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On the Properties of Beta-Gamma Distribution 

                                            Lingji Kong                Carl Lee    J. H. Sepanski 
   Union College            Central Michigan University 

 
 
A class of generalized gamma distribution called the beta-gamma distribution is proposed. Some of its 
properties are examined. Its shape can be reversed J-shaped, unimodal, or bimodal. Reliability and hazard 
functions are also derived, and applications are discussed. 
 
Key words: Gamma distribution, Beta distribution, reliability function, hazard function, MLE, 
application. 
 

 
Introduction 

 
Let ( )f ⋅  and ( )F ⋅ be the probability density 
function and the cumulative distribution 
function (cdf) of a random variable, 
respectively. Eugene, Lee, and Famoye (2002) 
first introduced a generalized distribution based 
on the logit of the beta random variable with a 
cumulative distribution function given by 
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and the corresponding probability density 
function is 
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Eugene, et al. (2002) studied properties of 

( )g x when ( )F ⋅ is the cdf of a normal 
distribution. Maynard (2003) examined the case 
when ( )F ⋅  is the cdf of an exponential 
distribution. 

Gamma distribution and its generalized 
distributions (e.g. McDonald, 1984) have been 
applied widely to the analyses of income 
distributions, life testing, and many physical and 
economical phenomena (e.g. Farewell, 1977, 
Lawless, 1980). In this article, the case when 

( )F ⋅  is the cdf of the gamma distribution is 
studied.  

A random variable X is said to have a 
beta-gamma distribution, ),,,( λρβαBG , if its 
probability density function is given by   
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B
exxg

x

  

∞<< λρβα ,,,0 , 0>x ,                       (1)
 
where F(x) is the cdf of the gamma distribution 
with parameters ρ and λ . One can also 
introduce a location parameter ξ  in the density 
in (1) by replacing x with ξ−x  where 

.∞<<∞− ξ  In the rest of this article, it is 
assumed that ξ  is zero. When both α  and β  
are integers with βα +  being a bounded 
integer, the beta-gamma density function in (1) 
is the marginal probability density function of 
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the thα order statistic in a random sample of size 
βα + from the gamma distribution with 

parameters ρ and λ . When ,1== βα  the 
beta-gamma distribution yields the gamma 
distribution. When ,1=ρ  the beta-gamma 
distribution is beta-exponential distribution 
introduced in Maynard (2003).   
 

Properties 
 

The limit of ( )g x as x goes to 0 and the 
mode of the probability density function ( )g x in 
(1) is given in Lemma 1. The modes for cases 
when 1≤ρα  and 1>ρα  are studied 
respectively. Although some cases can be shown 
mathematically, plotting the function g(x) using 
Maple computer programs are employed to 
examine shapes and modalities for other cases. 
Illustrative graphs of ( )g x  based on 
observations from numerous plots are presented. 
Numerical percentiles are presented in Table 7 
to Table 9. 
 
Limits 

Lemma 1: The limit as x goes to 0 of the 
beta-gamma probability density function ( )g x in 
(1) is  
 

=→ )(lim 0 xgx

 1

if 1
1 if 1

( ) ( , )
0 if 1 

Bα α
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αρ
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−
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                                                                    (2) 
The proof is given in Appendix.  
 
Modes of ( )g x When 1≤αρ  

Note that the derivative 
xxfdxdf /)/1(/ λρ −−= . The first 

derivative of the logarithm of the probability 
density function g(x) is given by 

 

f
F

f
Fx

x
−
−+−+−−

1
11/1 βαλρ

. (3) (2.3) 

The mode(s) mx  of )(xg if exists is the solution 
to the equation by setting (3) to be zero.  

It is shown below that g (x) has a 
reversed-J shape when 1≤ρα  and 1≥β . The 
derivative in (3) is equal to  

 

[ ]f 1(1 ) ( 1)xf ( 1 x / )F
1 F xF

− β + α − + ρ − − λ
−

. 

                                       (4) 
 
When 1≥β , the first term in (4) is less or equal 
to 0. Also,   
 

d [( 1)xf ( 1 x / )F]
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ρ − − λ= α − + α −

− λ + ρ − − λ
= αρ − − α λ − λ

 

 
which is negative when 1≤αρ . This implies 
that Fxxf )/1()1( λρα −−+−  is a 
decreasing function. Because 

0)/1()1( =−−+− Fxxf λρα  when 0=x , 
the second term in (4) is therefore negative. That 
is, )(' xg  is negative. By (2) and the fact that 

)(lim xgx ∞→ =0, )(xg  has a reversed-J shape 
for the cases when 1≤ρα  and 1≥β  with 
maximum occurring at 0=x .  

When 1≤α and 1≤ρ  regardless of β, 
one can see that )(xg has a reversed-J shape by 
rewriting )(xg  as  

[ ]βα

βα
)(1)(

)(1
)(

),(
1)( 1 xFxF

xF
xf

B
xg −

−
= − . 

 
Because the cdf F  is an increasing function and 
the hazard function )1/( Ff − of the gamma 
distribution function is a decreasing function 
when 1≤ρ , )(xg is therefore a decreasing 
function with ∞=→ )(lim 0 xgx  when 1≤α  
and 1≤ρ .  
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Next, graphical results are shown to 

examine the cases when 1<β  and 1≤αρ  with 
α  or  ρ   greater  than  1.  Figure  1   represents  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

cases when 1=αρ . Figure 2 contains cases 
when 1<αρ .  Note that a =α , b = β , and p 
= ρ in all figures in this article. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

Figure 1. Plot of the density function g(x) when 1=ρα , and β =0.25, 0.5, 2, 4 
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When 1=ρα  and 1≥β , the beta-

gamma distribution appears to have a reversed-J 
shape. Figure 1 also shows that when 2=α  
and 5.0=ρ , it has a non-zero mode for β  
values of 0.25 and 0.5. 

When 1<ρα  and 1<β , it is found 
that )(xg is not necessarily a reverse J-shape, it  
can be bimodal (with one mode at 0). Figure 3 
shows two such cases. The top two are for 

,25.0=ρ  ,9.3=α  and 5.0=β ; the bottom  
 
 

 
graph is for ,2=ρ  ,49.0=α  and 01.0=β . 
Note that the horizontal axis of the first plot 
ranges from 0 to 0.01 and the one of the second 
plot ranges from 0.01 to 2. Tables 1 – 4 give the 
2nd non-zero mode in addition to the mode at  

0=x   for some examples when 1<αρ  
and 1<ρ . The empty cells are cases where 

)(xg  is reverse J-shaped and the only mode is 
at 0=x . 
 

 
 

 

 
 

 
 

Figure 2. Plot of the density function g(x) when 1<ρα , and β =0.25, 0.5, 2, 4 
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Figure 3. Graphs of )1,,,( ρβαBG  
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Table 1. Nonzero 2nd mode of )1,,,( ρβαBG  with .2/1=ρ  

 =β 0.01 0.1 0.2 0.3 0.4  0.5  0.6 0.7 0.8 0.9 
α =1.8  1.04                          
      1.9  1.31  .529  .234                    
    1.95  1.42  .616  .319  .167  .074            
    1.99  1.50  .678  .374  .219  .013 .071  .035 .012   

 
Table 2(a). Nonzero 2nd mode of )1,,,( ρβαBG  with .4/1=ρ  

 =β 0.01  0.1   0.2  0.3  0.4   0.5  0.6 0.7 0.8 0.9 
=α 3.01                                 

       3.02    .365                            
       3.1    .571                            
       3.2    .714                            
       3.3    .826  .274                        
       3.4    .923  .382                        
       3.5    1.01  .460  .193                    
       3.6    1.09  .526  .266  .103                
       3.7    1.16  .585  .323  .173  .064            
       3.8    1.22  .638  .373  .222  .124  .052        
       3.9    1.29  .687  .417 .264  .165  .097  .049    

 
Table 2(b). Nonzero 2nd mode of )1,,,( ρβαBG  with .4/1=ρ  

 =β 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 
=α 3.99 .004 .003 .001       

     3.995 .005 .004 .003 .002 .001     
 

Table 3. Nonzero 2nd mode of )1,,,( ρβαBG  with 6/1=ρ  
 =β .01 0.1 0.2 0.3 0.4 0.5 0.6 0.7  0.8   0.9 

=α 5.8   1.21   .67  .41  .27  .17  .10  .05             
       5.9   1.24   .69  .44  .29  .19  .12  .07   .036  .020     
     5.99   1.27   .72  .48  .31  .21  .14  .09   .052  .026  .008 

 
Table 4. Nonzero 2nd mode of )1,,,( ρβαBG with 2=ρ  

 β =0.01 0.015 0.1 0.2 0.3 0.4 
=α 0.48               

       0.49 9.85          
     0.499 9.86 7.656     
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Note that, for example, when =α 0.48, 
β =0.01, and 2=ρ , g(x) has an inversed-J 
shape and therefore does not have a nonzero 
mode. The range of β where )(xg  is bimodal 
appears to widen as α  increases. When 
bimodality occurs, the nonzero mode increases 
as the parameter α  increases and decreases as 
the parameter β increases. The bimodality 
property of beta-gamma distribution is not 
independent of the gamma parameters ( )ρα , . 
The bimodality property also exists for beta-
normal (Famoye, Lee, & Eugene, 2004). 
 
Modes when 1>αρ  

The second derivative of the logarithm 
of )(xg is given by 

 

2 2 2

2 2 2 2

1 x / ( 1)f (1 )f 1 x /
x F 1 F x

( 1 x / ) ( 1)f (1 )f 1
x F (1 F) x

ρ − − λ α − − β ρ − − λ⎡ ⎤+ +⎢ ⎥−⎣ ⎦
⎡ ⎤ρ − − λ α − − β ρ −− + − +⎢ ⎥−⎣ ⎦

. 
 
The first term equals to 0 at the mode mx . 
Hence, when mxx = ,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

2

2 2

2 2

2

2 2

d ln g
dx

( 1 x) ( 1)f
x F

( 1)f 1
(1 F) x

=

⎡ ⎤ρ − − α −+⎢ ⎥
⎢ ⎥−
⎢ ⎥β − ρ −+ +⎢ ⎥−⎣ ⎦

.  

                                                          (5) 
 
When ,1,1 ≥≥ αβ  and 1≥ρ , (5) is less than 0 
at mxx = . In this case, since there must be a 
minimum between any two maxima and that 

)(lim 0 xgx→ =0 and )(lim xgx ∞→ =0, it is 
concluded that )(xg is unimodal with a concave 
shape.  

When 1≥β  and 1>αρ  with 1<α  
or 1<ρ , though not being shown 
mathematically, graphs of such cases indicate 
that beta-gamma density function )(xg is also 
unimodal with a concave shape. Based on 
numerous graphs, the density functions )(xg is 
unimodal when 1>αρ  regardless the value 
of β . The following illustrates some examples 
when 1>αρ .   
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In this case )(xg is unimodal with a 

concave shape and the mode is nonzero. Tables 
5 and 6 tabulate modes for )1,2,,( βαBG  and 

)1,2/1,,( βαBG  when 1>ρα .  
The results indicate that 

when 1>ρα the mode increases as α increases 
and that the mode decreases as β increases for 
both   )1,2,,( βαBG   and )1,2/1,,( βαBG ; see  

 
 
 
 
 
 

 

 
 

also Figure 4. For other cases when ,1>αρ  this 
pattern holds for other values of parameters 
ρ and λ  though the computation results are not 
reported here.  
 
Percentiles of )(xg  

The 50th, 75th, 90th, and 95th percentiles 
of )1,,,( ρβαBG are computed and tabulated in 
the following Tables 7-9. 
 

 
 

 

 

 
 

 
Figure 4. Plot of the density function g(x) when 1>ρα , and β =0.5, 1.5 
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Table 5. Modes for )1,2,,( βαBG  when 1>ρα  
     β =0.2        0.5       1           1.5          2           2.5          5         10 
    
α =1        2.236     1.414      1.000     .8165     .7071     .6325      .4472    .3162 
α =1.5     3.206     2.162      1.555     1.270     1.097     .9775     .6815     .4744 
α =2        3.729     2.628      1.938     1.598     1.386     1.238     .8644     .5994 
α =2.5     4.087     2.963      2.229     1.856     1.618     1.451     1.018     .7063 
α =5        5.055     3.915      3.111     2.672     2.379     2.163     1.570     1.107 
α =10      5.913     4.787      3.964     3.498     3.176     3.947      2.228    1.626             

 
Table 6. Modes for )1,2/1,,( βαBG  when 1>ρα . 

  β =0.2        0.5         1             1.5            2           2.5           5            10 
            
α =2.5     0.832       .3919    .1692     .0903       .0545     .0359       .0291      .0154  
α =5    1.788       1.129    .7150     .5137       .3923     .3114        .1337      .0735 
α =10      2.653      1.798    1.286     1.016       .8411     .7155        .3925      .1812             

 
Table 7. Percentiles of )1,,,( ρβαBG  with 2/1=ρ  

α   β                 50th              75th              90th          95th 
            
0.25  0.25  .2275  2.011  5.260  7.855 
  0.5  .0235  .4372  1.684  2.846 
  1  .0031  .0831  .4479  .8765 
  2  .0005  .0169  .1116  .2445 
  4  .0001  .0038  .0277  .0654 
 
0.5  0.25  .9346  3.194  6.550  9.171 
  0.5  .2275  1.054  2.530  3.716  

1   .0508  .3014  .8588  1.358 
  2  .0115  .0802  .2632  .4522 
  4  .0027  .0207  .0752  .1370 
 
1              0.25  1.735  4.163  7.568  10.21  

0.5  .6617  1.735  3.317  4.570 
1              .2275  .6617  1.353  1.921 

  2             .0706  .2275  .5022  .7405 
  4  .0202  .0706  .1678  .2576 
     
2               0.25  2.473  4.979  8.413  11.06 
   0.5  1.205  2.405  4.044  5.316 

 1   .5531  1.123  1.899  2.501 
 2  .2275  .4817  .8367  1.115 

   4  .0816  .1824  .3306  .4504 
 
4               0.25  3.160  5.710  9.166  11.82 
   0.5  1.787  3.057  4.731  6.016 

 1   .9914  1.649  2.478  3.102 
 2  .5073  .8444  1.261  1.570 

   4  .2275  .3872  .5869  .7351 
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Table 8. Percentiles of )1,,,( ρβαBG  with 1=ρ  

α   β                 50th              75th              90th          95th 
            
0.25  0.25  .6939  3.106  6.752  9.535 
  0.5  .1882  1.050  2.710  4.070 
  1  .0645  .3804  1.067  1.685 
  2  .0265  .1577  .4517  .7249 
  4  .0120  .0718  .2065  .3330 
 
0.5  0.25  1.763  4.466  8.125  10.90 
  0.5  .6925  1.919  3.704  5.077  

1   .2877  .8267  1.661  2.328 
  2  .1285  .3729  .7592  1.075 
  4  .0512  .1758  .3588  .5086 
 
1              0.25  2.773  5.545  9.210  11.98 

0.5  1.386  2.773  4.605  5.991 
1               .6931  1.386  2.303  2.996 

  2              .3466  .6931  1.151  1.498 
  4  .1733  .3466  .5756  .7489 
     
2              0.25  3.644  6.436  10.10  12.88 
  0.5  2.115  3.565  5.366  6.720 

 1   1.228  2.010  2.970  3.676 
 2  .6931  1.120  1.631  2.000 

   4  .3766  .6055  .8768  1.071 
 
4              0.25  4.428  7.229  10.90  13.68 
  0.5  2.836  4.312  6.167  7.556 

 1   1.838  2.668  3.650  4.363 
 2  1.159  1.641  2.187  2.571 

   4  .6931  .9706  1.278  1.490 
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 The percentiles increase as α  increases 
and decrease as β  increases with fixed ρ , which 
is consistent with the results of modes. As seen 
in all figures, the beta-gamma distribution is 
skewed to the right, one would expect that the 
mode to be less than the median.  
 

Moments 
 

The closed form solutions of moments 
for ),,,( λρβαBG exist only when α  and β  
are integers. The closed form solution for the nth  

 

 
 

moment    of   ),,,( λρβαBG    is   derived   in  
Theorem 1 for the cases when α  and β are 
integers in this section. The first four moments 
are also numerically computed for various 
parameters. 
 
Theorem 1:  When βα ,  are integers, the nth 
moment of the beta-gamma random 
variable ),,,( λρβαBG is given by 

 
Table 9. Percentiles of )1,,,( ρβαBG  with 2=ρ  

α   β                 50th              75th              90th          95th 
            
0.25  0.25  1.678  4.874  9.049  12.09 
  0.5  .7450  2.220  4.397  6.021 
  1  .4035  1.142  2.244  3.094 
  2  .2482  .6713  1.273  1.729 
  4  .1631  .4277  .7860  1.050 
 
0.5  0.25  3.197  6.479  10.58  13.58 
  0.5  1.678  3.404  5.597  7.194 
  

1   .9613  1.887  3.063  3.922 
  2  .5961  1.128  1.782  2.254 
  4  .3893  .7157  1.102  1.374 
 
1              0.25  4.472  7.710  11.76  14.74  

0.5  2.693  4.472  6.638  8.212 
1               1.678             2.693     3.890               4.744 

  2              1.078    1.678        2.365                 2.845 
  4             .7095    1.078     1.487     1.767 
     
2               0.25  5.519  8.710  12.72  15.69 
   0.5  3.653  5.425  7.560  9.116 

 1   2.473  3.518  4.712              5.557 
 2  1.678  2.320  3.023              3.505 

   4  1.135  1.536  1.963              2.250 
 
4               0.25  6.434  9.587  13.57  16.53 
   0.5  4.549  6.299  8.408  9.949 

 1   3.296  4.344  5.526              6.359 
 2  2.376  3.036  3.744              4.225 

   4  1.678  2.103  2.543  2.834 
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The proof is given in Appendix. The follow 
Corollary gives E(X) and E(X2) that are used to 
obtain variance.  
 
Corollary 1:  When 1,2 == βα  and ρ is an 

integer, ( )E X and 2( )E X  are given by: 
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                                                                      (8) 
 
The proof is given in Appendix. 
 

Applying (6), the first four moments of 
)1,,,( ρβαBG for a certain combinations of the 

parameters are evaluated and given in Tables 10 
and 11. 

 
 
 

 

 
Table 10. The mean, std, skewness and kurtosis of )1,,,( ρβαBG with 2=ρ . 

α      β   mean      std  skewness kurtosis 
           
1          1 2.000  1.414  1.415  6.005 
            2 1.250  .8292  1.261  5.329 
            4 .8047  .5048  1.120  4.768 
          10 .4660  .2757  .9672  4.220 
 
2 1  2.750  1.479  1.207  5.347 
 2 1.824  .8975  1.010  4.588 
 4 1.215  .5585  .8693  4.117 
           10 .7150  .3063  .7319  3.736 
 
4           1  3.547  1.494  1.106  5.094 
 2 2.503  .9356  .8595  4.238 
 4  1.747  .5987  .7038  3.779 
           10 1.062  .3345  .5752              3.481  
   
10 1 4.623  1.500  1.057  5.007 
             2 3.503  .9505  .7650  4.063 
 4  2.618  .6278  .5759  3.577 
           10 1.705  .3654  .4363  3.302                 . 

 



KONG, LEE, & SEPANSKI 199

 

 
 
Based on the numerical results, the 

mean and standard deviation appear to increase 
with α  for a fixed β ; and skewness and 
kurtosis appear to decrease as α increases for a 
fixed β  in both cases when 2=ρ and 

2/1=ρ . Based on Figure 4, the density 
function has a heavier right tail as α  increases. 
The mean and standard deviation decrease as 
β decreases for a fixed α . Although the 
skewness and kurtosis decrease with β  
when 2=ρ as shown in Table 10, the skewness 
and kurtosis increase with β  when 2/1=ρ  
and 1≤αρ , as shown in Table 11. However, no 
clear pattern is noticed when 1>αρ .    

  
Reliability and Hazard Functions 

 
The reliability and hazard functions of 

the  beta-gamma  distribution  are derived in this  
 

 

 
 

section. The reliability function, 
][1)( xXPxR ≤−= , at time x defined to be 

the probability that a unit X survives beyond 
time x. For a beta-gamma random variable, it is 
given by 
 

x
1 1

0

F(x)
1 1

0

11 F (1 F) dF(t)
B( , )

11 t (1 t) dt
B( , )

α− β−

α− β−

− −
α β

= − −
α β

∫

∫
 

 
where f  and F are the density function and cdf 
of the gamma random variable with 
parameters ρ and λ , respectively. The hazard 
function defined to be a instantaneous measure 
of failure at time x given survival to time x is 
equal to 

 
 

 
Table 11. The mean, std, skewness and kurtosis of )1,,,( ρβαBG  with 2/1=ρ  

α        β     mean        std  skewness kurtosis 
           
1             1  .5000  .7071  2.829  15.00 
    2 .1814  .2828  3.287  18.66 
   4    .0604  .1038  3.834  26.22 
             10 .0124  .0237  4.688  39.71 
 
2             1 .8180             .8468  2.172       10.28 
    2 .3523  .3830  2.290  11.11 
   4 .1356  .1586  2.544  13.14 
             10 .0319  .0413  3.032  17.96 
 
 4            1 1.235  .9584  1.762  8.011 
   2 .6280  .4830  1.669  7.422 
     4 .2868  .2289  1.718  7.614 
 10 .0820  .0712  1.955  9.080 
 
10           1  1.900  1.057  1.468  6.683 
   2  1.154  .5878  1.218  5.491 
   4   .6508  .3228  1.097  4.941 
             10 .2505  .1290  1.119  4.968 

____________________________________________________________________ 
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Lemma 2: 

(a) )(lim)(lim 00 xgxH xx →→ =  
(b) λβ /lim =∞→x  

 
The proof is given in Appendix.  
 

 
 
 
 
 
 
 
 
 
 
 

 
The hazard functions of )1,,,( ρβαBG  

are plotted. Cases with αρ <1 are presented in 
Figure 5 and cases with 1≥αρ are given in 
Figure 6. The graphs in the first column 
represent the cases αρ =1 with β =1/2, 1, and 2; 
and those in the second column represent the 
cases when αρ >1 with β =1/2, 1, and 2 in 
Figure 6. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 5. Hazard Function of )1,,,( ρβαBG  when <αρ 1 
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Figure 6. Hazard Function of )1,,,( ρβαBG  when ≥αρ 1 
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As stated in Lemma 2, the curves of the 
hazard functions start at the values given in 
Lemma 1 and go to the value of β as x goes to 
∞  regardless the values of other parameters. 
When 1<αρ and β ≥ 1 (see also Figure 2), 

)(xg  has a reversed J shape and the trends of 
hazard functions for β =1 and β =2 (both 
β >1) are similar (Figure 5). When 1=αρ  and 
β =1/2, the hazard function has a nonzero 
maximum or minimum. The hazard function is 
constant when 1=== βρα , sine g(x) is the 
exponential distribution. Within each plot, a 
larger α value seems to result in a larger value 
of the hazard function. When 1>αρ , )(xg  has 
a nonzero mode (see also Figure 4) and the 
corresponding hazard function is non-
decreasing.  

When ,1== βα  it is Gamma function. 
λ/1lim =∞→x , which is different from that of 

beta-gamma. Also, the hazard function of the 
beta-gamma can handle bathtub cases where 
gamma can not. Therefore, the beta-gamma 
distribution is more flexible. This is especially 
important when the beta parameter is not near 
one.  

 
Parameter Estimation Using Maximum 
Likelihood Method 
 Let nxxx ,......, 21  be a random sample 
of size n from a beta-gamma distribution defined 
in (1.1), the log-likelihood function 

),,,( λρβαl  is then given by 
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where )(xf  and )(xF  are the pdf and cdf of 
the   gamma distribution with parameters ρ  and  
 
 
 
 

λ , respectively. Let dzzdz /)()( Γ=ψ be the 
digamma function. The equations for solving the 
maximum likelihood estimates of ρβα ,,  
and λ are given in Appendix.  
 The example in the next section, initial 
estimates of ρ  and λ is first computed by 
assuming the data set follows gamma 
distribution with 1=α and 1=β , the results 
from MLE of ( λρ, ) along with 1=α  and 

1=β  then are used as the initial values for 
solving the  equations (A.3) to (A.6). 
 

Applications of the Beta-Gamma Distribution 
 

 An application of the proposed 
distribution is presented using the data sets 
given in Park, Leslie, and Mertz (1964), Park 
(1954), Moffa and Costantino (1977). 
Costantino and Desharnais (1981) established a 
gamma-state probability distribution for adult 
numbers in continuously growing populations of 
the flour beetle Tribolium. The hypothesis that 
the data set is from a beta-gamma distributed 
population is tested using the observed 
frequency distributions of adult numbers for 
Tribolium castaneum and Tribolium Confusum.  

The beta-gamma distribution is fitted to 
the ten data sets discussed above, and the results 
are compared to those from gamma distribution 
and beta-normal distribution proposed by 
Eugene (2001) where the maximum likelihood 
method was used. Table 12 tabulates the 
resulting chi-square values form the goodness-
of-fit test for the 10 data sets, and for illustration 
of the computations Tables 13 and 14 contains 
results for two of the ten data sets (Data set # 6 
and #10). The expected numbers are calculated 
using the respective distribution with the 
parameters set at their maximum likelihood 
estimates. The chi-square goodness-of-fit test is 
then employed to make a comparison between 
the observed and expected number of 
observations under each distribution. Note that a 
class interval with an expected number less than 
5 is combined with the adjacent class to avoid 
inflating the chi-square test statistic.  
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It is of no surprise that the proposed 
beta-gamma distribution fits better than the 
gamma distribution for all the data sets. Seven 
of the ten data sets, the beta-gamma distribution 
fits better than the beta-normal distribution  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

based on the chi-squares values. Note that, for 
example, the data set in Table 14 appears to 
have a long right tail, it is reasonable that beta-
gamma distribution performed the best. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 12. The resulting 2χ values (p-value, d.f.) from the goodness-of-fit tests for the 10 data sets. 
Data set  Gamma Beta-Normal Beta-Gamma 
#1 24.03 (0.0043, 9) 5.04 (0.6545, 7) 7.88 (0.3433, 7) 
#2 48.16 (0, 12) 27.02 (0.0026, 10) 20.50 (0.0249, 10) 
#3 129.18 (0, 17) 74.85 (0, 15) 72.63 (0, 15) 
#4 78.07 (0, 11) 25.39 (0.0030, 9) 28.36 (0.0008, 9) 
#5 23.62 (0.0144, 11) 19.99 (0.0180, 9) 17.89 (0.0365, 9) 
#6 10.72 (0.3793, 10) 7.42 (0.4913, 8) 7.05 (0.5312, 8) 
#7 21.67 (0.0169, 10) 10.56 (0.2280, 8) 12.89 (0.1157, 8) 
#8 55.71 (0, 9) 25.05 (0.0007, 7) 22.28 (0.0023, 7) 
#9 25.02 (0.2463, 21) 16.85 (0.6001, 19) 16.54 (0.6210, 19) 
#10 17.19 (0.3076, 15) 17.07 (0.1959, 13) 15.01 (0.3067, 13)  
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Table 13. Observed and Expected Frequencies for Tribolium Confusum Strain # 4(b) 

 
                                                                          Expected 
    _____________________________________________ 

valuex −  observed Gamma Beta-Normal                    Beta-Gamma  

⎭
⎬
⎫

5.42
5.37

  
⎭
⎬
⎫

5
5

10  
⎭
⎬
⎫

42.6
36.2

8.78 
⎭
⎬
⎫

78.7
85.2

10.63         
⎭
⎬
⎫

11.8
01.4

12.12 

47.5  14  15.37  16.45          16.90 
52.5  33  28.26  27.43          28.59 
57.5  40  41.74  37.79          40.48 
62.5  49  51.32  45.59          49.06 
67.5  44  53.98  50.12          51.78 
72.5  52  49.66  50.31          48.48 
77.5  44  40.67  44.99          41.02 
82.5  28  30.07  34.99          31.64 
87.5  29  20.31  23.48          22.07 
92.5  13  12.66  13.62          13.62 
97.5  9  7.34  6.87          7.24 

⎪
⎭

⎪
⎬

⎫

5.112
5.107
5.102

  
⎪
⎭

⎪
⎬

⎫

1
1
1

3  
⎪
⎭

⎪
⎬

⎫

80.1
05.2
99.3

7.84 
⎪
⎭

⎪
⎬

⎫

55.1
16.1
02.3

5.73         
⎪
⎭

⎪
⎬

⎫

53.0
23.1
25.3

5.01 

 
Total   368  368  368          368 
 
α̂       0.45                   0.17 
β̂       0.23           0.69 
μ̂       62.79 
σ̂       6.74            
ρ̂     25.61            111.58 

λ̂     2.71            0.74 
2χ     10.72  7.42                 7.05 

p-value    0.3793  0.4913                         0.5312   
degree of freedom    10    8             8 
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Table 14. Observed and Expected Frequencies for Tribolium Castaneum at C024 (b) 
 
                                                                                Expected 
    _____________________________________________ 

valuex −  observed Gamma       Beta-Normal                 Beta-Gamma 

⎪
⎭

⎪
⎬

⎫

45
35
25

             
⎪
⎭

⎪
⎬

⎫

3
0
0

3   
⎪
⎭

⎪
⎬

⎫

97.2
44.0
02.0

3.43 
⎪
⎭

⎪
⎬

⎫

38.3
75.0
12.0

4.25                     
⎪
⎭

⎪
⎬

⎫

20.3
46.0
03.0

3.69 

55  9  11.51  11.18          12.30 
65  39  29.71  28.07          31.23 
75  53  57.05  55.08          58.77 
85  77  87.54  87.09          88.39 
95  105  112.64  114.43          111.90 
105  135  125.81  128.66          123.66 
115  114  125.09               127.23          122.40 
125  113  112.87  113.37          110.58 
135  92  93.80  92.91           92.45 
145  59  72.63  71.18           72.29 
155  54  52.89  51.60           53.29 
165  38  36.51  35.72           37.27 
175  22  24.03  23.75           24.87 
185  17  15.17  15.22           15.91 
195  6  9.22  9.43           9.80 
205  10  5.42  5.65           5.83 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

265
255
245
235
225
215

  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

0
0
1
0
2
3

6  

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

22.0
25.0
49.0
92.0
71.1
09.3

6.68 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

24.0
27.0
53.0
01.1
85.1
28.3

7.18          

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

22.0
29.0
55.0
03.1
88.1
36.3

7.33 

α̂       12.34           0.82 
β̂       0.68                  0.79 
μ̂       27.33           
σ̂       47.01            
ρ̂     13.86            17.23 

λ̂     8.50                    6.74 
2χ     17.19  17.07           15.01 

p-value    0.3076  0.1959           0.3067 
degree of freedom  15  13           13 
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Conclusion 
 

A beta-gamma distribution is proposed that 
include the gamma, exponential, and beta- 
exponential distributions as its special cases. 
When 1>αρ , it is unimodal with a concave 
shape. When 1≤αρ  and 1≥β , it has a 
reversed-J shape. When 1<α  and 1<ρ , it 
also has a reversed-J shape. When 1=αρ  and 

1<β ,  it can be reverse J-shaped or unimodal 
with a concave shape. When 1<αρ and 1<β , 

)(xg has a reversed-J shape except when αρ  is 
close to 1 with 1>α or >ρ  1  for a range of 
β values of less than one, in which  it is bimodal 
with a mode of zero and a nonzero mode.  
 Note that the beta-normal distribution in 
Eugene, et al (2002) can be bimodal with two 
nonzero modes; the beta-gamma can be bimodal 
with a mode of zero and a nonzero mode. Closed 
forms of moments are derived when parameters 
are integers. The mean and standard deviation 
increase with α  and decrease with β .  
 The hazard function of the proposed 
beta-gamma distribution appears to be versatile 
in the sense it could be constant, nondecreasing, 
nonincreasing, concave, and convex. This 
property is potentially useful in real word 
problems. The estimation of the parameters can 
be computed via maximum likelihood method. 
The proposed beta-gamma distribution is a 
generalization of the widely used gamma 
distribution and is at least as efficient as the 
beta-normal if not better.  
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Appendix 

 
Proof of Lemma 1 

Using the Taylor’s expansions of λ/xe− , the gamma density function is   
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 For simplicity of presentation, let )(xff = , 
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Lemma 1 can now be readily seen because F is a cdf and 0lim ( ) 0x F x→ = .  
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Proof of Theorem 1 

When α  and β are integers, the nth moment of the beta-gamma random variable with density function in 

(1) is        
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Proof: of Corollary 1  
 

When 1,2 == βα , 
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Substituting  ,0nI  and ,1nI  into (A.2), the results of (7) and (8) are obtained. 
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Proof of Lemma 2: 

(a) As x goes 0, 0lim ( )x H x→  is  
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which is given in Lemma 1.  

Proof: (b) As x goes to ∞ , by L’Hospital Rule, )(lim xHx ∞→  is  
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Note that unlike 0lim ( )x H x→ , the limit  )(lim xHx ∞→  = λβ /  does not depend on α  
and ρ . In other word, the instantaneous failure rate will not depend on α  and ρ  in the long run. 
 
 



KONG, LEE, & SEPANSKI 211

 
 
 

 
 
 
 
 
 
 
 
 
 

 
The Equations for Solving the Maximum Likelihood Estimates: 
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∫ . 

The SAS IML optimization methods can be employed to solve the loglikelihood equations 
(A.3) – (A.6) iteratively. The lengthy and tedious second derivatives required in the algorithm are not 
presented here, but are available upon request. 
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