interest are in Monte 
Carlo methods and hypothesis tests. Email her at 
M.Fatal-Weber@worldnet.att.net 

 
 

 
Nominal alpha was selected at α = 0.05. 

The samples were composed of random numbers 
obtained from Rangen 2.0, which is a collection 
of subroutines to generate pseudo-random 
numbers (Sawilowsky & Fahoome, 2003).  
Small sample sizes used for this study were n1 = 
n2 = 10 and n1 = 5 and n2 = 15. The larger 
sample sizes were n1 = n2 = 20 and n1 = 10 and 
n2 = 30. One thousand five hundred repetitions 
were done to obtain the power, with shifts in 
means of μ = .2σ, .5σ, .8σ and 1.2σ.  

The procedures were performed on the 
Chi-square distribution with degree of freedom 
1, 2, 3, 4, 5, 6, 8, 10, 20 and 40. 

 
Results 

 
Comparison of Power between t and 
Permutation t tests 

All results are presented in the 
Appendix. For the even sample sizes, n1 = n2 = 
10 and n1 = n2 = 20, the t and permutation t-tests 
reflected the same power regardless of the 
degree of freedom of the Chi-square distribution. 
Indeed, as shown in the different graphs, the 
power starts somewhat low at .10 for small 
sample sizes and .15 for n1 = n2 = 20 when the 
shift μ is .2σ. As the shifts in means increase, the 
power increases to an average of .97 for n1 = n2 
= 10 and .93 for larger sample sizes when μ = 
1.2σ.  
 For uneven sample sizes, the t-test is 
less powerful than that of the permutation t-test. 
As the shift in means increases, the difference 
between the power of these two tests decreases. 
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For n1 = 5 and n2 = 15, the difference is .10 at μ 
= .2σ and becomes .01 when μ = 1.2σ. The 
disparity is less noticeable for the larger uneven 
sample sizes, from .06 to .01 with the increase in 
the shift.  
 
Comparison of Wilcoxon Test with t and 
Permutation t-tests 
 For the Chi-square distribution with 
degree of freedom 1, the power of the Wilcoxon 
test starts off somewhat higher than the t and 
permutation t-tests at .25 for n1 = n2 = 10. For n1 
= n2 = 20, the power of the Wilcoxon test is .45 
and .4 for the larger uneven sample size when μ 
= .2σ. However, as the shift in means increases, 
the difference in power between the Wilcoxon 
and the t and permutation t-tests becomes 
smaller, until it reaches a plateau.  

As the degree of freedom becomes 
larger, the power difference between the 
Wilcoxon and the t and permutation t-tests 
decreases. When df = 8, the power of the three 
tests is so similar that the graphs do not reflect a 
difference between them, especially for the other 
sample sizes. When the degree of freedom is 10, 
the Wilcoxon test becomes less powerful than 
the two t-tests. For n1 = n2 = 20, the power of the 
Wilcoxon test is below the power of the two 
tests at df = 40.  

 
Discussion 

 
The Chi-square distribution with 1 degree of 
freedom is extremely asymmetric. Thus, it was 
expected and found that the Wilcoxon test is, 
indeed, much more powerful than the t and 
permutation t-test, as supported by Sawilowsky 
and Blair (1992).  

As the degree of freedom increases, the 
Chi-square becomes less asymmetric and light 
tailed. Thus, the power properties of the 
Student’s t and the permutation t-tests were 
expected to be rehabilitated as the distribution 
become more normal like, which was confirmed 
by the results. Indeed, with degrees of freedom 
4, 5, 6 and 8, the increased symmetry and 
decreased tail weights made the permutation t-
test and the Student’s t-test more competitive, 
although still decreasingly less powerful than the 
Wilcoxon Rank-Sum test.  

For df = 20 and 40, the t and 

permutation t-tests only had a modest power 
increase over the Wilcoxon test as predicted by 
the Asymptotic Relative Efficiencies (ARE). 

As stated previously, the uneven sample 
sizes (n1 = 5 and n2 = 15, n1 = 10 and n2 = 30) 
offered a different outcome in the smaller degree 
of freedom of the Chi-square distribution. The 
difference in power between the Student’s t-test 
and its permutation counterpart can be explained 
by the fact that the t-test performs worse than the 
permutation t-test under non-normality and 
unevenness of the sample size (Sawilowksy & 
Fahoome, 2003). As for the superiority of the 
Wilcoxon test, the results are similar to the 
Sawilowsky and Blair (1992)’s study.  

The power of the Wilcoxon test is 
superior compared with both the t and 
permutation t-tests for the Chi-square 
distribution, though decreasing progressively as 
the degree of freedom increases from 1 to 
approximately 10. Then, the t and permutation t-
tests regain their superiority as the distribution 
with higher degree of freedom becomes more 
symmetric with lighter tails simulating the 
normal distribution. Therefore in situations 
where the data suggest a Chi-square distribution 
with lower (less than 10) degree of freedom, the 
Wilcoxon test is preferable to its competitors 
when the nature of the treatment changes the 
mean of two independent samples. 
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Figure 21. Shift vs. Power in the Chi-Square Distribution (df = 1) for Sample Size 

n1 = 10, n2 = 30 
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Figure 22. Shift vs. Power in the Chi-Square Distribution (df = 2) for Sample Size n1 = 10, n2 = 30 
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Figure 23. Shift vs. Power in the Chi-Square Distribution (df = 3) for Sample Size 
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Figure 24. Shift vs. Power in the Chi-Square Distribution (df = 4) for Sample Size n1 = 10, n2 = 30 
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Figure 25: Shift vs. Power in the Chi-Square Distribution (df = 5) for Sample Size n1 = 10, n2 = 30 
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Figure 26: Shift vs. Power in the Chi-Square Distribution (df = 6) for Sample Size n1 = 10, n2 = 30 
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Figure 27: Shift vs. Power in the Chi-Square Distribution (df = 8) for Sample Size n1 = 10, n2 = 30 
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Figure 28: Shift vs. Power in the Chi-Square Distribution (df = 10) for Sample Size n1 = 10, n2 = 30 
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Figure 29: Shift vs. Power in the Chi-Square Distribution (df = 20) for Sample Size n1 = 10, n2 = 30 
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Figure 30: Shift vs. Power in the Chi-Square Distribution (df = 40) for Sample Size n1 = 10, n2 = 30 
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Figure 31: Shift vs. Power in the Chi-Square Distribution (df = 1) for Sample Size n1 = n2 = 20 
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Figure 32: Shift vs. Power in the Chi-Square Distribution (df = 2) for Sample Size n1 = n2 = 20 
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Figure 33: Shift vs. Power in the Chi-Square Distribution (df = 3) for Sample Size n1 = n2 = 20 
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Figure 34: Shift vs. Power in the Chi-Square Distribution (df = 4) for Sample Size n1 = n2 = 20 
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Figure 35: Shift vs. Power in the Chi-Square Distribution (df = 5) for Sample Size n1 = n2 = 20 
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Figure 36: Shift vs. Power in the Chi-Square Distribution (df = 6) for Sample Size n1 = n2 = 20 
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Figure 37: Shift vs. Power in the Chi-Square Distribution (df = 8) for Sample Size n1 = n2 = 20 
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Figure 38: Shift vs. Power in the Chi-Square Distribution (df = 10) for Sample Size n1 = n2 = 20 
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Figure 39: Shift vs. Power in the Chi-Square Distribution (df = 20) for Sample Size n1 = n2 = 20 
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Figure 40: Shift vs. Power in the Chi-Square Distribution (df = 40) for Sample Size n1 = n2 = 20 
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Tests for 2 × 2 Tables in Clinical Trials 
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Five standard tests are compared: chi-squared, Fisher's exact, Yates’ correction, Fisher’s exact mid-p, and 
Barnard’s. Yates’ is always inferior to Fisher’s exact.  Fisher’s exact is so conservative that one should 
look for alternatives.  For certain sample sizes, Fisher’s mid-p or Barnard’s test maintain the nominal 
alpha and have superior power.   
 
Key words: Power, sample size, dichotomous endpoint, alpha level 
 
 

Introduction 
 
The literature on tests for 2×2 tables is 
extremely vast and controversial. However, the 
issues can be focused somewhat when 
considering the use of these tests for clinical 
trials. In this situation, the trials have two arms 
and the sample size of each arm is fixed. Tests 
are almost always made at the 0.05 nominal 
alpha level. There is no requirement that the 
tests be computationally simple, but only that 
they are available in standard commercial 
statistical software. The following two examples 
illustrate many of the issues of interest. 
 Cotter et al (2000) conducted a small, 
randomized pilot study (15 patients per 
treatment arm)   comparing   Nω-nitro-L-arginine  
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methyl ester (L-NAME) to placebo in patients 
with cardiogenic shock. Mortality results are 
given in Table 1. 

Cotter et al. reported a p-value of 0.028 
(no test specified), a value which is consistent 
with the standard chi-square test. However, if 
Fisher’s exact test had been used in the standard 
manner, the p-value would have been 0.0656. If 
Fisher’s mid-p or Barnard’s test had been used, 
then the p-value would have been 0.0374 or 
0.0352, respectively. The results of this trial, 
along with other preliminary data, were 
suggestive of an effect, and so a second study, 
SHOCK II (Dzavik et al., submitted), was 
conducted. Ironically, the SHOCK II Trial 
showed no evidence of a treatment effect, but 
there were significant differences between the 
SHOCK II Trial and the Cotter Trial. 
 The second example is taken from the A 
to Z Trial (Blazing et al., 2004). This trial 
compared enoxaparin with un-fractionated 
heparin for the treatment of 3905 patients with 
acute coronary syndrome (ACS). Based on other 
studies, there was a concern that enoxaparin 
might lead to an increase in the number of 
bleeding events. Given in Table 2 are the counts 
of patients with TIMI major bleeding events by 
treatment arm. 
 Note that the bleeding rates are quite 
low in both arms (less than one percent). The 
Statistical Analysis Plan specified that 
“Statistical comparison will be conducted using 
Fisher’s exact test …” 
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 In this case, Fisher’s exact test gives a p-
value between 0.0285 and 0.0501. The problem 
with Fisher’s exact test is that it is .0393 or 
0.0352, respectively. It is clear that summarizing 
the results of the above table as non-significant 
would not accurately describe the information. 
 These two examples point out some of 
the difficulties in choosing a statistical test in the 
simplest of trials, namely the two-arm 
dichotomous trials. There are several possible 
tests that can be used and they have different 
implications for both the nominal alpha level as 
well as the power. We will restrict our 
consideration to those tests available in 
commercial software packages such as SAS®  
 
 

 
 

 
 
(SAS Institute, 1999) or StatXact (StatXAct 
with Cytel Studio, 2005). 
 

Methodology 
 

Assume a study where the number of positives 
and negatives are measured for a control group 
and a treated group, and that the results are 
summarized in a standard 2 x 2 contingency 
table where A, B, C, and D are the observed 
counts. Let T = A + B + C + D.  The rate in the 
treated group, p1, is estimated by A / N1 and the 
rate in the control group, p2, is estimated by C / 
N2. The null hypothesis is that p1 = p2 and the 
usual alternative hypothesis is  
 

Table 1. Deaths by Treatment Arm in the L-NAME Trial 

  L-NAME  No L-NAME  Total 

Died    4 10  14 

Survived 11    5  16 

Total  15  15  30 

 
 

Table 2.   Bleeding Events by Treatment Arm for the A to Z Trial 

 Enoxaparin Un-fractionated 

Heparin 

Total 

Bleed     18       8     26 

No bleed 1922 1957 3879 

Total 1940 1965 3905 
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that p1 ≠ p2. The object is to find a test statistic 
which is a function of A, B, C, and D such that 
the value of the test is very  different when p1 = 
p2 as compared with when p1 ≠ p2. There are 
several test statistics which could be used to test 
the null hypothesis, and the properties of five 
such tests will be investigated: 1) the 
uncorrected chi-squared test, 2) Fisher's exact 
test, 3) Yates’ correction to the chi-squared test, 
4) Fisher’s exact mid-p test, and 5) Barnard’s 
test.   
 
Uncorrected chi-squared test 
 The standard uncorrected chi-squared 
statistic (Pearson, 1900) is: 
 

                  
2

1 2 1 2

T(AD - BC )CS = .
S SN N

          (1) 

 
For an intended α-level of 0.05, the test rejects 
the null hypothesis whenever CS > 3.8415 and 
accepts otherwise. The power of the test is the 
probability that CS > 3.8415 given particular 
values of p1, p2, N1, and N2.   
 
Fisher’s exact test 
 In 1925, Fisher (1925) gave an exact test 
which requires a bit more effort to compute. The 
test is based on the hyper geometric distribution. 
Assume that the four marginal totals, N1, N2, S1, 
and S2, are fixed. Under the null hypothesis, the 
probability that A = i for i = 0, 1,… , min(N1, S1) 
is: 
 
                      
 
 

 
 

                   ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

, , ,1 2 1 2

21

1 1

Prob(A N N S S ) = 

S TS
.

N A NA

           (2) 

 
The (two sided) probability of an observed or 
more extreme than observed result is given by 
 

1 2 1 2 1 2 1 2

1 2 1 2
Pr ob(iN ,N ,S ,S ) Pr ob(A N ,N ,S ,S )

Pr ob(i N ,N ,S ,S )
<
∑  

             + 1 2 1 2Pr ob(A N ,N ,S ,S )                 (3) 
 
For example, the values for Cotter et al (2000) 
are 0.0092 + 0.0564 = 0.0656. The two values, 
0.0092 and 0.0656, are the only two reasonable 
values for the size of Fisher’s exact test in this 
particular case (see Kendall and Stuart, Vol. 2, 
pp. 553, 1961). A non-randomized test cannot be 
constructed at any arbitrary level. But by 
convention, the largest value, 0.0656, is often 
taken as the p-value from the test. This value is 
often described as conservative, but it is only 
conservative if the object is to reject the null 
hypothesis. Thus, the null hypothesis would not 
be rejected at the 0.05 level using this test in this 
particular manner. The test could be made exact 
by choosing a random number between the 
values of 0.0092 and 0.0656 as the p-value. 
However, using randomization as part of the 
hypothesis testing procedure has never been 
accepted in clinical literature. This example 
demonstrates that using a conservative test is not 
necessarily a conservative strategy when the 
endpoint in question is a safety endpoint. 
 
 
 
Yates’ corrected chi-square test 

  Treated  Control  Total 

Positive  A  C  S1 

Negative  B  D  S2 

Total  N1  N2  T 
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 The third test is Yates’ (1934) correction 
to the Pearson chi-squared statistic: 
 
 

2

1 2 1 2

T(| AD -BC | -T/2)     CSC = .
S SN N

               (4) 

 
This correction is designed to make the chi-
squared statistic give a p-value which is often 
very close to the p-values calculated from 
Fisher's exact test.  
 
Fisher’s mid-p test 
 The fourth test is a modification of 
Fisher’s exact test, known as Fisher’s mid-p 
value, as defined by Lancaster (1961). The 
calculations are made exactly as those done for 
Fisher’s exact test, except that the probability of 
a result more extreme is averaged with the 
probability of a result as extreme or more so. In 
the Cotter et al. (2000) example, this would be 
(0.0092 + 0.0656)/2 = 0.0374. StatXact (2005) 
and LogXact (LogXact with Cytel Studio, 2005) 
report mid-p values as part of their output. 
 
Barnard’s test 

Barnard (1947) proposed an 
unconditional exact test based on a minimax 
elimination of the nuisance parameter. The 
reference set was defined to be the set of all 2 x 
2 tables with fixed row margins and all possible 
column margins. Because the reference set for 
Barnard’s test does not fix the column margins, 
the distribution of the test statistic is less discrete 
than would be obtained by permuting the 
conditional reference set in which both margins 
are fixed. However, Barnard was not satisfied 
with his test, and disavowed it two years later 
(Barnard, 1949). There is an interesting 
discussion by Barnard of the reasons for his 
disavowal in Yates (1984, with discussion). 
Barnard invoked Fisher’s principle of ancillarity 
(see Fisher, 1973, Chapter IV), whereby 
inference should be based on hypothetical 
repetitions of the original experiment, fixing 
those aspects of the experiment that are 
unrelated to the hypothesis under test. Little 
(1989) gives a clear discussion of this topic. In 
two more recent publications, Barnard (1989, 
1990) provided additional arguments against the 

test. However, Little (1989) showed that the row 
totals are not ancillary statistics. 

If the true value of p was known under 
the null hypothesis (p1 = p2 = p), then the 
probability of any possible outcome could be 
calculated, e.g. the probability of x1 events in the 
first arm (of size N1), and x2 events in the second 
arm (of size N2): 
 

=1 2Pr( , )x x  

                        ( ) −⎛ ⎞
−⎜ ⎟

⎝ ⎠
1 111

1

1 N xXN
p p

x
 

                        ( ) −⎛ ⎞
−⎜ ⎟

⎝ ⎠
2 222

2

1 N xXN
p p

x
               (5) 

 

Next, order the outcomes. One possible ordering 
would be to use the D statistic: 
 

    
2 1

2 1

1 2 1 2 1 2

1 2 1 2 1 2

1 1

x x
N ND

x x N N x x
N N N N N N

−
=
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     (6) 

 
Using this ordering, the probabilities can be 
found of all tables at least as extreme, or more 
so, than the observed table for a given p. The 
sum of all these probabilities is the p-value 
associated with the specified p. Calculate this p-
value for all possible specified p’s and take their 
maximum. This is Barnard’s p-value. A plot of 
the extreme values as a function of p for the 
Cotter et al (2000) example is in Figure 1. 
 Note that the statistic reaches a 
maximum of 0.0352, and this is Barnard’s p-
value for the Cotter et al study (2000). Barnard’s 
test is actually guaranteed to be conservative for 
certain specific sample sizes. The reason that the 
test is not always conservative is that it uses a 
normal approximation to order the outcomes. 
 
Power Formulas 
 The formula for the probability of 
rejection for any test of equality of proportions 
is given by: 
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where N1 and N2 are the sample sizes of the two 
arms respectively, where p1 and p2 are the true 
event rates in each arm, and where δi j is one if 
the test statistic based on i, N1, j, N2 is 
statistically significant, and zero otherwise.  
 This formula can be used to determine 
either the nominal alpha level for a given test 
(by assuming that p1 equals p2) or to determine 
the power (by not assuming equality). The 
formula is an exact one – no simulations are 
necessary. All results presented in the next 
section are exact calculations. 
 

Results 
 
The actual alpha-levels are calculated for all five 
tests assuming that the intended alpha-level was 
0.05 and N1 = N2 = 25, N1 = N2 = 50, N1 = N2 =  
 
 
 
 

 
100, and N1 = 25, N2 = 50. The calculations 
were made for the entire range of p1 (with p2= 
p1) and these are shown in Figures 2, 3, 4 and 5. 
 Note that the actual alpha-levels for the 
standard chi-square, Fisher’s mid-p, and 
Barnard’s tests are reasonably close to the 
intended alpha-level for 0.2 < p1 < 0.8. The 
maximum actual alpha-level for any test never 
exceeds .065 for any p1. Note also that Fisher's 
exact test has very low alpha-levels. The 
maximum alpha-level for Fisher's exact test for 
N1 = N2 = 25 is 0.0328. Yates’ correction to the 
standard chi-square test yields alpha levels as 
low as or lower than Fisher’s exact test. Fisher’s 
mid-p test falls below the nominal alpha level of 
0.05 everywhere, but is uniformly larger than 
either Fisher’s exact or Yates’ correction. 
Barnard’s test is as large, or larger, than Fisher’s 
mid-p, but it does exceed 0.05 for event rates 
between 0.107 and 0.172 and between 0.828 and 
0.893. 
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Figure 1.  Calculation of Barnard’s Statistic for Specified Null Probabilities (p1) 
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Figure 2. Alpha Levels for Two Arm Dichotomous Tests for N1 = N2 = 25 
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Figure 3.  Alpha Levels for Two Arm Dichotomous Tests for N1 = N2 = 50 
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Figure 4. Alpha Levels for Two Arm Dichotomous Tests for N1 = 100, N2 = 100 
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Figure 5. Alpha Levels for Two Arm Dichotomous Tests for N1 = 25, N2 = 50 
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 For sample sizes of 50 per arm, the 
actual alpha-levels for the standard chi-square, 
Fisher’s mid-p, and Barnard’s tests approach the 
nominal alpha-level for 0.2 < p1 < 0.8. The 
maximum actual alpha-level for any test never 
exceeds .057 for any p1. Fisher's exact test still 
has very low alpha-levels, falling below 0.035 
everywhere. Fisher’s mid-p test remains below 
the nominal alpha level of 0.05 for event rates 
below 0.3, but does reach a maximum of 0.057. 
Barnard’s test never exceeds 0.0507, and is 
generally closer to 0.05 than any of the other 
tests. 

  
 
 
 
 

 
For sample sizes of 100 per arm, the actual 
alpha-levels for the standard chi-square, Fisher’s 
mid-p, and Barnard’s tests approach the nominal 
alpha-level for 0.1 < p1 < 0.9. The maximum 
actual alpha-level for any test never exceeds 
.056 for any p1. Fisher's exact test is increased, 
but still falls below 0.040 everywhere. Fisher’s 
mid-p test falls below the nominal alpha level of 
0.05 for event rates below 0.3, but does reach a 
maximum of 0.056. Barnard’s test never exceeds 
0.053, and is generally closer to 0.05 than any of 
the other tests. 
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Figure 6. Diagram of Maximum Alpha Levels for Fisher’s Mid-P Test 
with Nominal Alpha Level of 0.05. 
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 Fisher’s exact test had alpha levels a bit 
closer to that of the other tests, but Yates’ 
correction had very low alpha levels, achieving a 
maximum of 0.0270.  
 For unequal samples of 25 and 50 per 
arm, the results were somewhat similar to the 
previous results. Barnard’s test had a maximum 
alpha level of 0.0484 and Fisher’s mid-p test had 
a maximum alpha level of 0.0503. However, the 
chi-square test had a maximum of 0.0599. 
 The results from Figures 2 – 5 are 
consistent with the results presented by 
Hasselblad and Allen (2003). Their results 

 

 
 
 
 
suggested that an expected number of events of 
approximately 40 is required to insure that the 
actual alpha level for the chi-square test is 
between 0.049 and 0.051 when the intended 
alpha level is 0.05. 
 Fisher’s mid-p and Barnard’s tests are 
examined in greater detail. Specifically, the 
interest is to determine if those tests were 
conservative for all values of p1 (with p2= p1) for 
specific values of N1 and N2. The results for 
Fisher’s mid-p for N1 = 10, … ,40 and N2 = 10, 
… ,40 are in Figure 6. Those squares which are 
white correspond to an actual alpha level less 
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Figure 7. Diagram of Maximum Alpha Levels for Barnard’s Test 

with Nominal Alpha Level of 0.05. 
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Figure 8. Power of Various Tests for Sample Sizes of 25 Per Arm 
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than 0.05 for all p. 
 For example, if one sample size is 15 
and the other is 15, 16,…, or 25, then Fisher’s 
mid-p test is conservative. On the other hand, if 
both sample sizes are 26, then the test may not 
be conservative, depending on the true null rate. 
However, for most null rates, the test will still be 
conservative. Figure 6 only shows the worst 
possible case. Of the 496 different sample size 
combinations shown in Figure 6, 40.9 percent 
had a nominal alpha level less than 0.05. 
 The results for Barnard’s test for N1 = 
10, … ,40 and N2 = 10, … ,40 are in Figure 7. 
For example, if one sample size is 25 and the 
other is 18, 19,…, or 24, then Barnard’s test is 
conservative. On the other hand, if both sample 
sizes are 25, then the test may not be 
conservative, depending on the true null rate. Of 
the 496 different sample size combinations 
shown in Figure 7, 66.5 percent had a nominal 
alpha level less than 0.05. 
 The power for four of the tests described 
previously was calculated for N1 = N2 = 25 and 
p1 = 0.3 (Yates’ test was dropped to make the  
 

 
 
graph more readable). The results are in 
Figure 8. 
 Note that the power curves behave as 
expected, that is, they reach a minimum at p1 = 
p2 = 0.3 and then increase rapidly as p2 moves 
away from p1. The shapes of the power curves 
are all quite similar. The differences at p1 = p2 =  
0.3 are exactly the differences in the alpha-levels 
of the tests. The power curves show one other 
key point – the tests do not cross each other. 
That is, if a test has a lower nominal alpha level, 
then it will have lower power for the 
alternatives. 
 The power for four of the tests was also 
calculated for N1 = 25, N2 = 50 and p1 = 0.5. The 
results are in Figure 9. 
 Figure 9 shows the same general 
patterns as did Figure 8. 
 There are approximate formulas for 
power that are reasonably accurate.  One 
formula given by Fleiss (1981, p. 27) is  
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where  p  = (p1 + p2)/2 and Φ is the cumulative 
normal distribution function. This approximate 
function is shown in Figure 10, where it is 
drawn as a function of p2. The exact and 
approximate formulas are reasonably similar, 
and they get closer as the sample size increases. 
There are several other formulas that have 
various correction formulas in order to make the 
approximation better. There is, however, a limit 
to the accuracy of these approximations because 
they are not based on the test statistic itself.   
 

Conclusion 
 
There are some conclusions which can be made 
as a result of the calculations presented: 
 

• Even though Fleiss (1981, p. 27) states 
that “[Yates’] correction should always 
be used”, the test is always inferior to 
(its nominal alpha level is less than or 
equal to) Fisher’s exact test, and for that 
reason it should not be used. 

 
• Fisher’s exact test is so conservative that 

one should always look for an 
alternative even if one requires that the 
alpha level of the test not exceed the 
nominal level (by even the smallest 
amount). For certain sample sizes, either 
Fisher’s mid-p or Barnard’s test will 
satisfy the requirement, and those tests 
have much superior power. For 
example, knowing that the test is 
conservative when both arms have 15 
observations, the data of Cotter et al. 
(2000) could have been analyzed using 
Fisher’s mid-p test. 
 

• For tests of safety, being conservative is 
not desirable. Because event rates are 
often very low for safety issues, Fisher’s 
mid-p test is a very appealing 
alternative. For example, the maximal 
nominal alpha level for this test for the 

A to Z bleeding data is 0.05007 
(assuming that the true event rates are 
less than 20 percent). 

 
• The chi-square test works adequately for 

very large sample sizes, but the standard 
rule of an expected minimum value of 5 
(which is commonly used) is not 
acceptable. Even if the expected number 
of counts exceeds 40 per cell, the alpha 
level (for a nominal alpha level of 0.05) 
is approximately bounded by 0.049 and 
0.051. Barnard’s test is certainly an 
attractive alternative in the moderate 
sample size situation when the event 
rates are not especially small. 

 
As mentioned previously, only tests 

available in widely used commercial software 
packages were considered. Such restrictions 
leave out some recently developed unconditional 
tests for which no commercially developed and 
tested software is available. An example is a test 
based on the confidence interval p-value 
developed by Berger and Boos (1994, 1996). 
This test can be seen as a modification of 
Barnard’s test. Although Barnard’s p-value is 
obtained by maximizing the p-value for given 
nuisance parameter p over the unit interval, the 
p-value of the test by Berger and Boos is 
obtained as a sum of the supremum of p-values 
over the 100(1-β)% confidence interval for p 
calculated from the data and β. This test can be 
more powerful then Barnard’s and requires less 
computational effort. 
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Sensitivity Curves for Asymmetric Trimming Hinge Estimators 
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Robust estimators have been developed and tested for symmetric distributions via simulation studies. The 
primary objective was to show that they are more efficient than the sample mean when used in 
conjunction with asymmetric distributions. Little attention has been given to how they perform on data 
that are from asymmetric distributions, or from distributions that have inherent anomalies (messy data). 
Thus, the behavior of hinge estimators using sensitivity curve are examined. 
 
Key words: Robust estimators, adaptive estimators, ancillary statistics, selector statistics. 
 
 

Introduction 
 
In spite of the considerable bad press that the 
sample mean (the least square estimator of µ) 
has received, the standard normal theory statistic 
performs well when real data are nearly normal. 
However, robust estimators of location have 
been and continue to be developed and tested for 
symmetric long and short-tailed distributions by 
means of extensive simulation studies. The 
ancestry of these estimators may be traced to the 
work of Hogg (1967) and the Princeton Robust 
Study (Andrews, et al., 1972). The objective of 
these and other studies was to demonstrate that 
adaptive location estimators would be more 
efficient than the sample mean. In general, an 
adaptive procedure may be characterized as an 
application approach to data analysis rather than 
a theoretical application.  

The objective is to supplement previous 
simulation studies of robust estimators, hinge 
estimators,   by  examining the behavior of these  
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adaptive location estimators using sensitivity 
curves first developed by the Princeton Robust 
Study 

 
Selector Statistics and Adaptive Location 
Estimators 
 Characteristics such as skewness, tail 
length, and peakedness describe the distribution 
characteristics. In defining tail length and 
skewness, the notation here is from Hogg (1967, 
1982). Define Lα = mean of the smallest α n 
observations and Uα = mean of the largest α n 
observations. (For instance, if α  = 0.05, then 
L(0.05) is the mean of the smallest [0.05n] 
observations). Let B = mean of the next largest 
[0.15n] observations, C = mean of the next 
largest [0.30n] observations, D = mean of the 
next largest [0.30n] observations and E = mean 
of the next largest [0.15n] observations. 
 Hogg (1967) defined two measures of 
tail length, Q and Q1. These two statistics as 
selector statistics are used to classify symmetric 
distributions as light-tailed (uniform [0,1]), 
medium-tailed (normal (0,1)), or heavy-tailed 
(double exponential). Both Q, Q = ( U(0.05) − 
L(0.05) ) / ( U(0.50) − L(0.50)), and Q1, Q1 = U(0.20) − 
L(0.20)) / (U(0.50) − L(0.50)), are location-free and are 
then uncorrelated with location statistics like the 
trimmed means. Values of Q < 2.0 imply a light-
tailed (uniform) distribution, 2.0 ≤ Q ≤ 2 2.6 
implies a medium tailed-distribution (normal), 
2.6 < Q ≤ 3.2 implies a heavy tailed distribution 
(double exponential), and a Q > 3.2 implies a 
Cauchy like distribution (very heavy-tailed 
distribution). When using Q1 a suggested 
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classification scheme is: Q1 < 1.81 (light tailed, 
1.81 ≤ Q1 ≤ 1.87 (medium-tailed), and Q1 > 1.87 
(heavy-tailed). Hogg (1982) also defined a third 
measure of tail length H3 ,where H3 = (U(0.05) − 
L(0.05)) / (E − B). H3 < 1.26 is associated with a 
uniform distribution, 1.26 ≤ H3 ≤ 1.76 is 
generally associated with a normal distribution, 
and H3 > 1.76 is associated with a double 
exponential distribution. 

Hertsgaard (1979) used Q2, Q2 = (U(0.05) 
− T25) / (T25 − L(0.50)), to classify distributions as 
left skewed (Q2 < 0.7, symmetric (0.7 ≤ Q2 < 
1.4) and right skewed (Q2 ≥ 1.4). H1, H1 = 
(U(0.05) − D) / (C − L(0.05)), was proposed by 
Hogg (1982) and was also found to be useful in 
classifying skewness of a wide variety of 
distributions. And, Reed and Stark (1996) 
proposed two quick-and-dirty skewness 
measures SK2 , SK2 = ( X(1) − XMD) / (XMD − 
X(n)), and SK5 , SK5 = (X(1) − XM ) / (XM − 
X(n)). The form of SK2 and SK5 are identical to 
Q2 and H1. The advantage of using either the 
median XMD (Q2) or mean XM (H1) lies in the 
familiarity of these common location estimators. 
Note: XMD is the median, XM is the arithmetic 
mean, T25 is the [0.25n] trimmed mean (Tα), X(1) 
and X(n) are the first and last order statistics. 

Reed and Stark (1996) proposed a set of 
asymmetric linear estimators or hinge 
estimators, defined using the following scheme. 
Set a total trimming proportion to be trimmed 
from the sample, α. Determine a proportion to be 
trimmed from the lower end of the sample (αl) 
using the following: αl = α [ UWx / (UWx + 
LWx)], and the upper trimming proportion, αu = 
α − αl., where UWx and LWx be the numerator 
and denominator portions of the selector statistic 
X and define eight adaptive location estimators 
as: 
 

Estimator α             α l 
 HQ  0.10   

αl = α [UWQ / (UWQ + LWQ)] 
 HQ1  0.10  

αl = α [UWQ1 / (UWQ1 + LWQ1)] 
 HH3  0.10    

αl = α [UWH3 / (UWH3 + LWH3)] 
 HQ2  0.25 
 αl = α [UWQ2 / (UWQ2 + LWQ2)] 
  

HH1  0.10   
 αl = α [UWH1 / (UWH1 + LWH1)] 
 HSK2  0.10   

αl = α [UWSK2 / (UWSK2 + LWSK2)] 
 HSK5  0.25   
 αl = α [UWSK5 / (UWSK5 + LWSK5)] 
   

In the Princeton Robust Study 
(Andrews, et al, 1972), sensitivity curves were 
introduced to provide a basis for comparing 
estimators. The notion behind a sensitivity curve 
is to show how the value of a particular 
estimator is affected by an outlier. The method 
of construction is fairly straight forward. Start 
with a symmetric sample that is centered about a 
given value. In this article, the sample consisted 
of forty nine points (beginning at -4.8 and 
ending at 4.8) symmetrical about zero. Then add 
another point to the sample to see how the value 
of the estimator is affected. The added point 
ranged from -9.0 to 9.0. The horizontal axis 
represents the value of the added point while the 
vertical axis represents the value of the estimator 
at that value of the added point.  
 

Results 
 

The sensitivity curve for the sample mean is 
shown in Figure 1. Note that the curve is a 
straight line, suggesting that the value of the 
mean changes linearly with the value of the 
added point. As the value of the added point 
increases away from zero, the value of the mean 
does also. The larger the added value is, the 
larger the change in the mean value. There is no 
bound to the influence of the added point. 
 
The Median 

The sensitivity curve is given in Figure 
2. Note here, that the change in the value of the 
median is bounded. If the added point is one of 
the two middle values then it has a direct 
influence. However, if it is not one of those two 
values its influence is bounded regardless of the 
size of the value. 
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Next, consider a 15% trimmed mean. The 
sensitivity curve is shown in Figure 3. As might 
be expected, the added point   has a  wider range  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
of values in which it has  
 
 
direct influence. However, once outside of that 
range of values, the influence of the added point 
is bounded. 
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Figure 7.  
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The sensitivity curves for the seven 
estimators defined above are given in Figure 4-
10. Note the sensitivity curves for HQ, HQ1, 
HH3 suggest that the adaptive trimming causes 
the value of the estimator to decrease only. 
These estimators are not reacting symmetrically 
to the sample. The estimator HQ2 is just kind of 
weird. However, HH1, HH3, HSK2 and HSK5 
are at least symmetric in their reaction to the 
value of the added point. The estimator HH1 has 
a somewhat unique property that when the value 
of the added point gets a bit outside the 
symmetric part of the sample, its influence is 
zero. For data with contaminated with large 
outliers, this might be a very attractive trait. The 
estimator HH3 appears to act like a trimmed 
mean. 
 
 

 

 
 

Conclusion 
 

Real-world data sets may be described as messy 
with everything but a normal distribution 
presenting to the data analyst. From a 
methodology point rather than a theoretical 
basis, reasonable alternatives should be 
available. In the asymmetric data distributions 
faced on a daily basis, estimators that adapt 
themselves to the data may be formulated and 
used. Adaptively trimmed means can correct for 
uncontrollable data anomalies. 
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The Effect Of GARCH (1,1) On The Granger Causality Test 
In Stable VAR Models 

 
Panagiotis Mantalos    Ghazi Shukur    Pär Sjölander 
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Using Monte Carlo methods, the properties of Granger causality test in stable VAR models are studied 
under the presence of different magnitudes of GARCH effects in the error terms. Analysis reveals that 
substantial GARCH effects influence the size properties of the Granger causality test, especially in small 
samples. The power functions of the test are usually slightly lower when GARCH effects are imposed 
among the residuals compared with the case of white noise residuals. 
 
Key words: Causality test, GARCH, size and power. 
 
 

Introduction 
 
One of the most important issues in the subject 
of time series econometrics is the ability to 
statistically perform causality test. By causality 
it is meant causality in the Granger (1969) sense. 
That is, one would like to know if one variable 
precedes the other variable or if they are 
contemporaneous. The Granger approach to the 
question whether a variable say y1 causes 
another variable say y2 is to see how much of the 
current value of the second variables can be 
explained by past values of the first variable. Y2 
is said to be Granger-caused by y1 if y1 helps in 
the prediction of y2, or equivalently, if the 
coefficients of the lagged y1 are statistically 
significant in a regression of y2 on y1. 
Empirically, one way to test for causality in 
Granger sense is by means of vector 
autoregressive (VAR) model. 
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The main purpose of this article is to 

investigate the properties of the Granger 
causality test in stationary and stable VAR 
models under conditions when there exists some 
kind of volatility among the error terms, more 
specifically, Generalised Autoregressive 
Conditional Heteroscedasticity (GARCH) 
effects. It is well known that the analysis of 
causality is very sensitive to model specification 
and is almost only valid under conditions when 
the error terms are fairly close to white noise. At 
the same time it is also known that a 
considerable proportion of the time series 
variables follow some type of GARCH process. 
Hence, it is important to investigate the 
properties of this commonly used causality test 
under the presence of generalized conditional 
heteroscedasticity. 
 
The Model and the Monte Carlo Experiment 
 Consider the data-generating process 
(DGP) consists of a two dimensional time series 
generated by a stabile VAR(p) process: 
 
            y y yt t t p t =  A  ... + Ap1 1− −+ + ε       (1) 
 

where ( )ε ε εt  =   ..., 1t kt, ′  is a zero mean 
independent white noise process with 
nonsingular covariance matrix Σε  and, for j = 1, 

... , k,  Ε ε
τ

jt

2+
< ∞  for some τ > 0. The order 

p of the process is assumed to be known. Let 
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[ ]αp =  vec A   ,A1 p,  be the vector of the 

true parameters, where vec[.] denotes the 
vectorization operator that stacks the columns of 
the argument matrix. Now, suppose that one is 
interested in testing q independent linear 
restrictions: 
 

vs.                       

1

:  R  = s   

 : R   s

o p

p

H

H

α

α ≠
                 (2) 

 
where q and s are fixed (q x 1) vectors and R is a 
fixed [q x 2 ( )k p ] matrix with rank q.  

The process { }yt  is generated by the 

VAR(p) process in (1), with the Ai   (i = 1, … 
p) the Ordinary Least Squares (OLS) estimators 
and α p

p−1  the [ ]k p2 1( )− dimensional vector, 

consisting of the k p2 1( )−  elements of 

[ ],α =  vec A   , A1 p , that are obtained by 

deleting the matrix Ai   i ∈ {1, … p}. Then: 
 
                ( ) ( )1/ 2 ˆ 0,p p pT Nα α− ⇒ Σ           (3) 

 
where ⇒ denotes weak convergence in 
distribution and the [ 2 ( )k p  x 2 ( )k p ] 
covariance matrix pΣ  is non-singular. The pα  

is the 2 ( )k p⎡ ⎤⎣ ⎦ dimensional vector of the true 

parameters. Moreover given a consistent 
estimator ˆ

pΣ , then the Wald test of the null 
hypothesis in (2): 
 
       1ˆ ˆ = ( ) ( ) ( )w p p pT R s R R R sλ α α−′ ′− Σ −   (4) 
 
has an asymptotic χ 2 ( )q -distribution under the 
null hypothesis. And with yt  portioned in (m) 
and (k-m) dimensional sub vectors yt

1  and yt
2 , 

and Ai  matrices portioned conformably, then 
yt

2  does not Granger-cause the yt
1  if the 

following hypothesis is true: 

0 12,i= A  0   H =  
for 
                          i = 1,  , p -1.                     (5) 
 

The error components ( )ε ε1 2t t,
′
 in (1) and (2) 

are generated by GARCH(1,1) models, i.e., 
 

       
2

1
2

1
2

2
it 1) E(0, )  E(i.i.d., 

2,1   

−− ++=
==

==

itiitiiit

itit

ititit

hh

ih

εϕφγ
υυυ

υε
          (6) 

 
and ( )Cov   =  0ε ε1 2t t . The condition for finite 
variance is 1<+ ii ϕφ  and the condition for 

finite fourth moment is .123 22
1 <++ iiii ϕϕφφ  

Furthermore, if 0>iγ and 1<+ ii ϕφ , then the 
unconditional variance of the iε  exist and 

equals ( )iiii ϕφγσ ε −−= 1/2 . Note that when 
0== ϕφ , the itε  is reduced to iid white 

noises. 
To illustrate and study the possible 

effects of a GARCH(1,1) process on the 
Granger-causality test in a stable VAR(1) 
system Monte Carlo methods. The estimated 
size is calculated by simply observing how many 
times the null is rejected in repeated samples 
under conditions where the null is true. To judge 
the reasonability of the results use an 
approximated 95% confidence interval for the 
actual size (π): 
 

               
( )

π
π π

±
−

2
1

 
 

N
                      (7) 

 
where π  is the estimated size and N is the 
number of replications. 

 
The Monte Carlo experiment has been 

performed by generating data according to the 
model defined by (1) and (2), 
 

11/ 2

0.02 0.5 0.3
 = 

0.03 0.5t t ty y
T

ε
λ −−

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
      (8) 
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If λ= 0, y t1  is Granger-non-causal for y t2 and if 
λ≠ 0, y t1  causes y t2 . Therefore, the λ = 0 is 
used to study the size of the test. 

Three GARCH versions are simulated 
with a) high persistence, HP, (0.01, 0.09, 0.9), b) 
medium persistence, MP, (0.05, 0.05, 0.9) and c) 
low persistence, LP, (0.20,0.05,0.75). The 
processes includes a constant term and fit a 
VAR(1) : 1 1 = t t ty v A y ε−+ + . 

This means that order p of the process is 
assumed to be known and since this assumption 
might be too optimistic, however, also fit a VAR 
(2) : 1 1 2 2 = t t t ty v A y A y ε− −+ + + . 

For each model perform 10 000 
replications and use three different nominal 
sizes, namely 1%, 5% and 10%. However, 
different authors have put forward reasons for 
using both larger and smaller significance levels. 
Maddala (1992) suggests using significance 
levels of as high as 25% in diagnostic testing, 
while MacKinnon (1992) suggest going in the 
other direction to avoid mass significance. To 
reduce this problem, in this study, also use 
graphical methods that may provide more 
information about the size and the power of the 
test. Simple graphical methods are used, 
developed and illustrated by Davidson and 
MacKinnon (1998), which are based on the 
empirical distribution function (EDF) of the P-
values and are easy to interpret. The P value plot 
is used to study the size and the Size-Power 
curves to study the power of the test. 

Furthermore, to judge the reasonability 
of the results use a 95% confidence interval for 

the actual size (π) as: 
N

)1(  2 00
0

πππ −± , 

where N is the number of replications. Results 
that lie between these bounds will be considered 
satisfactory. 

Several factors are expected to affect the 
size and power properties of causality tests. 
Samples typical for small, medium, large and 
very large sizes have been investigated. For each 
time series 20 pre-sample values are generated 
with zero initial conditions, and with net sample 
sizes of T = 50, 100, 200, 500, 1000. Table 1 
shows the different parameters of our Monte 
Carlo design. The number of replications per 
model is 10 000 for the size, and 1000 for the 

power of the test. The calculations were 
performed using GAUSS 6.0. 
 
Results of the Size of the Test 
 Presented in this section are the most 
important results of our Monte Carlo experiment 
concerning the size of the test. Regarding the P 
value plots, under the condition when the 
distribution used to compute the ps  is correct, 
each of the ps should be distributed as uniform 
(0,1) and therefore the resulting graph should be 
close to the 45o line as in Figure 1a below. 
 
Size of the test for the VAR (1), given that the 
true model is a VAR (1) 
 In this sub-section the results are 
presented when the estimated and the true model 
is a VAR (1). As can be seen from the results, in 
Table 1a in the Appendix, the calculated sizes of 
the test over estimate the nominal sizes in all 
situations more or less regardless whether there 
exist low, medium or high GARCH effects. This 
is the case when a small sample of 50 
observations are studied. This is also confirmed 
when the P-value plots are observed in Figure 
1a, in the Appendix, in which one only presents 
the size when white noise and high GARCH 
effects are imposed. Here one can see that in 
both cases the test over rejects the size, but that 
the calculated sizes still lay near to the 95% 
confidence interval for nominal size with a 
slightly higher over rejection when the high 
GARCH magnitudes are present. 

When the sample size increases to 100 
observations, as is illustrated in Table 2a and 
Figure 2a, the properties of the test become 
better but there still some over rejection present. 
When enlarging the sample size to 200 
observations the test performs well in all cases 
except for the case with high GARCH effect. In 
this case the test slightly over rejects the 
nominal size, as can be seen in Table 3a. Figure 
3a shows that the over rejection become more 
severe for larger nominal sizes. 
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The same is also true when the sample size is 
equal to 500 observations, as is illustrated in 
Table and Figure 4a in the Appendix. 

In a very large sample, i.e. 1000 observations 
in Table and Figure 5a, the test performs 
satisfactorily in almost all situations, but with 
one exception in the case when a high GARCH 
effect is present 
 
Size of the test for the extra lag; VAR (2), given 
that the real model is a VAR (1) 
 Here the results are presented when the 
estimated model contains an extra lag, i.e. a 
VAR(2), while the true model is a VAR(1). In 
this case to investigate the effect of possible 
over parameterization of the true model is what 
is desired. Table and Figure 1b in the Appendix, 
the sizes of the test, as in the previous sub-
section, over estimate the nominal sizes in all 
situations almost regardless whether there exist 
low, medium or high GARCH effects. In Figure 
1b, the clear over rejection is illustrated for both 
white noise and high GARCH effects. 

However, as the results confirm in Table 
2b and Figure 2b, the over rejection become less 
severe when the number of observations 
increases to 100 observations. The results are 
almost similar when increase the sample size is 
increased to 200 observations, see Table 3b and 
Figure 3b in the Appendix. 

When the sample size increases to 500 
observations, as in Table 4b and Figure 4b, the 
test performs well in almost all situations except 
for in the case of high GARCH effects. Finally, 
in Table 5b and Figure 5b, the results show that 
the test performs satisfactorily but still with a 
slight over rejection in the case of high GARCH 
effects.  

 
 

 
In general, the results from these two 

sub-sections are generally similar. Moreover, 
one could not find the over rejection to be that 
severe even in the case of the existence of high 
GARCH effects in comparison with that of the 
white noise. The test is consistent and converges 
slowly to its nominal size as the sample size 
increases. 
 
Analysis of the Power of the Test 
 In this section the results of the Monte 
Carlo experiment regarding the power of the 
Granger-causality test are discussed. The power 
of the test was analyzed using sample sizes of 
50, 100, 200, 500 and 1000 observations. The 
power functions have been calculating for the 
test in the case of white nose and under different 
GARCH effects. The power functions have 
shown to be fairly similar in the cases of the 
white noise, low persistence and medium 
persistence GARCH. Based on this and since 
one could not find any noticeable differences in 
the performances of the test between these 
combinations regarding the size properties, only 
show and compare the power functions of the 
white nose and the high GARCH.  

The power functions are estimated by 
calculating the rejection frequencies in 1000 
replications using values of the λ coefficients in 
equation (8) equal to 2. The estimated power 
functions of the test have been compared only 
graphically. One may follow the same procedure 
as for the size investigation to evaluate the 
EDF’s denoted ( )F x j

⊕ , by using the same 

sequence of random numbers as in the case of 
the size of the test. For plotting the estimated 
power functions against the nominal size, there 
are the Size-Power Curves. Presented is the 
power of the test in cases when the model is 

Table 1 Monte Carlo Parameters of the GARCH Effects 
 

 Λ γ  φ  ϕ  

High Persistence 0 0.01 0.09 0.90 
Medium 0 0.05 0.05 0.90 

Low 0 0.20 0.05 0.75 
High Persistence 2 0.01 0.09 0.90 

Medium 2 0.05 0.05 0.90 
Low 2 0.20 0.05 0.75 
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exactly identified, i.e. the true and estimated 
models are VAR (1) and in the case when the 
model is over parameterized, i.e. the estimated 
model is VAR (2) while the true is VAR (1).  

The power of the Granger causality test, 
as expected, depends on how well the model is 
specified. This can be seen when comparing the 
power functions in the upper and lower parts of 
Figures 6-10 in the Appendix. This is the effect 
of over parameterization. 

Moreover, from the figures it can be 
seen that the power functions satisfy the 
expected properties of increasing with the 
sample size. Lower powers are observed when 
the samples are small and higher when the 
samples are large. A closer examination of the 
figures shows, that most frequently, the power 
functions are slightly lower in the case of the 
GARCH residuals (the dashed lines) than the 
white noise.  
 

Conclusion 
 
The results regarding the size of the tests 
have been presented both in form of tables 
and P-value plots. Our analysis revealed that 
the Granger-causality test slightly over 
rejects the nominal sizes in small samples 
and under the existence of high GARCH 
effects. This over rejection becomes even 
lower when the sample size increases and 
when the GARCH effects are not high. 
These results are similar in both of the 
exactly parameterized VAR (1) model and 
the over parameterized VAR (2) model. 
Moreover, the test is consistent in the sense 
that the size of the test converges slowly to 
its nominal size as the sample size increases.  
 

 
 
 
 
 
 
 
 
 

The power functions have been 
presented only graphically. As expected, the 
analysis of the power indicates that these power 
functions increase with an increasing sample 
size. Furthermore, most of the times these power 
functions are slightly lower in the case of the 
GARCH residuals than under white noise. The 
power of the test, as expected, becomes lower 
when including an extra lag in the VAR model, 
i.e. in the case of VAR(2). 
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APPENDIX 
 

Table 1a. Size of the test for 50 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0160   0.0151 0.0156 0.0152 
0.05 0.0642   0.0643 0.0658 0.0668 
0.10 0.1169   0.1222 0.1231 0.1225 

 
 
 
Table 2a. Size of the test for 100 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0133 0.0126 0.0126 0.0141 
0.05 0.0584 0.0579 0.0578 0.0593 
0.10 0.1093 0.1069 0.1051 0.1087 

 
 
 
Table 3a. Size of the test for 200 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0112   0.0119 0.0119 0.0146 
0.05 0.0546   0.0528 0.0527 0.0584 
0.10 0.1056   0.1036 0.1054 0.1109 

 
 
 
Table 4a. Size of the test for 500 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0095 0.0107 0.0108 0.0141 
0.05 0.0558 0.0544 0.0535 0.0639 
0.10 0.1068 0.1031 0.1038 0.1121 

 
 
 
Table 5a. Size of the test for 1000 observations  
Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0096 0.0083 0.0084 0.0150 
0.05 0.0476 0.0479 0.0496 0.0628 
0.10 0.0979   0.1034 0.0997 0.1183  
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P-value plots HP (GARCH) 
Figure 1a. 50 observations  
 Figure 2a. 100 observations 

 
 
Figure 3a. 200 observations  Figure 4a. 500 observations 

 
 

Figure 5a. 1000 observations 

 
 
Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal 
size. 
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Table 1b. Size of the test for 50 observations  
Nominal White Noise GARCH(1,1) 

  LP MP HP 
0.01 0.0169   0.0151 0.0179 0.0185 
0.05 0.0633   0.0643 0.0648 0.0671 
0.10 0.1192   0.1222 0.1221 0.1248 

 
 
 
Table 2b. Size of the test for 100 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0125      0.0115 0.0109 0.0119 
0.05 0.0542      0.0566 0.0566 0.0593 
0.10 0.1067     0.10890.1089 0.1095 0.1126 

 
 
 
Table 3b. Size of the test for 200 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0138 0.0122 0.0129 0.0143 
0.05 0.0582 0.0542 0.0542 0.0611 
0.10 0.1098 0.1053 0.1062 0.1118 

 
 
 
Table 4b. Size of the test for 500 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0111   0.0111 0.0111  0.0125 
0.05 0.0524  0.0532 0.0529 0.0568 
0.10 0.1006   0.1017 0.1026 0.1127 

 
 
 
 
Table 5b. Size of the test for 1000 observations  

Nominal White Noise GARCH(1,1) 
  LP MP HP 

0.01 0.0092  0.0095 0.0091 0.0130 
0.05 0.0449  0.0487 0.0484 0.0581 
0.10 0.0950  0.0969 0.0943 0.1084  
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P-value plots HP (GARCH) 
 
Figure 1b. 50 observations  
 Figure 2b. 100 observations 

 
 
 
Figure 3b. 200 observations  Figure 4b. 500 observations 
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Figure 5b. 1000 observations 

 
Solid lines = White noise. Dot dash line = GARCH. Dot lines =  95% confidence interval for nominal 
size. 
 
Figure 6a. Power–Size plots of the Granger-causality test for 50 observations 
VAR(1) 

 

Solid lines = White noise. Dash line = GARCH. Dot lines =  95% confidence interval for nominal 
size. 
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  Figure 6b  Power–Size plots of the Granger-causality test for 50 observations 
 VAR(2) 

 

Solid lines = White noise. Dash line = GARCH. Dot lines =  95% confidence interval for nominal size. 
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Large Deviations Techniques for Error Exponents to 
Multiple Hypotheses LAO Testing 

 
Leader Navaei 

Yerevan State University 
 
 
In this article the problem of multiple hypotheses testing using a theory of large deviations is studied. The 
reliability matrix of Logarithmically Asymptotically Optimal (LAO) tests is introduced and described, 
and the conditions for the positive of all its elements are indicated. 
 
Key words: hypotheses testing, empirical distributions, the method of types, reliability matrix, Sanov's 
theorem.  
 
 

Introduction 
 
Many studies have been devoted to the study of 
exponential decrease, as the sample size N  goes 
to infinity, of the error probabilities .11 αα =N  
For example Stain’s lemma determines the 
exponential rate of convergence to zero of the 
error probability of the second kind N

2α  as N  
goes to infinity. Perez (1984) considered 
independent identically distributed observations 
and different asymptotical aspects of two 
hypotheses, as the interdependence of exponents. 

Csiszar and Shields (2004) considered 
independent identically distributed observations 
different asymptotical aspects of the two 
hypotheses testing via the theory of large 
deviations. This article is based on Haroutunian 
(1990), and provides a proof based on Sanov’s 
theorem.  
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Preliminaries 
 Let },....,2,1{ K=χ  be the finite set of 
size K . The set of all probability distributions 
by )'( sPD  on χ  is denoted by )(χP . For 

,'sPD  P  and ,Q  )(PH  denotes entropy 
and )||( QPD  denotes information divergence 
(or the Kullback-Leibler distance). 
 

( ) ( ) log ( ),
x

H P P x P x
χ∈

≡ −∑  

( )( || ) ( ) log .
( )x

P xD P Q P x
Q xχ∈

≡∑  

 
In this article, exps and logs are used at 

base 2. Also considered are the standard 

conventions that 0 log 0 0,=  
00 log 0,
0

=  

log
0
PP = ∞  if 0.P >  

The type of a vector 

1 2( , ,......., ) N
NX x x x χ= ∈  is the empirical 

distribution given by 
( | )( ) N x XQ x

N
=  for 

all χ∈x , where )|( XxN  denotes the number 
of occurrences of x  in X  or 

NN

N
N

N
N

N
NxQ χ∈= ),.....,,()( 21  that 

≡iN number of times out N  trials that the 
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random variables Nxxx ,....,, 21  occurrences 
in χ . 

The subset of )(χP  consisting of the 
possible types of sequences NX χ∈  is denoted 
by )(χNP . For ),(χNPQ ∈  the set of 
sequences of type class Q will be denoted 
by .N

QT  
The probability that N  independent 

drawings from a ,PD  )(χPP ∈  give 
,NX χ∈  is denoted by ).(XP N  If N

QTX ∈  
then: 
 

( ) exp{ ( ( ) ( || )}.NP X N H Q D Q P= − +  
 
Lemma 
 The number of types for sequences of 
length N  grows at most polynomially with N : 
  

| || ( ) | ( 1)NP N χχ < + , 
 
For any type ( )NQ P χ∈ : 
 

| |( 1) exp{ ( )}N NH Qχ−+  

| | exp{ ( )},N
QT NH Q≤ ≤  

 
For any , ( )PD P P χ∈ : 

( ) exp{ ( || )},
( )

N

N
P X ND Q P
Q X

= −  If ,N
QX T∈  

 
and  
 

| |( 1) exp{ ( || )}N ND Q Pχ−+ − ≤  

| | exp{ ( )},N
QT NH Q≤ ≤  

 
Theorem 1(Sanov's theorem (Csiszar & Shields, 
2004, Dembo & Zeitoni, 1993)  

Let A  be a set of distributions from 
)(χP  such that its closure is equal to the 

closure of its interior, then for the empirical 
distribution XQ  of a vector X  from a strictly 
positive distribution P  on χ : 
 

1lim( log ( : ))N
XN

P X Q A
N→∞

− ∈  

inf ( ( || )).
X

XQ A
D Q P

∈
=  

 
Problem Statement and Formulation of Results 

The problem of multiple hypotheses 
testing is the following. Let {1,2,....., }Kχ =  be 
the finite set such that M  incompatible 
hypotheses 1 2, ,....., MH H H  consist in that the 

random variable X  taking values on χ  has one 
of M  distributions 1 2, ,....., .MP P P  For decision 
making N  independent experiences are carried 
out. When mH is true, the sample 

1 2{ , ,...., }NX x x x= of the experiments results 
has the probability 
 

1

( ) ( ),
N

N
m m i

i

P X P x
=

= ∏  1, .m M=  

 
By means of non-randomized test 

( )N Xϕ  on the basis of a sample of length N  
one of the hypotheses must be accepted. For this 
aim one can divide the sample space Nχ on 
M disjoint subsets, 
 

{ : ( ) },N
m NX X mω ϕ≡ =  1, .m M=  

 
The probability of the erroneous 

acceptance of hypothesis lH  provided that 
hypothesis mH  is true, for m l≠ is denoted: 
 

| ( ) ( ) ( ).
N
l

N N N N
m l N m l m

X

P P X
ω

α ϕ ω
∈

≡ = ∑  

 
For m l=  denote by | ( )N

m m Nα ϕ  the probability 

to reject mH  when it is true and this is: 
 
 | |( ) ( ).N N

m m N m l N
m l

α ϕ α ϕ
≠

≡∑  (1) 

 

The matrix {)( ≡Nϕω )}(| N
N

lm ϕα  is called 
power of the test. Take into consideration the 
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rates of exponential decrease of the error 
probabilities and call them reliabilities: 
 

| |
1( ) lim( log ( ))m l m l NN

E
N

ϕ α ϕ
→∞

≡ −  (2) 

 
According to (1) and (2)  
 

| |minm m m lm l
E E

≠
=  (3) 

 
can be derived because 
 

| |
1lim log ( )m m m mN

E
N

α ϕ
→∞

−=  

|
1lim log ( )m lN m lN

α ϕ
→∞ ≠

−= ∑  

|

|
|

1lim [log( { 1})]
m l

m l
m lN

m l

Max
N Max

α
α

α
≠

→∞

−= +
∑

 

|
1lim log( ) 0m l m lN

Max
N

α≠→∞

−= +  

|
1min lim log( )m lm l N N

α
≠ →∞

−=  

|min ( )m lm l
E ϕ

≠
=  

 
The matrix |( ) { ( )}m lE Eϕ ϕ=  is called 

the reliability matrix of the tests sequences ϕ . 
 

1|1 1| 1|

|1 | |

|1 | |

..... .....

( ) ..... ..... .

..... .....

l M

m m l m M

M M l M M

E E E

E E E E

E E E

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 The problem is to find the matrix )(ϕE  with 
largest elements, which can be achieved by tests 
when a part of elements of the matrix )(ϕE  is 
fixed. 
 
 
 
 

Definition 
 The test sequence *

1 2( , ,......)ϕ ϕ ϕ= is 
called LAO if for given values of the elements 

1|1 2|2 1| 1, ,...., M ME E E − −  it provides maximal 

values for all other elements of *( ).E ϕ  
Consider for a given positive and finite 

1|1 2|2 1| 1, ,...., M ME E E − −  the following family of 
regions: 

 
|{ : ( || ) },l l l lQ D Q P Eℜ ≡ ≤  (4.a) 

1, 1l M= −  

,)||(:{ |lllM EPQDQ >≡ℜ 1, 1}l M= − (4.b) 

( ),N
l l NP χℜ = ℜ ∩  (4.c) 

1,l M=  
 
and introduce the functions: 
 
 * *

| | | |( ) ,l l l l l l l lE E E E= ≡ 1,1 −= Ml , (5.d) 
  
 * *

| | |( ) inf ( ( || )),
l

m l m l l l mQ
E E E D Q P

∈ℜ
= ≡  (5.b) 

 1, 1l M= −  , Mm ,1= , .lm ≠  
  
 * *

| | 1|1 2|2 1| 1( , ,....., )m M m l M ME E E E E − −= ≡  (5.c) 

 inf ( ( || )),
M

mQ
D Q P

∈ℜ
 1, 1,m M= −  

  
 
 * *

| | 1|1 2|2 1| 1( , ,....., )M M M M M ME E E E E − −= ≡  (5.d) 

 |1, 1
min .M ll M

E
= −

 

 
With the assumption ,lA ℜ= mPP =  in 
Sanov’s theorem for conditions (4), (5) there is :  
 

 

*
|

1lim( log ( )

1lim( log ( )

N
m l NN

N
m lN

N

P
N

α ϕ
→∞

→∞

−

= − ℜ
 (6) 

 inf ( ( || ))
X l

X mQ
D Q P

∈ℜ
=  
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The notation 1 2
N Ny y≈  can be used 

when 1 2( ) ( ) ,N N
Ng y g y ε= + where 0,Nε → for 

.N → ∞  Using (6)  
 

*
| ( ) inf ( ( || )).

X l
m l mQ

E D Q Pϕ
∈ℜ

=  (7) 

 
Therefore the value of )( *

| N
N

lm ϕα  is equal to 

 
*

| ( ) exp( inf ( ( || ))
X l

N
m l N mQ

N D Q Pα ϕ
∈ℜ

≈ −  (8) 

*
|exp( ( )).m l NNE ϕ≈ −  

 
In fact, the error probability )( *

| N
N

lm ϕα  
goes to zero with exponential rate 
inf ( ( || ))
X l

mQ
D Q P

∈ℜ
 for mP  not in the set of .lℜ  

 
Theorem 2 
 For fixed on finite set χ  family of 

distributions MPPP ,.....,, 21  the following two 
statements hold: If the positive finite numbers 

1|12|21|1 ,.....,, −− MMEEE  satisfy conditions: 
 

| 12,
min ( || ),l l ll M

E D P P
=

≤  (9) 

*
| | |1, 1 1,

min min ( ), min ( || ) ,M M m l l l l ml m l m M
E E E D P P

= − = +

⎡ ⎤< ⎢ ⎥⎣ ⎦  
 
Hence: 
a) There exists a LAO sequence of tests * ,Nϕ  the 

reliability matrix of which * * *
|{ ( )}m lE E ϕ=  is 

defined in (5), and all elements of it are positive. 
 
b) Even if one of conditions (9) is violated, then 
the reliability matrix of an arbitrary test 
necessarily has an element equal to zero, (the 
corresponding error probability does not tend 
exponentially to zero). 
 
Proof: At first it is remarked that 

( || ) 0,l mD P P > for m l≠ , because all measures 

lP , 1, ,l M=  are distinct. Now for the proof of 
the sufficiency of the conditions (9). Consider 

the following sequence of tests *ϕ given by the 
sets  
 

,
l

N N
l Q

Q
B T

∈ℜ
= ∪ 1, .l M=  (10) 

 
The sets ,N

lB  1, ,l M=  satisfies conditions to 
give test, by means: 
  

,φ=N
m

N
l BB ∩  ,ml ≠  

 
and 

.
1

N
M

l

N
lB χ=

=
∪

 
 

The following shows that exponent *
| ( )m mE ϕ  

for sequence of tests *ϕ  defined in (10) is not 
less than | .m mE  The following is known from 
lemma, 
 

| | exp{ ( )}N
QT NH Q≈  

 
and 
 

( ) exp{ ( ( || )},N N
QP T N D Q P≈ −  1,m M=  

 
and also by using the result of theorem 1 there 
is:  

},exp{)( |
*

| mm
N

mm NE−≈ϕα  
 
and 

)},(exp{)( |
*

|
*

| lllm
N

lm ENE−≈ϕα  ,1,1 −= Ml  
,,1 Mm =  ,lm ≠  
 

)},,......,,(exp{)( 1|12|21|1
*

|
*

| −−−≈ MMMm
N

lm EEENEϕα

 .,1 Mm =  
 

Using (9) and (4 - 5), all *
|m lE  are strictly positive. 

The proof of part (a) will be finished if one 
demonstrate that the sequence of the test *ϕ  is 
LAO, that is, at given finite 
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1|1 2|2 1| 1, ,......, M ME E E − −  for any other sequence of 

tests **ϕ   
  

),()( **
|

***
| ϕϕ lmlm EE ≤  .,1, Mlm =  

 
For this purpose it is sufficient to see that 

the sequence of tests asymptotically dose not 
became better if the sets N

mB  will not be union of 

some number of whole types ,N
QT  in other words, 

if a test **ϕ  is defined, for example, by sets 
N
M

NN GGG ,....,, 21  and, in addition, Q  is such that 
|,|||0 N

Q
N

Q
N
l TTG ≈< ∩  

The test **ϕ  will not became worse if 
instead of the set N

lG  one takes ,N
Q

N
l TG ⊃  it 

N
lG  nonempty intersection with .N

QT  At last is is 
able to prove the necessity of the condition (9). 

If the sequence of the tests is LAO, then 
it can be given by sets of (10) form. But, the non-
fulfillment of the conditions (9) is equivalent 
either to violation of (3), or to equality to zero 
some of *

|lmE  given in (9), and this again 

contradicts with (3) because ,|mmE  ,1,1 −= Mm  
must be positive. 
 
Remark 1 
 From definition (5) and (9) it follows 
that: 
 

,*
|

*
| Mmmm EE =  1,1 −= Mm  

 
Remark 2 
 After the change of hypotheses 
enumeration the theorem remains valid with 
corresponding changes in conditions (9). 
 
Remark 3 
 The maximal likelihood test accepts the 
hypotheses maximising the probability of sample 

.X  In fact  
 

).(maxarg* XPr N

r
=  

 

 But it follows from equality 
)]}||()([exp{)( PQDQHNXP N +−=  that at 

the same time ).||(minarg* PQDr
r

=  In fact 

the principle of maximum of likelihood is 
equivalent to the principle of minimum ok 
Kullback-Leibler distance. 
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Semi Parametric Estimation Of Some Reliability Measures 
Of Geometric Distribution  
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Semi parametric estimators of the survival function, the hazard function, and the mean residual life 
function of geometric distribution using uncensored and Type II censored samples are obtained. The 
accuracy of the estimators so obtained is investigated empirically using simulated samples. The results are 
applied to a real life data set for illustration. 
 
Key words: geometric distribution, hazard function, Kaplan-Meier estimator, least square estimation, 
mean residual life function, survival function, Type II censoring. 
 

 
Introduction 

 
During the past twenty years, manufacturing 
industries have gone through a revolution in the 
use of statistical methods to improve product 
quality. Due to global competition, the industry 
faces immense pressure for shorter product-
cycle times, stringent cost constraints, and 
higher customer expectations for quality and 
reliability. A natural extension of the revolution 
in product quality is to focus on product 
reliability, which is defined as quality over time. 
Reliability can be defined as the probability that 
a unit will perform its intended function until a 
specified point in time under encountered use 
conditions. The environment in which a product 
operates is   a critical   factor  in   evaluating  the  
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reliability of a product. The design for reliability 
requires careful consideration of product 
(process) failure modes. Broadly, failure modes 
can be classified as those that are anticipated and 
those that are unanticipated. Generally, 
engineers focus only on the anticipated failure 
modes. The main focus, however, of the 
statistician is in the unanticipated failures and it 
plays a crucial role in product reliability.  

Reliability analysis of devices through 
failure time data when time is treated as discrete 
is a recently emerging area of research. Kemp 
(2004) provided a good discussion on the 
importance and applications of discrete life 
distributions. The sophisticated equipment used 
in the manufacturing process requires accurate 
measuring devices to record their failures in 
continuous time. In situations where such 
measuring instruments are very costly or their 
availability cannot be ensured, it may be 
desirable to go in for failure times that are in 
completed units of time (Xekalaki (1983)). The 
latter procedure is more desirable, provided the 
loss of accuracy in replacements of continuous 
measurements with discrete ones is more than 
compensated by the gain in terms of other 
considerations such as money, ease of analysis 
and time saved etc. Discrete distributions 
naturally arise when records are taken in 
completed units of time. The fact that many of 
the discrete distributions can be closely 
approximated by continuous distributions adds 
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to the utility of the former as models of life 
length. Also, there is a well developed 
methodology to separately find the distribution 
of the integer parts and fractional parts of 
continuous random variables. This methodology 
often permits inference on parameters based on 
count data to be translated to those based on 
continuous measurements with a reasonable 
estimate of the margin of error on account of the 
translation. The geometric distribution owing to 
its lack of memory property is widely used to 
model such systems.  
 
Reliability measures of the geometric 
distribution 

An important property of a product or 
system is its ability to fulfill the intended 
purpose without failure for a specified period of 
time under stated conditions. Reliability is a 
yardstick of the capability of a component to 
operate without failure when put into service. 
The survival function, hazard function and mean 
residual life function are three important notions 
used extensively for characterizing life 
distributions.  
 Let X denote a discrete random variable 
in the support of { }0,1,...I + =  denoting the time 
to failure of a component. Defining   
 
                     ( ) ( )S x P X x= ≥                   (2.1) 
 
the survival function of X  and ( )f x , the 
probability mass function of X , the hazard rate 
of X  is defined as 
 

       ( ) ( )h x P X x X x= = ≥   

                                ( )
( )

f x
S x

= .                     (2.2) 

 
and the mean residual life is defined as 
 

  ( ) ( )r x E X x X x= − >   

                      ( ) ( )
1

1
1 y x

S y
S x

∞

= +

=
+ ∑ .         (2.3) 

 

Suppose that the life span X  of the component 
under observation follows a geometric 
distribution with probability mass function 
       
  ( ) ( )1 xf x θ θ= − , 0 1θ< < , 0,1,...x =     (2.4) 
 
Then 
 
           ( ) ( )1 xS x θ= −  , 0 1θ< < ,              (2.5) 
 
            ( )h x θ=  , 0 1θ< <                   (2.6) 
and 
 

           ( ) 1r x
θ

=  , 0 1θ< < .                 (2.7) 

 
Estimation of the geometric parameter and the 
reliability measures using uncensored data 
 Wu (2001) and Faucher and Tyson 
(1988) proposed semi parametric estimation of 
the parameters of exponential and Pareto 
distributions using the empirical distribution 
function based on complete samples. The results 
are further extended, to the study of geometric 
distribution, by Mathachan and Jeevanand 
(2005). From (2.5) 
 
           { }( )( ) ( ) ( )ln ln 1i iS x x θ= − .               (3.1) 

 
Equation (3.1) can be written in the form, 

i iY AX= , where ( )ln 1A θ= − , ( )i iX x=  and 

( ) ( )ln ( )i iY S x= . By least square procedure, the 

estimator of A  is  
 

                      
( )( )( )

( )

1

1

ln
ˆ

n

i
i

n

i
i

S x
A

x

=

=

=
∑

∑
  (3.2) 

 

An estimate of the survival function 

( )( )iS x  is :
ˆ[1 ( ; )]i nF x q−  where :i nx  is the thi  

order statistic and :
ˆ ( : )i n

iF x q
n

= , the empirical 

distribution function. In order to avoid log(0) , 
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D’Agostino and Stephans (1986) suggested that, 

:
ˆ ( : )i nF x q can be approximated by 

2 1
i c

n c
−

− +
, 

1,2,...,i n=  where 0 1c≤ < , generally. In this 
article three popular values for c are taken and 
considered in Wu (2001), Faucher and Tyson 
(1988), viz. 0, 0.3 and 0.5c = . Then (3.2) 
becomes 

 

( )

1

1

1ln
1 2ˆ

n

i
FS n

i
i

n c i
n cA

x

=

=

+ − −⎛ ⎞
⎜ ⎟+ −⎝ ⎠=

∑

∑
  (3.3) 

 
The estimated asymptotic variance of Â  is 
 

                ( )ˆˆ
2

xy
yy

xx
FS

S
S

S
V A

n

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

             (3.4) 

where 
 

2 2 2 2

1 1

,
n n

xx i yy i
i i

S X nX S Y nY
= =

= − = −∑ ∑  and 

1
 

n

xy i i
i

S X Y nX Y
=

= −∑ . 

 
Estimation of the parameter of the geometric 
model 

An estimator of the parameter of the 
model (2.4) using the uncensored sample is  

 
ˆˆ 1 FSA

FS eθ = −     (3.5) 
 
with estimated asymptotic variance 
 

( ) ( )ˆ2ˆ ˆˆ ˆFSA
FS FSV e V Aθ = .   (3.6) 

 
Estimation of the survival function 

The corresponding estimator of the 
survival function is  

 
            ( ) ( )ˆ ˆ

FS FSS x Exp x A=               (3.7) 

 
and the estimated asymptotic variance is 
 

       ( )( ) ( )ˆ2ˆ ˆ ˆˆ ˆFSx A
FS FS FS FSV S x A e V A= .         (3.8) 

 
Estimation of the hazard function 

The estimator of the hazard function of 
the model (2.4) is 

 
                ( )ˆ ˆ

FS FSh x θ=                      (3.9) 
 
with estimated asymptotic variance  
 
         ( )( ) ( )ˆ2ˆ ˆˆ ˆFSA

FS FSV h x e V A= .          (3.10) 

 
Estimation of the mean residual life function 

The estimator of the mean residual life 
function of the model (2.4) is  

 

( ) ( ) 1ˆˆ 1 FSA
FSr x e

−
= −         (3.11) 

 
with estimated asymptotic variance 

( )
( ) ( )

ˆ2

2ˆ
ˆˆ ˆˆ

1

FS

FS

A

FS FS
A

eV r V A
e

=
−

      (3.12) 

Estimation of the geometric parameter and 
reliability measures using Type II censored data 

With the high reliability products that 
are common today, testing under normal 
conditions is time consuming and even 
expensive. Thus, in life testing experiments, it is 
a common practice to cease testing before all the 
components under observation have failed. The 
resulting sample is a censored sample. Censored 
data occur frequently in medical research, and 
estimation of the reliability measures viz. 
survival function, hazard function and mean 
residual life function has been an attractive topic 
when the data are censored. Estimation of 
hazard function and mean residual life function 
has drawn less attention than that of the survival 
function. For the survival function, the Kaplan-
Meier estimator (1958) is a widely used non-
parametric estimator. It is strongly consistent 
and is asymptotically normal (see, Kim, et al., 
2005, and Jan, et al., 2005). The focus of this our 
discussion is estimation of the survival function, 
hazard function and mean residual life function 



MATHACHAN & JEEVANAND 
 

495

of geometric distribution under Type II 
censoring. 
 
Estimation of the parameter of the geometric 
model 

A least square estimator is proposed for 
the parameter of the geometric distribution with 
survival function (2.5) when the data is censored 
at a pre defined time T. Suppose n components 
with geometric life times are put on test and 
observed the number of components failed at 
each time point ,  ,  2 ,...t t k t k+ + up to the time 
T. Define, jn  as the number of components still 
functioning at the time 

,  0,1,...,j jt t jk j t T= + = ≤  and jd  as the 
number of components whose failures occur in 
the time interval ( )1,j jt t− . Then, the Kaplan-

Meier estimator of the survival function ( )S t  
(see Jan et al. (2005)) for a given t  is 

  

( )
( ):

*
j

j j

j t t j

n d
S t

n≤

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ .       (4.1) 

 
For ( )1t t< , ( )* 1S t = . From the survival 

function (2.5), the following may be written:  
 

( )( ) ( )ln * ln 1S t t θ= − .        (4.2) 
 
Now, (4.2) is of the form y At= , with 

( )( )ln *y S t=  and ( )ln 1A θ= − . By least 
square procedures, there is 
 

( )( )
1

1

ln *
ˆ

n

j
j

CS n

j
j

S t
A

t

=

=

=
∑

∑
 

 
and the estimated asymptotic variance of Â  is  
 

( )ˆˆ
2

xy
yy

xx
CS

S
S

S
V A

n

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
−

. 

 

Consequently, a least square estimator of the 
parameter θ  is 
 

ˆˆ 1 CSA
CS eθ = −            (4.3) 

 
with estimated asymptotic variance 
 

       ( ) ( )ˆ2 ˆˆ ˆCSA
CS CSV e V Aθ = .                (4.4) 

 
Estimation of the survival function 

Substituting (4.3) in (2.5), a least square 
estimator of the survival function of the 
geometric distribution considered in (2.4) under 
Type II censoring scheme is obtained as 
 

                 ( ) ˆˆ CSx A
CSS x e=                          (4.5) 

 
with asymptotic variance 
 

( )( ) ( )ˆ2ˆ ˆ ˆˆ ˆCSxA
CS CS CSV S x A e V A= .     (4.6) 

 
Estimation of the hazard function 

Substituting (4.3) in (2.6), an estimator 
of the hazard function under the Type II 
censoring scheme is obtained as 

 
ˆ ˆ
CS CSh θ=            (4.7) 

 
and the asymptotic variance of the estimator is 
 

( ) ( )ˆ2ˆ ˆˆ ˆCSA
CS CSV h e V A= .        (4.8) 

 
Estimation of the mean residual life function 

Substituting (4.3) in (2.7), an estimator 
of the mean residual life function under this 
scheme is obtained as 
 

1ˆ ˆCS
CS

r
θ

=           (4.9) 

 
with asymptotic variance 
  

( )( )
( ) ( )

ˆ2

CS 2ˆ
ˆˆ ˆˆV r x

1

CS

CS

A

CS
A

e V A
e

=
−

.    (4.10) 
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Simulation Study 
 These procedures are assessed by a 
numerical study based on simulated samples 
with different values of the parameters of the 
model. Performances of the proposed estimators 
are examined empirically by generating samples 
from the geometric distribution. In the study, the 
bias of the estimator is defined as  
 

Bias = Average value of the estimate – 
Parameter value 

 
and the mean square error (MSE) of an estimator 
is determined as  
 

MSE = Variance of the estimator + (Bias) 2 

 

The simulated absolute bias, SD and MSE of 
the estimators proposed for the reliability 
measures using uncensored samples of sizes 20, 
50 and 100 for 1000 replications corresponding 
to different choices of the parameter values are 
given in Tables 1 – 3, respectively. 

The simulated absolute bias,  SD and 
MSE  of the estimators proposed for the 
reliability measures using Type II censored 
samples of sizes 20, 50 and 100 with different 
censoring schemes (i. e., for different choices of 
the censoring time ) for 1,000 replications are 
given in following tables, Table 4 – 6, 
respectively. These values are computed for 
different values of the parameters. 
 
A few features observed from Table 1 – 6: 

1. For smaller values of θ, the 
estimators under the two methods 
proposed have lesser bias and mean 
square error and a reverse trend is 
seen for larger values of θ. 

2. It seems that the bias and mean 
square error of all the proposed 
estimators become smaller as the 
sample size (or censoring times) 
increases for a given θ. 

Example for assessing the estimators with real 
data 

The pattern of natal dispersal in 
vertebrate animals is an important factor 
affecting the genetic and demographic processes 

within and between populations. The geometric 
probability distribution is a common way to 
model the frequency distribution of vertebrate 
dispersal distances (Porter and Dooley (1993), 
Greenwood et al., (1979)). They define X  as 
the number of units (home ranges, habitat, nest 
sites, territories etc. with a fixed diameter) 
moved before stopping (settling and / or dying) 
and θ , the probability of stopping while 
crossing any one unit of habitat before moving 
to an additional home- range diameter. 

For an illustration of the present study, 
used is the data about the dispersal distance (in 
units of 200 meters diameter) from natal site to 
first year breeding site for different categories of 
117 one-year-old male great tits given in page 
141, Appendix I, Greenwood et al. (1979). The 
estimators of the geometric parameter and the 
reliability measures based on the censored and 
uncensored samples are given in Table 7. 

The estimators are computed using  
Type II censored samples with different choices 
of the censoring time . The classical estimator of 
the geometric parameter under the maximum 
likelihood method of estimation ( MLE ) is 

 

1

ˆ
MLE n

i
i

n

n x
θ

=

=
+∑

. 

 
For the above data, the value 0.2566 is obtained. 
Table 7 suggests that the new semi-parametric 
estimates suggested are close to the MLE  in 
most cases. 
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Table 1: Estimators of ( )S x using uncensored samples when 5x =  

θ  ( )S x  n  c  Bias  SD  MSE  
0 0.0085 0.0764 0.0059 

0.3 0.0182 0.0774 0.0063 20 
 0.5 0.0266 0.0782 0.0068 

0 0.0141 0.0463 0.0023 
0.3 0.0179 0.0466 0.0025 50 

 0.5 0.0224 0.0469 0.0027 
0 0.0127 0.0336 0.0013 

0.3 0.0150 0.0337 0.0014 

0.1 
 
 
 
 

0.59049 
 
 
 
 

100 
 0.5 0.0176 0.0338 0.0015 

0 0.0339 0.0659 0.0055 
0.3 0.0417 0.0639 0.0058 20 

 0.5 0.0481 0.0622 0.0062 
0 0.0394 0.0419 0.0033 

0.3 0.0439 0.0412 0.0036 50 
 0.5 0.0474 0.0406 0.0039 

0 0.0443 0.0301 0.0029 
0.3 0.0470 0.0297 0.0031 

0.3 
 
 
 
 

0.16807 
 
 
 
 

100 
 0.5 0.0491 0.0295 0.0033 

0 0.0171 0.0178 0.0006 
0.3 0.0186 0.0164 0.0006 20 

 0.5 0.0198 0.0152 0.0006 
0 0.0212 0.0086 0.0005 

0.3 0.0219 0.0081 0.0005 50 
 0.5 0.0225 0.0078 0.0006 

0 0.0229 0.0059 0.0006 
0.3 0.0233 0.0056 0.0006 

0.5 
 
 
 
 

0.03125 
 
 
 
 

100 
 0.5 0.0236 0.0055 0.0006 

0 0.0020 0.0019 0.0000 
0.3 0.0021 0.0016 0.0000 20 

 0.5 0.0021 0.0015 0.0000 
0 0.0023 0.0004 0.0000 

0.3 0.0023 0.0003 0.0000 50 
 0.5 0.0023 0.0003 0.0000 

0 0.0024 0.0001 0.0000 
0.3 0.0024 0.0001 0.0000 

0.7 
 
 
 
 

0.00243 
 
 
 
 

100 
 0.5 0.0024 0.0001 0.0000  



SEMI PARAMETRIC ESTIMATION OF RELIABILITY MEASURES 
 
498 

 
 
 
 
 
 

 
 
 
 
 
 

Table 2: Estimators of h  using uncensored samples 

 
 

θ  h  n  c  Bias  SD  MSE  
0 0.0039 0.0247 0.0006 

0.3 0.0070 0.0254 0.0007 20 
 0.5 0.0097 0.0260 0.0008 

0 0.0048 0.0145 0.0002 
0.3 0.0060 0.0147 0.0003 50 

 0.5 0.0074 0.0149 0.0003 
0 0.0041 0.0105 0.0001 

0.3 0.0049 0.0106 0.0001 

0.1 
 
 
 
 

0.1 
 
 
 
 

100 
 0.5 0.0057 0.0107 0.0001 

0 0.0458 0.0735 0.0075 
0.3 0.0543 0.0747 0.0085 20 

 0.5 0.0618 0.0757 0.0096 
0 0.0425 0.0456 0.0039 

0.3 0.0473 0.0460 0.0044 50 
 0.5 0.0512 0.0464 0.0048 

0 0.0448 0.0328 0.0031 
0.3 0.0478 0.0330 0.0034 

0.3 
 
 
 
 

0.3 
 
 
 
 

100 
 0.5 0.0501 0.0332 0.0036 

0 0.1315 0.1199 0.0316 
0.3 0.1422 0.1193 0.0344 20 

 0.5 0.1514 0.1187 0.0370 
0 0.1259 0.0716 0.0210 

0.3 0.1322 0.0716 0.0226 50 
 0.5 0.1373 0.0715 0.0240 

0 0.1297 0.0526 0.0196 
0.3 0.1336 0.0526 0.0206 

0.5 
 
 
 
 

0.5 
 
 
 
 

100 
 0.5 0.1367 0.0526 0.0214 

0 0.1849 0.0882 0.0420 
0.3 0.1915 0.0853 0.0439 20 

 0.5 0.1969 0.0827 0.0456 
0 0.1907 0.0607 0.0401 

0.3 0.1946 0.0594 0.0414 50 
 0.5 0.1977 0.0584 0.0425 

0 0.1956 0.0427 0.0401 
0.3 0.1980 0.0422 0.0410 

0.7 
 
 
 
 

0.7 
 
 
 
 

100 
 0.5 0.1999 0.0417 0.0417 
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Table 3: Estimators of r using uncensored samples 
θ  r  n  c  Bias  SD  MSE  

0 0.1385 2.2796 5.2156 
0.3 0.1556 2.2097 4.9072 20 

 0.5 0.4002 2.1517 4.7898 
0 0.2734 1.3644 1.9362 

0.3 0.3830 1.3481 1.9640 50 
 0.5 0.5105 1.3292 2.0273 

0 0.3013 0.9592 1.0108 
0.3 0.3680 0.9522 1.0422 

0.1 
 
 
 
 

10 
 
 
 
 

100 
 0.5 0.4443 0.9442 1.0889 

0 0.3114 0.6412 0.5082 
0.3 0.3863 0.6211 0.5350 20 

 0.5 0.4485 0.6043 0.5663 
0 0.3625 0.3920 0.2851 

0.3 0.4039 0.3851 0.3114 50 
 0.5 0.4370 0.3795 0.3350 

0 0.4069 0.2778 0.2428 
0.3 0.4319 0.2748 0.2620 

0.3 
 
 
 
 

3.3333 
 
 
 
 

100 
 0.5 0.4514 0.2724 0.2780 

0 0.3576 0.3206 0.2306 
0.3 0.3873 0.3092 0.2456 20 

 0.5 0.4119 0.2996 0.2594 
0 0.3812 0.1869 0.1802 

0.3 0.3977 0.1831 0.1917 50 
 0.5 0.4108 0.1801 0.2012 

0 0.4008 0.1356 0.1791 
0.3 0.4108 0.1339 0.1867 

0.5 
 
 
 
 

2 
 
 
 
 

100 
 0.5 0.4185 0.1326 0.1927 

0 0.2857 0.1309 0.0988 
0.3 0.2951 0.1246 0.1026 20 

 0.5 0.3028 0.1193 0.1059 
0 0.3004 0.0819 0.0969 

0.3 0.3055 0.0795 0.0997 50 
 0.5 0.3096 0.0776 0.1019 

0 0.3094 0.0547 0.0987 
0.3 0.3125 0.0537 0.1005 

0.7 
 
 
 
 

1.42857 
 
 
 
 

100 
 0.5 0.3148 0.0529 0.1019  
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Table 4: Estimators of ( )S x  using censored samples when 5x =  

θ  ( )S x  t  Bias  SD  MSE  

5 0.0991 0.0118 0.0100 

10 0.0506 0.0143 0.0028 

20 0.0240 0.0065 0.0006 
0.1 

 
 

0.5905 
 
 30 0.0126 0.0108 0.0003 

5 0.0701 0.0059 0.0049 

10 0.0334 0.009 0.0012 0.3 
 

0.1681 
 15 0.0261 0.0066 0.0007 

5 0.0216 0.0023 0.0005 

7 0.0165 0.0045 0.0003 0.5 
 

0.0313 
 9 0.0114 0.0056 0.0002 

5 0.0019 0.0002 0.0000 0.7 
 

0.0024 
 7 0.0005 0.0004 0.0000 

 

Table 5: Estimators of h  using censored samples 
 

θ  h  t  Bias  SD  MSE  

5 0.0325 0.0042 0.0011 

10 0.0160 0.0047 0.0003 

20 0.0074 0.0020 0.0001 0.1 
 
 

0.1 
 
 30 0.0039 0.0033 0.0000 

5 0.0718 0.0076 0.0052 

10 0.0305 0.0088 0.0010 0.3 
 

0.3 
 15 0.0233 0.0062 0.0006 

5 0.1060 0.0203 0.0117 

7 0.0721 0.0262 0.0059 0.5 
 

0.5 
 9 0.0454 0.0241 0.0026 

5 0.0772 0.0169 0.0062 0.7 
 

0.7 
 7 0.0132 0.0117 0.0003 
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Table 6: Estimators of r  using censored samples 
 

θ  r  t  Bias  SD  MSE  

5 2.4462 0.2343 6.039 

10 1.3706 0.3536 2.0036 

20 0.6898 0.1782 0.5076 0.1 
 
 

10 
 
 30 0.3674 0.3133 0.2332 

5 0.6425 0.0549 0.4159 

10 0.3060 0.0826 0.1005 0.3 
 

3.3333 
 15 0.2393 0.0605 0.0609 

5 0.3485 0.054 0.1243 

7 0.2492 0.0804 0.0686 0.5 
 

2 
 9 0.1635 0.0836 0.0337 

5 0.1414 0.0278 0.0208 0.7 
 

1.4286 
 7 0.0261 0.0229 0.0012 

 
Table 7: Estimators of the parameter and the reliability measures using 

the real data when 5x =  
 

Censoring 
time t  

Estimate 
of θ  

Estimate of 
( )S x  

Estimate 
of h  

Estimate 
of r  

 
5 

 
0.3345 

 
0.1305 

 
0.3345 

 
2.9892 

 
10 

 
0.3229 

 
0.1424 

 
0.3229 

 
3.0973 

 
15 

 
0.3102 

 
0.1562 

 
0.3102 

 
3.2298 

 
Uncensored 

data 

 
0.2912 

 
0.1790 

 
0.2912 

 
3.4347 
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Inference on Overlapping Coefficients in Two Exponential Populations 
 

Mohammad F. Al-Saleh   Hani M. Samawi 
       Yarmouk University           Georgia Southern University 

 
 
 
Three measures of overlap, namely Matusita’s measure ρ , Morisita’s measure λ  and Weitzman’s 
measure Δ  are investigated in this article for two exponential populations with different means. It is well 
that the estimators of those measures of overlap are biased. The bias is of these estimators depends on the 
unknown overlap parameters. There are no closed-form, exact formulas, for those estimators variances or 
their exact sampling distributions. Monte Carlo evaluations are used to study the bias and precision of the 
proposed overlap measures. Bootstrap method and Taylor series approximation are used to construct 
confidence intervals for the overlap measures.  
 
Key words: Bootstrap method; Matusita’s measure; Morisita’s measure; overlap coefficients; Taylor 
expansion; Weitzman’s measure. 
 
 

Introduction 
 
Overlap measure are commonly used in 
reliability analysis to estimate the proportion of 
machines or electronic devices that have similar 
range of failure time. The machines may come 
from two different sources or may be under 
different stress, which implies different 
probability densities of failure time. This 
proportion can be measured by the overlap 
coefficients of the two densities.  

There are three overlap coefficients 
(OVL), (Matusita’s measure ρ , Morisita’s 
measure λ  and Weitzman’s measure Δ ). 
However, the most commonly used overlap 
coefficient is the Weitzman’s measure Δ . OVL 
measure is defined to be the area intersected by 
the graphs of two probability density functions. 
It measures the similarity, the agreement or the 
closeness of the two    probability   distributions. 
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The OVL measure Δ  was originally introduced 
by Weitzman (1970). Recently, many authors 
considered this measure, see Bradley and 
Piantadosi (1982), Inman and Bradley(1989), 
Clemons (1996), Reiser and Faraggi (1999), 
Clemons and Bradley (2000) and Mulekar and 
Mishra (2000).   

For other applications of Δ , see 
Ichikawa (1993) (for the probability of failure in 
the stress-strength models of reliability 
analysis), Fedeer et al. (1963) (for estimating of 
the proportion of genetic deviates in segregating 
populations and Sneath (1977) (as a measure of 
distinctness of clusters). For additional 
references of such methodology applications in 
ecology and other fields, see Mulekar and 
Mishra (1994 and 2000). Inman and Bradley 
(1989) summarized the history of such 
procedures. 

Let 1 2( ) and ( )f x f x be two probability 
density functions. Assume samples of 
observations are drawn from continuous 
distributions (Slobdchikoff and Schulz, 1980; 
Harner and Whiytmorte, 1997; MacArthur, 
1972). The overlap measures are defined as 
follows: 

Matusita’s Measure (1955): 
 

1 2( ) ( )  ,f x f x dxρ = ∫  
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Morisita’s Measure (1959): 

 

1 2

2 2
1 2

2 ( ) ( ) 
,

[ ( )]  [ ( )]  

f x f x dx

f x dx f x dx
λ =

+
∫

∫ ∫
 

 
and 
 

Weitzman’s Measure (1970): 
 

1 2min{ ( ), ( )} .f x f x dxΔ = ∫  

 
These measures can be directly applied 

to discrete distributions by replacing the 
integrals with summations and also can be 
generalized to multivariate distributions. All 
three overlap measures of two densities are 
measured on the scale of 0 to 1. Note that the 
overlap value close to 0 indicates extreme 
inequality of the two density functions, and the 
overlap value of 1 indicates exact equality. 

Smith (1982) derived formulas for 
estimating the mean and the variance of the 
discrete version of Weizman’s measure using 
delta method. Mishra et al. (1986) gave some 
properties of the sampling distributions for a 
function of the Δ  estimator, under the 
assumption of homogeneity of variances for the 
case of two normal distributions. Mulekar and 
Mishra (1994) simulated the sampling 
distribution of estimators of the overlap 
measures for normal densities with equal means 
and obtained the approximate expressions for 
the bias and variance of their estimators. Lu et 
al. (1989) investigated the sampling variability 
of some estimators of these measures using 
simulation. 

Dixon (1993) described the use of the 
bootstrap and jackknife techniques for Gini 
coefficient of size hierarchy and Jaccard index 
of community similarity. Mulekar and Mishra 
(2000) addressed the problem of making 
inferences about the overlap coefficients for two 
normal densities with equal means using 
jackknife, bootstrap, transformation and Taylor 
series approximation.  Reiser and Faraggi (1999) 
considered the problem of making inference 
about the overlap coefficient Δ , as a measure of 
bioequivalence, under the name, proportion of 

similar responses, for normal densities with the 
equal variances, based on the non-central t- and 
F- distributions. The sampling behavior of a 
nonparametric estimator of Δ  was examined by 
Clemons and Bradley (2000), using Monte Carlo 
and bootstrap techniques. Finally, AL-Saidy et 
al. (2005) consider the problem of drawing 
inference about the three overlap measures 
under the Weibul distribution function with 
equal shape parameter.  

Although, the exponential distribution is a 
special case of the Weibul distribution, this 
article considers the three proposed measures of 
overlap ( ρ , λ  and Δ ) for two exponential 
distributions with different means. This special 
case provides some neat and closed form results. 
Exponential distributions are primarily used in 
reliability applications. They are used to model 
data with a constant failure rate (indicated by the 
hazard plot which is simply equal to a constant). 
Exponential distributions are the most 
commonly used life distribution models (see 
Mann et al. 1974.)  

A random variable X follows the 
exponential (denotes by EXP(θ )) if it has the 
cdf and pdf given by: 
 

          ( ) 1 exp   for 0,   xF x x
θ

⎧ ⎫= − − >⎨ ⎬
⎩ ⎭

(1.1) 

and      

             
1( ) exp   for 0 xf x x
θ θ

⎧ ⎫= − >⎨ ⎬
⎩ ⎭

  (1.2)     

 
respectively, where 0 θ > . 
 
Overlap measures (OVL) for Exponential 
Distribution 

Suppose 1 2( ) and ( )f x f x  represent the 
exponential densities with means 1 2and θ θ  

respectively. Letting 1

2

R θ
θ

= , then the 

continuous version of the three proposed overlap 
measures  can be expressed as a function of R as  
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F 
 
f

follows (the derivation of the three overlap 
measures is straightforward and it is omitted 
from the content of this article): 
 

                      
2 ,
1

R
R

ρ =
+

                             (2.1) 

 

                        2

4  
(1 )

R
R

λ =
+

                        (2.2) 

and 
 

         
1

1 11 1 ,     R 1.RR
R

−Δ = − − ≠            (2.3) 

 
Figure 1 shows curves of the three overlap 

measures. All three measures are not monotone 
for all R>0.  Similar to Mulekar and Mishra 
(2000), ρ , λ  and Δ  have nice properties, such 
as, symmetry in R, i.e. OVL(R)=OVL(1/R) and 
invariance under linear transformation, Y=aX+b, 

0a ≠ . They all attain the maximum value of 1 
at R=1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                
 
 
 
 

Statistical Inference 
 
Estimation 
 The OVL measures ρ , λ , and Δ  are 
functions of 1 2and θ θ . In order to draw any 
inference about the OVL measures, one first 
needs to get estimates of 1 2 and θ θ . Suppose 
that    

111 12 1( ,  ,  ...,  )nX X X  and 

121 22 2( ,  ,  ...,  ) nX X X are two independent 

random samples drawn from  1 2( ) and ( )f x f x  
respectively, where  
 

1
1 1

1( ) exp   for 0 xf x x
θ θ

⎧ ⎫
= − >⎨ ⎬

⎩ ⎭
 

 
and 
 

2
2 2

1( ) exp   for 0 xf x x
θ θ

⎧ ⎫
= − >⎨ ⎬

⎩ ⎭
 

 
The maximum likelihood estimators (MLEs) 
based on the two samples are given by: 
 

R

2.001.501.201.10.80.50.20.10.01

O
V

L

1.2

1.0

.8

.6

.4

.2

0.0

Matusita's Measure

Morisita's Measure

Weitzman's Measure
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1) From the first sample: 

               

1

1
1

11
1

ˆ

n

i
i

X
X

n
θ == =

∑
.                 (3.1) 

 
2) From the second sample 
 

            

2

2
1

22
2

ˆ

n

i
i

X
X

n
θ == =

∑
.      (3.2) 

 
Note that, it is easy to show that 

1 2
1 1 2 2

1 2

ˆ ˆG( , ) and G( , )n n
n n
θ θθ θ∼ ∼ , where 

G(., .) stands for the gamma distribution 
function. Hence, the variances of those MLE’s 
are respectively   

2 2
1 2

1 2
1 2

ˆ ˆ( )  and Var( )Var
n n
θ θθ θ= = . Also, the 

MLE of R is 1

2

ˆ
ˆ

ˆR θ
θ

= . Therefore, using the 

relationship between Gamma distribution and 
Chi-square distribution and the fact that the two 
samples are independent, it is easy to show that 

2

1

R̂θ
θ

 has F-distribution{i.e., 1 2(2 , 2 )F n n }. 

Hence, the variance of R̂ is 
2

2 2 1 2
2

1 2 2

( 1)ˆ( )
( 1) ( 2)
n n nVar R R

n n n
+ −=

− −
. Also, an 

unbiased estimate of R is given 

by * 1 2 2

2 22

ˆ ( 1) ( 1)ˆ ˆ
ˆ

n nR R
n n

θ
θ

− −= =  with 

* 2 1 2

1 2

( 1)ˆ( )
( 2)

n nVar R R
n n

+ −=
−

. Clearly, *R̂ has 

less variance than R̂ .  
 The OVL measures considered here are 
functions of R, therefore, based on the MLE 
estimate of  R,  the OVL coefficients can be 
estimated by  
 

                               
*

*

ˆ2ˆ ,ˆ1
R
R

ρ =
+

                     (3.3) 

 

                               
*

* 2

ˆ4ˆ  ,ˆ(1 )
R
R

λ =
+

                 (3.4) 

and 
 

                      
*

1
ˆ* 1

*

1ˆ ˆ1 ( ) 1 .    ˆ
RR

R
−Δ = − −      (3.5) 

 
Asymptotic Properties 
 Let OVL= ( )g R , then *ˆ ˆ( ).OVL g R=  
Thus using the well-known delta method (Taylor 
series expansion) the approximate sampling 
variance of the OVL measures can be obtained 
as follows:       
 

                          

2
ˆ

2
1 2

4
1 2

ˆVar( )

(1 ) ( 1) ,
( 2)(1 )

R R n n
n n R

ρρ σ= ≈

− + −
− +

          (3.6) 

 

                         

2
ˆ

2 2
1 2

6
1 2

ˆVar( )

16 (1 ) ( 1) ,
( 2)(1 )

R R n n
n n R

λλ σ= ≈

− + −
− +

    (3.7) 

and 
 

                         

2
ˆ

2
21

1 2
2

1 2

ˆVar( )

( 1)( ) (ln ) .
( 2)(1 )

Rn n R R
n n R

σ
Δ

−

Δ = ≈

+ −
− −

    (3.8) 

  
 It is known that the estimators of those 
OVL coefficients are biased. Approximations 
for the biases of the OVL coefficients estimates, 
using Taylor series expansion, are as follow: 
 

1. *ˆ( )Bias ρ =  

1 2
3

1 2

( 1) 3 ( 2) 1 
( 2) 2( 1)

n n R R R
n n R
+ − − −

− +
 

 
2. *ˆ( )Bias λ =  
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2
1 2

4
1 2

( 1) 8 ( 2) 
( 2) ( 1)

n n R R
n n R

+ − −
− +

 

 
3. *ˆ( )Bias Δ =  

2
1 2

1 2
2 1

21

3

2
1 2

1 2
2 1

21

3

( 1) 
( 2)

[ (2 ( ) 2) ( ) ( 1) ] if 1
( 1)

.
( 1)

( 2)

[ (2 ( ) 2) ( ) ( 1) ] if 1
(1 )

R
R

R
R

n n R
n n

R R R Ln R Ln R R R
R

n n R
n n

R R R Ln R Ln R R R
R

−
−

−
−

⎧ ⎫+ −
⎪ ⎪−⎪ ⎪
⎪ ⎪

− − − −⎪ ⎪>⎪ ⎪−⎪ ⎪
⎨ ⎬

+ −⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪− − − −⎪ ⎪<
⎪ ⎪−⎩ ⎭

 
Reasonable estimates for the above variances 
and the biases can be obtained by substituting R 
by *R̂ in the above formulas.  
 
Interval estimation 
 
Transformation Technique   

From Section 3.1,  2
1 2

1

ˆ (2 , 2 )R F n nθ
θ

∼ , then  

*2 2

1 2

( ) ˆ
( 1)

n R
n

θ
θ −

∼ 1 2(2 , 2 )F n n . Let L and U  be 

the lower and upper confidence limits 
respectively of R, corresponding to the inclusion 
probability1 α− . Thus L and U can be 
determined by solving for R the equation  

1 2 1 2

/ 2 1 / 22
(2 ,2 ) (2 ,2 )

1

ˆ( ) 1n n n nP F R Fα αθ α
θ

−< < = − , where 

1 2 1 2

/ 2 1 / 2
(2 ,2 ) (2 ,2 ) and n n n nF Fα α− are the lower and the 

upper / 2α quantile of the 

1 2(2 , 2 )F n n distribution respectively. Thus 

1 2 1 2

1 / 2 / 2
(2 ,2 ) (2 ,2 )

ˆ ˆ
 and 

n n n n

R RL U
F Fα α−= = . However, the 

OVL coefficients are not monotone functions of 
R therefore, the 100(1 α− )%confidence 
intervals for the OVL coefficients can be 
obtained using the transformation technique as 
follows: 
 

 
 

 
 

1. 
2 2{ ( , ) 

( 1) ( 1)
L UMin

L U+ +
 

ρ≤ ≤  

2 2( , )}
( 1) ( 1)

L UMax
L U+ +

 

 

2. 2 2

4 4{ ( , ) 
( 1) ( 1)

L UMin
L U+ +

 

λ≤ ≤  

2 2

4 4( , )}
( 1) ( 1)

L UMax
L U+ +

 

 

3. 
11

11 1 1{ (1 |1- |, 1 |1- |) 
L U

ULMin L U −−− −

 ≤ Δ ≤  
11

11 1 1(1 |1- |, 1 |1- |)}
L U

ULMax L U −−− −

 
Asymptotic technique 
 Normal approximation to the sampling 
distribution, using Delta-method, work fairly 
well for large sample because of the nice 
asymptotic properties of the MLE estimates of 
the exponential distribution.  Therefore, the 
100(1 α− )% confidence intervals for the OVL 
coefficients can be computed easily  as 

ˆ ˆ1 / 2 1 / 2
ˆ ˆˆ ˆ{ , }OVL OVLOVL Z OVL Zα ασ σ− −− + , 

where 1 / 2Z α− is the / 2α  upper quantile of the 
standard normal distribution.  
 These confidence intervals are not the 
best because of the bias involved in OVL 
coefficients estimates, however, for large 
samples they work fairly well. In Section 3.2, 
approximate the bias of those OVL coefficients. 
Using these approximations, the bias corrected 
interval can be computed as     
 

ˆ1 / 2
ˆ ˆ ˆ{( ( ) ,OVLOVL Bias OVL Z α σ−− −  

ˆ1 / 2
ˆ ˆ ˆ( ( )) }OVLOVL Bias OVL Z α σ−− + . 
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Bootstrap Interference 
 Bootstrap methods are computer 
intensive which involves simulated data sets.  
Uniform (ordinary) bootstrap resampling by 
Efron (1979) is based on resampling with 
replacement from the observed sample 
according to a rule which places equal 
probabilities on sample values. Uniform 
bootstrap resampling as described by 
Efron(1979) and others is an assumption-free 
method that can be used for some inferential 
problems. However, it is designed for complete 
and continuous set of observations. For two-
sample case the uniform resampling rules will 
apply to each sample separately and 
independently (see Ibrahim, 1991; Samawi et al., 
1996; Samawi et al., 1998).   
 Suppose 

11 11 12 1( ,  ,  ...,  ) nX X Xℵ =  

and 
2

* * * *
2 21 22 2n(X , X , ..., X )ℵ = are two 

independent random samples drawn from 
1 2( ) and ( )f x f x respectively. Assume that the 

parameter of interest is the OVL coefficient, say 
θ .  Let S be an estimate based on the random 
samples 1 2 and ℵ ℵ  i.e., 1 2( ,  )S S= ℵ ℵ .  
Furthermore, assume S is a smooth function of 
the samples.  Assume that U is a function of S 
i.e.,  )(SUU = . Write U*  for the same 
function of the data but in  resamples 

1

* * * *
1 11 12 1n(X , X , ..., X )ℵ =  and  

2

* * * *
2 21 22 2n(X , X , ..., X )ℵ = which are drawn from 

1 2 and ℵ ℵ according to the rules which places 

probability 
1

1
n

 on each sample value of 1ℵ  and 

probability
2

1
n

 on each sample value of 2ℵ .  Let 

( )u E U=  then the bootstrap estimate (say û ) 
of u is given by 
 
                    *

1 2ˆ ( | ,  )u E U= ℵ ℵ           (3.17) 
 
This expected value is often not computable.   
 
 

 
Uniform Resampling Approximation for 
Bootstrap Estimate 
 Assume that the probability of selecting 

1iX   in a resample is  
 

                   *
1 1 1

1

1( | )iP X X
n

= ℵ =        (3.18) 

 
and probability of selecting 2iX   in a resample 
is  
 

                   *
2 2 2

2

1( | )iP X X
n

= ℵ =      (3.19) 

 
Let * * *

11 12 1,  ,  ....,  Bℵ ℵ ℵ and * * *
21 22 2,  ,  ...., Bℵ ℵ ℵ  

denote two independent resamples sets of size B 
each drawn from 1 2and ℵ ℵ  respectively.  To 
obtain a Monte Carlo approximation to û  using 
uniform resampling, let *

bU   denote U computed 

from * *
1 2and b bℵ ℵ . Then, the uniform 

resampling approximation to the bootstrap 
estimate û is given by 
 

                          ( )* *

1

1ˆ
B

B b
b

u B U
=

−= ∑        (3.20) 

 
Do and Hall (1991) showed that *ˆBu is an 

unbiased approximation to û , in the sense that 
*

1 2ˆ ˆ( |  ,  )BE u uℵ ℵ = . Moreover, an 
approximation of the bootstrap bias of  u  can be 
obtained by * *ˆ ˆ ˆ| |Bbias u u−= , and an 
approximation of the bootstrap MSE can be 

obtained by  ( )
2

* *

1

1ˆ ˆ
B

b
b

MSE B U u
=

−= −∑ . 

 
Estimation of distributions function and 
quantiles 

Bootstrap method for calculating 
confidence limits, distribution function or a 
problem in testing hypothesis involves 
estimation    of      probabilities     of   the    form 
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            )( pdSPp ≤=              (3.21) 
Using the bootstrap estimation conditioned on 
the original samples one can estimate p by p̂    
where    
 
                       )(ˆ *

pdSPp ≤=              (3.21) 
 
and * * *

1 2( , )S S= ℵ ℵ .  Note that (3.22) can be 
approximated by using empirical frequencies 
such as the proportion of B simulated samples 
for which pdS ≤* .  In the literature, the 
problem is solved by defining a smooth 
transformation h of S viz., T=h(S) with the 
property that the distribution of T is 
approximately normal, see Hall (1992). 

Adopting the notation of Section 3.3.1, 
the definitions of U and U * for this problem 
become )( pdSIU ≤= and * *( )pU I S d= ≤  
respectively, where I is the indicator function.  
Let  * * *

1 2,  ,  ...., BS S S  be the resampling 
realization of S. Then, the uniform resampling 
approximation to the bootstrap estimate p̂ is 
 

  ( )* *

1

1ˆ ( )
B

B b b
b

p B I S d  
=

−= ≤∑      (3.22) 

 
To find the uniform resample approximation of 
the p-th quantile of the bootstrap distribution of 
S,  say bq̂ , let * * *

(1) (2) ( ),  ,  ...., BS S S  be the order 

statistics of * * *
1 2,  ,  ...., BS S S . Define 

K=Int(B*P).           
Then uniform resampling approximation of the 

lower limit is 
* *
( ) ( 1)*ˆ

2
K K

p

S S
q ++

= .   

 
Simulation Study 
 A Monte Carlo simulation study was 
conducted for R=0.2, 0.5 and 0.8, 

1 2( , )n n =(20,20), (20,30), (50, 50), (50, 100) 
and α =0.05. All the 1000 simulated sets of 
observations were generated under the 
assumption that both densities have exponential 
distribution with the different means. A 

bootstrap approximation, based on 1000 
resamples, was used. 
 Tables 1-3 indicate that the bias of the 
proposed OVL estimators are negligible and 
|bias| decreases as the sample sizes are 
increased.  With respect to the coverage 
probability (1-α ),  Taylor series approximation 
method seem to work well, except for R close to 
one and very small sample sizes. 
 The coverage probability for all three 
OVL coefficients are getting closer to the 
nominal value when the sample sizes are 
increased. Bootstrap methods coverage 
probability work fairly good and increases when 
R increases close to one. However, 
Transformation method, which is the easiest to 
be used, works very well when R <0.5 and for 
small sample sizes. Also, transformation method 
is the best for all three OVL coefficients, with 
respect to the length of the confidence interval, 
except when the sample sizes are (50, 50).   
 
Illustration: Survival Time from Dinse (1982) 
 In most of medical studies the progress 
of the patients is often monitored for a limited 
time after treatment. Dinse (1982) gives data for 
survival times in weeks for 10 patients with 
symptomatic lymphocytic non-Hodgkin’s 
lymphoma and 28 asymptomatic patients. The 
precise survival time is not known for one 
patient in the symptomatic group and 12 patients 
in the asymptomatic group. They were alive 
when the study was terminated. Therefore, those 
patients were excluded from our illustration. 
Table 4 contains the survival time of the 
symptomatic and the asymptomatic group. The 
aim of this illustration to estimate the percentage 
of similarity in the range of survival time in the 
two groups. 
 Figure 2 and 3 indicate that the data for 
both groups (symptomatic and asymptomatic) 
can be accepted as exponential data. The MLE 
estimates for the scale parameters are 
respectively 1 2

ˆ ˆ=138.22 and 207.13θ θ = .  
 From Table 5, all three methods gave 
reasonable point and confidence interval 
estimates for the proposed OVL coefficients.  
However, Δ  have the lowest asymptotic bias 
but the largest asymptotic variance.  The 
confidence interval based on Taylor series  
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Table 1: Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.20. Exact OVL coefficients: 
ρ =0.745, λ =0.556 and Δ =0.465. 

 
  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.028 0.314 0.933  -0.016 0.279 0.936  -0.015 0.296 0.959 

λ  -0.029 0.457 0.928  -0.014 0.404 0.936  -0.017 0.428 0.959 

(20,20) 

Δ  -0.018 0.337 0.949  -0.006 0.311 0.936  -0.004 0.330 0.959 

 

ρ  -0.023 0.283 0.949  -0.013 0.259 0.941  0.003 0.270 0.957 

λ  -0.024 0.415 0.947  -0.010 0.376 0.941  -0.011 0.396 0.957 

(20,30) 

Δ  -0.015 0.305 0.950  -0.005 0.286 0.941  -0.002 0.303 0.957 

 

ρ  -0.011 0.196 0.937  -0.005 0.185 0.934  -0.005 0.086 0.036 

λ  -0.014 0.290 0.937  -0.002 0.274 0.934  -0.004 0.109 0.036 

(50, 50) 

Δ  -0.007 0.212 0.944  -0.000 0.204 0.934  -0.002 0.078 0.036 

 

ρ  -0.008 0.169 0.945  -0.006 0.162 0.937  -0.004 0.125 0.868 

λ  -0.008 0.250 0.945  -0.005 0.240 0.937  -0.004 0.185 0.868 

(50, 100) 

Δ  -0.005 0.182 0.949  -0.002 0.177 0.937  -0.003 0.137 0.868 

      * Estimated bias using Monte Carlo simulation methods 
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Table 2.  Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.50. Exact OVL 
coefficients: ρ =0.943, λ =0.0.889 and Δ =0.75. 

  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.035 0.203 0.921  -0.024 0.179 0.944  -0.016 0.186 0.957 

λ  -0.059 0.369 0.919  -0.039 0.316 0.944  -0.027 0.327 0.957 

(20,20) 

Δ  -0.029 0.430 0.917  -0.016 0.369 0.944  -0.013 0.365 0.957 

 

ρ  -0.029 0.186 0.915  -0.025 0.171 0.930  -0.017 0.171 0.943 

λ  -0.048 0.339 0.915  -0.042 0.304 0.930  -0.030 0.303 0.943 

(20,30) 

Δ  -0.024 0.395 0.926  -0.021 0.318 0.930  0.003 0.347 0.943 

 

ρ  -0.014 0.125 0.930  -0.010 0.118 0.931  -0.007 0.453 0.034 

λ  -0.024 0.232 0.930  -0.017 0.215 0.931  -0.014 0.583 0.034 

(50, 50) 

Δ  -0.012 0.271 0.925  -0.005 0.260 0.931  -0.005 0.443 0.034 

 

ρ  -0.010 0.107 0.951  -0.008 0.104 0.946  -0.005 0.078 0.850 

λ  -0.018 0.200 0.948  -0.014 0.191 0.946  -0.008 0.144 0.850 

(50, 100) 

Δ  -0.009 0.234 0.942  -0.004 0.228 0.946  0.0009 0.175 0.850 

 
      * Estimated bias using Monte Carlo simulation methods 
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Table 3. Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.80. Exact OVL coefficients: 
ρ =0.994, λ =0.988 and Δ =0.918. 

 
  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.031 0.106 0.712  -0.026 0.108 0.955  -0.016 0.096 0.337 

λ  -0.059 0.204 0.714  -0.049 0.201 0.955  -0.030 0.178 0.337 

(20,20) 

Δ  -0.020 0.500 0.953  -0.071 0.320 0.955  -0.046 0.226 0.337 

 

ρ  -0.025 0.087 0.720  -0.022 0.094 0.952  -0.012 0.078 0.333 

λ  -0.048 0.168 0.721  -0.041 0.176 0.952  -0.023 0.145 0.333 

(20,30) 

Δ  -0.018 0.539 0.940  -0.059 0.297 0.952  -0.033 0.199 0.333 

 

ρ  -0.012 0.051 0.894  -0.011 0.053 0.958  -0.006 0.616 0.023 

λ  -0.024 0.10 0.892  -0.020 0.103 0.958  -0.011 0.794 0.023 

(50, 50) 

Δ  -0.011 0.320 0.881  -0.028 0.220 0.958  -0.015 0.652 0.023 

 

ρ  -0.009 0.043 0.943  -0.009 0.045 0.945  -0.005 0.030 0.844 

λ  -0.017 0.083 0.943  -0.017 0.088 0.945  -0.009 0.058 0.844 

(50, 100) 

Δ  -0.008 0.269 0.858  -0.023 0.020 0.945  -0.012 0.135 0.844 

   

 * Estimated bias using Monte Carlo simulation methods 
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Table 4. Survival time of symptomatic and asymptomatic lymphocytic  
patients by Dinse (1982) 

 
Symptomatic 49 58 75 110 112 132 151 276 281        

Asymptomatic 50 58 96 139 152 159 189 225 239 242 257 262 292 294 301 359

 

Table 5. Results based on the real data of Dinse (1982) 

 Asymptotic 

Inference 

Transformation 

Technique 

Bootstrap Inference 

based on 1000 

resamples 

 95% confidence 

Interval limits 

 95% confidence 

interval limits 

95% confidence 

interval limits 

Coeff MLEs (bias) 

 

Asymptotic 

variance Lower Upper  Lower upper Lower Upper 

ρ  0.973(-0.063) 0.0018 0.815 1.000  0.860 0.990 0.904 0.999 

λ  0.947(-0.117) 0.0070 0.643 1.000  0.740 0.981 0.817 0.999 

Δ  0.829(-0.060) 0.0247 0.654 0.883  0.606 0.898 0.675 0.976 
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Figure 2.  Exponential probability plot for symptomatic patients   

 
 

0 500 1000 1500

10
30

50
60
70

80

90

95

97

98

99

Data

P
er

ce
nt

AD* 2.978

Goodness of Fit

Exponential Probability Plot for Asymptomatic
ML Estimates - 95% CI

Mean 207.125

ML Estimates

 
Figure 3: Exponential probability plot for asymptomatic patients.   
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approximation gave the shortest confidence for 
Δ .  
 In conclusion, it seems that there is no 
best method in all situations. Therefore, when 
the sample size is small and R<0.5, 
transformation method is recommended. If 
computers are available, bootstrap method can 
be used. Taylor series approximation is 
recommended for larger sample sizes and R<0.8. 
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The Correlation Coefficients 
 

Rudy A. Gideon 
University of Montana  

 
 
A generalized method of defining and interpreting correlation coefficients is given. Seven correlation 
coefficients are defined — three for continuous data and four on the ranks of the data. A quick calculation 
of the rank based correlation coefficients using a 0-1 graph-matrix is shown. Examples and comparisons 
are given. 
 
Key words: Pearson, Spearman, Kendall, Gini, Greatest Deviation, median, absolute value,      
nonparametrics, correlation, tied values 
 
 

Introduction 
 
Definitions 

This article introduces a system of 
estimation that has numerous advantages over 
current practice. Among these advantages is the 
global tied value procedure for nonparametric or 
rank based correlation coefficients making 
estimation functional over all data and advanced 
statistical methods, such as multiple regression; 
the currently used local tied value procedure is 
very restrictive. This system has produced a way 
of viewing correlation that has allowed other 
correlation coefficients to be defined. In 
particular, the new continuous absolute value 
and median correlation coefficients should be 
used for L1 methods or the MAD scale estimate. 
It is general and provides a robust estimation 
procedure in correlation analysis and in 
advanced statistical procedures if robust 
correlation is used (www.math.umt.edu/gideon). 
 

 
Rudy Gideon received the Ph.D. in Statistics in 
1970 under John Gurland at the University of 
Wisconsin. His academic career began in the 
Department of Mathematical Sciences at the 
University of Montana in 1970; he retired from 
the Department in June of 2005. He has worked 
extensively with Masters and Doctoral students 
as well as on a multitude of various applied 
statistical projects. His prime goal in retirement 
is to disseminate his original correlation 
estimation system that encompasses basic 
statistical methods.    

 
To make the definitions of the 

correlation coefficients more natural, Pearson's r 
is reformulated. This re-expression of r also 
makes possible a natural definition of parametric 
and nonparametric correlation coefficients based 
on absolute values and medians. Let CC and NP 
stand for correlation coefficient and for 
nonparametric. Some NPCCs are defined based 
on counting techniques. A 0-1 graph-matrix is 
used to establish relationships. Finally, some 
data is analyzed to examine the relative 
robustness of the NPCCs .  

Let niyx ii …,2,1),,( =  be a bivariate 
data set. The usual mean notation will be used 
and xxx ii −=* , niyyy ii …,2,1,* =−=  are 
the centered data. The sample covariance is 
proportional to ∑ **

ii yx . To prepare for later 
definitions, this covariance is rewritten as  

 
( )∑ ∑ ∑ −−+= 4/)()( 2**2****

iiiiii yxyxyx . 
 
In the uncentered notation, this can be written 
as  
 

( )
)

2

2

(

( ) / 4
i i

i i

x x y y

x x y y

− + −

− − − +
∑
∑

. 

 
This form of the covariance function appeared as 
an interpretation of Pearson's r in Rodgers and 
Nicewater (1988), when their rescaled variance 
interpretations were added. Heuristic motivation 
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for this form as a measure of the relationship 
between the x-y data is now given and it holds 
for all CCs that are to be defined.  

When there is positive correlation the 
terms 22** )()( yyxxyx iiii −+−=+  will 
tend to be large, because the two deviations will 
tend to be in the same direction. The distance 
from a negative relationship is large, so the 
correlation would be positive. The terms 

niyx ii …,2,1,)( 2** =−  will have some 
canceling effect, so they will tend to be small. 
The net effect is that the covariance will be 
large. The distance from a positive relationship 
is small so that the correlation would be positive. 
When x and y are independent variables, a 
similar amount of canceling occurs in both terms 
and the covariance will fluctuate around zero. 
When there is negative correlation the distance 
from positive correlation will be large as the 

niyx ii …,2,1,)( 2** =−  terms will tend to be 
large, but cancellation will be occurring in the 

niyx ii …,2,1,)( 2** =+  terms, so the distance 
from negative correlation is small. Throughout 
this article the term distance does not mean 
just Euclidean distance, but is meant to 
describe the numerical measures of 
deviations from perfect positive or negative 
correlation.  

These concepts are next elaborated in 
Euclidean n-space. For this paragraph x and y 
are the n-dimensional vectors of the centered 
data, normalized so that each has Euclidean 
length one, 1== yx . Consider the vector x 
+ y in n-space; the farther this vector is from the 
origin (for this vector the origin represents 
perfect negative correlation) the more positive is 
the correlation. For perfect positive correlation,  
cos(x, y) = 1 and 2=+ yx ; that is, distance 
from the origin is maximum. Consider the vector 
x – y. The closer this vector is to the origin, the 
more positive the correlation. For x – y, the 
origin represents perfect positive correlation and 
hence, yx −  small means distance from 
perfect positive correlation is small. Throughout 
this article the term distance does not mean just 
Euclidean distance, but is meant to describe the 

numerical measures of deviations from perfect 
positive or negative correlation.  

To restate, for x – y the surface of the 
centered n-dimensional ball of radius 2 
represents perfect negative correlation, so 

yx −  large means distance from perfect 
positive correlation is large. For perfect negative 
correlation, cos(x, y ) = –1, and yx −  = 0, so 
the distance from the ball of radius 2 is a 
maximum.  

Another way to express this, in terms of 
parameters, is that there is positive correlation 
when V(X+Y) > V(X–Y) and negative 
correlation when the inequality goes in the other 
direction. The connection between distance 
away from negative correlation and V(X+Y) and 
also for distance away from positive correlation 
and V(X–Y) is now illustrated for a bivariate 
normal distribution. 

Let Z1 and Z2 be standardized normal 
random variables with CC ρ . Note that 
E(Z1Z2) = ρ  = [V(Z1+Z2) – V(Z1–Z2)] / 4. 
The term V(Z1+Z2) equals distance from perfect 
negative correlation and is a linear function of 
ρ , namely ρ22 + . For 1−=ρ  this distance 
is zero but for 1+=ρ , this distance is 4. 
Similarly, V(Z1–Z2) is distance from perfect 
positive correlation and it is ρ22 − . For 

1−=ρ , this distance is 4, but for 1+=ρ , this 
distance is 0. Note that these distances are 
monotonic functions of ρ and the overall 
correlation V(Z1+Z2) –V(Z1–Z2) combines to 
equal 4 ρ . However, for some of the other 
correlation coefficients this combining of the 
distance measures does not simplify. Also note 
that in the case of Fisher’s normal 
transformation,  

 
1 2

1 2

1 21

1 2

( )1 1 1ln ln
2 ( ) 2 1

( )
tanh ln

( )

V Z Z
V Z Z

V Z Z
V Z Z

ρ
ρ

ρ−

+ += =
− −

+
=

−

. 

 
It is possible that a similar normalizing concept 
would work for other correlation coefficients. 
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Additionally, a correlation coefficient could be 
based on the ratio, V(X+Y) / V(X–Y), which 
would be less than one for negative correlation, 
one for independent random variables, and 
greater than one for positive correlation.  
 Pearson’s r and other correlation 
coefficients based on absolute values and 
medians can now be defined. Let SSx stand for a 
centered sum of squares and SAx stand for the 
sum of absolute values about the mean; i.e.,  
 

∑ −= xxSA ix . 
 
Continuous correlation coefficients 
Definition 1: Pearson’s r 
 

* * * *
2 2

( , )

1 ( ) ( )
4

i i i i

x y x y

r x y

x y x y
SS SS SS SS

=

⎛ ⎞
⎜ ⎟+ − −
⎜ ⎟
⎝ ⎠
∑ ∑

 (1) 

 
= {(standardized distance from perfect negative 
correlation) – (standardized distance from 
perfect positive correlation)} divided by a 
constant, that puts the value between –1 and +1. 

 
Definition 2: An absolute value CC, rav 
 

* * * *

( , )

1
2

av

i i i i

x y x y

r x y

x y x y
SA SA SA SA

=

⎛ ⎞
+ − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑       (2) 

 

where    y,i.e. ∑∑ +
y

i

x

i

SA
y

SA
x **

 = 2 

  
Definition 3: The Median Absolute Deviation 
correlation coefficient. 
 

For the final continuous correlation, a 
correlation analog of the MAD, median absolute 
deviation estimate of variation, is given and 
denoted by madr . For a random sample, define 

)( iix xmedxmedMAD −=  and similarly for 
the data from Y. A median-type correlation 
coefficient is defined as  

( ) ( )

1
2 ( ) ( )

i i i i

x y

mad

i i i i

x y

x med x y med ymed
MAD MAD

r
x med x y med ymed

MAD MAD

⎛ ⎞− −+⎜ ⎟
⎜ ⎟

= ⎜ ⎟
− −⎜ ⎟− −⎜ ⎟

⎝ ⎠

.    (3) 

 
It is not true that rmad ≤1. Let 

xi
* =

xi − med(x)
MADx

, and similarly for yi
* . Now, 

med xi
* = med yi

* = 1. 

The proof that rmad ≤1 breaks down is 
because the median of the sum of two sets of 
nonnegative numbers is not always less than the 
sum of the medians. It would be true if the 
following equation held for rmad . 

 

( )* * * * * *

2
i i i i i imed x y med x y med x med y+ ≤ + ≤ +

=
 

However, the second inequality does not 
always hold. The computer package S+ has been 
used to examine rmad , and values slightly 
greater than one were occasionally obtained. 
Simulation studies of rmad  show it to behave 
very much like other correlation coefficients 
even with the anomaly of occasionally being 
greater than one. The spread of the distribution 
is very close to other correlations, and only 
when the population correlation is very near one 
can rmad  become slightly greater than one. In 
the case when X, Y have a bivariate normal 
distribution with parameters, μ x ,μ y ,σx

2,σ y
2,ρ , 

the population value is known to 

be
2

1
2

1 ρρρ −−+=mad . Substitute y for x 

in formula (3) and essentially MAD is 
recovered. Note that the same heuristic 
motivation for Pearson’s r holds for this absolute 
value CC.  

 
Rank based correlation coefficients 
  The first NPCC based on absolute 
values is now defined. In the same way that 
Spearman's CC is motivated from Pearson’s r by 
using direct substitution of ranks, so is this new 
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correlation coefficient obtained from Definition 
2 by substitution of ranks. An interesting 
historical note is that the NPCC in Definition 4 
was found first and rav determined from it.  
 
 First rewrite  
 

)()( yyxx ii −+− as )( yxyx ii +−+ .  
 

Replacing the data by their ranks and ordering 
the bivariate data by the x data, gives the data in 
rank form. this is just before the 

nipi i …,2,1),,( = . Thus ip  equals the rank of 
the yi for the x with rank i. The means of the 

ranked data are
2

1+n
, so yx +  becomes 1+n . 

The ranks ip  are here assumed distinct; tied 
values will be handled later. In Definition 2, 
with ranks substituted, the terms SAx and SAy 
are equal and can be factored from expression 
(2). Their value is 
 

1
2

1 1 2
2 2

x y i
nSA SA p

n n ii

+= = − =

+ + −− =

∑

∑ ∑
. 

 
For n odd, ∑ −+ in 21  can be shown to be 

2
12 −n

 and for n even it becomes 
2

2n
; for either 

even or odd n, it is ⎥
⎦

⎤
⎢
⎣

⎡
2

2n
, the greatest integer in 

2

2n
. Thus the denominator in (2) becomes  

 

∑ ⎥
⎦

⎤
⎢
⎣

⎡
=−+=

2
212

2ninSAx . 

 
Definition 4: Spearman’s modified footrule 
correlation coefficient, Gini (1914), Betro 
(1993) 

  ( )
2

( , )

1 /
2

mf

i i

r x y

nn p i p i

=

⎡ ⎤
+ − − − − ⎢ ⎥

⎣ ⎦
∑ ∑

         (4) 

 
The attempt by Spearman (1906) to 

make an absolute value rank CC was also 
documented in Kendall and Gibbons (1990). 
Spearman tried to make a computationally 
simple and robust CC and based it on one 
summation. The idea in this article is that all or 
at least most correlations should be a difference 
of two functions that measure distance from 
positive and negative correlation, which 
contrasts with Kendall’s method in Chapter 2 in 
Kendall and Gibbons (1990). There, Kendall 
advanced the idea that some type of inner 
product should be used to define all CCs. The 
above two absolute value CCs cannot be defined 
using Kendall’s inner product concept. This 
difference of two functions gives the necessary 
symmetry to a CC. The denominator arises from 
the absolute value of the numerator which 
occurs when ipi =  (correlation = +1), or when 

inpi −+= 1  (correlation = –1). Note again 
that the same heuristic motivation applies. The 
forumulation of Spearman's correlation 
coefficient based on Definition 1 is: 

 
Definition 5: Spearman's correlation coefficient, 
Spearman (1906) 
 

( )
2

2 2

( , )

( 1) ( 1 ) ( )
3

s

i i

r x y
n n n p i p i

=

− + − − − −∑ ∑
     (5) 

 

∑ −
−

−= 2
2 )(

)1(
61 ip

nn i . 
 

The linear restriction that allows rs to 
simplify as shown does not hold for rmf. Two 
more CCs are to be defined — Kendall’s, for 
which a linear restriction does allow a 
simplification of the defining formula and one 
based on maximum or greatest deviations for 
which no simplification occurs. Again the 
natural definitions are based on the difference of 
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two functions that measure distance from perfect 
positive and negative correlation and makes the 
distribution of the CCs symmetric about zero for 
the case when x and y are independent, i.e. the 
null case. It will also be shown that rmf can be 
computed from the quantities defined for the 
numerator of the Greatest Deviation CC.  
 Both Kendall’s CC (rk), usually called 
Tau, and the one based on greatest deviations 
(rgd) use a counting technique that can be 
defined with an indicator function. Let  
 

⎩
⎨
⎧

=
                      false if  0

 trueisargument   theif  1
(.)I  

 
Recall that the data are assumed ordered 

by the x data and for the ith largest element of x, 
the rank of the corresponding y data is ip . For 
Kendall’s correlation coefficient, let  

 

ic

n

ij
ij nppI ,

1

)( =>∑
+=

 

 
count the number of concordances and  
 

∑
+=

<
n

ij
ij ppI

1

)(  idn ,=  

 
count the number of discordances at position i 
(recall that no tied values are yet allowed). The 
larger the number of concordances the smaller 
the number of discordances. Let nc and nd be 
the sum over i, i=1,2,..., n-1 of the concordances 
and discordances, respectively. The concordance 
function, nc, is a counting function that 
measures distance of the ranked data from a 
perfect negative monotone relationship, whereas 
nd is a similar discrete measure of the ranked 
data from a perfect positive monotone 
relationship. 
  
Definition 6: Kendall’s rk correlation 
coefficient, see e.g. Kendall and Gibbons (1990) 
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The quantity ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

 means n choose 2. This 

summation of nc and nd will be shown in the 
next section to be n choose 2 using a 0-1 graph-
matrix formulation of the calculation of rk.  
 For the Greatest Deviation CC let 

∑
=

+ >=
i

j
ji ipId

1
)( , a function that is large 

when there is negative correlation and small if 
not; that is, the measure is large if distance from  
positive correlation is great. Let 
 

∑
=

− >−+=
i

j
ji ipnId

1

)1( . 

 
This is a measure that is large if distance from 
negative correlation is great. 
  
Definition 7: The Greatest Deviation correlation 
coefficient, rgd; Gideon and Hollister (1987) and 
in Gideon, Prentice, and Pyke (1989) 
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where ⎥⎦
⎤

⎢⎣
⎡
2
n

 is the greatest integer in n/2; it's 

value is the maximum value of the difference in 
the numerator.  
  This completes the definitions of the 
correlation coefficients under consideration. The 
next section gives some insightful examples; the 
work is considerably eased using a 
computational aid that allows computations of 
the four nonparametric correlation coefficients 
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from an augmented plot of the data with a 0-1 
matrix, called a graph-matrix.  
 

Methodology 
 

Computations using the graph-matrix 
The data in rank form are 

nipi i …,2,1),,( = . Let e = (1,2,....,n) and p = 
),,,( 21 nppp …  be the data in vector form. The 

graph of the ranked data will have e  plotted on 
the horizontal axis and p  plotted on the vertical 
axis. 

The YMCA basketball data that were 
used in illustrating the Greatest Deviation CC 
(Gideon & Hollister, 1987) is used here again. 
These data occurred as ranks and they will now 
be used to calculate all four of the NPCCs that 
have been defined. The e  contains the ranks of 
the won-lost records of the 16 teams that were in 
the fifth grade league in Missoula, Montana in 
1980. Rank one is the team with the best record. 
Throughout the season, after each game, each 
coach was asked to rate the sportsmanship of the 
opposing team and at the end of the season the 
cumulative ratings were presented in rank form 
with rank one being the team with the highest 
rated sportsmanship. These ranks were p  

)5,4,6,15,1,8,3,10,9,7,13,12,2,16,11,14(= .  
Note that in general the teams with the 

best won-lost records had the lower 
sportsmanship ratings. The correlation 
coefficients put a measure on the relationship 
between winning and sportsmanship.  

The graph-matrix appears in the middle 
of Figure 1 surrounded by auxiliary information. 
The two leftmost and the two rightmost columns 
as well as the two bottom rows are intermediate 
calculations explained below. Bordering the data 
plot are the axes labels. The *s indicate the 
plotted points nipi i …,2,1),,( =  and unlike a 
scatterplot, the Cartesian product, e  x e , on the 
graph is filled in with 0s above each of the 
plotted points and 1s below. The combination of 
these *s, 0s, and 1s are used to calculate all four 
NPCCs which appear on the three borders. 

Although the definitions of the 
correlation coefficients may seem unwieldy, the 
counting technique is easy and quick to use. It is 
really more convenient to use the method if the 

diagonals to the data plot are drawn in, which is 
easier done by hand. The line of slope one is 
denoted sl+1; this is the line through 

niii ,,2,1),,( …= . The line of slope minus one, 

sl-1, goes through points 
niini ,,2,1),1,( …=−+ .  

 Immediately below the graph are two 
rows that give the values necessary to calculate 
the Spearman and Absolute Value CCs. The 
upper row counts from the * to the line sl-1 with 
a minus sign if the * is below sl-1. The lower 
row counts from the * to the line sl+1 again with 
a minus sign if the * is below the line. It is 
readily apparent that this counting technique 
directly corresponds to the summands in the 
formulas of Definitions 4 and 5. The sum of the 
absolute values of these two rows are given just 
to the right of them (56, 106), followed by the 
sum of squares of them (348, 1012).  
 To the right of the graph-matrix are two 
columns that give the individual concordances 
and discordances in Kendall’s Tau as given in 
Definition 6. Starting at a * in position ),( ipi , a 
0 appears in column j>i (to the right of the *) if 
and only if the rank of that column jp  is in 

discordance ( ji pp > ) and a 1 appears in a 
column to the right of the * if and only if the 
rank of that column is in concordance 
( ji pp < ). To obtain the discordances, count 
the 0s to the right of the * in each column, and to 
obtain the concordances count the 1s to the right 
of each * in each column. These results appear 
in the two columns to the right of the graph. The 
sums of the two columns, the total numbers of 
con- and discordances, are given below the 
columns as (38, 82). Note that the ordering 
within the two columns does not match the 
standard algorithm used to calculate Kendall’s 
Tau, rk. 
 To the left of the graph are two columns 
headed by +

id  and −
id . They label the values for 

which the maximums need to be taken in 
Definition 7 of the Greatest Deviation 
correlation coefficient. For each element in the 

−
id  column count all the 0's on and to the left of 
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the sl-1 line. To obtain each element in the +

id  
column count all the 1's on and to the left of the 

sl+1 line. For example, ∑
=

+ >=
7

1
7 )7(

j
jpId  = 5, 

because exactly 65321 ,,,, ppppp  are greater 
than 7.  

Using the graph, there are exactly 5 1s 
on or to the left of sl+1 in row 7, corresponding 
precisely to the five spi ' mentioned above, 
because in that part of the plane, the second 
coordinate exceeds the first. Similarly, −

7d  =  
 

 
 

∑
=

=−<
7

1
)10717(

j
jpI  = 2 because only 4p  

and 7p  are less than 10. Now for −
id , the term 

ipn j >−+ 1  in the indicator function means  

inp j −+< 1 ; that is, count all the zeroes at 
in −+ 1  on the vertical axis on and to the left 

of the sl-1 line. So for i=7, count all the zeroes at 
17-7=10 on the vertical axis on and to the left of 
sl-1; the 0s appear only in columns 4 and 7 
corresponding to 4p  and 7p  being less than 10. 

 Just below the −
id and +

id  columns are 
the maximums for rgd and the below them are 
the sums of these two columns. It will be shown 
that these sums can be used to compute rmf. 

YMCA basketball data: correlation computations 
 

left: Greatest Deviation       bottom: Spearman and Absolute Value       right: Kendall 
 

di
+  di

−   vertical axis: sportsmanship rankings 
horizontal axis: won and lost standings 

nc nd  

0 1 16 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
1 2 15 0 0 1 0 0 0 0 0 0 0 0 0 * 0 0 0 0 3 
2 1 14 * 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 2 13 
3 2 13 1 0 1 0 0 * 0 0 0 0 0 0 1 0 0 0 1 9 
3 2 12 1 0 1 0 * 1 0 0 0 0 0 0 1 0 0 0 2 9 
4 1 11 1 * 1 0 1 1 0 0 0 0 0 0 1 0 0 0 4 10 
5 2 10 1 1 1 0 1 1 0 0 * 0 0 0 1 0 0 0 1 6 
6 2 9 1 1 1 0 1 1 0 * 1 0 0 0 1 0 0 0 2 6 
6 2 8 1 1 1 0 1 1 0 1 1 0 * 0 1 0 0 0 1 4 
5 2 7 1 1 1 0 1 1 * 1 1 0 1 0 1 0 0 0 4 5 
5 2 6 1 1 1 0 1 1 1 1 1 0 1 0 1 * 0 0 0 2 
4 3 5 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 * 0 0 
3 3 4 1 1 1 0 1 1 1 1 1 0 1 0 1 1 * 1 1 0 

3 2 3 1 1 1 0 1 1 1 1 1 * 1 0 1 1 1 1 5 1 

2 1 2 1 1 1 * 1 1 1 1 1 1 1 0 1 1 1 1 11 1 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 * 1 1 1 1 4 0 

6 3 gd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 82 

53 28 mf -2 -4 2 -11 0 2 -3 0 2 -4 2 -4 11 3 2 4 56 348 

   13 9 13 -2 7 7 0 1 1 -7 -3 -11 2 -8 -11 -11 106 1012

Figure 1. 
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Note that twice 53 is 106 and twice 28 is 56, the 
numbers needed for rmf.  
 From the statistics given in Figure 1, the 
differences in the numerators of the four 
correlation coefficients can be obtained and the 
denominators are  
 

,128
2

2

=⎥
⎦

⎤
⎢
⎣

⎡n
 ,13603/)1( 2 =−nn ,120

2
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛n
 

.8
2

=⎥⎦
⎤

⎢⎣
⎡n

 

,3906.0
64
25

128
10656 −=−=−=mfr

4882.0
170

83
1360

1012348 −=−=−=sr  

 

,3667.0
30
11

120
8238 −=−=−=kr

.3750.0
8
3

8
63 −=−=−=gdr

 
 

Note that the two numbers in the numerator for 
rs and rk add to the denominator ( rs: 348 + 
1012 = 1360, and rk: 38 + 82 = 120), the well-
known linear restriction, but this does not occur 
for rgd and rmf as rgd: 6 + 3 = 9 > 8, and rmf: 
56 + 106 = 162 > 128.  
 
Special form for calculation of rgd 

If only rgd is desired, there is a 
convenient algorithm to compute the −

id  and 
+
id  values. Write down for i = 1,2, ..., n the 

three rows vectors )1,,( ii pnpi −+ . Compute 
+
id  by placing a marker just to the right of the 

ith position and count left in the ip  row and 

note all the ranks greater than i. Compute −
id  by 

keeping the same marker, but counting left in the 
ipn −+ 1  row noting all the ranks greater than 

i. This is done in Table 2. Note that −
id  in 

Figure 1 and Table 2 appear in the same order 
whereas, the +

id  values are reversed.  

Three theorems are given below which 
show some additional usefulness of this graph-
matrix approach. The first shows the relationship 
between the statistics used in rgd and rmf. 

 
Theorem 1: ∑ ∑ −=+ ipd ii2  and 

∑ ∑ −−+=− ipnd ii 12 , all sums from 1 to 
n. 
 
Proof: First the +

id  relationship is established. 

Clearly 0)(
1

=−∑
=

n

i
i ip ; that is, the sum of the 

deviations about the sl+1 is zero. Thus, 

∑∑
><

−=−−
ip

i
ip

i
ii

ipip )()( . Now ∑
>

−
ip

i
i

ip )(  

just counts all the 1s on or above the sl+1 line. 

But, ∑
=

+ >=
i

j
ji ipId

1
)(  counts all the 1s in row  

I that are on or above the sl+1 line so that 

∑ ∑∑
<>

+ −=−=
ip

i
ip

ii
ii

piipd )()(  or  

∑ ∑∑
=>

+ −=−=
n

i
i

ip
ii ipipd

i 1

)(22 . 

These equalities are demonstrated in 
Figure 1. The bottom two rows carry signs to 
allow these equalities to be easily seen. The 
proof of the −

id  relationship follows in a similar 
manner.  

 
Theorem 2: The number of 1s on or to the right 
of the sl-1 line in row i-1 equals the number of 0s 
on or to the left of sl-1 in row i, i=2,3,...,n. The 
number of 0s on or to the right of the sl+1 line in 
row i equals the number of 1s on or to the left of 
the sl+1 line in row i-1, i=2, 3,...,n. (In this 
theorem row i refers to the vertical axis, which 
are ranks; e.g. row 1 corresponds to the bottom 
row of the 0-1graph-matrix.) Figure 1 provides a 
guideline for the proof. 

The symmetry displayed in this theorem 
shows that the Greatest Deviation CC could 
have been equivalently defined in a right-handed 
fashion; i.e. instead of counting 0s and 1s from 
the left to the diagonal lines, counting could 
have been done from the right with a suitable 
adjustment. 
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Theorem 3: For Kendall’s CC, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=+
2
n

nn dc . 

 
Proof: If the data positions (*s) fell on the 
diagonal of the graph-matrix it is clear that there 
would be a total of nn −2  0s and 1s with 
complete anti-symmetry. The permutation of the 
columns to depict the actual data does not 
change this total and hence, the total number of 
0s and 1s to the left of the *s must equal the total 
number to the right. Thus, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=−=+
22

2 nnnnn dc . Further, the number 

of 1s to the right (38 in Figure 1) equals the 
number of 0s to the left and the number of 0s to 
the right (82 in Figure 1) equals number of 1s to 
the left.  
 

Results 
 

Which correlation coefficients are outlier 
resistant? In this section two examples are given 
to illustrate that the four NPCCs can have quite 
different values on the same data. The maximum  
 
 
 
 
 
 

 
 
 
 

differences between rk and rs appear on page 34 
of Kendall and Gibbons (1990). The examples 
below suggest that rgd and rmf are the most 
robust, rk next, but that Spearman's rs is not very  
robust. Let e  and p be the rank vectors. The 
calculation of the correlation coefficients is left 
to the reader. The values of the NPCCs for n = 
10 and )6,7,8,9,10,1,2,3,4,5(=p  are  
 

,5200.0
50
26 ==mfr ,5152.0

33
17 ==sr

,1111.0
9
1 ==kr 6000.0

5
3 ==gdr . 

 
The values of the CCs now with 

)9,8,7,6,5,4,3,2,1,10(=p  are  
 

,2800.0
50
14 ==mfr ,0182.0

330
6 ==sr

,2444.0
45
11 ==kr .6000.0

5
3 ==gdr  

 
It is known that for the bivariate normal 
distribution, the NPCCs estimate a function that 
is less than the correlation parameter, ρ . When 
the CCs differ greatly, it suggests that there are 
strange observations in the data. Here, rgd and 
rmf give the   largest   indication   of   a  positive  

 
 
 
 
 

 
Table 2. Calculation of the Greatest Deviation CC 

 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 max 
pi 14 11 16 2 12 13 7 9 10 3 8 1 15 6 4 5  
n+1-pi 3 6 1 15 5 4 10 8 7 14 9 16 2 11 13 12  
d+

i 1 2 3 3 4 5 5 6 6 5 4 3 3 2 1 0 6 
d-

i 1 2 1 2 2 1 2 2 2 2 2 3 3 2 1 0 3 
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relationship for the strange data of these two 
examples. Hence, they may be the most resistant 
to outliers or to any unusual data. (Work in 
progress shows them more resilient.) 
 
Probabilities and asymptotics for the rank 
correlation coefficients  
 Some aspects of the rank CCs will be 
compared by using an example from Spearman 
(1906) concerning the relationship between the 
ability of people to add numbers quickly and 
accurately and their ability to distinguish 
between two sound tones. Spearman used this 
example to illustrate his footrule CC. The data 
were for eleven students of psychology; 
Spearman ranked their ability in pitch 
discrimination and a second person ranked 
independently for addition ability. The data are 
ordered by the addition variable and note the 
two tied values with the usual convention used, 
which could be called a local convention as 
opposed to a more useful global definition given 
below.  

Spearmans’s footrule CC is 
 

57.0
120

)5.8(61
1

)(6
1 2 =−=

−

−
−=
∑

>

n

ip
r ip

i

f
i . 

  
 

 
 
 
 
 
Because this footrule only involved distance 
from perfect positive correlation, it is not a valid 
correlation    coefficient.   It is interesting from a 
historical perspective. He compared this number 
to probable error (derived in his article) of 0.13 
and concluded because 0.57/0.13 = 4.38, “the 
faculty of adding numbers and that of 
discriminating pitch is just about large enough to 
be beyond all reasonable suspicion of mere 
chance coincidence” (p. 96).  

Spearman did not use a table of critical 
values but instead stated a heuristic value for the 
above ratio to be significant. The four 
nonparametric CCs and their corresponding 
probability values are now computed for this 
data. Referring to what is now known as the 
Spearman CC (the rank equivalent of Pearson’s 
CC; i.e., rs) Spearman said, “the effect of 
squaring is to give more weight to the extreme 
differences as compared with the median ones. 
This is probably a considerable advantage in 
most physical measurements. But in other fields 
of research, and perhaps above all in 
Psychology, these extreme cases are just the 
ones of most suspicious validity, so that the 
squaring is here more likely to do harm than 
good” (p. 99). Thus, Spearman wanted a robust 
CC for his data.  
 This example illustrates the definition of 
a rank CC when tied values are present. In 

 
Table 3 Spearman data 

Person addition sound 
D 1 3 
I 2 2 
H 3 1 
B 4 4.5 
J 5 4.5 
E 6 11 
A 7 6 
K 8 9 
F 9 8 
C 10 10 
G 11 7 
 (i) (pi)  



RUDY A. GIDEON 
 
527 

advanced work on the use of CCs in estimation, 
the current local methods of tied value 
calculations are not adequate and hence a global 
method first introduced in Hollister and Gideon 
(1987) is presented. In this method, the 
calculations are done twice: first when Person B 
is assigned rank 4 for sound and Person J is 
assigned rank 5 for sound, favoring positive 
correlation; in the second calculation ties are 
broken in the reverse direction to favor negative 
correlation. Note that rgd is the only CC without 
a change. Each CC can be defined uniquely by 
averaging the values of the two extreme 
correlation coefficients.    
 In Table 4, rgd remains at 0.6000 but 
rmf becomes (0.7333 + 0.7000)/2 = 0.7167.  A 
general global definition for an alternative tied 
value procedure is now given. 
 
Definition: The global values of rank CC when 
ties are present 
 Let ),( yx  be a set of data, and ),( +PI  
be the corresponding ranks which are assigned 
among the tied values in the way that most favor 
positive correlation, and let ),( −PI  the 
corresponding ranks assigned among the tied 
values in the way to most favors negative 
correlation. I  becomes e  and +P and −P  are 
permutations of e . Then a rank correlation 
coefficient, r , is defined uniquely from the two 
extremes, +P  and −P . Its value is  
 

     2/)),(),((),( −+ += PerPeryxr .   (8) 
 

The quantities ),( +Per  and 

),( −Per are abbreviated to r+ and r-, 
respectively.  As an example, let ),( yx  = 

((1,2,2,4,5), (1,1,2,1,3)). Then P+ = (1,2,4,3,5) 
and P- = (3,4,2,1,5). Thus, for rgd, 

  

0
2

)2/1(2/1
2

=−+=+=
−+ rrrgd . 

 
 Return to the level of significance for 
the Spearman example. The numerators and 
values of the four NPCCs as computed by the 0- 

1 graph-matrix method are given in Table 4. The 
denominators are  
 

5
2

11 =⎥⎦
⎤

⎢⎣
⎡ , 55

2
11

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, 60

2
112

=⎥
⎦

⎤
⎢
⎣

⎡
, 

.440
3

)111(11 2

=−
 

 
Tail probabilities are obtained from 

Neave (1978) for rk and rs, from Gideon and 
Hollister (1987) for rgd, and from Betro (1993) 
for rmf. The table values are compared to the 
asymptotic values computed from the 
asymptotic distributions which are given in 
Kendall and Gibbons (1990) for rs and rk and in 
Gideon, Prentice, and Pyke (1989) for rgd. The 
asymptotic null distributions ( ρ = 0) of the four 
CCs are given first. These are  

 
)1,0( is 1 Nrn s− ; )9/4,0( is 1 Nrn k− ; 

)1,0( is Nrn gd ; )3/2,0( is 1 Nrn mf− . 
 
For completeness the exact variances of each CC 
is given; )1/(1)( −= nrV s ;    

))1(9/()52(2)( −+= nnnrV k ; )( gdrV  is 

unknown; ))1(3/()2(2)( 22 −+= nnnrV mf  for 

n even and ))1)(1(3/()3(2 22 −−+ nnn  for n 
odd. The one tie is neglected and the data for the 
most correlation case, +P , is used. First, from 
tables, 
 

005.0)7636.0(001.0 ≤≥≤ srP ; 
025.0)5636.0(01.0 ≤≥≤ krP ;
05.0)6000.0(01.0 ≤≥≤ gdrP ; 

0013.0)7333.015/11( ==≥mfrP  and 

0024.0)7000.010/7( ==≥mfrP . 
 
 Thus, all of the CCs are significant with sr  and 

mfr  being the most significant. These results are 
now compared to the asymptotic approximations 
using the notation of Z  as N(0,1).  
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Table 4. 

 
Spearman’s 1906 Data and Correlations 

The pairs of numbers in the numerators show distances from – and + correlation 
Correlations are in second row of the named correlation 

 
 most + most - average 

gdr  5-2 5-2  

 0.6000 0.6000 0.6000 
    

mfr  60-16 60-18  

 0.7333 0.7000 0.7167 
    

kr  43-12 42-13  
 0.5636 0.5273 0.5455 
    

sr  388-52 386-54  
 0.7636 0.7545 0.7591 

 

Table 5: Some asymptotic comparisons 
 

( 0.7636) ( 10(0.7636)
2.4147) 0.0079

sP r P Z≥ ≅ ≥ =
=

 

10(0.5636)( 0.5636) (
2 / 3

2.6734) 0.0038

kP r P Z≥ ≅ ≥ =

=
 

( 0.6000) ( 11(0.6000)

1.9900) 0.0233
gdP r P Z≥ ≅ ≥ =

=
 

10(0.7333)( 0.7333) (
2 / 3

2.8401) 0.0023

mfP r P Z≥ ≅ ≥ =

=
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All of these approximate results are reasonably 
good. All four correlations support Spearman’s 
conclusion that his footrule CC gave. Spearman 
drew his conclusion by comparing his footrule 
value of 0.57 to the probable error, which he 
gave as 0.13. Thus, 0.57/0.13 = 4.38. This 
example is concluded by comparing the value of 
rmf, the modified footrule CC, 0.7333, to  

 
2

2

2(11 3)( )
3(10)(11 1)

0.0689 0.2625

mfV r += =
−

=

. 

 
Now, 0.7333/0.2625 = 2.7937 and by 
Spearman’s rule of “satisfactory demonstration” 
that this ratio be at least 4, had Spearman found 
the correct formulation, rmf , he would have 
drawn the opposite conclusion (p. 96).   

Again for this example it should be 
pointed out that rs and rk have a linear 
restriction but rmf and rgd do not. Hence, the 
terms in the numerator, when added give the 
denominator for rs and rk but not for rmf and 
rgd. For rs: 388+52 = 440 and for rk: 43+12 = 
55 whereas for rmf: 60+16 = 66 > 60 and for 
rgd: 5+2 = 7 > 5.  
 

Conclusion 
 

By viewing correlation broadly as the difference 
between measures of distance from perfect 
negative and perfect positive correlation, many 
new formulations of correlation may be defined. 
Two new continuous correlation coefficients are 
based on absolute values and medians. The 
median one is an extension of the MAD scale 
measurement and the absolute value one 
produces Gini’s CC when data ranks are 
substituted. A 0-1 graph-matrix was introduced 
as an extension to the plot of the bivariate rank 
data and used to compute all four nonparametric 
correlation coefficients and exhibit some 
relationships. Several examples suggest which 
of the correlations are most robust: the Greatest 
Deviation and Gini. A data set from Spearman 
was used to demonstrate the application of the 
asymptotic distributions, to compare the 
correlations on the same data, and to illustrate a 

global tied value procedure. This procedure does 
not seem critical here, but for later developments 
on the use of correlation coefficients in 
estimation it is essential. Several times the 
normal distribution was selected to set up 
notation but this is not necessary, as any 
distribution from the class of bivariate t 
distributions would suffice. The four 
nonparametric correlation coefficients would be 
distribution-free on this class of bivariate 
distributions with elliptical shaped contours, 
including the Cauchy distribution.  

  . 
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Performance of Some Correlation Coefficients When  
Applied to Zero-Clustered Data 
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Zero-clustered data occur widely in medical research and are characterised by the presence of a group of 
observations of value zero in a distribution of otherwise continuous non-negative responses. A simulation 
study was conducted to investigate the properties of a number of correlation coefficients applied to 
samples of zero-clustered data. 
 
Key words: zero-clustered data, Pearson correlation, Spearman correlation, weighted rank correlation. 
 
 

Introduction 
 

The defining characteristic of zero-clustered data 
is the presence of a group of observations of 
value zero in a distribution of otherwise 
continuous non-negative responses. This type of 
data is regularly encountered in a wide variety of 
medical and clinical applications (see e.g. 
Lachenbruch 1976; 2001a, 2001b, 2002).  

Delucchi and Bostrom (2004) discussed 
a number of endpoints often used in psychiatric 
studies which typically exhibit zero-clustering, 
and Berk (2002) gave, as further examples of 
zero-clustered data, the antibody response to a 
vaccine, levels of alcohol consumption, severity 
rating of side-effects, and intensity of pain 
during labour. In the field of Health Economics, 
Buntin and Zaslavsky (2004) commented on the 
“spike of zero values” that is often seen in 
otherwise non-negative observations in data on 
health care costs or resource usage, and Chang 
and Pocock (2002) discussed a specific example 
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of such data in their analysis of numbers of 
hours of personal care services received by a 
group of elderly patients. Other terms which 
have appeared in the literature to describe this 
type of data are semi-continuous (e.g. Schafer & 
Olsen 1999) and zero-inflated (e.g. Tu, 2002). 
Specifically excluded from consideration here 
are zero-inflated count data, which constitute a 
separate and widely studied phenomenon. 

Some authors note that in the analysis of 
zero-clustered data, it may be appropriate to bear 
in mind the different possible origins of the zero 
values. Zeros may arise, for instance, by the 
deliberate censoring of any negative values and 
the setting of such values to zero. An example of 
such an endpoint is the ACRn score widely used 
in studies of rheumatoid arthritis (van Riel & 
van Gestel, 2000). Alternatively the zeros may 
arise from an unintentional censoring process, 
such as an imprecise or insensitive measuring 
device, where small values of an endpoint 
cannot be detected and response is therefore 
recorded as zero (see e.g. Moulton & Curriero, 
2002 ). Finally, the zeros may be genuine and 
accurate values properly representing a patient’s 
response (e.g. Chang & Pocock, 2002).  

The proportion of zero values seen in 
practice in this type of data is variable from one 
type of endpoint to another. Delucchi and 
Bostrom (2004), for example, analysing data on 
addiction severity scores, reported proportions 
of zeros in different data sets ranging from 6% 
to 77%. Tu and Zhou (1999) cited data on 
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hospital in-patient charges in which 
approximately 75% of the values are zero. In 
many applications, however, the proportion of 
zeros would be expected to be smaller – 
Lachenbruch (2001a), for example, studied cases 
in which 10% or 20% of the values were zeros. 

A further characteristic of zero-clustered 
data is that the distribution of non-zero part of 
the data is often skewed, with a long tail of high 
values. Models often suggested as appropriate 
for the non-zero part of the data are the 
lognormal or log-gamma distributions (see e.g. 
Lachenbruch, 2001a; Moulton & Curriero, 
2002). 

Although methods of analysis of zero-
clustered data have been studied in the literature 
(see e.g. Lachenbruch 1976; 2001a, 2001b, 
2002), the problem of measuring the degree of 
correlation between two samples of zero-
clustered data has not previously been 
investigated. This article describes the results of 
a simulation study designed specifically to 
examine the performance of a number of 
different measures of correlation when applied 
to zero-clustered data. The study reported here 
was split into two parts. In the first simulation 
study the performance of two conventional 
correlation measures – the Pearson and 
Spearman correlation coefficients – was studied 
in the context of application to zero-clustered 
data. The second simulation study investigated 
the performance of three little known weighted 
rank correlation coefficients when applied to the 
same data structure. 
 

Methodology I 
 

Generating Samples of Correlated Zero-
Clustered Data 

Two different models were used to 
generate zero-clustered data for the simulation 
study – the binomial-lognormal model and the 
truncated lognormal model (Lachenbruch, 
2001a; Moulton & Curriero, 2002). The first 
model assumes that the zero-clustered data arise 
from combination of binary and lognormal 
responses, and the second that the zeros arise 
from a process of truncation of lognormal data. 
These models are described in more detail 
below.  

Samples sizes of 25, 50, 100, 200 and 
1000 were used in the simulation study, with 
correlations in the data specified to be 0.30, 0.60 
or 0.90, representing low, medium and high 
correlations respectively. The proportion of 
zeros in the generated samples was 10%, 20% or 
30% in different series of simulations. For each 
of these combinations of parameters, 10000 
simulated datasets were generated, and the value 
of each of the chosen correlation coefficients 
was calculated for each generated sample of 
data.  
 
Binomial-Lognormal Model 

For these simulations, samples of zero-
clustered data were generated as a mixture of 
binary responses and lognormal responses, with 
the same correlation applied to both components 
of the data. This gives samples of paired, 
correlated data which follow the binomial-
lognormal model (Lachenbruch, 2001a).  

The correlated binary components were 
generated using the algorithm described by 
Kang and Jung (2001), and the correlated 
lognormal components were generated using the 
methods described by Saucier (2000).  The 
method of Kang and Jung permits the generation 
of pairs of binary observations - values (0,0), 
(0,1), (1,0) and (1,1) - with specified 
probabilities and correlations. For each sample 
size studied, a full set of such correlated binary 
pairs was generated, and also a full set of 
correlated lognormal responses. The final 
correlated zero-clustered binomial-lognormal 
dataset was then derived simply by multiplying 
these two sets of values together. Thus, a binary 
pair (0,0) and a lognormal pair (X1,X2) when 
multiplied together yield the pair (0,0), a binary 
pair (0,1) and a lognormal pair (X3,X4) when 
multiplied together yield the pair (0,X4), and 
similarly for other combinations.  
 
Truncated Lognormal Model 

In this series of simulations, zero-
clustered data were generated by truncating 
correlated lognormal data. To do this, correlated 
lognormal data were first generated, using the 
methods described by Saucier (2000), then, to 
generate a sample containing a given proportion 
 



PERFORMANCE OF SOME CORRELATION COEFFICIENTS 
 
532 

 
 
 

 

 
 
 

Table 1. Mean Value of Pearson and Spearman Correlation Coefficient Estimates 
[Binomial-Lognormal Model - 10000 Simulations] 

____________________________________________________________________________________________ 
 
                     True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                     --------------------    --------------------    -------------------- 
Sample               Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
25   Pearson        0.30    0.28    0.27    0.56    0.54    0.53    0.85    0.85    0.84 
     Spearman       0.32    0.30    0.29    0.56    0.56    0.56    0.81    0.83    0.85 
 
50   Pearson        0.29    0.27    0.26    0.57    0.55    0.53    0.86    0.85    0.85 
     Spearman       0.33    0.31    0.29    0.57    0.56    0.57    0.82    0.84    0.85 
 
100  Pearson        0.29    0.27    0.26    0.57    0.55    0.53    0.87    0.86    0.86 
     Spearman       0.33    0.31    0.30    0.57    0.56    0.57    0.82    0.84    0.86 
 
200  Pearson        0.29    0.27    0.25    0.57    0.55    0.54    0.88    0.87    0.86 
     Spearman       0.33    0.31    0.30    0.57    0.57    0.57    0.83    0.84    0.86 
 
1000 Pearson        0.28    0.26    0.25    0.57    0.55    0.54    0.89    0.88    0.87 
     Spearman       0.33    0.31    0.30    0.57    0.57    0.57    0.83    0.84    0.86 
_____________________________________________________________________________________________ 
 

 
Table 2. Mean Value of Pearson and Spearman Correlation Coefficient Estimates 

[Truncated Lognormal Model - 10000 Simulations] 
 

____________________________________________________________________________________________ 
 
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
  25    Pearson       0.33    0.33    0.33    0.59    0.59    0.59    0.86    0.86    0.85 
        Spearman      0.36    0.36    0.36    0.57    0.57    0.57    0.79    0.79    0.79 
 
  50    Pearson       0.32    0.32    0.32    0.59    0.59    0.59    0.87    0.87    0.86 
        Spearman      0.36    0.36    0.36    0.58    0.58    0.58    0.80    0.80    0.80 
 
 100    Pearson       0.31    0.31    0.32    0.59    0.59    0.59    0.88    0.88    0.87 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.58    0.81    0.80    0.80 
 
 200    Pearson       0.31    0.31    0.31    0.60    0.60    0.60    0.89    0.89    0.88 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.58    0.81    0.81    0.81 
 
1000    Pearson       0.30    0.30    0.31    0.60    0.60    0.60    0.90    0.89    0.89 
        Spearman      0.37    0.37    0.37    0.58    0.58    0.59    0.81    0.81    0.81 
__________________________________________________________________________________________ 
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p of zero data, any lognormal value lower than 
exp(probit(p)) to was set to zero.  
 

Results I 
 

First Simulation Study 
Pearson and Spearman Correlations applied to 
the Binomial-Lognormal Model 

Table 1 shows the results of the 
simulation study of the performance of the 
Pearson and Spearman correlation coefficients, 
when applied to zero-clustered data generated 
using the binomial-lognormal model.  

The most obvious finding is that, under 
this data model, both the Pearson and Spearman 
coefficients on average slightly underestimate 
the true correlation in most simulated scenarios. 
The bias is relatively small, but persists across 
all sample sizes and for low, medium and high 
correlations. A second finding is that the bias of 
the Pearson correlation increases slightly as the 
proportion of zeros in the data increases. In 
contrast, with the Spearman estimate, the bias 
either remains much the same as the proportion 
of zeros increases, or diminishes slightly. The 
other interesting feature of the results is that the 
Spearman estimate is generally more accurate 
for low and medium correlations, across all 
sample sizes, while the Pearson estimate 
performs better for high correlations. 
 
Pearson and Spearman Correlations applied to 
the Truncated Lognormal Model 

Table 2 shows the results of the 
simulation study of the performance of the 
Pearson and Spearman correlation coefficients 
with correlated zero-clustered data generated 
using the truncated lognormal model. Under this 
data model, both the Pearson and Spearman 
coefficients tend to underestimate the true 
correlation for medium and high correlations, 
but tend to overestimate the true value when the 
true correlation is 0.3. When the true correlation 
is high, the bias of the Pearson correlation 
increases slightly as the proportion of zeros in 
the data increases, whereas with the Spearman 
estimate, the bias either remains much the same 
as the proportion of zeros increases, or 
diminishes slightly. Under this data model, the 
Pearson correlation performs better than the 
Spearman for most scenarios. 

Methodology II 
 

Weighted Rank Correlation Coefficients 
Introduction 

For the second simulation study 
correlation estimates were selected that were (a) 
based on ranks or functions of ranks, and (b) 
were defined in a way which allows lower 
weights to be attached to the zero values in the 
data, and higher weights to the non-zero values. 
These were considered likely to be properties 
which would result in better estimation of 
correlation in the presence of data containing 
many zeros. 

Three weighted rank correlation 
coefficients which have these properties are 
described in the literature and are easily 
computed, but they are little known and little 
used in practice. They are the “top-down” 
correlation, the Blest-Genest-Plante correlation, 
and the Costa-Soares correlation.  The second 
part of the simulation study investigated the 
properties of these three coefficients when 
applied to correlated zero-clustered data. 
 
Top Down Correlation 

Iman and Conover (1987) described a 
correlation estimate which they termed the “top 
down” correlation. This coefficient places 
emphasis on the higher ranked data in a sample 
(i.e. assigns lower weights to low-ranked zero 
values) by computing the correlation using 
Savage scores derived from the ranked data. 
Savage scores are defined as follows: 
 

     

                              Si =  ∑
=

n

j 1
1/j                      (1) 

     
 
where i is the rank assigned to the ith order 
statistic in a sample of size n. For example, with  
n = 3, the three Savage scores are S1 = 1 + 1/2  + 
1/3 , S2 = 1/2 +1/3, and  S3 = 1/3. The top-down 
coefficient is calculated as: 
                          

            rtd  =   ( ∑
=

n

j 1
SRi SQi  - n ) / (n – S1)      (2) 
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where S indicates the Savage score, the Ri  and 
Qi are the ranks of the data in the two samples, 
and n is the sample size. A full description of the 
properties of this coefficient is given by Iman 
and Conover (1987). 
 
Blest-Genest-Plante correlation 

Blest (2000) also defined a rank 
correlation coefficient which allows lower 
weights to be assigned to lower ranked values in 
a dataset. This coefficient, whilst having some 
desirable properties, suffers from the 
disadvantage that in its original form it is not 
symmetric (i.e. corr[X,Y] does not equal corr 
[Y,X]). However, the Blest estimate was later 
modified by Genest and Plante (2003) to a 
symmetrical form, and this symmetric version 
for the simulation study reported here. The 
coefficient is calculated as: 

 
rbgp    =  -((4n+5)/(n-1))  

+  ( 6/(n3 - n) ∑
=

n

j 1
Ri Qi (4- (Ri + Qi)/ n+1)))    (3) 

                   
 
where the Ri  and Qi are the ranks of the data in 
the two samples, and n is the sample size. The 
detailed properties of the original Blest 
coefficient and its symmetrical generalization 
are described by Genest and Plante (2003). 
 
Costa-Soares correlation 

Costa and Soares (2005) also defined a 
rank correlation coefficient which, like the top-
down correlation and the Blest-Genest-Plante 
correlation, allows lower weights to be assigned 
to lower ranked values in a dataset, and hence in 
this application allows lower weights to be 
assigned to the zero values in the zero-clustered 
data. The coefficient takes the form: 
 

  rcs  =  1  -  6 ∑
=

n

j 1
(Ri - Qi)2  / (n3 – n)          (4)                                                              

 
 
where the Ri  and Qi are the ranks of the data in 
the two samples, and n is the sample size. The 
properties of this coefficient, and in particular a 
comparison of the properties with those of the 

Blest correlation, are described by Costa and 
Soares (2005). 
 

Results 
 
Second Simulation Study 
Weighted Correlations with the Binomial-
Lognormal Model 

Table 3 shows the results of the 
simulation study of the performance of the 
weighted correlation coefficients with zero-
clustered data generated using the binomial-
lognormal model. These weighted correlation 
coefficients all slightly underestimate the true 
correlation in the data when the true correlation 
is medium or high, and overestimate the value 
when it is low, Their performance generally is as 
good as or better than that of the Spearman 
estimate. 
Weighted Correlations with the Truncated 
Lognormal Model 

Table 4 shows the results of the 
simulation study of the performance of the 
weighted correlation coefficients with zero-
clustered data generated using the truncated 
lognormal model. As with the Pearson and 
Spearman coefficients, the general tendency of 
the estimates under this data model is that low 
correlations are overestimated and medium and 
high correlations are underestimated. Again 
under most conditions the weighted coefficients 
perform on average at least as well or better than  
the Spearman estimates. 
 

Conclusion 
 

The literature contains no recommendations on 
an appropriate choice of correlation coefficient 
for use with zero-clustered data, but Delucchi & 
Bostrom (2004) reported the results of an 
informal survey showing that 22 of 35 articles 
reported analyses of zero-clustered data that 
used standard normal theory methods, despite 
the clear non-normality of such data. Hence it 
seems likely that some practitioners, in the 
absence of any specific alternative, might choose 
to apply commonly-used correlation measures - 
such as Pearson’s correlation or Spearman’s 
rank correlation – to zero-clustered data. 
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Table 3 Mean Value of Some Weighted Rank Correlation Coefficients 
[Binomial-Lognormal Model - 10000 Simulations] 

____________________________________________________________________________________________ 
                             
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
   25   Top-Down       0.31    0.28    0.27    0.55    0.54    0.53    0.83    0.82    0.83 
        Blest-Genest-P 0.33    0.31    0.31    0.56    0.56    0.57    0.82    0.83    0.86 
        Costa-Soares   0.33    0.30    0.29    0.56    0.55    0.56    0.82    0.83    0.84 
 
   50   Top-Down       0.31    0.29    0.27    0.56    0.55    0.54    0.84    0.84    0.84 
        Blest-Genest-P 0.33    0.31    0.31    0.57    0.56    0.57    0.82    0.84    0.86 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.82    0.83    0.85 
 
  100   Top-Down       0.31    0.29    0.28    0.57    0.55    0.54    0.85    0.85    0.85 
        Blest-Genest-P 0.33    0.31    0.31    0.57    0.57    0.58    0.83    0.84    0.86 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.83    0.84    0.85 
 
  200   Top-Down       0.32    0.29    0.28    0.58    0.56    0.55    0.86    0.85    0.85 
        Blest-Genest-P 0.34    0.31    0.31    0.57    0.57    0.58    0.83    0.84    0.87 
        Costa-Soares   0.33    0.31    0.29    0.57    0.56    0.56    0.83    0.84    0.85 
 
 1000   Top-Down       0.32    0.30    0.28    0.58    0.56    0.55    0.86    0.86    0.86 
        Blest-Genest-P 0.34    0.32    0.31    0.58    0.57    0.58    0.83    0.85    0.87 
        Costa-Soares   0.34    0.31    0.30    0.58    0.57    0.56    0.83    0.84    0.85 
 

 
Table 4. Mean Value of Some Differentially Weighted Correlation Coefficients 

[Truncated Lognormal Model - 10000 Simulations] 
 
____________________________________________________________________________________________ 
 
                       True Correlation=0.3    True Correlation=0.6    True Correlation=0.9 
                       --------------------    --------------------    -------------------- 
Sample                 Proportion of Zeros     Proportion of Zeros     Proportion of Zeros 
  Size  Coefficient    0.1     0.2     0.3     0.1     0.2     0.3     0.1     0.2     0.3 
____________________________________________________________________________________________ 
 
  25   Top-Down       0.33    0.33    0.33    0.57    0.57    0.57    0.83    0.83    0.83 
       Blest-Genest-P 0.36    0.36    0.37    0.58    0.58    0.59    0.81    0.81    0.81 
       Costa-Soares   0.36    0.36    0.36    0.58    0.58    0.58    0.81    0.81    0.81 
 
  25   Top-Down       0.33    0.33    0.33    0.58    0.58    0.58    0.84    0.84    0.84 
       Blest-Genest-P 0.36    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
       Costa-Soares   0.36    0.36    0.36    0.58    0.58    0.58    0.82    0.82    0.81 
 
 100   Top-Down       0.34    0.34    0.34    0.59    0.59    0.59    0.86    0.86    0.86 
       Blest-Genest-P 0.37    0.37    0.37    0.59    0.59    0.60    0.82    0.82    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
 
 200   Top-Down       0.34    0.34    0.34    0.60    0.60    0.60    0.86    0.86    0.86 
       Blest-Genest-P 0.37    0.37    0.37    0.59    0.59    0.60    0.82    0.83    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.82    0.82    0.82 
 
1000   Top-Down       0.34    0.34    0.34    0.60    0.60    0.60    0.87    0.87    0.87 
       Blest-Genest-P 0.37    0.37    0.38    0.60    0.60    0.60    0.83    0.83    0.83 
       Costa-Soares   0.37    0.37    0.37    0.59    0.59    0.59    0.83    0.82    0.82 
__________________________________________________________________________________________ 
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The first part of the simulation study 
reported here was designed to examine the 
performance of these common correlation 
coefficients when applied to this type of data. 
The second part of the study investigated the 
properties of three little-known weighted rank 
correlation coefficients. This summary suggests 
that, overall, the Pearson estimate is in fact, for 
most practical purposes, an adequate choice 
from the coefficients studied, and that among 
rank correlation coefficients, those allowing 
differential weighting of zero values generally 
perform better than the much more widely 
known Spearman coefficient.  

.  
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From Information Lost to Knowledge Gained:  
The Benefits of Analyzing All the Research Evidence 

 
          Joseph L. Balloun          Hilton Barrett 

    Mercer University   Elizabeth City State University 
 

 
Data analyses should reveal truths about data. To the extent possible analyses should tell a complete 
picture. Data analyses should not inadvertently ignore phenomena that might be discovered in sample 
data sets. However, common univariate or multivariate data analysis methods tend to be based on only the 
means, standard deviations, and Pearson correlations. The result is that many important truths are 
discovered, but not the whole truth. This article illustrates in a sample data set that (a) data analyses of 
other properties of variables and groups are feasible and practical, and (b) such analyses may reveal 
important information not otherwise detectable. These extensions of common statistical methods are 
applicable to data analysis and interpretation issues in the social and behavioral sciences. 
 
Key words: Data analysis strategy, skewness, kurtosis, survey 
 

 
Introduction 

 
Research findings depend on what is analyzed 
and on what is not. In this sense, data do not 
speak for themselves. The data analyst chooses 
what methods will be used, and this choice 
shapes what interpretations can be made of the 
data. The purpose of this article is to show how 
conventional data analysis strategies may ignore 
important information, and to demonstrate a 
somewhat more comprehensive data analysis 
approach.  

Outside of the methodological or statis-  
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tical literature, many researchers describe 
univariate data primarily by variables’ means, 
and secondarily by the variables’ standard 
deviations or variances. Relationships among 
variables tend to be analyzed by a variety of 
calculations derived from linear correlations. 
The univariate means and standard deviations 
often are used to appropriately scale such 
relationships, as in multiple regression analyses. 
 
Strengths of Classical Statistical Methods 
 There are important strengths in current 
data analysis strategies that tend to assume 
univariate and multivariate normality. Their 
greatest advantage is that researchers in many 
different fields have made very impressive 
discoveries and practical improvements by using 
such statistical methods. Most academic 
researchers have been educated in the 
appropriate use of the traditional statistical 
methods. Widely distributed and inexpensive 
statistical packages such as SPSS (2007) and 
NCSS (Number Cruncher Statistical System, 
2007) have made these methods easily 
accessible and usable for seasoned besides new 
researchers.  
 The classical methods have strong 
technical virtues. Their simplifying assumptions 
make them parsimonious, easily understood, and 
analytically or computationally tractable. When 



BENEFITS OF ANALYZING ALL THE RESEARCH EVIDENCE 538 

their assumptions are met (e.g., no outliers or 
unduly influential observations, minimal 
missing data, univariate and/or multivariate 
normality, homoscedasticity, uncorrelated 
residual errors, sampling from a single 
identifiable population), they are fully 
informative. 
 
Extensions of Common Statistical Data Analysis 
Methods 
 For many data sets, there are individual 
observations within two or more subgroups. 
Most researchers typically report or analyze 
subgroup statistics such as the sample size, 
mean, standard deviation and within group 
covariances or correlations where applicable. 
Yet, there is substantial evidence that many 
population distributions are not Gaussian 
(Micceri, 1989; Rousseau & Leroy, 1987). 

Subgroup differences in variances or 
covariances, or non-normality might provide 
useful information. There is some evidence that 
researchers do not typically analyze subgroup 
departures from normality. For instance, we 
searched article abstracts for “skewness” or 
“kurtosis” in the Journal of Marketing Research, 
the Academy of Management Journal, and the 
Psychological Bulletin during calendar years 
2004 - 2006. However, in these three journals 
for these calendar years, the words “skewness”, 
or “kurtosis” never appeared in the abstracts. 
This suggests that researchers seldom consider 
skewness or kurtosis of primary importance 
when summarizing data analyses. 
 A possible alternative data analysis 
strategy is to consider these other characteristics 
of subgroup data as possibly informative. The 
analyst should analyze more than subgroup 
means and pooled group statistics. Possibly 
subgroup differences in standard deviations, 
skewness or kurtosis may also be informative. 
Moreover, with current computer power, it is 
practical to analyze more than subgroup means 
and statistics pooled over groups. 
 

Methodology 
 

An Illustrative Example Using a Real World 
Data Set  
 Barrett, Balloun & Weinstein (2004) 
gathered data on marketing and management 

factors related to performance of profit and non-
profit organizations. The resulting snowball 
sample consisted of 696 usable individual 
responses within 60 organizations. Barrett, et al. 
evaluated how organizations’ implementations 
of market orientation (MKT), learning 
orientation (LRN), entrepreneurial orientation 
(ENT), and organizational flexibility (ORG) 
were related to perceived organizational 
performance (PERF) in for-profit and nonprofit 
settings. Further details about the purposes, 
methods and conclusions of the study are 
reported in Barrett, et al. (2004). 
 One of their intriguing results was that 
variability within organizations was greater than 
the variability among organizations for most of 
the variables used in their study. This finding 
points to the possibility that besides the mean 
levels of postulated success factors for each 
organization, levels of within-organization 
variability might be related to organizational 
performance. But the standard deviation and the 
mean do not necessarily describe all the 
information about univariate distributions. 
Possibly the skewness or kurtosis of the 
distributions of variable scores within an 
organization also might be related to 
organizational performance.  
 There are analogous ideas that come 
from the social or behavioral sciences. For 
example, Yerkes & Dodson (1908) described 
how arousal levels could be curvilinearly related 
in an inverse U-shaped way to the rapidity of 
habit formation. Katz & Kahn (1966) discussed 
how variety of internal subdivisions in an 
organization should be adapted to the variety of 
organizational inputs. Groupthink ideas also 
seem to imply that some variety of viewpoints 
should be important in creating better 
organizational decisions.     Newell & Hancock 
(1984) discussed how skewness and kurtosis 
could influence inferences in studies of motor 
tasks. There was sufficient prior knowledge to 
warrant an exploration of the possible relations 
of within-organization variability, skewness, or 
kurtosis of variables to organizational 
performance. 
 
Calculations of Statistics 
 The calculations were done with SPSS 
14.0 (SPSS, 2004). Several subgroup statistics 
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were computed for each of the scales ENT, 
ORG, MKT, LRN and PERF for each of the 60 
organizations included in the study (Barrett, et 
al., 2004). The means of each scale were 
computed in the usual way within each 
organization. The large sample formulas were 
used to estimate the sampling errors of the 
standard deviation, skewness or kurtosis.  

The Standard Deviation (SD) was 
computed as the square root of the unbiased 
variance. The Skewness (SK) and the Kurtosis 
(KU) were computed by Fisher’s g1 and g2 
formulas respectively. Within each organization, 
the sampling distribution was treated as 
normally distributed for each statistic. The 
means of the standard deviation, skewness or 
kurtosis were supplied for each organization. 
The distributions of the sample statistics within 
each organization were assumed normal in the 
population. The standard deviations of simulated 
sample statistic observations within each 
organization were calculated so that they would 
yield the large sample standard error of the 
statistic if the simulated sample observations 
were raw data and the standard error of interest 
were that of the sample mean. With those 
sampling assumptions, sample data observations 
were simulated within each organization for 
each statistic. 

 
Results 

 
Do Organizations Differ in the Central 
Tendency of the Statistics? 
 Four statistical attributes were used to 
describe the distributions of each of the five 
scales included in this study. Each attribute of 
each scale differed among the sixty 
organizations. Table 1 summarizes the 
distribution of each attribute for each scale over 
the sixty organizations. 

For each of the five scales, the 
organizations were compared to see whether 
they differed significantly in the central 
tendency of the several distribution attributes. 
Eta Squared from the analysis of variance 
(ANOVA) was used to index the magnitude of 
differences among organizations. The 
comparisons of the distribution attributes were 
repeated for each of the five scales. Table 2 
summarizes the results of these analyses.  

For each of the five scales, a critical 
question is whether the additional distribution 
attributes improve modeling of PERF. 
Researchers tend to model the expected or 
conditional mean of a dependent variable. 
However, there may be additional aspects of a 
dependent variable to be modeled. These might 
include its spread or shape. In the following 
analyses, the organizational PERF means, 
standard deviations, skewnesses and kurtoses 
were modeled from attributes of the other scales 
in the study.  
 
Maintaining Parsimonious Models  
 A version of hierarchical multiple 
regression was used in this study. The subgroup 
scale attributes are somewhat correlated with 
each other. The first step of the hierarchical 
regression involved forcing the lower order 
moments as applicable into the regression 
equation first. Within each hierarchical step, 
the significant independent variables were 
chosen stepwise. On subsequent regression 
steps, the simpler attributes of each independent 
variable were entered into the equation first, 
followed by progressively more complex 
independent variable attributes. The purpose of 
this hierarchical or sequential procedure was to 
ensure that the developed regression models 
remain as parsimonious as possible (Cohen, et 
al., 2003, Pp. 186-187). At each of these steps, 
the information gain from the addition of the 
more complex independent scale attributes was 
assessed by the significance test for the increase 
in the ordinary least squares sample R2. 
Hierarchical regression models were developed 
for each of the dependent variable attributes. 
The results are summarized in Table 3. 
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Table 1 
Basic Description of Differences among Organizations 

 
Differences among Organizations 

 
Attribute 

Minimum 
 

Maximum Mean SDa SKb KUc 

Scale 

N Per 
Organization 

4.00 31.00 11.60 5.05 .93 2.42 

ENT MEAN 2.74 5.83 4.04 .68 .18 -.13 
 SD .32 1.70 .88 .27 .44 .34 
 SK -1.44 1.25 -.05 .63 .07 -.54 
 KU -2.92 2.05 -.09 1.09 -.02 -.13 
        

ORG MEAN 2.90 5.68 4.04 .56 .43 .67 
 SD .34 1.64 .91 .25 .41 .85 
 SK -1.87 2.02 -.08 .77 .17 .24 
 KU -4.32 5.44 .36 1.62 .49 1.79 
        

MKT MEAN 3.19 5.99 4.60 .67 -.25 -.66 
 SD .23 1.35 .83 .21 -.15 1.23 
 SK -1.78 1.52 -.18 .64 .00 .14 
 KU -2.82 3.82 -.02 1.35 .65 .22 
        

LRN MEAN 3.20 5.31 4.40 .49 -.43 -.26 
 SD .50 2.21 1.04 .31 1.14 2.74 
 SK -1.82 2.01 -.27 .73 .40 .64 
 KU -5.00 4.29 .09 1.60 -.04 1.89 
        

PERF MEAN 3.50 6.75 5.06 .73 -.01 -.55 
 SD .27 1.45 1.01 .26 -.63 .39 
 SK -1.94 1.49 -.21 .79 .03 -.31 
 KU -3.03 3.19 .06 1.53 .41 -.31  
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Conclusion 
 

Do the Scale Attributes Differ Among 
Organizations? 
 Table 1 reveals substantial differences in 
scale attributes among organizations. The results 
shown in Table 2 reveal that all the statistical 
attributes for the five scales are significantly 
different among organizations at or beyond the 
.05 level by the one-way ANOVA. Among the 
subgroup means, the Eta Squareds are sizeable 
for social science studies, and vary from .19 to  
.38 with a median of about .32. Eta Squareds for 
the standard deviations varied from .14 to .56 
with a median of .18. The skewnesses varied 
from .12 to .18 with a median of .14. Moreover, 
kurtoses had Eta Squareds in the range from .14 
to .17 with a median of about .16. These results 
 

 
 
 
 
 support the conclusion that the scale attributes 
differ importantly among organizations.  
Do the Additional Scale Attributes Add Useful 
Information? 
 Table 3 shows the effects of using 
distribution attributes beyond the mean for each 
organization. There are statistically significant 
effects for each of the attributes of PERF. Table 
3 shows that aspects of the independent scales 
beyond the mean scores of each subgroup may 
contribute importantly to improving regression 
models. For example, the kurtosis of the ORG 
scale accounts for a PRESS R2 increment of 5% 
in the variance in PERF. When considered in the  
context of the prior PRESS R2 of .42, this is a 
12% improvement in variance accounted for.  
 Such incremental improvements in the 
forecasting accuracy of prediction models can 

Table 2 
Univariate Scale Attribute Differences among Organizationsa 

 
Scale Distribution Attribute 

 
Scale 

MEAN SD SK KU 
ENT .38*** .19*** .12* .16*** 
MKT .25*** .14*** .18*** .17*** 
ORG .38*** .18*** .14*** .14*** 
LRN .19*** .18*** .14*** .16*** 
PERF .32*** .56*** .18*** .16*** 

 
 

Table 3 

Hierarchical Multiple Regression to Detect Significant Effects 
 

PERF (Dependent Scale) Subgroup Attributes 
 

Independent 
Scales’ 

Subgroup  
Attributes 

 

MEAN SD SK KU 

Means .34***b .04* .00 .00 
Squares of 

Means 
.08***c .00 

 
.00 .00 

SDs .00d .27*** .03* .08** 
SKs .00e .00 .00 .00 
KUs .05**f .00 .00 .00 
Total 

PRESS R2 
 

.47***g 
 

.31*** 
 

.03* 
 

.08**  
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produce large economic gains. For example, 
where there are many job applicants for a single 
job and there is high variance among people in 
their predicted job performance, then a small 
increment in R2 can result in large financial 
gains for an employer. Similarly, in choosing 
which products to bring to market, a small 
improvement in demand forecasting accuracy 
can create large financial gains when spread 
over several hundred thousand potential 
customers.  
 The obtained increments in the sample  
or PRESS R2s were expected to decline as more 
abstract attributes of the distribution of the 
dependent variable were modeled. For every 
organization’s PERF attribute the stringent 
reproducibility requirement, that the PRESS R2 
be statistically significant at or beyond the .05 
level, was met. This suggests that many more 
such effects may be found when one looks for 
them. And the example data set has shown with 
a substantial sample size and a carefully 
collected (albeit necessarily “snowball”) data 
base that it is certainly possible to explore such 
phenomena. 
 
Do these effects matter?   
 At present such possible effects as 
predictability of variability seem to be ignored. 
But ignoring phenomena observable in data does 
a disservice to researchers and to the general 
progress of our sciences and allied disciplines. 
For example, in the social sciences moderators 
remain a popular topic. But most discussions of 
moderation assume that moderators only are 
interaction effects in the analysis of variance 
sense. Yet, moderation may connote at least two 
different things. First, it may be that the slope of 
the regression of a dependent variable on two or 
more independent scales depends on the levels 
of one or more other independent scales (IVs). 
This is equivalent to interaction effects in the 
analysis of variance sense  
 But there is another sense in which the 
term moderator has been used. Second, 
correlations, or the absolute size of model errors, 
among IVs and the dependent variable (DV) 
may differ depending on the levels of other IVs. 
This also implies that the multiple correlations 
among a subset of IVs and the DV may differ 
depending on the level of other IVs. This is not 

the same phenomenon as possible interaction 
effects. It is theoretically similar to suggestions 
that the absolute size of errors in a model may 
be a replicable function of one or more 
independent scales of predictability (Ghiselli, 
1956). Ghiselli discussed several applications of 
his moderator idea in personnel selection. 
Modeling the conditional spread (standard error 
of prediction) is quite similar to this old idea of 
moderation. In an econometric context, such 
effects are called conditional variance, or are 
discussed under the topic of heteroscedasticity 
(e.g., Vytlacil, 2005). In econometrics 
researchers have also successfully modeled the 
conditional SK or conditional KU besides the 
conditional SD (e.g., Ahgiray, Booth, Hatem & 
Mustafa, 1991; Perez-Quiros & Timmermann, 
2001).  
 The methods suggested here for 
modeling the spread of the dependent variable 
pose another strategy for dealing with this 
possible phenomenon. Moreover, by also 
modeling the conditional SK and KU of the DV, 
the methods suggested can lead to further 
extensions of moderation ideas. See also 
Sharma, et al. (1981) and Baron & Kenny 
(1986) for related ideas.  
 
Some Cautions 
 In this article, it has been argued that 
data analysts should use more of the information 
available in a data set. The information gain 
made possible by expanding the data analyses 
has been demonstrated in this example data set. 
Yet reasonable caution should be exercised. 
Data analysts should tell the truth and the whole 
truth. But one should ensure that the data 
analysis tells only the truth. In statistical folklore 
the cautionary saying is “Torture the data and it 
will confess.” In any practical application one 
should be cautious to not create artificial results 
or misleading interpretations from overly 
elaborate data analyses. There is a danger that 
using the methods suggested in this article might 
lead to unnecessarily complex models for a 
given purpose. Research is constrained by time 
and cost factors and expected payoffs from more 
complex analyses. That is certainly a valid point, 
and Ghiselli (1956) and others were aware of 
this some time ago (cf. Zikmund, 2003, p. 12).  
What are the Implications of this Study? 
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 If researchers do not look for 
distribution differences among subgroups other 
than central tendency then they are bound to not 
find them. The demonstration data set was 
chosen because the authors of the prior study 
made it available. The data set was not chosen 
because it was expected to reveal SD, SK or KU 
differences among organizations. Instead it was 
matter of strong suspicion that most data sets 
involve differences in spread and shape besides 
differences in central tendencies. Upon analysis, 
some of the suspected effects with higher order 
moments were revealed.  

It is not known how large or important such 
effects from higher order subgroup moments 
may be. But in this study, when the subgroup 
variances or shapes of the independent variables 
were included, replicable gains in variance 
accounted for in attributes of the dependent 
variable were common. Other researchers should 
routinely examine their data to see whether 
subgroup SDs, SKs or KUs, as in this study, 
produce large and important information gains.  
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Global Measure of the Deviation of a Wavelet Density Estimator 
Kussiy K. Alyass 
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A wavelet estimator f*(x) of an unknown probability density function f(x)∈L2(R) is considered. A 

conditional central limit theorem for martingales is used to show that [ ] dxxfxf∫ − 2)()(*  is 

asymptotically normally distributed. Results obtained can be used in a test of goodness-of-fit. 
 
Key words: Wavelet estimator, martingale difference array, multiresolution analysis, asymptotic 
distribution. 
 
 

Introduction 
 
The problem of finding the asymptotic 
distribution of the quadratic norm of the 
deviation of the probability density function f(x) 
from its estimator f*(x) have been studied by 
many authors. Bickel and Rosenblatt (1973) 
obtained the asymptotic distribution of 
 

( ) ( ) ( )[ ] ( )∫ −= dxxaxfxf*nhnTn
2  

 
where f*(x) is the kernel estimator of f(x) , h(n) 
→ 0, n h(n) → ∞, and a(x) is a weight function. 
The basic technique in obtaining the result 
consists in finding the asymptotic distribution of 
Tn with f*(x) replaced by conveniently chosen 
Gaussian process and showing that two 
functionals converge to the same law. Viollaz 
(1980) considered orthogonal series estimators 
and Lii (1978) considered spline estimators, in 
both cases the above method is used to establish 
limit theorems for the quadratic norm of the 
deviation of the probability density function 
from its estimator. A method using a conditional 
central limit theorem for martingales due to 
Adnan (1981) was used by Ghorai (1980) to find 
the asymptotic distribution of the quadratic norm  
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of the deviation of the orthogonal series 
estimator. 

Rosenblatt (1975) used a method 
involving the Poissonization of the sample size 
to obtain the asymptotic distribution of the 
quadratic norm of the deviation of the two-
dimensional kernel estimator. Alyass and Sun 
(1994) considered two-dimensional orthogonal 
series estimators; they used the method of 
Poissonization to establish a limit theorem for 
the properly normalized quadratic norm of the 
deviation of the estimator. 

 A wavelet estimator f*(x) is used here 
to estimate the probability density function f(x). 
Then, a martingale central limit theorem is used 
to show that ∫ [f*(x) – f(x)]2 dx is 

asymptotically normally distributed. 
A brief review and a statement of a 

conditional central limit theorem for martingales 
will now be given. For further details, refer to 
Adnan (1981). Let {Vn, n ≥ 1} be a sequence of 
integrable random variables on a probability 
space (Ω, F, P) and let B0 ⊂ B1 ⊂ B2 ⊂ …… be 
an increasing sequence of sub-σ-fields of F. 
Suppose the sequence {(Vn, Bn), n ≥ 1} is a 
martingale, then the sequence {(Vn – Vn – 1 , Bn ), 
n ≥ 1} is called a martingale difference. A 
double sequence {(Wn j, Bn j), n ≥ 1, j ≥ 0} is said 
to be a martingale difference array if it is a 
martingale difference for each n. 
   Suppose that {Yn, n ≥ 1} is a sequence 
of random variables defined on the probability 
space (Ω, F, P). Let {Fn, n ≥ 1} be a sequence 
of sub-σ-fields of F. Yn | Fn converges weakly to 
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a random variable Y defined on (Ω, F, P) if and 
only if 
 

( )[ ] ( )YEfYfE nn →F| , 
 
for every bounded continuous function f.  This 
convergence will be denoted by 
 

YY d
nn ⎯→⎯F| . 

 
Methodology 

   The following theorem due to Adnan 
(1981) will be used in the proof of the main 
result in this article. 
 
Theorem 1:  

Suppose {(Wn j, Bn j), n ≥ 1, j ≥ 0 } is a 
martingale difference array. Assume that:  
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Remark:  

Let γ denote the trivial σ-field. If γ ⊂ Bn0 
then the conditional convergence in the above 
theorem is equivalent to the usual unconditional 
convergence in distribution (see Adnan, 1981). 

A multiresolution analysis 
2 1 0 1 2.... .... A A A A A− −⊆ ⊆ ⊆ ⊆ ⊆ ⊆ of 

L2(R) is an increasing sequence of subspaces 
  ,, Z∈jAj of L2(R) satisfying the following 

conditions: 
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j
j

j
j

j
j

A

A

g x A g x A

x A x k

A

∈

∈

−

∈

=

∈ ∈

−
Z

∪
∩

L
Z

Z

R

ϕ ϕ

 

Remarks:  
 
(i) It follows that 
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ϕ  

 
forms an orthonormal basis for Aj.  
 

(ii) Assume that ϕ  is integrable and 

( )∫ ≠ 0dxxϕ  because if 

( )∫ = 0dxxϕ  then the same is true for 

all functions in all Aj, and one would 
not expect to have condition (M1). In 
fact one can show that if ϕ  has 

compact support and ( ) 1x dxϕ =∫  

then condition (M1) holds (see 
Strichartz (1993)). 

 
In order to construct the wavelets, let Bj 

be the orthogonal complement of Aj in Aj+1 , 
thus .1 jjj BAA ⊕=+  There exists a 

function )(xψ  called the wavelet such that 
the family ( ) ( ){ } Z∈−− kkxkx ψϕ , is an 
orthonormal basis for A1. This implies 
that ( ){ } Z∈− kkxψ is an orthonormal 
basis for B0. The space L2(R) is represented 
as a direct sum 
 

( ) .2
jZj

B
∈
⊕=RL  

 
Also 
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ψ  

 
is an orthonormal basis for Bj and that the 
spaces Bj are all mutually orthogonal. 
Therefore, it is possible to combine all the 
orthonormal bases for Bj into one orthonormal 
basis: 
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( )  2
k,j

22
ZZ ∈∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ϕ  

 
for L2(R). Because the following 
decomposition of L2(R) is also true 
 

( ) ,,2 ZR ∈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⊕=

∞

=
⊕ qBA j

qj
qL  

 
then one can combine the basis 
 

( )  222
Z∈⎭

⎬
⎫

⎩
⎨
⎧ −

k

q
q

kxϕ  

 
for Aq with the bases  
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ψ  

 
for Bj with j ≥ q to obtain an orthonormal basis 
for L2(R). Then, if 
 

( )2
, ( ) 22

j
j

j k x x kϕ ϕ= −  

and 

( )2
, ( ) 2 ,2

j
j

j k x x kψ ψ= −  

 
the family  
 

{ }
Z∈≥ kqjkjkq xx

,,, )(,)( ψϕ  

 
forms an orthonormal basis for L2(R). Thus, for 
any f(x)∈  L2(R). there is 
 

),(

)1()(

,,,, x

xf

kjkj
k qj k

kqkq ψβϕα∑ ∑ ∑
∞

−∞=

∞

=

∞

−∞=

+

=
 

 
where 
 

.,)()(

,)()(

,,

,,

qjdxxxf

dxxxf

kjkj

kqkq

≥=

=

∫
∫

ψβ

ϕα
 

For more detailed account of the subject of 
multi-resolution analysis and wavelets see 
Meyer (1990) and Daubechies (1992). 

Suppose X1, X2, ... , Xn are independent, 
identically distributed, real-valued random 
variables with common, but unknown, 
continuous probability density function f(x)∈  
L2(R). Estimate f(x)   by  
 

( ), ( ),

( ), ( ),
1

ˆ*( ) ( ),

where
1ˆ ( ).

q n k q n k
k

n

q n k q n k i
i

f x x

x
n

α ϕ

α ϕ

∞

=−∞

=

=

=

∑

∑

   (2) 

 
Some of the properties of this estimator may be 
found in Doukhan and Leon (1990) and 
Kerkyacharian and Picard (1992). Throughout 
the remainder of this article, assume the function 
ϕ is compactly supported in the interval [s, t]. 
This will ensure that, in (2), only finite random 
number of coefficients knq ),(α̂  are non-zero. To 
simplify the calculations, assume that s, t∈Z. 
Under these assumptions, 
 
               *( )f x =                  (3) 

( ), ( ),
1 1

1 ( [ ]) ( [ ]),
n s

q n k i q n k i i
i k t

x x x x
n

ϕ ϕ
−

= = −

− −∑ ∑  

 
where [x] denotes the largest integer that is less 
than or equal to x. 
 
Let 

[ ],i i iY X x= −  1, 2,......, ,i n=  

( ), ( ), ( )q n k q n kE Yη ϕ=  

and  
( ), ( ),( ) ( ) .q(n),k q n k q n ky yθ ϕ η= −  

 
Using (1) and (3) the result is 
 

[ ]2
*( ) ( )f x f x dx− =∫          (4) 

1
2
( ),2 2

2 1 1 1

2 1( ) ( )
jn n s

ij q n k i
j i i k t

U n y
n n

θ
− −

= = = = −

+∑ ∑ ∑ ∑  



KUSSIY K. ALYASS 
 

547

+ 2
,2

( )

1 ( ) ,ij j k
i j j q n k

Z n
n

β
∞ ∞

≠ = =−∞

+∑ ∑ ∑  

 
where 
 

( )ijZ n =              (5) 

∑
−

−=

s

tk 1
( ), ( ),

1
( ) ( )[

s

q n k i q n l j
l t

Y Yϕ ϕ
−

= −
∑  

( ) ( )2 [ ] , 2 [ ]
,q n q n

i jk x l x
δ

+ +
 ( ), ( ),( ) ( )],q n k i q n k jY Yϕ ϕ−  

and 

( ), ( ),
1

( ) ( ) ( )
s

ij q n k i q n k j
k t

U n Y Yθ θ
−

= −

= ∑  

 
Now put 
 
     ( )( ), ( ),cov ( ), ( ) ,k l q n k q n lc Y Yϕ ϕ=    (6) 

1

1 ,
s

n k k
k t

c
n

μ
−

= −

= ∑  2 2

1 1
,

s s

n k l
k t l t

cσ
− −

= − = −

= ∑ ∑  

1

1

2 ( ), 2,3,...., ,

0 , 0,1 and ,

j

ij
in

n j

U n j n
n

W

j j n

σ

−

=

⎧
=⎪

⎪= ⎨
⎪
⎪ = >⎩

∑
 

1

j

n j ni
i

V W
=

=∑  for all  and ,n j  

 
and let Bnj be the σ-field generated by Y1 ,Y2 

,....,Yj , and Bn0 be the trivial σ-field. The 

sequence {(Vnj, Bnj), j ≥ 0} is a martingale 

for each n ≥ 1. Because Wnj = Vnj – Vn,j-1, 

{(Wnj, Bnj), n > 0, j ≥ 0} is a martingale 

difference array. 
 

Results 
 

Now, to state and prove the main theorem: 
 
Theorem 2: Assume that 
 

2

( ),
1

( ) 0  
s

q n k
k tn

n E Yϕ
σ

−

= −

⎡ ⎤ →⎣ ⎦∑    (7) 

as  n → ∞  
     

2
,

( )
0  as  j k

j q n kn

n n β
σ

∞ ∞

= =−∞

→ → ∞∑ ∑    (8) 

 
2         as    n   n ,σ → ∞ → ∞      (9) 

4
( ),sup ( ) . q n k

k
E Y Mϕ ≤       (10) 

  for some constant M  
 

It follows that if t – s < 1+2q(n), then 
 

[ ]( )2*( ) ( )
2 n

n

n f x f x dx μ
σ

− −∫  

( )0,1 .d N⎯⎯→  
 

Proof: Using (4) and (6) gives 
 

[ ]( )2
*( ) ( )

2 n
n

n f x f x dx μ
σ

− − =∫  

2
( ),

1 1 1

1 ( )
2

n s

nj q n k i kk
j i k tn

W Y c
n

θ
σ

∞ −

= = = −

⎡ ⎤+ − +⎣ ⎦∑ ∑ ∑  

1
2 ij

i jn

Z
nσ ≠

∑  

2
, 1 2 3 4

( )
j k

j q n k
H H H Hβ

∞ ∞

= =−∞

+ = + + +∑ ∑ . 

 
By assumption (8), H4 → 0 as n → ∞. Let 
 

( )( , ) : 2 ([ ]

[ ]) , , 1 , ......,

q n
j

i

k l k l X
A

x k l t s

⎧ ⎫− = −⎪ ⎪= ⎨ ⎬
= − −⎪ ⎪⎩ ⎭

 

and 

( )

( ) 1(i,j) :[ ] [ ] ,
B 2

, , 1, 2, .......,

j i q n
t sX X

i j i j n

− −⎧ ⎫− >⎪ ⎪= ⎨ ⎬
⎪ ⎪≠ =⎩ ⎭
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From (5) it follows that 
 

3
1

2 n

H
nσ

=  

( ), ( ),1 ( ), ( ),
1

( ) ( ) ( ) ( )
s

q n k i q n j q n k i q n k j
B A k t

Y Y Y Yϕ ϕ ϕ ϕ
−

= −

⎧ ⎫⎡ ⎤−⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ ∑  

( ), ( ),1 ( ), ( ),
1

( ) ( ) ( ) ( )
C

s

q n k i q n j q n k i q n k j
A k tB

Y Y Y Yϕ ϕ ϕ ϕ
−

= −

⎡ ⎤+ −⎢ ⎥⎣ ⎦
∑ ∑ ∑  

 
The second term in the above formula is equal to 

zero because 
( ) 1

2
1

)( <−−
nq

st
 

forces ][][ ij XX = . Also for (i,j)∈B A = ∅ . 
Therefore 
 

3 ( ), ( ),
1

1 ( ) ( )
2

s

q n k i q n k j
B k tn

H Y Y
n

ϕ ϕ
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−
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= − ∑ ∑ , 

( )3 2 2
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2 n

H
n σ
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' ' 1 1
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s s
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E Y Y Y Yϕ ϕ ϕ ϕ
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1 1

1
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s s
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E Y Y E Y Y
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( )( )2

( ), ( ), 2 2

1 3
2 ( ) ( )

2q n k q n l
n

n n n n
E Y E Y
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ϕ ϕ

σ
− − −

⎤+ +⎦
 

{ }
2

2
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1

( ) .
s

q n k
k t

E Yϕ
−

= −

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  

 
Hence, if (7), (9) and (10) hold, then var (H3) → 
0 as n → ∞. Next, observe under 
assumption (10) 
 

( ) ( )
2

2
2 ( ),2

1

1var ( )
2

s

q n k kk
k tn

H E Y c
n

θ
σ

−

= −

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑  

2

1 .
n

O
nσ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
Consequently, var (H2) → 0 as n → ∞. if 
assumption (9) holds. 

 Therefore, to complete the proof of the 
theorem, it is sufficient to show 
that ( ).1,01 NH d⎯→⎯  To prove this, observe:  
 

( )        122
2

21

1
22

2

n
jUE

n
EW
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i
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n
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Therefore, 
 

21
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nj ij
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( )
2

2 1
       for all 

j
n

n
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Next to be shown is 
 

2

j 1
1.p

njW
∞

=

⎯⎯→∑           (12) 

 
In order to establish (12), it is enough, in view of 
Chebychev’s inequality and (11), to show that 
 

2

2

j 1

n

njE W
=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑         (13) 

/`
'

4 2 2

j 1 j j

2 1
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EW EW W
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+ ⎯⎯→∑ ∑  

as  n ⎯⎯→∞ . 
 
Using Holder’s inequality, 
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By summing over j, 
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Therefore, under assumptions (9) and (10) 
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Now, 
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Thus, 
 

G1 → 1 as n → ∞.       (16) 
 
If assumptions (9) and (10) hold,  
 

G3 = 0 and G2 → 0 as n → ∞. (17) 
 
Also, computations (see Ghorai, 1980) show 
 

G4 → 0 as n → ∞.        (18) 
 
Therefore (15) together with (16),(17) and (18) 
gives 
 

2 2
'

'
2 1  as  nnj nj

j j
EW W

<

→ → ∞∑ . (19) 

 
Relation (12) now follows by combining (13), 
(14) and (19). Finally, 
 

sup nj
j

P W⎛ ⎞>∈ ≤⎜ ⎟
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( )2 2
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j

P W
=

> ∈ ≤∑  

4
4

1

1 n
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EW
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By using (14) 
 
             .0sup ⎯→⎯p

nj
j

W         (20) 

 
may be deduced. The theorem now follows by 
combining Theorem 1 with (11), (12) and (20). 
 

Conclusion 
 

Tests of goodness-of-fit can be obtained as a 
direct application to Theorem 2. In fact, a test 
may be constructed for the hypothesis H: f(x) = 
f0(x) at a given level α , where f0(x) is a 
given function. To do this, the statistic 
 

[ ] dxxfxfRn

2
)()(*∫ −=  

 
is to be computed for f(x) = f0(x) and the 
hypothesis is to be rejected if Rn ≥ dn( α ) 
where by Theorem 2 
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Bayesian Subset Selection of Binomial Parameters 
Using Possibly Misclassified Data 

 
James D. Stamey Thomas L. Bratcher Dean M. Young 
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Three Bayesian approaches are considered for the selection of binomial proportion parameters when data 
is subject to misclassification. The cases where the misclassification is non-differential and differential 
were considered, thus extending previous work which considered only non-differential misclassification. 
In this article, various selection criteria are applied to a simulated data set and a real data set. 
 
Key words: Bayes, posterior approximation, Gibbs Sampler, binomial parameter subset selection 
 

 
Introduction 

 
A decision maker is often interested in selecting 
the population from among several populations 
that will produce the largest or smallest 
parameter value. For example, an experimenter 
might be interested in determining which 
production technique gives the lowest 
percentage of defects; a crime analyst might 
consider which reporting district has the highest 
rate of violent crimes; a baseball fan might 
inquire about the best home run hitter of the 
twentieth century. In each case a selection of a 
population parameter must be made from a set 
of parameters using data from the populations of 
interest. This process is known as the subset-
selection problem. Of course various procedures 
exist for selecting a subset that contains the best 
(largest or smallest) parameter. Here, the 
concern is with the Bayesian subset selection 
paradigm. 
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The concept of subset selection 

essentially began with an article by Gupta and 
Sobel (1957), who described a statistic that can 
be used in parameter ranking and selection for 
multiple populations. Early work on Bayesian 
subset selection was initiated by Bratcher & 
Bhalla (1974), who have used a constant loss 
function to derive a Bayesian subset selection 
procedure, and Govindarajulu & Harvey (1974). 
For other Bayesian subset-selection approaches 
and related topics, see Goel & Rubin (1977), 
Gupta & Hsu (1977), Berger (1979, 1980), 
Gupta & Yang (1985), Gupta & Liang (1987), 
Berger & Deely (1988), Dixon & Simon (1991, 
1994), Schulter, Deely, & Nicholson (1997) and 
Deely & Smith (1998).  
 Examples abound where interest might 
be in selecting a subset of binomial proportion 
parameters using correctly classified and 
misclassified data. For example, Hanson, 
Johnson, & Gardner (2003) have considered the 
prevalence of the disease bovine brucellosis in 
cattle herds in twenty regions of Mexico. This 
application can be thought of as a type of quality 
control in which one wishes to determine a set of 
herds deemed most likely to develop bovine 
brucellosis or, conversely, perhaps a set of herds 
that could be considered least likely to have the 
disease.  A second application of a subset-
selection method for binomial proportion 
parameters using possibly misclassified data is 
auditing. For instance, Raats & Moors (2004) 
have estimated the proportion of errors in social 
security payments in the Netherlands combining 
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fallible and validation data. One could also 
compare or select a subset of the proportion 
parameters of errors in auditing across 
geographical regions, industries, or some other 
variable of interest.  
 In both of the above examples, one 
cannot reasonably assume the observed counts 
are infallible. Most diagnostic tests are well 
known to be fallible. That is, most diagnostic 
tests can indicate that subjects have a disease 
when they do not or that they are disease free 
when they are actually infected. An appropriate 
statistical model will adjust for the error rates of 
the fallible test. Joseph, Gyorkos, & Coupal 
(1995) and Dendukuri & Joseph (2001) 
considered the case of estimating the prevalence 
of one population with fallible data. Hanson et 
al. (2003) have extended this work to multiple 
populations. Hanson et al. (2003) assumed that 
the properties of the diagnostic tests remain 
constant across populations. This assumption is 
referred to as non-differential misclassification.  
 Two subset-selection criteria of Schluter 
et al. (1997) and a subset- selection criterion 
proposed by Stamey, Bratcher, & Young (2004) 
are applied here to the bovine brucellosis data 
found in Hanson et al. (2003). Also proposed is 
a method of extending the hierarchical model to 
allow for differential misclassification. 
Differential misclassification occurs when the 
false positive and false negative rates are 
different in each population. For this scenario it 
is assumed that an expensive error-free classifier 
is available for a small sample of units. A 
sample where both fallible and infallible 
observations are made is often called a 
validation sample. A simulated binomial 
parameter subset-selection problem with 
differential misclassification motivated by an 
auditing application in Raats & Moors (2004) is 
considered.  
 

Methodology 
 

A parametric hierarchical model for binomial 
data with misclassification analogous to Hanson 
et al. (2003) is provided and a Bayesian 
extension is proposed for the case of differential 
misclassification. For the non-differential 
misclassification model, consider the case where 
only a single classifier is utilized; however, the 

method is easily extended to allow for two or 
more classifiers. The hierarchical model is  
  

Zi | πi, η, θ ~ binomial(ni, pi) 
 
with 
  

pi = πiη + (1 – πi)(1 – θ), 
 
where pi is the population proportion of 
observable occurrences in population i = 1, …, 
m. The parameter πi is the true probability of a 
positive response for population i and is 
assumed to vary across populations. The 
parameter η = 1 – P(false negative) is the 
sensitivity, or probability that a true positive is 
observed and is assumed to be the same for all 
populations. The parameter θ =   1 – P(false 
positive) is the specificity, or probability that a 
true negative is labeled as a negative and is also 
assumed to be the same for all populations.  The 
first-stage priors of the Bayesian hierarchical 
model are 
 

πi ~ beta(α, β), 

       η ~ beta(αη, βη), 
and 

 θ ~ beta(αθ, βθ). 
 
The beta prior is the usual first-stage prior for 
hierarchical binomial models and is consistent 
with the models of Hanson et al. (2003). One 
can elicit priors for the sensitivity and specificity 
by using the approaches of Chaloner (1996) and 
Kadane & Wolfson (1996). 
 To model the heterogeneity of the 
prevalences, the parametric prior of Hanson et 
al. (2003) is used for both its convenience and 
ease of interpretation. Here, α = μγ  and β = γ , 
where the parameter μ is the grand mean of the 
population prevalences and γ controls the 
heterogeneity of the prevalences since the 

variance is (1 )
1

−
+

μ μ
γ

. Specifically, the larger the 

value of γ, the tighter the distribution of the 
prevalences.  To finish the hierarchy, assume μ 
~ beta(αμ, βμ) and γ ~ gamma(αγ, βγ), where αμ, 
βμ, αγ, and βγ are hyperpriors specified by the 
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experimenter. The joint posterior of all 
parameters is proportional to 
 

1 11 11 1

1

( , , , , | )

(1 ) (1 ) (1 ) (1 )i i i

i
r

z n z
i i i i

i

p

p pη ηθ θ α βα βμγ γ

π θ η μ γ

π π θ θ η η− −− − −− −

=

∝ − − − −∏
d . 

Hanson et al. (2003) provided a method for 
eliciting values for the parameters of the priors. 
However, in the analyses diffuse non-
informative priors are used. No apparent closed-
form posterior distributions exist, but the 
parameters can be estimated using either Monte 
Carlo integration or Markov Chain Monte Carlo 
methods. The free software WinBugs is used to 
approximate the posterior densities that is used. 
These WinBugs software programs are available 
from the first author.  
 The assumption that the sensitivity and 
specificity do not vary across populations is 
quite strong and often fails in practice. Here the 
model of Hanson et al. (2003) is extended to the 
case where the sensitivity and specificity are not 
the same across populations. If it is believed that 
the misclassification parameters vary across 
populations, it is recommended to use one of the 
following approaches. If the number of 
populations is not large, an expert to elicit prior 
parameters for each specificity and sensitivity 
can be used, using methods detailed in Chaloner 
(1996) and Kadane & Wolfson (1996). This 
approach results in the following change in the 
hierarchical model: ηi ~ beta(αηi, βηi) and θi ~ 
beta(αθi, βθi). 

However, if expert opinion is not 
available for each of the sensitivities and 
specificities, another method is needed. One 
possibility is to use validation data for each 
population. For instance, Raats & Moors (2004) 
have assumed that a large sample of accounts is 
audited by a fallible auditor, and then a small 
random sample of these accounts is double 
checked by an infallible expert.  Suppose in each 
population ri units are classified by both the 
fallible and infallible procedure. The validation 
data adds the following binomial likelihoods to 
the experiment likelihood: 
 

Ti | πi ~ binomial(ri, πi), 

Xi | ti, ηi ~ binomial(ti, ηi), 
and 

Yi | ti, θi ~ binomial(ri – ti, θi). 
 

Here, Ti is the number of positive responses 
determined by the infallible classifier, Xi is the 
number of true positive responses correctly 
labeled as positive by the fallible classifier, and 
Yi is the number of true negative responses 
labeled as negative by the fallible classifier. 
Then, a hierarchical structure for the sensitivity 
and specificity parameters similar to that used on 
the prevalences is used. That is, ηi ~ beta(αη, βη) 
and θi ~ beta(αθ, βθ) and define η η ηα = μ γ , 

η ηβ = γ , θ θ θα = μ γ , and θ θβ = γ . The 
hierarchy is completed with the priors 

 
   μη ~ beta(αμη, βμη), 
   γη ~ gamma(αγη, βγη), 
   μθ ~ beta(αμθ, βμθ), 

and 
   γθ ~ gamma(αγθ, βγθ). 

 
The WinBugs computer programs used to 
approximate the posterior distributions are 
available from the first author. 
 
Three Subset Selection Procedures 
 Reviewed next are two subset selection 
criteria from Schluter et al. (1997) and a 
decision theoretic subset selection criterion from 
Stamey, Bratcher, & Young (2004) and extend 
them to apply to the binomial parameter case 
using possibly misclassified data.  
 
A Posterior Probabilities Approach (Schluter et 
al. (1997)) 
 The first subset-selection procedure that 
is considered uses the posterior probability that a 
site has the largest prevalence or is largest by a 
multiple of, say, ν. That is, 
 
       ( ) ( , | )i i jp P j iν = π > νπ ∀ ≠ z       (1) 
 
where z represents the vector of observed data. 
The probability (1) does not have a closed form; 
however, MCMC methods make (1) trivial to 
calculate. Suppose that after an initial burn-in, 
the Gibbs sampler is run B iterations. One can 
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approximate the posterior probability (1) by 
counting the number of times 
 

1 1, 1,max( ,..., , , , ..., ),ik k i k ik i k mk− +π = νπ νπ π νπ νπ  
 

where k = 1, …, B. Specifically, probability (1) 
is approximated as 
 

1 1, 1,

( )
#( max( ,..., , , ,..., ))

i

ik k i k ik i k mk

p

B
− +

ν ≈
π = νπ νπ π νπ νπ  

 
where #( )⋅  denotes the number of elements in a 
set. In this case count the number of Gibbs 
sampler iterations such that the prevalence of 
interest is the largest. Schluter et al. (1997) have 
remarked that if ν = 1, then (1) simply becomes 
the probability that πi is the largest prevalence. 
The populations can be ranked via  
 

i) the use of the posterior probability (1),  
ii) the use of some probability threshold 

chosen such that the groups selected are 
the smallest subset where the sum of the 
pi(ν) probabilities exceed the threshold, or  

iii) the choice of r < m largest probabilities to   
   be included in the superior set. 

 
A Predictive Probabilities Approach (Schluter, 
et al., 1997) 
 A second criterion is based on the 
predictive number of future occurrences in a 
future sample. The criterion is based on the 
probability that a future number of true 
positives, say Wi, exceeds some experimenter-
chosen quantity, say w*, or 
 
          * *( ) ( | )i i 0pd w P W w ,n= > z      (2) 
 
where n0 represents the future sample size. To 
compute probability (2) with the Gibbs sampler, 
add the variables Wi | πi ~ binomial(n0, πi) for i = 
1, 2,…, m, to the likelihood. The approximation 
 

 
*#( )( ) i

i i
W wpd w

B
≥

≈  

 
is then straightforward to calculate. One can 
rank the populations via probability (2) and then 

either include the top r of them in a superior set 
or select all populations whose predictive 
probability (2) is greater than some user-
specified value P0. Difficulties with this criterion 
include determining a meaningful future sample 
size n0 and defining a meaningful comparison 
number w*. 
 
A Decision Theoretic Approach (Bratcher & 
Bhalla (1974)) 
 Stamey et al. (2004) used a constant loss 
function for Poisson parameters with 
misclassified data. Here a similar loss function 
for the binomial data case is utilized,  
 

    [ ]
1 2 max

1 max

#( ) if ,( )
#( ) 1 if

c S c S
L

c S S
π

π
π

+ ∉⎧
= ⎨ − ∈⎩

 

 
where S denotes the superior set, #(S) denotes 
the number of parameters in the superior set, and 

max S∈π   represents   placing  the    actual 
maximum proportion in the superior set. The 
corresponding risk is a linear combination of the 
expected size of the superior set and the 
probability of correct selection.  Formally, the 
risk is 
 

1 1 2 1( ) [#( )] ( )(1 ( ))R c E S c c P CS c= + + − −π  
 
where P(CS) denotes probability of correct 
selection, i.e., πmax is selected. The Bayes 
threshold for inclusion is 
 
          max( )ip π = π ≥  1/(c +1),        (3) 
 
where c = c2/c1. This loss ratio represents the 
relative seriousness of the two types of mistakes: 
leaving the largest parameter out of the superior 
set and putting a parameter in the superior set 
that is not the largest. Additionally, c + 1 may be 
considered the rate of change in E[#(S)] with 
respect to P(CS). To guarantee that at least one 
parameter is placed in the superior set S, it is 
required that 1c m≥ − . The left side of (3) is 
approximated identically to (1) when ν = 1. The 
estimated probabilities are then compared to 1/(c 
+ 1), and the parameter kπ  is placed in the 
superior set S when 
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1 1, 1,#( max( ,..., , , ,..., ))
( ) ik k i k ik i k mk

ip
B

− +π = νπ νπ π νπ νπ
ν ≈  

> 1/(c + 1). 

Results 

The methods discussed are now applied to real 
data originally found in  Hanson et al. (2003). 
Twenty cow herds in an area of Mexico where 
the disease is known to occur are sampled and 
tested with the buffered acidified plate 
agglutination (BAPA) serologic test. The BAPA 
is known to be imperfect, and its properties are 
discussed in Stemshorn et al. (1985). Point 
estimates of the sensitivity and specificity are 
.75 and .97, respectively. As in Hanson et al. 
(2003), this article used an equivalent sample 
size of 20 for the beta priors based on the prior 
means of .75 and .97, respectively. That is, seek 
beta priors with means of .75 and .97 where the 
sum of the parameters is 20; thus, η ~ beta(15,5) 
and θ ~ beta(19.4, .6) was used. Had an 
equivalent sample size of 40 been used, it would 
have been assumed that η ~ beta(30, 10) and θ ~     
beta(38.8, 1.2). Interestingly, virtually identical 
inferences resulted from the two sets of priors 
with only a slight decrease in posterior variation. 
For this example the non-informative priors μ ~ 
beta(1, 1) and γ ~ gamma(.001, .001) were used 
for the hierarchical parameters in the model for 
the prevalences.  

WinBugs was used to approximate the 
posterior distributions. We show a plot of the 
approximate posterior densities for the bovine 
brucellosis prevalences in Figure 1. For this data 
one can visually see that clear differences exist 
among the posterior densities. The posterior 
distributions for the prevalences π15 and π7 are 
centered at considerably larger values than the 
posterior distributions of the other prevalences. 
Using (1), the posterior probabilities that each 
prevalence was the largest were calculated. 
Table 1 gives results for the posterior 
probabilities approach of selecting the largest 
prevalence for values of ν of 1, 1.1, and 1.25. In 
the table there are sites and corresponding 
posterior probabilities where 

( , | )i jP j iπ > νπ ∀ ≠ z  exceed 0.01 when ν = 1. 
If one use criterion ii) with a threshold of .9 in 

conjunction with the posterior probability 
criterion, one can see from Table 1 that the two 
prevalences π15 and π7 were the only elements 
contained in the superior set S using the 
posterior probability criterion. If the threshold 
had been increased to .99, then the prevalences 
π14 and π19 would be added to the superior set S. 
If one increases ν to 1.1 and 1.25, then it 
becomes evident from Table 1 that π15 is the sole 
choice for the largest prevalence.  

Next, the predictino approach criterion 
is applied to the bovine brucellosis data. It was 
assumed a future sample size of n0 = 10 and 
provided the probabilities for various values of 
w*. Figure 2 is a plot of the results for values of 
w* ranging from 0 to 5. For illustrative purposes 
supposed w* = 3 and P0 = .8, then placed a 
rectangle or box in the area of Figure 2 where 
the prediction criterion holds. All curves that fall 
inside the box, which in this case corresponded 
to the prevalences π7, π14, and π15, satisfied the 
prediction criterion. The graph could easily be 
changed to allow for different values of P0 and 
w*.  

Consider the decision theoretic approach 
to selecting herds with the largest bovine 
brucellosis prevalence. Only the prevalences π15, 
π7, and π14 would be selected at the boundary for 
the rate of change, (c + 1) = 20, which gave a 
critical probability of 1/(c + 1) = .05. Thus, for 
this example we assumed it is 19 times more 
serious to leave the largest prevalence out of the 
superior set than to include a prevalence in the 
superior set S that is not the largest. If it were to 
be considered to be 99 more times serious to 
leave the largest prevalence out of the superior 
set than to include a prevalence in the superior 
set S that is not the largest, the critical 
probability would decrease to .01, and the 
prevalences π15, π7, π14, and π9 would be 
included in the superior set.  
  
Auditing Application 
 As a second example, data were 
simulated similar to that found in Raats & 
Moors (2004). Suppose we wish to compare 15 
locations in terms of the proportion of errors in 
accounts. As in Raats & Moors (2004), we 
assumed that the initial audit is fallible, that is, 
some accounts   that are in error could be missed 
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Figure 1. Posterior densities of prevalences for bovine data 

 
    

  Table 1. Posterior probabilities of having the largest prevalence 

ν Herd 15 Herd 7 Herd 14 Herd 19 Others 
1 .773 .158 .052 .013 .004 
1.1 .469 .032 .000 .000 .000 
1.25 .123 .000 .000 .000 .000 
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Figure 2. Predictive probabilities for bovine brucellosis data. The rectangle includes herds   that 

satisfy a predictive probability of 3 or more events with probability greater than .8. 
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and some accounts that are correct could be 
labeled as in error. For each of the 15 locations, 
the parameters of the populations with the 
following distributions: πi ~ beta(2, 18), ηi ~ 
beta(12, 8), and θi ~ beta(19, 1) were generated. 
These distributions are consistent with Raats & 
Moors (2004) in the sense that the overall 
proportion of errors is small with a mean of 
10%, the sensitivity is moderate with a mean of 
60%, and the specificity is high with a mean of 
95%. For each site the following was generated 
zi ~ binomial(500, pi), ti ~ binomial(60, πi), xi ~ 
binomial(ti, ηi), and yi ~ binomial(60 – ti, θi), 
where pi = πiηi + (1 – πi)(1 – θi).  

For the hierarchical model, allow for 
differential misclassification by using diffuse 
priors for all hyperprior distributions. 
Specifically, let μ ~ beta(1, 1), γ ~ gamma(.001, 
.001), μη ~ beta(1, 1), γη ~ gamma(.001, .001), 
μθ ~ beta(1, 1), and γθ ~ gamma(.001, .001).   

Two competing models were 
considered. The first was an independence-based 
model where each of the 15 sites was modeled 
independently and, thus, no information-sharing 
occurred among the sites. For the independence 
models beta(1, 1) priors were used for all 
parameters. Also considered was the hierarchical 
model of Hanson et al. (2003), previously used 
on the first example, where all the specificities 
and sensitivities were constant. For this non-
differential misclassification model, the actual 
distributions from which the sensitivities and 
specificities were generated are used as the prior 
distributions. That is, the priors η ~ beta(12, 8) 
and θ ~ beta(19, 1) were assumed. The 
generated proportions, posterior means of the 
validation data hierarchical model, and 95% 
intervals for all three models are provided in 
Table 3.  

Note that the 95% intervals for the 
hierarchical model and the independence model 
both contained the true parameter values in all 
cases while the non-differential misclassification 
model missed two of the parameters. Also, the 
hierarchical model had the narrowest intervals, 
thus supporting the use of this model. 
Table 4 gives the sites and corresponding 
posterior probabilities of having the largest 
prevalence for parameters where 

( , | )i jP j iπ > νπ ∀ ≠ z  exceed 0.01 when ν = 1. 
Probabilities are provided for the case where ν = 
1 and 1.1. Assuming criterion ii) with a 
probability threshold of .9, it was determined 
that the proportions π8, π1, and π3, were included 
in the superior set because the sum of their 
probabilities is .923.  In Table 4 are the three 
largest proportions used to generate the data in 
order from largest to smallest are π8, π3, and π1. 
Thus, the posterior probability procedure 
included the three largest proportions in this 
example. If the threshold was increased to .99, 
then the proportions π8, π1, π3, π10, π7, π9, and π2 
would all be included in the superior set S.  

If non-differential misclassification is 
incorrectly assumed, then one would have 
incorrectly concluded that π13 was the largest 
proportion with a corresponding posterior 
probability  of  .865 of  being   the largest 
proportion. Also, if the incorrect non-differential 
misclassification model were applied, one would 
have determined that the second largest 
proportion was π10 with a posterior probability of 
.106 of being the largest proportion. In this case 
the non-differential misclassification assumption 
leads to incorrect inferences because neither site 
13 nor 10 was actually among the three largest 
proportions. 
 For this same data the prediction subset-
selection criterion was applied. It was assumed a 
future sample size of 50. For the validation-data 
model with differential misclassification, the 
plot for all 15 sites for values of w* from 0 to 6 
is given in Figure 3. Included is a decision box 
for w* = 2 and P0 = .6. It was found that sites 1, 
3, 7, 8, and 10 satisfied this particular 
configuration and, therefore, π1, π3, π7, π8, and 
π10 would be placed in the superior set. Recall 
that π1, π3, and π8 were the largest three 
proportions so, again, this proposed prediction 
subset-selection criterion yielded very 
reasonable results. 

For the decision theoretic approach, this 
article again considered c's of 19 and 99 that  
yielded critical probabilities of .05 and .99. For a 
critical probability of .05, the proportions π8, π1, 
and π3 were included in the superior set S. 
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Table 3.  Posterior means and intervals for simulated auditing example 
(Intervals that failed to cover the true parameter are bolded.) 

 

Site 
True 
value 

Posterior mean 
differential 
hierarchical 

95% Interval 
differential 
hierarchical 

95% Interval 
 independence 

95% Interval non-
differential 
hierarchical 

1 .141 0.157 (.080, .244) (.096, .290) (.117, .465) 

2 .076 0.102 (.051, .161) (.049, .175) (.000, .230) 

3 .148 0.137 (.089, .202) (.099, .258) (.000, .162) 

4 .017 0.047 (.012, .097) (.004, .087) (.000, 162) 

5 .055 0.044 (.010, .093) (.004, .083) (.000, .174) 

6 .131 0.100 (.055, .146) (.054, .163) (.000, .214) 

7 .126 0.118 (.067, .180) (.073, .229) (.000, .205) 

8 .201 0.190 (.128, .262) (.145, .295) (.122, .480) 

9 .103 0.119 (.068, .175) (.070, .183) (.003, .267) 

10 .101 0.120 (.063, .190) (.067, .221) (.150, .542) 

11 .059 0.063 (.023, .108) (.017, .117) (.000, .219) 

12 .092 0.090 (.046, .145) (.037, .149) (.000, .214) 

13 .070 0.061 (.017, .115) (.011, .113) (.200, .658) 

14 .119 0.079 (.037, .135) (.029, .142) (.072, .372) 

15 .089 0.090 (.038, .153) (.028, .163) (.065, .361)  
 
 

 
 

 
Table 4. Posterior probabilities of having the largest proportion of errors 

 
ν π8 π1 π3 π10 π7 π9 
1 .618 .246 .059 .026 .021 .015 

1.1 .452 .142 .023 .010 .007 .005  
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For a critical probability of .01, the 

proportions π10, π7, and π9 also entered the 
superior set. For the decision theoretic approach, 
this article again considered c's of 19 and 99 that 
yielded critical probabilities of .05 and .99. For a 
critical probability of .05, the proportions π8, π1, 
and π3  were included in the superior set S. For a 
critical probability of .01, the proportions π10, π7, 
and π9 also entered the superior set. 

 
Conclusion 

 
In this article, three ranking criteria were applied 
to a hierarchical binomial model with 
misclassification first proposed in Hanson et al. 
(2003). These criteria are easy to use and 
understand and are computationally practical 
because of currently available statistical 
software. This has also extended the non-
differential misclassification model of Hanson et  
 
 
 
 
 
 
 
 

 

 
al. (2003) to allow for differential 
misclassification. The example using simulated  
audit data with misclassified observations 
illustrates the importance of appropriately  
incorporating differential misclassification in the 
analysis. It is note that the Bayesian binomial 
parameter selection methods proposed here 
could also apply to psychology and medical 
subset-selection problems, where interest might 
lie in comparing various treatments when a  
fallible diagnostic test is used to assess presence 
of a particular psychological or medical 
condition. Finally, the computations in this 
article have been performed using WinBugs, 
which is a free statistical computing package 
available on the Internet.  
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Figure 3. Predictive probabilities for auditing example. The rectangle includes populations 
that satisfied a predictive probability of 2 or more events with probability greater than .6. 
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Covariate Dependent Markov Models for Analysis of Repeated Binary Outcomes 
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The covariate dependence in a higher order Markov models is examined. First order Markov models with 
covariate dependence are discussed and are generalized for higher order. A simple alternative is also 
proposed. The estimation procedure is discussed for higher order with a number of covariates. The 
proposed model takes into account the past transitions. Transitions are fitted and are tested in order to 
examine their influence on the most recent transitions. Applications are illustrated using maternal 
morbidity during pregnancy. The binary outcome at each visit during pregnancy is observed for each 
subject and then the covariate dependent Markov models are fitted. The results indicate that the proposed 
model can be employed for analyzing repeated observations conveniently.   
 
Key words: Markov models, higher order, covariate dependence, repeated observations, transitions 
 
 

Introduction 
 
Markov chain models can be used in analyzing 
longitudinal data. There are several discrete time 
Markov chain models proposed for analyzing 
repeated categorical data over decades. A model 
for estimating odds ratio from a two state 
transition matrix was proposed by Regier 
(1968). Prentice and Gloeckler (1978) proposed 
a grouped data version of the proportional 
hazards regression model for estimating 
computationally feasible estimators of the 
relative risk function. Korn and Whittemore 
(1979) proposed a model to incorporate role of 
previous state as a covariate to analyze the 
probability of occupying the current state.  
 To analyze the binary sequence of 
presence or absence of diseases, Muenz and 
Rubinstein (1985) introduced a discrete time 
Markov chain for expressing the transition 
probabilities in terms of covariates. The 
technique proposed by them is applicable for 
first order Markov model but they provided hints 
that the approach can be extended for second-
order Markov chains. For   analyzing  sequences 
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of ordinal data from relapsing and remitting of a 
disease, Albert (1994) developed a finite 
Markov chain model. In addition, Albert and 
Waclawiw (1998) developed a class of quasi-
likelihood models for a two state Markov chain 
with stationary transition probabilities for 
heterogeneous transitional data. Raftery (1985), 
Raftery and Tavare (1994) proposed a higher 
order Markov chain model with dependence on 
contribution of the past transitions. Islam and 
Chowdhury (2006) presented a higher order 
version of the covariate dependent Markov 
model. 

For analyzing repeated observations, 
there is a renewed interest in the development of 
multivariate models based on Markov chains. 
These models can be employed for analyzing 
data generated from meteorology, epidemiology 
and survival analysis, reliability, econometric 
analysis, biological concerns, etc. Muenz and 
Rubinstein (1985) employed logistic regression 
models to analyze the transition probabilities 
from one state to another. The estimation for 
first-order Markov models is quite straight 
forward, but still there is serious lack of 
generalization in estimation and testing for 
models applicability for higher order Markov 
chains. Islam and Chowdhury (2006) provided a 
further generalization for covariate dependent 
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higher order models. This paper makes an 
attempt to present a simplified version of the 
covariate dependent higher order Markov 
models.   

A parallel stream of development is 
observed in analyzing transition models with 
serial dependence of the first or higher orders on 
the basis of the marginal mean regression 
structure models. Azzalini (1994) introduced a 
stochastic model, more specifically, first order 
Markov model, to examine the influence of 
time-dependent covariates on the marginal 
distribution of the of the binary outcome 
variables in serially correlated binary data. 
Markov chains are expressed in transitional form 
rather than marginally and the solutions are 
obtained such that covariates relate only to the 
mean value of the process, independent of 
association parameters. Following Azzalini 
(1994), Heagerty and Zeger (2000) presented a 
class of marginalized transition models (MTM) 
and Heagerty (2002) proposed a class of 
generalized MTMs to allow serial dependence of 
first or higher order. These models are 
computationally tedious and the form of serial 
dependence is quite restricted. If the regression 
parameters are strongly influenced by inaccurate 
modeling for serial correlation then the MTMs 
can result in misleading conclusions. Heagerty 
(2002) provided derivatives for score and 
information computations.  

Transition models are used here for 
Markov chain regression for binary responses 
proposed by Diggle et al. (2002). This type of 
models takes into account the potential impact of 
explanatory variables depending on the order of 
the underlying Markov model. This class of 
models has the flexibility to address a wide 
range of possible situations, ranging from only 
main effects to main effects and all possible 
interactions that emerge from different past 
transitions of the underlying Markov model. 
Some hypothesized situations are considered 
with main effects and some potential 
interactions emerging from past transitions of 
the process. In addition, a simple alternative is 
suggested to test for the order of Markov model.    
Covariate Dependent Higher Order Model 

As the first serious attempt to analyze 
covariate dependence of transition probabilities 
in a Markov model was proposed by Muenz and 

Rubinstein (1985), a brief review of the model 
provides a useful background for the proposed 
model for higher order.  

Consider a two-state Markov chain for a 
discrete time binary sequence as follows: 
 

                     
⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100
               
              

ππ
ππ

π
           (2.1) 

 
where 0100 1 ππ −=  and 1110 1 ππ −= . Here, 
0 and 1 are two possible outcomes of a 
dependent variable, Y. Each row of the above 
transition probability matrix provides a model 
on the basis of conditional probabilities. For 
instance, the probability of a transition from 0 at 
time 1−jt  to 1 at time jt  is 

01 1( 1 0)j jP Y Yπ −= = =  and similarly the 

probability of a transition from 1 at time 1−jt  to 

1 at time jt  is 11 1( 1 1)j jP Y Yπ −= = = . It is 

evident that 10100 =+ππ , and similarly 

11110 =+ππ .
 The covariate dependent higher order 

models can be proposed by extending the model 
for first order Markov chain. To illustrate the 
extension, a second order Markov model is 
considered. The second order Markov model for 
time points 2−jt , 1−jt  and jt  with 

corresponding binary outcomes 2−jY = 2s , 

1−jY = 1s  and jY = 0s , respectively, is shown 

as follows: 
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Following the outline of Diggle et al. 
(2002), the transition probabilities are defined as 
follows: 
 

22 1( 1s s j jY Yπ −= =  

2 1 1, , )js Y s X− = =  

1 1 2 2 1 2 3

1 1 2 2 1 2 31

X s X s X s s X

X s X s X s s X
e

e

β α α α

β α α α

′ ′ ′ ′+ + +

′ ′ ′ ′+ + ++
  (2.3) 

 
 

The vector X includes 0 1X =  and p covariates 

such that X= 0 1[ , ,..., ]pX X X . 

The parameter vectors 1α , 2α  and 3α  
are defined as follows:  
 

0 1, ,..............., pβ β β β⎡ ⎤′ = ⎣ ⎦
[ ]p111101 ......,,........., αααα =′

 [ ]p221202 ......,,........., αααα =′
 [ ]p331303 ......,,........., αααα =′
 

and define 
 

00β β′ ′= 01 1β β α′ ′ ′= + 10 2β β α′ ′ ′= +  
11 1 2β β α α′ ′ ′ ′= + +  

 
Equation 2.3 can be expressed more precisely as 
follows: 
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where  

22,...,2,1=m , 1 20,λ λ= = 1 3,s λ =  

2 4 1 2, . .s s sλ =  
 

The third order Markov model for time 
points 3−jt , 2−jt , 1−jt  and jt  with 

corresponding outcomes 3−jY =s 3 , 

2−jY =s 2 , 1−jY =s1 and 0jY s= , 

respectively, is shown as follows: 
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For a Markov model of order three we 
can rewrite the transition probability as follows: 
 

3 33 2 1( 1 ,s s s j jY Y sπ −= =   

              2 2 1 1, , )j jY s Y s X− −= =         (2.5) 

 
where 
 

1 2 1 3 2 40, , ,s sλ λ λ λ= = = =  

1 2 5 3 6 1 3. , , . ,s s s s sλ λ= =  

7 2 3 8 1 2 3. , . .s s s s sλ λ= =  
 

To generalize this to the k-th order, 

consider k2  sets of models. The transition 
probability matrix for the k-th order Markov 
model can be represented by binary outcomes at 
different time points j k kY s− = , 

( 1) 1 1 1 0,......, ,j k k j jY s Y s Y s− − − −= = =  

at time points jjkjkj tttt ,,.....,, 1)1( −−−− , 

respectively, where 1=jY  for occurrence of the 

event and 0jY =  for non-occurrence of the 

event at time jt .  The transition probability is 

given by  
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The likelihood function is given by 
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where 1

11
=

− ssis kk
δ  if the outcome at time 

jt is 1=jY for individual i  and 

0
11

=
− ssis kk

δ  if the outcome at time jt is 

0=jY for individual i  for the transition type 

( 1) 1 1 1, ,......,j k k j k k jY s Y s Y s− − − − −= = =
 prior to time jt  and ... 1s skn denotes the 

number of subjects experiencing transition type 

( 1) 1 1 1, ,......,j k k j k k jY s Y s Y s− − − − −= = =
 prior to time jt . 

 
Then the parameters 

1 1s s sk kβ − and m,α can be obtained 

from the following equations 
 

1 1

 lnL  0
 s s sk kβ −
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A Simple Model 

In the previous model, the number of 
parameters increases exponentially with an 
increase in the order of the dependence, 
although, the proposed model provides more 

detailed information for each transition type. 
Another major limitation of such model is that it 
requires a large sample size to ensure adequate 
transitions for each transition type. To address 
such problems, a simple model is proposed in 
this section. In the model, the transition 
probability takes into account selected covariates 
and previous transitions are also incorporated as 
covariates for a k - order Markov model. The 
model is as follows: 
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Testing for the Significance of Parameters 

The following vector shows the k2  sets 
of parameters for the k-th order Markov model:  
 

1 2 2
, ,.........,G kβ β β β⎡ ⎤′ ′ ′ ′= ⎢ ⎥⎣ ⎦  

where 

1,.......,m m mpβ β β⎡ ⎤′ = ⎣ ⎦ , 
m=1,2,….., k2  

 
To test the null hypothesis 0:0 =βH , the 
usual likelihood ratio test is employed and is 
given by  

2
0

2
2[ln ( ) ln ( )]G k p

L Lβ β χ− − ∼
 

where 

⎥⎦
⎤

⎢⎣
⎡ ′′′=′

0220100 ,...,, kG ββββ
 

and 

[ ]mpmm βββ ,...,10 =′
, 

m=1,2,….., k2  

To test the significance of the qth 
parameter of the m-th set of parameters, the null 
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hypothesis is 0:0 =mqH β  and the 

corresponding Wald-test is given by  
 

ˆ
.ˆ( )

mq

mq

W
se

β
β

=
 

 
Test the order of the Markov model on 

the basis of the simple model (2.7) such that 

0 : 0iH θ =  versus 1 : 0iH θ ≠  (i=1,2,…,k) that 
can identify the order is at least i if the null 
hypothesis is rejected. Use the test procedure 
discussed above for testing for the order of the 
Markov model as well. 

The computer program employed in this 
paper is the modified version of the algorithm 
appeared in Chowdhury et al. (2005) for higher 
order covariate dependent Markov model. 
 
An Application to Maternal Morbidity Data 

Data are used from the survey on 
Maternal Morbidity in Bangladesh conducted by 
the Bangladesh Institute for Research for 
Promotion of Essential and Reproductive Health 
Technologies (BIRPERHT) during November 
1992 to December 1993. The data were 
collected using both cross-sectional and 
prospective study designs. The study is based on 
the data from the prospective component of the 
survey. A multistage sampling design was used 
for collecting the data for this study. Districts 
were selected randomly in the first stage, one 
district from each Division. Then, Thanas were 
selected randomly in the second stage, one 
Thana from each of the selected Districts. A 
Thana is comprised of several Unions, while 
Union is the smallest administrative 
geographical unit in Bangladesh. At the third 
stage, two Unions were selected randomly from 
each selected Thana. The subjects comprised of 
pregnant women with less than 6 months in the 
selected Unions.  The pregnant women from the 
selected Unions were followed on regular basis 
(roughly at an interval of one month) throughout 
the pregnancy. During the follow-up visits, 
pregnancy complications were recorded.  

A total of 1020 pregnant women were 
interviewed in the follow-up component of the 
study. The survey collected information on 

socio-economic and demographic 
characteristics, pregnancy related care and 
practice, morbidity during the period of follow-
up as well as in the past, information concerning 
complications at the time of delivery and during 
the post partum period. For the purpose of this 
study, 993 pregnant women were selected, with 
at least one antenatal follow-up. Table 1 shows 
the number of respondents at different follow-up 
visits during antenatal period. At the first 
follow-up 992 respondents were recorded (out of 
993 respondents one was missing at the first 
follow-up but reported subsequently). The 
number dropped to 917 at the second follow-up 
and the rate of dropout increased sharply at 
subsequent follow-ups. The number of 
respondents observed at the third and the fourth 
follow-ups were 771 and 594, respectively. The 
following pregnancy complications are 
considered under the complications in this study: 
hemorrhage, edema, excessive vomiting, 
fits/convulsion. If one or more of these 
complications occurred to the respondents, they 
were considered as having complications.   

The explanatory variables are: 
pregnancies prior to the index pregnancy (yes, 
no), education of respondent (no schooling, 
some schooling), economic status (low, high), 
age at marriage (less than 15 years, 15 years or 
more), involved with gainful employment (no, 
yes), index pregnancy was wanted or not (no, 
yes). The number of transitions for the first, 
second, and third order Markov chains are 
displayed in Table 2. The estimates of 
parameters of covariate dependent Markov 
models are presented in Table 3.  

Two variables, economic status and 
whether the pregnancy was wanted, show 
significant association with transition from no 
complication in previous visit to complication in 
current visit during pregnancy (transition type 
0 1→ ). If the respondent has economically 
better status, she is expected to experience 
higher transition to pregnancy complications. On 
the other hand, if the index pregnancy is wanted, 
as compared to that of unwanted pregnancy, 
there is a decreased risk of transition to 
pregnancy complications during the current 
visit. 

If the previous outcome was 
complication, three variables influence to the 
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transition to the same status at the time of 
current visit during pregnancy (transition type 
1 1→ ) which are whether the index pregnancy 
was wanted or not, gainful employment, and 
education. The desired pregnancies appear to 
have higher risk of pregnancy complications in 
consecutive follow-up visits. In other words, 
undesired pregnancies seem to result in higher 
risk of transition to complications but risk of 
complications at consecutive follow-up visits 
appears to be higher for desired pregnancies. 
The respondents who are involved with gainful 
employment have higher risk of transition to 
complication in consecutive visits during 
pregnancy but respondents with some education 
have reduced risk of continued complications in 
consecutive visits.  

The second order model shows that 
there is a lower risk for desired pregnancies to 
make transition to the state of complications at 
current visit after two consecutive no 
complications status prior to the current visit 
(transition type0 0 1→ → ). There is no 
significant association between reverse 
transition of the type 1 0 1→ →  and the 
selected covariates. Like the transition type 
1 1→ , transition type 0 1 1→ →  is observed 
to be positively associated with desired 
pregnancy and negatively associated with 
education. Similarly, similar to1 1→ , desired 
pregnancy and gainful employment are 
positively associated with the complications at 
three consecutive visits (transition type 
1 1 1→ → ). 

There are eight models for the third 
order Markov chain. Among those, some of the 
transition types do not show any clear 
association with the selected covariates 
(considered at p-value = 0.05) such as transition 
types 1 0 0 1→ → → , 0 0 1 1→ → → , 
1 1 0 1→ → → , 0 1 1 1→ → →  and 
1 1 1 1→ → → .  For the transition type, 
0 0 0 1→ → → , gainful employment 
appears to have positive association. There is a 
marginal positive association (p-value is 
observed to be little higher than 0.05) between 
age at marriage and transition type 
0 1 0 1→ → → , where the complication is 
repeated during four follow-ups. Economic 

status is associated marginally and positively 
and previous pregnancies are associated 
negatively with transition type 
1 0 1 1→ → → . 

The global chi-square and likelihood 
ratio tests show good fit for all the first, second 
and third order models. Hence, in order to find 
the best selection, we have employed the AIC 
and the BIC procedures. The AIC and the BIC 
results indicate that the third order models 
provide the best fit as compared to the first and 
second order models.        

The number of parameters increases 
geometrically with an increase in the order of 
Markov model. Hence, a simple alternative is 
employed to the same data. Table 4 presents the 
results for the simple model as an alternative to 
the hierarchical model for the higher order 
Markov chain. For the second order model, first 
order outcome is considered as a covariate. 
Similarly, for the third order model, first and 
second order outcomes are included as 
covariates in order to examine the impact of 
previous outcomes on the subsequent outcomes. 
In the first model, economic status, wanted 
pregnancy, age at marriage and education appear 
to be significantly associated with pregnancy 
complications. The first order outcome, 1s , is 
included as a covariate for the second order 
model and confirms that first order outcome 
exerts a positive influence on the second order 
outcome. Similarly, first and second order 
outcomes are also associated positively with the 
outcome for the third order. Hence, in these 
models, third order Markov model is expected to 
fit better. Economic status, gainful employment 
and occurrence of the complications at previous 
two follow-ups all are positively associated with 
current complications. This finding confirms the 
conclusion based on the results presented in 
Table 3. In other words, the simple model can be 
employed confidently if the detailed impact of 
covariates on the response variable is not needed 
for each transition type separately for policy 
purposes.         

 
Conclusion 

 
In this article, the fitting of higher order 
covariate dependent Markov model is illustrated. 
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The method shown here is based on a suggestion 
provided by Diggle et al. (2002). The inference 
procedure is described for any higher order 
Markov model and the proposed method can be 
employed conveniently to identify the risk 
factors having significant impact on the repeated 
binary outcomes of interest at different time 
points. The proposed technique has been applied 
to a set of maternal morbidity data and the 
pregnancy complications at follow-up 
observations during pregnancy are analyzed. 
Some selected covariates are used to examine 
whether the transition probabilities for 
pregnancy complications at consecutive visits 
during pregnancy depend on the covariates. A 
simple alternative is also examined. 

If the factors affecting different types of 
transitions depending on past transitions are not 
of much interest then we can use the simple 
alternative. However, the proposed model 
provides a detailed analysis of the factors 
affecting transitions of first or higher order 
Markov models. The detailed analysis may be 
considered to have useful interpretations for 
policymakers. On the other hand, the number of 
parameters in the simple model does not 
increase geometrically unlike the proposed 
model. 
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Appendix 
 

Table 1: Number of Respondents at Different Follow-ups 
During Antenatal Period 

 
Follow-up 
Number 

Frequency  

1 992  
2 917  
3 771  
4 594  
5 370  
6 148  

 
Table 2: Number of Transitions for Pregnancy Complications 

 
Transitions →0 →1 
First Order   

0→ 1577 277 
1→ 366 614 

   
Second Order   

0→ 0→ 923 138 
1→ 0→ 176 79 
0→ 1→ 95 79 
1→ 1→ 110 295 

   
Third Order   
0→ 0→0→ 459 72 
1→ 0→0→ 91 30 
0→ 1→0→ 31 16 
0→ 0→1→ 49 27 
1→ 1→0→ 40 28 
1→ 0→1→ 26 20 
0→ 1→1→ 8 23 
1→ 1→1→ 44 132 
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Table 3: Estimates of Parameters of Covariate Dependent Markov Models for Analyzing  

Pregnancy Complications 
 

Variables Estimates Std. error t-value p-value 
First Order 

0→ 1      
Constant -1.5233 0.1559 -9.7718 0.0000 
Economic Status (Good=1) 0.4209 0.1699 2.4770 0.0132 
Wanted pregnancy (Yes=1) -0.4217 0.1371 -3.0762 0.0021 
Gainful employment (Yes=1) 0.0827 0.1453 0.5693 0.5692 
Age at marriage (< 15 = 1) -0.0353 0.1394 -0.2535 0.7998 
Education (Yes=1) -0.1161 0.1354 -0.8576 0.3911 
Previous pregnancies (Yes=1) 0.0482 0.1354 0.3561 0.7218 
1→ 1      
Constant 1.9102 0.1589 12.0175 0.0000 
Economic Status (Good=1) 0.1378 0.1778 0.7749 0.4384 
Wanted pregnancy (Yes=1) 0.6904 0.1406 4.9084 0.0000 
Gainful employment (Yes=1) 0.3187 0.1506 2.1167 0.0343 
Age at marriage (< 15 = 1) -0.1535 0.1483 -1.0352 0.3006 
Education (Yes=1) -0.5238 0.1430 -3.6635 0.0002 
Previous pregnancies (Yes=1) 0.0493 0.1411 0.3492 0.7269 
Global Chi-square 1020.03596;   d.f. = 14;  p-value=0.00000 
LRT 1126.20664;   d.f. = 14;  p-value=0.00000 
AIC 2830.55158 
BIC 2898.37897 

 
Second Order 

0→ 0→ 1      
Constant -1.8003 0.2210 -8.1447 0.0000 
Economic Status (Good=1) 0.1830 0.2534 0.7222 0.4702 
Wanted pregnancy (Yes=1) -0.4847 0.1919 -2.5256 0.0115 
Gainful employment (Yes=1) 0.2149 0.2005 1.0715 0.2840 
Age at marriage (< 15 = 1) -0.1075 0.1983 -0.5422 0.5877 
Education (Yes=1) 0.1420 0.1884 0.7536 0.4511 
Previous pregnancies (Yes=1) 0.1877 0.1899 0.9886 0.3228 
1→ 0→ 1      
Constant 0.9524 0.3091 3.0815 0.0021 
Economic Status (Good=1) 0.3405 0.3523 0.9663 0.3339 
Wanted pregnancy (Yes=1) 0.4857 0.2811 1.7283 0.0839 
Gainful employment (Yes=1) -0.0526 0.3123 -0.1686 0.8661 
Age at marriage (< 15 = 1) 0.2394 0.2933 0.8163 0.4144 
Education (Yes=1) -0.3707 0.2845 -1.3030 0.1926 
Previous pregnancies (Yes=1) -0.2887 0.2837 -1.0177 0.3088 
0→ 1→ 1      
Constant 1.7303 0.3845 4.5000 0.0000 
Economic Status (Good=1) 0.4831 0.4203 1.1494 0.2504 
Wanted pregnancy (Yes=1) 0.7516 0.3348 2.2450 0.0248 
Gainful employment (Yes=1) 0.1031 0.3511 0.2935 0.7691 
Age at marriage (< 15 = 1) -0.2899 0.3596 -0.8062 0.4201 
Education (Yes=1) -1.0315 0.3404 -3.0301 0.0024 
Previous pregnancies (Yes=1) -0.1730 0.3359 -0.5150 0.6066 
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Table 3 Continued…     
Variables Estimates Std. error t-value p-value 
1→ 1→ 1      
Constant 2.1680 0.2742 7.9081 0.0000 
Economic Status (Good=1) 0.2688 0.2989 0.8993 0.3685 
Wanted pregnancy (Yes=1) 0.7322 0.2414 3.0332 0.0024 
Gainful employment (Yes=1) 0.6301 0.2637 2.3891 0.0169 
Age at marriage (< 15 = 1) 0.0853 0.2512 0.3395 0.7342 
Education (Yes=1) -0.4259 0.2498 -1.7049 0.0882 
Previous pregnancies (Yes=1) 0.3097 0.2461 1.2581 0.2083 
Global Chi-square 736.2494;   d.f. = 28;  p-value=0.00000 
LRT 819.7761;   d.f. = 28;  p-value=0.00000 
AIC 1863.2516 
BIC 1998.9065 

 
Third Order 

0→ 0→ 0→ 1      
Constant -2.0755 0.3272 -6.3440 0.0000 
Economic Status (Good=1) 0.3901 0.3502 1.1140 0.2653 
Wanted pregnancy (Yes=1) -0.1337 0.2803 -0.4771 0.6333 
Gainful employment (Yes=1) 0.5960 0.2780 2.1435 0.0321 
Age at marriage (< 15 = 1) -0.1715 0.2777 -0.6174 0.5370 
Education (Yes=1) -0.1050 0.2628 -0.3997 0.6894 
Previous pregnancies (Yes=1) 0.2914 0.2716 1.0730 0.2833 
1→ 0→ 0→ 1      
Constant 1.1866 0.4645 2.5547 0.0106 
Economic Status (Good=1) -0.4560 0.6635 -0.6874 0.4919 
Wanted pregnancy (Yes=1) -0.7254 0.4440 -1.6340 0.1023 
Gainful employment (Yes=1) -0.1067 0.4893 -0.2181 0.8273 
Age at marriage (< 15 = 1) 0.8524 0.4898 1.7404 0.0818 
Education (Yes=1) -0.4170 0.4657 -0.8954 0.3706 
Previous pregnancies (Yes=1) -0.0466 0.4411 -0.1056 0.9159 
0→1→ 0→ 1      
Constant 0.2618 0.9645 0.2714 0.7861 
Economic Status (Good=1) -1.5657 0.9903 -1.5810 0.1139 
Wanted pregnancy (Yes=1) 0.6496 0.7006 0.9271 0.3539 
Gainful employment (Yes=1) 0.2875 0.7673 0.3747 0.7079 
Age at marriage (< 15 = 1) 1.4826 0.7838 1.8916 0.0585 
Education (Yes=1) -0.1186 0.7317 -0.1621 0.8713 
Previous pregnancies (Yes=1) 0.5271 0.7445 0.7080 0.4790 
0→ 0→ 1→ 1      
Constant 2.1936 0.5945 3.6901 0.0002 
Economic Status (Good=1) -0.3760 0.7314 -0.5140 0.6073 
Wanted pregnancy (Yes=1) -0.4947 0.5163 -0.9581 0.3380 
Gainful employment (Yes=1) -0.6332 0.5392 -1.1744 0.2402 
Age at marriage (< 15 = 1) -0.3622 0.5999 -0.6037 0.5460 
Education (Yes=1) -0.4388 0.5363 -0.8182 0.4132 
Previous pregnancies (Yes=1) -0.1100 0.5295 -0.2078 0.8354 
Gainful employment (Yes=1) -0.3197 0.6776 -0.4718 0.6371 
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Table 3 Continued… 

    

Variables Estimates Std. error t-value p-value 
1→ 1→ 0→ 1      
Constant 2.1797 0.5997 3.6347 0.0003 
Economic Status (Good=1) 0.8516 0.6716 1.2680 0.2048 
Wanted pregnancy (Yes=1) -0.4881 0.5618 -0.8689 0.3849 
Age at marriage (< 15 = 1) -0.0976 0.5685 -0.1718 0.8636 
Education (Yes=1) -0.0570 0.5623 -0.1014 0.9192 
Previous pregnancies (Yes=1) -1.0848 0.5944 -1.8251 0.0680 
1→ 0→ 1→ 1      
Constant 2.4045 0.7779 3.0909 0.0020 
Economic Status (Good=1) 2.2623 1.1836 1.9114 0.0560 
Wanted pregnancy (Yes=1) -0.2161 0.7619 -0.2837 0.7767 
Gainful employment (Yes=1) 0.8775 0.8714 1.0070 0.3139 
Age at marriage (< 15 = 1) -0.5819 0.7777 -0.7482 0.4543 
Education (Yes=1) -1.1563 0.8015 -1.4428 0.1491 
Previous pregnancies (Yes=1) -1.8188 0.9178 -1.9818 0.0475 
0→ 1→ 1→ 1     
Constant 3.1416 1.4192 2.2137 0.0268 
Economic Status (Good=1) -0.4749 1.0472 -0.4535 0.6502 
Wanted pregnancy (Yes=1) -0.6499 1.2058 -0.5390 0.5899 
Gainful employment (Yes=1) -0.2974 1.0250 -0.2902 0.7717 
Age at marriage (< 15 = 1) 1.0829 1.2160 0.8905 0.3732 
Education (Yes=1) 0.6433 1.2520 0.5138 0.6074 
Previous pregnancies (Yes=1) 0.2593 1.0143 0.2556 0.7983 
 1→ 1→ 1→ 1     
Constant 2.7444 0.4633 5.9233 0.0000 
Economic Status (Good=1) 0.0139 0.4792 0.0291 0.9768 
Wanted pregnancy (Yes=1) -0.1399 0.3928 -0.3562 0.7217 
Gainful employment (Yes=1) 0.0439 0.4056 0.1082 0.9138 
Age at marriage (< 15 = 1) -0.2489 0.3807 -0.6538 0.5132 
Education (Yes=1) 0.3410 0.4179 0.8160 0.4145 
Previous pregnancies (Yes=1) 0.6496 0.4144 1.5673 0.1170 
Global Chi-square 418.79388;   d.f. = 56;  p-value=0.00000 
LRT 467.3335;   d.f. = 56;  p-value=0.00000 
AIC 1164.0451 
BIC 1435.3548 
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Table 4: Estimates of Parameters of Simple Model for Higher Order 
Markov Chain 

 
Variables  Estimates Std. error t-value p-value 
 Logistic regression for first order Markov model 
 Economic status (good=1) .502 .091 30.467 .000 
 Wanted pregnancy (Yes=1) -.331 .073 20.401 .000 
 Gainful employment (Yes=1) .069 .076 .811 .368 
 Age at marriage (< 15=1) -.222 .076 8.662 .003 
 Education (Yes=1) -.408 .073 31.372 .000 
 Previous pregnancies (Yes=1) -.041 .072 .317 .573 
 Constant -.293 .083 12.461 .000 
 Model Chi-square 86.92 (p=0.000) 
 Logistic regression for second order Markov model 
 Economic status (good=1) .496 .122 16.378 .000 
 Wanted pregnancy (Yes=1) -.080 .099 .646 .422 
 Gainful employment (Yes=1) .216 .102 4.447 .035 
 Age at marriage (< 15=1) -.117 .102 1.323 .250 
 Education (Yes=1) -.385 .098 15.269 .000 
 Previous pregnancies (Yes=1) .065 .097 .448 .503 
 S1 2.223 .094 562.140 .000 
 Constant -1.669 .125 177.689 .000 
 Model Chi-square 704.48 (p=0.000) 
 Logistic regression for third order Markov model 
 Economic status (good=1) .402 .155 6.768 .009 
 Wanted pregnancy (Yes=1) -.084 .123 .469 .494 
 Gainful employment (Yes=1) .361 .127 8.037 .005 
 Age at marriage (< 15=1) -.100 .126 .625 .429 
 Education (Yes=1) -.209 .123 2.898 .089 
 Previous pregnancies (Yes=1) .152 .122 1.556 .212 
 S1 1.720 .126 186.921 .000 
 S2 1.127 .125 81.547 .000 
 Constant -1.984 .160 152.904 .000 
 Model Chi-square 521.18 (p=0.000) 
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Operating Characteristics Of The DIF MIMIC Approach Using Jöreskog’s 
Covariance Matrix With ML And WLS Estimation For Short Scales 

 
Michaela N. Gelin    Bruno D. Zumbo 

University of British Columbia 
 
 
Type I error rate of a structural equation modeling (SEM) approach for investigating differential item 
functioning (DIF) in short scales was studied. Muthén’s SEM model for DIF was examined using a 
covariance matrix (Jöreskog, 2002). It is conditioned on the latent variable, while testing the effect of the 
grouping variable over-and-above the underlying latent variable. Thus, it is a multiple-indicators, 
multiple-causes (MIMIC) DIF model. Type I error rates were determined using data reflective of short 
scales with ordinal item response formats typically found in the social and behavioral sciences. Results 
indicate Type I error rates for the DIF MIMIC model, as implemented in LISREL, are inflated for both 
estimation methods for the design conditions examined. 
 
Key words: Type I error, multiple-causes model for DIF, Monte Carlo simulation. 
 
 

Introduction 
 
A variety of statistical methods have been 
developed over the years to aid the researcher in 
identifying DIF items for the purposes of (a) 
fairness and equity in testing, (b) evidence 
during litigation, (c) investigating whether item 
properties are changing over time, (d) dealing 
with a possible “threat to internal validity,” and 
(e) trying to understand the (cognitive and/or 
psychosocial) processes of item responding and 
test performance, and investigating whether 
these processes are the same for different groups 
of individuals (Shimizu & Zumbo, 2005; Zumbo 
& Gelin, 2005; Zumbo & Hubley, 2003; Zumbo, 
2007).  
 The statistical methods developed for 
analyzing DIF have primarily focused on 
educational ability and achievement tests that 
are typically quite long (i.e., tests containing 
many items). As a result, most DIF methods  
require    test s  that  contain   many  items  (e.g., 
 
 
Michaela N. Gelin is a Research Scientist at 
CTB/McGraw-Hill in  Monterey, California. 
Bruno D. Zumbo is Professor of Measurement, 
Evaluation, and Research Methodology, and 
Department of Statistics. Email him at 
bruno.zumbo@ubc.ca  

 
greater than 30) for the results to be reliable 
(e.g., Fidalgo, Mellenbergh, & Muñiz, 2000). 
Measures used in educational, psychological, 
and more broadly social and health science 
research (e.g., Rosenberg’s Self-Esteem Scale, 
RSE; Rosenberg, 1965; Center for 
Epidemiologic Studies Depression Scale, CESD; 
Radloff, 1977) tend to have relatively fewer 
items, typically ranging from 3 to 30 items.  

Reliability decreases with shorter scales 
and hence measurement error increases. 
Observed score DIF methods, such as logistic 
regression (LogR) or Mantel-Haesnzel (MH) 
that match on the observed score (e.g., total 
score or corrected total score often called the 
rest score), which has measurement error, are of 
particular concern in short scales because of the 
lower reliability and error of measurement. A 
latent variable approach for investigating DIF 
with short scales is more appropriate compared 
to an observed score approach because one can 
condition on the measurement error free latent 
variable.  

A latent variable approach is in line with 
the formal definition of DIF in which the 
underlying variable is the conditioning variable. 
In addition, a latent variable approach is 
recommended by Zwick (1990), Meredith 
(1993), Meredith and Millsap (1992), and 
Millsap and Meredith (1992), who argued that 
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observed variable matching DIF methods such 
as the MH and LogR are not generally 
diagnostic of item bias. These observed score 
matching variable DIF methods use the manifest 
matching variable as a proxy for the latent 
matching variable and will only be appropriate 
when the two (manifest and latent) correspond. 

This correspondence holds when the 
observed item responses are consistent with a 
Rasch (i.e., one-parameter logistic) item 
response theory model. Under the Rasch model, 
the observed total score is a sufficient statistic 
for the latent variable score – assuring the 
correspondence between the observed and latent 
matching variables. 

Another situation where the observed 
and latent matching variables correspond is with 
long scales (a measure or scale with more than 
30 items being combined into the composite 
score) in which all of the items are strong 
indicators (high factor loadings) of one 
underlying latent variable, assuming a one-
dimensional scale.  Shorter scales, containing up 
to 30 items, do not share this property even 
though they also may display uni-
dimensionality. This rests partly on the notion 
that in item response theory modeling it is 
necessary to estimate the latent distribution, and 
that requires long scales for unbiased estimation 
and precision. The latent variable approach for 
investigating DIF in short scales rests on the 
structural equation modeling (SEM) multiple 
indicators multiple causes (MIMIC) method 
(Muthén, 1989). 

In this study, Muthén’s MIMIC DIF 
method was implemented using a relatively new 
covariance matrix available in LISREL for 
factor models for ordinal variables with 
covariate effects on the manifest and latent 
variables (Jöreskog, 2002; Moustaki, Jöreskog, 
& Mavridis, 2004).  

Given that (a) short scales are typically 
found in the educational and psychological 
disciplines, (b) the SEM MIMIC method is the 
most appropriate method for investigating DIF 
in short scales, and (c) the increasing number of 
published articles using the MIMIC method 
suggests this approach is growing in popularity, 
the purpose of this study is to investigate the 
statistical properties of a relatively new 
covariance matrix for the SEM DIF MIMIC 

method. The proposed MIMIC methodology 
uses Muthén’s (1989) SEM model computed via 
Jöreskog’s covariance matrix. The Type I error 
rate of this DIF approach have not been 
investigated. The primary focus of this study is 
to examine the Type I error rate of the proposed 
DIF MIMIC approach by means of a simulation 
study under a variety of study conditions 
designed to reflect real responses to short scales 
with ordinal item formats typically found in the 
social and behavioral sciences.  

A statistical test that maintains its Type I 
error rate is a valid test of the hypothesis. Type I 
error rates are often referred to as operating 
characteristics of a test. A Type I error rate, the 
probability of rejecting H0 when in fact it is true, 
in detecting DIF refers to declaring an item as 
DIF when it is not a DIF item. Once the 
statistical null hypothesis is rejected and the 
conclusion is reached that an item functions 
differentially for different groups, further 
evaluation of the item is necessary in order to 
determine whether the DIF is attributable to item 
bias or item impact. 

In the context of high stakes testing, for 
example, making a Type I error may be of great 
concern because of the matter of test fairness. 
The Type I error rate is also important in terms 
of the decisions being made about items flagged 
as showing DIF. As a result, the empirical Type 
I error rate of the DIF MIMIC model must be 
explored. If the Type I error rate is found to be 
within reason (e.g., 0.05; Bradley, 1978), the 
power of the DIF MIMIC model needs to be 
examined (i.e., power is not formally defined 
unless the statistical test protects the Type I error 
rate). 
 
DIF MIMIC model 

Although technical descriptions of 
Muthén’s approach can be found, the description 
below is intended to be less technical with a 
broader audience of researchers who may be 
interested in SEM but less familiar with the 
psychometrics of DIF. The DIF MIMIC model 
was first proposed by Muthén in 1989. In 
general, this method conditions on the latent 
variable while simultaneously testing the effect 
of group membership (e.g., gender) over-and-
above the underlying latent variable of interest. 
This is a multiple-indicators, multiple-causes 
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(MIMIC) model which is akin to a latent 
variable ANCOVA. As Zumbo and Hubley 
(2003) noted, DIF methods are akin to 
ANCOVA or attribute-by-treatment interaction 
(ATI) methodologies.  

The MIMIC model was introduced by 
Jöreskog and Goldberger (1975). It contains one 
or more latent variables that are simultaneously 
identified by both multiple endogenous item 
indicators, which comprise the scale under 
consideration, and by multiple exogenous causal 
variables such as background variables of 
gender or ethnicity. The MIMIC model allows 
the regression of latent variables on the 
background variables. Several uses of the 
MIMIC approach were described by Muthén 
(1989) and colleagues (e.g., Muthén, Tam, 
Muthén, Stolzenberg & Hollis, 1993). 

One advantage of this approach is that it 
involves the inclusion of multiple relevant 
background variables that allow one to study the 
relative importance of the predictors. Including 
multiple exogenous variables provides extra 
information about the measurement, which is 
particularly useful in detecting population 
heterogeneity (see Mast & Lichtenberg, 2000) 
and provides information to help validate scales, 
permitting the testing of the factor structure of a 
measure (Zumbo, 2005). The MIMIC approach 
allows for the detection of item-level 
measurement non-invariance (i.e., DIF).  

Muthén’s (1989) modeling approach, 
the MIMIC model, can be thought of in the 
context of an example using a 10-item scale, in 
this case of depression. The MIMIC model 
consists of three components: (1) a measurement 
model, (2) a regression model, and (3) a direct 
effects estimate. Figure 1 is a conceptual, or 
path, diagram to assist in the description of each 
of the components of the MIMIC DIF model. 

The measurement component refers to 
the hypothesized relationship between a latent 
variable and its indicators. The measurement 
model relates the observed indicators (items) to 
the continuous latent variable, representing 
‘depression’. The latent variable is defined for 
this analysis by the 10 items that form the 10-
item scale measuring depression. The 
relationship between the latent variable and its 
indicators or factor loadings, which are 
associated with the endogenous measurement 

model, are represented by directional arrows that 
point from the latent conditioning variable to the 
10 individual items. The measurement errors for 
the indicators of the endogenous variables or 
residuals are set free in this model. Similarly, the 
measurement errors for the endogenous latent 
factors are set free.  

The regression model relates the latent 
variable depression to the covariate sex or 
gender. The effect of the grouping variable, 
assumed to influence the latent factor, on the 
underlying latent construct is represented by an 
arrow from the latent grouping variable, the 
covariate, to the latent variable depression. This 
single directional relationship is set free in this 
model. This is analogous to regression of a 
continuous outcome variable onto one or more 
covariates such as gender, marital status, and 
education level. 

The interpretation of the regression 
coefficient for the grouping variable will 
depend, of course, on the coding. If, for 
example, the grouping variable denotes gender 
such that males are 0 and females are 1, a 
negative coefficient for the regression of the 
latent variable, depression, on gender would 
indicate that females have lower underlying 
depression than males. The third component is a 
direct effect estimate that detects measurement 
invariance in an item response associated with 
group membership. In other words, adding direct 
effects from the covariate(s) to the observed 
indicators, unmediated by the latent factor, 
incorporates DIF.  

It is possible to have a directional arrow 
pointing from the grouping variable to the 
individual item being analyzed. This analysis is 
repeated for each individual item on the scale 
that one wishes to investigate DIF. More than 
one item could be tested at a time by specifying 
more than one direction arrow at a time. This 
path, or paths for more than one item at a time, 
represents a systematic difference in responses, 
controlling for the latent variable.  

Having described the DIF MIMIC 
method there are numerous advantages for using 
this method: (1) follows the formal definition of 
DIF, (2) allows for multiple conditioning 
variables, (3) the combination of covariates 
(e.g., demographics, attitudes) indirectly 
represent group   membership   and  hence group 
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membership does not have to be assigned a 
priori, (4) can be used with binary, ordinal, and 
mixed item formats, (5) can be used with 
multidimensional scales, (6) can model complex 
data structures involving complex  item and  test 
formats (testlets, item bundles, correlated 
errors), and (7) can be used with short scales. 
One limitation of this method is that it does not 
test for interactions (non-uniform DIF); it only 
investigates uniform DIF. The DIF MIMIC 
method only examines DIF that is attributable to  

 
 
 

 
 
 
differences in item difficulty (differences in 
thresholds). This method assumes the 
measurement model is the same in both groups 
(an implicit assumption in GLIM models such as 
LogR or MH, as well as conditional and 
unconditional DIF methods, see Zumbo & 
Hubley, 2003).  
A Covariance Matrix for SEM DIF 

Recently, Jöreskog (2002) and 
Moustaki, Jöreskog, and Mavridis (2004) 
described a new covariance matrix that takes 

 
 
 
 
  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Conceptual (Path) diagram for the DIF MIMIC model for a 10-item scale. 
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into consideration that one or more ordinal 
variables are observed jointly with a covariate(s) 
(possible explanatory variables). This covariance 
matrix makes it possible to implement Muthén’s 
MIMIC DIF modeling approach in LISREL. The 
estimation problem comes down to constructing 
and estimating the correct covariance matrix of 
the grouping variable and item response 
variables for input into the structural equation 
model. For technical details see Jöreskog (2002) 
and Moustaki, Jöreskog, and Mavridis (2004). 
The description below is intended to be less 
technical with a broader audience of researchers 
in mind. 

In order to understand the advantage of 
Jöreskog’s (2002) covariance matrix, a 
psychometric problem with be clarified. For 
ordered discrete response data (ordinal data) the 
proper correlation measure is a polychoric 
(tetrachoric if ordered binary) correlation. For 
metric data (interval or ratio) the proper 
correlation is a Pearson correlation. It is also 
known from regression and correlation theory 
that for truly binary variables (e.g., grouping 
variables representing a contrast in a design 
matrix) the Pearson correlation can be used, and 
this models a difference in means for the 
continuous dependent or response variables in 
the model. The construction of a proper 
covariance matrix becomes a problem when 
there is a mix of ordinal and continuous data. 
Figure 2 illustrates this problem, in which items 
1 through 3 are 4-point ordered discrete response 
categories, and the variables age and height are 
continuous (truly discrete binary variables such 
as gender are also treated as continuous in the 
specification of a design matrix representing 
group differences). The correct correlation 
between the test items in Figure 2, such as item1 
and item2, is a polychoric correlation (ordinal: 
ordinal). Similarly, the correct correlation 
between the continuous variables age and height 
is a Pearson correlation (continuous: 
continuous). However, the correlation between 
an ordinal variable (item1) and a continuous 
variable (age) is problematic because of their 
different variable formats.  

If the data contain mixed variable 
formats, as is the case shown in Figure 2 
between the ordinal and continuous variables, 
and a Pearson correlation matrix is used, it will 

treat the ordinal item responses as interval or 
ratio, resulting in incorrect attenuated correlation 
values. This type of measurement error caused 
by using Pearson’s correlation with ordinal data, 
such as Likert-type response formats, has long 
been debated in the literature (O’Brien, 1979; 
Bollen & Barb, 1981). As cited by Byrne (1998), 
Jöreskog and Sörbom (1993) noted that when 
the observed variables in SEM analyses are 
either all ordinal or a combination of ordinal and 
metric scales, the analyses should be not be 
based on Pearson product-moment correlation, 
but rather be based on either polychoric or 
polyserial correlations. If a polychoric (or 
tetrachoric for ordered binary) correlation matrix 
is used when data are of mixed formats, the 
continuous variables will be treated as ordinal, 
which they are not. The resulting correlation 
values will be incorrect.  

Jöreskog’s (2002) new method correctly 
treats the variables according to their variable 
type (see Figure 2). The ordinal item responses 
(items 1 through 3 in Figure 2) are correctly 
treated as ordinal variables, and the age and 
height variables are correctly treated as 
continuous covariates. This method allows 
computing the joint covariance matrix of the 
predictor and the variables underlying each of 
the ordinal variables (this is done 
simultaneously). Given that one or more ordinal 
item response variables are jointly observed with 
one or more manifest (observed) variables, such 
as gender, that can be treated as covariates or 
predictor variables, one can estimate the effect 
of the predictor variables on the probability of 
responding to the ordered categorical (ordinal) 
variables using either a logistic or probit model. 
The joint covariance matrix may be computed 
for the predictor and the variables underlying 
each of the ordinal variables. This covariance 
matrix can then be used as input for any 
structural equation modeling and ML or WLS 
estimation can be correctly applied. 

The statistical test of DIF is examined 
via (a) the t-statistic of the DIF direct effects 
coefficient, or (b) a Chi-squared difference test 
of two models, one with and a second without 
the DIF direct effects, wherein the nominal 
alpha of .05 is used in the test for DIF.  
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Methodology 

 
Monte Carlo methods were used to examine the 
Type I error rates of Muthén’s (1989) DIF 
MIMIC methodology computed via Jöreskog’s 
(2002) covariance matrix with ML and WLS 
estimation methods. To provide a realistic set of 
values within the various study design variables 
described below in the simulation study, real 
item response data using the 10 and 20 item 
versions of the Center for Epidemiologic Studies 
Depression scale (CESD; Radloff, 1977) was 
used. The CESD is a widely used self-report 
measure developed for use in studies exploring 
the epidemiology of depressive symptomology 
in the general population. Each item is rated on a 
four-point (0 - 3) Likert-type scale of which a 
total scale score is computed from the sum of the 
items. The real response data came from 600 
community-dwelling adults living in northern 
British Columbia (290 females; 310 males) who 
completed the 20-item CESD scale. The item 
response data came from the Health and Health 
Care Survey carried out by the Institute for 
Social Research and Evaluation in the fall of 
1998. The mean age of female participants was 
42 years (SD = 13.4, range = 18 to 87 years), 
and the mean age of male participants was 46 
years (SD = 12.1, range = 17 to 82 years). This 
same item response data was also used to 
represent the short 10-item CESD scale. See  

 
Figure 3 for the specific items that make-up the 
20- and 10-item versions.  

Data from the CESD scale was chosen 
because it is a commonly used measure and 
hence is reflective of measures used in the social 
and behavioral sciences. Moreover, the scale and 
item characteristics (unidimensionality, scale 
length and item format) were representative of 
data typically found in psychological measures. 
Specifically, the 10 item short form (CESD-10: 
Andresen, Malmgren, Carter, Patrick, 1994) and 
the original 20 item (CESD-20: Radloff, 1977) 
CESD scales are essentially unidimensional 
(Clark, Aneshensel, Frerichs & Morgan, 1981; 
Hertzog, Van Alstine, Usala, Hultsch & Dixon, 
1990; Sheehan, Fifield, Reisine & Tennen, 1995; 
Zumbo, Gelin & Hubley, 2002), supporting the 
use of a single-factor model with both test 
lengths for this simulation.  

The variables in this simulation study 
are seven sample size combinations (three equal 
and four unequal group combinations), two item 
response distributions (normal/symmetric and 
positively skewed), two scale lengths (10 and 20 
items per scale), and two estimation methods 
(ML and WLS).  

For ease of interpretation, this 
simulation study is divided into two sub-studies. 
The first sub-study (Part A) investigates the 
Type I error rates in which two groups have 
equal sample sizes (e.g., 200 simulees per 

 

 
Figure 2. Example of a correlation matrix with mixed variable formats. 

 

 Item 1 Item 2  Item 3 Age Height 
Item 1  ordinal: 

ordinal 
ordinal: 
ordinal 

ordinal: 
continuous 

ordinal: 
continuous 

Item 2   ordinal: 
ordinal 

ordinal: 
continuous 

ordinal: 
continuous 

Item 3    ordinal: 
continuous 

ordinal: 
continuous 

Age     continuous: 
continuous 

Height 
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group). The second sub-study (Part B) 
investigates the Type I error rates in which two 
groups have unequal sample sizes (200 simulees 
in one group and 800 simulees in the second 
group). As a result, the first sub-study (Part A) 
has a 2 x 2 x 2 x 3 factorial design: two 
estimation methods by two item response 
distributions by two scale lengths by three 
sample size combinations. Similarly, the second 
sub-study has a 2 x 2 x 2 x 4 factorial design, of 
which the variables are the same as in Part A 
except there are four sample size combinations 
instead of three. Given that the simulation 
methodology is the same for both sub-studies, 
only the results section of this simulation study 
will be divided into the sub-studies.  

 
Study design 
Scale length and item format 

Consistent with the CESD-10 and 
CESD-20 scales, data are simulated to represent 
10 and 20 item scales, respectively. These two 
scale lengths are also chosen because they are 
representative of numerous short scales typically 
found in the social and behavioral sciences. As 
found in the CESD scales, all items are 
simulated to represent ordered categorical data 
with four categories. This number of rating scale 
points is also representative of item response 
formats typically encountered in psychological 
measures. Ordinal variables are commonly 
referred to as rating scale, or Likert variables, 
and thus these terms will be used 
interchangeably. As in numerous psychological, 
educational, and behavioral sciences, the ordinal 
variables used in this study are conceptualized as 
observed ordered-categorical variables, y, 
wherein the underlying variable, y*, is 
completely unobserved (latent) and continuous. 
As the normally distributed latent variable 
increases beyond threshold values, the observed 
variable takes on higher scores, referred to as 
scale points. Thus, a person endorsing one 
category has more of a characteristic than if 
he/she had chosen a lower category, but one 
does not know how much more.  

 
Item response distribution 

Following the simulation study by 
DiStefano (2002), two distributions are 
investigated: approximately normally distributed 

and non-normally distributed. To approximate 
Likert-type data with four ordered response 
categories, the generated continuous data are 
divided using three threshold values. 

For the normal (symmetric) distribution, 
the three equal interval cut points (thresholds) 
used to categorize the continuous data into four 
ordered categories are chosen in accordance 
with the area under the normal curve. For the 
ordered categories 1 through 4, the item 
response thresholds (-1.67, 0, and 1.67) 
corresponded to approximately 5%, 45%, 45%, 
and 5% of the area under the normal curve. A 
check on the generated item-level characteristics 
revealed that the population data (i.e., all items 
for both the 10 and 20 item scales) are 
approximately normally distributed for both 
groups (Skewness approximately 0; Kurtosis 
approximately -0.2).  

To determine the effect of skewness of 
the item response distribution on the DIF 
MIMIC method, the generated continuous data 
are divided into non-normally distributed four-
category ordered categorical data with a targeted 
skewness of 1.7. This skewness level is chosen 
based on data from the CESD-20 in which 
skewness values ranged from 0.64 to 3.1, with 
an average positive skew of 1.7. This type (i.e., 
positive) and magnitude of skewness is also 
consistent with item characteristics of other 
psychological measures (e.g., Golding, 1988; 
Micceri, 1989; Olsson, 1979) and with other 
simulation studies (e.g., Babakus, Ferguson & 
Jöreskog, 1987). To create skewed ordered 
categorical data, the percentage of responses in 
each category is approximately 66, 22, 7, and 5 
under the normal curve (as determined from real 
data using the CESD-20) for response categories 
1 though 4, respectively (thresholds = 0.4, 1.16, 
1.65). A check on the generated item-level data 
for both the 10 and 20 item scales show 
skewness and kurtosis values close to the target 
levels for both groups in the population data 
(skewness approx. 1.6, kurtosis approx. 1.8). 
  
Sample size combinations 

Building on simulation designs in the 
literature (De Champlain & Gessaroli, 1998; 
Curran, Bollen, Paxton, Kirby, & Chen, 2002; 
Muñiz, Hambleton & Xing, 2001; Muthén & 
Kaplan, 1992), as well as from published  
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  INSTRUCTIONS: Using the scale below, please circle the number for each statement that best 
describes how often you felt or behaved this way during the past week. 

    0 = Rarely or none of the time (less than 1 day) 
    1 = Some or a little of the time (1-2 days) 
    2 = Occasionally or a moderate amount of time (3-4 days) 
    3 = Most or all of the time (5-7 days) 

Factor 
Loadings 

 
 
DURING THE PAST WEEK: 

Less 
than 1 

day 
1-2 

days
3-4 

days
5-7 

days 

 

10 item 
scale 

20 item 
scale 

1. I was bothered by things that usually don’t 
bother me. 0 1 2 3 

 .669 .698 

2. I did not feel like eating; my appetite was poor. 0 1 2 3  -- .533 
3. I felt that I could not shake off the blues even with 

help from my family or friends. 0 1 2 3 
 -- .918 

4. I felt that I was just as good as other people. 0 1 2 3  -- .462 
5. I had trouble keeping my mind on what I was

doing. 0 1 2 3 
 .744 .692 

6. I felt depressed. 0 1 2 3  .857 .856 
7. I felt that everything I did was an effort. 0 1 2 3  .743 .697 
8. I felt hopeful about the future. 0 1 2 3  .532 .554 
9. I thought my life had been a failure. 0 1 2 3  -- .751 
10. I felt fearful. 0 1 2 3  .653 .658 
11. My sleep was restless. 0 1 2 3  .597 .584 
12. I was happy. 0 1 2 3  .680 .708 
13. I talked less than usual. 0 1 2 3  -- .671 
14. I felt lonely. 0 1 2 3  .658 .713 
15. People were unfriendly. 0 1 2 3  -- .505 
16. I enjoyed life. 0 1 2 3  -- .749 
17. I had crying spells. 0 1 2 3  -- .729 
18. I felt sad. 0 1 2 3  -- .853 
19. I felt that people dislike me. 0 1 2 3  -- .605 
20. I could not get “going”. 0 1 2 3  .775 .734 

 
Note: All 20 items are part of the CESD-20, whereas only the bold formatted items are part of the CESD-10. For 
the CESD-20 the items are summed after reverse scoring of items 4, 8, 12, and 16. Total CESD-20 scores range 

from 0-60, with higher scores indicating higher levels of general depression. For the CESD-10 the items are 
summed after reverse scoring items 8 and 12. 

 
Figure 3. Center for Epidemiologic Studies Depression Scales: CESD-10 and CESD-20. 
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literature using the CESD between 2000 and 
2004 (PsycINFO search), seven combinations of 
equal and unequal sample sizes are considered.  

The first sub-study investigates the Type 
I error rates of the DIF MIMIC model when two 
groups have equal sample sizes. The equal  
sample size combinations included 1000, 500, 
and 200 simulees per group. The second sub-
study investigates the Type I error rates in when 
the two groups have unequal sample sizes. For 
this sub-study, a total sample size of 1000 is 
used to avoid the problem of confounding the 
sample size with the per group size. By 
controlling the total sample size to be 1000 
allows for the investigation of whether the Type 
I error rates are affected by differences in group 
sizes; if the total sample size was not held 
constant it would be difficult to distinguish 
whether or not the Type I error rate was affected 
by the difference in group sizes or the total 
sample size. Using a sample size of 1000, four 
different ratios are considered: 1:9, 2:8, 3:7, and 
4:6. These ratios represent the size of Group 1 
compared to the size of Group 2. For example, 
the ratio 1:9 indicates that there are 100 simulees 
in Group 1 and 900 simulees in Group 2. 
Overall, these sample size combinations reflect 
the range of sample sizes used in psychological 
and educational research (moderate-to-small-
scale testing).  
 
Estimation methods 

Given that (i) the primary focus of this 
article is on short scales that are typically found 
in the educational and psychological disciplines 
of which often contain ordinal item formats 
(e.g., 4-point scale) and (ii) DIF often involves a 
truly binary variables (e.g., gender), Jöreskog’s 
(2002) covariance matrix with ML (which 
involves the asymptotic covariance matrix and 
WLS estimation methods will be used. As 
previously described, Jöreskog’s method was 
chosen because the LISREL software is widely 
used and it correctly treats the variables 
according to their variable type thereby allowing 
one to compute the joint covariance matrix of 
the predictor and the variables underlying each 
of the ordinal variables. In turn, this covariance 
matrix can then be used as input for any 
structural equation modeling and ML or WLS 
estimation can be correctly applied. 

Procedure / data generation 
First, a population covariance matrix, Σ, 

as Σ(y*)g = ΛgΦgΛg' + Θg for two subgroups is 
created from pre-specified factor loadings. 
Unlike some simulation studies in which 
researchers choose factor loadings arbitrarily, 
the factor loadings (i.e., lambdas) from real data 
were used to reflect the range of item loadings 
commonly encountered in practice. Based on the 
real data described above, the factor loadings for 
simulating the 10 and 20 item scales are listed in 
Figure 3. Using the population correlation 
matrix among the variables, continuous item 
response data, y*, of a specified population size, 
with normally distributed but independent (i.e., 
uncorrelated) continuous scores are generated 
and saved for each of two groups. A grouping 
variable is created and saved in the data set. For 
Group 1 in the equal sample size condition, the 
specified sample size is 50 000. However, for 
the unequal sample size conditions, the specified 
sample sizes for Group 1 are either 10 000, 20 
000, 30 000, or 40 000 which correspond to the 
data with sample size ratios of 1:9, 2:8, 3:7, and 
4:6, respectively. For Group 2, the specified 
sample size is 50 000 for data representing an 
equal sample size condition. Conversely, the 
specified sample size for data representing the 
unequal sample size conditions with ratios of 
1:9, 2:8, 3:7, and 4:6 are 90 000, 80 000, 70 000, 
and 60 000, respectively, for Group 2. These 
normally distributed scores represent the 
(typically unobserved) latent scores from which 
ordered responses are generated. 

The generated continuous data are 
divided into four ordered categories by using 
three thresholds. Thus, the ordered responses are 
computed by recoding the continuous item 
response data into the appropriate thresholds for 
a 4-point scale: the thresholds for the symmetric 
data (i.e., equal latent thresholds) are -1.67, 0, 
and 1.67, and the thresholds for the skewed data 
(i.e., unequal latent thresholds) are 0.4, 1.16, and 
1.65. The continuous scores are manipulated to 
mimic responses on a rating scale while 
simultaneously modifying the distributional 
shape of the data. Lastly, the data from Group 1 
is appended to the data from Group 2 to create a 
population data set with a total of 100,000 
simulees for the appropriate design cell.  
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Type I error is defined as the proportion 
of times that a null-DIF item was falsely rejected 
at the 0.05 level. In other words, the empirical 
Type I error rates are computed as the number of 
rejections divided by the number of replications. 
Based on Bradley’s (1978) liberal criteria, an 
empirical Type I error rate exceeding 7.5% (i.e., 
> 0.075 level of significance) will be considered 
to be inflated. Bradley’s liberal criterion for 
robustness of validity requires Type I error 
values of p to lie between 0.025 and 0.075. Note 
that both the t-test and the Chi-squared tests are 
investigated. The Chi-square test is a more 
general (i.e., omnibus) test that can be used to 
test several items at a time, whereas the t-test (t-
value) is a one-degree of freedom test and can 
therefore only test one item at a time. In this 
case, however, because there is a large number 
of degrees of freedom the t-statistic “operates as 
a z-statistic in testing that the estimate is 
statistically different from zero” (Byrne, 1998, p. 
104).  

 
Results 

 
Psychometric properties of the data 
Before sampling from the population data files it 
is important to verify that the simulated data has 
the desired psychometric properties. A 
confirmatory factor analysis (CFA) with the 
polychoric correlation matrix and weighted least 
squares (WLS) estimation procedure with the 
asymptotic covariance matrix (Byrne, 1998) was 
computed using LISREL 8.54 (Jöreskog & 
Sörbom, 2003b). The goodness-of-fit statistics 
suggest that both the 10 (χ2(35) = 110.82, 
RMSEA = .06) and 20 (χ2(170) = 442.47, 
RMSEA = .052) item one-factor models have a 
reasonable fit to the data. 
  
Reliability of the data 

Different population data sets were 
created for the equal and unequal sample size 
conditions. Four population data sets (two levels 
of the number of items in the scale by two levels 
of item distributions were created for the equal 
sample size conditions (Part A). For each of 
these population data files, the reliability, as 
computed using alpha, was as follows: the 10-
item symmetric data α = .86, the 10-item skewed 
data α = .85, the 20-item symmetric data α = .92, 

and the 20-item skewed data α = .92. As 
expected, the longer scales (the 20-item scales) 
had better reliabilities. 

 
Monte Carlo 

For each of the 1000 replications, the 
model fit and test statistics (t and χ2) were 
recorded. The asymptotic covariance matrix of 
the estimated coefficients is used for the WLS 
and ML estimation. More specifically, the 
computation of WLS takes the inverse of the 
asymptotic covariance matrix. If this matrix is 
not positive definite there is no inverse matrix 
and thus the computation either fails entirely or 
gives results that are statistically incorrect. This 
problem is identified by (1) a warning message 
in the LISREL software output file and (2) an 
examination of the results where incorrect 
statistical values are revealed (e.g., negative chi-
square values are incorrect because squared 
values, by definition, must be positive). 

There are a few simulation cells in 
which the first run of the simulation resulted in 
all of the replications being non-computable, as 
the results are not interpretable because they are 
statistically incorrect. For these cases the 
simulation was re-run, however, the results were 
the same – the solution was not valid. The 
solution was not valid because the matrix was 
not positive definite and therefore the inverse of 
the asymptotic covariance matrix could not be 
computed which is needed in order to implement 
the WLS method for covariance and correlation 
structures (for a discussion on not positive 
definite matrices see Wothke, 1993). The 
computation of ML, on the other hand, does not 
require the inverse of this matrix. To get ML 
estimates you maximize the likelihood of the 
parameters given the data; thus, it does not 
involve a direct inversion of the asymptotic 
covariance matrix. Hence, the results using ML, 
as shown below, were computable.  

There are a number of reasons why the 
asymptotic covariance matrix is “not positive 
definite.” One possible reason could be due to 
sampling variation. When sample size is small, a 
sample covariance or correlation matrix may be 
not positive definite due to mere sampling 
fluctuation (Anderson & Gerbing, 1984). A 
second reason could be due to poor parameter 
values at the start of the iteration process (Byrne, 
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1998). For example, if the start value is a 
positive number but the true estimated value is 
negative, the solution may be unable to continue 
iterations or may not converge. Thus, it is really 
a problem when there is a wide discrepancy 
between the start values and the true estimates. 
Another explanation “is that the model is 
empirically underidentified in the sense that the 
information matrix is nearly singular (i.e., it is 
close to be nonpositive definite)” (Byrne, 1998, 
p. 68). Given the problem of a not positive 
definite matrix, one limitation with this DIF 
MIMIC approach is that errors are inevitable. 
One should therefore be cautious and always 
check that the matrix being analyzed is correct. 
With this in mind, the following results for the 
equal sample size condition (Part A) and the 
unequal sample size condition (Part B) are 
presented below. 
 
Part A: Equal sample size condition  
Model fit  

The overall model fit values over the 
1000 replications for the DIF MIMIC models 
with ML estimation method for each cell of the 
10- and 20-item scales fits at least adequately. 
For the 10 and 20-item scales, the RMSEA 
values are all less than .10 suggesting the data 
have a good fit to the model. 

The mean fit statistics for the DIF 
MIMIC model conducted with WLS estimation 
method showed that for the 10-item skewed 
scale data with a sample size combination of 
500:500 the fit values were not computed 
because the asymptotic covariance matrix was 
not positive definite. Similarly, the 20-item 
symmetrical and skewed 200:200 scale data with 
WLS estimation did not produce any valid data 
because of the not positive definite matrix. A 
further discussion of this problem is located at 
the end of the results section of this article. For 
the cells that had valid data, the RMSEA values 
were reasonable (i.e., less than .10). Given that 
the models fit adequately, the DIF MIMIC 
model is consistent with our use.  
 
Type I error rates 

The DIF MIMIC model was evaluated 
based on its ability to control Type I error rates 
under a variety of conditions. For the individual 
parameters, the chi-square values were 

examined since there is only one path (direct 
effects estimate) one is able to also test if the 
path is equal to zero via the t statistic. As 
expected, the t statistic is also inflated and 
follows the same patterns as the chi-square 
statistic reported in the results tables. 

The chi-square value used for examining 
the Type I error rate is the difference in chi- 
squares between the MIMIC model with no 
group to the item path and the MIMIC model 
with the group to item path (λ12 in Figure 1). 
Using this chi-square value, the proportion of 
rejections was counted, which represent the 
Type I error rates, based on the chi-square p-
value, with p-values less than 0.05 leading to a 
decision not to reject the hypothesis. The chi-
square rejection rates (Type I error rates) across 
estimation method, scale length, distributional 
condition, for the equal sample size 
combinations are shown in Table 1.  

For the symmetrically distributed 10-
item data using ML estimation, the Type I error 
rate was inflated (7.7% - 10.3%) for all three 
sample size conditions. Similarly, for the 
skewed 10-item data using ML estimation, the 
Type I error rate was also inflated (12.5% to 
14.8%) for all sample size conditions. Table 1 
also shows that the empirical Type I error rates 
for the symmetrically distributed 20-item data 
using ML estimation were also inflated (10.8% - 
14.7%) for all three sample size conditions. As 
shown in the same table, the Type I error rates 
for the skewed 20-item data using ML 
estimation were even more inflated than the 
symmetrically distributed data and ranged from 
11.6% to 16.3% for all sample size conditions.  

In terms of the 10-item scale with WLS 
estimation (Table 1), the symmetrically 
distributed data showed inflated Type I error 
rates ranging from 9.9% to 23.5%. Likewise, the 
skewed data was also inflated (14.7% to 28.3%). 
It should also be noted that there were no valid 
cells for the 10-item scale with skewed data for 
the 500:500 sample size combination because 
the matrix was not positive definite. 

The 20-item scale using WLS estimation 
(see Table 1) showed even higher Type I error 
rates ranging from 24.9% - 46.7%. As one can 
also see, there were no valid chi-square for the 
200:200 sample sizes combinations due to the 
problem of a non-positive definite matrix. 
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Part B: Unequal sample size condition  
Model fit  

The fit statistics for the DIF MIMIC 
model conducted with ML estimation suggest 
that the overall model for each cell of the 10- 
and 20-item scales fit adequately. For both the 
scale lengths, the RMSEA values are all <.5 
suggesting the data fit the model very well. In 
addition, the RMSEA fit statistic for the DIF 
MIMIC models conducted with the WLS 
estimation also suggest that the data fit the 
model adequately.  

 

 
 
Type I error rates 

As in Part A, the chi-square values were 
examined and used to evaluate the Type I error 
rates of the DIF MIMIC model under a variety 
of conditions. The chi-square rejection rates 
(Type I error rates) for the unequal sample size 
conditions are shown in Table 2. 

For the symmetrically distributed 10-
item data using ML estimation, the Type I error 
rate was inflated (9% - 11.6%) for all four 
sample size conditions. Likewise, the skewed 
10-item data using ML estimation also showed 
inflated Type I error rates (13.4% to 14.3%) for 
all sample size conditions. 

 
  

Table 1. Empirical Type I error rates of the Chi-squared Test of the DIF MIMIC model across estimation 
method, scale length, distributional condition, for the equal sample size combination. 

 
 
 

‘Valid reps’ is shorthand for the number of valid replications. 

Sample size combinations Estimation 
method 

Scale 
length 

Distribution  
200:200 500:500 1000:1000 

Symmetric  
Reject 
Valid reps 

.103 
964 

.093 
995 

.077 
993 

10-item 

Skewed 
Reject 
Valid reps 

.126 
957 

.148 
991 

.125 
995 

Symmetric  
Reject 
Valid reps 

.118 
626 

.108 
508 

.147 
470 

ML 

20-item 

Skewed 
Reject 
Valid reps 

.162 
660 

.163 
575 

.116 
481 

Symmetric  
Reject 
Valid reps 

.235 
948 

.131 
996 

.099 
997 

10-item 

Skewed 
Reject 
Valid reps 

.283 
972 

Not 
computable 

.147 
991 

Symmetric  
Reject 
Valid reps 

Not 
computable 

.341 
988 

.249 
993 

WLS 

20-item 

Skewed 
Reject 
Valid reps 

Not 
computable 

.467 
959 

.305 
957 
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For the symmetrically distributed 20-

item data using ML estimation, the Type I error 
rate was also moderately inflated (9.8% - 12.4%) 
for all four sample size conditions. The Type I 
error rate for the skewed 20-item data using ML 
estimation was even more inflated than the 
symmetrically distributed data and ranged from 
11.3% to 16.3% for all sample size conditions.  

In terms of the 10-item scale with WLS 
estimation (see Table 2), the symmetrically 
distributed data showed inflated Type I error  
rates ranging from 11.4% to 12.5%. Likewise, 
the skewed data was also inflated (13.8% to 
17.8%). The 20-item scale using WLS 
estimation (see Table 2) showed even higher 
Type I error rates for both the symmetrically 
distributed data (18.8% to 23.2%) and the 
skewed data (22.4% to 32%).  

 
Discussion 

 
Given that short scales are typically found in the 
educational and psychological disciplines and 

the MIMIC method is the most appropriate  

 
 
method for investigating DIF in short scales, the 
primary purpose of this article was to investigate 
the Type I error rates for this DIF method as 
implemented using Jöreskog’s (2002) 
covariance matrix with ML and WLS estimation 
methods. As mentioned in the introduction of 
this article, no previous study had examined the 
Type I error rates for the DIF MIMIC method let 
alone its implementation in the LISREL 
software. Accordingly, the primary focus of this 
article was to examine the Type I error rate of 
the proposed MIMIC approach under a variety 
of study conditions including seven sample size 
combinations, two item response distributions, 
two scale lengths, and two estimation methods. 

The results of this study clearly show 
that the DIF MIMIC model has inflated Type I 
error rates with both the 10- and 20-item scales 
with ML and WLS estimation methods under all 
study design conditions. The Type I error rates 
were more inflated for the skewed data than the 
symmetric data and the Type I error rates were 
more inflated for WLS compared to 

Table 2. Empirical Type I error rates of the Chi-squared test of the DIF MIMIC model across estimation 

method, scale length, distributional condition, for the unequal sample size combinations. 

 
Sample size combinations Estimation 

method 
Scale 
length Distribution 

 

1:9 2:8 3:7 4:6 

Symmetric  
Reject 
Valid reps 

.097 
982 

.116 
988 

.090 
996 

.103 
996 

10-item 
Skewed 

Reject 
Valid reps 

.136 
974 

.134 
983 

.134 
991 

.143 
994 

Symmetric  
Reject 
Valid reps 

.123 
528 

.105 
513 

.098 
479 

.124 
467 

ML 

20-item 
Skewed 

Reject 
Valid reps 

.159 
536 

.113 
503 

.143 
490 

.163 
491 

Symmetric  
Reject 
Valid reps 

.115 
979 

.126 
994 

.114 
999 

.125 
995 

10-item 
Skewed 

Reject 
Valid reps 

.138 
982 

.162 
995 

.171 
996 

.178 
998 

Symmetric  
Reject 
Valid reps 

.188 
903 

.211 
966 

.207 
998 

.232 
999 

WLS 

20-item 
Skewed 

Reject 
Valid reps 

.224 
991 

.259 
999 

.279 
999 

.320 
982 
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ML estimation. The results also 
illustrated that a limitation of the DIF MIMIC 
method with WLS estimation is that it produced 
not positive definite asymptotic covariance 
matrices. As discussed in the results section, the 
matter of a not positive definite matrix is 
problematic for WLS estimation (as opposed to 
ML) because the inverse of the asymptotic 
covariance matrix is needed in order to 
implement the method for covariance and 
correlation structure.  

Based on the results from the current 
study we caution researchers against the use of 
the DIF MIMIC method with Jöreskog’s 
methods in LISREL. Accordingly, given that 
this simulation study was motivated by practical 
contexts wherein the data were reflective of real 
test data and the design conditions were chosen 
based on practical contexts, this author 
recommends avoiding the DIF MIMIC approach 
currently available in LISREL. Moreover, for 
studies that have used this DIF MIMIC method 
(with the new covariance matrix described 
above), it is likely that too many DIF items were 
flagged as functioning differently between 
groups because of the inflated Type I error rate 
of this method. Thus, for these studies, it is 
difficult to determine which items are truly 
functioning differently from those items that are 
falsely flagged as functioning differently.  
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A Simple Method For Finding Empirical Likelihood Type Intervals 
For The ROC Curve 

 
Ayman Baklizi 
Qatar University 

 
 
Interval estimation of the ROC curve is considered using the empirical likelihood techniques. Suggested 
is a procedure that is very simple computationally and avoids the constrained optimization problems 
usually faced with empirical likelihood methods. Various modifications are suggested and the 
performance of the intervals is evaluated in terms of their coverage probability. The results show tat some 
of the suggested intervals compete well with other intervals known in the literature. 
 
Key words: ROC curve, empirical likelihood, kernel estimators, bootstrap 
 
 

Introduction 
 
The Receiver Operating Characteristic (ROC) 
curve is used to assess the accuracy of a 
diagnostic test in discriminating between healthy 
and diseased individuals. A threshold value c  is 
determined, and people with test measurements 
greater than c  are classified as diseased, 
otherwise as healthy.  Let X be a random 
variable representing the test score of a healthy 
individual and let Y be the score of a diseased 
patients. Let F and G  be the distribution 
functions of X and Y respectively. The 
sensitivity of the test is defined as ( )cG−1 . It is 
the probability that the test score of diseased 
patient is greater than c . The specificity of the 
test is defined as ( )cF , it is the probability of 
correctly classifying a healthy individual. The 
receiver operating characteristic curve is defined 
as the plot of ( )cF−1  against ( )cG−1  as c  
varies from ∞−  to ∞  or equivalently as the 
plot of ( )( )tFG −− − 11 1  where 10 ≤≤ t , 
(Hsieh and Turnbull, 1996).  
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The estimation of the ROC   curve  has   
received considerable attention. The problem 
has been considered in parametric, 
nonparametric and semi-parametric situations. 
For example, see Hsieh and Turnbull (1996), Li 
et al.  (1999), Hall et al., (2003). 

Claeskens et al. (2003) developed 
empirical likelihood confidence regions for the 
ROC curve. Let nXX ,,1 …  and  mYY ,,1 …  be 
two random samples from the distributions F  
and G  respectively. Define the ROC curve as 

( ) ( )( )tFGtR −−= − 11 1  where 10 ≤≤ t  and 
let ( )tR=θ , Claeskens et al. (2003) constructed 
confidence intervals for θ  using the smoothed 
empirical likelihood function 

 ( )
( ) ⎟⎟
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⎜⎜
⎝
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⎠

⎞
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11,,
sup

η
θ , 

 where ( )nppp ,,1 …=′  and ( )mqqq ,,1 …=′  
are probability vectors each summing to one and 
subject to certain constraints on the smoothed 
versions of the empirical distributions of X  and 
Y . They showed that the asymptotic distribution 
of the log-likelihood ratio  ( ) ( )θθ Ll log2−=  is 
chi square with one degree of freedom and 
conducted some simulations to investigate the 
performance of their intervals and show that it 
performs better than some other asymptotic and 
bootstrap intervals. 
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Purpose 
 
An alternative procedure is suggested here based 
on the empirical likelihood which is very simple 
computationally, does not need  numerical 
constrained optimization, and produces interval 
estimates that are, in some cases,  about as 
accurate as those of Claeskens et al. (2003). This 
procedure and some modifications are described. 
A simulation experiment was conducted to 
investigate and compare the suggested procedure 
with other well known procedures. 
 
Empirical Likelihood Based Intervals 
 Assume that an interval estimator of 

( ) ( )( )*1* 11 tFGtR −−= −  is desired where *t is 
some specific point in the unit interval. Proceed 
in two stages as follows; in the first stage  obtain 
a point estimator for ( )*1 1 tF −− . This is 

equivalent to estimating *1 tx
−

: ( )tht *1−  quantile 

of F  denote this estimator by *1
ˆ

tx
−

.  In the 
second stage obtain an interval estimator of 

( ) ( )** 11
ˆ1ˆ

tt xGxG
−−

−=  which is the right tail 
probability of the random variable Y  having 
distribution function G .    

In an empirical likelihood setup, the first 
stage amounts to estimating *1 tx

−
 which may be 

done using interpolation between the values of 
the ordered statistics of the sample of the 
distribution of X .  In the second stage consider 
the empirical likelihood function for quantiles 
(Owen, 2001) given by             
                  

( )

( )
1 1

0 01

,

max | , 0, 0, 1
m m m

i i i i i
i ii

R p q

nw w Z p q w w
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where 10 ≤≤ p , ∞<<∞− q  is the 

thp quantile and ( ) ( ) pIqpZ qXi i
−= ≤, . 

Substituting *1
ˆ

tx
−

 for q   and ( )*1
ˆ

txG
−

 for p  

and, conditional on *1
ˆ

tx
−

 using  the empirical 

likelihood function ( )( )** 11
ˆ,ˆ

tt xxGR
−−

 one can 

construct confidence interval for  ( )*1
ˆ

txG
−

 as  

( ) ( )( ){ }2
1,111 *** ˆ,ˆlog2|ˆ αχ>−

−−− ttt xxGRxG  
 
and then transform it to a confidence interval for 

( )*1
ˆ1 txG

−
−  this results in  a confidence interval 

for ( )*tR  Call this interval the (EL) interval. 
The chi square calibration used in the 

empirical likelihood interval may be replaced by 
the E-Calibration of Tsao (2004). This 
calibration is based on the quantiles of a new 
family of distributions arising from the normal 
distribution. It is derived using the finite sample 
similarity between the empirical and parametric 
likelihoods. Some quantiles me ,1,α of that 
distribution are given in Tsao (2004). The E – 
calibration corrects for under coverage resulting 
from using the chi square calibration. The new 
interval (EC interval) based on this calibration is 
given by 

 
( ) ( )( ){ }mttt exxGRxG ,1,111 *** ˆ,ˆlog2|ˆ α>−

−−−
 

 
Another modification may be obtained by using 
the “smoother” version of the empirical 
likelihood function for quantiles introduced by 
Adimari (1998). In this modification the 
empirical likelihood is replaced by a smoother 
version which, when considered as a function of 

( )*1
ˆ

txG
−

,  may be written as 
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n

iG
2

12* −=  on each ( )iY  and is linear in 

each ( ) ( )[ ]1, +ii YY , and where ( ) ( )nYY ,,1 …  are the 
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order statistics of the sample of Y  values. 
Adimari showed that the limiting distribution is 
also .2

1χ  A ( )%1 α− confidence interval  for 
( )*1
ˆ

txG
−

  (AD interval) is given by 
 

( ) ( )( ){ }2
,1111 *** ˆ,ˆ~log2|ˆ αχ>−

−−− ttt xxGRxG  
 
Simulation 
 Simulation studies were conducted to 
assess the performance of the interval estimates 
based in the empirical likelihood. Also 
considered were the bootstrapped version of the 
empirical likelihood interval (BEL), and the 
bootstrapped version of the (AD) interval, the 
(BTAD) interval. A Bartlett type correction 
factor is obtained as the mean of the B bootstrap 
empirical log-likelihood ratios which in turn 
used to find the (BRT) interval. The simulation 
design used similar to those used by Claeskens 
et al.(2003) and Hall et. al. (2003). The coverage 
probability were investigated at values of  t  = 
0.1, 0.3, 0.5, 0.7 and 0.9 with sample size 
( ) =mn, (30,30), (50,50), (70, 70), (100,100), 
(50,70) and (70,50). In each case 2000 pair of 
samples is generated from  

1- ( )1,0~ NX , ( )1,1~ NY  
2- ( )2~ ΓX , ( )3~ ΓY  

3- ( )5~ tX ,  
( ) ( ) )15(8.0)15(2.0~ −+− ttY  

B = 500 is used in bootstrap calculations. The 
coverage probabilities of the intervals with 
nominal confidence levels ( ) =−α1 0.90 and  
0.95 are given in Tables 1-3.  

 
Result 

 
The results are given in tables 1 – 3 where the 
following abbreviations are used EL: The 
empirical likelihood interval based on the 
asymptotic 2χ approximation. BEL: The 
empirical likelihood interval based on bootstrap 
crirical values. 
EC: The empirical likelihood interval based on 
Tsao’s E-Calibration. BRT: The empirical 
likelihood interval with the bootstrap Bartlett 
type correction. AD: The empirical likelihood 
interval based on Adimari’s modification. 

BTAD: The empirical likelihood interval based 
on Adimari’s modification and bootstrap critical 
values.  

 
Conclusion 

 
It appears that the coverage probabilities of the 
intervals are close to the nominals for small 
values of t . For larger values of t  most 
intervals tend to have an undercoverage 
problem. Exceptions are the bootstrapped 
empirical likelihood interval (BEL) and the 
corrected interval (BRT). These two intervals 
tend to be conservative for larger values of t . A 
drawback of the (BEL) interval is that it has a 
very low coverage probability for small values 
of t when the sample sizes differ. 

This is not the case with the (BRT) 
interval. These observations are also applicable 
to the results given in tables 2 and 3. The BRT 
in most cases have the closest coverage 
probability to nominal. Comparison of these 
results with Hall et. al. (2003) and Claeskens et 
al. (2003) shows that the (BRT) interval 
considered in this article competes very well 
with theirs in terms of its coverage probability. 
The simplicity of the methods discussed in this 
article and the avoidance of complicated 
restricted optimization problems or sophisticated 
bandwidth rules used for the construction of 
kernel based intervals may balance the slightly 
better performance of the Hall et al. (2003) or 
Claeskens et. al. (2003) intervals.     
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Table 1. Coverage Probabilities of the Intervals, The Normal Distribution 
 

n  m  t  EL BEL EC BRT AD BTAD EL BEL EC BRT AD BTAD
     10.0=α      05.0=α    

30 30 0.1 887 182 887 791 926 932 887 228 967 900 951 961 
  0.3 743 741 743 779 761 768 794 791 946 803 789 947 
  0.5 816 852 816 872 805 817 864 903 864 906 877 899 
  0.7 719 881 743 903 767 789 840 928 840 931 848 863 
  0.9 600 839 600 876 676 695 623 921 705 917 768 788 
               

50 50 0.1 927 378 927 878 920 925 927 411 927 917 951 954 
  0.3 852 809 852 824 848 855 905 864 905 872 905 906 
  0.5 757 906 819 926 803 811 868 951 868 953 874 884 
  0.7 729 914 729 950 746 756 811 965 811 966 832 841 
  0.9 651 890 651 948 692 700 731 965 731 971 783 791 
               

70 70 0.1 905 531 905 927 936 937 966 561 966 956 960 961 
  0.3 855 874 855 890 836 840 855 909 892 919 922 925 
  0.5 783 924 783 952 790 797 860 961 860 971 866 870 
  0.7 756 932 756 971 761 765 838 978 838 984 838 844 
  0.9 662 907 662 972 692 694 732 974 732 984 773 777 
               

100 100 0.1 941 658 941 945 938 938 941 677 941 970 967 967 
  0.3 830 895 830 918 833 833 880 940 880 941 906 906 
  0.5 800 946 800 978 803 803 868 978 868 986 882 882 
  0.7 719 945 719 986 743 743 832 988 832 992 832 832 
  0.9 646 929 646 980 661 661 722 980 722 991 752 752 
               

50 70 0.1 878 506 878 901 918 922 947 540 947 939 946 948 
  0.3 815 847 815 867 812 813 815 889 859 899 902 907 
  0.5 747 910 747 943 763 768 833 959 833 959 836 842 
  0.7 708 911 708 958 715 724 791 973 791 978 800 800 
  0.9 587 885 587 946 610 620 646 962 646 971 694 701 
               

70 50 0.1 958 397 958 924 952 954 958 435 958 953 972 974 
  0.3 869 815 869 823 864 870 912 869 912 875 907 911 
  0.5 780 909 845 925 823 835 881 954 881 951 890 899 
  0.7 791 928 791 962 789 797 871 976 871 979 867 874 
  0.9 710 910 710 957 735 743 786 965 786 976 812 818 
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Table 2. Coverage Probabilities of the Intervals, Asymmetric Distributions Case 
 

n  m  t  EL BEL EC BRT AD BTAD EL BEL EC BRT AD BTAD
     10.0=α      05.0=α    

30 30 0.1 922 292 922 844 919 925 922 346 922 884 950 955 
  0.3 761 767 840 779 822 833 840 828 840 825 867 878 
  0.5 769 871 769 892 754 769 820 918 868 920 844 863 
  0.7 704 878 704 913 725 748 735 933 813 937 812 834 
  0.9 561 828 561 853 698 711 649 905 649 895 776 802 
               

50 50 0.1 857 516 857 885 914 918 943 546 943 932 950 951 
  0.3 796 840 796 874 807 816 850 898 850 899 875 881 
  0.5 749 905 749 949 764 775 842 967 842 964 841 850 
  0.7 691 928 691 959 741 749 767 970 780 978 820 826 
  0.9 601 881 675 920 713 721 740 945 757 949 787 796 
               

70 70 0.1 906 648 906 921 912 915 906 681 906 950 946 949 
  0.3 769 878 769 904 790 799 873 926 873 928 874 884 
  0.5 723 929 762 973 760 765 804 980 832 986 840 849 
  0.7 689 934 736 978 732 737 820 979 820 990 810 816 
  0.9 638 900 638 947 677 684 723 965 739 965 765 770 
               

100 100 0.1 733 703 733 752 729 729 923 762 923 969 948 948 
  0.3 805 924 805 952 806 806 875 961 875 967 875 875 
  0.5 758 943 758 984 761 761 850 984 850 991 839 839 
  0.7 729 945 729 988 715 715 774 988 774 994 807 807 
  0.9 631 926 631 971 680 680 732 978 732 985 768 767 
               

50 70 0.1 874 659 874 895 900 901 874 687 874 924 939 943 
  0.3 738 872 738 898 761 766 844 924 844 927 837 841 
  0.5 690 920 727 958 726 732 769 967 805 976 814 819 
  0.7 647 924 697 971 711 717 772 973 772 981 794 799 
  0.9 566 860 566 922 641 643 632 940 645 949 719 728 
               

70 50 0.1 880 532 880 898 927 930 960 566 960 938 958 960 
  0.3 824 854 824 866 817 824 870 894 870 898 887 898 
  0.5 795 921 795 956 797 806 876 961 876 968 875 885 
  0.7 746 939 746 980 784 792 830 981 843 988 866 874 
  0.9 662 899 729 937 737 747 789 957 811 961 818 827 
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Table 3: Coverage Probabilities of the Intervals, Mixture Distributions Case 
 

n  m  t  EL BEL EC BRT AD BTAD EL BEL EC BRT AD BTAD
     10.0=α      05.0=α    

30 30 0.1 808 792 808 804 844 852 861 850 861 844 873 879 
  0.3 820 899 877 921 846 858 877 938 877 949 912 930 
  0.5 828 927 828 956 854 874 914 964 914 972 916 928 
  0.7 755 903 755 937 792 809 825 960 842 961 864 884 
  0.9 590 824 590 851 678 692 699 906 699 906 764 783 
               

50 50 0.1 838 866 838 886 826 834 838 902 838 917 907 913 
  0.3 863 934 863 962 842 848 895 968 927 971 907 914 
  0.5 811 952 851 984 846 853 911 985 911 990 909 916 
  0.7 813 937 813 977 798 807 879 978 879 986 869 876 
  0.9 595 880 595 919 668 679 685 946 685 951 749 760 
               

70 70 0.1 828 887 828 906 815 820 867 928 867 939 891 895 
  0.3 841 951 881 984 852 857 908 982 908 988 917 921 
  0.5 837 956 837 988 830 836 893 987 893 994 901 905 
  0.7 807 962 807 990 803 808 872 991 885 995 880 882 
  0.9 604 907 662 957 663 672 734 968 734 974 752 762 
               

100 100 0.1 787 919 787 941 811 811 873 959 873 959 889 889 
  0.3 843 965 843 991 853 853 924 989 924 997 923 923 
  0.5 834 970 834 996 843 843 899 995 899 998 907 907 
  0.7 775 967 775 996 799 799 873 993 873 998 868 868 
  0.9 634 908 634 968 662 662 686 977 686 986 746 746 
               

50 70 0.1 780 858 780 887 781 786 827 908 827 922 858 861 
  0.3 832 949 871 977 840 846 894 981 894 986 900 904 
  0.5 820 964 820 992 810 815 875 990 875 997 882 886 
  0.7 766 943 766 979 760 767 819 981 836 990 841 846 
  0.9 521 870 570 929 600 605 638 946 638 956 696 702 
               

70 50 0.1 859 869 859 884 839 851 859 903 859 911 918 924 
  0.3 886 940 886 965 867 871 912 975 946 979 931 938 
  0.5 818 962 853 980 847 853 920 985 920 990 915 922 
  0.7 834 942 834 983 824 835 907 983 907 990 897 904 
  0.9 656 889 656 949 715 724 733 958 733 971 793 801 
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A Modified X  Control Chart for Samples Drawn from Finite Populations 
 

Michael B. C. Khoo 
Universiti Sains Malaysia 

 
 
The X  chart works well under the assumption of random sampling from infinite populations. However, 
many process monitoring scenarios may consist of random sampling from finite populations. A modified 
X  chart is proposed in this article to solve the problems encountered by the standard X  chart when 
samples are drawn from finite populations. 
 
Key words: X  control chart, finite population, infinite population, average run length (ARL), in-control, 
out-of-control (o.o.c.), upper control limit (UCL), lower control limit (LCL). 
 
 

Introduction 
 
The Shewhart X  control chart is widely used in 
manufacturing industries to monitor the stability 
of the mean of a process. Since its introduction 
in the late 1920’s, numerous extensions and 
enhancements of the X  chart have been 
suggested.  
 Nelson (1984) discussed eight types of 
runs rules which increase the sensitivity of the   
X chart for the detection of a shift in the mean 
of a normally distributed process. Wheeler 
(1983) provided tables of the power function of 
the X chart and the Type-I error probabilities of 
each of the four different sets of detection rules. 
False signal rates of the X chart incorporating 
each of the eight different runs rules are studied 
by Walker et al. (1991). Seven of these rules are 
discussed in Nelson (1984). Klein (2000) 
proposed two different runs rules for the   chart, 
the 2-of-2 and 2-of-3 rules, based on a Markov  
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chain approach in setting the limits of the chart. 
Using the same Markov  chain  approach.  Khoo 
 (2004a) extended the work of Klein (2000) by 
suggesting three additional rules, i.e., the 2-of-4, 
3-of-3 and 3-of-4 rules. 

Superior alternatives to the two rules of 
Klein (2000) are proposed by Khoo and Khotrun 
(2006) to enable a quicker detection of a big 
shift, while maintaining the same sensitivity 
towards a small shift. Shmueli and Cohen (2003) 
introduced a new method for computing the run 
length distribution of a Shewhart chart with runs 
and scans rules. Davis and Krehbiel (2002) 
compared the ARL performances of Shewhart 
charts with all possible combinations of 
supplementary runs rules and that of zone charts 
and found the latter to outperform the former. 

The first optimum economic design of 
the X chart which considered statistical and cost 
considerations in the selection of design 
parameters, i.e., sample size, sampling intervals 
and location of control limits was proposed by 
Duncan (1956). Tagaras (1989) studied the 
statistical properties and the economic design of   
X charts with asymmetric control limits. Del 
Castillo et al. (1996) applied an interactive 
multicriteria nonlinear optimization algorithm to 
a model for the design of X charts where only 
the sampling cost needs to be specified while the 
cost of false alarms need not be specified. 
Jaraiedi and Zhuang (1991) presented a 
computer program to perform optimal cost-
based design of X  charts when multiple 
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assignable causes can shift the process to an out-
of-control state. McWilliams et al. (2001) gave a 
FORTRAN program that can be used to jointly 
determine the parameters of X   charts used in 
combination with either the R or S charts. 
Waheba and Nickerson (2005) developed a 
comprehensive cost model to incorporate two 
cost functions, i.e., the reactive and proactive 
functions for obtaining economically optimum 
designs of X  charts for controlling the process 
mean. Keats et al. (1995) presented and analyzed 
a methodology for using average production 
length (APL) and sampling constraints to aid in 
the design of X   control schemes. 

Costa (1994) studied the properties of 
the variable sample size (VSS) X   chart when 
the size of each sample depends on what is 
observed in the preceding sample and compared 
its performance with the other methods. Sim et 
al. (2004) considered the occurrence of double 
assignable causes in a process, adopted the 
Markov chain approach to investigate the 
statistical properties of the VSS   X chart and 
suggested a procedure to compute the optimal 
sample size. Lin and Chou (2005a) proposed the 
variable sample size and control limit (VSSCL) 
X   chart which was shown to have a lower false 
alarm rate and to be quicker than the VSS X  
chart in  detecting small and moderate shifts in a 
process involving non-normal populations. 
Reynolds and Stoumbos (2001) showed that the 
variable sampling interval (VSI) X chart which 
allows the sampling interval to be varied enables 
a substantial reduction in the expected times in 
detecting shifts in process parameters. Chen and 
Chiou (2005) developed an economic design of 
VSI X   control charts. Lin and Chou (2005b) 
proposed two adaptive X charts, i.e., the variable 
sampling rate with sampling at fixed times 
(VSRFT) X   chart and the variable parameters 
with sampling at fixed times (VPFT)   chart. 

Nedumaran and Pignatiello (2001) 
addressed the problem of estimating the X   
chart limits when the values of the process 
parameters are unknown. Nedumaran and 
Pignatiello (2005) also proposed the use of the 
analysis of means (ANOM) technique for 
constructing retrospective X   control chart 
limits so as to control the overall probability of a 

false alarm at a desired level. Champ and Jones 
(2004) examined methods for obtaining 
probability limits of Phase-I X   charts when the 
process mean and standard deviation are 
estimated. 

Methods of making the X   charts less 
influenced by extreme observations and hence 
more effective in the detection of outliers are the 
trimmed mean X  and R charts proposed by 
Langenberg and Iglewicz (1986) and the robust   

QX  and QR   charts based on the sample 
interquartile range estimator suggested by Rocke 
(1989 and 1992). Among the procedures of 
using the   charts for skewed populations are 
those based on the weighted variance concept 
proposed by Bai and Choi (1995) and Chang and 
Bai (2001), as well as that using the skewness 
correction method suggested by Chan and Cui 
(2003). 
 Other extensions of the X   chart are as 
follows: The estimation of the time of a change 
in the mean following an out-of-control signal 
using the maximum likelihood estimation 
technique was proposed by Samuel et al. (1998). 
Park and Park (2004) suggested a maximum 
likelihood joint estimator of the change point to 
identify the time of a change in the process mean 
or variance when X   and S control charts issue 
a signal. Daudin (1992) presented a double 
sampling X  chart which offers better statistical 
efficiency than the standard X   chart without 
increasing the sampling. Costa and Rahim 
(2004) suggested joint X   and R charts with a 
two stage sampling procedure which speeds up 
the detection of process disturbances. Del 
Castillo (1996) presented a C program for the 
computation of the run length distribution and 
average run length of X   charts with unknown 
process variance. Khoo (2004b) reviewed and 
studied some commonly used performance 
measures for the X  charts. Maragah and 
Woodall (1992) showed the effect of 
autocorrelation on the retrospective X chart for 
individuals. Roes et al. (1993), Rigdon et al. 
(1994) and Trip and Wieringa (2006) showed 
that using the X chart alone is as efficient as the 
combined  X-MR chart for detecting changes in 
the process variance. However, Rigdon et al. 
(1994) recommended that the limits on the 
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individuals X chart be based on the moving 
range (MR) rather than the sample standard 
deviation. Rahardja (2005) found that adding the 
MR chart to an X chart is not helpful for 
detecting independently and identically 
distributed (i.i.d.) departures from standard 
conditions, but is beneficial in detecting some 
non-i.i.d. conditions. Combined X   and S charts 
such as the semicircle and Max charts are 
proposed by Chao and Cheng (1996) and Chen 
and Cheng (1998) respectively. 
 
A Modified  X   Control Chart 

Suppose that a quality characteristic is 
normally distributed with mean µ and standard 
deviation σ, where both µ and σ are known. If   

1 2, ,..., nX X X is a sample of size n, then the 
mean of this sample is 

 

                    1 2 ... nX X XX
n

+ + +=                 (1) 

 
For sampling from infinite populations, which is 
usually assumed to be the case in process 

monitoring, X ~
2

,N
n

⎛ ⎞σμ⎜ ⎟
⎝ ⎠

 . Thus, the ±3 sigma 

limits of the standard X  chart are 

0 0
3/ 3S S XUCL LCL

n
σ= μ ± σ = μ ± , where 0μ    

is the in-control mean of the process. 
However, in some industrial settings, 

sampling is made from finite populations. Here, 
the use of the standard X  chart’s limits can lead 
to erroneous conclusions as it will cause an 
inflated Type-II error which will be discussed 
later. For sampling from finite populations 
(Bluman, 2004), the sample mean, 

iX ~
2 ( ),

( 1)
i i

i i

N nN
n N

⎛ ⎞σ −μ⎜ ⎟−⎝ ⎠
, i =1, 2, …. Assuming 

that a manufacturing process is producing items 
at a steady rate such as in a conveyor belt system 
and that the number of items drawn for each 
sample are of equal size, then 

iX ~
2 ( ),
( 1)

N nN
n N

⎛ ⎞σ −μ⎜ ⎟−⎝ ⎠
. The correction factor for 

the variance of iX , i.e., 
1−

−
N

nN
is necessary if 

relatively large samples are taken from a small 
population so that the sample mean will more 
accurately estimate the population mean and 
there will be less error in the estimation. The ±3 
sigma limits of the modified  X  chart for 
samples drawn from finite populations are 

 

               0
3

1M
N nUCL
Nn

σ −= μ +
−

           (2a) 

 
and 
 

                  0
3

1M
N nLCL
Nn

σ −= μ −
−

            (2b) 

 
If the process parameters µ0 and σ are unknown, 
they are estimated from X   and  2/R d or 4/S c   

respectively, where X  is the grand average, R   
is the average range and S   is the average 
standard deviation. Here X  , R  and ,  S   are 
computed from the following formulae: 
 

                   1 2 ... mX X XX
m

+ + +
=                  (3) 

 

                   1 2 ... mR R RR
m

+ + +=                    (4) 

and 
 

                   1 2 ... mS S SS
m

+ + +=                     (5) 

 
where 1 2, ,..., mX X X   denote the means of the m 
samples, 1 2, ,..., mR R R  the ranges of the m 
samples while 1 2, ,..., mS S S   the standard 
deviations of the m samples. The m samples 
from which iX  , iR  , and iS  , i = 1, 2, …, m, 
are computed are assumed to be taken from an 
in-control process. 

If  µ0 and σ are unknown, the limits in 
eqs. (2a) and (2b) when σ is estimated using 

2R d   are 
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                 UCLM = 
2

3
1

R N nX
Nd n

−+
−

           

                            = 2X A R′+                          (6a) 
 
and 
 

                LCLM  = 
2

3
1

R N nX
Nd n

−−
−

          

                            = 2X A R′− ,                        (6b) 
 

respectively, where  2A′  = 
1

3

2 −
−

N
nN

nd
.  

 
If 4S c   is used to estimate σ, then the limits in 
eqs. (2a) and (2b) become  

 

               UCLM =
4

3
1

S N nX
Nc n

−+
−

 

                     = 3X A S′+                             (7a) 
 
and 

 

                     LCLM = 
4

3
1

S N nX
Nc n

−−
−

 

                           = 3X A S′− ,                     (7b) 
 

respectively, where 3
4

3
1

N nA
Nc n

−′ =
−

. 

Generally, the estimator σ̂  = 2R d  is 
used for small sample sizes, say n < 10 while the 
estimator 4ˆ S cσ =  is used for big sample sizes, 
say n ≥ 10. Factors 2A′  and 3A′  based on various 
values of n and N, for the construction of the 
limits of the modified X  chart are given in 
Tables A1 and A2 respectively in the Appendix, 
where sample sizes of n = 2, 3, …, 25 and 
selected population sizes of N ≤ 1000 are 
considered. Note that N > 1000 is not considered 
because it will be shown via Monte Carlo 

simulation in this article that the results of the 
standard and modified X  charts are about the 
same for N > 1000. 

 
 
Formulae for Computing the Type-I and Type-II 
Errors of the Modified and Standard X  Charts 

This section deals with the derivation of 
formulae for computing the probabilities of 
Type-I, α  and Type-II, β  errors of the 
modified and standard X charts. The exact in-
control and out-of-control ARLs can be easily 
computed using formulae 
 

                               ARL0 = 
α
1

                       (8) 

and 
 

                               ARL1 = 
β−1

1
,                 (9) 

respectively. 
 Assume that the out-of-control process 
mean is represented by 0μ = μ + δσ , where 0μ  
denotes the in-control mean. Note that δ = 0 
shows that the process is in-control while δ > 0 
or δ < 0 indicates that the process is out-of-
control. For sampling from finite populations, it 

is known that X ~
2

,
1

N nN
n N

⎡ ⎤σ −⎛ ⎞μ⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦
. The 

probability of a Type-I error of the modified X  
chart for sampling from finite populations is 
 

( ) ( )0 0  M M MP X UCL P X LCLα = > μ = μ + < μ = μ  

0 0
0

3
1

1 1

N n
X NnP

N n N n
N Nn n

⎛ ⎞σ −μ + − μ⎜ ⎟− μ −⎜ ⎟= >
⎜ ⎟σ − σ −
⎜ ⎟− −⎝ ⎠

+ 

 
0 0

0

3
1

1 1

N n
X NnP

N n N n
N Nn n

⎛ ⎞σ −μ − − μ⎜ ⎟− μ −⎜ ⎟<
⎜ ⎟σ − σ −
⎜ ⎟− −⎝ ⎠

 

                    = ( ) ( )33 −<+> ZPZP            (10)    
 
while the corresponding probability of a Type-I 
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error of the standard X  chart is 
 

( ) ( )0 0  S S SP X UCL P X LCLα = > μ = μ + < μ = μ  

      =
0 0

0

3

1 1

X nP
N n N n
N Nn n

⎛ ⎞σμ + − μ⎜ ⎟− μ⎜ ⎟>
⎜ ⎟σ − σ −
⎜ ⎟− −⎝ ⎠

 +           

         
0 0

0

3

1 1

X nP
N n N n
N Nn n

⎛ ⎞σμ − − μ⎜ ⎟− μ⎜ ⎟<
⎜ ⎟σ − σ −
⎜ ⎟− −⎝ ⎠

    

                  

13

13

NP Z
N n

NP Z
N n

⎛ ⎞−= > +⎜ ⎟⎜ ⎟−⎝ ⎠
⎛ ⎞−< −⎜ ⎟⎜ ⎟−⎝ ⎠

               (11) 

  
The probability of a Type-II error of the 

modified X  chart for sampling from finite 
populations is computed as follows: 

 

Mβ ( )0 M MP LCL X UCL= < < μ = μ + δσ  
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0

0
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M

P X UCL
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1
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1
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P Z
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n N
P Z
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while that of the standard X  chart is 

 
( )0 S S SP LCL X UCLβ = < < μ = μ + δσ  
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1 3

1 3

NP Z n
N n

NP Z n
N n
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⎡ ⎤−− < − + δ⎢ ⎥−⎣ ⎦

    (13)  

 
A Comparison of the ARL Performances of the 
Modified and Standard X  charts 

The ARL profiles of the modified X  
chart can be easily computed using eqs. (8), (9), 
(10) and (12) while that of the standard X  chart 
from eqs. (8), (9), (11) and (13). SAS version 9 
is used in the computation of the ARL values. 
For ease of computation, the in-control process 
is assumed to follow a standard normal, N(0,1) 
distribution while the out-of-control process a 
normal, N(δ,1) distribution so that the out-of-
control mean is 0μ = μ + δσ  where 0μ = 0 and σ 
= 1. Values of δ∈{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 
1, 1.2, 1.4, 1.6, 1.8, 2} are used so that a positive 
shift is considered. Due to the symmetrical 
limits of the modified and standard X  charts, 
similar ARL profiles will be obtained for 
positive and negative values of δ. The sample 
sizes, n∈{1, 2, 5} and population sizes, N∈{10, 
25, 50, 100, 500, 1000, 2500, 5000, 7500, 
10000} are considered. Tables 1 and 2 give the 
ARL results of the modified and standard X  
charts respectively. 
 When n = 1, both the modified and 
standard X  charts are reduced to the individuals 
X charts. From eqs. (10) and (11), it is observed 
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that M Sα = α  for n = 1 and similarly, from eqs. 
(12) and (13), M Sβ = β  for n = 1. Thus, the ARL 
profiles of the two charts in Tables 1 and 2 are 
exactly the same when n =1, where ARL0 = 
370.4 irrespective of the population size, N. 
Note that the results in Tables 1 and 2 for n = 1 
are also similar to that of the standard X  chart 
when  samples are drawn from infinite 
populations because it can be shown easily that 

M Sα = α = α  and M Sβ = β = β , where α and β 
are the probabilities of the Type-I and Type-II 
errors of the standard X  chart for sampling 
from infinite populations. 

For bigger sample sizes of n = 2 or 5, it 
is observed that the modified X  chart gives 
reliable results (see Table 1) compared to that of 
the standard X  chart (see Table 2). The ARL0 
values of the modified X  chart for n = 2 and 5 
are all 370.4, irrespective of the value of N, i.e., 
similar to the case of the standard X  chart when 
sampling is made from infinite populations. On 
the contrary, the ARL0 values of the standard X  
chart for n = 2 and 5 are greatly larger than  
370.4 for small values of N, which are more 
pronounced for n = 5. For example, when n = 5, 
ARL0 = 17545.7, 985.2, 573.0, 455.6 and 385.4 
for N = 10, 25, 50, 100 and 500 respectively. 
The ARL0 values of the standard X  chart in 
Table 2 for n = 2 and 5 decreases as N increases 
and approximates 370.4 when N > 1000. The 
ARL1 values of the standard X  chart in Table 2 
for n = 2 and 5 involving small values of N and 
δ are greatly larger than the corresponding 
values in Table 1. For example, when n = 5, N = 
10 and δ∈{0.1, 0.2, 0.3, 0.4, 0.5} the ARL1 
values of the standard X  chart are 9495.2, 
3232.5, 1124, 422.9, and 172.8 respectively, 
while that of the modified X  chart are 
significantly smaller at 253.1, 119.7, 55.8, 27.8 
and 15 respectively. Thus, using the standard X  
chart in the detection of process shifts when 
sampling is made from finite populations where 
N is small or of moderate size can lead to a 
significant delay in the detection of small shifts 
in the mean. The ARL1 value of the standard X  
chart that corresponds to a fixed small value of δ 
for n = 2 and 5, say δ = 0.1 decreases as N 
increases and approximates that of the modified 

chart when N > 1000. From the above 
discussion, it is found that the use of the 
standard X  chart can lead to erroneous 
conclusion and wrong understanding of the 
probabilities of Type-I and Type-II errors of the 
chart if sampling is made from finite populations 
of N < 1000. The use of the modified chart is 
justified in that it produces reliable in-control 
and out-of-control ARL values which are 
somewhat close to that of the standard X  chart 
where sampling is made from infinite 
populations. 
 

Conclusion 
 

The standard X  chart caters only for the case 
involving sampling from infinite populations. 
This article identifies the problems faced by the 
standard X  chart when it is used in the 
monitoring of processes for samples drawn from 
finite populations or if the population which is 
supposedly assumed to be infinite consists of 
less than N = 1000 items of a certain part. As 
highlighted above, the problems arise include 
ARL0s for 2≥n  and N < 1000 are greatly 
larger than the target value of approximately 370 
and the corresponding ARL1s involving small 
shifts in the mean are also greatly larger than 
that of the modified X  chart. In an industrial 
setting if the assumption of an infinite 
population size where sampling is made cannot 
be met, the modified X  chart should be used in 
place of the standard X  chart. Tables A1 and 
A2 in the Appendix provide factors 2A′  and 3A′  
used in the computation of the control limits of 
the modified X  chart if the process parameters 
need to be estimated from a preliminary set of 
data of in-control subgroups. These factors 
simplify the computation of the limits of the 
modified X  chart. 
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Table 1. ARL profiles of the modified X  chart 
 

N n δ 10 25 50 100 500 1000 2500 5000 7500 10000 
0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.1 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 
0.2 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 
0.3 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 
0.4 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 
0.5 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 

0.75 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 
1 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 

1.2 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 
1.4 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 
1.6 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 
1.8 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 

1 

2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 
            

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 
0.1 333.1 335.6 336.2 336.6 336.8 336.9 336.9 336.9 336.9 336.9 
0.2 253.1 259.3 261.1 261.9 262.6 262.7 262.7 262.7 262.7 262.7 
0.3 176.5 184.1 186.3 187.3 188.1 188.2 188.3 188.3 188.3 188.3 
0.4 119.7 126.8 128.9 129.9 130.7 130.8 130.8 130.8 130.9 130.9 
0.5 81.2 87.2 89 89.8 90.5 90.6 90.6 90.6 90.6 90.6 

0.75 32.9 36.1 37.1 37.6 38 38 38.1 38.1 38.1 38.1 
1 15 16.7 17.2 17.5 17.7 17.7 17.7 17.7 17.7 17.7 

1.2 8.7 9.7 10.1 10.2 10.4 10.4 10.4 10.4 10.4 10.4 
1.4 5.4 6.1 6.3 6.4 6.5 6.5 6.5 6.5 6.5 6.5 
1.6 3.6 4.1 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 
1.8 2.6 2.9 3 3 3.1 3.1 3.1 3.1 3.1 3.1 

2 

2 2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 
            

0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 
0.1 253.1 284 290.4 293.2 295.3 295.5 295.7 295.7 295.7 295.7 
0.2 119.7 159.3 169.1 173.6 176.9 177.3 177.6 177.7 177.7 177.7 
0.3 55.8 84.4 92.3 96 98.9 99.2 99.4 99.5 99.5 99.5 
0.4 27.8 46 51.5 54.1 56.1 56.3 56.5 56.5 56.6 56.6 
0.5 15 26.4 29.9 31.7 33.1 33.2 33.3 33.4 33.4 33.4 

0.75 4.4 8.2 9.5 10.1 10.6 10.7 10.7 10.7 10.8 10.8 
1 2 3.4 4 4.2 4.4 4.5 4.5 4.5 4.5 4.5 

1.2 1.4 2.1 2.4 2.5 2.6 2.6 2.7 2.7 2.7 2.7 
1.4 1.1 1.5 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 
1.6 1 1.2 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 
1.8 1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

5 

2 1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
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Table 2. ARL profiles of the standard X  chart 
 

N N δ 10 25 50 100 500 1000 2500 5000 7500 10000 
0 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 

0.1 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 352.9 
0.2 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 308.4 
0.3 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 253.1 
0.4 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 200.1 
0.5 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 

0.75 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 81.2 
1 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 43.9 

1.2 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 27.8 
1.4 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 
1.6 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 
1.8 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 

1 

2 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 
            

0 683.7 458.7 410.4 389.5 374.1 372.2 371.1 370.8 370.6 370.6 
0.1 607.6 413.9 371.9 353.6 340.1 338.5 337.5 337.2 337.1 337 
0.2 449.5 317.1 287.5 274.6 265 263.9 263.2 263 262.9 262.9 
0.3 304.1 222.7 204.1 195.9 189.8 189.1 188.6 188.5 188.4 188.4 
0.4 200.4 151.9 140.6 135.5 131.8 131.3 131 131 130.9 130.9 
0.5 132.4 103.5 96.6 93.5 91.2 90.9 90.8 90.7 90.7 90.7 

0.75 50.4 42 39.9 39 38.3 38.2 38.1 38.1 38.1 38.1 
1 21.6 19 18.3 18 17.8 17.8 17.7 17.7 17.7 17.7 

1.2 12 10.9 10.6 10.5 10.4 10.4 10.4 10.4 10.4 10.4 
1.4 7.2 6.7 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.5 
1.6 4.6 4.4 4.4 4.4 4.3 4.3 4.3 4.3 4.3 4.3 
1.8 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 

2 

2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 
            

0 17545.7 985.2 573.0 455.6 385.4 377.8 373.3 371.9 371.4 371.1 
0.1 9495.2 722.4 441.1 357.6 306.8 301.2 297.9 296.8 296.5 296.3 
0.2 3232.5 375.5 248.5 208.5 183.3 180.5 178.8 178.3 178.1 178 
0.3 1124 185.5 131.5 113.6 102.1 100.8 100.1 99.8 99.7 99.7 
0.4 422.9 94.8 71.3 63.2 57.8 57.2 56.8 56.7 56.7 56.7 
0.5 172.8 51.0 40.3 36.5 34.0 33.7 33.5 33.5 33.4 33.4 

0.75 26.3 13.6 11.9 11.3 10.9 10.8 10.8 10.8 10.8 10.8 
1 6.5 5 4.7 4.6 4.5 4.5 4.5 4.5 4.5 4.5 

1.2 3 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 
1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 
1.6 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 
1.8 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

5 

2 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1  
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Appendix  
 

Table A1.  Values of factor, 2A′  for the Modified X  chart 
 

Population size, N Sample 
Size, n 10 25 50 100 200 300 400 500 600 700 800 900 1000 

2 1.773 1.841 1.861 1.871 1.876 1.877 1.878 1.879 1.879 1.879 1.879 1.880 1.880
3 0.902 0.980 1.002 1.013 1.018 1.020 1.021 1.021 1.021 1.022 1.022 1.022 1.022
4 0.595 0.681 0.706 0.717 0.723 0.725 0.726 0.726 0.727 0.727 0.727 0.727 0.727
5 0.430 0.527 0.553 0.565 0.571 0.573 0.574 0.574 0.575 0.575 0.575 0.576 0.576
6 0.322 0.430 0.458 0.471 0.477 0.479 0.480 0.481 0.481 0.482 0.482 0.482 0.482
7 0.242 0.363 0.393 0.406 0.413 0.415 0.416 0.417 0.417 0.418 0.418 0.418 0.418
8 0.176 0.316 0.345 0.359 0.366 0.368 0.369 0.370 0.370 0.371 0.371 0.371 0.371
9 0.112 0.275 0.308 0.323 0.330 0.332 0.333 0.334 0.334 0.335 0.335 0.335 0.335

10  0.244 0.278 0.294 0.301 0.304 0.305 0.305 0.306 0.306 0.306 0.307 0.307
11  0.218 0.254 0.270 0.278 0.280 0.281 0.282 0.283 0.283 0.283 0.283 0.284
12  0.196 0.234 0.251 0.258 0.261 0.262 0.263 0263 0.264 0.264 0.264 0.264
13  0.176 0.217 0.234 0.242 0.244 0.246 0.246 0.247 0.247 0.248 0.248 0.248
14  0.159 0.202 0.219 0.228 0.230 0.231 0.232 0.233 0.233 0.233 0.234 0.234
15  0.144 0.189 0.207 0.215 0.218 0.219 0.220 0.220 0.221 0.221 0.221 0.222
16  0.130 0.177 0.196 0.204 0.207 0.208 0.209 0.210 0.210 0.210 0.211 0.211
17  0.117 0.166 0.186 0.194 0.197 0.199 0.200 0.200 0.200 0.201 0.201 0.201
18  0.105 0.157 0.177 0.186 0.189 0.190 0.191 0.191 0.192 0.192 0.192 0.193
19  0.093 0.148 0.169 0.178 0.181 0.182 0.183 0.184 0.184 0.184 0.185 0.185
20  0.082 0.141 0.161 0.171 0.174 0.175 0.176 0.177 0.177 0.177 0.178 0.178
21  0.071 0.133 0.155 0.164 0.167 0.169 0.170 0.170 0.171 0.171 0.171 0.172
22  0.059 0.127 0.149 0.158 0.161 0.163 0.164 0.165 0.165 0.165 0.166 0.166
23  0.047 0.120 0.143 0.153 0.156 0.158 0.159 0.159 0.160 0.160 0.160 0.160
24  0.032 0.115 0.138 0.148 0.151 0.153 0.154 0.154 0.155 0.155 0.155 0.155
25   0.109 0.133 0.143 0.146 0.148 0.149 0.150 0.150 0.150 0.151 0.151
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Table A2. Values of factor, 3A′  for the Modified X  chart  
 

Population size, N Sample 
Size, n 10 25 50 100 200 300 400 500 600 700 800 900 1000 

2 2.507 2.603 2.631 2.645 2.652 2.654 2.655 2.656 2.656 2.657 2.657 2.657 2.657
3 1.724 1.871 1.914 1.935 1.945 1.948 1.950 1.951 1.951 1.952 1.952 1.952 1.953
4 1.329 1.523 1.578 1.603 1.616 1.620 1.622 1.623 1.624 1.625 1.625 1.625 1.626
5 1.064 1.303 1.368 1.398 1.413 1.418 1.420 1.422 1.423 1.423 1.424 1.424 1.424
6 0.858 1.145 1.220 1.254 1.271 1.276 1.279 1.281 1.282 1.283 1.283 1.284 1.284
7 0.682 1.024 1.107 1.146 1.164 1.170 1.173 1.175 1.176 1.177 1.177 1.178 1.178
8 0.518 0.925 1.018 1.060 1.080 1.086 1.089 1.091 1.093 1.094 1.094 1.095 1.095
9 0.344 0.842 0.944 0.989 1.011 1.018 1.021 1.023 1.025 1.026 1.026 1.027 1.028

10  0.771 0.881 0.930 0.953 0.961 0.964 0.966 0.968 0.969 0.970 0.970 0.971
11  0.708 0.827 0.879 0.904 0.912 0.916 0.918 0.920 0.921 0.922 0.922 0.923
12  0.652 0.780 0.835 0.861 0.869 0.874 0.876 0.878 0.879 0.880 0.880 0.881
13  0.601 0.738 0.796 0.824 0.832 0.837 0.839 0.841 0.842 0.843 0.844 0.844
14  0.553 0.701 0.762 0.790 0.799 0.804 0.807 0.808 0.810 0.811 0.811 0.812
15  0.509 0.666 0.731 0.760 0.770 0.775 0.777 0.779 0.781 0.782 0.782 0.783
16  0.467 0.635 0.702 0.733 0.743 0.748 0.751 0.753 0.754 0.755 0.756 0.757
17  0.427 0.607 0.677 0.709 0.719 0.724 0.727 0.729 0.731 0.732 0.732 0.733
18  0.388 0.580 0.653 0.686 0.697 0.702 0.705 0.707 0.709 0.710 0.711 0.711
19  0.349 0.555 0.631 0.666 0.677 0.682 0.685 0.687 0.689 0.690 0.691 0.692
20  0.310 0.532 0.611 0.646 0.658 0.663 0.667 0.669 0.670 0.672 0.673 0.673
21  0.271 0.510 0.592 0.629 0.640 0.646 0.649 0.652 0.653 0.655 0.655 0.656
22  0.229 0.489 0.575 0.612 0.624 0.630 0.633 0.636 0.637 0.639 0.640 0.640
23  0.183 0.470 0.558 0.597 0.609 0.615 0.619 0.621 0.623 0.624 0.625 0.626
24  0.126 0.451 0.542 0.582 0.595 0.601 0.605 0.607 0.609 0.610 0.611 0.612
25   0.433 0.528 0.569 0.581 0.588 0.592 0.594 0.596 0.597 0.598 0.599 
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Generalized Linear Mixed-Effects Models for the Analysis of Odor Detection Data 
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Olfactory detection has become a science of interest. Seven individuals’ odor detection abilities are 
explored and an attempt is made to characterize all subjects with one generalized linear mixed effects 
model. Two methods of fitting the models were used and simulations were conducted to discover which 
method yielded the best results. 
 
Key words: olfactory, conditional distribution, Metropolis Algorithm, Monte Carlo Newton Raphson 
Method, random effects, detectability, odor, human, sensitivity. 
 
 

Introduction 
 
The quality of indoor air is one of the least 
understood health problems that industry faces 
today. A major problem that poor indoor air 
quality causes is Sick Building Syndrome (EPA, 
1989). This occurs when a substantial proportion 
of a building’s occupants experience discomfort 
and health effects that are relieved upon leaving 
the building. It has been reported that sick 
buildings cause an estimated loss of between ten 
and one hundred billion dollars a year for non-
medical aspects of diminished indoor air quality, 
excluding medical events such as asthmatic 
attacks (Fisk & Rosenfeld, 1997). Human 
symptoms of Sick Building Syndrome range 
from repetitive office headaches and common 
cold-like symptoms to serious ailments such as  
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respiratory infections, asthma and allergies. A 
1996 Cornell University study found that, in 
each of 35 buildings surveyed, at least 20% of 
the occupants had experienced symptoms 
associated with Sick Building Syndrome (Mann, 
1998). Odor threshold is the point at which the 
probability of odor detection becomes greater 
than chance. Threshold is the most basic 
measure of sensory function. To understand 
higher order capabilities (e.g. odor 
discrimination, odor identification, identification 
of target in mixtures, and perception of odor 
quality), it is necessary to take into account the 
sensitivity of each individual to each chemical. 
Thus, it is important to have a valid way to 
quantify sensitivity. One example of why odor 
threshold might be studied is to gain a better 
understanding of issues related to olfaction such 
as Sick Building Syndrome. Another is that it 
has been hypothesized that early stages of 
Alzheimer’s disease can be detected by a loss of 
odor detectability (Devanand et. al., 2000).  
 To help researchers understand this 
concept of accurately quantifying odor detection 
ability, a study was conducted at the Florida 
State University Sensory Research Institute’s 
(SRI). Subjects received stimuli via a facemask 
that covered the person’s mouth and nose, 
although the stimuli were taken in through only 
the nose. The subject then responded using a 
computer mouse and monitor screen as to 
whether or not an odor was detected. By using 
this olfactometer, the subject was given a precise 
concentration of the chemical (Walker et. al., 
2003).  
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For that study, seven subjects were 
recruited. They were selected so as to have a 
variety of different ages as well as subjects of 
each and both genders. As the subjects 
responded to the posters via phone calls they 
were asked routine questions to determine if 
they had a prior history of nasal defect. The 
researchers desired both a male and female 
subject in each of the following age categories: 
18-20, 21-30, 31-44 and > 45 years.  After three 
weeks of recruitment, no male subject was found 
in the 31-44 year- old group and the 
experimenters elected to continue the study 
without a male subject from this age group. Each 
subject completed 12 to 14 sessions over the 
course of 3 to 4 months. Each session consisted 
of 75 trials (15 trials of clean air in addition to 
15 trials at each of 4 different concentrations of 
amyl acetate) each lasting approximately 18 
seconds and separated by 90-second intervals. 
Hence, a typical session ran for 2 hours and 15 
minutes. 

A trial consists of the subject being 
asked to come to the mask, where they breathed 
the stimulus.  The subject then used a mouse to 
click whether they detected an odor or not. The 
method of stimulus presentation allowed for 
very precise control. Before and during stimulus 
presentation, breathing was measured. After 
several seconds of pre-stimulus sampling of 
respiratory behavior was stored, the next 
exhalation onset triggered operation of the flow 
valve that (unless a clean air trial is scheduled) 
sent odorant to the mask. This approach 
essentially eliminated the vexing problem of a 
stimulus rise time, because the concentration 
reached its asymptotic value during the interval 
from an exhalation onset to the next inhalation 
onset (Prah, Sears & Walker, 1995). The 
specific concentrations and corresponding yes’s 
(y’s) and no’s (n’s) from the subject for the 
session were recorded on the same computer that 
randomized the concentrations to be given.  

Traditionally, longitudinal data might 
have been analyzed using a generalized linear 
model (GLM) for each subject. However, this 
method does not accommodate a population 
based model, which is ultimately desired. Thus, 
generalized linear mixed models (GLMMs) were 
used to address the problem. 

The class of functions known as 
GLMMs extends GLMs by adding random 
effects to the linear predictor(s). The benefit of 
this model is that it allows for responses that are 
correlated and non-normally distributed, which 
can frequently occur in actual problems. By 
including the random effects, the GLMMs can 
model correlated errors, smooth regression 
relationships and model dependence among 
variables that occurs in repeated measure 
designs. Many problems involve multiple 
sources of variation such as analysis of data that 
has a hierarchical structure like clinical trial 
data. The GLMM can be used to model such 
data. In this particular study, the model needed 
to account for the randomness of the session. 
This random nature is not considered in the 
traditional generalized linear model which is 
initially used to describe the data analyzed in 
this study. 

A natural alternative to this approach is 
to utilize generalized estimating equations 
(GEE). The GEE approach is attractive because 
it allows for a weighted estimate of the 
regression parameters and correctly adjusts for 
correlated data. The problems with GEE are that 
a) it provides only a population model of the 
data and b) it requires a large amount of subjects 
for the large sample distribution properties to 
provide correct standard errors for inference 
(hypothesis testing and confidence intervals). 
Since only seven subjects were available, the 
GEE approach would not be an appropriate 
choice.  
  GLMMs are useful as an alternative to 
GEE and might be an approach that is useful in 
small sample sizes. For example, SAS has a 
procedure called “GLIMMIX” that is promising. 
The problem is that GLIMMIX has not been 
completely assessed for its usefulness in small 
sample sizes.  
  GLMMs provide insight into the 
behavior, but accurately estimating the model 
can be quite difficult.  Because GLMMs are an 
extension of GLMs, one might logically try to fit 
the model using maximum likelihood, the 
common method to fit GLMs. The maximum 
likelihood method will only work for very 
simple GLMMs due to the need to numerically 
evaluate high dimensional integrals that are 
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irreducible. Thus, statisticians have looked for 
other methods to fit these models that do not 
involve the difficulties of the numerically 
complicated integration. Many different methods 
have been proposed to fit generalized linear 
mixed models. The model and two specific 
previously proposed methods (one being the 
SAS- GLIMMIX approach) will be discussed. 
Shown next will be results of the simulation 
study comparing these two methods for the data, 
fit the model that was deemed best in the 
simulation study and summarize the work. 

 
Methodology 

Model 
Let Yij be the jth response for subject i, 

with j = 1 to n i and i = 1 to m where m is the 
number of subjects and ni is the number of 
observations per subject. Let X ijk be the jth value 
of the kth fixed effect for subject i, with k = 1 to 
p and i and j as described previously. Thus, the 
traditional generalized linear model is  
 

∑ =+= p
k ijkkij Xg 10)( ββμ  

 
with )( ijij YE=μ , where g is the link function 
and p is the number of different fixed effects. 

Upon including the random effects, the 
model becomes:  
 

         
0 1 1

( )ij ij

p c
k ijk il ijlk l

g

X α Z

η μ

β β
= =

= =

+ +∑ ∑
     (1) 

 
where X is still assumed to be the matrix for the 
fixed effects and Zijl is the jth value for the l th 
random effect for subject i where l  = 1 to c with 
c being the number of random effects. Also, it is 
assumed that ),|( βα iijij YE=μ  and 

)(),|var( iiiij vaY μφ=βα , where φ is a 

dispersion parameter, )(v ⋅ is a specified variance 
function and ia  is a known constant. The 

random effects ),,, 21 mααα …(  are assumed 
to be independent with mean 0 and cov( α i)=D. 
It is assumed that the elements of Y conditional 
on α  are both independent and drawn from an 
exponential family distribution. Finally, α  is 

assumed to be distributed )|( Dααf . Let iη  
T

ini i
),,( 1 ηη …= . Then, the function becomes:  
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and the likelihood function is:  
 

        
|

1

( , , | )

( | , , ) ( | )
i

n

Y i
i

L

f f dα α

β φ

φ
=

=
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D Y

Y Dα β α α
   (3) 

 
(Breslow &Clayton, 1993; Clayton, 1993; Jiang, 
1998; Lin & Breslow, 1996; Lindstrom & Bates, 
1990; McCulloch, 1997; Vonesh, 1996). 
 
Simulation methods 

Several methods have been proposed to 
estimate the solution to the generalized linear 
mixed model. McCulloch (1997) proposed 
algorithms for Monte Carlo EM (MCEM) and 
Monte Carlo Newton-Raphson (MCNR). Lin 
and Breslow (1996) proposed using a penalized 
quasi-likelihood approach with bias correction to 
estimate the model.  
 The Monte Carlo EM algorithm 
considers the random effects α  to be missing 
data. Therefore, the complete data would be 
W=(Y, α ) and the log likelihood for the 
complete data would be  
 

     
|ln ( | , , ) ln ( | )

i

W

Y i
i

f fα αφ
=

+∑ Y Dα β α  (4) 

 
Thus, the Yi’s become independent when the 
α ’s are known. Note that β  and φ enter into the 
above equation only in the first term, the 
maximization with respect to those two terms is 
similar to a standard GLM computational 
problem with the α ’s known. Then maximizing 
with respect to D involves replacing the 
sufficient statistics with their conditional 
expected value and then performing maximum 
likelihood using the distribution of α . 
McCulloch’s (1997) algorithm follows: 
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1. Choose starting values for β (0), φ(0), and D(0). 

Set m=0. 
2. Calculate (with expectations evaluated under 

β (m), φ(m), and D(m)): 
a. β (m+1) and φ(m+1) which maximize 

]|),,|([ln | YY φα βαYfE  
b. D(m+1) which maximizes 

]|)|([ln YDααfE  
c. Set m=m+1 

3. If convergence is achieved, declare β (m+1), 
φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 
 

Neither expectation in step two can actually be 
found in closed form. It is, however, possible to 
produce random draws from the conditional 
distribution of α |Y by using the Metropolis 
algorithm (Vonesh, 1996), which does not 
require a specification of fY. Monte Carlo 
approximations may then be formed in order to 
estimate the two required expectations. For 
sufficiently large sample sizes, it was discovered 
that this method gains likelihood and would 
converge to a local maximum under appropriate 
regularity conditions (McCulloch, 1997). 
Although this holds promise, in variance 
component problems, such as with GLMMs, the 
likelihood surfaces are not necessarily unimodal; 
thus, this method may only converge to a local 
maximum and never to the global one. A second 
problem is that it is limited to the binary 
response with the probit link. Incorporating this 
Metropolis algorithm into the EM algorithm 
gives the MCEM algorithm below (McCulloch, 
1997): 
 
1. Choose starting values for β (0), φ(0), and 

D(0). Set m=0. 
2. Generate N values, α (1), α (2), … , α (N) 

from ),,,|( )()()(
|

mmm
Yf DY φα βα using 

the Metropolis algorithm: 
a.  Choose β (m+1) and φ(m+1) to maximize a 
Monte Carlo estimate of 

]|),,|([ln | YY φα βαYfE  that is 

maximize ),,|(ln1 )(

1
| φα βα k

N

k
YfN ∑=

Y  

b. Choose D(m+1) to maximize 

∑
=

N

k

kf
N 1

)( )|(ln1 Dαα  

c. Set m=m+1 
3. If convergence is achieved declare β (m+1), 

φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 

 
The next method that McCulloch (1997) 

used is the Monte Carlo Newton-Raphson 
method. This method also seemed robust to 
starting values. Again, since the likelihood 
surfaces are not unimodal, they are definitely not 
concave and thus this method may not converge 
at all, let alone to the global maximum. In 
practice it was discovered that this method 
generally got close to the correct answer. The 
algorithm appears below: 
 
1. Choose starting values for β (0), φ(0), and 

D(0). Set m=0. 
2. Generate N values, α (1), α (2), … , α (N) 

from ),,,|( )()()(
|

mmm
Yf DY φα βα using 

the Metropolis algorithm and use them to 
form Monte Carlo estimates of the 
expectations (denoted as ][ˆ ⋅E ): 
a. Calculate 
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a. Calculate φ(m+1) to solve 

0
),|(ln | =⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

Y
Y

φ
θα αYf

E  or a 

scoring equation. 
c.  Choose D(m+1) to maximize 

∑
=

N

k

kf
N 1

)( )|(ln1 Dαα  

d.  Set m=m+1 
3. If convergence is achieved declare β (m+1), 

φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 

 
The MCEM and MCNR algorithms are 

very similar. In fact, the maximization to 
calculate the fixed effects coefficients in the 
MCEM algorithm cannot explicitly be carried 
out for binomial data, and thus, an estimation 
method is necessary, such as the Newton 
Raphson Method. Thus, for our purposes, the 
MCNR is equivalent to the MCEM algorithm. 
 Breslow and Clayton (1993) proposed 
performing a method known as penalized quasi-
likelihood analysis (PQL) in order to 
approximate the maximum likelihood estimates. 
The key feature of this analysis is that it is easy 
to implement, especially since there exists a 
SAS macro for this method. The procedure is to 
repeatedly fit a linear mixed model to a modified 
dependent variable. They realized that a 
limitation of the PQL is that when assessing the 
uncertainty in both random and fixed effects it 
does not take into account the contribution of the 
estimated variance components. Lin and 
Breslow (1996) proposed a four-step procedure 
of bias correction for the PQL. 
 Lin and Breslow (1996) provided a four 
step algorithm to find the bias-corrected 
penalized quasi-likelihood estimates of the 
regression coefficients and variance 
components. They performed simulation studies 
and found that the bias correction procedure can 
improve asymptotic performance of the 
estimates for correlated binary data. They also 
discovered that this simple correction procedure 
would effectively reduce the bias of variance 
components of the PQL estimates and the 
associated mean square error as long as the 
sample size is reasonably large. 

Results 
 

The two methods, Monte Carlo Newton-
Raphson and penalized quasi-likelihood with 
bias correction, were used in a simulation study 
in order to determine which method better 
estimates the fixed affects as well as the random 
effects. The MCNR program was written in 
Matlab. The penalized quasi-likelihood program 
with bias correction (PQBC) was coded using 
SAS and the GLIMMIX macro available from 
SAS’s website: 
http://ftp.sas.com/techsup/download/stat/.  

The response vector for each program 
was generated using a binomial random 
generator. Binomial probabilities were 
calculated for each combination of subject, 
session and concentration.  

It was then determined how many 
simulations of the program should be carried out 
in order to have results that converge. Thus, 
each of the programs was run a total of 100 and 
1000 times, respectively. Each time, a new 
response vector was generated. The response 
vectors were based on the following model, 
using concentrations from four of the seven 
subjects,  
 

          
ij

ij

conc

conc

ij
e

ep *5.315

*5.315

1 −−

−−

+
=        (6) 

 
where pij is the probability for the jth 
concentration of subject i. The model gives the 
probability to be used for each concentration 
value. The binomial generator was then used 
along with the probabilities found in the model 
to generate fifteen binary responses for each 
concentration as it occurred. It can be seen, in 
Table 1, that both programs appear to have 
converging results with as few as 100 
simulations.  

Next, it is necessary to test the random 
effects portion of the programs. For this step, 
concentrations for four of the seven subjects 
were used. For each combination of subject, 
concentration, σ level (σ = 0.5, 1.5, 2.0, 2.5 and 
3.0) and (α, β) pair [values of (α, β) used were 
as follows: (-10, -2), (-12.5, -2.75), (-15, -3.5),  
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(-17.5, -4.25), and (-20, -5)] the following 
process was used to generate simulation data 
sets:  
 
Step 1: Generated a random number, γ, from the 
N(0, σ2) distribution.  
 
Step 2: Generated a binomial probability using 
the following model:  

γβα

γβα

++

++

+
= conc

conc

e
ep *

*

1
      (7) 

 
Step 3: Used this generated probability to 
randomly generate data from the binomial 
distribution with n equal to 15 and the value 
generated in step 2 for each time the 
subject/concentration combination occurred. 
This gave the ability to weight the different 
concentrations properly for each subject.  

 
This process was repeated 100 times, so that 100 
different data sets were generated for each 
individual combination of subject, 
concentration, σ level and (α, β) pair.  

In Table 2, models for ten subjects with 
a standard deviation of 0.5, 1.5, 2.0, 2.5, and 3.0 
are considered. The MCNR program tends to 
overestimate the slope and intercept, while the 
PQBC program tends to estimate the slope and 
intercept accurately. The PQBC program seems 
to underestimate the standard deviation, yet the 
MCNR program tends to estimate the standard 
deviation fairly close to the actual value.  
 
 
 

 
 

 
In Table 3, models for twenty simulated 

subjects with a standard deviation of 0.5, 1.5, 
2.0, 2.5, and 3.0 are considered. The MCNR 
program tends to come close to estimating the 
slope and the intercept or else slightly 
overestimate them, while the PQBC program 
tends to estimate the slope and intercept rather 
accurately. The PQBC program seems to 
underestimate the standard deviation only when 
it is equal to 0.5 and 1.0, otherwise it estimates 
the standard deviation fairly well. The MCNR 
program tends to estimate the standard deviation 
fairly close to the actual value.  

Upon considering both of these tables, it 
is observed that the MCNR program better 
estimates the standard deviation then the PQBC 
program does. Both methods do a good job of 
estimating the slope and intercept; however, the 
PQBC program cannot accurately estimate the 
random effect term effectively when the number 
of subjects is small. It should also be noted that 
there does exist a procedure in SAS that has 
recently been developed to fit a general linear 
mixed effects model. The problem with this 
procedure is that it currently allows for only one 
random effect. Therefore, it will not be used 
here as it has the potential for two random 
effects, one for subject and one for session. 

Based on these findings, it was decided 
that the MCNR program would be the best 
program to use to try to fit the actual data since 
the number of subjects that is present is seven.  

 
 
 
 
 

Table 1. Simulation Size Necessary 
 

 
 
 

Number of simulations 

 
 

 
 

MCNR 

 
 

PQBC 
Intercept -14.9606 -15.0603 100 

Slope -3.4918 -3.5031 
    

Intercept -15.0111 -15.0100 1000 
Slope -3.5028 -3.5066 
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Table 2. Simulation Results with Random Effects and 10 subjects 
 

sigma=0.5 MCNR PQBC 

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.9580 -1.9960 0.4441 -9.9587 -1.9895 0.1402 
-12.5 -2.75 -12.6137 -2.7720 0.5213 -12.4233 -2.7599 0.1585 
-15 -3.5 -14.9111 -3.4827 0.5129 -14.8682 -3.5199 0.1846 
-17.5 -4.25 -17.7383 -4.3082 0.5748 -17.5716 -4.2465 0.1306 
-20 -5 -20.0249 -4.9879 0.6037 -19.7835 -4.9974 0.1310 

sigma=1.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.6906 -1.9466 1.2642 -10.1027 -2.0090 1.4606 
-12.5 -2.75 -11.4029 -2.5562 1.2313 -12.5513 -2.7654 1.3046 
-15 -3.5 -13.8923 -3.2693 1.2745 -14.6752 -3.5230 1.6457 
-17.5 -4.25 -15.9715 -3.9428 1.3471 -17.3032 -4.2515 0.9298 
-20 -5 -18.6952 -4.6878 1.3556 -19.0461 -4.9920 0.6949 

sigma=2.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.5403 -1.7130 1.5299 -10.6636 -1.9815 1.1236 
-12.5 -2.75 -10.4584 -2.3086 1.4860 -11.6325 -2.7387 2.7422 
-15 -3.5 -12.9367 -3.0179 1.6964 -15.0677 -3.5473 1.9940 
-17.5 -4.25 -15.5526 -3.7921 1.7620 -19.0472 -4.3063 1.8099 
-20 -5 -17.7169 -4.4776 1.7517 -21.2486 -5.0573 1.8953 
sigma=2.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.3160 -1.7365 1.8244 -8.8011 -1.9977 3.0365 
-12.5 -2.75 -10.1496 -2.2878 1.9534 -13.0257 -2.7455 4.0708 
-15 -3.5 -12.6502 -3.0247 1.9906 -15.9416 -3.4950 2.6698 
-17.5 -4.25 -15.6909 -3.7334 2.0197 -17.1718 -4.2794 2.2737 
-20 -5 -16.3706 -4.0743 1.9568 -22.0580 -5.0519 3.5395 
sigma=3.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.4546 -10 -2 -8.4546 -10 -2 
-12.5 -2.75 -10.0818 -12.5 -2.75 -10.0818 -12.5 -2.75 
-15 -3.5 -12.3014 -15 -3.5 -12.3014 -15 -3.5 
-17.5 -4.25 -15.6226 -17.5 -4.25 -15.6226 -17.5 -4.25 
-20 -5 -16.2475 -20 -5 -16.2475 -20 -5 
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Table 3. Simulation Results with Random Effects and 20 subjects 
 

sigma=0.5 MCNR PQBC 

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.9054 -1.9816 0.4930 -9.4116 -1.9873 0.2649 
-12.5 -2.75 -12.4214 -2.7306 0.4904 -12.5022 -2.7393 0.2649 
-15 -3.5 -14.9141 -3.4801 0.4938 -15.0879 -3.4892 0.2626 
-17.5 -4.25 -17.6045 -4.2722 0.5487 -17.4891 -4.2707 0.2662 
-20 -5 -20.2569 -5.0673 0.6018 -19.9316 -4.9978 0.2381 

sigma=1.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.3067 -10 -2 -9.3067 -10 -2 
-12.5 -2.75 -11.6219 -12.5 -2.75 -11.6219 -12.5 -2.75 
-15 -3.5 -13.9817 -15 -3.5 -13.9817 -15 -3.5 
-17.5 -4.25 -16.2716 -17.5 -4.25 -16.2716 -17.5 -4.25 
-20 -5 -19.3602 -20 -5 -19.3602 -20 -5 

sigma=2.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.9972 -10 -2 -8.9972 -10 -2 
-12.5 -2.75 -11.2885 -12.5 -2.75 -11.2885 -12.5 -2.75 
-15 -3.5 -13.4287 -15 -3.5 -13.4287 -15 -3.5 
-17.5 -4.25 -16.0496 -17.5 -4.25 -16.0496 -17.5 -4.25 
-20 -5 -18.2798 -20 -5 -18.2798 -20 -5 
sigma=2.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.6322 -1.7685 2.1067 -10.0411 -1.9679 3.0753 
-12.5 -2.75 -10.8068 -2.3196 2.2214 -13.0177 -2.7644 3.7780 
-15 -3.5 -13.0848 -3.1166 2.1031 -15.2309 -3.5379 3.1254 
-17.5 -4.25 -15.9064 -3.6013 2.2602 -17.6589 -4.2495 2.1665 
-20 -5 -16.8736 -4.1663 2.1241 -19.0147 -5.0061 1.8221 
sigma=3.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.7646 -1.7309 2.6432 -9.2498 -1.9716 3.1413 
-12.5 -2.75 -10.1691 -2.2667 2.4309 -12.1977 -2.7603 2.8307 
-15 -3.5 -12.8800 -3.0994 2.5139 -14.7616 -3.5233 2.9032 
-17.5 -4.25 -15.8659 -3.5443 2.3783 -17.6541 -4.3037 3.6437 
-20 -5 -16.3182 -4.1412 2.4833 -20.0524 -5.0549 3.5551  
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Final model 
Now the generalized linear mixed-

effects models will be applied to the actual odor 
detection data. This begins by performing the 
MCNR analysis with both session and subject 
being random variables, while concentration 
remains the fixed variable. Subjects were chosen 
as a random effect because our previous analysis 
found that each subject did yield a different 
model. One of the main purposes of including 
random effects is to accommodate different 
subjects in one model with the random term. 
Session was chosen as a second possible random 
effect because it was somewhat significant in 
our early analysis of the data, and it is random in 
that the subjects may vary slightly from one 
session to another.   

Five of the subjects had similar 
coefficients for their individual fixed-effects 
models,  
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For example, slope estimates for the five 
subjects were -0.600, -0.695, -0.487, -0.872, and  
 
 
 

 
 
 
 
 
 

-0.471 while intercept estimates were  -2.881,  
-3.880, -1.468, -4.381, and -2.457.  For the 
remaining two subjects, slope estimates were  
-3.090 and -2.287, while intercept estimates 
were -11.577 and -9.225;. It could be speculated 
that these two groupings indicate that there are 
two categories of smellers and that it might 
prove useful to split the group of seven into 
these two separate groups to lessen the 
variability of the data for modeling purposes. 
This began, however, by keeping all seven 
subjects together and estimating a model. The 
general form of the model is  
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where γ sess could be zero.  

From Table 4, it is evident that the 
variability was quite large when all seven 
subjects were together and hence the resulting 
model had extraordinarily small coefficients. 
Thus, the data was split into two groups and 
estimated a separate model for each group; the 
results appear in Table 4. Therefore, several 
models based on the split groups of subjects will  

 
 
 

 
 
 
 

 

Table 4. Final Models 
 

No. of 
subjects in 
model 

Both subject and session as 
random effects 

Only subject as 
random effect 

No random effect 

7 α = -145.8455, β = -40.2636, 
γsubject=N(0,0.8069), 
γsess.=N(0,0.7281) 

α = -368.0081,  
β = -80.3047, 
γsubject=N(0,2.7066) 

α = -453.2103,  
β = -98.5135  

5 α = -3.4457, β = -0.7252, 
γsubject=N(0,1.0605), 
γsess.=N(0,0.1730) 

α = -3.5403,  
β = -1.0846, 
γsubject=N(0,4.6057) 

α = -2.9907,  
β = -0.6833 

2 α = -3.5596, β = -0.6995, 
γsubject=N(0,1.1177), 
γsess.=N(0,0.0013) 

α = -2.7960,  
β = -0.8711, 
γsubject=N(0,2.3808) 

α = -3.1377,  
β = -0.6414 
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be considered to see which will yield a better 
fitting model.  

Vonesh, Chinchilli and Pu (1996) 
observed that for a generalized linear mixed-
effects model, a valid measure of the goodness 
of fit of the model is given by cr . There are 
several advantages to using rc over other 
methods. First, it does not require the 
specification of a null model. Second, it 
measures the level of concordance between yi 
and iŷ . A higher value of cr  indicates a better 
fitting model. (Vonesh, Chinchilli & Pu, 1996)  

For the three models that involved the 5 
subjects, the rc follows: for the one with two 
random effects the rc was 0.418, for the model 
with only subject as a random effect the rc was 
slightly better (higher) with a value of 0.445 and 
for the model with no random effects the rc was 
only 0.342. Thus, for the 5-subject group, the 
best model is the one that includes only subject 
as the random effect. Upon looking at the three 
models that involved the 2 subjects the rc 
follows: for the one with two random effects it 
was 0.371, for the model with only subject as a 
random effect the rc was not quite as good with a 
value of 0.316 and the model with no random 
effects included yielded an rc of 0.318. Thus, for 
the 2 subject group, the best model is the one 
that includes both subject and session as the 
random effects. 

Therefore, the conclusion is drawn that 
the data for all seven subjects can be best 
represented using the following two models. For 
the group of five subjects the best model is  
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where γ =N(0, 4.6057) and for the group of two 
subjects the best model is  
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where subγ ~N(0, 1.1177) and sessγ ~N(0, 
0.0013). Thus, based on this small sample of 
individuals, it was found that two models will  

adequately represent the whole sample of seven 
individuals as opposed to the idea of finding a 
single model for each subject. It also would 
make it very difficult to adequately model the 
population as a whole if there had been 
individual models for each subject.   
 

Conclusion 
 

How accurate are people at detecting odors? In 
general terms, the question could also be stated 
as sensitivity – what is lowest concentration 
needed for reliable, if not perfect, detection?  
From there, there was an attempt to characterize 
all seven subjects with one generalized linear 
mixed effects model. 
 Two methods of fitting the generalized 
linear mixed effects models were used. 
Simulations were conducted to discover which 
method would yield the best results, in terms of 
stable estimates and a high rc value, for the data. 
It was discovered that for this data, the method 
that would yield the best results was the MCNR 
method. Once this method was implemented, it 
was discovered the data was best fit by two 
models as opposed to just one model. The 
subjects were split into one group of five and 
one group of two based on the results discovered 
in the initial portion of the simulation study. For 
the group of five, it was necessary to have a 
random effects term for the subjects and for the 
group of two, it was necessary to have a random 
effects term for the subjects and another for the 
sessions.  
 Thus, all seven subjects’ odor detection 
ability was able to be modeled for the one 
chemical tested through the use of two models. 
This is an improvement over the seven models 
that were initially investigated. The benefit of 
the smaller number of models is that it allows 
one to represent a population’s ability to detect 
odors with just a few models instead of a 
different model for each individual in the 
population. 

It would be instructive to perform a 
study with a larger sample in which the same 
task was asked of participants as in this study, 
namely: Do you detect an odor or not? An ideal 
situation would be to have many subjects of 
each gender and in each age group. This would 
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allow an expansion of these models to attempt to 
include a term for gender and also for age. Some 
researchers have hypothesized that as humans 
age, they begin to lose their sense of smell 
(Doty, 1994). Others (Hales, 1999) have 
wondered if sensitivity varies with gender. By 
expanding the model, it would begin to answer 
these questions. 
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A Weighted Moving Average Process for Forecasting 
 

Shou Hsing Shih  Chris P. Tsokos 
University of South Florida

 

 
 
A forecasting model for a nonstationary stochastic realization is proposed based on modifying a given 
time series into a new k-time moving average time series. The study is based on the autoregressive 
integrated moving average process along with its analytical constrains. The analytical procedure of the 
proposed model is given. A stock XYZ selected from the Fortune 500 list of companies and its daily 
closing price constitute the time series. Both the classical and proposed forecasting models were 
developed and a comparison of the accuracy of their responses is given. 
 
Key words: ARIMA, moving average, stock, time series analysis 
 
 

Introduction 
 
Time series analysis and modeling plays a very 
important role in forecasting, especially when 
our initial stochastic realization is nonstationary 
in nature. Some of the interesting and useful 
publications related to the subject area are 
Akaike (1974), Banerjee et al. (1993), Box et al. 
(1994), Brockwell and Davis (1996), Dickey and 
Fuller (1979), Dickey et al. (1984), Durbin and 
Koopman (2001), Gardner et al. (1980), Harvey 
(1993), Jones (1980), Kwiatkowski et al. (1992), 
Rogers (1986), Said and Dickey (1984), 
Sakamoto et al. (1986), Shumway and Stoffer 
(2006), Tsokos (1973), Wei (2006). 

The purpose of this study is to begin 
with a given time series that characterizes an 
economic or any other natural phenomenon and 
as usual, is nonstationary. Box and Jenkins 
(1994) developed a popular and useful classical 
procedure to develop forecasting models that   
have been shown to be effective. In this article,  

 
 

Shou Hsing Shih recently received the Ph. D. in 
Statistics from University of South Florida. 
Shih’s research mainly concentrates on time 
series forecasting. E-mail address: 
sshih3@tampabay.rr.com. Chris P. Tsokos is 
Distinguished University Professor of 
Mathematics and Statistics at the University of 
South Florida. He is the author of more than 250 
research publications. E-mail address: 
profcpt@cas.usf.edu 

 
 
a procedure for developing a forecasting model 
that is more effective than the classical approach 
is introduced. For a given stationary or 

nonstationary time series, }{ tx , generate a k-day 

moving average time series, }{ ty , and the 
developmental process begins. 

Certain basic concepts and analytical 
methods are reviewed that are essential in 
structuring the proposed forecasting model. The 
review is based on the autoregressive integrated 
moving average processes. The accuracy of the 
proposed forecasting model is illustrated by 
selecting from the list of Fortune 500 
companies, company XYZ, and considering its 
daily closing prices for 500 days. The classical 
time series model for the subject information 
along with the proposed process was developed. 
A statistical comparison based on the actual and 
forecasting residuals is given, both in tabular 
and graphical form. 
 
The Proposed Forecasting Model: k-th Moving 
Average 

It is not appropriate to build a time 
series model without conforming to certain 
mathematical constrains, such as stationarity of a 
given stochastic realization. Almost always, the 
time series that is given is nonstationary in 
nature and then, the next step is to reduce it into 

being stationary. Let }{ tx  be the original time 
series. The difference filter is given by 
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Figure 1. Daily Closing Price for Stock XYZ 
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Figure 2. Comparisons on Classical ARIMA Model VS. Original Time Series for the Last 100 

Observations 
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                               dB)1( −                         (1) 
 

where jtt
j xxB −= , and d is the degree of 

differencing of the series.  
The primary use for the k-th moving 

average process is for smoothing a realized time 
series. It is very useful in discovering a short-
term, long-term trends and seasonal components 
of a given time series. The k-th moving average 

process of a time series }{ tx  is defined as 
follows: 
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where nkkt ,...,1, += . 
As k increases, the number of 

observations k of }{ ty  decreases, and }{ ty  gets 

closer to the mean of }{ tx  as k increases. When 
nk = , }{ ty  reduces to only a single 

observation, and equals μ , that is 
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Then, develop the proposed model by 

transforming the original time series }{ tx  into 
}{ ty  by applying (2). After establishing the new 

time series, usually nonstationary, begin the 
process of reducing it into a stationary time 
series. Kwiatkowski, et al. (1992) introduced the 
KPSS Test  to check the level of stationarity of a 
time series. Apply the differencing order d to the 

new time series }{ ty  for ,...2,1,0=d , then 
verify the stationarity of the series with the 
KPSS test until the series become stationary. 
Therefore, one can reduce the nonstationary time 
series into a stationary one after a proper number 
of differencing. Then proceed the model 
building procedure of developing the proposed 
forecasting model.  

After choosing a proper degree of 
differencing d, proceed with the model building 
process by assuming different orders for the 
autoregressive integrated moving average 
model, ARIMA(p,d,q), also known as Box and 
Jenkins method, where (p,d,q) represent the 
order of the autoregressive process, the order of 
differencing and the order of the moving average 
process, respectively. The ARIMA(p,d,q) is 
defined as: 
 
                tqt

d
p ByBB εθφ )()1)(( =−           (4) 

 

where }{ ty  is the realized time series, pφ  and 
qθ  are the weights or coefficients of the AR and 

MA that drive the model, respectively, and tε  is 

the random error. Write pφ  and qθ  as  
 
                                   ( )p Bφ =                            (5) 

    2
1 2(1 ... )p

pB B Bφ φ φ− − − −  

and 
 
                                   ( )q Bθ =                              (6) 

     2
1 2(1 ... )q

qB B Bθ θ θ− − − −  
 

Sometimes it is difficult to make a 
decision in selecting the best order of the 
ARIMA(p,d,q) model when there are several 
models that all adequately represent a given set 
of time series. Hence, Akaile’s information 
criterion (AIC) (1974), plays a major role when 
it comes to model selection. AIC was introduced 
by Akaike in 1973, and it is defined as: 
 
                            AIC(M)=                         (7) 
            -2 ln [maximum likelihood] + 2M, 
 
where M is the number of parameters in the 
model and the unconditional log-likelihood 
function suggested by Box, Jenkins, and Reinsel 
(1994), is given by 
 
                         2ln ( , , , )L εφ μ θ σ =                      (8) 
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where ),,( θμφS  is the unconditional sum of 
squares function given by 
 
                                ( , , )S φ μ θ =                          (9) 
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where ),,,( yE t θμφε  is the conditional 

expectation of tε  given y,,, θμφ . 
 
 
 

 

 
 

 
 

The quantities 
∧
φ , 

∧
μ , and 

∧
θ  that 

maximize (8) are called unconditional maximum 

likelihood estimators. Because ),,,(ln 2
εσθμφL   

involves the data only through ),,( θμφS , these 
unconditional maximum likelihood estimators 
are equivalent to the unconditional least squares 

estimators obtained by minimizing ),,( θμφS . 
In practice, the summation in (9) is 
approximated by a finite form 
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Table 1. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.02209169 0.1445187 0.3801562 0.0170011 
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Figure 3. Time Series Plot of the Residuals for Classical Model 
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Figure 4. Three Days Moving Average on Daily Closing Price of Stock XYZ Vs. the original time 

series 
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Figure 5. Comparisons on Our Proposed Model VS. Original Time Series for the Last 100 

Observations 
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where M is a sufficiently large integer such that 
the backcast increment 

),,,(),,,( 1 yEyE tt θμφεθμφε −−
 is less than 

any arbitrary predetermined small ε  value for 
)1( +−≤ Mt . This expression implies that 

μθμφε ≅),,,( yE t ; hence, ),,,( yE t θμφε  is 

negligible for )1( +−≤ Mt .   
After obtaining the parameter estimates 

∧
φ , 

∧
μ , and 

∧
θ , the estimate 

∧
2
εσ  of 

2
εσ  can then 

be calculated from 
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For an ARMA(p,q) model based on n 
observations, the log-likelihood function is 
 
                                ln L =                        (12) 
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Proceed to maximize (12) with respect to the 

parameters ,,, θμφ  and 
2
εσ , from (11),  
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Table 2. Actual and Predicted Price 

N Actual Price Predicted Price Residuals 
476 26.78 26.8473 -0.0673 
477 26.75 26.7976 -0.0476 
478 26.67 26.7673 -0.0972 
479 26.8 26.6922 0.1078 
480 26.73 26.8064 -0.0764 
481 26.78 26.7490 0.0310 
482 26.27 26.7911 -0.5211 
483 26.12 26.3277 -0.2077 
484 26.32 26.1631 0.1569 
485 25.98 26.3364 -0.3564 
486 25.86 26.0349 -0.1749 
487 25.65 25.9068 -0.2568 
488 25.67 25.6670 0.0031 
489 26.02 25.7119 0.3081 
490 26.01 26.0335 -0.0235 
491 26.11 26.0427 0.0674 
492 26.18 26.1343 0.0457 
493 26.28 26.2032 0.0768 
494 26.39 26.2986 0.0914 
495 26.46 26.4043 0.0557 
496 26.18 26.4743 -0.2943 
497 26.32 26.2219 0.0981 
498 26.16 26.3354 -0.1754 
499 26.24 26.1953 0.0447 
500 26.07 26.2602 -0.1902  
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Because the second term in expression (13) is a 
constant, reduce the AIC to 

                      AIC(M) Mn 2ln 2 +=
∧

εσ .        (14) 
 
Thus, we an appropriate time series model is 
generated and the statistical process with the 
smallest AIC can be selected. The model 
identified will possess the smallest average 
mean square error. The development of the 
model is summarized as follows. 

Transform the original time series }{ tx  into a 

new series }{ ty . 
 

• Check for stationarity of the new time  

•  

 
 

 
 

 

• series }{ ty  by determining the order of 

differencing d, where ,...2,1,0=d  
according to KPSS test, until stationarity 
is achieved. 

 
• Decide the order m  of the process, for 

this case, let 5=m  where mqp =+ . 
 

• After (d, m ) is selected, list all possible 
set of (p, q) for mqp ≤+ . 

 
• For each set of (p, q), estimate the 

parameters of each model, that is, 
qp θθθφφφ ,...,,,,...,, 2121  

 
• Compute the AIC for each model, and 

choose the one with smallest AIC. 
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Figure 6. Time Series Plot for Residuals for Our Proposed Model 

Table 3. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.01016814 0.1437259 0.3791119 0.01698841 
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According to the criterion mentioned 

above, the ARIMA(p,d,q) model can be obtained 
that best fit a given time series, where the 

coefficients are qp θθθφφφ ,...,,,,...,, 2121 . 

Using the model that we developed for }{ ty  and 
subject to the AIC criteria, we forecast values of 

}{ ty  and proceed to apply the back-shift 
operator to obtain estimates of the original 

phenomenon }{ tx , that is,  
 
                           

 

 
 
 
 

                                tx
∧

=                             (15) 

              1 2 1...t t t t kk y x x x
∧

− − − +− − − −  
 
The proposed model and the 

corresponding procedure discussed in this 
section shall be illustrated with real economic 
application and the results will be compared 
with the classical time series model. 

The proposed model and the 
corresponding procedure discussed in this 
section shall be illustrated with real economic 
application and the results will be compared 
with the classical time series model. 

Table 4. Actual and Predicted Price 
N Actual Price Predicted Price Residuals 

476 26.78 26.8931 -0.1131 
477 26.75 26.7715 -0.0215 
478 26.67 26.7121 -0.0421 
479 26.8 26.7239 0.0761 
480 26.73 26.7854 -0.0554 
481 26.78 26.6892 0.0908 
482 26.27 26.8292 -0.5592 
483 26.12 26.3027 -0.1827 
484 26.32 26.0808 0.2392 
485 25.98 26.3603 -0.3803 
486 25.86 25.9868 -0.1268 
487 25.65 25.8443 -0.1943 
488 25.67 25.7115 -0.0414 
489 26.02 25.6499 0.3701 
490 26.01 25.9650 0.0450 
491 26.11 26.0526 0.0574 
492 26.18 26.0912 0.0888 
493 26.28 26.1449 0.1351 
494 26.39 26.3090 0.0810 
495 26.46 26.3752 0.0848 
496 26.18 26.4223 -0.2423 
497 26.32 26.2461 0.0739 
498 26.16 26.2964 -0.1364 
499 26.24 26.1437 0.0963 
500 26.07 26.2678 -0.1978  
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First, a time series forecasting model is 

developed of the given nonstationary data using 
the ordinary Box and Jenkins methodology. 
Secondly, the data are modified, Figure 1, to 
develop the proposed time series forecasting 
model. A comparison of the two models will be 
given. 

The general theoretical form of the 
ARIMA(p,d,q) is given by 
 
                 tqt

d
p BxBB εθφ )()1)(( =−       (16) 

 
Following the Box and Jenkins’ methodology 
(1994), the classical forecasting model with the 
best AIC score is the ARIMA(1,1,2). That is, a 
combination of first order autoregressive (AR)  
and a second order moving average (MA) with a 
first difference filter. Write it as 
 
                 (1 .9631 )(1 ) tB B x− − =                (17) 

                  2(1 1.0531 .0581 ) tB B ε− +  
 
After expanding the autoregressive operator and 
the difference filter,  
 
             2(1 1.9631 .9631 ) tB B x− + =          (18) 

               2(1 1.0531 .0581 ) tB B ε− +  
 
and rewrite the model as 
 
                 1 21.9631 .9631t t tx x x− −= − +        (19) 
                 1 21.0531 .0581t t tε ε ε− −− +  
 

by letting 0=tε , there is the one day ahead  
 
 

 

 
forecasting time series of the closing price of 
stock XYZ as 
 

                    1 21.9631 .9631t t tx x x
∧

− −= −          (20) 
                     1 21.0531 .0581t tε ε− −− +  
 
Using the above equation, graph the forecasting 
values obtained by using the classical approach 
on top of the original time series, as shown by 
Figure 2. 

The basic statistics that reflect the 

accuracy of model (20) are the mean r , variance 
2
rS , standard deviation rS  and standard error 

n
Sr

 of the residuals. Figure 3 gives a plot of 
the residual and Table 1 gives the basic 
statistics. 

Furthermore, restructure the model (20) 
with 475=n  data points to forecast the last 25 
observations only using the previous 
information. The purpose is to see how accurate 
our forecast prices are with respect to the actual 
25 values that have not been used. Table 2 gives 
the actual price, predicted price, and residuals 
between the forecasts and the 25 hidden values. 

The average of these residuals is 05608.0−=r . 
Proceed to develop the proposed forecasting 
model. The original time series of stock XYZ 
daily closing prices is given by Figure 1. The  
new time series is being created by 3=k  days 

moving average and the analytical form of }{ ty  
is given by 
 

Table 5. Basic Comparison on Classical Approach Vs. Our Proposed model 
 

 r   
2
rS  rS  

n
Sr  

Classical 0.02209169 0.1445187 0.3801562 0.0170011 

Proposed 0.01016814 0.1437259 0.3791119 0.01698841 
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3

12 ttt
t

xxxy ++= −−                   (21) 

 

Figure 4 shows the new time series }{ ty  

along with the original time series }{ tx , that 
will be used to develop the proposed forecasting 
model. The best model that characterizes the 

behavior of }{ ty is ARIMA (2,1,3). That is, 
 
           2(1 .8961 .0605 )(1 ) tB B B y− − − =     (22) 

           2 3(1 .0056 .0056 ) tB B B ε+ − −  
 
Expanding the autoregressive operator and the 
first difference filter, we have 
 
 2 3(1 1.8961 .8356 .0605 ) tB B B y− + + =    (23) 

 2 3(1 .0056 .0056 ) tB B B ε+ − −  
 
Thus, write (23) as 
 
                                ty =                                       (24) 
          1 2 31.8961 .8356 .0605t t ty y y− − −− −     

         +  1 2 3.0056 .0056t t t tε ε ε ε− − −+ − −  

 
The final analytical form of the proposed 
forecasting model can be written as 
 

                                ty
∧

=                                      (25) 

1 2 31.8961 .8356 .0605t t ty y y− − −− −  

1 2 3.0056 .0056t t tε ε ε− − −+ − −  
 

Using the above equation, a plot of the 
developed model (25), showing a one day ahead 
forecasting along with the new time series, 

}{ ty , is displayed by Figure 5. 
Note the closeness of the two plots that reflect 
the quality of the proposed model. 

Similar to the classical model approach 
that we discussed earlier, use the first 475 

observations },...,,{ 47521 yyy  to forecast 
∧

476y . 

Then, use the observations },...,,{ 47621 yyy  to 

forecast 
∧

477y , and continue this process until 
forecasts are obtained for all the observations, 

that is, },...,,{ 500477476

∧∧∧
yyy . From equation (21), 

the relationship can be seen between the 

forecasting values of the original series }{ tx  
and the forecasting values of 3 days moving 

average series }{ ty , that is,  
 

                        213 −−

∧∧
−−= tttt xxyx              (26) 

Hence, after },...,,{ 500477476

∧∧∧
yyy  is estimated, 

use the above equation, (26), to solve the 

forecasting values for }{ tx .  Figure 6 is the 
residual plot generated by the proposed model,  
and followed by Table 3, that includes the basic 
evaluation statistics. 

Both of the above displayed evaluations 
reflect on accuracy of the proposed model. The 
actual daily closing prices of stock XYZ from 
the 476th day along with the forecasted prices 
and residuals are given in Table 4. The results 
given above attest to the good forecasting 
estimates for the hidden data. 
 
Comparison of the Forecasting Models 

In this section, the two developed 
models are compared. The classical process is 
given by 

                1 21.9631 .9631t t tx x x
∧

− −= − −       (27) 
                    1 21.0531 .0581t tε ε− −+  
 

In the proposed model, the following 
inversion is used to obtain the estimated daily 
closing prices of stock XYZ, that is, 
 

                                 ty
∧

=                           (28) 

1 2 31.8961 .8356 .0605t t ty y y− − −− −  

1 2 3.0056 .0056t t tε ε ε− − −+ − −  
 
in conjunction with 
 



SHIH & TSOKOS 
 

629

213 −−

∧∧
−−= tttt xxyx            (29) 

 
Table 5 is a comparison of the basic 

statistics used to evaluate the two models under 
investigation. The average mean residuals 
between the two models shown that the 
proposed model is overall approximately 54% 
more effective in estimating one day ahead the 
closing price of Fortune 500 stock XYZ. 
 

Conclusion 
 

Based on the average mean residuals the 
proposed model was significantly more effective 
in such term of predicting of the closing daily 
prices of stock XYZ.   
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Longitudinal Evaluation of Estimates in an Establishment Survey 
After Ration Imputation 

 
Adriana Pérez 

University of Louisville 
 
 
Researchers evaluated a ratio imputation technique used at the US Survey of Graduate Students and 
Postdoctorates in Science and Engineering, which is an annually conducted cross-sectional establishment 
survey. Standardized bias was used, mean square error and relative bias to appraise this imputation 
method on point and variance estimates via simulations. 
 
Key words: Total estimate, variance estimation, establishment data, nonresponse, simulations.  
 
 

Introduction 
 
Nonresponse in establishment surveys is an 
ongoing problem (Kovar & Whitridge, 1995). 
The problem of nonresponse affects estimates of 
survey statistics (Little & Rubin DB, 2002; 
Rubin, 1987; Kovar, et al., 1995; Ruggles & 
Joint Economic Committee, 2006; Groves, 
Dillman, Eltinge, & Little, 2002; Groves, et al., 
2004). Many imputation methods used in social, 
demographic and health science settings have 
been applied within the economic survey 
framework and  very little information is known 
about the effect of item nonresponse in 
establishment surveys (Kovar, et al., 1995; 
Judkins , 2000; West, Butani, & Witt, 1993). 
There has been a focus on procedures for 
reducing measurement error, improving 
sampling        strategies       (Lee & Croal, 1989),  
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improving estimators (Sirken & Shimizu, 1999), 
improving response rates (Chun, 1997), response 
selection, survey coordination, longitudinal 
analysis(Ruggles, et al., 2006), (Schenker, 
Treiman, & Weidman, 1988; Heeringa & 
Lepkowski, 1986), or empirical evaluation of 
imputation methods (West, et al., 1993; 
Krenzke, Montaquila, & Mohadjer, 2000; 
Mueller & Butani, 1995) in establishment 
surveys. 

Many imputation methods are available 
in the literature. Usually, once a dataset has been 
imputed, analyses are performed treating the 
imputed values as observed data. This type of 
analysis could be misleading because variances 
and covariances may be underestimated (Kovar, 
et al., 1995). In this article, the effectiveness of a 
particular ratio imputation method when applied 
to an item-nonresponse from an establishment 
survey including a longitudinal perspective on 
point and variance estimates is evaluated. 

There are a variety of techniques for 
variance estimation for complex surveys 
(Wolter, 1985) and few of them incorporate the 
effect of imputation in their estimation (Shao & 
Sitter, 1996; Shao & Steel, 1999; Shao, 2002). 
Most of the time imputation methods in a survey 
are implemented without theoretical 
development of the methods (Shao, 2002). 
Simulation studies make it possible to evaluate 
and compare estimation techniques in national 
surveys in any country (U.S.Department of 
Education.National Center for Education 
Statistics., 2001). Pseudo-universes from survey 
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data can be used instead of national universes 
(i.e., census data) which are not usually 
available for simulation studies. Pseudo 
universes permit a comparison of techniques and 
sample according to a plan of interest, 
maintaining the distributions of the variables of 
interest. Simulations from a pseudo universe can 
provide estimates of interest and give detailed 
insight of the estimator performance.  

It is the researcher’s interest to study the 
effect on the point and variance estimates of the 
current imputation plan conducted in the 
Graduate Students and Postdoctorates in Science 
and Engineering (GSS)(NSF-NIH, 2005). One 
of the challenging aspects of any simulation is 
the creation of an artificial population similar to 
the one investigated. There are two approaches 
to create a finite population universe(Katzoff, 
Jones, & Curtin, 1988; Bernaards, Belin, & 
Schafer, 2006; Schafer, et al., 1996). One is to 
create pseudo-random values from an actual 
multivariate probability model, also known as a 
hypothetical population. The second is to use an 
actual large data set to reflect the target 
population and to define population parameters 
of interest, also known as a pseudo-universe. 
Use of a specific probability model is a 
limitation in the creation of a hypothetical 
population(Schafer, et al., 1996). Therefore, a 
pseudo universe was created to impose realistic 
missing data patterns.  

The following describes the generation 
of the pseudo universe and simulations which 
allow: (i) appraise the longitudinal missing data 
patterns in GSS between 1999-2001; (ii) 
evaluate the effect of current imputation 
methods in this survey on estimates for different 
missing data mechanism assumptions in GSS; 
(iii) assess precision and accuracy measures in 
the total, and corresponding variance estimates 
in GSS. In following sections, the GSS survey 
will be described, the current imputation 
method, the  methodology to evaluate the effect 
of the current imputation method and the results 
and conclusions, respectively. 
 
The Survey of Graduate Students and 
Postdoctorates in Science and Engineering 
(GSS)  

One of the current surveys conducted at 
the Division of Science Resources Statistics 

(SRS) of the National Science Foundation (NSF) 
is the NSF-NIH (National Institutes of Health) 
survey of Graduate Students and Postdoctorates 
in Science and Engineering (GSS) (NSF-NIH, 
2005). This survey (i) measures academic 
department level information on all U.S. 
institutions offering graduate programs (masters 
or PhD degrees) in science, engineering, or 
health selected field; (ii) provides a description 
of graduate science and engineering (S&E) 
student’s enrollment in US institutions; and (iii) 
assesses trends in financial support patterns and 
shifts in graduate enrollment and postdoctoral 
appointments. 

This cross-sectional establishment 
survey is conducted annually (NSF-NIH, 2005). 
Reports from this survey are presented in current 
year and historical data, setting up a longitudinal 
structure (National Science Foundation & 
Division of Science Resources Statistics (SRS), 
2005). Total estimates for domains and sub-
domains are reported (National Science 
Foundation & Division of Science Resources 
Statistics, 2006). Each year, a ratio imputation 
technique is used to handle item nonresponse 
based on inflator/deflator factors (NSF-NIH, 
2005). For a particular year, these 
inflator/deflator factors are computed from the 
current year observed data in combination with 
previous year observed and imputed data 
(Morgan M & ORC Macro, 2004). Replacing 
missing data in the current year with previous 
year data is an imputation method known in 
longitudinal human population studies as the last 
observation carry-forward (LOCF). This 
imputation method is modified in the GSS by 
the use of inflator/deflator factors as adjustments 
when replacing current cycle missing data with 
adjusted previous cycle data.  

Simulations conducted with LOCF, in 
longitudinal human population studies, indicates 
that LOCF produces biased estimates for all 
three types of missing data mechanisms 
(Missing completely at random (MCAR), 
Missing at random (MAR) or Missing not at 
random (MNAR)) and LOCF produces the 
smallest standard errors that are biased 
downward (Gadbury, Coffey, & Allison, 2005). 
For these reasons, evaluation of the current GSS 
imputation plan is needed. 
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Imputation at the Graduate Student Survey 
 The department within an academic 

institution is the unit of interest of this survey 
for imputation purposes. This imputation 
methodology is presented for four variables used 
in this research only, but can be generalizable to 
the rest of the variables within this survey.  
 
Creation of inflator/deflator factors 

Departments that provided full or partial 
information about total full-time students, total 
part-time students, total postdoctorates and total 
other non-faculty research staff are used for 
creation of these factors. Specifically, in this 
study, total full-time students and total part-time 
students were used. Inflator/deflator factors are 
computed by highest institutional degree level 
(doctorate and master’s) and by department type 
(e.g. Biology, Physics, etc.). For a particular 
variable of interest ( kY ), its sum is computed by 
institutional highest degree level and department 
type. Then factors are computed by dividing the 
sum of the variable from the current (t) year by 
the corresponding sum of the variable from the 
previous year (t-1). These inflator/deflator 
factors (

tkψ̂ ) in mathematical terms are 
calculated for the kth variable and year t.  

 

∑∑
==

−
=

r

j
jk

r

j
jkk ttt

YY
11

)1(
ψ̂    (1) 

 
r  identifies the maximum number of 
departments in the same institutional degree 
level and departmental type that provided a 
variable value kY  in both years t  and 1−t . Any 
computed factor less than 0.85 or greater than 
1.15 is set to 1 for imputation purposes. In 
mathematical terms:  
 

⎩
⎨
⎧ <<

=
otherwise      1

1.15ˆ0.85 if  ˆˆ tt

t

kk
k

ψψ
φ         (2) 

  
Using inflator/deflator factors to impute total 
full- time students all sources of funding and 
total part-time students of all races 

Departments with missing information 
in total full- time students and/or total part-time 
students are imputed using equation 3. The 

imputation value for a particular variable in the 
current year is obtained by applying 

tkφ̂ to 
previous year information for that variable. This 
is done at each department institutional level 
(i.e., MS or PhD) and department type (i.e., 
Biology, Physics, etc).  

 

)1(
*ˆˆ

)( −
=

ttt ikkikI YY φ   (3) 

 
i  identifies a particular department, k identifies 
the variable, t  identifies the year, 

tkφ̂ identifies 

the inflator/deflator factors, 
)1( −tikY  is the k th 

variable value for department i , in year 1−t ; 
and )(

ˆ
tikIY  is the imputed value of the k th 

variable for department i at year t .  
Subsequently, imputed values for total 

full-time students (from equation 3) are used to 
impute variables regarding full-time students by:  
source and mechanism of support. Similarly, 
imputed values for total part-time students (from 
Equation 3) are used to impute variables 
regarding number of part-time students by sex 
and their distribution by US nationals/permanent 
residents or foreign students. 
Using inflator/deflator factors to impute total 
part-time students 

The imputed value for the total of 
female part-time students is computed using the 
same percentage as reported in the previous year 
on the imputed value from the total part-time 
students in the current year. Equation 4 shows 
this in mathematical terms.  

 
      ( )

)1()1(
ˆˆ

)( −−
=

tttt iijiijI YYYY                (4) 

 
Where i  identifies a particular department, t  
identifies the year, j  identifies women, 

tiŶ  
represents the observed or imputed value of the 
total part-time students enrolled for a particular 
department i  at year t , 

)1( −tijY represents the 

observed value of the total part-time women 
students for year 1−t  at particular department 
i , 

)1( −tiY  represents the observed value of the 

total part-time students for year 1−t  at a 
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particular department i , and )(
ˆ

ijtIY  represents 
the imputed value of the total part-time women 
at  year t  at particular department i . 

The imputed value for the total of male 
part-time students is calculated as the difference 
between the total part-time students in the 
current year (observed or imputed) and the 
observed or imputed value for the total of female 
part-time students. 

 
Methodology 

 
The purpose is to evaluate the longitudinal effect 
of imputation on estimates in the GSS, data from 
the years 1998-2002 (the most recent data 
through 2005). The GSS survey in 1998 
contained 639 variables and 11686 departments 
and in 2002 contained 639 variables and 12126 
departments. Overall, 15379 departments 
reported any information on the GSS data from 
the years 1998--2002. The first four variables 
imputed in this survey were selected for analysis 
in this research: total full-time graduate students 
all sources of support, total part-time students of 
all races, total part-time male students of all 
races and total part-time female students of all 
races. To evaluate the effect of the imputation 
method within this survey a simulation study 
with a pseudo universe from this survey was 
conducted. 
  
Generation of the pseudo universe 1998-2002 

A dataset called “Observed 1998-2002” 
which mainly excluded departments with unit 
nonresponse between years 1998-2002 was 
created. If a department reported any missing 
value for any of the variables of interest in year 
1998 and 2002 they were excluded. This is 
because stable departments were to be used, to 
exclude new programs (i.e., if a department 
created a new master or doctoral program in 
2002 then previous years would not have 
reported any information and missing values 
would appear in the longitudinal structure), and 
to exclude non current programs. If departments 
provided information in years 1998 and 2002 
this indicated continuity of the master’s or PhD 
degree program at that institution. In summary, 
one department was excluded because it did not 
report the type of academic institution (neither 

school under which this department was 
associated, nor public or private nor which 
institutional highest degree is granted). 
Departments with unit nonresponse were 
excluded for each year as follows: 3693 within 
1998, 936 within 1999, 514 within 2000, 755 
within 2001 respectively and 610 within 2002. It 
was assumed that these departments with unit 
nonresponse were not stable. Furthermore, the 
study excluded 328 departments without 
students enrolled either full-time or part-time in 
1998 in any of the four variables of interest, 
which indicated historically unstable enrollment 
in that program. This dataset Observed 1998-
2002 contained 8542 out of 15379 departments 
with item nonresponse between the years 1999 
and 2001. Using this dataset the researchers 
generated the longitudinal distributional patterns 
of missing data in years 1999-2001.   

After this, the researchers generated a 
pseudo universe from this survey by removing 
any department with missing data in our 
variables of interest from years 1999-2001. 
Researchers excluded 685 departments because 
they did not report full time students for at least 
one of these years. Forty-five departments that 
did not report part-time students for at least one 
of these years were deleted. Furthermore, 127 
departments that did not report part time male 
students for at least one of these years were 
excluded. 

This complete dataset was called and 
used as Pseudo Universe 1998-2002 and 
contains 7685 departments with complete 
information on all these variables. This pseudo 
universe was used to develop and evaluate the 
imputation methods used in GSS for the variable 
totals and their corresponding variability 
measures. Total estimates coming from this 
pseudo-universe were treated as parameter 
values from this pseudo universe. This is notated  

tkθ as the total estimate of the k th-variable of 
interest for years 1999 to 2001. These parameter 
values were used for comparison purposes in 
evaluation the GSS imputation methods.   
 
Simulation of mechanisms of missingness 

Two missingness mechanisms to 
evaluate the   imputation methods   at GSS  were  
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explored. The first approach was to create an 
MCAR mechanism. 

Actual percentages of missing values 
were imposed within “Pseudo Universe 1998-
2002” on within Pseudo Universe 1998-2002 on 
each tkY independently of any variable in the 
system. Table 1 illustrates the “Actual” 
percentage of missing data observed in years 
1999—2001 for the four variables of interest in 
this survey and these percentages were used for 
creating the MCAR mechanism for evaluation 
purposes. Our “MCAR dataset” contains these 
“Actual” percentages imposed randomly as 
missing. As you may notice these percentages 
are not high and it will be desired to evaluate the 
imputation method with this low percentages of 
missingness.  

It was assumed that the occurrence of 
missing values at the GSS survey is MAR. 
Under this assumption, the second approach was 
to impose the Actual percentages of missing 
values with the same longitudinal distributional 
patterns of missing data in years 1999-2001 
from Observed 1998-2002 within Pseudo 
Universe 1998-2002. Table 2 shows the 
observed longitudinal patterns of missing values 
for these variables, where 0 represents data was 
missing and 1 represents data was observed. 

For the purposes of understanding the 
effect of the imputation method with increased 
percentages of missing values, in simulations, 
the researchers increased these observed 
longitudinal distributional patterns of missing 
values from the Observed 1998-2002 in 25%, 
50%, 75% and 100% (data not shown) within 
Pseudo Universe 1998-2002.  
 

 
Parameter estimation 

These datasets, with imposed missing 
values, can be used to examine many quantities 
of interest. The total and its corresponding 
variance estimate were examined for each year. 
Many other parameters were included in 
simulations but are not reported for brevity and 
the research primarily presents the results under 
the MAR mechanism. Each one of these 
missingness mechanisms were replicated one 
thousand times.   

 
Applying the Imputation Method 

Inflator/deflator factors for year 1999 
were computed using the observed data from the 
1998 Pseudo Universe 1998-2002. The ratio 
imputation methods described in equations 3 and 
4 were applied for missing values in year 1999. 
Then, an imputed and complete 1999 dataset 
was reached. Similarly, the researchers 
continued to generate the inflator/deflator factors 
and to impute missing values in years 2000 and 
2001. This procedure produced an Observed and 
imputed longitudinal 1999-2001 dataset. Cross-
sectional 1999-2001 total estimates and their 
corresponding variances were computed. 
Estimates after imputation are notated as 

tkAIθ̂   

for each k th variable on years 1999--2001. 
 
Evaluation criteria 

The performance of the GSS imputation 
method by the following quantities in years 
1999-2001 were evaluated. First, the bias of the 
total and the variance estimates after imputation 
of the simulations are described in Equations 5 
and 6, respectively. 

 
 

Table 1: Actual percentages of missing values in dataset “Observed 1998-2002” 

Year N 

Full time 
students all 
sources of 

support 

Part Time 
students of all 

races 

Part time male 
students of all races 

Part time female 
students of all 

races 

 
1999 11832 1.49 1.58 3.26 3.25 

2000 11899 1.58 1.60 1.99 1.99 
2001 11968 3.53 3.77 4.12 4.12 
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Table 2. Percentages missing values for each pattern in dataset “Observed 1998-2002”. 

Full time 
students all 
sources of 

support 

Part Time 
students of all 

races 

Part time male 
students of all 

races 

Part time female 
students of all 

races 

Pa
tte

rn
 

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

% 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0.05 
2 0 0 1 0 0 1 0 0 1 0 0 1 0.08 
3 0 1 0 0 1 0 0 1 0 0 1 0 0.01 
4 0 1 1 0 0 1 0 0 1 0 0 1 0.01 
5 0 1 1 0 1 1 0 0 1 0 0 1 0.01 
6 0 1 1 0 1 1 0 1 1 0 1 1 0.89 
7 0 1 1 0 1 1 0 1 1 1 1 1 0.01 
8 0 1 1 1 1 1 1 1 1 1 1 1 0.06 
9 1 0 0 1 0 0 1 0 0 1 0 0 0.52 

10 1 0 0 1 0 1 1 0 1 1 0 1 0.01 
11 1 0 1 1 0 0 1 0 0 1 0 0 0.01 
12 1 0 1 1 0 1 1 0 1 1 0 1 0.89 
13 1 0 1 1 1 1 1 1 1 1 1 1 0.01 
14 1 1 0 1 1 0 0 1 0 0 1 0 0.02 
15 1 1 0 1 0 0 1 0 0 1 0 0 0.01 
16 1 1 0 1 1 0 1 0 0 1 0 0 0.04 
17 1 1 0 1 1 0 1 1 0 1 1 0 2.60 
18 1 1 0 1 1 1 1 1 1 1 1 1 0.01 
19 1 1 1 0 1 1 0 1 1 0 1 1 0.12 
20 1 1 1 1 1 1 0 0 0 0 0 0 0.12 
21 1 1 1 1 1 1 0 0 1 0 0 1 0.05 
22 1 1 1 1 1 1 0 1 0 0 1 0 0.01 
23 1 1 1 1 1 1 0 1 1 0 1 1 0.74 
24 1 1 1 1 1 1 1 0 0 1 0 0 0.01 
25 1 1 1 1 1 1 1 0 1 1 0 1 0.21 
26 1 1 1 1 1 0 1 1 0 1 1 0 0.07 
27 1 1 1 1 1 1 1 1 0 1 1 0 0.18 
28 1 1 1 1 1 1 1 1 1 1 1 1 93.26 
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( )

ttkt kAIk E θθ −= ˆ estimate  total theof Bias   

     (5) 
 

( ) 2)ˆ(Var nce_totalBias_varia
tktkt AIk E σθ −=  

(6) 
 
where 2

tk
σ  identifies the population variance 

among the data [ )(Var
tkY ] within the “Pseudo 

Universe 1998-2002” and not the variance of the 
mean estimates. )ˆ(Var

tkAIθ  identifies the 

estimated variance after imputation. Second, 
given that the raw bias can be misleading the 
standardized bias of the total estimate using 
equation 7 was computed. A standardized bias 
of less of 50% in both directions should be 
considered practically insignificant. Third, the 
mean square error (MSE) for the total and the 
variance estimates are described in equations 8 
and 9.  
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Fourth, the average relative bias of the 

total and the variance estimates are described in 
equations 10 and 11. These average relative 
biases measure the average magnitude of over or 
under estimation of the imputation method 
compared with the true value. Finally, the 
average relative stability of the variance is 
described in equation 12.  
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                                                                      (12)   
 

Results 
 
Table 3 presents the results of the 1000 
simulations under MCAR mechanism. The 
current imputation method underestimates total 
full-time students and total part-time female 
students and overestimates part-time students 
and part-time male students under this 
mechanism. The underestimation or 
overestimation of these variables increased 
yearly from 1999 to 2001. The standardized 
biases were larger than 50% for many of the 
variables of interest.  

Results of simulations under the MAR 
mechanism are presented in Tables 4-7. Table 4 
shows the results from the evaluation criteria for 
the imputation method on full-time students all 
sources of funding.  The relative bias of the total 
estimate of full-time students indicates a 10% 
underestimation for years 2000 and 2001 with 
the current amount of missing values. If the 
amount of missing values increases then this 
underestimation increased up to 20% for year 
2001. It is interesting to note that this imputation 
method would overestimate the total estimate of 
full-time students by 40% if the current patterns 
of missing values were increased by 100% for 
the year 2000.  

Results from the relative bias of the 
variance of the total estimate of full-time 
students across the years indicates 
overestimation between 10% and 30% for year 
1999 for increasing percentages of missing 
values. This overestimation is also observed for 
year 2001 with a range of 20% to 70%.  
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Table 3. Results from 1000 replicates under MCAR 

Year 1999 2000 2001 
Bias of the total 
Full time students all sources of support -878 -665 -3,629 
Part Time students of all races 1,177 2,115 2,347 
Part time male students of all races 617 1,439 2,192 
Part time female students of all races -276 -478 -1,250 
Bias of the variance    
Full time students all sources of support -6 -1 -78 
Part Time students of all races 6 5 4 
Part time male students of all races 1 4 8 
Part time female students of all races 2 1 16 
MSE of the total       
Full time students all sources of support 818 1,372 9,166 
Part Time students of all races 98 267 329 
Part time male students of all races 3 34 2332 
Part time female students of all races 7 22 13,175 
MSE of the variance 
Full time students all sources of support 1.11E+06 1.11E+06 1.45E+07 
Part Time students of all races 1.47E+06 4.68E+06 5.78E+06 
Part time male students of all races 3.94E+05 2.12E+06 4.90E+06 
Part time female students of all races 9.09E+04 2.67E+05 1.72E+06 
Standardized Bias of the variance 
Full time students all sources of support -149.8 -81.5 -313.9 
Part Time students of all races 415.5 460.8 454.0 
Part time male students of all races 526.5 653.4 734.2 
Part time female students of all races -227.5 -244.2 -313.9 
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Table 4. Results from 1000 replicates under MAR for full time students 
 

Year Actual% 25% 50% 75% 
Bias of the total 

1999 -10812 -15523 -15156 -19867 
2000 -12994 -22657 -13833 -19737 
2001 -29314 -46229 -43331 -28207 

Bias of the variance 
1999 9.2E+09 2.1E+10 1.2E+10 3.0E+10 
2000 -2.1E+10 -3.1E+10 -2.4E+10 -2.8E+10 
2001 5.4E+10 2.7E+10 7.2E+10 1.0E+11 

Standardized bias 
1999 -11.9 -15.3 -14.1 -16.6 
2000 -10.8 -16.5 -9.1 -12.3 
2001 -15.3 -21.1 -18.9 -11.3 

MSE of the total 
1999 8.4E+06 1.0E+07 1.2E+07 1.5E+07 
2000 1.5E+07 1.9E+07 2.3E+07 2.6E+07 
2001 3.8E+07 5.0E+07 5.4E+07 6.3E+07 

MSE of the variance 
1999 5.3E+19 8.4E+19 7.6E+19 1.1E+20 
2000 8.8E+19 1.2E+20 1.4E+20 1.5E+20 
2001 4.6E+20 5.6E+20 6.2E+20 7.6E+20 

Relative Bias of the total 
1999 0.0 -0.1 -0.1 -0.1 
2000 -0.1 -0.1 -0.1 -0.1 
2001 -0.1 -0.2 -0.2 -0.1 

Relative Bias of the Variance 
1999 0.1 0.2 0.1 0.2 
2000 -0.2 -0.2 -0.2 -0.2 
2001 0.3 0.2 0.5 0.7 

Relative Stability of the variance 
1999 1.0 0.6 0.7 0.5 
2000 0.6 0.5 0.4 0.4 
2001 0.1 0.1 0.1 0.1 
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Results from the relative bias of the 
variance in year 2000 indicate that this 
imputation method underestimates the variance 
of the total estimate of full-time students from 
20% to 40% depending on the amount of 
missingness. The MSE of the total and the 
variance of full-time students using the current 
imputation method at GSS is large.  The MSE of 
the variance increases for each year of increase 
and as expected if the percentage of missing 
values increases then the MSE of the variance 
will increase. The average relative stability of  

 
 
the variance of the total estimate of full-time 
students decreases noticeably for each one year 
increase. This behavior is consistently observed 
across increasing percentages of missing values.  

Table 5 shows the results from the 
evaluation criteria for the imputation method on  
part-time students of all races. The relative bias 
of the total estimate of part-time students 
indicates a 20% overestimation for year 2000 
and a 10% underestimation for year 2001 with 
the current amount of missing values. If the 
amount of missing   values   increases  then   this  

 
Table 5. Results from 1000 replicates under MAR for part time students 

 
Year Actual% 25% 50% 75% 

Bias of the total 
1999 877 2366 4199 5853 
2000 17076 26118 26247 37098 
2001 -9815 -20641 -17052 -27822 

Bias of the variance 
1999 -7.1E+09 -4.7E+09 -4.8E+09 3.2E+09 
2000 -2.7E+10 -2.2E+10 -2.6E+10 -1.7E+10 
2001 -1.9E+10 -3.0E+10 -1.4E+10 -1.9E+10 

Standardized bias 
1999 1.3 3.0 4.8 6.2 
2000 16.5 23.7 20.9 28.0 
2001 -5.8 -11.2 -8.3 -12.8 

MSE of the total 
1999 4.5E+06 6.3E+06 7.7E+06 9.0E+06 
2000 1.1E+07 1.3E+07 1.6E+07 1.9E+07 
2001 2.8E+07 3.4E+07 4.3E+07 4.8E+07 

MSE of the variance 
1999 1.6E+19 2.0E+19 2.2E+19 3.0E+19 
2000 5.9E+19 6.4E+19 8.4E+19 7.3E+19 
2001 1.8E+20 2.3E+20 2.9E+20 3.2E+20 

Relative Bias of the total 
1999 0.0 0.0 0.0 0.1 
2000 0.2 0.3 0.3 0.4 
2001 -0.1 -0.2 -0.2 -0.3 

Relative Bias of the Variance 
1999 0.1 0.2 0.1 0.2 
2000 -0.2 -0.2 -0.2 -0.2 
2001 0.3 0.2 0.5 0.5 

Relative Stability of the variance 
1999 1.0 0.8 0.7 0.5 
2000 0.3 0.3 0.2 0.2 
2001 0.1 0.1 0.1 0.1 
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overestimation increases up to 40% for year 
2000 and the underestimation will decrease by at  
least 20% for year 2001. Results from the 
relative bias of the variance of the total estimate 
of part-time students across years indicates 
increased underestimation for increased year and 
this behavior seems to follow a U shape for 
increasing percentages of missing values. 
Findings about the MSE for the total and 
variance of full-time students are similar than for  
 

 
 
 
 
part-time students as well as regarding the 
average relative stability of the variance.   

Table 6 shows the results from the 
evaluation criteria for the imputation method on 
part-time male students of all races. The relative 
bias of the total estimate of part-time male 
students with the current amount of missing 
values indicates 80%, 110% and 90% 
overestimation for years 1999, 2000 and 2001, 
respectively.  

Table 6. Results from 1000 replicates under MAR for part time male students 
 

Year Actual% 25% 50% 75% 
Bias of the total 

1999 40137 51315 61580 75489 
2000 53259 66665 77239 92581 
2001 40137 51358 66098 76572 

Bias of the variance 
1999 9.1E+09 1.2E+10 1.4E+10 2.3E+10 
2000 9.1E+09 1.4E+10 1.9E+10 2.8E+10 
2001 8.5E+09 8.2E+09 2.0E+10 2.6E+10 

Standardized bias 
1999 85.5 94.0 102.6 113.4 
2000 75.8 91.0 92.6 107.8 
2001 40.0 42.8 49.0 52.4 

MSE of the total 
1999 3.8E+06 5.6E+06 7.4E+06 1.0E+07 
2000 7.8E+06 9.8E+06 1.3E+07 1.6E+07 
2001 1.4E+07 1.7E+07 2.3E+07 2.7E+07 

MSE of the variance 
1999 3.5E+18 5.1E+18 5.6E+18 7.8E+18 
2000 1.8E+19 1.7E+19 2.4E+19 2.0E+19 
2001 4.1E+19 5.5E+19 6.6E+19 7.7E+19 

Relative Bias of the total 
1999 0.8 1.0 1.3 1.5 
2000 1.1 1.4 1.6 2.0 
2001 0.9 1.1 1.4 1.6 

Relative Bias of the Variance 
1999 0.5 0.7 0.9 1.4 
2000 0.6 0.9 1.1 1.7 
2001 0.5 0.5 1.2 1.6 

Relative Stability of the variance 
1999 1.0 0.7 0.6 0.5 
2000 0.2 0.2 0.1 0.2 
2001 0.1 0.1 0.1 0.0 
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As expected if the amount of missing values 
increases then this overestimation increases. 
Results from the relative bias of the variance of 
the total estimate of part-time male students 
across years indicates overestimation above 50% 
and increases for increasing percentages of 
missing values. Findings about the MSE for the 
total and variance of full-time students are equal 
for part-time male students and the average time 
 

 
 
male students as well as regarding the average 
relative stability of the variance.   
 Table 7 shows the results from the 
evaluation criteria for the imputation method on 
part-time female students of all races. The 
relative bias of the total estimate of part-time 
female students, with the current missing values, 
indicates a 90%, 80% and 1813% 
underestimation for 1999, 2000, and 2001.  
 

 
Table 7. Results from 1000 replicates under MAR for part time female students 

 
Year Actual% 25% 50% 75% 

Bias of the total 
1999 -39260 -48949 -57381 -69636 
2000 -36183 -40547 -50992 -55483 
2001 -829684 -847999 -859150 -880394 

Bias of the variance 
1999 -4.8E+09 -4.8E+09 -3.9E+09 -4.9E+09 
2000 -1.8E+10 -1.9E+10 -2.5E+10 -2.3E+10 
2001 -2.3E+10 -2.9E+10 -3.3E+10 -4.3E+10 

Standardized bias 
1999 -87.2 -94.6 -105.9 -114.1 
2000 -61.6 -62.5 -70.1 -71.0 
2001 -924.3 -842.8 -768.8 -744.2 

MSE of the total 
1999 3.6E+06 5.1E+06 6.2E+06 8.6E+06 
2000 4.8E+06 5.9E+06 7.9E+06 9.2E+06 
2001 7.0E+08 7.3E+08 7.5E+08 7.9E+08 

MSE of the variance 
1999 2.9E+18 3.2E+18 3.6E+18 4.7E+18 
2000 4.1E+18 5.3E+18 7.5E+18 8.8E+18 
2001 1.1E+19 1.4E+19 1.9E+19 2.1E+19 

Relative Bias of the total 
1999 -0.9 -1.1 -1.2 -1.5 
2000 -0.8 -0.9 -1.1 -1.2 
2001 -18.1 -18.5 -18.8 -19.2 

Relative Bias of the Variance 
1999 -0.3 -0.3 -0.2 -0.3 
2000 -1.1 -1.1 -1.5 -1.4 
2001 -1.3 -1.7 -1.9 -2.5 

Relative Stability of the variance 
1999 1.0 0.9 0.8 0.6 
2000 0.7 0.6 0.4 0.3 
2001 0.3 0.2 0.2 0.1 
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If the amount of missing values 
increases then this underestimation increases as 
well. Results from the relative bias of the 
variance of the total estimate of part-time female 
students across years indicates underestimation 
between 20% and 30% for year 1999 for 
increasing percentages of missing values. This 
underestimation is also observed for years 2001 
and 2002 with a range from 110% to 270%. 
Findings about the MSE for the total and 
variance of full-time students are equal for part-
time female students as well as regarding the 
average relative stability of the variance. 

 
Conclusion 

 
Overall, the bias and the MSE of the total and 
the variance estimates are not acceptable under 
the MCAR mechanism. Our findings under 
MCAR in this establishment survey are 
consistent with the literature in human 
populations where you will expect a higher 
underestimation or overestimation for increasing 
percentage of missing values in a variable 
including the increase as a year passes by.  

Overall, the bias of the total estimates 
for full-time students and part-time students are 
acceptable under the MAR mechanism. This is 
because although the estimates across years and 
for different percentages of increase of current 
missing values are biased, the standardized 
biases are less than -50% which means that this 
bias is practically insignificant. On the contrary, 
the bias of the total estimates for part-time male 
and female students are not acceptable under the 
MAR mechanism using similar criteria of the 
standardized bias which surpass 50% in either 
direction for any percentage increase of missing 
values.  

The results of overestimation for 1999 
and 2001 using the relative bias of the variance 
of the total estimate of full-time students and its 
underestimation in 2000 with this imputation 
method are in agreement with previous 
descriptions of variance estimate behaviors after 
imputation in human population surveys, where 
imputation methods underestimate or 
overestimate depending on the variability of the 
variable. Most of the time it is expected to 
provide an underestimation of this variance 

estimate and this is shown in many of the 
variables chosen for this research.  

The MSE incorporates two components, 
one measuring the variability of the estimator 
(precision) and the other measuring its bias  
(accuracy). Overall, the estimators generated 
with the current imputation method in GSS do 
not have good MSE properties because they do 
not have small combined variance and bias.  

The findings regarding the variance 
estimates using the current imputation methods 
in this establishment survey for the variables  
chosen are in agreement with findings with 
many imputation methods for human population 
surveys where priority and challenges need to be 
overcome for improving variance estimates in 
surveys. The noticeable decrease in the average 
relative stability of the variance of the total 
estimates of the variables of interest warrants 
consideration.  

There were many limitations to this 
study. The chosen pseudo universe represents a 
best case scenario where departments are fully 
compliant and provided full information. 
Furthermore, sampling did not come from this 
finite population to test the imputation method in 
full when a sample is selected instead of using 
the entire population. The entire population was 
used, which is the best case scenario, being fully 
efficient in the scenarios regarding the 
imputation method. It is expected that by 
selecting different sample sizes will provide 
worst results than the ones presented here. Also, 
a good scenario where the current percentages of 
missing values do not seem very high for each 
cross-sectional year was used. However, the 
findings are overwhelming in the large effects 
that the current GSS imputation method affects 
the bias of the total estimates of part-time males 
and females and overall variance estimates. 
Another limitation is that this study only handles 
the issue of item-nonresponse when unit non-
response was excluded from this research. The 
results limitation as a best case scenario warrants 
consideration because worse results would be 
expected under worse conditions than those 
presented here.   

Currently NSF publishes total estimates 
from this survey without reporting any variance 
estimate. Careful attention is needed for those 
variables where standardized biases are larger 



ADRIANA PEREZ 
 

643

than -50% as well as how to improve the 
stability of the variance decreasing for 
increasing percentages of missingness in the 
cross-sectional and longitudinal setting. Minor 
discrepancies were observed in the bias and 
MSE estimates when the unit of analysis is 
establishments instead of individuals. Further 
research is needed to identify statistical methods 
to handle the missing data from this survey and 
to evaluate this method under a missing not at 
random mechanism.  
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Brief Reports 
A Note on Probability Trees 

 
W. J. Hurley 

Royal Military College of Canada  
 
 
Not many introductory probability and statistics textbooks emphasize the use of probability trees to make 
complex probability calculations. This is puzzling in view of the power that trees bring to organizing such 
calculations for students. An effective classroom technique is discussed is this note.  
 
 

Introduction 
 
Not many introductory probability and statistics 
textbooks emphasize the use of probability trees 
to make complex probability calculations, 
including classics such as Hogg and Craig 
(1970), Parzen (1960), and Ross (1996). An 
exception is Aczel (1993). This is puzzling in 
view of the power that trees bring to organizing 
such calculations for students. 

On the first day of a statistics course 
(both undergraduate and graduate) I teach, 
students are given a fairly complex real-world 
probability problem involving an assessment 
about whether a particular quality assurance test 
for an ammunition component is reasonable. 
After four weeks of lectures on introductory 
probability theory including probability trees 
and the binomial distribution, students are asked 
to revisit the problem for homework, and most 
are able to make the calculation and are very 
pleased for being able to do so. 
 
The Problem 

Here is a statement of the problem used in 
the first lecture, pertaining to defense resource 
management: 
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The primary armament on the 
Canadian Forces (CF) LAV III (Light 
Armored   Vehicle)  is  the Bushmaster  
242 Cannon. It fires 25mm rounds in 
three-round bursts at enemy thin-
skinned assets. To be able to see where 
rounds go so that aim can be adjusted, 
each round comes with tracer. The 
tracer is the explosive charge that 
lights up for a brief period of time 
after the round is fired. 

The CF purchases 25mm 
ammunition in lot sizes of 5,000 and 
10,000 rounds. Each lot must be tested 
to make sure that it satisfies the quality 
standards specified in the purchase 
contract. In almost all cases these 
specifications are governed by 
operational considerations. If 
ammunition is not up to specifications, 
soldiers in an operational environment 
are put at a higher risk. The 
specification for the 25mm tracer is 
that it work 97.5% of the time. That is, 
the defective rate can be no more than 
2.5%. To test whether a lot satisfies 
this specification, the CF performs the 
following test. 

A random sample of 10 rounds 
from a lot are fired. If there are 0 or 1 
defective, the lot is accepted. If there 
are 3 or more defectives, it is rejected. 
If there are 2 defectives, another 
random sample of 10 rounds is fired. If 
there are 0 defective in this second 
sample, the lot is accepted; if there is 1 
or more, it is rejected.  
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The Weapon Systems 
Engineer has asked you to determine 
whether this is a good test. He is 
worried about accepting a lot when the 
actual defective rate is higher than 
2.5%. When you asked about defective 
rates, he stated that a 5% defective rate 
for the tracer was unacceptable and a 
10% defective rate was absolutely 
unacceptable. You are required to 
assess the CF’s chances of accepting a 
bad lot and report your results to the 
engineer. Use your intuition to assess 
whether the chance of accepting a bad 
lot is high or low. 

 
Students are usually split on whether the 

probability is high or low and this may be a 
reflection of the uncertainty they have about the 
correct answer. Nonetheless, as officers and 
future officers in the Canadian Forces, they see 
the value of the problem and want to know how 
to solve it. 

 
Solution 
 Over the first month, students are taught 
how to make probability calculations, including 
Bayes’ Theorem using probability trees. A 
standard approach is taken, using simple 
problems such as picking marbles out of urns. 
With some repetition and homework, most 
students are able to pick up the mechanics of 
probability tree calculations very quickly. Once 
they have the idea with these simple problems, 
they are given real-world problems, most of 
which are based on my experience within the 
Department of National Defense and the 
Canadian Forces. The problem in the previous 
section is an example. The problems given for 
homework are a little different in that students 
are asked to make some specific calculations. 
Hence, the closing paragraph as follows: 
 

The Weapon Systems Engineer has 
asked you to determine whether this is 
a good test. He is worried about 
accepting a lot when the actual 
defective rate is higher than 2.5%. 
When you asked about defective rates, 
he stated that a 5% defective rate for 
the tracer was unacceptable and a 10% 

defective rate was absolutely 
unacceptable.    You are   required    to  
assess the CF’s chances of accepting a 
bad lot and report your results to the 
engineer. What is the chance of 
accepting the lot if the underlying 
defective rate is 5%? What is the 
chance of accepting the lot if the 
underlying defective rate is 10%? 
 

Some students, particularly at the graduate level, 
will come to my office to see if they have done it 
properly. Because homework is not graded, it is 
presumed that they are genuinely interested in 
the solution strategy. 

A tree for this problem is shown in 
Figure 1 where the base probabilities are shown 
on each arc. In this diagram, the binomial 
probability of exactly x successes in 10 trials is 
represented with b(x). Accepting the lot happens 
along the top arc of the first stage (0 or 1 
defective) and along the combination of the 
middle arc in the first stage and the top arc in the 
second stage (2 defective on the first sample and 
0 defective on the second). Hence, to get the 
probability of accepting the lot, ,Aφ multiply 
probabilities along each path and then add the 
results: 
 

).0()2()1()0( bbbbA ++=φ  
 
Letting Dp  be the probability of a defective, we 
have that  
 

822102

91101

100100
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and therefore 
 
 10 9(1 ) 10 (1 )A D D Dp p pφ = − + −  

2 8 1045 (1 ) (1 ) .D D Dp p p+ − −  
 

Table 1 shows values of Aφ  for =Dp  0.05 and 
0.10: 
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There are a number of interesting 

questions that can be asked at this point. For 
instance: 
  

1. Regarding operational risk and the 
maximum 2.5% defective rate, if the 
underlying defective rate is actually 
10%, what is the chance that at least 2 
tracers in a burst of three rounds will 
fire properly (another tree)?  

 
 

 
 

 
 
 

 
2. How could this test be modified to 

produce a more favorable result?  
 
To answer this question, students must 
consider two risks: supplier risk, the risk of 
rejecting a good lot of ammunition; and 
soldier risk, the risk of accepting a bad lot of 
ammunition. Obviously, from the point of 
view of the Canadian Forces, more weight 
would be put on soldier risk. This question 
is usually only pursued with graduate 
students and by giving specific direction. 

 
Table 1 

 
Dp  Aφ  

.05 .959 

.10 .804 
 

Note: Note that the probabilities of accepting a bad lot are very high. Consequently, the conclusion is that this 
test is not very good. 

 

 
Figure 1. The Probability Tree 
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Summary 

The best feedback I have had on 
probability trees has come from my graduate 
students. Most are officers in the Canadian 
Forces and have an undergraduate engineering 
degree with at least an introductory course in 
mathematical statistics. They indicate 
probability trees are much easier to use that the 
standard analytic approach. This is particularly 
true for conditional probability and Bayes’ Rule. 
 The problem presented here is 
particularly rich. It leads to interesting follow-on 
questions that can be explored either in the 
classroom or on assignments. 
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Introduction 
 
The following non stochastic controllable 
covariates model in a block design set up  

 
 (Y, μ1 + X1β + X2τ + Zγ, σ2I)     (1) 
 
is considered, where μ is the intercept term, σ2 is 
the common variance of the observations, β is 
the vector of block effects of order b×1, τ is the 
vector of treatment effects of order v×1, γ is the 
vector of covariate effects of order c×1 and Y is  
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the uncorrelated observation vector of order 
n×1; X1, X2 are the incidence matrices of block 
effects, treatment effects respectively and  Z is a 
design matrix of covariate effects. 

For the covariates, without loss of 
generality, the (location-scale)- transformed 
version: ⏐zij⏐≤ 1 is assumed. It is evident that 
for orthogonal estimation of treatment and block 
effect contrasts on one hand and covariate 
effects on the other, the following condition 
must be satisfied. 
 
       Z'X1 = 0,            Z'X2 = 0      (2) 
 
For most efficient estimation of each of the 
regression parameters the following condition 
must hold (Pukelsheim, 1993) 
 

Z'Z = nIc.                        (3) 

This means that all the elements in each column 
of Z must be ±1, and the columns must be 
mutually orthogonal.  

In the block design set up, the optimum  
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properties of randomized block design (RBD) 
and BIBD with respect to a class of optimality 
criteria for the estimation of treatment effects are 
well known (see e.g., Shah & Sinha, 1989). The 
choice of covariates in a design set up was 
earlier considered by Troya (1982a, 1982b), 
Liski et al (2002), Das et al. (2003), Dutta 
(2004), Rao et al. (2006) and others. Troya 
(1982a, 1982b) first considered the problem of 
choice of the levels of the covariates, i.e., Z 
matrix in a completely randomized design 
(CRD) model. Das et al. (2003) extended it to 
the set up of RBD and some series of BIBDs. As 
mentioned earlier, the choice of covariate values 
depends heavily on the block design set up as is 
evidenced from (2). In the case of incomplete 
block designs, the allocation of treatments to the 
plots of the blocks depends on the method of 
construction of designs. Das et al. (2003) 
considered symmetric balanced incomplete 
block design (SBIBDs) with parameters b=v, 
r=k, λ constructed through Bose's difference 
method and some BIBDs with repeated blocks. 
Dutta (2004) also considered some series of 
BIBDs obtained through Bose's difference 
technique together with some arbitrary BIBDs. 
However, as is well known, there are different 
methods of construction leading to different 
series of BIBDs and the choice of the Z matrices 
also varies from series to series. Here, the 
problem of choice of Z for the series of 
complements of SBIBDs, which are obtained 
through Projective Geometry, is considered. It 
may be mentioned in this connection that in the 
series considered in the previous works (Das et 
al., 2003, Dutta, 2004), the layouts have cyclical 
pattern which simplified the choice of Z. 
However, the series of SBIBDs considered here 
do not have the above cyclical property. 
Following Das et al. (2003), each column of the 
Z matrix is transformed to a W-matrix where the 
element in the ith row and jth column of W(s) is 

)s(
ij

)s(
ij z;z  being the element of Z corresponding 

to jth treatment in ith block of the design for the 
sth covariate. Corresponding to the block and 
treatment classification, conditions (2) and (3) in 
terms of W-matrices reduce to: 
 
(C1) Each W-matrix has all column-sums    
equal to zero; 

(C2) Each W-matrix has all row-sums equal 
to zero; 
(C3) The grand total of all the entries in the 
Hadamard product (vide Rao, 1973) of any two 
distinct W-matrices reduces to zero.  

In a BIBD set up with parameters v,b,r,k 
and λ, W-matrix of order b×v can be constructed 
from the incidence matrix of the BIBD by 
placing judiciously ±1's in the non-zero k-
positions in every row and in the non-zero r 
positions in every column such that each W-
matrix satisfies conditions C1, C2 and C3 
mentioned above. The paper is organized as 
follows: In Section 2 an outline of the 
construction of BIBDs through PG(N,s) and a 
method of partitioning of the blocks into 
different sets useful for the choice of W-matrices 
are given and in Section 3 methods of 
constructing optimum W-matrices by using sets   
described in Section 2 have been considered  
 

BIBDs through Projective Geometry: 
Partitioning of blocks 

 
 With the help of the Galosis field GF(s), 
a finite projective geometry of N dimensions, to 
be written as PG(N,s), where s=pn, p is a prime 
number and n is any positive integer, can be 
constructed. Any ordered set of (N+1) elements 
(x0,x1,…,xN) where the xi's belong to GF(s) and 
are not simultaneously zero, is called a point of 
the projective geometry PG(N,s). It is known 
that the number of points in PG(N,s) is equal to 

1s
1s)s,0,N(

1N

−
−=φ

+
 and the number of m-

flats is equal to φ(N,m,s) where  
 

)1)...(1)(1(
)1)...(1)(1(),,( 1

11

−−−
−−−= +

+−+

sss
ssssmN mm

mNNN

φ

 
By making correspondence between points and 
m-flats of PG(N,s) with varieties and blocks 
respectively, a BIBD with parameters v = 
φ(N,0,s), b = φ(N,m,s), r = φ(N-1, m-1, s), k = 
φ(m,0,s), λ = φ(N-2, m-2, s) can be obtained (cf. 
Bose, 1939). The following series of SBIBDs 
with m=N-1 has parameters  
         b=v=sN+sN-1+…+s+1, r = k = sN-1+…+s+1,     
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         λ = sN-2+sN-3+…+s+1.             (4) 
 
The complementary SBIBD of (4) has the  
parameters  
 

b = v = sN+sN-1+…+s+1,            (5) 
r = k = sN, λ= sN-sN-1.  
 

It is mentioned above that the choice of 
the levels of the covariates in BIBD set up 
depends on the method of its construction and 
the maximum number of covariates satisfying 
(2)-(3) varies from series to series.  

The blocks of the SBIBD are partitioned 
into (sN-1 + sN-3+…+s2+1) (=t, say) disjoint sets; 
each set containing (s+1) blocks such that the 
portion of the incidence matrix of the 
complementary design corresponding to each set 
conforms to that of the incidence matrix of an 
RBD with suitable parameters. This fact has 
been used for the choice of the Z matrix.  
         It is to be noted that the number of (N-1)-
flats passing through a particular (N-2)-flat is the 
number of (N-1)-flats on which a particular (N-
2)-flat lies. This number is given by φ(1,0,s) = 
s+1. Such (s+1), (N-1)-flats passing through a 
particular (N-2)-flat can be obtained as follows: 
         Consider an (N-2)-flat of PG(N,s) given by  

 

   a′x=0,   b′x=0                      (6) 

where, a′ and b′ are two row vectors of a matrix  
A of order 2×(N+1) with elements from GF(s) 
such that rank (A)=2. 

 
                   The (s+1), (N-1)-flats containing the 
same (N-2)-flat in (6), are given by 
(λ1a′+λ2b′)x=0; (λ1,λ2) ≠ (0,0) and (λ1,λ2) ≡ 
ρ(λ1,λ2) where, ρ is a non-zero element of 
GF(s). If N is odd, then the full set of φ(N, N-1, 
s), (N-1)-flats can be partitioned into  

)1)(1(
1

1
),1,( 1

−+
−=

+
− +

ss
s

s
sNN Nφ

 

            )1...( 231 ++++= −− sss NN  
 

sets each containing (s+1), (N-1)-flats having a 
common (N-2)-flat. It is clear that the  

)1(
1

),1,( −
+

− N
s

sNN    ,φ
-flats passing through 

a particular (N-2)-flat are disjoint. As the blocks 
correspond to (N-1)-flats, through one to one 
correspondence, partition the blocks into (sN-1 

+sN-3+…+s2+1) disjoint sets each containing 
(s+1) blocks. It will be clear from the following 
two examples covering both the situations where 
s is prime or prime power.  

 

Example 1: N=3, m=2, s=2. There are 15 blocks which can be partitioned into 5 sets  
each of size 3 as mentioned above. 
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  It is to be noted that only two equations in each set Si are independent and these can 
conveniently be represented as Ax=0. It is clear that the choice of A matrix in S1 is given by: 

 

                                               A= .
0  1  1  0
0  0  0  1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

The choice of A matrices for other S's are obvious.



OPTIMUM CHOICE OF COVARIATES FOR A SERIES OF SBIBDS 
 
652 

 .  

Example 2: N=3, m=2 and s=22. There are 85 blocks which can be partitioned into 17 sets      
each of size 5.  
Let the elements of GF(22) be α0=0, α1=1, α2=x, α3=1+x; x being a primitive element of GF(22). Then 
the 17 sets are:  
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0xxx
0xx

0xxx

:S

322130

323120

310

21

320

9

=+α+α+
=+α+α+

=++
=+

=++

 

 

0xxxx
0xxxx

0xxx
0xx

0xxx

:S

3323130

332120

3310

221

33220

10

=α+α+α+
=α++α+

=α++
=α+

=α+α+

  

0xxxx
0xxxx

0xxx
0xx

0xxx

:S

322130

3222120

3210

231

32230

11

=α++α+
=α+α+α+

=α++
=α+

=α+α+
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                         Choice of Covariates 
 
 From (4), it is seen that any block of the 
design contains k = (sN-1+λ) treatments and any 
two blocks have exactly λ treatments in 
common. As any two blocks of the set Si 
(i=1(1)t;   t=(sN-1+sN-3+…+s2+1)), have the same  
 
 
 
 

 
 

 
 
 
λ treatments common, without loss of any 
generality, the portion Ni of the incidence matrix 
corresponding to the blocks in Si  (i=1(1)t) can 
be written in the following form (with some 
rearrangement of blocks if necessary):    
                                                                                               

 
     

Example 2 (cont.)  N=3, m=2 and s=22. There are 85 blocks which can be partitioned into 
 17 sets each of size 5. 

0xxx
0xxx

0xxxx
0xxx

0xxx

:S

22130

3120

32210

3221

33230

12

=α+α+
=+α+

=α+++
=+α+

=α+α+

  

0xxx
0xxx

0xxxx
0xxx

0xxx

:S

3130

23120

33210

3231

32220

13

=+α+
=α+α+

=α+++
=+α+

=α+α+

 

 

0
0

0
0

0

:S

32130

22120

32310

32221

3320

14

=++
=++

=+++
=++

=++

xxx
xxx

xxxx
xxx

xxx

αα
αα

α
αα

α

                

0
0

0
0

0

:S

23130

33120

32210

33231

3220

15

=++
=++

=+++
=++

=++

xxx
xxx

xxxx
xxx

xxx

αα
αα

α
αα

α

           

 

0xxx
0xxx

0xxxx
0xxx
0xxx

:S

2130

32120

332310

3221

3220

16

=+α+
=α+α+

=α+α++
=α++
=+α+

     

0
0

0
0
0

:S

33130

2120

322210

3321

3230

17

=++
=++

=+++
=++
=++

xxx
xxx

xxxx
xxx
xxx

αα
α

αα
α

α

 

 where  (x0, x1, x2, x3) is a point of PG(3,22). As an illustration, the choice of A matrix corresponding 
to S1 and S4 are given respectively by  

                                             ,
0  0  1  0
0  0  0  1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
     .

   0  1  0
0    0  1

3

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

α
 

Similarly A matrices for other Si's can be written. 
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vs

s

s

s

i

N

N

N

N

×+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′′′

′′′′
′′′′

=

−

−

−

1

11.00
........
........
........
........
........
10....10
10....01

1

1

1

λ

λ

λ

         (7)        

 
 
The part of the incidence matrix of the design 
with parameters in (5) corresponding to the part 
Ni of the design with parameters in (4) is 
obtained by replacing one's by zero's and zero's 
by one's in (7) and is given by :  
 

  

vs

sss

ss

sss

c
i

NNN

NN

NNN

N

×+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′′′

′′′′
′′′′

=

−−−

−−

−−−

1

00.11
........
........
........
........
........
01....01
01....10

111

11

111

λ

λλ

λ

     (8) 

 
Using the structure (8) above, a method 

for choosing the values of the covariates 
optimally for the complementary design with 
parameters in (5) is developed.  
 
Theorem 1: 

If s=2p where p be any positive integer, 
(sN-1-1)(s-1)+(s-1), W-matrices for the design 
with parameters in (5), where N is an odd 
integer can be constructed. 
 

 
Proof  

Because s is a power of 2, Hadamard 
matrices of orders sN-1 and s exist and can be 
written as   follows: 

 
1Ns

H − = ( )1,,,
11 1−−Nshh       

sH = ( )1,,, *
1

*
1 −shh                                  (9) 

 

where 1′ is a row vector with all elements equal 
to one. Again the matrix (8) can be written as  
                 

( )iisjiii
c
i AAAAN 0,,,,,, 121 +=  

 
where Aji is the jth partitioned matrix in the jth 

column block of ).1s)(1(1j,Nc
i += Let the kth 

non-null row of Aji be replaced by the kth row of        
skhh nm )1(1;* =′   and the resultant matrix be 

denoted by .A*
ji  The procedure for each Aji is 

repeated with the same .hh n
*
m ′  This leads to a 

matrix *
n,m,iW  with elements +1 satisfying the 

properties C1 and C2. Using the same *
mh  and hn 

different *
n,m,iW ’s corresponding to different 

s'Nc
i  are obtained. Now for fixed *

mh  and hn 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

*
n,m,t

*
n,m,2

*
n,m,1

*
n,m

W
.
.
.

W
W

W  

 
satisfies the properties C1 and C2. By varying hm 

and *
nh , (sN-1-1)(s-1), matricesW*

n,m − can be 
constructed. The transformation required to 
apply on (8) to get back the corresponding 
portion of the incidence matrix of the design 
may also be applied on the elements of the 
above W*- matrix to get the original W-matrix. 
It is clear that such W-matrices also satisfy all 
the properties C1, C2 and C3. 
 

Again, note that the number of unit 

vectors in the rows of  c
iN  is s which is the 

same as that of the elements of *
mh . Let the qth 

vector 1Ns1 −′  be replaced in the first column 
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block matrix of c
iN  by + 1Ns1 −′ or by - 1Ns1 −′  

according as the qth element of *
mh is +1 or -1 

respectively to get **
1A . Now the rows of  **

1A  
are permuted cyclically to get  

**
1s

**
3

**
2 A,...,A,A + and hence a new W-matrix 

viz. **
mW   can be constructed. It is easy to show 

that these **
mW  matrices together with **

n,mW  
satisfy all the conditions C1, C2 and C3. In all, 
(sN-1-1)(s-1)+(s-1), W-matrices exist. The 
procedure is illustrated through the following 
example.  
 
Example: 3 
 The SBIBD whose blocks are 2-flats of 
PG (3,2) is considered so that the parameters of 
the SBIBD are v=b=15, r=k=7, λ=3. Now   the 
complement of this design has parameters 
v′=b′=15, r′=k′=8, λ′=4.  
 
The sets of blocks of the complementary design 
of Example 1 where the treatment corresponding 
to the point (x0, x1, x2, x3) is indexed by 
23x0+22x1+2x2+x3 are: 

 
S1 = [(8,9,10,11,12,13,14,15), 
(2,3,4,5,10,11,12,13), (2,3,4,5,8,9,14,15)] 
S2 = [(4,5,6,7,12,13,14,15), (1,3,5,7,8,10,12,14), 
(1,3,4,6,8,10,13,15)] 
S3 = [(2,3,6,7,10,11, 14,15), (1,3,4,6,9,11,12,14), 
(1,2,4,7,9,10,12,15)] 
S4 = [(1,3,5,7,9,11, 13,15), (2,3,6,7,8,9,12,13), 
(1,2,5,6,8,11,12,15)] 
S5 = [(4,5,6,7,8,9,10,11), (1,2,5,6,9,10,13,14), 
(1,2,4,7,8,11,13,14)]. 
 
 The Hadamard matrices of orders 2 and 
4 exist and are written as: 
 

[ ]1,h
11
11

H 12 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
++

=  

and 4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

H

+ + + +⎛ ⎞
⎜ ⎟− − + +⎜ ⎟= =
⎜ ⎟+ − − +
⎜ ⎟− + − +⎝ ⎠

* * *
1 2 3, , ,1h h h⎡ ⎤⎣ ⎦  

Using h1 and )3)1(1i(h*
i =  and proceeding as in 

Theorem 1, three W-matrices can be 
constructed. The construction of  a  W-matrix 

viz. *
11W  is illustrated using h1 and *

1h : 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−+−+−+−
−++−+−−+

−−++−−++
++−−++−−

+−−++−−+
−−++−−++
++−−++−−

+−−++−−+
−−++−−++
+−+−+−+−

+−−++−−+
−−++−−++
+−+−+−+−

+−+−−+−+
−+−+−+−+

011010011001011
011001100110011
000011111111000
100110010110011
001100111100110
101010101010101
100101101001011
010110100101101
110011001100110
101001010101101
010101011010101
111100001111000
110000110011110
001111000011110
111111110000000

 
 
Similarly, by taking the combinations 

(h1, )h*
2 , (h1, )h*

3  *
13

*
12  Wand W  can be 

constructed. Another matrix **
1W  using h1 is 

given below: 
 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−++++−−
++−−−−++

−++−−++−
+−+−−+−+

−+−+−+−+
−+−++−+−
+−+−+−+−

−+−+−+−+
−++−−++−
++−−++−−

−−++−−++
−+−++−+−
++++−−−−

−−−−++++
−−++++−−

011010011001011
011001100110011
000011111111000
100110010110011
001100111100110
101010101010101
100101101001011
010110100101101
110011001100110
101001010101101
010101011010101
111100001111000
110000110011110
001111000011110
111111110000000

 

Thus four W–matrices *
11W  ,    W, *

13
*

12W and 
W1

** are constructed satisfying conditions C1-C3. 
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A New Generalization of Negative Polya-Eggenberger                              
Distribution and its Applications 

 
Anwar Hassan      Sheikh Bilal Ahmad 

         University of Kashmir Degree College, Baramulla  
 
 
A new generalization of negative Polya-Eggenberger distribution (GNPED) has been obtained by mixing 
the negative binomial distribution with generalized beta distribution-Π defined by Nadarajah and Kotz 
(2003). Some special cases and properties of GNPED have been studied. Further, the proposed model has 
been fitted to two data sets (used by Gupta & Ong, 2004) that provide a satisfactory fit and better 
alternative as compared to negative binomial and some of its mixture models and extensions. Also, the 
negative Polya-Eggenberger distribution (NPED), obtained by mixing negative binomial with beta 
distribution of I-kind, has been fitted to the same data sets for comparison.  
 
Key words: negative binomial distribution, generalized beta distribution-Π, generalized negative Polya-
Eggenberger distribution (GNPED). 
 
 

Introduction 
 

Feller (1943) pointed out there are essentially 
two kinds of contagious distributions. One type, 
true contagion, is due to the fact that each 
favorable event increases (or decreases) the 
probability of succeeding favorable events. The 
other type, apparent contagion, is due to an 
inhomogeneity of the population. Frequently, the 
data arising in studies of entomology and 
bacteriology cannot be described by the usual 
distribution functions but rather by some type of 
contagious distributions. Some distributions, 
such as the negative binomial, can apparently be 
interpreted on the basis of both types of 
contagion. 
               A class of contagious distributions is 
derived from a certain biological model which 
takes into account the fact that the distribution of 
larvae over the plots of a field depends upon the 
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fact that the larvae are hatched from egg-masses 
which appear at random over the field has been 
derived by Neyman (1939), Evans (1953) and 
Beal and Rescia (1953). This class of 
distribution has been successful in accounting 
for the distribution of some insect populations 
(ef. Beal-1940). Bliss and Fisher (1953) showed 
that the negative binomial distribution is useful 
as a possible underlying distribution for insect 
populations. Contagious distributions have also 
been used in the study of accident and medical 
statistics by Dubourdieu (1939), Greenwood and 
Yule (1920), Lundberg (1940) and Newbold 
(1927). Eggenberger and Polya (1923) 
introduced Polya-Eggenberger distribution 
(PED) and negative Polya-Eggenberger 
distribution (NPED) by an urn model and 
described these as truly contagious distributions.  
 
Negative Polya-Eggenberger Distribution 
(NPED) 
 Negative Polya-Eggenberger distribution is 
related to Polya-Eggenberger distribution in the 
same way as the negative binomial distribution 
is related to binomial distribution. It is well 
known fact that the negative binomial 
distribution (NBD) has become increasingly 
popular as a more flexible alternative to the 
Poisson distribution especially when it is 
doubtful whether the strict requirements 
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particularly independence for a Poisson 
distribution will be statisfied. Negative Polya-
Eggenberger distribution is obtained by mixing 
negative binomial distribution   
 

            
1

( ) (1 )
n x

x n

x
P X x p p

+ −⎛ ⎞= = −⎜ ⎟
⎝ ⎠

,      (1) 

0,1, 2,....x = ; 1po <<  
 

With beta distribution of I-Kind  
 

                 11( )
( , )

P X p pα

β α γ
−= =        (2) 

1(1 )p γ −− , 
0 1 ,p< <  

, 0α γ >  
 
If the parameter p in (1) is not a constant but is 
varying as beta distribution of I-kind then its 
probability mass function is (2) and   beta 
mixture of negative binomial distribution is 
obtained as 
 
                            ( )P X x= =                       

11
1

0

1
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n x
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x
p α

β α γ
+ −

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫  
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α γ
α γ
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x
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( 1).......( 1) ( 1).........( 1)
( )( 1)............( 1)

x n
n x

α α α γ γ γ
α γ α γ α γ

+ + − + + −
+ + + + + + −

 

Taking c
a=α  and c

b=γ  in the equation 

above, we get    

                             ( )P X x= =                     (3) 
1n x

x

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( ).......( 1 ) ( ).........( 1 )
( )( )............( 1 )

a a c a x c b b c b n c
a b a b c a b n x c
+ + − + + −

+ + + + + + −
 

0,1,2,......x =  
 

Which is negative Polya-Eggenberger 
distribution with parameters (n, a, b, c). 
 
Generalized Beta Distribution-II 
      Many generalization of beta distribution of 
I-kind (2) involving algebraic and exponential 
function has been proposed in the literature; see 
chapter 25 in Johnson et al (1995) and Gupta 
Nadarajah (2004) for detailed accounts. 
Nadarajah and Kotz (2003) defined a 
generalization of (2) involving the Gauss 
hypergeometric function as  
 
                        ( )P X p= =                  (4) 

1
2 1

( , ) [1 , ; , ]
( , )

a bb a b p F a a b p
a b
β γ

β γ
+ − − +

+
, 

 
This is known as generalized beta distribution-II. 
The properties of incomplete beta function and 
Gauss hypergeometric function can be found in 
Prudnikov et al (1990, vol.3 sec. 7.3) and 
Gradshteyn and Ryzhik (2000). 

There are various extensions/ 
modifications of NBD in the literature including 
Engen’s extended NBD (1974, 1978), 
generalized NBD of Jain and Consul (1971) and 
weighted NBD; see Johnson et al. (1992) for 
more details and explanations. A brief list of 
authors and their work can be seen in Johnson 
and Kotz (1969), Consul and Famoye (2000), 
Johnson and Balkrishnan (1995) and Gupta and 
Nadarajah (2004).   

In this article,  an attempt has been made 
to introduce a new  generalized contagious 
distribution, generalized negative Polya-
Eggenberger distribution (GNPED), by mixing 
NBD with generalized beta distribution-Π  
defined by Nadarajah and Kotz’s (2003) which 
is expected to explain data in a better way as 
compared to distributions obtained by mixing 
Poison or binomial with other distributions. 
Further, the proposed model has been fitted to 



HASSAN & BILAL 
 

 

659

same data sets previously used by Gupta and 
Ong (2004) that exhibits a satisfactory fit and 
better alternative as compared to negative 
binomial, negative Polya-Eggenberger, Gupta 
and Ong’s (2004) GNBD and Jain and Consul’s 
(1971) GNBD. 
 
The Proposed Model 
 

Let X be a random variable representing 
the number of independent trails necessary to 
obtain ‘n’ occurrences of an event that has a 
constant probability of occurring at each trail. 
Then X has a negative binomial distribution with 
parameters (n, p) and pmf given by (1). But, 
there are situations in the practical life where 
probability ‘p’ of each occurrence of an event is 
not constant but is following some distribution. 
In the present case, suppose ‘p’ is varying as 
generalized beta distribution-Π by Nadarajah 
and Kotz (2003) with parameters ),,( γba  and 
pdf given by (4) then the pmf of proposed model 
is obtained by mixing (1) with (4) as 
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Using Gradibhtyn and Ryzhik’s (2000) 
book, we obtain after few steps 
 
                             ( )P X x= =                        (5) 
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3 2[1 , , ; , 1,1]F a a b n a b a b n xγ× − + + + + + + +  

0,1,2...x =  
 

This is a probability mass function of the 
proposed model, generalized negative Polya-
Eggenberger distribution (GNPED), which can 
further be simplified to give 
 
                               ( )P X x= =                      (6) 
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0,1,..........x =  
 

Some Special Cases of GNPED 
 Some old and new distributions can be 

obtained by assigning different values to the 
parameters of GNPED (6).  

For 1=++ γba , (6) reduces to 
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[ ] [ ]

[ 1] [ 1]

( 1)! ( ) ( )
( 1)! ( 1) ( )

n

n x
x n a b a b

n b a b

γ

γ − + +

+ − + +
− + +

 

2 1[ , ; 1,1]F a a b n a b n x+ + + + + +  

0,1,..........x =  
 

The Gauss summation theorem states that 

            2 1
( )[ , ; ,1]

( ) ( )
c c a bF a b c
c a c b

Γ Γ − −=
Γ − Γ −

        (8) 

 

Provided 0)bac( >−− , 0, 1, 2, 3,.....c ≠ − − −  

Using (8) in (7), we obtain NPED with pmf  

( )P X x= =  

                                      
1

1

x n

n

+ −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

                             (9) 

(1 )(1 1).....(1 1)( )( 1)....( 1)
(1 )(1 1)..........(1 1)

a a a x a b a b a b n
b b b n x

− − + − + − + + + + + −
+ + + + + + −

 

If one puts (1 ) &a
c
α− =  c)ba( β=+  

c
)()b1( βα +=+⇒ , then the above equation 

reduces to NPED in its usual form as 
 

( )P X x= =  
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1

1

x n

n

+ −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

                              (10) 

( )........( 1 ) ( )..........( 1 )
( )( )..........( 1 )

c x c c n c
c n x c

α α α β β β
α β α β α β
+ + − + + −

+ + + + + + −
 

0,1,.....x =  
 

For 1=γ , (6) reduces to 

( )P X x= =  

                             
( )

( )
a b

a b n x
+

+ + +
                    (11) 

( , )
( , )

a b x n
a b n

β
β

+ +
+

 

0,1,..........x =  
 
Where 3 2[1 , , ; ,F a a b n a bγ− + + +  

1,1] 1a b n x+ + + + =  for 1=γ  
 
If in addition, one puts a + b=1, then (11) 
reduces to factorial distribution  
 

( )P X x= =  

                            
( )( 1)

n
n x n x+ + +

               (12) 

0,1, 2,....x =  
 

For b=0, (6) reduces to 

( )P X x= =  
[ ] [ ]

[ 1] [ 1]

( 1)!
( 1)! 1

n

n x
n x a a

n a

γ

γ − + +

+ −
−

 

2 1[1 , ; 1,1]F a n a n xγ− + + + +  
Using Gauss summation theorem (8), we obtain 
on simplifications 
                   

( )P X x= =  
[ ] [ ]1

[ ]1 ( )

n xx n

n xn

a
a

γ
γ

+ −

+−

⎛ ⎞
⎜ ⎟ +⎝ ⎠

 

0,1,.......x =  
 

If one puts ca&c
βαγ == , then above 

equation reduces to negative Polya-Eggenberger 
distribution (9).  

 
For a=0, (6) reduces to 
 

( )P X x= =  

              
( , )

( ) ( , )
b b n x

b n x b n
β

β
+

+ +
     (13) 

0,1, 2,....x =  
Where, 
 

1]1,1,;,,1[23 =+++++++− xnbabanbaaF γ , 
 

for a=0. If in addition one puts b=1, then (13) 
reduces to (12). 
 
            For 1)( =+ ba , (6) reduces to 
 

( )P X x= =  

                )!1b(
!!b

)1xn)(xn(
n

−++++ γ
γ          (14) 

                ]1,2xn,1;n1,a,1[F23 +++−γ  
 

If in addition one puts   
i) a=0 ,  then (14) reduces to 

 

          
)1)((

),()(
+++

==
nxxx

bnbxXP γγβ
                                        

This is a new generalization of factorial 
distribution (12) as it reduces to (12) for 

11 == borγ  

If one replaces x with (x-n), then (6) reduces to     

( )P X x= =  
[ ]

[ 1]

( 1)! ( , ) ( )
( 1)! ( , ) ( )

n

x
x b a b a b
n a b a b

β
β γ +

− +
− + +

 

3 2[1 , , ; , 1,1]F a a b n a b a b xγ− + + + + + +  
 

Taking 1=γ and   b=0, this results in a new 
distribution with pmf 
 

( )P X x= =  
1xa

nx

x

nxx
na −+

−− ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛  

,......2n,1n,nx ++=  
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Moment Generating Function of GNPED 
 Moment generating function of (5) can be 
obtained as 
 

( ) ( )tX
XM t E e=  

[ ]

[ 1]
0

( 1)! ( , ) ( )
( 1)! ( , ) ( )

n
tx

n x
x

x n b a b a be
n a b a b

β
β γ

∞

+ +
=

+ − +=
− + +∑  

3 2[1 , , ; , 1,1]F a a b n a b a b xγ− + + + + + +  

( , )
( , )
b a b

a b
β

β γ
=

+
 

[ ] [ ] [ ]

[ ]
0

(1 ) ( ) 1
( ) !

j j j

j
j

a a b n
a b j

γ∞

=

− + +
+∑  

[ ] [ ]

[ ] [ 1]
0

1
( 1) ( )

x x

j x
x

n
a b n x a b n

∞

+
=

×
+ + + + + +∑  

( )
!

t xe
x

 

 
On simplification, this gives moment generating 
function of GNPED as           

( )XM t =  
[ ] [ ] [ ]

[ ] [ 1]
0

( , ) (1 ) ( )
( , ) ( ) ( )

j j j

j j
j

b a b a n a b
a b a b n a b
β γ

β γ

∞

+
=

− + +
+ + + +∑   (15) 

2 1[ ,1; 1, ]
!

tF n n a b j e
j

+ + + +×  

 
Remarks: 
 If one replaces te with 1)t1( −−  in (15), 
ascending factorial moment generating function 
is obtained as 
 

(1 ) XE t −− =  

( , )
( ) ( , )

b a b
a b n a b

β
β γ+ + +

 

[ ] [ ] [ ]

[ ] [ ]
0

(1 ) ( ) 1
( ) ( 1) !

j j j

j j
j

a a b n
a b a b n j

γ∞

=

− + +
+ + + +∑  

1
2 1[ ,1; 1, (1 ) ]F n a b n j t −× + + + + −  

 
Similarly, replacing te with )t1( +  in (15), 
descending factorial moment generating 
function of GNPED is obtained as   

 

(1 )XE t+ =  

( , )
( ) ( , )

b a b
a b n a b

β
β γ+ + +

 

[ ] [ ] [ ]

[ ] [ ]
0

(1 ) ( ) 1
( ) ( 1) !

j j j

j j
j

a a b n
a b a b n j

γ∞

=

− + +
+ + + +∑  

2 1[ ,1; 1, ]tF n a b n j e× + + + +  
 

Raw Moments of GNPED 
 The rth raw moment of the proposed model 
(5) can be obtained as  
 
                    ( ) [ ( )]r rE X E E X p=           (16) 
 
Where  )( pXE r  is the conditional rth 
moment of X for given  p  and for given p , the 
random variable X has negative binomial 
distribution (1) with  
 

1

11

( ) (1 ) 0
r x n

r x x x r

nx
E X p p p

+ −
−

−=

⎛ ⎞= − Δ⎜ ⎟
⎝ ⎠

∑  

 

Hence, (16) reduces to 

[ ] rxxx
r

1x

1nx

1n

)r 0)p1(pEX(E Δ−⎟
⎠
⎞⎜

⎝
⎛= −

=

−+

−
∑  

 
Because p is varying as generalized beta distribution-
Π (2) with parameters ),b,a( γ . Therefore, 
 

=′rμ  
1

11

( , ) 0
( , )

r x n
x r

nx

b a b
a b
β

β γ
+ −

−=

⎛ ⎞Δ⎜ ⎟+ ⎝ ⎠
∑     

1
1 1 1

0

(1 )a b x xp p+ − − + −−∫  

2 1[1 , ; , ]F a a b p dpγ− +  
 

This on simplification gives the rth moment of 
GNPED as 

( , )
( , )r
b a b

a b
βμ

β γ
′ =

+
 

          
1

( 1)!( 1)! 0
( 1)!( )!

r
x r

x

x n a b x
n a b=

+ − + − − Δ
− +∑    (17) 
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3 2[1 , , ; , 1,1]F a a b x a b a bγ× − + − + + +  
 

Taking r=1, 2, 3, 4 in (17), one gets first four 
 raw moments as 
 

1
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  
 

2
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

2 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  
 

3
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

6 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  

6 ( 1)( 2) ( , )
( )( 1)( 2)( 3) ( , )

n n n b a b
a b a b a b a b a b

β
β γ

+ ++
+ + − + − + − +

 

3 2[1 , , 3; , 1,1]F a a b a b a bγ× − + − + + +  
 

4
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

14 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  

36 ( 1)( 2) ( , )
( )( 1)( 2)( 3) ( , )

n n n b a b
a b a b a b a b a b

β
β γ

+ ++
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3 2[1 , , 3; , 1,1]F a a b a b a bγ× − + − + + +  
24 ( 1)( 2)( 3) ( , )

( )( 1)( 2)( 3) ( 4) ( , )
n n n n b a b

a b a b a b a b a b a b
β

β γ
+ + ++

+ + − + − + − + − +
 

3 2[1 , , 4; , 1,1]F a a b a b a bγ× − + − + + +  
 

Descending Factorial Moments of GNPED 

  The rth descending factorial moment of 
(5) can be obtained as  

 
)]([)( )()( pXEEXE rr = , 

 
Where for given p, the random variable ‘X’ 
follows negative binomial distribution with 
 

rrrr pprnpXE )1()1()( )()( −−+= −  
 

Proceeding in the same way as above, the rth 
descending factorial moment of GNPED is      
 

( )

( )
( 1) ( 1) ! ( , )

( )! ( , )

r

r
n r a b r r b a b

a b a b
βμ

β γ
+ − + − −′ =

+ +
 

                                                                             (18) 
3 2[1 , , ; , 1,1]F a a b r a b a bγ× − + − + + +  

 
Taking r=1, 2, 3, 4 in (18), one gets first four 
factorial moments as 
 

(1)
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  
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(4)μ′ =  
24 ( 1)( 2)( 3) ( , )
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Central Moments of GNPED 
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a b a b a b
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Goodness of Fit 
 Gupta and Ong (2004) obtained GNBD 
by mixing NBD with generalized gamma 
distribution defined by Amero and Bayrr (1933) 
and Agarwal and Kalla (1996). The pmf of 
GNBD is  
 
                               == )xX(P                     (19) 

xm1xm

x 1
1

1 ⎟
⎠
⎞⎜

⎝
⎛

+⎟
⎠
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⎝
⎛

+⎟
⎠
⎞⎜

⎝
⎛ −−+

αα
α λ

 

)n;1m,(
)n)1(;x1m,(

αλλφ
αλλφ

+−
+−+−×  

 
Where )n,,,m( λα  are the parameters of the 
distribution and )n)1(;x1m,( +−+− αλλφ  is a 
confluent hypergeometric function. 
             Gupta and Ong demonstrated the 
goodness of fit test for their model (19) with the 
help of two data sets [Tables (1)-(2)] and 
observed marked fist than NBD and Jain and 
Consul’s (1971) GNBD.         

In this section, the proposed model 
GNPED has also been fitted to these data sets to 
show that the proposed model exhibits the best 
fit as compared to other distributions such as 
NBD, Jain and Consul’s (1971) GNBD and 
Gupta and Ong’s (2004) GNBD. The negative 
Polya-Eggenberger distribution has also been 
fitted to these data sets for its comparison with 
these distributions. 
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Table 1  Absenteeism among shift-workers in steel industry; data of Arbous and Sichel, 1954 

 
Count Observed 

Frequency 
                    EXPECTED   FREQUENCY 

  NBD Jain and 
Consul’s (1971) 
GNBD 

Ramesh 
and Ong’s 
(2004) 
GNBD 

NPED PROPOSED 
MODEL 
GNPED 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25-48 

7 
16 
23 
20 
23 
24 
12 
13 
09 
09 
08 
10 
08 
07 
02 
12 
03 
05 
04 
02 
02 
05 
05 
02 
01 
16 

12.02  
16.16  
17.77  
18.08  
17.65  
16.80  
15.72  
14.52  
13.28  
12.06  
10.89  
09.78  
08.75  
07.80  
06.93  
06.14  
05.43  
04.79  
04.22  
03.17  
03.23  
02.86  
02.50  
02.91  
01.91  
12.77 

10.51 
17.45 
20.38 
20.80 
19.88 
18.34 
16.56 
14.78 
13.08 
11.53 
10.13 
08.89 
07.79 
16.83 
05.99 
05.26 
04.61 
04.05 
03.56 
03.14 
02.76 
02.43 
02.15 
01.90 
01.68 
13.50 

09.23  
16.18  
19.86  
21.06 
 20.50  
18.78  
16.46  
14.02  
11.79  
09.95 
 08.55 
 07.54 
 06.84 
06.33 
 05.94 
 05.61 
 05.29 
 04.97 
 04.64 
 04.28 
 03.92 
 03.55 
 03.19 
 02.84  
02.50  
14.13 

 9.53 
15.93 
19.06 
19.92 
19.41 
18.17 
16.59 
14.90 
13.25 
11.71 
10.30 
 9.04 
 7.92 
 6.94 
 6.08 
 5.33 
 4.68 
 4.12 
 3.63 
 3.20 
 2.83 
 2.50 
 2.22 
 1.97 
 1.75 
17.02 

 9.06 
16.79 
23.62 
22.89 
21.95 
20.67 
17.11 
15.24 
11.04 
  8.78 
  8.04 
  7.21 
  6.38 
  5.82 
  5.24 
  4.73 
  4.27 
  3.96 
  3.69 
  3.46 
  3.27 
  2.98 
  2.88 
  2.67 
  2.16 
14.09 

TOTAL 248 248 248 248 248 248 
Estimates 
 
 
 
χ2                
d. f 

 p=0.854 
576.1n =  

 
 
 
14.92 
17 

α =0.00010775 
β =5978.5288 
n=29337.0839 
 
 
27.79 
17 

λ =0.6226  
α =0.001 
m=0.1601 
 n=0.01897 
 
8.27 
15 
 

n=14.962954   
α=2.492821    
γ=4.852530 
 
10.20108 
16 

n=100.09367    
γ=1.00021 
a=2.24578      
b=2.26398    
 
7.621862 
15 
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The maximum likelihood estimate of the 

parameters of the proposed model have been 
obtained and shown at their respective places in 
the tables. It is mentioned here that due to 
complicated likelihood function, the ML 
estimates are determined by the same method as 
used by Gupta and Ong (2004) i.e. by a direct 
numerical search for global maximum of the 
log-likelihood surface. A random start procedure 
is employed i.e. for a set of random starting 
points this numerical search is repeated for each 
starting point in order to verify that the global 
maximum has been found. 

It is evident from the tables 1 and 2 that 
the chi-square values of the proposed model 
(GNPED), in all the cases, gives the marked fit 
as compared to other distributions. 
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Table 2 Counts of the number of European red mites on apple leaves; data of P.Garman, 1951 

Count Observed 
Frequency 

 
EXPECTED  FREQUENCY 

  NBD Jain and 
Consul(1971) 
GNBD 

Ramesh 
and Ong’s 
(2004) 
GNBD 
 

NPED PROPOSED 
MODEL 
GNPED 

0 
1 
2 
3 
4 
5 
6 
7 
8 

70 
38 
17 
10 
09 
03 
02 
01 
00 

69.49 
37.60 
20.10 
10.70 
05.69 
03.02 
01.60 
00.85 
00.95 

69.49 
37.60 
20.10 
10.70 
05.69 
3.02 
1.60 
0.85 
0.95 

70.24 
37.05 
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06.89 
03.79 
01.79 
00.74 
00.40 

69.19 
38.27 
20.09 
10.49 
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  2.93  
  1.57 
  0.86 
  0.09 

70.92 
 36.87 
 19.41 
 10.34 
  6.57 
  3.04 
  1.67 
 0.93 
  0.25 

TOTAL 150 150 150 
 

150 150 150 

ML 
Estimate 
 
 
 
χ2               
d.f 

 p=0.5281 

n=1.0246  
 
 
2.484 
3 
 

 

0246.1
000.1
52810.0

=
=
=

m
β
α

 

 
2.484 
2 

λ =65.170 
α =1.73908 
m=66.6914 
n=0.001 

 
 
0.93 
1 

n=22.924537   
α =1.167381   
γ=24.297517 
 
1.517443 
2 

n=37.72660      
γ=0.99869 
a=16.91825      
b=16.91825    
 
 
1.257801 
1 

 
Note: The expected frequencies and the estimates for the parameters of the Jain and Consul’s (1971) generalized 

negative binomial distribution are same at 1=β as given by negative binomial distribution shown in column 
third of the table (2). 
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Letters to the Editor 
Lui K. J. (2006). Interval estimation of risk difference in simple compliance randomized trials.  Journal of 

Modern Applied Statistical Methods, 5, 395–407. 
 

Ian R. White 
MRC Biostatistics Unit 

 
 
Professor Lui (2006) reports a careful 
comparison of the properties of six possible 
interval estimators for the causal risk difference 
among treatment-compliers1. He recommends 
for general use the confidence interval based on 
a tanh-1 transformation of the causal risk 
difference, on the grounds that it has at least the 
nominal coverage and it has the smallest mean 
length of all the methods. 

However, the second of these criteria is 
not self-evidently the most relevant, and there 
are other possible criteria which would point to a 
different choice of interval estimator. 
 
1. Some interval estimators with large mean 

length are valuable and in common use. An 
example is the number needed to treat, 
defined as the inverse of the risk difference. 
The appropriate confidence interval for the 
number needed to treat includes the inverse 
of all values in the confidence interval for 
the risk difference: in particular, it includes 
infinity if the confidence interval for the risk 
difference includes zero2. This interval in 
fact has infinite mean length, but it remains 
appropriate and widely used, if sometimes 
misunderstood. 

2. More generally, mean confidence interval 
length is a scale-dependent criterion: when 
the parameter is transformed to a different 
scale, confidence intervals retain their 
coverage properties but not their mean 
length. Thus mean length on different scales 
could have been considered. 

3. Rather than require coverage to be at least 
the nominal coverage, one could require 
coverage that is close to the nominal 
coverage. Professor Lui’s recommended 
method has over 98% coverage for nominal 
95% confidence intervals in many of the 
simulation settings. 

 

 
4. A further criterion in the treatment-

compliance setting is that one could require 
confidence intervals to agree with the 
intention-to-treat P-value, by excluding zero 
if and only if the intention-to-treat test is 
significant. This is an appropriate 
requirement because the null hypotheses for 
the intention-to-treat and compliance-
adjusted analyses are the same and there is 
no gain in power from allowing for non-
compliance in this setting3. Confusion in 
interpretation could easily arise if 
adjustment for non-compliance in a 
particular data set appeared to change a non-
significant result into a significant one or 
vice versa.  

 
The Fieller’s theorem confidence interval has 
properties 3 and 4 above4. By its derivation, it 
agrees exactly with the intention-to-treat P-value 
computed from an asymptotic test (use of an 
exact intention-to-treat test would make the 
equivalence only approximate). Its coverage is 
therefore close to the nominal, as shown in 
Professor Lui’s simulation study. I therefore 
believe that the Fieller’s theorem confidence 
interval should also be considered for use in 
practice, especially when testing the null 
hypothesis of no intervention effect is important. 
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Kung-Jong Lui  
San Diego State University 

 
 
When evaluating the performance of an interval 
estimator, we generally use the coverage 
probability to measure the accuracy and the 
average length to measure the precision (Casella 
& Berger, 1990).  An ideal interval estimator is 
the one which can consistently cover the 
underlying true parameter for all parameter 
values, while its average length is minimal so 
that one can almost pinpoint the underlying true 
parameter.  In practice, however, such an ideal 
interval estimator does not exist.  Note that an 
interval estimator, which has a high coverage 
probability but has a quite wide length, is of 
little practical value.  For example, the interval 
estimate (0, ∞ ) has the coverage probability of 
100% covering a positive parameter, but is 
useless due to its length is too wide to be 
informative.  Following the same arguments, we 
can easily see that the interval estimate [-1, 1] 
that also has the coverage probability of 100% 
for the difference between two proportions is 
also completely useless.  Thus, the information 
on the coverage probability of an interval 
estimator alone is not sufficient to determine 
whether it can perform well or not.  Given two 
interval estimators with the same coverage 
probability, the interval estimator with a shorter 
average length is obviously preferable to the 
other with a longer average length.  This is 
because the former can allow us to draw a more 
precise inference.  On the other hand, an interval 
estimator which has a short average length but 
has a low coverage probability is also of no 
practical value.  These lead us to consider 
finding an interval estimator which has the 
shortest average length among all interval 
estimators with the coverage probability 
consistently larger than or equal to the desired 
confidence level.    

Note that obtaining an interval estimate 
with an infinite length only suggests that the 
employed interval estimator based on the given 
data cannot provide us with an  

 

 
accurate estimate of the underlying parameter.  
This certainly does not imply that the interval 
estimator with an infinite length is valuable and 
useful.  In fact, there are many problems and 
concerns by simply inverting the interval 
estimate for the risk difference to obtain an 
interval estimate for the number needed to treat 
(NNT).  A systematic list of these concerns and 
references as well as a simple logic solution to 
alleviate these concerns can be found elsewhere 
(Lui, 2004).   

It is incorrect and misleading to state 
that “When the parameter is transformed to a 
different scale, confidence interval retains their 
coverage properties, but not their mean length.  
Thus, mean length on different scales could have 
been considered”.  First, this statement about the 
confidence interval is generally not true unless 
the transformation is, for example, continuous 
and monotonic. The mean interval length, just 
like the standard error, has a unit scale.  This 
certainly does not deter its use once when the 
parameter of primary interest is selected.  The 
average length for all interval estimators will 
have the same unit scale as that for the 
parameter of interest.  Thus, there will be no 
concern that we may compare the average length 
of different interval estimators at different unit 
scales.  Note also that the relative precision is 
not invariant with respect to the reciprocal 
transformation and hence a relatively more 
precise interval estimate for the risk difference 
does not necessarily lead to produce a relatively 
more precise interval estimate for the NNT.   

Because the sampling distribution of a 
statistic on which we are based to derive an 
interval estimator is not necessarily symmetric, 
we can obtain an interval estimator with the 
coverage probability larger than the other one, 
but the former also has the average length less 
than the latter.  For example, as shown 
elsewhere (Lui, 2006), we can easily find the 
situations in which interval estimator (4) 
using tanh ( )−1 x  transformation has the largest 
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coverage probability and the shortest average 
length among interval estimators considered in 
the paper.  It is senseless to put a penalty on an 
interval estimator when its coverage probability 
can be even higher than the desired confidence 
level without sacrificing its precision.  Based on 
the coverage probability exclusively, we 
indiscriminately select which interval estimator 
is the best can be subject to the above concern.   

It is certainly desirable that test results 
between using hypothesis testing and various 
interval estimators can always be consistent with 
each other.  If readers wish to have this property, 
test-based confidence intervals will be the 
choice.   However, for given an adequately large 
sample size, the chance to obtain an inconsistent 
conclusion between hypothesis testing (in which 
we    generally   account  for the   null conditions  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

when calculating the estimated variance of the 
test statistic) and interval estimators (in which 
we calculate the estimated variance of statistic 
without having the null conditions) should be 
generally small.  
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