Wayne State University
Digital Commons@WayneState

Wayne State University Theses

1-1-2011

An experience report of the solo iterative process

Christopher Dorman
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Recommended Citation
Dorman, Christopher, "An experience report of the solo iterative process" (2011). Wayne State University Theses. Paper 105.

This Open Access Thesis is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of Digital Commons@WayneState.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/105?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EXPERIENCE REPORT OF THE SOLO ITERATIVE PROCESS
by
CHRISTOPHER DORMAN

THESIS

Submitted to the Graduate School
of Wayne State University,
Detroit, Michigan
in partial fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

2011
MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

© COPYRIGHT BY
CHRISTOPHER R. DORMAN
2011

All Rights Reserved

DEDICATION

To Andrea

ACKNOWLEDGEMENTS

| would like to thank Prof. Rajlich for his help and inspiration. His belief in this
work is the motivation | required to finish. Laurentiu Radu Vanciu was also instrumental.
He contributed major parts to this thesis, including selecting the project, many of the
tools, proofreading and much more.

Atlassian Pty Ltd. supplied a complimentary copy of their Clover Java code
coverage & test optimization for use in this project. This made the testing coverage
numbers possible. Tasktop Technologies provided a complimentary copy of their
Tasktop plugin for Mylyn and Eclipse. Mylyn and Tasktop together made it easy and
unobtrusive to time the phases of this project, even correcting my mistakes at time.

JRipples made by a former Wayne State SEVERE group member Maksym
Petrenko is a tool that was invaluable for this project. I'm still not sure how | could
perform impact analysis without it.

Finally, | would like to thank the muCommander community for supplying the
program for this project. Finding suitable open source projects for university projects is
more difficult than one might think. The muCommander program is a very good
candidate with easy to explain functionality and well maintained code.

This work was supported in part by grant from the National Science Foundation
CCF-0820133. Any opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the

NSF.

TABLE OF CONTENTS

[DL=T o [{o7= 1110] o PSP URTPTT i
ACKNOWIEAGEMENTS ...t e e e e e e e i
LISt Of TADIES ... e XVii
LISt Of FIQUIES -t e e e e XXiii
(O 4 7= o) (=] g TP 1
INErOAUCTION ... e e e e 1
1.1 Waterfall MOGE! ... 1
1.2 AQile MaNIfESTOeeiiiiiiiee e 2
1.3 Solo lterative Process Experience Report.........ooooviiiiiiiieeeiiieiiiiieeeeeen 2
(@] 0 F=T o) (=T 2R 4
PrevioUus WOTK. 4
2.1 SOfIWAIE PrOCESSES ...ceiiiiiiiiie e 4
2.1.1 Software EVOIULION.......coooii e 4
2.1.2 S0lo Software Change........ccueeeieiiiiiiiiieeee e 5
2.1.3 Personal Software ProCESSoouuiiiiiiiiiiie e 5
2.1.4 Team Software PrOCESSEScoovuuiiiiiiiiiiiieeiee e 6

2.2 SOMWAIE TASKS ..ceeiiiieiie e 8
2.2.1 Concept Location & Impact ANalySiscceeveeeiiiiiiiiiieee e 8
2.2.2 RefaCtorningccoooe e 9

2.3 Software Process TOOIScooiiiiiiiiiiiiiee e 9
2.3 1 JRIPPIES e 10
2.3.2 Other Software TOOIS.......cuuiiiiiiiieee e 10

(0] 0 F=T o) (=] g TP 11

SOl0 HErative PrOCESSueeiiiieiiee e 11
3.1 Product BackIOg.........uueeieiiieieiieee e 12
3.1.1 Iteration BacKIOg...........uueeeiiiiiiiiiieeeee e 14
3.2 Software Change (SC)euuui e 14
3.2.1 INIHAlIZALION....eeeieeie e 15
3.2.2 CoNCePt LOCALION ... 16
3.2.3 IMPACt ANAIYSIS ... 18
3.2.4 PrefaCtoring ...eee e 19
3.2.5 ACtUANIZATION ..o 20
3.2.6 POSHACIONNG .coeiiiiiiee e 21
3.2.7 VerifiCatiON.....ceeeiiii e 22
3.2.8 CONCIUSION....ceiiiiiiiiee e e e e 24
3.3 SIP WOrKPrOQUCTS ...ttt 24
3.3.1 BaSHINE. ... 25
3.3.2 teration/release.uueeeiiiiiie e 25
3.3.8 TIME LOQ -eeeeeeeieieiee e 26
R I 3 B LY {=Tox i o o [PPSR 26
3.3.5 lteration Backlog Table..........coooiiiiiiiiii e 27
(0 0 F=T o) (=] G ST PRRRR 28
Solo Iterative Process Experience Report ... 28
4.1 MUCOMMEANGET ...ttt e e e e e e e e e e e e e e e e e e e annes 28
4.2 Eclipse TeChNOIOGIESeeiiiiiiiiiiiieiieee et 28

4.2.1 JRIPPIES. .. e 28

4.2.2 Clover Java Code Coverage & Test Optimizationccccccoeviiinneeen. 29
4.2.3 MYIYN & TaSKTOP cceeiiiieiiiiieieee ettt 29
4.3 Other TeChNOIOQIESueiieeiiiie e 29
4.3.1 Abbot Java GUI Test Framework ... 29
4.3.2 Subversion & ToroiSESVN ..o 30
4.3.3 DIffStaS ...t 30
(0] 0 F=T o) (=] g TP 31
Solo lterative Process: Experience Report ... 31
5.1 Change Request 1 BasiC S€arch ... 33
5.1.1 INH@liZAtION....ceiiiee e 33
5.1.2 Concept LOCALION ... 34
5.1.3 IMPact ANAIYSIS ..o 35
5.1.4 PrefaCtoring ... 36
5.1.5 ACtUANIZATION ..coeiiiiee e 37
5.1.6 POSHACIONNG ..coeeiiiiiee e 40
5.1.7 VerifiCatiON.....cooiii e 40
5.1.8 CONCIUSION.....eiiiiiiiiiee e e e e 41
5.2 Change Request 2 Recursive search ... 41
5.2.1 INIH@liZALION.....eiiiiiie e 41
5.2.2 ConCept LOCALION ... 42
5.2.3 IMPACt ANAIYSIS ... 43
5.2.4 PrefaCtoring ...eeee e 44

vi

B 2.5 ACUANIZAION e 46

5.2.6 POSHACIONNG ..eeeiiiiiie e 47
5.2.7 VerifiCatiON.....cooeiiii i 49
5.2.8 CONCIUSION.....eiiiiiiiiie e e e e 50
5.3 Change Request 3 Advanced OUutputcccoeeeeeieieeieeeeeeeeeeeeeeeeeee e 51
5.3.1 INIt@liZatiON.....coeiiiiee e 51
5.3.2 ConCept LOCALION ... 51
5.3.3 IMPact ANAIYSIS ..o 52
5.3.4 PrefaCtoring ...eeee e 55
5.3.5 ACtUANIZATION oo 56
5.3.6 POSHACIONNG ..eoeeiiiiee e 58
5.3.7 VerifiCatiON.....cceeiiii e 62
5.3.8 CONCIUSION.....eiiiiiiiiee e e e 64
5.4 Change Request 4 Date Search ... 64
5.4.1 INH@liZALON.....eiiiiie e 64
5.4.2 CoNCept LOCALION ... 65
5.4.3 IMPACt ANAIYSIS ... 65
5.4.4 PrefaCtoring ... e 67
5.4.5 ACtUANIZATION ..coeiiiiiee e 69
5.4.6 POSHACIONNG ..eoiiiiiiie e 72
5.4.7 VerifiCatiON......cooii i 74
5.4.8 CONCIUSION.....eiiiiiiiiie e e e e 76
5.5 Change Request 5 Case Sensitive Search.........ccoooeeeeeiiiiiiiiiiiieeeeeeeeee, 76

Vii

B D INItAIZAION ..o 76

5.5.2 ConCept LOCALION ... 77
5.5.3 IMPact ANAIYSIS ... 77
5.5.4 PrefaCtoring ...ece e 79
5.5.5 ACtUANIZATION ..coeiiiiiee e 82
5.5.6 POSHaCIONNG ..coeeiiiiieeeee e 83
5.5.7 VerifiCatiON......coiiiiiiee e 85
5.5.8 CONCIUSION.....eiiiiiiiiie e e 86
5.6 Change Request 6 Extension Searchccooeeeieeiiiieieieeeeeeeeeeeeeeeeeeeeeeee 87
5.6.1 INItI@liZatiON.....cooiiii e 87
5.6.2 CoNCept LOCALION ... 87
5.6.3 IMPACt ANAIYSIS ... 88
5.6.4 PrefaCtoring ... e 90
5.6.5 ACtUANIZATION ..ceoiiiiiee e 91
5.6.6 POSHACIONNG ..coeeiiiiieee e 93
5.6.7 VerifiCatiON......coeiiiiie s 95
5.6.8 CONCIUSION.....eiiiiiiiiiiiee e e e 97
5.7 Change Request 7 Properties Searchccoooveeeeeeeeieicieieeeeeeeeeeeeeeeeeee 98
5.7.1 INH@liZatION....ceeiiiie e 98
5.7.2 Concept LOCALION ... 98
5.7.3 IMPact ANAIYSIS ..o 99
5.7.4 PrefaCtoring ..o 99
5.7.5 ACtUANIZATION ..o 100

viii

5.7.6 POSHACIONNG ..eeeieiiiieeee e 102

5.7.7 VerifiCatioN.......coeeiii e 106
5.7.8 CONCIUSION.....eiiiieiie it 108
5.8 Change Request 8 File Chooser Bug ..o 108
5.8.1 INItI@liZatioN.......cooei i 108
5.8.2 Concept LOCALION ... 108
5.8.3 IMPacCt ANAlYSIS ...ccooiiiiieiiee e 109
5.8.4 PrefaCtoring ... e e 109
5.8.5 ACtUANIZATION ...eeiiieiiieeee e 109
5.8.6 POSHACIONNG ...oeviiiiiiee e 110
5.8.7 VerifiCatioN.......coiiiiiie e 110
5.8.8 CONCIUSION.....eiiiiiiiiieee e 110
5.9 Change Request 9 Date Search Bug.......ccooeeeeeieiieeiiieeeeeeeeeeeeeeeeeeeeeeen 111
5.9.1 INIt@liZatiON.....ceeiiei e 111
5.9.2 Concept LOCALION ... 111
5.9.83 IMPaCt ANAIYSIS ..ccoieeeeeee e 111
5.9.4 PrefaCtoring ... e 112
5.9.5 ACtUANIZATION ...eeiiieii i 112
5.9.6 POSHaCIONNG ...oeiiiiiii e 113
5.9.7 VerifiCatioN.......ooiiii i 113
5.9.8 CONCIUSION.....eiiiiiiii e 113
ST 0 = T 1o SRS 114
(07 4 F=T o) (=] g TR ERPP R 118

DS U S S DN . e e e e e 118

6.1 CoNCePt LOCAION ... 118
B.1.1 EXit Criteria....eeeeeeeee e 120
6.2 IMPACE ANAIYSIS ... 120
6.2.1 Overestimate in Change 3........ooo i 121
6.2.2 Overestimate in Change 6.........ooooiiiiiiiii e 122
6.2.3 Missed Impact in Change 7 ... 122
6.2.4 Programmer MISSIEPSueeiiiiiiiiiiiieeieee e 123
6.2.5 Harness Code IMPaCt.........coooiiiiiiiiiie e 124
6.2.6 EXit Criteria.....eeeeeeeiieeee e 125
6.3 Actualization experience and overheadcccooveeeiiiiieieeeeeeecceeeeeeeeeen 125
6.3.1 EXit Criteria....eeeeeeeee i 127
6.4 Refactoring EXPErieNCe.....c.coo i 127
6.4.1 PrefaCtoring e 127
6.4.2 Prefactoring Exit Criteria........oooiiiii e 128
6.4.3 POSHaCIONNG ...coeeeiiiie 128
6.5 VerifiCatioNcooiiiieeeee e 129
6.6 SIP EXCEPONS. ... 130
6.6.1 Changing Behavior during Refactoring..........cooooiiiieii 130
6.6.2 Additional ComMMILS..........ueiiiiiiiiii e 131
6.7 Proposed SIP EVOIULION ..o 131
6.7.1 Phase continuity has priority over ConCeptscccceeeeeeeiiiiiiiiiinnnen. 131
6.7.2 Local and renaming refactoring during actualization 132

B.7.3 EXit Gl . e e 133

6.7.4 Enactment RUIES ... 133
6.8 SIP VErsus Ad NOCeueiiiiiiiiieeee e 133
6.9 AMOouNt Of REWOIKeiiiiiiei e 135
6.10 TEChNOIOGIES. ... 137

B.10.1 JRIPPIES .. 137

6.10.2 Clover Java Code Coverage & Test Optimizationccccuuueeeee. 141

6.10.3 Mylyn & TasKtOPcooeeieeieeieee e 141

6.10.4 Abbot Java GUI Test Frameworkccccooiiiiiiiiiiiinie e, 142

6.10.5 Subversion & TortoiSESVN ... 143

6.10.6 DiffSTASeeeeeiieeie e 143
6.11 Threats to Validitycooeioriie e 143

(0] 4 F=T o) (=] TR 145
Future Work and CONCIUSIONSuiiiiiiiaiiiiieie e 145
7.1 FUIUIE WOIK ettt 145

7.1.1 Level of adoption StUAYcooeiiiii e 145

7.1.2 Team Processes ReSearCh ..o 146
42 0o 4 o] [<] o] o PSPPI 146

APPENIX A e e s 148
SIP — Change 1 BasiC Search..........ccuuuiiiiiiiiiieeee e 148

AT INHIATION. .o 148

A.1.2.Concept LOCAION ..o 148

A1.3 IMPact ANAlYSIS ..cccoiiiiiieeee e 150

Xi

A 1.4 Prefactorning.... ..ot 154

A 1.5 ACUAZALION....eeieeeee e 154
A.1.6 POSHACIONNG .. 160
A7 VerifiCationeeeiiii e 161
AT .8 TIMING et e e e e e e e e e 162
A.1.9 CONCIUSIONS ...ttt e e e e 162
SIP — Change 2 ReCursive SEarch ... 165
A2 INHIATION. .o 165
A.2.2.Concept LOCAtION ..o 166
A.2.3 IMPact ANAIYSIS ..ccooiiiiiiiiii e 166
A.2.4 Prefactoring.......ceo et 169
A.2.5 ACIUANZALION.....eeiiieiee e 174
A.2.6 POSHACIONNG ..t 180
A2.7 VerifiCatioNeeeiiiiiieeee e 185
A28 TIMING DaAt@....eeeeieiiiiieieeee e 187
A.2.9 CONCIUSIONS ...eieeieeeeeeee ettt a e e e 188
SIP — Change 3 Advanced OUIPULcooiiii e 193
A3 INHIATION. oo 193
A.3.2.Concept LOCAtION ..o 194
A.3.3 IMPact ANAlYSIS...ccoeiiiiiieeeeee e 196
A.3.4 Prefactorning........co et 200
A.3.5 ACIUANZALION.....eeiiieiee e 205
A.3.6 POSHACIONNG ...eeeeeieieieeee e 212

Xii

A ST VelTICALION e 227

A.3.8 TIMING DaAt@....eeeiieiiiiiiiee e 229
A.3.9 CONCIUSIONS ...ttt e e e e 229
SIP —Change 4 Date Search..........cccuuueiiiiiiiiiee e 235
A AINIHIATION. . e 235
A.4.2 Concept LOCAtIONoooeeiieeeeeeee e 236
A.4.3 IMPact ANAlYSIS..cccoiiiiiieeee e 236
A.4.4 Prefactorning.o et 239
A4.5 ACUANIZALION.....eieeiie e 243
A.4.6 POSHACIONNG ... 254
A7 VerifiCatioNeeeiiiiiie e 262
A48 TIMING Dat@....eeeeeiiiiiiiieee e 263
A.4.9 CONCIUSIONS ...ttt a e e e 263
SIP — Change 5 Case Sensitive Search ..., 270
A5 AINIHIANZATION ... 270
A.5.2.Concept LOCAtIONoooeieeieeeee e 271
A.5.3 IMPact ANalYSIS....ccooiiiiiieieiee e 271
A.5.4 Prefactorning..... .ot 278
A5.5 ACIUANZALION.....eeieieie e 287
A.5.6 POSHACIONNG ..eeeeeeieeei e 290
A7 VerifiCationoooiii i 296
A58 TIMING DaAt@....eeeeieiiiiieiee e 297
A.5.9 CONCIUSIONS ...t 298

Xiii

SIP — Change 6 Extension Search..........ccoiiieeee e 303

AB.1 INHIANZATION ... 303
A.6.2 Concept LOCAtION ..o 304
A.6.3 IMPaCt ANAIYSIS ..ccoiiiiiiiieei e 304
A.6.4 Prefactorning..... .o e 310
A.B.5 ACIUANIZALION.....eeiiiiiei e 314
A.6.6 POSHACIONNG ... 321
AB.7 VerifiCationooeiiiiiie e 329
AB.8 TIMING DaAl@....eeeeeiiiiiiiiee e 331
A.B.9 CONCIUSIONS ...ttt e e e e e 331
SIP — Change 7 Properties Search ... 340
A7 INHANZATION ... 340
A.7.2.Concept LOCAION ...cooieeeeeeee e 341
A.7.3 IMPact ANAlYSIS ..cccoiiiiiieiee e 341
A.7.4 Prefactorning.... ..ot 344
A.7.5 ACIUANZALION.....eeiiieee e 344
A.7.6 POSHACIONNG .. 351
A7.7 VerifiCatioNeeeiiiiiiie e 363
A.7.8 TIMING DaAt@....eeeeiiiiiiieieee e 365
A.7.9 CONCIUSIONS ...ttt e e e e e 365
A.8 SIP — Change 8 File Chooser Bug.........cccuuiiiiiiiiiiiiiiiiee e 373
A.8.1 INIHIANZALION ... 373
A.8.2 Concept LOCAtIONcooiieeeeeeee e 374

Xiv

A.8.3 IMPacCt ANAIYSIS...ccoiiiiiiiiee e 374

A.8.4 Prefactoring..... ..ot 375
A.8.5 ACIUANIZALION.....eeiiiiieieeeeee e 376
A.8.6 POSHACIONNG ...eeeeeieieieeeee e 378
A8.7 VerifiCatioNeeeiiiiiiiee e 379
A.8.8 TIMING DaAl@.....eeeiiiieiiiieee e 379
A.8.9 CONCIUSIONS ...ttt e e 379

SIP — Change 9 Date Search Bugccooiiiiiiiii e 381
A9 INHIANZATION ... 381
A.9.2 Concept LOCAtION ..o 382
A.9.3 IMPaCt ANAIYSIS ..ccooiiiiiiiiei e 382
A.9.4 Prefactorning.......cooe et 383
AL9.5 ACIUANZALION.....eeiiiiee e 384
A.9.6 POSHACIONNG ..eeeeeeieeeeeeeee e 386
A7 VerifiCatioNeeeiiiiiee e 386
A9.8 TIMING DaAt@....eeeeeeiiiiiiie e 387
A.9.9 CONCIUSIONS ...eieeieeeeeeeeee et e e e e 387
APPENAIX B ... 390
D12 =] A I Yo PP PP 390
JAY o] o1=1 g To 13 O PP 391
GIOSSArY Of TEIMIS .. 391
C.1 Class change table terms ... 392
REFEIEINCES ... 395

XV

DS G e

Autobiographical Statement...... ...

XVi

LIST OF TABLES

Table 5.1 Original Product backlogccooiiiiiiiii e 32
Table 5.2 Product Backlog Completed..........cooo i 33
Table 5.3 Change 1 Statement verification coverage of production code files.............. 41
Table 5.4 Change 1 SUMMANY ... 41
Table 5.5 Change 2 Statement verification coverage of production code files.............. 50
Table 5.6 Change 2 SUMMANY ..o 51
Table 5.7 Change 3 Statement verification coverage of production code files.............. 63
Table 5.8 Change 3 SUMMANY ..o 64
Table 5.9 Change 4 Statement verification coverage of production code files.............. 75
Table 5.10 Change 4 SUMMANYccoiuiiiiiiieee e e e e e e e e e e e e e s nnsneeeeeeaaeeas 76
Table 5.11 Change 5 Statement verification coverage of production code files............. 86
Table 5.12 Change 5 SUMMANYccooiiiiiiiieee e e e e e eeeeeeeeeas 87
Table 5.13 Change 6 Statement verification coverage of production code files............ 97
Table 5.14 Change 6 SUMMANYccocuiiiiiiieee e e e e e e e e e e e e e e snnenneeeeeaeeeas 98
Table 5.15 Change 7 Statement verification coverage of production code files........... 107
Table 5.16 Change 7 SUMMANYccouuiiiiiiiiie e e e e e e e e e eeeeeeeas 108
Table 5.17 Change 8 Statement verification coverage of production code files........... 110
Table 5.18 Change 8 SUMMANYccuuuiiiiiiiee e e e e e e e e 111
Table 5.19 Change 9 Statement verification coverage of production code files........... 113
Table 5.20 Change 9 SUMMANYccouuiiiiiiiiee et e e e e e e e e e eeeeeeeeeas 114
Table 5.21 Product Backlog after lteration ..o 117
Table 6.1 Location of Search Algorithm EXtension..........cccoovviiiiiiiiiieie e, 119

XVii

Table 6.2 Comparison of Estimated Impact Set and Changed Setccccvieeeeenn. 121

Table 6.3 SIP lteration timing (HOUrS:MINULES)..........uuiiiiiiiiiiieeeee e 126
Table 6.4 ReWOrk DY Phase ..o 136
Table A.1 Change 1 Concept Location SUMMaAryccccceeviiiiiiiiieiiee e 149
Table A.2 Change 1 Concept Location Code Files Visited..........cccccoeeeiiiiiiiiiiieennnnn. 149
Table A.3 Change 1 Impact AnalysisS SUMMAIYcoeiriiiiiiiiiiiiiieee e 152
Table A.4 Change 1 Impact Analysis Code Files Visited...........ccccoeeeeeeeeeeeeeieceeeeeeen, 152
Table A.5 Change 1 Actualization SUMMaArY........cccueiiiiiiii i 156
Table A.6 Change 1 Actualization Code Filescccuueiiiiiiiiiiiieeee e 156
Table A.7 Change 1 Postfactoring SUmMmaryccueeeeeeeii i 160
Table A.8 Change 1 Postfactoring Code Filesueeeeiiiiiiiiiiiiieeeeeeeeeeeeee e 160
Table A.9 Change 1 Statement Verificationccovveeeeiiiiiiii e, 161
Table A.10 Change 1 TimiNg TotalSuuiiiiiiiiieee e 162
Table A.11 Change 1 Code File SUMMaAry ..o 163
Table A.12 Change 1 Current Product BackIogceeeveiiiiiiiiiiiiiiiiiee e 163
Table A.13 Change 2 Concept Location SUmMmMarycccccceoeeeiiiiiieeeeeeeeeeeeieeeeeennn 166
Table A.14 Change 2 Impact AnalysiS SUMMAIYccoeviiiiiiiiiiiiiiieeee e 167
Table A.15 Change 2 Impact Analysis Code Files Visited...........cccoeeeeeeeeieeeeeeeeeeeeeenn. 167
Table A.16 Change 2 Prefactoring SUMMaAryccueeeieeeiiiiiieeee e 171
Table A.17 Change 2 Prefactoring Code Filesc...ueeviiiiiiiiiiieeeeeeeeeeeeeen 171
Table A.18 Change 2 Actualization SUMMArYcccuueiiiieieiiiieee e 174
Table A.19 Change 2 Actualization Code Filesceueiiiiiiiiiiiiiiiieieee e 175
Table A.20 Change 2 Postfactoring SumMmaryc.cceeeveeiiiiiiiiiiieeeee e 181

XViii

Table A.21 Change 2 Postfactoring Code Files ..., 181

Table A.22 Change 2 Statement Verificationcoooeeeeeiiiieeieeeeeeeeeen 187
Table A.23 Change 2 TIMING TOtalSuuuiiiiiiiiee e 187
Table A.24 Change 2 Code File SUMMaAry ... 189
Table A.25 Change 2 Current Product Backlogcooeiiiiiiiiiiieeeeee, 189
Table A.26 Change 3 Concept Location SUMMaAry ... 195
Table A.27 Change 3 Concept Location Code Files Visited..........cccocoeiiiiiiiiiinnnnn. 195
Table A.28 Change 3 Impact AnalysiS SUMMAIYccoooiiiiiiiiiiiieee e 198
Table A.29 Change 3 Impact Analysis Code Files Visited..........cccooeeeeiiieieieeeceeeeeeee, 198
Table A.30 Change 3 Prefactoring SUmMmMaryc.eeeieiiiiiiiieee e 202
Table A.31 Change 3 Prefactoring Code Files ..., 202
Table A.32 Change 3 Actualization SUMMArYueeiiiiiiiiee e 206
Table A.33 Change 3 Actualization Code FileSccooeeeeiieieiieieeeeeeeeeeeeeeeeeeeeeeeeeeen 206
Table A.34 Change 3 Postfactoring SUMMary ... 214
Table A.35 Change 3 Postfactoring Code Files ... 214
Table A.36 Change 3 Statement Verificationccooeeeeeeiiieeeeeieeeen 228
Table A.37 Change 3 TIMING TOtalSuuuiiiiiii e 229
Table A.38 Change 3 Code File SUMMary ... 230
Table A.39 Change 3 Current Product BackIogccoooiiiiiiiiiieeeeeen 231
Table A.40 Change 4 Impact AnalysiS SUMMAIYccooiiiiiiiiiiiiiiiee e 238
Table A.41 Change 4 Impact Analysis Code Files Visited..........cccooeeeeiiieeeiecceeeeeeeee. 238
Table A.42 Change 4 Prefactoring SUMMaAryeeeiiiiiiiiee e 240
Table A.43 Change 4 Prefactoring Code Files ... 240

XiX

Table A.44 Change 4 Actualization SUMMArYuueiiiiiiiiieeee e 245

Table A.45 Change 4 Actualization Code FileScooeeeeeeieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 245
Table A.46 Change 4 Postfactoring SUMMary ... 255
Table A.47 Change 4 Postfactoring Code Files ..., 255
Table A.48 Change 4 Statement Verificationcoooeeeeeeeeiieieeeeeeeeeeen 262
Table A.49 Change 4 TimiNg TOtalSuuiiiiiii e 263
Table A.50 Change 4 Code File SUMMaAry ... 265
Table A.51 Change 4 Current Product Backlog ..., 266
Table A.52 Change 5 Impact AnalysiS SUMMAIY ... 273
Table A.53 Change 5 Impact Analysis Code Files Visited..........cccooeeeeeieeieieeiieeeeeeee. 273
Table A.54 Change 5 Prefactoring SUmMmary ... 280
Table A.55 Change 5 Prefactoring Code Files ..., 280
Table A.56 Change 5 Actualization SUMMArYc..eeeiiiiiiiiiiee e 288
Table A.57 Change 5 Actualization Code FileScccoeeeiiieeiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeen 288
Table A.58 Change 5 Postfactoring SUMmMary ... 291
Table A.59 Change 5 Postfactoring Code Files ... 292
Table A.60 Change 5 Statement Verificationcoooeeeeeeeiiiieieeeeeeeeen 297
Table A.61 Change 5 TiImMING TOtalSuuiiiiiiie e 297
Table A.62 Change 5 Code File SUMMary ... 299
Table A.63 Change 5 Current Product BackIogccoviiiiiiiiiiiiiieeeeee, 299
Table A.64 Change 6 Impact AnalysiS SUMMAIYccoooiiiiiiiiiiiee e 306
Table A.65 Change 6 Impact Analysis Code Files Visited..........cccooeeeeieeeieieeeeeeeeeeen 306
Table A.66 Change 6 Prefactoring SUmMmMaryc..eeeeeiiiiiiiiieeeee e 312

XX

Table A.67 Change 6 Prefactoring Code Files ... 312

Table A.68 Change 6 Actualization SUMMArYeeiiiiiiiiiiiee e 315
Table A.69 Change 6 Actualization Code Files ... 316
Table A.70 Change 6 Postfactoring SUMmMary ... 322
Table A.71 Change 6 Postfactoring Code Files ..., 322
Table A.72 Change 6 Statement Verificationoooiiiiieeee, 330
Table A.73 Change 6 TimiNG TOtalSuiiiiiii e 331
Table A.74 Change 6 Code File SUMMary ... 333
Table A.75 Change 6 Current Product Backlogccoeiiiiiiiiiiiieeeeee, 334
Table A.76 Change 7 Impact AnalysiS SUMMAIY ... 342
Table A.77 Change 7 Impact Analysis Code Files Visited..........ccccceeieiiiiiiiiiiiieeennnn. 343
Table A.78 Change 7 Actualization SUMMArYueeiiiiiiiiiieee e 345
Table A.79 Change 7 Actualization Code Files ... 346
Table A.80 Change 7 Postfactoring SUMMary ... 354
Table A.81 Change 7 Postfactoring Code Files ... 354
Table A.82 Change 7 Statement Verificationooooeiiiiiiii e, 364
Table A.83 Change 7 TimiNg TOtalSuuiiiiiiie e 365
Table A.84 Change 7 Code File SUMMaAry ... 367
Table A.85 Change 7 Current Product Backlogccoeiiiiiiiiiiieeeeee, 368
Table A.86 Change 8 Impact Analysis Code Files Visited..........cccoeeeeeiieeeeieeieeeeeeee. 374
Table A.87 Change 8 Prefactoring SUMMaryeeeieiiiiiiiieee e 375
Table A.88 Change 8 Prefactoring Code Files ..., 376
Table A.89 Change 8 Actualization SUMMArYuuiiiiiiiiiiee e 377

XXi

Table A.90 Change 8 Actualization Code FileScccoeeeieiieiiieieeeeeeeeeeeeeeeeeeeeeee e 377

Table A.91 Change 8 Statement Verificationoooeii e, 379
Table A.92 Change 8 TimING TOtalSuuiiiiiiii e 379
Table A.93 Change 8 Code File SUMMaAry ... 380
Table A.94 Change 8 Current Product BackIogccoeiiiiiiiiiiiieeeeeen 381
Table A.95 Change 9 Impact Analysis Code Files Visited..........ccccceieiiiiiiiiiiiiienneen. 383
Table A.96 Change 9 Actualization SUMMArYueiiiiiiiiiee e 384
Table A.97 Change 9 Actualization Code Files ... 385
Table A.98 Change 9 Statement Verificationoooiiiiii e, 387
Table A.99 Change 9 TimMING TOtalSuuuiiiiiiii e 387
Table A.100 Change 9 Code File SUMMaAryccuuiiiiiiiiiee e 388
Table A.101 Change 9 Current Product BackIog ... 389
Table B.1 DefeCt LOQ. oot e e 390

XXii

LIST OF FIGURES

Figure 5.1 Change 1 Concept l0CatioNueiiiiiiiieee e 35
Figure 5.2 Change 1 Impact ANalySiS...........uuuiiiiiiiiieee e 36
Figure 5.3 Change 1 Actualizationccuueiiiiiiii e 39
Figure 5.4 Change 2 Impact ANalySiS........c.uuuiiiiiiiiie e 43
Figure 5.5 Change 2 PrefaCtoringooo e 45
Figure 5.6 Change 2 Postfactoring........oooueeeiiiiiiee e 48
Figure 5.7 Change 3 Impact ANalySiS........c..uuuiiiiiiiiie e 54
Figure 5.8 Change 3 PrefaCtoringooo e 56
Figure 5.9 Change 3 Actualizationccuuiiiiiiie e 58
Figure 5.10 Change 3 Postfactoring........cocuuiiiiiiieee e 61
Figure 5.11 Change 4 Impact ANAlYSiS..........uuuiiiiieeiiiiiiiieiee e 67
Figure 5.12 Change 4 Prefactoringooooiiieiiieeee e 69
Figure 5.13 Change 4 Actualizationc.uuiiiiiiie e 72
Figure 5.14 Change 4 Postfactoring........cocuuiiiiiiiiee e 73
Figure 5.15 Change 5 Impact ANalySiS..........uueiiiiieeiiiiiiiiiieiee e 78
Figure 5.16 Change 5 Prefactoringooooeeieiiiiiee e 82
Figure 5.17 Change 5 Actualizationcuuuiiiiiiie e 83
Figure 5.18 Change 5 Postfactoring........cocuueiiiiiieie e 85
Figure 5.19 Change 6 Impact ANalYSiS..........uueiiiiieeiiiiiiiieieiee e 90
Figure 5.20 Change 6 Actualizationcc.uuiiiiiiie e 93
Figure 5.21 Change 6 Postfactoring........cccuviiiiiiiee e 95
Figure 5.22 Change 7 Actualizationuuviiiieeiiieeeeee e 102

Figure 5.23 Change 7 Postfactoring........cc.uuueiiiiiiiiiieeeeee e 105

Figure 5.24 Change 9 Impact ANalySiS..........uueiiiiiiiiiiieieeee e 112
Figure 5.25 SIP RErationcooouiiiiiiiiic et 115
Figure 5.26 Search FEAtUIeoooi e 116
Figure A.1 Change 1 Concept Location UML..........ocooiiiiiiiiiie i 150
Figure A.2 Change 1 Impact AnalysiS UML..........coooiiiiiiiiieee e 154
Figure A.3 Change 1 Actualization UMLccooiiiiiiiiiie e 157
Figure A.4 Change 1 Postfactoring UML.........coooiiiiiiiiiiiieee e 160
Figure A.5 muCommander with search Windowcoooiiiiiiiiiiineee e 164
Figure A.6 muCommander Toolbar with Search icon circledccccoviiieiiiiiieeenne 164
Figure A.7 Basic Search Feature WiNdOWccooiiiiiiiiiiiiiiee e 165
Figure A.8 Change 2 Impact AnalysiS UML..........coooiiiiiiiiieie e 169
Figure A.9 Change 2 Prefactoring UML ... 171
Figure A.10 Change 2 Actualization UMLoooiiiiiiiiiiiieee e 175
Figure A.11 Change 2 Postfactoring UML........ccoooiiiiiiiiiiiiiieee e 182
Figure A.12 Search window before Recursive search Changecccccceeeeiiiiiiiinnen. 190
Figure A.13 Search window after Recursive search Changeccccocieiiiiienenne 191
Figure A.14 Search window with new input features circled.............cccoooieiiiiiincnne 192
Figure A.15 Search window with search runningcccceeevieiei i 192
Figure A.16 Search window with invalid directory error messagecccccceeeeeeeuvnnneen. 193
Figure A.17 Change 3 Concept location UMLccccuiiiiiiieiei i 196
Figure A.18 Change 3 Impact AnalysiS UML..........coooiiiiiiiiieiei e 200
Figure A.19 Change 3 Prefactoring UMLcoooiiiioiiiieeeee e 203

XXiV

Figure A.20 Change 3 Actualization UML ... 207

Figure A.21 Change 3 Postfactoring UML.........coooo e 216
Figure A.22 Search window before Recursive search Changecccccceeiiiiiiiinneen. 232
Figure A.23 Search window after Recursive search Change............ccccoccieeiiiiiiecnns 233
Figure A.24 Search window new input features circled...........cccociieiiiiiieciiiiiieee e 234
Figure A.25 Search window after search..........cccoo 235
Figure A.26 Change 4 Impact AnalysiS UML..........oooiiiiiiiiiiieeeeeee e 239
Figure A.27 Change 4 Prefactoring UMLccooi e 241
Figure A.28 Change 4 Actualization UML ... 247
Figure A.29 Change 4 Postfactoring UML.........ccooo e 257
Figure A.30 Search window before Date Search Change...........ccocveiiiiiiiiiiiiiieecens 267
Figure A.31 Search window after the Date Search Change............ccccoeeiieiiiiiiieecnnns 268
Figure A.32 Search window with date search circled............cccoiiiiiiiinie e 269
Figure A.33 Search window with date search calendar............cccccocveiiiiiiiiiiiiiecnns 270
Figure A.34 Change 5 Impact AnalysiS UML..........ooooiiiiiiiiiieeeeee e 277
Figure A.35 Change 5 Prefactoring UML ... 281
Figure A.36 Change 5 Actualization UML ... 289
Figure A.37 Change 5 Postfactoring UML..........oooo e 293
Figure A.38 Search window before Case Sensitive Change..........cccccoeevveeiiiiiieeeenns 300
Figure A.39 Search window after Case Sensitive Change...........ccccccoviiieiiiiiiiiecnns 301
Figure A.40 Search window case sensitive search feature circled.............cccooounnneee. 302
Figure A.41 Search window after a case sensitive search has finished...................... 303
Figure A.42 Change 6 Impact AnalysiS UML..........oooiiiiiiiiiiieeeeee e 310

XXV

Figure A.43 Change 6 Prefactoring UML ... 312

Figure A.44 Change 6 Actualization UML ... 317
Figure A.45 Change 6 Postfactoring UML..........ooooiiii e 324
Figure A.46 Search window before the Extension Search Change..............coouunneee. 335
Figure A.47 Search window after Extension Search Change............ccccccceiiiiiiinnen. 336
Figure A.48 Search window Extension Search Feature circled...........ccccccoiiiinnnnen. 337
Figure A.49 Search window valid text in extension field............cccooveiiiiiiiiiiiies 338
Figure A.50 Search window invalid text in extension field.............cccccoviiiiiiiiiiieec s 339
Figure A.51 Search window Extension Search Change.........cccccccovveiiiiiiieciiiiiieeeeene 340
Figure A.52 Change 7 Impact AnalysiS UML..........oooiiiiiiiiiieeeee e 343
Figure A.53 Change 7 Actualization UML ... 347
Figure A.54 Change 7 Postfactoring UML.........ccoooiii e 356
Figure A.55 Search window before Properties Search Changecccccceeiiiiiiinneee. 369
Figure A.56 Search window Properties Search Changec.oooiiiiiieeiiiiiiiiiee, 370
Figure A.57 Search window Properties Search circled............cccocoiviiiiiiiiiiiiiiece 371
Figure A.58 Search window Archive checked, Directory disabled..............ccceounnnnee. 372
Figure A.59 Search window search running, returning Directories........ccccccceeruunnnenn. 373
Figure A.60 Change 8 Impact AnalysiS UML..........oooiiiiiiiiiiiieeee e 375
Figure A.61 Change 8 Prefactoring UML ... 376
Figure A.62 Change 8 Actualization UML ... 378
Figure A.63 Change 9 Impact AnalysisS UML..........oooiiiiiiiiii e 383
Figure A.64 Change 9 Actualization UMLcoooiiiiiiiiiii e 385

XXVi

Chapter 1
Introduction

The field of software engineering is over 50 years old; in his in press manuscript,
Rajlich gives a brief history [1]. Originally, mathematicians and engineers thought
software development was more of an art form than a defined process. These first
software engineers managed to produce a variety of complex, working software.

1.1 Waterfall Model

As time went on software engineers came to a point where it was necessary to
move to a defined process modeled after processes in other engineering disciplines
known today as the waterfall model. This model had four stages:

1. Requirements

2. Design

3. Implementation

4. Maintenance

In the waterfall model each stage must be completed before the next stage is
started. To begin, the software engineers would collect requirements from the
stakeholders. Then they would use the gathered requirements to design the entire
system. Once they completed the design they would implement the program and
release it to the users. When the users reported problems, the problems would be fixed
during maintenance.

This model ran into significant complications because the requirements of
software are volatile. In large programs, the requirements often change so drastically

while the software engineers are performing the first three steps that programs

delivered are completely different from the stakeholders’ current requirements. This
problem with the waterfall model was famously described by Brooks [2].
1.2 Agile Manifesto

Since Brooks published his book in 1975 software engineers developed new
processes of software development. In 2001 a group of software engineers drafted the
Agile Manifesto [3] that summarizes the foundations of these new processes:

“We are uncovering better ways of developing software by doing it and
helping others do it. We value:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.”(p. 2)

The principles of the agile manifesto do not declare that processes,
documentation or any other workproduct is unimportant, but rather just a reminder that
the most import workproduct is the program along with the people who write it. The agile
manifesto is popular, it has over 10 thousand signatories [4]. Many processes include
the agile principles and research shows them to be successful; a selection is discussed
in more depth in Chapter 2. Agile principles have become so widespread that processes
in other engineering disciplines have defined their own, such as the Integrated Project
Delivery for the construction industry [5].

1.3 Solo Iterative Process Experience Report

This thesis is an experience report of the Solo lterative Process (SIP) as defined
by Rajlich [1]. SIP describes a process of a programmer working alone on a software
project and it belongs to the group of iterative evolutionary processes. It shares many

characteristics with team iterative processes including repeated software change (SC),

baseline build, elicitation and analysis of requirements for the product backlog, and so
forth.

This thesis describes an implementation of a new feature by enacting SIP on a
medium sized open source program. The feature is implemented in an iteration that
consists of several software changes, each adding new functionality or fixing a bug. It
also draws on the programmer’s experience to present lessons learned about of the
individual phases of SC after performing multiple changes.

Chapter 2 surveys the previous work and Chapter 3 describes the SIP process
model. Chapter 4 describes the subject program, technologies involved, and a high
level description of the feature to be implemented. Chapter 5 contains the description of
the SIP enactment that implements the new feature. Chapter 6 contains the
measurements and discussion of the experience and Chapter 7 contains conclusions

and future work.

Chapter 2
Previous Work

Many different software processes are in use. Much research has been done and
continues on these processes, their tasks and the tools used to implement them. This

chapter details a current state of the art selection of these processes, tasks and tools.

2.1 Software Processes

The field of software engineering defines software processes for programmers to
use to produce high quality programs. Research has defined many software processes
and gathered data to show that these processes help programmers produce the
intended high quality programs. This section briefly looks at why agile methods of
software evolution are used; then looks more in depth at 2 solo processes and an

assortment of team software processes based on software evolution.

2.1.1 Software Evolution

Even with the amount of research and industrial use of software evolution, there
are still software engineers who use other methods of software development and
question the need for software evolution. This is addressed by Lehman [6], who draws
from personal experience and the wealth of research done on software evolution to
argue software evolution is currently the most effective approach to develop software.
He provides examples of different types of software that benefit from software evolution,
but also presents a general argument that software evolution is necessary because the

domain of software itself evolves, also called the volatility of requirements.

2.1.2 Solo Software Change

There are many well defined team based software evolution processes;
however, a solo programmer can also use a process. Previous work in software
processes for a single programmer has successfully show a solo programmer can
produce high quality software; it includes work by Febbraro and Rajlich [7]. They did an
initial design of a simple point of sale program and then used SC to add functionality.
The results were compared to a version of the program created through object-oriented
design and they conclude that SC produces a simpler design. They also discuss the
important role of refactoring in SC. The point of sale program was made using the SC
process presented by Rajlich and Gosavi [8]. They identify the best practices in a how
to process for changing object-oriented software. It starts by identifying the concepts of
the change, identifying the software modules to change, then preparing, changing and
cleaning up the code after the change through refactoring. It also includes verifying the

software during the change.

2.1.3 Personal Software Process

Another software process for a solo programmer is the Personal Software
Process (PSP) [9]. This process builds on a programmer’s preexisting abilities and is
intended to prepare them for a team process. It is taught through a series of ten
programming tasks, where the student keeps track of a battery of metrics [10]. During
each task they learn from their mistakes to create higher quality software more
efficiently. Various studies have shown PSP to improve performance in both university
and industrial settings, such as one by Ferguson, Humphrey, Khajenoori, Macke and

Matvya [11]. However, the metrics used many PSP case studies are mainly the data

collected by the users of PSP. Johnson and Disney believe the PSP data is error prone
and outside metrics would be a better indicator [12]. They do admit that outside metrics
are difficult to obtain, even when simple, such as cost-effectiveness. Additionally, even
after calling into question the data showing the effectiveness of PSP, they still believe in
it, “... both of us consider it to be one of the most powerful software engineering
practices we have adopted in our careers.”(p. 343) Although, they rely on the data they

believe erroneous and anecdotal evidence to support their opinions.

2.1.4 Team Software Processes

There are many team software processes; many of the challenges faced by a
solo programmer are also faced by teams of programmers. The volatility of
requirements is one notable shared challenge, where the team tasks may be applicable
to a solo process. This section will look at a selection of team processes and their view
on dealing with the challenges of software engineering.

One team software process is SCRUM as defined by Schwaber [13]. It accounts
for difficulties of industrial software production; some of these are realities of any
business, such as time pressure and competition, while others are more specific to
software, such as the volatility of technology and how it reduces the availability of
programmers. It has flexibility built in with the intent to allow programmers to account for
the volatility of software development; planning is only done for short periods of time,
known as sprints. At the end of a sprint the current state of the project is reassessed
before the next sprint. Rising and Janoff [14] explain how SCRUM is suited to small
teams of programmers. They present a picture of chaos for software development in

small teams, because of requirement’s volatility. They continue that small teams can

limit the chaos by using SCRUM and support their contention with experience reports
using SCRUM.

Test-Driven Development as presented by Martin [15] is an agile process that is
based on writing tests, then production code that passes the tests. He lists the
processes three laws:

» “You may not write production code unless you’ve first written a failing unit
test.

» You may not write more of a unit test than is sufficient to fail.

*You may not write more production code than is sufficient to make the

failing unit test pass.” (p. 32)

Although he admits the laws are more of guidelines, he does argue the tenets produce
a structurally different code that is superior to code produced using other software
processes. This is because the code will be error free, free of bloat and deadlines will
be met. He also argues another advantage is that by definition, there will be a
comprehensive regression test suite that will encourage refactoring.

Extreme Programming (XP) is another agile process that has a defined set of
practices the agile team follows. Muller and Tichy study issues with a subset of the
practices while introducing it to programmers who are accustomed to using other
processes [16]. They find that some of the practices such as writing tests before writing
production code and only designing a small part of a program at a time are difficult for
some programmers to accept. Furthermore, while the programmers enjoy pair
programming and believe it produces high quality code, both the programmers and

authors are unsure of its value, especially when writing simple code. They conclude that

its implementation requires the team to be tightly managed and there will be difficulty
scaling XP to large teams.

Cockburn and Highsmith claim that the common factor in agile processes is the
quality of the people implementing the process [17]. They present the argument that,
“people trump process”(p. 131) in many of the common agile processes such as XP,
SCRUM and others. The one factor they consider to be able to overtake quality people

is organizational politics.

2.2 Software Tasks

Solo and team software processes are composed of tasks that programmers
perform to write programs. Besides software process granularity, previous research in
software evolution has also studies on the individual phases and tasks. Much of the
research into this area explains a method any programmer can use to complete a task.

This section looks at some of these tasks.

2.2.1 Concept Location & Impact Analysis

Concept location techniques in object-oriented software is studied by Marcus,
Rajlich, Buchta, Petrenko and Sergeye [18]. They start by explaining a method to bridge
the relationship between human concepts and code concepts then explain three
concept location techniques for object-oriented code: text based searching (grep),
dependency search and information retrieval techniques (IR). They give examples of
how and when to use each technique to show some advantages and disadvantages of
each, especially in respect to code concepts that are explicit and implicit.

Concept location was also studied by Chen and Rajlich [19]. They look in depth

at dependency search and its requirements. The requirements focus is on what would

be required for an automated tool to assist with concept location. They define a graph to
with edges made up of function calls and data flows specifically for this purpose.

Ren, Chesley and Ryder look at impact analysis by presenting 2 tools that work
together to find the impact of a SC [20]. They conclude their tool is effective because it
is able to find the reason why the majority of regression tests fail after changing code
they are unfamiliar with. Additional research into impact analysis and change
propagation by Han [21] looked at how both could be expanded beyond software
maintenance tasks and also be used during software design. This appears to be a
precursor step in the acceptance of software evolution techniques. He also performs

impact analysis and change propagation directly on the code.

2.2.2 Refactoring

Refactoring is well defined by Fowler [22], who explained basic refactorings such
as extract class, inline class, move field and others. Refactoring is also regularly
updated by Fowler and the software community through his website [23]; it has over 90
examples of refactoring currently. Mens and Tourwé [24] outline a process to that list
steps the programmer should take for a successful refactoring. This provides
programmers process for successful refactoring and includes the concept that the

programmer should include all the artifacts in a refactoring.

2.3 Software Process Tools
The research into software evolution has not been restricted to abstract
processes and tasks; but has also implemented and studied concrete tools to assist

programmers with the processes and tasks. This section looks at one tool particularly

10

suited to the SC process (section 2.1.2) and some well accepted software evolution

tools.

2.3.1 JRipples

Buckner, Buchta, Petrenko and Rajlich present a tool to assist with the tasks of
concept location, impact analysis and actualization during SC [25]. The tool provides
different methods for concept analysis, such as grep and dependency search. It also
identifies dependencies in a program and tracks a programmer’s visits to them to assist
with impact analysis and change propagation. The authors claim an automated tool is

better at these tasks and frees the programmer to do steps better suited to humans.

2.3.2 Other Software Tools

Other tools that assist with the tasks of SC are JUnit presented by Gamma and
Beck to assist with verification [26]. Another tool for verification is Abbot that adds
functional test for GUI components to JUnit [27]. To assist the programmer with
measuring verification coverage, Yang, Li and Weiss review a variety of different tools
and conclude none of the coverage tools is superior to all others; a coverage tool should

be selected based on the program and project [28].

11

Chapter 3
Solo lterative Process

Agile methods of software evolution focus on programmers talents to produce
quality software [17]. This experience report used one such process, the Solo lterative
Process (SIP) [1]. It is a process that a single programmer can use to create high quality
software and meet time and resource constrains. SIP helps a solo programmer with
technical goals, such as meeting the stakeholders’ requirements and the business
aspects such as paying bills. The term iterative in SIP is important to an agile method; it
means that this is a process that is repeated to obtain a finished product. An iterative
process is important so that it can adjust for the reality of volatility in software
development.

At the core of SIP is the task of SC, which has been successfully used in
research and university classrooms [29]. However, SIP is more than exclusively the task
of changing software; it includes the following tasks and workproducts necessary for a
programmer to meet the responsibilities of software engineering:

1. Product Backlog — add, organize and choose a user stories to implement
2. Software Change — implement a change request

3. lteration/release — a special commit that can be distributed to users

4. Measuring SIP — logs the programmer keeps

SIP assists with planning by recording time spent of each task and using it to
estimate future effort. This allows the programmer to use resources more wisely,
especially his most important resource, time. If the programmer does not keep track of

his time, it will be difficult for him to estimate the effort required for future projects, if a

12

programmer cannot estimate time accurately, it will be challenging to meet users

expectations and consequently to pay bills.

3.1 Product Backlog

The Product Backlog is a collection of user stories that need to be added to the
software through change requests. User stories are simple explanations of a change a
stakeholder would like implemented in the code. They are added to the backlog by any
of the project’s stakeholders, such as users and the programmer. This is the only task of
SIP that includes stakeholders besides the programmer.

Four types of change requests are made from the user stories; they are
categorized by their purpose. If a user asks for a bug in the program to be fixed it is a
corrective change request. If the request is to add new functionality it is a perfective
change request. If the programmer adds a change request to make the source code
easier to change in the future it is a protective change request. If a change request asks
for the software to be compatible with a version of a technology it is an adaptive change
request.

The user stories are entered into a spreadsheet to limit the scope of change
requests created from them and it also allows them to be prioritized by the programmer
whenever necessary. Other mediums such as 3”’x5” card can also be used to manage
the user stories in the product backlog. Many different criteria can be used to prioritize
the product backlog. To help keep it organized a programmer needs to have different
levels of priority. Four levels of priority (1 for high priority, 4 for low priority) [1] help the
programmer to quickly identify which user stories need to be addressed soon and which

ones can be handled at a later date. While all user stories use the same priority levels,

13

different descriptions are used to help the programmer properly categorize the user
stories. For perfective change requests, the descriptions are based on the business
value:

“1. An essential functionality without which the application is useless

2. An important functionality that users rely on

3. A functionality that users need but can be without

4. A minor enhancement” (chp. 5)
However, for corrective and adaptive change requests, the descriptions are based on
severity:

“1. Fatal application error

2. Application is severely impaired (no workaround can be found)

3. Some functionality is impaired (but workaround can be found)

4. Minor problem not involving primary functionality” (chp. 5)
For protective change request, the descriptions are based on the threat:

“1. A serious threat, the so-called “showstoppers”; if unresolved, the project is in
serious trouble

2. An important threat that cannot be ignored

3. A distant threat that still merits attention

4. A minor inconvenience” (chp. 5)

These priorities help a programmer to prioritize the product backlog, however,

they are recommendations; not all priority 1 change requests will be done before priority
2 change requests. The programmer will use other factors to decide the actual order of

the backlog. For example, the programmer may choose a priority 3 change request over

14

a priority 2, if it requires significantly less time to implement. Likewise if users
communicate dissatisfaction because of bugs, the program will choose to move
corrective change requests forward in the backlog and other categories back. The
product backlog is reshuffled in this manner as often as the volatility of the requirements

demand.

3.1.1 lteration Backlog

The iteration backlog is a subset of change requests of the product backlog. The
programmer chooses the iteration backlog at the start of an iteration of SIP, once the
iteration backlog is chosen and the iteration starts, no additions can be made to the
iteration backlog. The goal of the iteration is to complete the tasks in iteration backlog,
by performing the steps of SC on each change request in a pre-chosen amount of time.
However, if setbacks occur, the SIP programmer can extend the time of an iteration or
leave some change requests unfinished and return them to the product backlog. The
SIP programmer will evaluate the length of time available then select a set of change
requests he considers he can complete in the time frame The programmer needs to
limit the size of the iteration, because the longer the iteration the more the volatility of
requirements will set in, which means the more likely the programmer’s decisions will be

off the mark.

3.2 Software Change (SC)

This section is a summary of the model of software change (SC) presented by
Rajlich and Gosavi [8]. SC is the task inside the SIP process when the programmer
changes the source code; it is repeated for change requests in the iteration backlog.

The phases of SC along with a brief description are:

15

1. Initialization — chose a change request to implement in the code
2. Concept Location — find the place in the code that the ideas of the change
request are implemented
3. Impact Analysis — examine the code neighboring the concept location to
determine if it needs to be changed also
4. Prefactoring — prepare the code to make the change easier
5. Actualization — implement the change in the code
6. Postfactoring — rework the code to make future changes easier
7. Verification — confirm that the code is of high quality
8. Conclusion — commit updated code to the repository
The phases should be done in order with the exception of verification, which is
done in concurrence with prefactoring, actualization and postfactoring. Also, the phases
are a guideline for each change; individual phases such as concept location when the
programmer is familiar with the location of concept extension or postfactoring during a
trivial change request may be skipped if the programmer determines it is not necessary.

The following sub sections describe each of these phases in more detail.

3.2.1 Initialization

Initialization is the start of a change request in SC. Since the SIP programmer
already selected the iteration backlog, initialization is simply choosing one of the user
stories from the iteration backlog to be implemented. However, some user stories may
be too large to implement in one change request; in these cases the SIP programmer
divides the change request into multiple change requests. Each of these change

requests implement part of the functionality, for example, a change request could be

16

divided into three change requests, one for the GUI, one to check the input and one with
an algorithm that processes the data. The programmer then chooses to perform the GUI
change request first and update the code by committing it to the repository. This helps

the user to stay organized and measure progress.

3.2.2 Concept Location

Concept location begins with the programmer reading the change request and
separating out the concepts that need to be found in the code, which is called extraction
of significant concepts. For example, a program that explorers an operating system’s file
system receives the change request, “Add a basic search function. The search should
allow a user to search in the current directory for all or part of the title of a folder or file
and return a list of the matching files and directories.” The relevant concepts are:

e search

e current directory

e search term

e maitching files and directories

Words such as “add” and “should” are instructions to the programmer and are
discarded. The programmer then determines if the concepts are likely to appear directly
in the code, which is an explicit concept and often easier to find. For example, “current
directory” is a concept that is likely to appear directly in the code and is therefore, an
explicit concept. A concept that is unlikely to appear directly in the code is an implicit
concept and generally more difficult to find. An example is “search”, since the change
request requests search functionality added to the program, it is unlikely that the code

contains search directly.

17

The programmer also adds intensions or synonyms and connotations of the
concept. In the change request the programmer adds a simple synonym of directory,
folder and determines “matching files and directories” includes the file or directory’s
name. Intensions can be very complicated, in Linux the data structure used to store
directory information is called an “inode” [30], another possibility might be to group
directories with other files, such as archive files and call the group “browsable”.

One technique used to find an intension in source code is to do a simple text
search. This is commonly known as “grep”, from the UNIX search, but modern
development tools have many different variations. In the example above, the
programmer might choose to search for “directory” or “folder” at the same time. If the
search returns a reasonable number of results, the programmer will visit the classes to
determine if they contain the concept extension. If the programmer cannot find the
concept extension, the added knowledge obtained from unsuccessful searches helps
him create new searches. If the search returns no results or too many results for the
programmer to visit, he can revise his search to include more terms, fewer terms or
combinations of terms. These grep searches are not always successful, if the
programmer is unfamiliar with the code, he may not be able to guess the intensions of
the extensions implemented in the code.

Another concept location technique is called a dependency search. The
programmer begins the search in top level class, in many programming languages the
class with the main() method. The programmer then visits the classes that handle parts
of the top level class’s responsibilities, known as suppliers and if necessary the

programmer visits the suppliers of the suppliers recursively until the concept extension

18

is located. If the programmer takes the wrong path, he backtracks to a higher level class
and takes a new path to find the concept extension.

The programmer chooses the appropriate search strategy based on knowledge
of the source code. If the programmer has very limited knowledge at the outset of
concept location, he may start with a grep search. If he gains the knowledge that the
code has poorly named identifiers, he may decide to switch to a dependency search.
Likewise, he may use a combination of strategies, such as visiting a class that is a grep
search result, then switch to a dependency search and visit its suppliers to locate the
concept extension. Ultimately, the programmer creates the initial impact set, which

contains all the classes with a concept extension.

3.2.3 Impact Analysis

After the programmer locates the main concepts in the code, he needs to
account for the effect of changing the classes of the initial impact set. The programmer
does this by visiting the classes that have dependencies of the classes in the initial
impact set, if these classes also need changes; they are added to the estimated impact
set. Dependencies are relationships where one class allows another class to handle
some of its responsibility. If a class handles a responsibility for another class, it is a
supplier, which was previously defined (section 3.2.2) and if the class depends on a
class for part of its responsibility it is called a client. There can be a class that is not
impacted by the change request, but communicates between 2 classes that are
dependent on each other. These intermediary classes propagate the dependency and

are not added to the estimated impact set. However, the classes that have

19

dependencies with the propagating class should be visited to ensure they are not also
impacted.

A simple example of impact analysis is a change request that requires a
method’s return type to change from a type of int to a type of 1ong. The programmer
must visit all the classes that include a call to this method because they are clients of
the method. The programmer then must determine if these classes must be changed to
match the new method return type. If the method is the parameter for an overridden
method that also has a version that accepts a long, such as the Java
System.out.print () method, the class is not added to the estimated impact set.
However, if the client stores the impacted method’s return value in a field of type int,
the client field’s type also needs change to a type 1ong and the class is added to the

estimated impact set.

3.2.4 Prefactoring

Prefactoring is refactoring done mainly to make it easier to actualize a change.
Refactoring is rewriting source code without changing its functionality, such as dividing
a large class into 2 classes by extracting a class. An example of prefactoring is
extracting a super class from a class. The programmer can then actualize the change
by incorporating another class that inherits from the base class. This way the
functionality in the super class does not have to be duplicated and classes are not
impacted when they switch between the implementations of the super class using

polymorphism.

20

3.2.5 Actualization

Actualization is the procedure of changing the existing code or adding new
classes to add new functionality. The programmer changes the code of the classes in
the estimated impact set and adds new classes to the code if necessary. The
programmer may realize that some classes were missed during impact analysis and
need to be changed or that they do not actually need to be modified. The classes that
are changed during actualization or prefactoring are the changed set.

Actualization can be as simple as modifying a single line of code (LOC) or as
complex as changing and adding large numbers of classes. An example of a small
change is fixing a bug by changing the limit condition of a loop to prevent an array out of
bounds condition. This is a very simple actualization, but it is the entire actualization of a
corrective change request.

Larger changes require new classes to be incorporated into the code. The
classes may be incorporated through different techniques, four used in this experience
report are: polymorphism, replacement, as a new supplier or as a new component.
Polymorphism can be the easiest method; the programmer creates a new class that
inherits from a super class. This is easy because classes that are clients of the super
class can use the new class without being impacted.

Replacement is used when a basic class is removed from the code and a more
complex class is put in its place. An example of replacement is replacing a class that
finds words in a text document with one that not only finds the exact word, but also
synonyms of the word. The basic class just did a simple text match; while the new class

needs to access a database to get synonyms and then it must find any of the words

21

from the set of synonyms. The new class is much more complex; it requires much more
than just changing or adding a few methods and is therefore done by writing a new
class and then replacing the basic class.

Incorporation of a new supplier is used to expand existing functionality. A new
class is added to the source code and an object of it is added to an existing class. The
new supplier takes on responsibility for the existing class. One example of incorporation
of a supplier is a change request to add persistent data storage; a new supplier is
added to store the existing data in a database, text file or other technology.

Incorporation of a component is similar to replacement, except that nothing is
removed. This is generally done when new functionality is added. An example of
incorporation of a component is a class that saves the history of user input. Before the
incorporation of the component, the source code takes user input from a supplier class
and performs a task with it and sends it to a client. The new component class will also
get the user input from the supplier class, store it and provide it to the same client as the

other component upon request.

3.2.6 Postfactoring

Postfactoring is refactoring done after actualization and is very similar to
prefactoring. The difference is that it does not add value to the current change request;
rather its purpose is to make future changes easier in general. Some programmers may
not see the value in postfactoring, but it is important. It is an investment in the code;
without it code decay can become very severe making future change requests difficult if

not impossible.

22

A simple but effective example of postfactoring is changing the name of an
identifier. For instance, a programmer may use the name i for an iterator in a loop that
iterates through the rows of table. If the programmer changes the name i to row it will
be easier during future change requests for programmers to know what the loop does.
Individually, small changes like this may not seem significant but collectively they can

make change requests significantly easier.

3.2.7 Verification

Verification is different from the other phases of SC because it is integrated with
the phases of prefactoring, actualization and postfactoring. Its purpose is to reassure
the stakeholders that the code meets the requirements placed upon it and is of high
quality. However, because of the essential difficulties of software, no amount of
verification can guarantee its quality. Some may consider it a synonym for the various
forms of testing, such as unit and functional, but it also includes other types such as
code inspections.

Unit tests are named such because they each test one unit of the source code.
One unit may be a single method; however, it can be larger, if a method has suppliers
the unit could be the method and its suppliers. Unit testing is white box testing meaning
that the programmer can see the source code when writing and running test. A test can
test multiple conditions of a unit of code or can have multiple tests directed at it, for
example, a programmer could write 2 tests for the following method:

public void addToList (String stringToAdd) {

if (stringToAdd == null)
throw new NullPointerException();

listOfStrings.add(stringToAdd) ;

23

One test calls the method with a null value and one with a String value or both
conditions could be in a single test. Multiple tests are preferable because it makes the
test’s goal very clear; if a test fails, it is very easy for the programmer to identify the
reason often just by the name of the test.

Another type of verification is functional testing. It tests the functionality of a
program; it is not concerned with the structure of the code, but rather if it performs as
desired. Functional testing can be either white box testing, like unit testing or black box
testing, where the programmer does not have access to the code. It is especially useful
to test GUI components that require user input.

Verification can also include code inspection. It is not an automated test like unit
or functional tests; but rather is the programmer reading the code. It has advantages
over automated test, because programmers are inclined to see a bug that is dependent
on a particular value, such as a divide by zero condition. Automated tests are written to
test a set of values, if the set does not include the value that creates the defective
condition, the automated test will not detect the bug. However, programmers are prone
to miss errors such as misspellings that automated test can easily detect. Therefore, a
comprehensive verification plan will include multiple types of verification.

The code implementing the tests and only code that is only necessary to support
the tests is known as harness code. While the code tested that implements the features
of the program is production code. Whatever types of tests the programmer chooses it
is important that a large percentage of the production code is verified. The metric of
verification is called coverage. Test coverage can be measured in many different

granularities; one is the statement level. In the unit test example method, there are three

24

statements, one on each LOC inside the method. However, in general, not every LOC is
a statement. Statements are executable LOC, such as ifs, switches and returns.
Variable declarations, package imports and such are not statements. A comprehensive
verification strategy includes unit tests that execute a high percentage of statements.
However, even if every statement is covered, bugs can still be present. There are
multiple reasons for this, some rooted in the core principles of computer science, such
as the halting problem, but in other cases the code may be correct, the bug is because
the programmer did not understand the requirements of the user. Additionally, obtaining
complete statement coverage can be very time consuming for some code, such as
exception handling. In this case the programmer’s time is better spent on other tasks.
SC does not define a level of code coverage; the stakeholders must determine the
proper level of coverage to make good use of resources and meet their quality

requirements.

3.2.8 Conclusion

The phase of conclusion ends each SC. The programmer updates the source
code in the repository with the changed code files. This saves the change as part of the

code base and incorporates it into the code.

3.3 SIP Workproducts

The programmer produces specific workproducts to keep track of his progress.
They provide an outline of SIP programmer’s activities, so that he can make decisions

that use his resources more effectively.

25

3.3.1 Basline

A baseline is a special code update that is well verified and does not contain any
partially implemented functionality; therefore it is a good point to return to if a defect is
found later. However, not all change requests leave the code in a good state for a
baseline. For example, if a GUI is implemented during a change request, but requires
more change requests to complete its functionality, the other 2 change requests would
need to be redone. Therefore, the programmer would wait until the functionality is
completed to create the baseline. At that point, the program is stable and no change
requests would need to be redone if the programmer returned to it because of partial
functionality.

A SIP programmer does not need to worry about conflicts with other
programmers because he is working alone. However, baselines are still important;
because the code is not seen by other programmers a SIP programmer is especially
prone to habitualization or seeing an erroneous code as correct. The more often
baselines are made the less work the programmer will lose, if it is necessary to return to

a previous baseline.

3.3.2 lteration/release

The iteration and release phase of SIP is a special baseline. It marks the end of
an iteration of the SIP process. The iteration ends either because the programmer
completes all of the change requests in the iteration backlog or because the
programmer decides to end the iteration before the iteration backlog is empty. At the
end of an iteration the source code should be in a complete and high quality state, but

the programmer still must decide whether or not to release the program to the users or

26

to do more iterations. The programmer makes this decision mainly based on the current
business environment. If the SIP programmer believes the program is ready to be
released to users, he will release it. However, if a competitor has released a program
with functionality that the current iteration cannot compete with, the programmer will
choose to wait for a subsequent iteration to release. Additionally, other business
realities may override technical issues; if the programmer is running low on resources,
he may choose to release it. In either case the next step is to return to the product

backlog and start the next iteration.

3.3.3 Time Log

The most important one is a time log, which is a record of the amount of time the
programmer spends on each task. For tasks that include changing the code the
programmer also tracks the number of LOC added. This data helps the programmer
estimate the effort of future tasks; the programmer can use the data from a previous
change request that is similar to a current change request as an estimate so he can
plan his time accordingly. This helps the programmer to manage his time and meet the

stakeholders’ requirements.

3.3.4 Defect Log

The programmer also keeps a defect log; a record of all defects in the program. It
includes the date the defect was found, the task performed when the defect was found,
its location, its origin and when it was fixed. This helps the programmer track the time it

takes to fix defects and the tasks that most often introduce them.

27

3.3.5 Iteration Backlog Table

When the programmer chooses the iteration backlog, he will also create an
iteration backlog table. In this table the programmer will estimate the time required for
each change request using historical data from the time log. As the programmer
completes change requests, he will update the table with the actual time required. If the
programmer stays on schedule he will complete all the change requests in the iteration
backlog. If he falls behind schedule he can still complete the all the change requests in
the iteration, however, other requirements may force him to complete the iteration and

return the unfinished change requests to the product backlog for a future iteration.

28

Chapter 4
Solo Iterative Process Experience Report

This chapter presents the source code project used in this experience report and

the technologies the programmer depended on.

4.1 muCommander

The program muCommander is an open source, cross platform, advanced file
manager program [31]. It expands upon an operating systems native file manager, by
offering an expanded, customizable view. Additionally, it supports advanced features
such as browsing file systems over FTP and other connections and can browse in
archive files.

The code of muCommander is 76 KLOC and has 1,070 code files. It is written
entirely in Java. It has a JUnit [32] test suite that includes 441 tests covering 18.1
percent of the statements. Its GUI components use the Swing Java Foundation Classes

[33] and the unit tests are dependent upon JUnit.

4.2 Eclipse Technologies
The Eclipse IDE [34] is a popular Java development environment. The
programmer chose it because of the wide variety of plugins available for it. Each of the

plugins used and the reasons for choosing them is discussed in the next sections.

4.2.1 JRipples

JRipples is an Eclipse plugin that assists programmers with the tasks of
incremental change [35]. It has three different phases concept location, impact analysis
and change propagation. It assists programmers by displaying dependencies of Java

classes. It was extensively used during this project.

29

4.2.2 Clover Java Code Coverage & Test Optimization

The programmer used the Clover Java Code Coverage & Test Optimization tool
to measure test coverage [36]. Clover has many metrics, including statement coverage,
which was used as the test coverage metric. Clover has many nice features, such as
the ability to create custom metrics. All metrics collected through Clover use the
“Application classes” setting which is equivalent to the production code file definition in
this project. This means that the metrics do not include the statements or methods in

the harness.

4.2.3 Mylyn & TaskTop

Mylyn is included with Eclipse [37]; it assists users in managing and measuring
the effort of tasks. The programmer used Mylyn for its timing tools. To record and export

timing data in the minute granularity requires an additional plugin called Tasktop [38].

4.3 Other Technologies
4.3.1 Abbot Java GUI Test Framework

muCommander had no functional tests, which should be included in a complete
verification strategy. The Abbot Java GUI Test Framework is a technology that helps
build functional test [39]. It is based on the JUnit test framework and the Java Virtual
Machine automated robot classes. It has classes added to help a programmer test
many types of Swing components, including JButton, JCheckBox and JTextBox. The
programmer used Abbot to write functional tests that test the GUI components of the

change requests.

30

4.3.2 Subversion & TortoiseSVN

The project required a copy of muCommander to be stored on a version control
system (VCS). The programmer downloaded a copy of muCommander from its public
VCS and created a separate VCS for this experience report. He chose to use the
Subversion (SVN) VCS [40]. To download from, commit to and manage this VCS, the
programmer used TortoiseSVN [41]. It is an open source, easy to use VCS client; that

includes a diff tool.

4.3.3 DiffStats

DiffStats is a tool that extracts the number of LOCs added, deleted and moved in
a diff file created by TortoiseSVN. A moved line is a LOC that was deleted in one part of
the change request, but then added to another part of the program during the same
task. An example of moved code is a method extracted from one class to another during
postfactoring. It ignores blank and comment lines. It was developed by the programmer

specifically for this project.

31

Chapter 5
Solo Iterative Process: Experience Report

This chapter summarizes the 9 change requests the programmer implemented
for this experience report. While researching muCommander to find a needed feature
the programmer found the second question from the Frequently Asked Questions (FAQ)
on the muCommander website that reads:

“How can | search for a specific file?

At the time of writing, you can’t.
This is an often requested feature, one that we're thinking about and have
a few ideas on how to implement, but it is not there yet.” [31] (p. FAQ q. 5)

The programmer decided to use this as the user story for the iteration described
in this experience report. The programmer then familiarized himself with the subject
program before starting the iteration. He investigated the capability of the program
through experimentation and visiting the website. He then used the program as his file
explorer for 2 days. This time was not accounted for in the timing logs nor is there a
phase of the process that includes this. It is something that the programmer often does
before attempting to perform changes on a program. The time was not recorded in the
time logs.

Implementing a full-fledged search feature is too large for one change request.
Therefore, it was divided into multiple change requests. The programmer created the

product backlog in Table 5.1.

32

Table 5.1 Original Product backlog

Title User Story
Basic Add a basic search function that allows a user to search in the
1 Search current directory for all or part of the title of a folder or file, and return
a list of the matching files and directories.
2 Rggt;rrsclg/e Add the ability to search inside all directories.
3 Advanced Change the output to a table similar to the main muCommander
Output window.
4 Date Allow the user search by a date of file’s modification.
Search
Case
5 Sensitive Add capability to search by case sensitive search terms.
Search
Extension . : . . .
6 Search Add the ability to search for files with specific extensions.
7 RErTEE Add options to search for files based on their properties.
Search
Size - . o
8 Search Add the ability to search for a file by its size.
Regular
9 Expression Add capability to search by a regular expression.
Search
10 Lucene Incorporate the Apache Lucene search.
Search

During the iteration, the programmer added 2 change requests to address bugs

and did not finish all the change requests in the product backlog. Table 5.2 shows the

change requests completed during this experience report.

33

Table 5.2 Product Backlog Completed

Title User Story
Basic Add a basic search function that allows a user to search in the
1 Search current directory for all or part of the title of a folder or file, and return
a list of the matching files and directories.
2 Recursive Add the ability to search inside all directories.
Search
3 Advanced Change the output to a table similar to the main muCommander
Output window.
4 SDate Allow the user search by a date of file’s modification.
earch
Case
5 Sensitive Add capability to search by case sensitive search terms.
Search
Extension . : . . .
6 Search Add the ability to search for files with specific extensions.
7 RErTEE Add options to search for files based on their properties.
Search
Directory Choosing a directory with the file chooser doesn't update the search
8 Chooser :
B directory.
ug
9 Date Bug DateOption is not removed when disabled.

5.1 Change Request 1 Basic Search

5.1.1 Initialization

This change request is: “Add a basic search function. The search should allow a

user to search in the current directory for all or part of the title of a directory or file and

return a list of the matching files and directories.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add options to activate a search in three different ways:

a. the “Go” menu

b. the quick launch toolbar

c. a hot or virtual key combination

34

2. Create a search window where the user can enter a search term, start a
search and see the results.
3. Write a search algorithm that uses a simple loop to match the search term

with files in the current directory.

5.1.2 Concept Location

The programmer extracted the following significant concepts for the change

request:
e activate the search ¢ “Go” menu
e current directory e toolbar
e search term e search window
e matching files and directories e search algorithm

The first part of the change, activating the search functionality, will need to
conform to the methods and patterns of the current code and therefore is also the
concept to look for during concept location. The second part of the change, a search
window, the programmer planned to create as a separate class and incorporate as a
component during actualization. The programmer decided to address the third part of
the change in impact analysis, as it will probably require minor changes, if any.

The programmer started a dependency search for the concept of activating the
search feature, by marking the Launcher class, which contains the program’s main
method as propagating. JRipples added neighbors of Launcher to the set of Next code
files. Since the programmer had very limited knowledge of the program, he decided to
visit the 43 neighbors alphabetically. AbstractFile, AbstractNotifier and

ActionKeymapIO were visited and marked Unchanged. The programmer then visited

35

ActionManager; this file contains a library of all the possible actions in the program. It
is used as a central location to keep all the possible actions of the program organized.
Upon inspection, the programmer realized that this is where the search functionality
would be added, activating the search functionality will be a new action of
muCommander. This completed concept location. Figure 5.1 is a UML diagram of the

code files visited during concept location.

ActionKeymaplO

AbstractFile Launcher

+main() : void

AbstractNotifier

ActionManager

Legend

< :
Aggregation Unchanged Propagating Located Production

Association <}
Generalization

Harness

Figure 5.1 Change 1 Concept location

5.1.3 Impact Analysis
To start impact analysis the programmer switched JRipples from concept location
phase to impact analysis phase. This changed ActionManager’s mark from Located
to Impacted and created a new Next set of code files composed of 172 of
ActionManager’s neighbors. The programmer visited 16 code files and marked 3 as
Impacted, 1 Propagating and 13 Unchanged, see Figure 5.2. The impacted classes are:
e ActionManager, the class containing the concept extension

® MainMenuBar, the class that is responsible for the “Go” menu

36

e ToolBarAttributes, the class that defines the toolbar options
The change propagated from ActionManager 10 ToolBarAttributes
through ToolBar. Toolbar is responsible for creating the toolbar, but delegates the

responsibility of defining the buttons on the Toolbar to ToolBarAttributes.

ToolBarAttributes MainMenuBar FileTableModel

ToolBar ActionManager FileTable RunDialog

CommandBar ActionFactory
Legend
Association
Aggregation
ActionProperties ActionKeyMap
Generalization
Unchanged
_________________________ ActionDescriptor ActionParameters
Propagating
Impacted
NewWindowAction CommandBarButton
Production
Harness RunCommandAction ActionKeyMapReader

Figure 5.2 Change 1 Impact Analysis
5.1.4 Prefactoring

There was no prefactoring done in this change request.

37

5.1.5 Actualization

To actualize the change request, the programmer added 2 code files. The first,
SearchAction was incorporated as a supplier of ActionManager. The existing code
uses a factory design pattern [42], which the programmer followed when implementing
SearchAction by modeling it after an existing code file that implements the pattern
named RunCommandAction. The factory design pattern allows the incorporation of
new suppliers that handle user events. The advantage to using this pattern is that
change requests that incorporate a new supplier of ActionManager are unlikely to
propagate beyond ActionManager.

The second code file contains the class SearchDialog, which creates the
search window and implements the search algorithm. It is a component of
SearchAction. To create the class, the programmer copied the existing
muCommander class RunDialog, which also creates a dialog and changed it to the
current change requests requirements. The programmer did this to help match the

coding conventions of the existing code. The fields and methods of SearchDialog are:

Fields Methods

® MainFrame mainFrame ® createOutputAreal)
® ShellComboBox inputCombo ® createInputAreal()

® JTextField inputBox ® createButtonsArea ()

® JButton runStopButton keyPressed ()

® JButton searchButton ® actionPerformed ()

® JButton cancelButton switchToSearchState ()

38

® JButton clearButton ® searchCommand ()
® JTextArea outputTextArea ® addToTextArea ()
® SpinningDial dial
e PrintStream processInput
® AbstractProces

currentProcess
® Dimension

MINIMUM DIALOG_DIMENSION

e['ileSet searchResults

Once these 2 were incorporated, the search window was now a registered action
of muCommander. This allowed the programmer to implement the activation
functionality described in concept location, by adding the action to MainMenuBar and
ToolBarAttributes.

Two additional code files were added for the purpose of verification; 1 class for
unit testing, BasicSearchUnitTest and 1 for functional testing,
BasicSearchFuncTest. The addition of these test classes propagated to the class
Translator that was not discovered during impact analysis. Translator is a
supplier to searchDialog; it has a sequential coupling anti-pattern because its method
loadDictionaryFile () must be called to initialize Translator, otherwise calls to
Translator’'s other methods will throw an exception. However, if
loadDictionaryFile () is called a second time, it also throws an exception. This

false multiplicity anti-pattern preexisted in the code and meant that the new test classes

39

could not be run together. The programmer added a boolean getter to Translator to
check if the dictionary is loaded, but this does not address the sequential coupling anti-
pattern, so the programmer also added a protective change request to the product
backlog to change the Translator class to a singleton design pattern [42]. Since the
change propagated to the Translator class solely because of a harness class
requirement, it is considered part of the the harness for this change. The harness
classes will be described in verification (section 5.1.7). Figure 5.3 is a UML diagram of

the classes added and visited during actualization.

R
Legend

ToolBarAttributes MainMenuBar

Association

Aggregation

Generalization ToolBar ActionManager RunCommandAction

Unchanged

Propagating

Translator

Changed

Production

Harness

—

Figure 5.3 Change 1 Actualization

40

5.1.6 Postfactoring

During postfactoring, old comments were deleted and new comments added.
Additionally, the following fields in SearchDialog were copied from RunDialog, but
were not used in the class so they were deleted:

® ShellComboBox inputCombo

® JButton runStopButton

® JRButton clearButton

e PrintStream processInput

® AbstractProces

currentProcess

5.1.7 Verification

Functional and Unit testing was added for the SearchDialog class. During
verification no bugs were found. This is most likely due to the simple nature of the
request. There was an issue with the single functional test in BasicSearchFuncTest.
It runs and passes its assertions but ends displaying a gray result, instead of the green
for pass or red for fail. This occurred because a java.lang.System.exit () call
was made by a class in the preexisting muCommander code before JUnit could make
its own call to the method . This causes the Java Virtual Machine to close JUnit before it
can finish running and display green or red. It also meant that only 1 functional test
would run, if a second test was added, it would be skipped. The programmer did not
know the cause of the problem during the change request; he researched the issue and

fixed it during change request 2 (section 5.2.4). Table 5.3 shows the statement level

41

coverage of the test harness for the production code files added during this change

request.
Table 5.3 Change 1 Statement verification coverage of production code files
Coverage of Application
. Tests | Bugs
Code File Total Covered .
% |Failed| Found
Statements|Statements
SearchAction 7 7 100.0
2 |SearchbDialog 100 87 87.0

5.1.8 Conclusion

The programmer committed the updated code to the repository as a new
baseline. For the summary of the code files visited added and changed during change

request 1 see Table 5.4.

Table 5.4 Change 1 Summary

Number in Code files
Inspected | Estimated Added during Total
Concept | Impact Chgn?ed .
Location Set e Pre | Act | Post | Project
5 3 4 0 4 0 1,074

5.2 Change Request 2 Recursive search
5.2.1 Initialization

This change request is: “Add the ability to search inside all the directories.”

To help understand the change request, the programmer envisioned the
following functionality for the change:

1. Enhance the search algorithm to:

a. recursively search in directories it encounters

42

b. start a search in a specified directory
2. Add GUI components
a. a checkbox to enable recursive searching
b. atext field to enter directories
c. afile chooser to use a GUI to select a directory
d. display the path of results, in addition to the name
e. an error message if an invalid directory is chosen

3. Add ability to stop a search before it completes

5.2.2 Concept Location

The programmer gained significant knowledge from change 1; this enabled him
to extract relevant concepts from the change request and using their intensions he

converted them to following significant concepts:

e search inside — recursively search e search algorithm
e any directory e search window
¢ file system e interrupt search

After extracting the concepts and understanding the change request, the
programmer decided to search for the first concept, the search algorithm, because it will
have to change to implement recursive searches. This made concept location
unnecessary because the programmer just implemented the search algorithm in change

1 so he knew the concept location was SearchbDialog.

43

5.2.3 Impact Analysis

The concept extension was in SearchDialog; to start impact analysis the
programmer labeled it Impacted JRipples. The programmer visited all of the 16
production neighbors of SearchbDialog, identified by JRipples and marked them
Unchanged, see Figure 5.4. The programmer visited and marked following harness
code file Impacted: BasicSearchUnitTest and BasicSearchFuncTest. This

resulted in an estimated impact set of 3 code files.

Theme ThemeData ThemeManager FocusDialog SearchAction
/N —
Legend
FileTable Translator DialogToolKit
Association
Aggregation
FileTableModel MainFrame ActionProperties Generalization
Unchanged
SearchDialogl @ 1 e
Propagating
XBoxPanel YBoxPanel Impacted
BasicSearchFuncTest
Production
FileSet AbstractFile SpinningDial BasicSearchUnitTest Harness

Figure 5.4 Change 2 Impact Analysis

44

5.2.4 Prefactoring

In preparation for the actualization of this change request, the programmer
extracted 2 classes from SearchDialog. SearchDialog contained both the search
algorithm and the GUI components; if the programmer added the new responsibilities of
this change request to SearchbDialog, it would have become large and difficult to
understand. The first class extracted from SearchbDialog, SearchThread, was given
the responsibility of the search algorithm and the other, InputPanel, was extracted to
remove the GUI features displayed in the top half of the dialog that are responsible for
the user input. By separating the search logic from the GUI components, it was easier to
create a separate thread for the search algorithm to run in. This way the GUI can still
respond to user input while the search is executing.

The programmer also extracted 2 test classes from BasicSearchUnitTest.
The first, SearchThreadTest contains the tests for SearchThread and the second
InputPanelTest contains the tests for InputPanel. The classes extracted are

shown in a UML diagram in Figure 5.5.

45

’

:_InputPaneITest: : InputPanel : SearchDialog |SearchThread: ._SearchThreadTest,

‘ T —ol lo—! -y 1

] [v [) 1 v]

leccccceed Lleceeaaad Lececceee t lrcccccceaad

BasicSearchFuncTest SearchDialogTest
ShutdownHook

7 ™
([Legend @ : ymemeeane .)
; g Aggregation Unchanged Propagating Changed ' Added Production |
| ——] N]
| Association qi L : |
! S] Harness I
| Generalization Leccceaad |
\\ //

Figure 5.5 Change 2 Prefactoring
The programmer planned to add additional functional tests during this change

request. To prepare for the new functional tests the programmer addressed the issue
discussed previously (section 5.1.7), which is it would pass its assertions, but display a
gray instead of green color, by modifying the shutdownHook class. This class was not
identified during impact analysis. The programmer did a grep search and determined
that shutdownHook contained the java.lang.System.exit () that was preventing
JUnit from completing; he added a boolean field and setter method to ShutdownHook
to allow the program to be shut down without calling java.lang.System.exit ().
The functional test then passed, this resolved the issue and it increased the change set
from 3 code files to 4. Since the change propagated to the ShutdownHook class solely
because of a harness class requirement, it is considered part of the the harness for this

change.

46

5.2.5 Actualization

To add the recursive search capabilities, no new code files were added to the
project after prefactoring and the change did not propagate to any other code files.
However, the responsibility of the searchThread class was expanded by incorporation
through replacement. The programmer wrote a new class that creates a new thread that
recursively iterates through the file system checking the files to see if their name
contains a search term and replaced the SsearchThread code file in the project with

this new code file. The replacement searchThread contained the following fields and

methods:
Fields Methods
® SearchDialog parent ®*main()
® AbstractFile ®run()
searchDirectory ® searchCommand ()
® String searchTerm ® searchCommand (AbstractFile,
® boolean recursiveSearch String)

In SsearchDialog the programmer changed the added a new boolean that the
SearchThread object checks to determine if it should continue to iterate through the

file system. Then changed and added the following methods:

Changed Added
® actionPerformed () e notifyEnd()
e switchToSearchState () ® addSearchResult ()

e runCommand () ® setError ()

47

® addTextToArea (FileSet) ® getKeepSearching()

® addTextToArea (String)

The Programmer added the following 11 fields and 10 methods to InputPanel:

Fields Methods

® JPanel directoryPanel ® createDirectoryAreal()

® JTextField ® chooseFile()
inputDirectoryBox ® isValidDirectory ()

® JButton browseButton ® getDirectory ()

® JLabel e flashError ()
invalidDirectoryError ® i sErrorEnabled ()

eFile file ® i sRecursive()

® JCheckBox recursiveBox ® actionPerformed ()

® boolean alternate ® focusLost ()

® Timer blinkingTimer ® keyReleased()

e int blinks

e static final int

TOTALBLINKS
® static final int
BLINK_LENGTH
5.2.6 Postfactoring

After finishing the actualization phase and the change request was up and

running, the code needed to be refactored because of code decay introduced during

48

actualization. The InputPanel class had grown too large and had too much
responsibility. Two classes DirectoryPanel and FlashLabel classes were
extracted from it into new code files, see Figure 5.6. Both of these classes could have
been incorporated as suppliers to InputPanel during actualization.

To keep the test suite organized the tests in InputPanelTest that test methods
extracted to the new classes, DirectoryPanel and FlashLabel were moved into
new test classes, DirectoryPanelTest and FlashLabelTest. In
SearchDialogTest and SearchThreadTest the 4 methods that setup and
teardown for the tests were very similar; the programmer extracted them to a new

abstract class SearchDialogTestSetUp.

InputPanelTest InputPanel SearchDialog SearchThread SearchThreadTest
& lo—
[, ,---.T---- ------.47.------
] DirectoryPaneITest: sDirectoryPanel : BasicSearchFuncTest SearchDialogTest S SearchDialogTestSetUp:
[S [LR R R R R N F E F R R R X)
v . [) v > (]
g)y & 4 T Ve e e e Vo e Ve Ve Yo
) ’ L g ' (]
L] L---T---.‘ U
[jecccecaa
‘FlashLabelTest} s FlashLabel ,
L X R R R R X) -.-...-.-.-.-.-.‘
[] :_.L '
:‘--------.' cacaaaaqg
ST L--------‘
jeeccccee
Legend ‘Aggregation Unchanged Propagating Changed s Added : Production
- : -
Association Qi L :
. ' Harness
Generalization Lecoceeed

Figure 5.6 Change 2 Postfactoring
Finally, to better organize the project, the programmer created 3 new packages:

org.severe.ui.dialog.search.panels,

org.severe.ui.dialog.search.tests and

49

org.severe.ui.dialog.search.panels.tests. Then the appropriate classes

were placed into each package.

5.2.7 Verification

Unit tests expanded from 1 class to 5 plus a super class as described in the
postfactoring (section 5.2.6). This included adding a total of 42 new tests to test the new
functionality, 15 were deleted and 23 changed. The functional tests were also
expanded, from 1 to 4 tests but remained in 1 class. During verification three bugs were
found.

Two bugs were found by 2 of the new functional tests. First, when a user inputs a
blank value for the directory an error message would appear, but when the test tried to
type in a valid directory it would be redirected to another input location before it could
complete. This was caused because an exception was thrown before text could be
entered when the directory input box was selected; the catch statement was resetting
the interface as if the user had finished entering a directory, even though they had not
had a chance to yet. The catch statement was rewritten to do nothing, there is another
catch statement to handle invalid directories after the user is finished entering.

The second bug discovered, is that a search prematurely stops if it encounters a
directory that the file system marks as readable, but is set as read-only through a
different mechanism. An example of this is a quarantine directory used by an antivirus
program. This bug was also caused by a catch statement; when this type of exception
the catch block was stopping the search, now it adds an error message, but allows the

search to continue.

message displayed to the user that there were no search results found, was no longer
functioning. Previously, the results were returned all at once as a set, if the set was
empty a message was displayed to the user. Now the files are returned individually, so
there was no set to check. The programmer added a check to the method

notifyEnd () thatis called when the search algorithm completes; if the output area is

50

empty the no search results message is added to the output area.

All of the bugs were fixed during this change request. Table 5.5 shows the

statement level coverage of the test harness for the code files added or changed during

this change request.

When modifying the tests from change request 1 the programmer realized a

Table 5.5 Change 2 Statement verification coverage of production code files

Coverage of Application
. Tests | Bugs
Code File Total Covered .
% |Failed| Found
Statements|Statements
1 [DirectoryPanel 52 41 78.8 0 1
2 [FlashLabel 14 14 100.0 0 0
3 |InputPanel 29 29 1000 O 0
4 |SearchDialog 81 76 93.8 0 1
5 |SearchThread 19 19 100.0 0 1
6 |[ShutdownHook 41 4 9.8 0 0

5.2.8 Conclusion

The programmer committed this change request to the repository as a new
baseline. During this change request, the programmer added a class to the changed set

during prefactoring, see Table 5.6.

51

Table 5.6 Change 2 Summary

Number in Code files
Inspected | Estimated Changed Added during Total
Concept | Impact S .
Location Set et Pre | Act | Post | Project
0 3 4 4 0 5 1,083

5.3 Change Request 3 Advanced Output
5.3.1 Initialization

This change request is: “Change the output to a table similar to the main
muCommander window.”

To help understand the change request, the programmer envisioned the
following functionality for the change:

1. Change the search results display to the muCommander table file display

2. Add a results total

3. Enable the click to navigate option on the results

5.3.2 Concept Location

The programmer extracted relevant concepts from the change request and using
their intensions he converted them to following significant concepts:

e muCommander window — table file display

e output — search window output area

The programmer realized there are 2 concepts in the first functionality to add, the
current search results display and the muCommander table file display. For the first
concept, no concept location was necessary; the programmer knew it is located in the
SearchDialog code file from the previous changes. The second and third functionality

was part of impact analysis.

52

To find the second concept, the table file display in the main muCommander
window, the programmer did a dependency search starting in the Launcher code file
by marking it Propagating in JRipples. One of the JRipples’ Next set of code files,
WindowManager contained a field of type MainFrame, which because of its name
sounded very promising; he marked it Propagating in JRipples, because it has a field of
type MainFrame.

MainFrame contains 2 fields of type FolderPanel and 2 of type FileTable;
both of these code files sounded promising, because of their names. MainFrame was
marked as Propagating. One of the Next code files in JRipples’ set was FolderPanel,
which the programmer also saw in his MainFrame visit; therefore he visited it first. It
has a boolean variable treevisible, which he changed from false to true. The
programmer rebuilt and ran the program; the tree view was now visible at startup, which
confirmed that the second concept location had been found. During concept location the

only code file visited and marked Unchanged was FocusDialog.

5.3.3 Impact Analysis

For the first step of impact analysis the programmer marked the code file
SearchDialog containing the first concept extension, the current search results
display, as Impacted in JRipples. Then the programmer visited and marked the
following code files Impacted:

e SearchThread, performs the search

e InputPanel, gets the user search criteria

e FlashLabel, displays an error to the user

53

e DirectoryPanel, gets the search directory

® SearchDialogTest

e SearchDialogTestSetUp, Impacted test classes inherits from

® SearchThreadTest

® BasicSearchFuncTest

® TInputPanelTest

® FlashlLabelTest

® DirectoryPanelTest

At this point, FolderPanel, the code file that contains the second concept
extension, the muCommander table display, was included in the JRipples Next set. The
programmer visited it and marked it as Impacted. The programmer visited FileTable
because it is a neighbor of both FolderPanel and MainFrame. Upon reading its
Javadoc description that it, “displays a folder’s contents”; the programmer marked it
Impacted. JRipples added code files that the programmer suspected to be suppliers of
FileTable because their names started with FileTable; he marked the following
Impacted:

® FileTableModel

® FileTableHeaderRenderer

® FileTableHeader

® FileTableConfiguration

® FileTableColumnModel

o 'ileTableCellRenderer

54

Finally, MainFrame was marked as Impacted because it had a private method
that created a FileTableConfiguration class need to create a FileTable that
would be impacted. At this point 328 code files were in JRipples’ Next set. The
programmer marked all of these code files as Unchanged. The estimated impact set
contained 21 code files at the end of impact analysis is in Figure 5.7, the Unchanged

code files were left off for clarity.

SearchDialogTest SearchDialog SearchThread SearchThreadTest
SearchDialogTestSetUp MainFrame InputPanel L FEETGEL
BasicSearchFuncTest FolderPanel DirectoryPanel DirectoryPanelTest
?
FlashLabel FlashLabelTest
Legend
Association FileTable
Aggregation
L. FileTableHeader FileTableModel
Generalization
Unchanged
Propagating FileTableCellRenderer FileTableConfiguration
Impacted
FileTableHeaderRenderer FileTableColumnModel
Production
Harness

—

Figure 5.7 Change 3 Impact Analysis

55

5.3.4 Prefactoring

To prepare for this change, 2 super classes AbstractFileTable and
AbstractFolderPanel were extracted from FileTable and FolderPanel
respectively. The programmer extracted these classes because objects of type
FileTable and FolderPanel classes can only be instantiated in an object of type
MainFrame. This extraction allows the file table display to be contained in other types
of objects. These were very large class extractions the original code files were 2069 and
1478 LOC respectively. Because of the size of the class extractions the task was not
broken up into smaller tasks, such as extracting methods in the current class then
moving them to the new abstract class. While that strategy may be a safe strategy,
because of the size of the class extraction, the programmer perceived to be overly
burdensome.

The strategy used was to move universal functionality to the abstract class and
leave the rest. For example, the FolderPanel class has a field, currentFolder, of
type AbstractFile, which is the directory displayed in muCommander. Since search
results do not necessarily have a common parent directory, this field was left in
FolderPanel. However, since all types of displays can have more files to display then
their size allows, the field scrollPane of type JScrollPane was moved to the
abstract class. This will allow all AbstractFolderPanels to have the capability to
scroll through the displayed files when necessary.

Additionally, 2 suppliers of FileTable, FileTableHeader and

FileTableCellRenderer had attributes of their parent type FileTable this had to

56

be changed to type AbstractFileTable. A UML diagram showing the changed and

extracted classes is in Figure 5.8.

/ \
Legend
FolderPanel :AbstractFoIderPanel:
ceccccccccaad -
[:l.------------: Aggregation
tecccecccaaas!
Generalization
Unchanged
cecccccccaay
FileTable :_AbstractFiIeTabIe :
4| > '
r s Propagating
H]
-----?.----n
Changed
FileTableCellRenderer FileTableHeader
ceccccaa
s Added ,
H -
Lecccaaad
']
bLecccccne
Production
Harness
\ J
N\, 4

Figure 5.8 Change 3 Prefactoring
5.3.5 Actualization

To actualize the change, 2 new classes were created and added to the program
through incorporation, SearchFolderPanel and SearchTable. These classes inherit
from the classes extracted during prefactoring AbstractFolderPanel and
AbstractFileTable. Parts of the change propagated through these new classes to
their suppliers. Then an object of type SearchFolderPanel was created in

SearchDialog and an object of SearchTable in SearchFolderPanel.

57

SearchFolderPanel Methods SearchTable Methods
® clearOutput () ® doubleClick ()
® setSearchResults () ® setSearchResults ()

® isColumnDisplayable ()
® keyReleased()

The overall flow to display the results starts in SearchThread, which contains
the search algorithm; it finds the files that match the search term in the file system. It
then calls methods in SearchDialog to display the results. Then SearchDialog
sends the results to SearchFolderPanel, which sends them to SearchTable.
SearchTable sends the results to the class that manages its data structure,
FileTableModel and FileTableCellRenderer actually displays them to the user.
Five suppliers of searchTable’s needed to change, they are:

® AbstractFileTable, method added to show that the table is unsorted

e FileTableModel, method added that displayed an array of AbstractFile

objects

eFileTableCellRenderer, method changed to display entire path of file, if

parent is a SearchTable object

eFileTableHeader, method changed to create content menu, if parent is a

SearchTable object

eFileTableHeaderRenderer, changed field from type FileTable to

AbstractFileTable

Three existing test classes changed and 2 new test classes were added:

Changed

® SearchDialogTest

® SearchThreadTest

® BasicSearchFuncTest

58

Added

® SearchFolderPanelTest

® SearchTableTest

A UML diagram showing the code files visited during actualization is in Figure

BasicSearchFuncTest FolderPanel
SearchThreadTest SearchThread AbstractFolderPanel
4 AN

SearchDialogTest SearchDialog

:SearchFoIderPaneITest: :SearchFoIderPaneI:

& A 1

[N L]

Y]

] ‘.-.-1r.-..d
PO ocoooceoecee
'SearchTabIeTest: 1 SearchTable : AbstractFileTable
t‘-‘-‘-‘.‘.‘.‘-‘-‘ﬂ sccccaaaqg
[.—'L .—| > ®—
L baccaaaas
(] Lecacaaad ?

FileTable

ActivePanelListener

FileTableHeaderRenderer

:

FileTableHeader

N
/ \
Legend
Association
Aggregation
Generalization
Unchanged

Propagating

FileTableCellRenderer

FileTableModel

Figure 5.9 Change 3 Actualization

5.3.6 Postfactoring

Changed

\ Added
r-------:
becaccaas

Leccccceas

Production

Harness

—

Many code smells developed during actualization. The programmer added too

much responsibility to the searchbDialog class. Therefore, he moved responsibility to

59

a newly extracted class, ButtonPanel and to 3 other classes, SearchThread,

SearchFolderPanel and MainFrame. The responsibilities moved included:

Method extracted from Class extract to

® createOutputArea () SearchFolderPanel

® createButtonArea () ButtonPanel.ButtonPanel ()

® actionPerformed () ButtonPanel.actionPerfomed ()

® getKeepSearching() SearchThread.getKeepSearching ()

® getFileTableConfiguration() MainFrame
.getFileTableConfiguration()

Another code smell created during actualization was that the suppliers of
AbstractFileTable now had 2 sets of responsibilities, one set if called by an object
of FileTable and another if called by and object of SearchTable, in hindsight, this
could have been addressed during prefactoring. To resolve the situation the
programmer extracted a super class, AbstractFileTableModel from
FileTableModel and also extracted the SearchModel class from it
FileTableModel and SearchTableModel both inherit from
AbstractFileTableModel and the code applicable to objects of FileTable use
FileTableModel and objects of SearchTable use SearchTableModel.

The same code smell was present in the case of FileTableCellRenderer
and FileTableHeader, however, the differences were smaller so the programmer
extracted 2 classes, SearchTableCellRenderer and SearchTableHeader that

inherit from FileTableCellRenderer and FileTableHeader respectively; they

override a subset of their super class’s methods. Once all these extra classes were

60

extracted the org.severe.ui.dialog.search.panels package had too many
classes, many of which were not panels, so a new package
org.severe.ui.dialog.search.table was created for them. The package
org.severe.ui.dialog.search.components was also created for FlashLabel.

The class extraction of AbstractFileTableModel propagated to 7 classes
not in the estimated impact set that depended on FileTableModel as a supplier. Six
of the classes required a field or temporary variable type to be changed to
AbstractFileTableModel from FileTable and 1 required a getter call to be cast
toaFileTable. The getter is inherited from AbstractFileTable; it was determined
that the best solution was to change these classes. By using a generic type future
changes should be easier.

Many of the harness classes were creating the same AbstractFile objects or
using instances created in the SearchDialogTest class. These were all extracted to
a new harness class TestConstants. Some of the code files added during this
change request were changed during postfactoring resulting in a postfactoring change

set of 32 code files, see Figure 5.10.

FlashLabelTest

FlashLabel

61

[ButtonPaneITest:
[P SS

)]
e ———
()

+ ButtonPanel :

peesccaas

DirectoryPanelTest

.

Lecegecaa

InputPanelTest

DirectoryPanel

InputPanel

SearchThreadTest

SearchThread

InvertSelectionAction

OpeninBothPanelsAction

CompareFoldersAction

MarkExtensionAction

FileDrageSourceListener

StatusBar

MainFrame

MarkAllAction

[X)

SearchDialogTestSetUp

SearchDialogTest

SearchDialog

BasicSearchFuncTest

' ¢

P P

:TestConstants.

ResultsPanelTest

ResultsPanel

AbstractFolderPanel|

FolderPanel

—

Qi

r--------q

¢

'
YSearchTableHeaders

SearchTableTest

SearchTable

cccecccccccsd

bococccccccaay

:SearchTabIeHeaderTe
'

boecoccccccccns

\—<‘7

FileTable

il

FileTableModel

FileTableHeader AbstractFileTable Y AbstractFile TableModel :
. 4441 K}%
' I

:SearchTabIeCeIIRenderer:

FileTableHeaderRenderer

FileTableCellRenderer

:_SearchTabIeModeI:

:_SearchTabIeModeITestt
)

N =

- 4
] 4

b--------------ﬂ

|=qe=q

.-------EE---- -
:SearchTabIeCeIIRendererTest.
ceocccccscccccsccsccnad

becccsccccscscscsccccnsy

boeoccoccccscscscscscscscsccasd

[4
cecscsccccccccs

Legend

Association

L o -
Aggregation

Unchanged

Propagating

Changed Added

Generalization

P ok

leadada

Production

Harness

Figure 5.10 Change 3 Postfactoring

62

5.3.7 Verification

All the regression tests passed; no new regression tests were added for the
classes impacted by refactoring. The statement level coverage for FolderPanel,
FileTable and its suppliers was low; FileTableHeader has only 14% coverage.
Therefore a protective change request with a priority 4, minor problem not involving
primary functionality, was added to the backlog to improve the test suite of these
classes. The programmer added a similar change request for the 7 action code files
added to the impact set for the same reason; for example,
FileDragSourcelListener has only 11% statement coverage, see Table 5.7

The classes in the org.severe.ui.dialog packages now each have their
own unit test class. All harness code files are in their own package, which has the same
name as the package containing the class being tested plus tests. There is 1 functional
test class, BasicSearchFuncTest. During verification 2 bugs were found, both in the
new classes extracted during postfactoring.

The first bug was in SearchTableModel; it was getting the path of the parent
folder of the search result instead of the path of the search result in the
fillCellCacheAtRow () method. The second bug was in SearchTable, in the
addSearchResultMethod (). It needs to call resizeAndRepaint (), an inherited
method after adding the first result, to allow the table to resize the columns to the

Objects in them. Both of these bugs were fixed when they were found.

63

Table 5.7 Change 3 Statement verification coverage of production code files

Coverage of Application
Code File Total Covered % I;raei?; FT:.%S&
Statements Statements
1 AbstractFileTable 274 195 71.2 0 0
2 |AbstractFileTableMo 37 21 56.8 0 0
3 |AbstractFolderPanel 60 35 58.3 0 0
4 ButtonPanel 23 23 100.0 0 0
5 |CompareFoldersActio 43 6 14 0 0
6 [DirectoryPanel 51 42 82.4 0 0
7 [FileDragSourceliste 27 3 11.1 0 0
8 [FileTable 331 89 26.9 0 0
9 [FileTableCellRender 95 84 88.4 0 0
10 FileTableHeader 28 4 14.3 0 0
11 FileTableHeaderRend 18 18 100.0 0 0
12 FileTableModel 163 120 73.6 0 0
13 FlashLabel 14 14 100.0 0 0
14 FolderPanel 328 144 43.9 0 0
15 [InputPanel 29 29 100.0 0 0
16 [InvertSelectionActi 16 6 37.5 0 0
17 MainFrame 210 122 58.1 0 0
18 MarkAllAction 15 8 53.3 0 0
19 MarkExtensionAction 45 6 13.3 0 0
20 OpenInBothPanelsAct 34 9 26.5 0 0
21 [ResultsPanel 26 25 96.2 0 0
22 |SearchDialog 42 43 97.7 0 0
23 |[SearchTable 34 33 97.1 0 1
24 |SearchTableHeader 38 38 100.0 0 0
25 |[SearchTableModel 65 65 100.0 0 1
26 |[SearchThread 27 25 92.6 0 0
27 |SearchTableCellRend 10 10 100.0 0 0
28 |[StatusBar 207 151 72.9 0 0

64

5.3.8 Conclusion

The programmer committed this change request to the repository as a new
baseline. The changed set was 11 code files, while the estimated impact set was 21,
see Table 5.8. Two of the code files in the estimated impact set, but in the changed set
are FileTableConfiguration and FileTableColumnModel; they are suppliers to
FileTable. During impact analysis the programmer thought the changes to
FileTable were so significant that these suppliers would also have to change;
however the change never propagated to them. The other estimated impact set code
files not in the changed set were changed during postfactoring. The change was more
difficult than the programmer originally thought he simplified actualization by making the
changed set smaller. This resulted in more code smells that he addressed during
that

postfactoring. The programmer also changed 7 code files during postfactoring

were not part of the estimated impact set (section 5.3.6).

Table 5.8 Change 3 Summary
Number in Code files
Inspected | Estimated Changed Added during Total
Concept | Impact Set .
Location Set e Pre Act Post | Project
6 21 11 2 4 10 1,099

5.4 Change Request 4 Date Search
5.4.1 Initialization

This change request is: “Allow the user search by a date of file’s modification”

To help understand the change request, the programmer envisioned the
following functionality for the change:

1. Add date criteria to the search algorithm

65

2. Add a check box to turn date searching on and off
3. Add text boxes to enter before and after dates

4. Add calendars to click on before and after dates

5.4.2 Concept Location

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts:

¢ file created/modified date e file — file name
¢ a specific date e calendars — Java file chooser
e search e search algorithm

The programmer determined the concept to locate is the search algorithm. No
concept location was needed for this change request. Based on experience obtained
during previous change requests the programmer knew the search is located in the
SearchThread class which was created during change 2. Functionalities 2 to 4 were

added during actualization through incorporation of new classes.

5.4.3 Impact Analysis
The programmer started a dependency search by marking the code file
containing the concept extension, SearchThread Impacted in JRipples. The
programmer then visited and marked the following code files from JRipples’ Next set
Impacted:
e SearchDialog, has an object of SearchThread whose constructor will
change

e InputPanel, date range GUlI component added here

66

® BasicSearchFuncTest

® TnputPanelTest

® SearchDialogTest

® SearchThreadTest

e ButtonPanel, Will be responsible for checking to make sure there are no
errors in the search criteria, before a search starts

e DirectoryPanel, the error it displays will move to a central management
location for errors

® DirectoryPanelTest

® ButtonPanelTest

TestConstants

The programmer visited AbstractFile; it has a method, getDate (), that can
be used to compare an AbstractFile’s date to a date range; since this is all the
search algorithm requires for this change request, it was marked Unchanged. This
change request will require a date to be formatted; the programmer knew
AbstractFileTable formatted a date from change request 3. AbstractFileTable
was already in JRipples’ Next set, the programmer visited it and found it calls a static
method in the class CustomDateFormat; therefore, AbstractFileTable was
marked as Propagating. JRipples added CustomDateFormat to the Next set and the
programmer visited it. It has a method, getDateFormatString() that returns a
String containing the date format based on setting in the preference file. It would

work, but it included the time, the programmer marked it Impacted; it will need a new

67

method that returns a date format without the time. The estimated impact set of 13 code

files is shown in Table 5.13.

SearchThreadTest AbstractFile

Legend

Association

CustomDateFormat TestConstants SearchThread ButtonPanelTest Aggregation
Generalization

i Unchanged

AbstractFileTable SearchDialogTest SearchDialog ButtonPanel
o E— :
Propagating

T Impacted

BasicSearchFuncTest InputPanel InputPanelTest

Production
Harness

DirectoryPanel DirectoryPanelTest \ /

Figure 5.11 Change 4 Impact Analysis

At this point JRipples had 112 code files in the Next set. These code files were
visited in a similar manner as in change 3. Code files such as MarkForwardAction
were just marked as Unchanged based on their names. But, other code files, such as
ResultsPanel that is part of the search dialog, were inspected more closely.

Ultimately, all of these code files were marked as Unchanged.

5.4.4 Prefactoring

To prepare for this change request the programmer extracted the class

ErrorManager from DirectoryPanel. The programmer did this because the

68

program will handle multiple types of errors; instead of having SearchDialog check
each error to see if it is enabled before a search, it will just check with this extracted
class. The following DirectoryPanel fields and responsibility was extracted from

these methods:

DirectoryPanel ErrorManager

e flashError () flashErrors()

® isErrorEnabled () isErrorEnabled()

® actionPerformed () disableError ()

e focusLost () enableError ()
disableError ()

® keyReleased ()

This extracted class will also flash all the enabled errors if the user tries to start a
search with an error enabled. This refactoring was done to make the change request
easier, not because of existing code smells. A matching harness class,
ErrorManagerTest was extracted from DirectoryPanelTest and the class
extractions propagated to 3 more production and 3 harness code files see Figure 5.12.
This is because the object of ErrorManager was created in SearchDialog and it

replaced dependency these code files had with DirectoryPanel.

iErrorManagerTest,
i -2

L e Lecaaaaad
(] ']

Leccccccccas

{ErrorManager?

beccaccae

ButtonPanel SearchDialog

- o]

69

InputPanel

DirectoryPanel

ButtonPanelTest BasicSearchFuncTest

InputPanelTest

DirectoryPanelTest

Legend ‘Aggregation Unchanged

Propagating

Changed

Association

Production

Generalization

4 N

Harness

________/

Figure 5.12 Change 4 Prefactoring

5.4.5 Actualization

To actualize this change request, the programmer incorporated a new supplier of

InputPanel called DatePanel that extends Jpanel. This class contains all the GUI

components of the change request description. This class gets dates from the user as

text and creates Date objects from the text. It performs error checking to make sure

that the user entered a valid date and checks to make sure that the minimum date is

less than the maximum date.

Fields

® JCheckBox dateBox

® JLabel datelabelBefore

® JLabel datelabelAfter

Methods

® createDateTextBox ()

® createCalendarButton ()

® setEnabled ()

® JTextField minDateTextBox

® JTextField maxDateTextBox

® JButton minCalButton

® JButton maxCalButton

® DateFormat dateFormat

® F'lashlLabel dateError

® Date minDate

® Date maxDate

® FrrorManager errorManager

® boolean minError

® boolean maxError

® boolean minGreaterError

To create a border for the class that has a JCheckBox in it the programmer

To add GUI calendars for the user to select a date, new classes were

classes were chosen. These classes are:

® JCalendar

® JDayChooser

70

® datePanelSetEnabled ()
® actionPerformed ()
® focusLost ()

® getErrorMessage ()
® iskError ()

® dateTextBoxCheck ()
® checkMinLessThan ()
® getMinDate ()

® getMaxDate ()

® isDateSearch()

® keyReleased()

® checkYear ()

incorporated a supplier that was provided by Kumar under a GNU License called

ComponentTitledBorder [43]. A harness class to test it was also added.

incorporated by the programmer. These classes were taken from a program called
JCalendar written by Toedter and available online under the GNU Lesser General

Public License [44]. The program contained more functionality then needed so specific

71

® JMonthChooser

® JYearChooser

® JSpinField

These classes used together made up a very feature rich GUI calendar with a
month drop down box and a year text box, both of which have buttons to increment or
decrement their values. They were placed in a new package called
org.severe.ui.dialog.calendar. The programmer added a unit test class for
each class and a functional test class that tests the functionality of all the classes
together. These harness code files were all added to a new package,
org.severe.ui.dialog.calendar.tests.

The programmer added a static method, getDateNoTimeFormatString (), to
CustomDateFormat that returns a DateFormat String that is the same as the date
format specified in the program’s preferences file, but without the time. This allows the
user to choose a date in the same format as the application display, but without the
time.

The searchThread class is responsible for the search algorithm; the algorithm
is in a method recursiveSearch(). The programmer added a new method,
isInDateRange () that recursiveSearch() calls, if the user enables a date
search. A boolean parameter was added to the SearchThread constructor that is set
to true if the date search is enabled; because of this SearchDialog, which creates the
SearchThread object, was also changed. A UML diagram showing the changed and

added classes is in Figure 5.13.

72

ccccccscccscccssa [. cecccccaa
.ComponentTitIedBorder: s DatePanel YDatePanelTests
- accccaaaq Y Y Y Y Y Y Y Y]
L ’ ® ' . 4
. 5 -.-.-.-.-.-.-..w_ r--------‘.
Lecccccacccccaal Leccsecae TS

S S

1ComponentTitledBorderTest, InputPanel CustomDateFormat

[
]

Lecccccccccccccas

’ | —mckaee

Legend SearchThread SearchDialog : JCalendar : ;'JCaIendarTestu
- Y Y Y ¥y yy)
. : “?
Association L _' ..--------4'
] ' ' ' ’
& Leceagecas POt
Aggregation t ’
ceccccccccaa
Generalization ErrorManager :_JCaIendarFuncTestl
SearchThreadTest e 8
Unchanged rPoccccnnnnnad
teccccccacaas
Propagating | | ..lloo.. .oooloil, ..o,
ol DateSearchFuncTest: ' JDayChooser: :_JMonthChooser ' :_JYea rChooser '

-y

L
 , (]
]
J pt 2
]

] Poosssssa]

= =T T T

LK ol
-
- qeq

ppepepppp——— TestConstants :JDayChooserTestu :_JMonthChooserTest: s JSpinField :
l-' Added 1 :----------‘. ;. _: '-.-.-.-.........1.
b - . G G . . e 0y (P X ¥ ¥y yyyy) [] L-.-.-.-.-.-.-.1
L 4]] [} s H [
l-'-'-'-'-'-'-" boococcocsoccsaad .------------‘ t--- L XX)

Lececcccaa
Production

[
:_JYearChooserTest: :_JSpinFieIdTest:

Harness

N—

1=q=q
d
R

Figure 5.13 Change 4 Actualization
5.4.6 Postfactoring

The DatePanel class that the programmer incorporated during actualization
was too large and had too much responsibility. The class bateField was extracted

from it. It extends the JTextField class, see Figure 5.14. It adds methods to

73

customize the class to only accept objects of type Date; by parsing the text entered into

Date objects

ComponentTitledBorderTest DatePanelTest : DateFieldTest?

bacaccacaa

l---w----
' ' DateField 3

ComponentTitledBorder DatePanel
Leg end ceccaaaaq
—@ l‘—'l.. |
- .
Association | :_ cecccaad
S —
Aggregation
Generalization DateSearchFuncTest SearchThread JCalendar JCalendarTest
Unchanged]
.................. 47
Propagating sSearchFuncTestSetUpt SearchThreadTest JCalendarFuncTest
' ’
L ’
]]
'

Leccccepocccas
Changed f

BasicSearchFuncTest JDayChooser JMonthChooser JYearChooser
+ Added
'-.-.-.-.-.-.-.-.1
’
%-------,
Leccccaan
Production SearchDialog JDayChooserTest JMonthChooserTest JSpinField
Harness
JYearChooserTest JSpinFieldTest

Figure 5.14 Change 4 Postfactoring

In the classes added from JCalendar, each class had a main () method and
methods to set the locale to a different value than the operating system. These methods

were removed because they are not needed. The programmer also performed other

74

tasks, such as moving the fields from the end of the code file to the beginning to match
the style of muCommander. ComponentTitledBorder had no Javadoc comments so
the programmer added them to make future changes easier.

Postfactoring propagated from DatePanel t0 InputPanel and SearchDialog
to SearchThread, which needed Javadoc added to the new method added during
actualization. In the case of existing classes such as SearchThread, the cleanup was
made necessary because of actualization.

The programmer visited the DateSearchFuncTest harness class and realized
much of the setUp() and tearDown() methods were the same as the
BasicSearchFuncTest class. The 2 classes are not neighbors, but propagate
through searchbDialog. To remove the duplicated code the programmer extracted a
super abstract class, SearchFuncTestSetUp from BasicSearchFuncTest and
DateSearchFuncTest that has setUp () and tearDown () methods. It is similar to
the abstract class SearchDialogTestSetUp that was extracted during change
request 2. All 3 of these harness code files were put in a new package
org.severe.ui.dialog.search.functional.tests. These functional tests take
significantly longer to run than unit tests; having them in their own package makes it

easier to run them separately.

5.4.7 Verification

After the change request all the regression tests passed. There was a unit test
class added for each class added during the change; in addition, an abstract class was
extracted during postfactoring to make future test easier to add. A class of constant

objects, TestConstants, was also extracted, that can be used across the test suite.

75

Finally, the programmer added 2 new functional test classes, DateSearchFuncTest

and JCalendarFuncTest; for a total of 3 functional test classes, see Table 5.9.

Table 5.9 Change 4 Statement verification coverage of production code files

Coverage of Application
Code file Total Covered % Tests FailedBugs Found
StatementsStatements
1 ButtonPanel 26 26 100.0 0 0
2 [ComponentTitledBorder 35 35 100.0 0 0
3|CustomDateFormat 22 13 59.1 0 0
4 DateField 55 54 98.2 0 0
5 patePanel 89 86 96.6 0 2
6 DirectoryPanel 50 41 82.0 0 0
7 ErrorManager 13 13 100.0 0 0
8 |InputPanel 36 36 100.0 0 0
9|JCalendar 75 60 80.0 0 0
10JDayChooser 142 133 93.7 0 0
11JMonthChooser 76 63 82.9 0 0
120SpinField 64 54 84.4 0 0
13JYearChooser 15 15 100.0 0 0
14SearchDialog 43 42 97.7 0 0
15SearchThread 40 38 95.0 0 0

During verification 2 bugs were found, both in the new classes created during

actualization. The first bug was in DatePanel; if the user types a date with a 2 digit

year, such as 99 or 03, the Date object created by parsing had a

1St

century year. The

programmer added a new method to parse the date into a user expected date, such as

1999 or 2003. The second bug was that the FocusLost event that should trigger the

creation of Date objects to use as search criteria would be scheduled after the

ActionListener event that started the search. This would cause a search without a

76

date, even though a date was displayed to the user. The programmer added a

KeyListener event to parse the date after each keystroke to solve the problem.

5.4.8 Conclusion

The programmer committed this change request to the repository as a new
baseline. The changed set had 1 less code file than the estimated impact set, see Table
5.10. During impact analysis, the programmer thought the change would propagate to
the harness code file SearchDialogTest because SearchDialog was impacted.
However, the change to SearchbDialog affected 1 LOC in 1 method. This did not
change the contract of the method with any client or supplier so the harness class was

not impacted.

Table 5.10 Change 4 Summary

Number in Code files
Inspected | Estimated | ged Added during Total
Concept | Impact S]
Location Set et Pre | Act Post |Project
0 13 12 2 16 3 1,120

5.5 Change Request 5 Case Sensitive Search
5.5.1 Initialization

This change request is: “Add capability to search by case sensitive search
terms.”

To help understand the change request, the programmer envisioned the
following functionality for the change:

1. Add case sensitive criteria to the search algorithm

2. Add a check box to turn case sensitive searching on and off

77

5.5.2 Concept Location

The programmer extracted relevant concepts from the change request and using
their intensions he converted them to following significant concepts:

e case sensitive e search

¢ enable/disable e search algorithm

o file — file name

No concept location was needed for this change. The concept to location, the
search algorithm, was the same as change request 4, the SearchThread class.

Functionality number 2 was identified during impact analysis.

5.5.3 Impact Analysis

To start impact analysis the programmer marked SearchThread as Impacted in
JRipples. The programmer visited and marked Impacted the following code files from
JRipples’ Next set:

e InputPanel, will add the case sensitive JCheckBox

e SearchDialog, will add an object of a class extracted from SearchThread

e DatePanel, extract fields from it DateField

e DateField, receive extracted fields from DatePanel

e DirectoryPanel, gets the user input directory

The programmer visited the harness code files in JRipples’ Next set and marked
10 Impacted; these are the test classes for classes in the Impact set already, except for
ButtonPanelTest. It is the test for, ButtonPanel, which is not in the impact set. It is

impacted, because one of its tests calls a method, searchCommand() in

78

SearchDialog whose definition will change. The programmer marked 41 code files

Unchanged, see Figure 5.15.

AbstractFile
«datatype» AbstractFileTableModel ResultsPanel MainFrame
Column
SearchDialogTestSetUp
TestConstants SearchDialogTest SearchThread ResultsPanelTest
] SearchTableHeaderTest
SearchThreadTest AppLogger
ActionProperties
T SearchTableCellRendererTest j
AbstractFolderPanel| [Animatedicon| [AbstractFileTable — Searchigblsle=t
DirectoryPanelTest
AuthException ButtonPanelTest|
H] H ButtonPanel
FileFactory DirectoryPaneIl
SearchTableModel
SearchDialog FocusDialog
-
IDateSearchFuncTesl InputPanel
FolderPanel
DatePanel
ActionManager SpinningDial Translator
IInputPaneITest SearchAction
! .
DateField
CommandBarlO
SearchTable YBoxPanel CustomDateFormat
DesktopManager |
DateFieldTest
IconManager
SearchFuncTestSetUp ErrorManager FlashLabel
ActionKeymaplO ’
ThemeManager ‘ ‘
BasicSearchFuncTest] |SearchTableModelTest DatePanelTest JCalendar ComponentTitledBorder
ShutdownHook i L 2 -
|| |WindowManager Legend . oregation Unchanged | : Propagating | | Impacted Production
A Harness
Generalization
. 4

Figure 5.15 Change 5 Impact Analysis

79

5.5.4 Prefactoring

During impact analysis the programmer visited and realized that SearchThread
had 2 responsibilities, one to create a separate thread that iterates through the files of
the file system and 2 to check if each file met the search criteria. This made sense when
SearchThread was extracted from SearchDialog, because there was only one
search criterion, the file name. However, a second, date search criteria was added
during change request 4 and a third criteria was going to be added during the current
change request. The programmer decided to refactor this responsibility from
SearchThread during prefactoring to make it easier to add a separate the search
algorithm to run in during actualization.

During the last change a method was added t0 SearchThread to checks if a
file’s modified date is within a user specified date. The current structure encourages any
new change request that adds a search criterion to add a new method with logic that
checks the specific criteria. Then the recursiveSearch () method, will call this
method to see if a file meets the criteria. This will make SsearchThread a very large
class, with a wide variety of responsibilities. To stop this from occurring, a strategy
design pattern [42] was implemented. This will allow any new search functionality to
create a class that decides if a file meets its criteria; the SearchThread class will not
need to know anything about the algorithm that the new search option classes
implement. This means adding new search options will be unlikely to propagate to
SearchThread.

The programmer extracted a new class from SearchThread to manage the

search criteria responsibility called SearchManager and created an interface,

80

SearchOption. Classes that implement the SearchOption interface can be added to
a list of criteria in SearchManager dynamically. These classes contain their own
algorithms to decide if a file meets their responsibility of the search criteria. When a
search is executed, SearchManager will check with all the classes on its list to decide
if a file meets all the search criteria. The class SearchThread had the responsibility to
check the date of a file extracted from it to a new class, DateOption that implements
SearchOption; SearchThread then had just its original responsibility, of recursively
stepping through the files in the file system.

This prefactoring moved the concept location from SearchThread to
SearchManager. It also meant that the class that contains the concept location,
SearchManager, would not need to be changed during actualization.

After, the new SearchManager and DateOption classes were extracted, it
became apparent that some of the responsibility left in batePanel during the last
change, should be moved to DateField; namely the JButton that opens a dialog that
allows the user to select a date from a calendar. Even though the programmer extracted
DateField from DatePanel during the last change request, it was apparent that code
smell were still present that needed to be addressed. There were still 2 objects of type
JButton in DatePanel that should be in DateField. Additional fields moved and
methods changed from DatePanel t0 DateField are:

Fields Methods

® JCheckBox dateBox ® createDateTextBox ()

® JButton minCalButton ® createCalendarButton ()

81

® JButton maxCalButton ® actionPerformed ()

® DateFormat dateFormat ® propertyChange ()
® getMinDate ()
® getMaxDate ()
® isDateSearch ()

The other classes that have responsibility to match the search criteria were also
changed. The responsibility for matching the search term to the file’s name was moved
from the InputPanel class to a new class SearchTermOption, which implements
SearchOption.

The recursive search and start directory responsibility were extracted to
SearchManager from SearchThread. A UML diagram showing the changed and

added classes is in Figure 5.16.

] SearchManagerTest:

I

sSearchTermOptionTest,

]
[

bLececcccseccccns

L]
(]
L]
(]
-

82

SearchThread

ButtonPanelTest

SearchThreadTest

.SearchTermOptlon'

becccccacacaad

becccepeccaa

R e e \
Legend
SearchDialog BasicSearchFuncTest
Association
T Aggregation
SearchDialogTest Generalization
InputPanel
Unchanged
T Propagating |
DirectoryPanel DatePanel DateSearchFuncTest
Changed
DirectoryPanelTest InputPanelTest
Added
r...-.-.-...-.-.-'
]
!..................
eeccccccs - Lecccccae
+ DateOption 4 DateField DatePanelTest
i . Production
H H
L---I-T-- ‘ Harness

—

’-------------.‘

5.5.5 Actualization

;'SearchOptlonTestCIass "

«interface» o
SearchOptlon.

sDateOptionTest?

| R |

Leccccccaa!

DateFieldTest

Figure 5.16 Change 5 Prefactoring

—

The prefactoring prepared the code for the change very well. To actualize the

change request, the programmer changed the InputPanel class and incorporated a

new class, CaseSensitiveOption that implements the SearchOption interface

through polymorphism. InputPanel added a check box to turn case sensitive searching

on and off.

It does this by swapping

its SearchTermOption field for the

83

CaseSensitiveOption field. It also added a border around the recursive check box
and the case sensitive check box in the GUI to organize it.

The added CaseSensitiveOption class is very similar to the
SearchTermOption class, but it uses logic that includes the case of the search term

and the file’s name. A UML diagram showing the changed and added classes is in

Figure 5.17.
InputPanelTest InputPanel BasicSearchFuncTest
lCaseSensntlveOptlon: :_CaseSensmveOptlonTest'
— j.

AN
i(Legend ‘Aggregation Unchanged Propagating Changed :_ Added 4 | Production \i
3]
i Association 47 L - Harness i
{ Generalization Lececccad !

Figure 5.17 Change 5 Actualization
5.5.6 Postfactoring

The programmer addressed code smells that had developed over time during
previous change requests. It is difficult to pinpoint exactly when these smells should
have been addressed, but it is clear they need to be addressed now. For example,
when the class InputPanel was extracted from SearchDialog during change
request 2, it held all the input fields. During the change requests since then,
DirectoryPanel was extracted and DatePanel was incorporated as a component; it
now both holds other panels and instantiates objects of panels. To alleviate these code

smells during this postfactoring and clarify its responsibility, BasicOptionsPanels

84

was extracted from InputPanel; the fields moved and methods moved or impacted

are:
Fields Methods
® JTextField inputBox ® createInputBox ()
® JCheckBox recursiveBox ® createOptionsPanel ()

® JCheckBox caseSensitiveBox switchToSearchState ()

® SearchManager searchManager ® getInputBox()

® SearchTermOption searchTerm ® actionPerformed ()

® CaseSensitiveOption

caseSensitiveOption

The classes SearchTermOption and CaseSensitiveOption had the same
methods, but all 3 used different logic. A super class was extracted from them; this also
allowed them to be swapped more easily by BasicOptionsPanels using their
abstract class type. This super class extraction was necessary because of the change;
it could have been done during prefactoring to prepare for the change. The field and

methods moved to the Abstract TermOption are:
Field Methods
® String SearchTerm ® abstract setSearchTerm()
® insertUpdate ()
® removeUpdate ()
A new test class for BasicOptionsPanels was extracted from InputPanel

test. In addition the class extractions impacted 6 more harness code files see Figure

85

5.18. The class searchFuncTestSetUp is part of the estimated impact set. It was not

added to the changed set but was impacted during postfactoring.

SearchDialogTest SearchDialog SearchFuncTestSetUp 4 \
Legend
Association
T Aggregation
InputPanel InputPanelTest
Generalization
Unchanged
BasicSearchFuncTest :_BasicOptionsPanels: :Basic0ptionsPaneIsTest| Propagating
3 rocccccccccccaad
' T '
'Y coccscccccccacaad
' v ' '
cococee cococee LR X N X8 X &YX X
Changed
DateSearchFuncTest :AbstractTermOption: CaseSensitiveOption
N X ' Added
' : r-------q
[- ’
- Zr g.-------.:
Lecccccaas
Production
ButtonPanelTest SearchTermOption SearchThreadTest
Harness
\ /
AN e

Figure 5.18 Change 5 Postfactoring
5.5.7 Verification

At the end of the change request all regression tests passed. The programmer
followed the format of the previous change request and added a unit test for each
added class. To test the searchManager class the programmer also created a stub
class SearchOptionTestClass and added it to the harness; it is a concrete
implementation of the searchOption interface. No unit test class was added for the
abstract class AbstractTermOption; but both of the concrete implementations,

SearchTermOption and CaseSensitiveOption have unit test classes. All new

86

tests passed; no bugs were identified in this change. Table 5.11 shows the statement

level coverage of the test harness for the code files added during this iteration.

Table 5.11 Change 5 Statement verification coverage of production code files

Coverage of Application
Code File Total Covered % I-! aei?:i F'it%sd
Statements| Statements
1 AbstractTermOption 7 6 85.7 0 0
2 [BasicOptionsPanels 45 45 100.0 0 0
3 [CaseSensitiveOption 4 4 100.0 0 0
4 DateField 69 64 92.8 0 0
5 [DateOption 20 20 100.0 0 0
6 [DatePanel 58 57 98.3 0 0
7 |DirectoryPanel 53 44 83.0 0 0
8 [InputPanel 36 36 100.0 0 0
9 |SearchDialog 44 43 97.7 0 0
10 |[SearchManager 17 17 100.0 0 0
11 |[SearchTermOption 4 4 100.0 0 0
12 |[SearchThread 25 21 84.0 0 0

5.5.8 Conclusion

The programmer committed the updated code to the repository as a new
baseline. The changed set had 1 fewer code files that the estimated impact set, see
Table 5.12. SearchFuncTestSetUp was not changed until postfactoring. The
programmer implemented the change by allowing code smells to develop, then

addressed them by moving responsibility during postfactoring (section 5.5.6).

87

Table 5.12 Change 5 Summary

Number in Code files
Ir&i’:ﬁg;f Estimated | Changed Added during Total
Location |IMpPactSet| Set Pre | Act | Post | Project
0 16 15 8 2 3 1,133

5.6 Change Request 6 Extension Search
5.6.1 Initialization

This change request is: “Add the ability to search for files with specific
extensions.”

To help understand the change request, the programmer envisioned the
following functionality for the change:

1. Add a check box to turn extension searching on and off

2. Add a text box for the user to enter file extensions

3. Add extension criteria to the search algorithm

5.6.2 Concept Location
The programmer extracted relevant concepts from the change request and using
their intensions he converted them to following significant concepts:
e search by file extension e search
e add/remove from SearchManager e files — file name
e search algorithm
No concept location was needed for this change. This change request has similar

requirements to change requests 4 and 5. The concept to location, the class to

incorporate the new functionality 1 and 2, is BasicOptionsPanels. The programmer

88

knew the code responsible for functionality 3, the search algorithm, did not contain the
concept location because he refactored it during change request 5. The search
algorithm is now modified dynamically by user selections and therefore was not

impacted by this change.

5.6.3 Impact Analysis

The programmer started impact analysis by marking the code file containing the
concept location, BasicOptionsPanels, Impacted in JRipples. The programmer
visited and marked the following code files Impacted:

e AbstractTermOption, compares AbstractFile to the search term

¢ SearchTermOption, inherits from AbstractTermOption

® CaseSensitiveOption, inherits from Abstract TermOption

e InputPanel, contains a panel that errors are displayed in

The programmer then visited AbstractFile; it contains the methods
getFileNameWithoutExtension () and getExtension (). These methods are all
the search algorithm requires from AbstractFile, so it was marked Unchanged. The
programmer wanted to duplicate the functionality from the year input field that was part
of the date chooser added during change request 4; it shows the user if input is valid by
coloring it green or invalid by coloring it red. The programmer visited the code files in
the following order and marked them Propagating, they were not impacted, but lead to
an impacted code file:

1. DatePanel

2. DateField

3. JCalendar

89

4. JYearChooser

JRipples marked JspinField Next and the programmer visited and marked it

Impacted because it only accepts integers, this change request requires it to also

accept alphabetic characters.

The programmer then visited the harness code files in JRipples’ Next set and

marked them Impacted:

BasicOptionsPanelsTest
CaseSensitiveOptionTest
SearchTermOptionTest
JSpinFieldTest

TestConstants

Finally, the programmer visited the 19 production code files and 20 harness code

files in the Next set and marked them Unchanged, see Figure 5.19.

90

SearchThreadTest YBoxPanel SearchDialogTest SearchDialog AbstractTermOption «interface» DateOptionTest
|| SearchOption
Translator BasicOptionsPanels ButtonPanelTest AbstractFile DirectoryPanelTest
SearchManager CaseSensitiveOption BasicSearchFuncTest SearchFuncTestSetUp

SearchMangerTest

CaseSensitiveOptionTest SearchTermOption TestConstants

[] \—\ V—‘

BasicOptionsPanelsTest InputPanel SearchTermOptionTest ResultsPanelTest FileFactory SearchTableTest

[—J

DateSearchFuncTest |__| SpinningDial InputPanelTest SearchTableCellRendererTest

[|

DirectoryPanel ErrorManager SearchTableModel DateOption IconManager DateFieldTest CustomDateFormat

|
..l |

SearchTableModelTest SearchTable DatePanel DateField

JCalendarFuncTest

DatePanelTest FlashLabel ComponentTitledBorder JDayChooser JCalendar JCalendarTest
JYearChooserTest JYearChooser JSpinField JSpinFieldTest JMonthChooserTest JMonthChooser
@ — :
Legend Aggregation Unchanged | | Propagating Impacted Production
Association
Lo Harness
Generalization

N

Figure 5.19 Change 6 Impact Analysis
5.6.4 Prefactoring

During impact analysis the programmer added JSpinField to the estimated

impact set. This field colors the text green if the user input is valid and red if the user

91

input is invalid as the user types. However, the JSpinField only accepts integer
values. To make it easier to add the coloring feature for alphabetical values to this
change request, a new class, FeedbackField was extracted from JSpinField. It
extends JTextField and is only responsible for changing the color of the text,
depending if the text is valid or invalid. To make FeedbackField work in general
cases; the programmer added a nested interface, InputListener. InputListener
has 1 method, isInputvalid() that allows implementing classes to define what is
valid and invalid input. The field and methods of JSpinField impacted by the

extraction are:

Fields Methods
o JTextField textField ® setValue ()
® Color darkGreen ® setMaximum ()

® setHorizontalAlignment
® setFont ()
® setForeground ()
A test class FeedbackField was extracted from JSpinFieldTest. It also had

tests added for the new methods.

5.6.5 Actualization

To actualize the change request, the programmer incorporated a new supplier of
BasicOptionsPanels that extends YBoxPanel called ExtensionPanel. The class
contains a JCheckBox, FeedbackField and FlashLabel. This class adds the

components to the GUI for the user to enter extensions.

92

The programmer also added a class that implements the SearchOption
interface, ExtensionOption that is added to the list of SearchOption objects in
SearchManager when an extension search is enabled. ExtensionOption’s primary
responsibility is to check an AbstractFile’s extension against the set of user entered
extensions and return true if it is.

The programmer added the responsibility of changing between classes that
extend AbstractTermOption t0 compare an AbstractFile’s name to a search
term to BasicOptionsPanels. When an extension search is enabled,
BasicOptionsPanels will change between 4 different implementations of the
AbstractTermOption class. There were 2 classes to do this at the beginning of this
change request, which compare the search term to the file’s name including the
extension. The programmer created 2 new classes that compare the file’s name without
the extension to the search term, SearchTermWithoutExtensionOption and
CaseSensitiveWithoutExtensionOption that extend AbstractTermOption.

Additionally, the programmer added a FocusListener t0 FeedbackField to
change the text color to the default when the field has lost focus.

The test classes, ExtensionSearchFuncTest, ExtensionOptionTest and
ExtensionPanelTest were added by t