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Longitudinal Evaluation of Estimates in an Establishment Survey 
After Ration Imputation 

 
Adriana Pérez 

University of Louisville 
 
 
Researchers evaluated a ratio imputation technique used at the US Survey of Graduate Students and 
Postdoctorates in Science and Engineering, which is an annually conducted cross-sectional establishment 
survey. Standardized bias was used, mean square error and relative bias to appraise this imputation 
method on point and variance estimates via simulations. 
 
Key words: Total estimate, variance estimation, establishment data, nonresponse, simulations.  
 
 

Introduction 
 
Nonresponse in establishment surveys is an 
ongoing problem (Kovar & Whitridge, 1995). 
The problem of nonresponse affects estimates of 
survey statistics (Little & Rubin DB, 2002; 
Rubin, 1987; Kovar, et al., 1995; Ruggles & 
Joint Economic Committee, 2006; Groves, 
Dillman, Eltinge, & Little, 2002; Groves, et al., 
2004). Many imputation methods used in social, 
demographic and health science settings have 
been applied within the economic survey 
framework and  very little information is known 
about the effect of item nonresponse in 
establishment surveys (Kovar, et al., 1995; 
Judkins , 2000; West, Butani, & Witt, 1993). 
There has been a focus on procedures for 
reducing measurement error, improving 
sampling        strategies       (Lee & Croal, 1989),  
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improving estimators (Sirken & Shimizu, 1999), 
improving response rates (Chun, 1997), response 
selection, survey coordination, longitudinal 
analysis(Ruggles, et al., 2006), (Schenker, 
Treiman, & Weidman, 1988; Heeringa & 
Lepkowski, 1986), or empirical evaluation of 
imputation methods (West, et al., 1993; 
Krenzke, Montaquila, & Mohadjer, 2000; 
Mueller & Butani, 1995) in establishment 
surveys. 

Many imputation methods are available 
in the literature. Usually, once a dataset has been 
imputed, analyses are performed treating the 
imputed values as observed data. This type of 
analysis could be misleading because variances 
and covariances may be underestimated (Kovar, 
et al., 1995). In this article, the effectiveness of a 
particular ratio imputation method when applied 
to an item-nonresponse from an establishment 
survey including a longitudinal perspective on 
point and variance estimates is evaluated. 

There are a variety of techniques for 
variance estimation for complex surveys 
(Wolter, 1985) and few of them incorporate the 
effect of imputation in their estimation (Shao & 
Sitter, 1996; Shao & Steel, 1999; Shao, 2002). 
Most of the time imputation methods in a survey 
are implemented without theoretical 
development of the methods (Shao, 2002). 
Simulation studies make it possible to evaluate 
and compare estimation techniques in national 
surveys in any country (U.S.Department of 
Education.National Center for Education 
Statistics., 2001). Pseudo-universes from survey 
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data can be used instead of national universes 
(i.e., census data) which are not usually 
available for simulation studies. Pseudo 
universes permit a comparison of techniques and 
sample according to a plan of interest, 
maintaining the distributions of the variables of 
interest. Simulations from a pseudo universe can 
provide estimates of interest and give detailed 
insight of the estimator performance.  

It is the researcher’s interest to study the 
effect on the point and variance estimates of the 
current imputation plan conducted in the 
Graduate Students and Postdoctorates in Science 
and Engineering (GSS)(NSF-NIH, 2005). One 
of the challenging aspects of any simulation is 
the creation of an artificial population similar to 
the one investigated. There are two approaches 
to create a finite population universe(Katzoff, 
Jones, & Curtin, 1988; Bernaards, Belin, & 
Schafer, 2006; Schafer, et al., 1996). One is to 
create pseudo-random values from an actual 
multivariate probability model, also known as a 
hypothetical population. The second is to use an 
actual large data set to reflect the target 
population and to define population parameters 
of interest, also known as a pseudo-universe. 
Use of a specific probability model is a 
limitation in the creation of a hypothetical 
population(Schafer, et al., 1996). Therefore, a 
pseudo universe was created to impose realistic 
missing data patterns.  

The following describes the generation 
of the pseudo universe and simulations which 
allow: (i) appraise the longitudinal missing data 
patterns in GSS between 1999-2001; (ii) 
evaluate the effect of current imputation 
methods in this survey on estimates for different 
missing data mechanism assumptions in GSS; 
(iii) assess precision and accuracy measures in 
the total, and corresponding variance estimates 
in GSS. In following sections, the GSS survey 
will be described, the current imputation 
method, the  methodology to evaluate the effect 
of the current imputation method and the results 
and conclusions, respectively. 
 
The Survey of Graduate Students and 
Postdoctorates in Science and Engineering 
(GSS)  

One of the current surveys conducted at 
the Division of Science Resources Statistics 

(SRS) of the National Science Foundation (NSF) 
is the NSF-NIH (National Institutes of Health) 
survey of Graduate Students and Postdoctorates 
in Science and Engineering (GSS) (NSF-NIH, 
2005). This survey (i) measures academic 
department level information on all U.S. 
institutions offering graduate programs (masters 
or PhD degrees) in science, engineering, or 
health selected field; (ii) provides a description 
of graduate science and engineering (S&E) 
student’s enrollment in US institutions; and (iii) 
assesses trends in financial support patterns and 
shifts in graduate enrollment and postdoctoral 
appointments. 

This cross-sectional establishment 
survey is conducted annually (NSF-NIH, 2005). 
Reports from this survey are presented in current 
year and historical data, setting up a longitudinal 
structure (National Science Foundation & 
Division of Science Resources Statistics (SRS), 
2005). Total estimates for domains and sub-
domains are reported (National Science 
Foundation & Division of Science Resources 
Statistics, 2006). Each year, a ratio imputation 
technique is used to handle item nonresponse 
based on inflator/deflator factors (NSF-NIH, 
2005). For a particular year, these 
inflator/deflator factors are computed from the 
current year observed data in combination with 
previous year observed and imputed data 
(Morgan M & ORC Macro, 2004). Replacing 
missing data in the current year with previous 
year data is an imputation method known in 
longitudinal human population studies as the last 
observation carry-forward (LOCF). This 
imputation method is modified in the GSS by 
the use of inflator/deflator factors as adjustments 
when replacing current cycle missing data with 
adjusted previous cycle data.  

Simulations conducted with LOCF, in 
longitudinal human population studies, indicates 
that LOCF produces biased estimates for all 
three types of missing data mechanisms 
(Missing completely at random (MCAR), 
Missing at random (MAR) or Missing not at 
random (MNAR)) and LOCF produces the 
smallest standard errors that are biased 
downward (Gadbury, Coffey, & Allison, 2005). 
For these reasons, evaluation of the current GSS 
imputation plan is needed. 
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Imputation at the Graduate Student Survey 
 The department within an academic 

institution is the unit of interest of this survey 
for imputation purposes. This imputation 
methodology is presented for four variables used 
in this research only, but can be generalizable to 
the rest of the variables within this survey.  
 
Creation of inflator/deflator factors 

Departments that provided full or partial 
information about total full-time students, total 
part-time students, total postdoctorates and total 
other non-faculty research staff are used for 
creation of these factors. Specifically, in this 
study, total full-time students and total part-time 
students were used. Inflator/deflator factors are 
computed by highest institutional degree level 
(doctorate and master’s) and by department type 
(e.g. Biology, Physics, etc.). For a particular 
variable of interest ( kY ), its sum is computed by 
institutional highest degree level and department 
type. Then factors are computed by dividing the 
sum of the variable from the current (t) year by 
the corresponding sum of the variable from the 
previous year (t-1). These inflator/deflator 
factors (

tkψ̂ ) in mathematical terms are 
calculated for the kth variable and year t.  
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r  identifies the maximum number of 
departments in the same institutional degree 
level and departmental type that provided a 
variable value kY  in both years t  and 1−t . Any 
computed factor less than 0.85 or greater than 
1.15 is set to 1 for imputation purposes. In 
mathematical terms:  
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Using inflator/deflator factors to impute total 
full- time students all sources of funding and 
total part-time students of all races 

Departments with missing information 
in total full- time students and/or total part-time 
students are imputed using equation 3. The 

imputation value for a particular variable in the 
current year is obtained by applying 

tkφ̂ to 
previous year information for that variable. This 
is done at each department institutional level 
(i.e., MS or PhD) and department type (i.e., 
Biology, Physics, etc).  

 

)1(
*ˆˆ
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ttt ikkikI YY φ   (3) 

 
i  identifies a particular department, k identifies 
the variable, t  identifies the year, 

tkφ̂ identifies 

the inflator/deflator factors, 
)1( −tikY  is the k th 

variable value for department i , in year 1−t ; 
and )(

ˆ
tikIY  is the imputed value of the k th 

variable for department i at year t .  
Subsequently, imputed values for total 

full-time students (from equation 3) are used to 
impute variables regarding full-time students by:  
source and mechanism of support. Similarly, 
imputed values for total part-time students (from 
Equation 3) are used to impute variables 
regarding number of part-time students by sex 
and their distribution by US nationals/permanent 
residents or foreign students. 
Using inflator/deflator factors to impute total 
part-time students 

The imputed value for the total of 
female part-time students is computed using the 
same percentage as reported in the previous year 
on the imputed value from the total part-time 
students in the current year. Equation 4 shows 
this in mathematical terms.  

 
      ( )

)1()1(
ˆˆ

)( −−
=

tttt iijiijI YYYY                (4) 

 
Where i  identifies a particular department, t  
identifies the year, j  identifies women, 

tiŶ  
represents the observed or imputed value of the 
total part-time students enrolled for a particular 
department i  at year t , 

)1( −tijY represents the 

observed value of the total part-time women 
students for year 1−t  at particular department 
i , 

)1( −tiY  represents the observed value of the 

total part-time students for year 1−t  at a 
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particular department i , and )(
ˆ

ijtIY  represents 
the imputed value of the total part-time women 
at  year t  at particular department i . 

The imputed value for the total of male 
part-time students is calculated as the difference 
between the total part-time students in the 
current year (observed or imputed) and the 
observed or imputed value for the total of female 
part-time students. 

 
Methodology 

 
The purpose is to evaluate the longitudinal effect 
of imputation on estimates in the GSS, data from 
the years 1998-2002 (the most recent data 
through 2005). The GSS survey in 1998 
contained 639 variables and 11686 departments 
and in 2002 contained 639 variables and 12126 
departments. Overall, 15379 departments 
reported any information on the GSS data from 
the years 1998--2002. The first four variables 
imputed in this survey were selected for analysis 
in this research: total full-time graduate students 
all sources of support, total part-time students of 
all races, total part-time male students of all 
races and total part-time female students of all 
races. To evaluate the effect of the imputation 
method within this survey a simulation study 
with a pseudo universe from this survey was 
conducted. 
  
Generation of the pseudo universe 1998-2002 

A dataset called “Observed 1998-2002” 
which mainly excluded departments with unit 
nonresponse between years 1998-2002 was 
created. If a department reported any missing 
value for any of the variables of interest in year 
1998 and 2002 they were excluded. This is 
because stable departments were to be used, to 
exclude new programs (i.e., if a department 
created a new master or doctoral program in 
2002 then previous years would not have 
reported any information and missing values 
would appear in the longitudinal structure), and 
to exclude non current programs. If departments 
provided information in years 1998 and 2002 
this indicated continuity of the master’s or PhD 
degree program at that institution. In summary, 
one department was excluded because it did not 
report the type of academic institution (neither 

school under which this department was 
associated, nor public or private nor which 
institutional highest degree is granted). 
Departments with unit nonresponse were 
excluded for each year as follows: 3693 within 
1998, 936 within 1999, 514 within 2000, 755 
within 2001 respectively and 610 within 2002. It 
was assumed that these departments with unit 
nonresponse were not stable. Furthermore, the 
study excluded 328 departments without 
students enrolled either full-time or part-time in 
1998 in any of the four variables of interest, 
which indicated historically unstable enrollment 
in that program. This dataset Observed 1998-
2002 contained 8542 out of 15379 departments 
with item nonresponse between the years 1999 
and 2001. Using this dataset the researchers 
generated the longitudinal distributional patterns 
of missing data in years 1999-2001.   

After this, the researchers generated a 
pseudo universe from this survey by removing 
any department with missing data in our 
variables of interest from years 1999-2001. 
Researchers excluded 685 departments because 
they did not report full time students for at least 
one of these years. Forty-five departments that 
did not report part-time students for at least one 
of these years were deleted. Furthermore, 127 
departments that did not report part time male 
students for at least one of these years were 
excluded. 

This complete dataset was called and 
used as Pseudo Universe 1998-2002 and 
contains 7685 departments with complete 
information on all these variables. This pseudo 
universe was used to develop and evaluate the 
imputation methods used in GSS for the variable 
totals and their corresponding variability 
measures. Total estimates coming from this 
pseudo-universe were treated as parameter 
values from this pseudo universe. This is notated  

tkθ as the total estimate of the k th-variable of 
interest for years 1999 to 2001. These parameter 
values were used for comparison purposes in 
evaluation the GSS imputation methods.   
 
Simulation of mechanisms of missingness 

Two missingness mechanisms to 
evaluate the   imputation methods   at GSS  were  
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explored. The first approach was to create an 
MCAR mechanism. 

Actual percentages of missing values 
were imposed within “Pseudo Universe 1998-
2002” on within Pseudo Universe 1998-2002 on 
each tkY independently of any variable in the 
system. Table 1 illustrates the “Actual” 
percentage of missing data observed in years 
1999—2001 for the four variables of interest in 
this survey and these percentages were used for 
creating the MCAR mechanism for evaluation 
purposes. Our “MCAR dataset” contains these 
“Actual” percentages imposed randomly as 
missing. As you may notice these percentages 
are not high and it will be desired to evaluate the 
imputation method with this low percentages of 
missingness.  

It was assumed that the occurrence of 
missing values at the GSS survey is MAR. 
Under this assumption, the second approach was 
to impose the Actual percentages of missing 
values with the same longitudinal distributional 
patterns of missing data in years 1999-2001 
from Observed 1998-2002 within Pseudo 
Universe 1998-2002. Table 2 shows the 
observed longitudinal patterns of missing values 
for these variables, where 0 represents data was 
missing and 1 represents data was observed. 

For the purposes of understanding the 
effect of the imputation method with increased 
percentages of missing values, in simulations, 
the researchers increased these observed 
longitudinal distributional patterns of missing 
values from the Observed 1998-2002 in 25%, 
50%, 75% and 100% (data not shown) within 
Pseudo Universe 1998-2002.  
 

 
Parameter estimation 

These datasets, with imposed missing 
values, can be used to examine many quantities 
of interest. The total and its corresponding 
variance estimate were examined for each year. 
Many other parameters were included in 
simulations but are not reported for brevity and 
the research primarily presents the results under 
the MAR mechanism. Each one of these 
missingness mechanisms were replicated one 
thousand times.   

 
Applying the Imputation Method 

Inflator/deflator factors for year 1999 
were computed using the observed data from the 
1998 Pseudo Universe 1998-2002. The ratio 
imputation methods described in equations 3 and 
4 were applied for missing values in year 1999. 
Then, an imputed and complete 1999 dataset 
was reached. Similarly, the researchers 
continued to generate the inflator/deflator factors 
and to impute missing values in years 2000 and 
2001. This procedure produced an Observed and 
imputed longitudinal 1999-2001 dataset. Cross-
sectional 1999-2001 total estimates and their 
corresponding variances were computed. 
Estimates after imputation are notated as 

tkAIθ̂   

for each k th variable on years 1999--2001. 
 
Evaluation criteria 

The performance of the GSS imputation 
method by the following quantities in years 
1999-2001 were evaluated. First, the bias of the 
total and the variance estimates after imputation 
of the simulations are described in Equations 5 
and 6, respectively. 

 
 

Table 1: Actual percentages of missing values in dataset “Observed 1998-2002” 

Year N 

Full time 
students all 
sources of 

support 

Part Time 
students of all 

races 

Part time male 
students of all races 

Part time female 
students of all 

races 

 
1999 11832 1.49 1.58 3.26 3.25 

2000 11899 1.58 1.60 1.99 1.99 
2001 11968 3.53 3.77 4.12 4.12 
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Table 2. Percentages missing values for each pattern in dataset “Observed 1998-2002”. 

Full time 
students all 
sources of 

support 

Part Time 
students of all 

races 

Part time male 
students of all 

races 

Part time female 
students of all 

races 

Pa
tte

rn
 

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

19
99

 

20
00

 

20
01

 

% 
 

1 0 0 0 0 0 0 0 0 0 0 0 0 0.05 
2 0 0 1 0 0 1 0 0 1 0 0 1 0.08 
3 0 1 0 0 1 0 0 1 0 0 1 0 0.01 
4 0 1 1 0 0 1 0 0 1 0 0 1 0.01 
5 0 1 1 0 1 1 0 0 1 0 0 1 0.01 
6 0 1 1 0 1 1 0 1 1 0 1 1 0.89 
7 0 1 1 0 1 1 0 1 1 1 1 1 0.01 
8 0 1 1 1 1 1 1 1 1 1 1 1 0.06 
9 1 0 0 1 0 0 1 0 0 1 0 0 0.52 

10 1 0 0 1 0 1 1 0 1 1 0 1 0.01 
11 1 0 1 1 0 0 1 0 0 1 0 0 0.01 
12 1 0 1 1 0 1 1 0 1 1 0 1 0.89 
13 1 0 1 1 1 1 1 1 1 1 1 1 0.01 
14 1 1 0 1 1 0 0 1 0 0 1 0 0.02 
15 1 1 0 1 0 0 1 0 0 1 0 0 0.01 
16 1 1 0 1 1 0 1 0 0 1 0 0 0.04 
17 1 1 0 1 1 0 1 1 0 1 1 0 2.60 
18 1 1 0 1 1 1 1 1 1 1 1 1 0.01 
19 1 1 1 0 1 1 0 1 1 0 1 1 0.12 
20 1 1 1 1 1 1 0 0 0 0 0 0 0.12 
21 1 1 1 1 1 1 0 0 1 0 0 1 0.05 
22 1 1 1 1 1 1 0 1 0 0 1 0 0.01 
23 1 1 1 1 1 1 0 1 1 0 1 1 0.74 
24 1 1 1 1 1 1 1 0 0 1 0 0 0.01 
25 1 1 1 1 1 1 1 0 1 1 0 1 0.21 
26 1 1 1 1 1 0 1 1 0 1 1 0 0.07 
27 1 1 1 1 1 1 1 1 0 1 1 0 0.18 
28 1 1 1 1 1 1 1 1 1 1 1 1 93.26 
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tktkt AIk E σθ −=  
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where 2

tk
σ  identifies the population variance 

among the data [ )(Var
tkY ] within the “Pseudo 

Universe 1998-2002” and not the variance of the 
mean estimates. )ˆ(Var

tkAIθ  identifies the 

estimated variance after imputation. Second, 
given that the raw bias can be misleading the 
standardized bias of the total estimate using 
equation 7 was computed. A standardized bias 
of less of 50% in both directions should be 
considered practically insignificant. Third, the 
mean square error (MSE) for the total and the 
variance estimates are described in equations 8 
and 9.  
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Fourth, the average relative bias of the 

total and the variance estimates are described in 
equations 10 and 11. These average relative 
biases measure the average magnitude of over or 
under estimation of the imputation method 
compared with the true value. Finally, the 
average relative stability of the variance is 
described in equation 12.  
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Results 
 
Table 3 presents the results of the 1000 
simulations under MCAR mechanism. The 
current imputation method underestimates total 
full-time students and total part-time female 
students and overestimates part-time students 
and part-time male students under this 
mechanism. The underestimation or 
overestimation of these variables increased 
yearly from 1999 to 2001. The standardized 
biases were larger than 50% for many of the 
variables of interest.  

Results of simulations under the MAR 
mechanism are presented in Tables 4-7. Table 4 
shows the results from the evaluation criteria for 
the imputation method on full-time students all 
sources of funding.  The relative bias of the total 
estimate of full-time students indicates a 10% 
underestimation for years 2000 and 2001 with 
the current amount of missing values. If the 
amount of missing values increases then this 
underestimation increased up to 20% for year 
2001. It is interesting to note that this imputation 
method would overestimate the total estimate of 
full-time students by 40% if the current patterns 
of missing values were increased by 100% for 
the year 2000.  

Results from the relative bias of the 
variance of the total estimate of full-time 
students across the years indicates 
overestimation between 10% and 30% for year 
1999 for increasing percentages of missing 
values. This overestimation is also observed for 
year 2001 with a range of 20% to 70%.  
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Table 3. Results from 1000 replicates under MCAR 

Year 1999 2000 2001 
Bias of the total 
Full time students all sources of support -878 -665 -3,629 
Part Time students of all races 1,177 2,115 2,347 
Part time male students of all races 617 1,439 2,192 
Part time female students of all races -276 -478 -1,250 
Bias of the variance    
Full time students all sources of support -6 -1 -78 
Part Time students of all races 6 5 4 
Part time male students of all races 1 4 8 
Part time female students of all races 2 1 16 
MSE of the total       
Full time students all sources of support 818 1,372 9,166 
Part Time students of all races 98 267 329 
Part time male students of all races 3 34 2332 
Part time female students of all races 7 22 13,175 
MSE of the variance 
Full time students all sources of support 1.11E+06 1.11E+06 1.45E+07 
Part Time students of all races 1.47E+06 4.68E+06 5.78E+06 
Part time male students of all races 3.94E+05 2.12E+06 4.90E+06 
Part time female students of all races 9.09E+04 2.67E+05 1.72E+06 
Standardized Bias of the variance 
Full time students all sources of support -149.8 -81.5 -313.9 
Part Time students of all races 415.5 460.8 454.0 
Part time male students of all races 526.5 653.4 734.2 
Part time female students of all races -227.5 -244.2 -313.9 
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Table 4. Results from 1000 replicates under MAR for full time students 
 

Year Actual% 25% 50% 75% 
Bias of the total 

1999 -10812 -15523 -15156 -19867 
2000 -12994 -22657 -13833 -19737 
2001 -29314 -46229 -43331 -28207 

Bias of the variance 
1999 9.2E+09 2.1E+10 1.2E+10 3.0E+10 
2000 -2.1E+10 -3.1E+10 -2.4E+10 -2.8E+10 
2001 5.4E+10 2.7E+10 7.2E+10 1.0E+11 

Standardized bias 
1999 -11.9 -15.3 -14.1 -16.6 
2000 -10.8 -16.5 -9.1 -12.3 
2001 -15.3 -21.1 -18.9 -11.3 

MSE of the total 
1999 8.4E+06 1.0E+07 1.2E+07 1.5E+07 
2000 1.5E+07 1.9E+07 2.3E+07 2.6E+07 
2001 3.8E+07 5.0E+07 5.4E+07 6.3E+07 

MSE of the variance 
1999 5.3E+19 8.4E+19 7.6E+19 1.1E+20 
2000 8.8E+19 1.2E+20 1.4E+20 1.5E+20 
2001 4.6E+20 5.6E+20 6.2E+20 7.6E+20 

Relative Bias of the total 
1999 0.0 -0.1 -0.1 -0.1 
2000 -0.1 -0.1 -0.1 -0.1 
2001 -0.1 -0.2 -0.2 -0.1 

Relative Bias of the Variance 
1999 0.1 0.2 0.1 0.2 
2000 -0.2 -0.2 -0.2 -0.2 
2001 0.3 0.2 0.5 0.7 

Relative Stability of the variance 
1999 1.0 0.6 0.7 0.5 
2000 0.6 0.5 0.4 0.4 
2001 0.1 0.1 0.1 0.1 
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Results from the relative bias of the 
variance in year 2000 indicate that this 
imputation method underestimates the variance 
of the total estimate of full-time students from 
20% to 40% depending on the amount of 
missingness. The MSE of the total and the 
variance of full-time students using the current 
imputation method at GSS is large.  The MSE of 
the variance increases for each year of increase 
and as expected if the percentage of missing 
values increases then the MSE of the variance 
will increase. The average relative stability of  

 
 
the variance of the total estimate of full-time 
students decreases noticeably for each one year 
increase. This behavior is consistently observed 
across increasing percentages of missing values.  

Table 5 shows the results from the 
evaluation criteria for the imputation method on  
part-time students of all races. The relative bias 
of the total estimate of part-time students 
indicates a 20% overestimation for year 2000 
and a 10% underestimation for year 2001 with 
the current amount of missing values. If the 
amount of missing   values   increases  then   this  

 
Table 5. Results from 1000 replicates under MAR for part time students 

 
Year Actual% 25% 50% 75% 

Bias of the total 
1999 877 2366 4199 5853 
2000 17076 26118 26247 37098 
2001 -9815 -20641 -17052 -27822 

Bias of the variance 
1999 -7.1E+09 -4.7E+09 -4.8E+09 3.2E+09 
2000 -2.7E+10 -2.2E+10 -2.6E+10 -1.7E+10 
2001 -1.9E+10 -3.0E+10 -1.4E+10 -1.9E+10 

Standardized bias 
1999 1.3 3.0 4.8 6.2 
2000 16.5 23.7 20.9 28.0 
2001 -5.8 -11.2 -8.3 -12.8 

MSE of the total 
1999 4.5E+06 6.3E+06 7.7E+06 9.0E+06 
2000 1.1E+07 1.3E+07 1.6E+07 1.9E+07 
2001 2.8E+07 3.4E+07 4.3E+07 4.8E+07 

MSE of the variance 
1999 1.6E+19 2.0E+19 2.2E+19 3.0E+19 
2000 5.9E+19 6.4E+19 8.4E+19 7.3E+19 
2001 1.8E+20 2.3E+20 2.9E+20 3.2E+20 

Relative Bias of the total 
1999 0.0 0.0 0.0 0.1 
2000 0.2 0.3 0.3 0.4 
2001 -0.1 -0.2 -0.2 -0.3 

Relative Bias of the Variance 
1999 0.1 0.2 0.1 0.2 
2000 -0.2 -0.2 -0.2 -0.2 
2001 0.3 0.2 0.5 0.5 

Relative Stability of the variance 
1999 1.0 0.8 0.7 0.5 
2000 0.3 0.3 0.2 0.2 
2001 0.1 0.1 0.1 0.1 
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overestimation increases up to 40% for year 
2000 and the underestimation will decrease by at  
least 20% for year 2001. Results from the 
relative bias of the variance of the total estimate 
of part-time students across years indicates 
increased underestimation for increased year and 
this behavior seems to follow a U shape for 
increasing percentages of missing values. 
Findings about the MSE for the total and 
variance of full-time students are similar than for  
 

 
 
 
 
part-time students as well as regarding the 
average relative stability of the variance.   

Table 6 shows the results from the 
evaluation criteria for the imputation method on 
part-time male students of all races. The relative 
bias of the total estimate of part-time male 
students with the current amount of missing 
values indicates 80%, 110% and 90% 
overestimation for years 1999, 2000 and 2001, 
respectively.  

Table 6. Results from 1000 replicates under MAR for part time male students 
 

Year Actual% 25% 50% 75% 
Bias of the total 

1999 40137 51315 61580 75489 
2000 53259 66665 77239 92581 
2001 40137 51358 66098 76572 

Bias of the variance 
1999 9.1E+09 1.2E+10 1.4E+10 2.3E+10 
2000 9.1E+09 1.4E+10 1.9E+10 2.8E+10 
2001 8.5E+09 8.2E+09 2.0E+10 2.6E+10 

Standardized bias 
1999 85.5 94.0 102.6 113.4 
2000 75.8 91.0 92.6 107.8 
2001 40.0 42.8 49.0 52.4 

MSE of the total 
1999 3.8E+06 5.6E+06 7.4E+06 1.0E+07 
2000 7.8E+06 9.8E+06 1.3E+07 1.6E+07 
2001 1.4E+07 1.7E+07 2.3E+07 2.7E+07 

MSE of the variance 
1999 3.5E+18 5.1E+18 5.6E+18 7.8E+18 
2000 1.8E+19 1.7E+19 2.4E+19 2.0E+19 
2001 4.1E+19 5.5E+19 6.6E+19 7.7E+19 

Relative Bias of the total 
1999 0.8 1.0 1.3 1.5 
2000 1.1 1.4 1.6 2.0 
2001 0.9 1.1 1.4 1.6 

Relative Bias of the Variance 
1999 0.5 0.7 0.9 1.4 
2000 0.6 0.9 1.1 1.7 
2001 0.5 0.5 1.2 1.6 

Relative Stability of the variance 
1999 1.0 0.7 0.6 0.5 
2000 0.2 0.2 0.1 0.2 
2001 0.1 0.1 0.1 0.0 
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As expected if the amount of missing values 
increases then this overestimation increases. 
Results from the relative bias of the variance of 
the total estimate of part-time male students 
across years indicates overestimation above 50% 
and increases for increasing percentages of 
missing values. Findings about the MSE for the 
total and variance of full-time students are equal 
for part-time male students and the average time 
 

 
 
male students as well as regarding the average 
relative stability of the variance.   
 Table 7 shows the results from the 
evaluation criteria for the imputation method on 
part-time female students of all races. The 
relative bias of the total estimate of part-time 
female students, with the current missing values, 
indicates a 90%, 80% and 1813% 
underestimation for 1999, 2000, and 2001.  
 

 
Table 7. Results from 1000 replicates under MAR for part time female students 

 
Year Actual% 25% 50% 75% 

Bias of the total 
1999 -39260 -48949 -57381 -69636 
2000 -36183 -40547 -50992 -55483 
2001 -829684 -847999 -859150 -880394 

Bias of the variance 
1999 -4.8E+09 -4.8E+09 -3.9E+09 -4.9E+09 
2000 -1.8E+10 -1.9E+10 -2.5E+10 -2.3E+10 
2001 -2.3E+10 -2.9E+10 -3.3E+10 -4.3E+10 

Standardized bias 
1999 -87.2 -94.6 -105.9 -114.1 
2000 -61.6 -62.5 -70.1 -71.0 
2001 -924.3 -842.8 -768.8 -744.2 

MSE of the total 
1999 3.6E+06 5.1E+06 6.2E+06 8.6E+06 
2000 4.8E+06 5.9E+06 7.9E+06 9.2E+06 
2001 7.0E+08 7.3E+08 7.5E+08 7.9E+08 

MSE of the variance 
1999 2.9E+18 3.2E+18 3.6E+18 4.7E+18 
2000 4.1E+18 5.3E+18 7.5E+18 8.8E+18 
2001 1.1E+19 1.4E+19 1.9E+19 2.1E+19 

Relative Bias of the total 
1999 -0.9 -1.1 -1.2 -1.5 
2000 -0.8 -0.9 -1.1 -1.2 
2001 -18.1 -18.5 -18.8 -19.2 

Relative Bias of the Variance 
1999 -0.3 -0.3 -0.2 -0.3 
2000 -1.1 -1.1 -1.5 -1.4 
2001 -1.3 -1.7 -1.9 -2.5 

Relative Stability of the variance 
1999 1.0 0.9 0.8 0.6 
2000 0.7 0.6 0.4 0.3 
2001 0.3 0.2 0.2 0.1 
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If the amount of missing values 
increases then this underestimation increases as 
well. Results from the relative bias of the 
variance of the total estimate of part-time female 
students across years indicates underestimation 
between 20% and 30% for year 1999 for 
increasing percentages of missing values. This 
underestimation is also observed for years 2001 
and 2002 with a range from 110% to 270%. 
Findings about the MSE for the total and 
variance of full-time students are equal for part-
time female students as well as regarding the 
average relative stability of the variance. 

 
Conclusion 

 
Overall, the bias and the MSE of the total and 
the variance estimates are not acceptable under 
the MCAR mechanism. Our findings under 
MCAR in this establishment survey are 
consistent with the literature in human 
populations where you will expect a higher 
underestimation or overestimation for increasing 
percentage of missing values in a variable 
including the increase as a year passes by.  

Overall, the bias of the total estimates 
for full-time students and part-time students are 
acceptable under the MAR mechanism. This is 
because although the estimates across years and 
for different percentages of increase of current 
missing values are biased, the standardized 
biases are less than -50% which means that this 
bias is practically insignificant. On the contrary, 
the bias of the total estimates for part-time male 
and female students are not acceptable under the 
MAR mechanism using similar criteria of the 
standardized bias which surpass 50% in either 
direction for any percentage increase of missing 
values.  

The results of overestimation for 1999 
and 2001 using the relative bias of the variance 
of the total estimate of full-time students and its 
underestimation in 2000 with this imputation 
method are in agreement with previous 
descriptions of variance estimate behaviors after 
imputation in human population surveys, where 
imputation methods underestimate or 
overestimate depending on the variability of the 
variable. Most of the time it is expected to 
provide an underestimation of this variance 

estimate and this is shown in many of the 
variables chosen for this research.  

The MSE incorporates two components, 
one measuring the variability of the estimator 
(precision) and the other measuring its bias  
(accuracy). Overall, the estimators generated 
with the current imputation method in GSS do 
not have good MSE properties because they do 
not have small combined variance and bias.  

The findings regarding the variance 
estimates using the current imputation methods 
in this establishment survey for the variables  
chosen are in agreement with findings with 
many imputation methods for human population 
surveys where priority and challenges need to be 
overcome for improving variance estimates in 
surveys. The noticeable decrease in the average 
relative stability of the variance of the total 
estimates of the variables of interest warrants 
consideration.  

There were many limitations to this 
study. The chosen pseudo universe represents a 
best case scenario where departments are fully 
compliant and provided full information. 
Furthermore, sampling did not come from this 
finite population to test the imputation method in 
full when a sample is selected instead of using 
the entire population. The entire population was 
used, which is the best case scenario, being fully 
efficient in the scenarios regarding the 
imputation method. It is expected that by 
selecting different sample sizes will provide 
worst results than the ones presented here. Also, 
a good scenario where the current percentages of 
missing values do not seem very high for each 
cross-sectional year was used. However, the 
findings are overwhelming in the large effects 
that the current GSS imputation method affects 
the bias of the total estimates of part-time males 
and females and overall variance estimates. 
Another limitation is that this study only handles 
the issue of item-nonresponse when unit non-
response was excluded from this research. The 
results limitation as a best case scenario warrants 
consideration because worse results would be 
expected under worse conditions than those 
presented here.   

Currently NSF publishes total estimates 
from this survey without reporting any variance 
estimate. Careful attention is needed for those 
variables where standardized biases are larger 
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than -50% as well as how to improve the 
stability of the variance decreasing for 
increasing percentages of missingness in the 
cross-sectional and longitudinal setting. Minor 
discrepancies were observed in the bias and 
MSE estimates when the unit of analysis is 
establishments instead of individuals. Further 
research is needed to identify statistical methods 
to handle the missing data from this survey and 
to evaluate this method under a missing not at 
random mechanism.  
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