
Wayne State University
DigitalCommons@WayneState

Wayne State University Theses

1-1-2011

An experience report of the solo iterative process
Christopher Dorman
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Dorman, Christopher, "An experience report of the solo iterative process" (2011). Wayne State University Theses. Paper 105.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/105?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F105&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EXPERIENCE REPORT OF THE SOLO ITERATIVE PROCESS

by

CHRISTOPHER DORMAN

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2011

 MAJOR: COMPUTER SCIENCE

 Approved by:

 Advisor Date

© COPYRIGHT BY

CHRISTOPHER R. DORMAN

2011

All Rights Reserved

ii

DEDICATION

To Andrea

iii

ACKNOWLEDGEMENTS

I would like to thank Prof. Rajlich for his help and inspiration. His belief in this

work is the motivation I required to finish. Laurentiu Radu Vanciu was also instrumental.

He contributed major parts to this thesis, including selecting the project, many of the

tools, proofreading and much more.

Atlassian Pty Ltd. supplied a complimentary copy of their Clover Java code

coverage & test optimization for use in this project. This made the testing coverage

numbers possible. Tasktop Technologies provided a complimentary copy of their

Tasktop plugin for Mylyn and Eclipse. Mylyn and Tasktop together made it easy and

unobtrusive to time the phases of this project, even correcting my mistakes at time.

JRipples made by a former Wayne State SEVERE group member Maksym

Petrenko is a tool that was invaluable for this project. I’m still not sure how I could

perform impact analysis without it.

Finally, I would like to thank the muCommander community for supplying the

program for this project. Finding suitable open source projects for university projects is

more difficult than one might think. The muCommander program is a very good

candidate with easy to explain functionality and well maintained code.

This work was supported in part by grant from the National Science Foundation

CCF-0820133. Any opinions, findings, conclusions, or recommendations expressed in

this material are those of the authors and do not necessarily reflect the views of the

NSF.

iv

TABLE OF CONTENTS

Dedication ...ii

Acknowledgements .. iii

List of Tables ... xvii

List of Figures ... xxiii

Chapter 1 .. 1

Introduction ... 1

1.1 Waterfall Model ... 1

1.2 Agile Manifesto ... 2

1.3 Solo Iterative Process Experience Report... 2

Chapter 2 .. 4

Previous Work ... 4

2.1 Software Processes .. 4

2.1.1 Software Evolution.. 4

2.1.2 Solo Software Change .. 5

2.1.3 Personal Software Process .. 5

2.1.4 Team Software Processes ... 6

2.2 Software Tasks ... 8

2.2.1 Concept Location & Impact Analysis .. 8

2.2.2 Refactoring ... 9

2.3 Software Process Tools .. 9

2.3.1 JRipples .. 10

2.3.2 Other Software Tools .. 10

v

Chapter 3 .. 11

Solo Iterative Process ... 11

3.1 Product Backlog .. 12

3.1.1 Iteration Backlog ... 14

3.2 Software Change (SC) .. 14

3.2.1 Initialization ... 15

3.2.2 Concept Location ... 16

3.2.3 Impact Analysis .. 18

3.2.4 Prefactoring .. 19

3.2.5 Actualization ... 20

3.2.6 Postfactoring .. 21

3.2.7 Verification .. 22

3.2.8 Conclusion .. 24

3.3 SIP Workproducts ... 24

3.3.1 Basline .. 25

3.3.2 Iteration/release .. 25

3.3.3 Time Log .. 26

3.3.4 Defect Log .. 26

3.3.5 Iteration Backlog Table ... 27

Chapter 4 .. 28

Solo Iterative Process Experience Report .. 28

4.1 muCommander ... 28

4.2 Eclipse Technologies .. 28

vi

4.2.1 JRipples .. 28

4.2.2 Clover Java Code Coverage & Test Optimization 29

4.2.3 Mylyn & TaskTop .. 29

4.3 Other Technologies ... 29

4.3.1 Abbot Java GUI Test Framework ... 29

4.3.2 Subversion & TortoiseSVN ... 30

4.3.3 DiffStats .. 30

Chapter 5 .. 31

Solo Iterative Process: Experience Report ... 31

5.1 Change Request 1 Basic Search .. 33

5.1.1 Initialization ... 33

5.1.2 Concept Location ... 34

5.1.3 Impact Analysis .. 35

5.1.4 Prefactoring .. 36

5.1.5 Actualization ... 37

5.1.6 Postfactoring .. 40

5.1.7 Verification .. 40

5.1.8 Conclusion .. 41

5.2 Change Request 2 Recursive search ... 41

5.2.1 Initialization ... 41

5.2.2 Concept Location ... 42

5.2.3 Impact Analysis .. 43

5.2.4 Prefactoring .. 44

vii

5.2.5 Actualization ... 46

5.2.6 Postfactoring .. 47

5.2.7 Verification .. 49

5.2.8 Conclusion .. 50

5.3 Change Request 3 Advanced Output ... 51

5.3.1 Initialization ... 51

5.3.2 Concept Location ... 51

5.3.3 Impact Analysis .. 52

5.3.4 Prefactoring .. 55

5.3.5 Actualization ... 56

5.3.6 Postfactoring .. 58

5.3.7 Verification .. 62

5.3.8 Conclusion .. 64

5.4 Change Request 4 Date Search ... 64

5.4.1 Initialization ... 64

5.4.2 Concept Location ... 65

5.4.3 Impact Analysis .. 65

5.4.4 Prefactoring .. 67

5.4.5 Actualization ... 69

5.4.6 Postfactoring .. 72

5.4.7 Verification .. 74

5.4.8 Conclusion .. 76

5.5 Change Request 5 Case Sensitive Search ... 76

viii

5.5.1 Initialization ... 76

5.5.2 Concept Location ... 77

5.5.3 Impact Analysis .. 77

5.5.4 Prefactoring .. 79

5.5.5 Actualization ... 82

5.5.6 Postfactoring .. 83

5.5.7 Verification .. 85

5.5.8 Conclusion .. 86

5.6 Change Request 6 Extension Search ... 87

5.6.1 Initialization ... 87

5.6.2 Concept Location ... 87

5.6.3 Impact Analysis .. 88

5.6.4 Prefactoring .. 90

5.6.5 Actualization ... 91

5.6.6 Postfactoring .. 93

5.6.7 Verification .. 95

5.6.8 Conclusion .. 97

5.7 Change Request 7 Properties Search .. 98

5.7.1 Initialization ... 98

5.7.2 Concept Location ... 98

5.7.3 Impact Analysis .. 99

5.7.4 Prefactoring .. 99

5.7.5 Actualization ... 100

ix

5.7.6 Postfactoring .. 102

5.7.7 Verification .. 106

5.7.8 Conclusion .. 108

5.8 Change Request 8 File Chooser Bug ... 108

5.8.1 Initialization ... 108

5.8.2 Concept Location ... 108

5.8.3 Impact Analysis .. 109

5.8.4 Prefactoring .. 109

5.8.5 Actualization ... 109

5.8.6 Postfactoring .. 110

5.8.7 Verification .. 110

5.8.8 Conclusion .. 110

5.9 Change Request 9 Date Search Bug .. 111

5.9.1 Initialization ... 111

5.9.2 Concept Location ... 111

5.9.3 Impact Analysis .. 111

5.9.4 Prefactoring .. 112

5.9.5 Actualization ... 112

5.9.6 Postfactoring .. 113

5.9.7 Verification .. 113

5.9.8 Conclusion .. 113

5.10 Build .. 114

Chapter 6 .. 118

x

Discussion... 118

6.1 Concept Location .. 118

6.1.1 Exit Criteria ... 120

6.2 Impact Analysis ... 120

6.2.1 Overestimate in Change 3 .. 121

6.2.2 Overestimate in Change 6 .. 122

6.2.3 Missed Impact in Change 7 .. 122

6.2.4 Programmer Missteps .. 123

6.2.5 Harness Code Impact ... 124

6.2.6 Exit Criteria ... 125

6.3 Actualization experience and overhead .. 125

6.3.1 Exit Criteria ... 127

6.4 Refactoring Experience ... 127

6.4.1 Prefactoring .. 127

6.4.2 Prefactoring Exit Criteria ... 128

6.4.3 Postfactoring .. 128

6.5 Verification .. 129

6.6 SIP Exceptions .. 130

6.6.1 Changing Behavior during Refactoring ... 130

6.6.2 Additional Commits... 131

6.7 Proposed SIP Evolution .. 131

6.7.1 Phase continuity has priority over concepts 131

6.7.2 Local and renaming refactoring during actualization 132

xi

6.7.3 Exit Criteria ... 133

6.7.4 Enactment Rules .. 133

6.8 SIP versus Ad hoc .. 133

6.9 Amount of Rework .. 135

6.10 Technologies ... 137

6.10.1 JRipples .. 137

6.10.2 Clover Java Code Coverage & Test Optimization 141

6.10.3 Mylyn & Tasktop ... 141

6.10.4 Abbot Java GUI Test Framework ... 142

6.10.5 Subversion & TortoiseSVN ... 143

6.10.6 DiffStats .. 143

6.11 Threats to Validity ... 143

Chapter 7 .. 145

Future Work and Conclusions ... 145

7.1 Future Work .. 145

7.1.1 Level of adoption Study .. 145

7.1.2 Team Processes Research .. 146

7.2 Conclusion .. 146

Appendix A. .. 148

SIP – Change 1 Basic Search ... 148

A.1.1 Initiation .. 148

A.1.2 Concept Location ... 148

A.1.3 Impact Analysis .. 150

xii

A.1.4 Prefactoring .. 154

A.1.5 Actualization ... 154

A.1.6 Postfactoring .. 160

A.1.7 Verification ... 161

A.1.8 Timing .. 162

A.1.9 Conclusions ... 162

SIP – Change 2 Recursive search .. 165

A.2.1 Initiation .. 165

A.2.2 Concept Location ... 166

A.2.3 Impact Analysis .. 166

A.2.4 Prefactoring .. 169

A.2.5 Actualization ... 174

A.2.6 Postfactoring .. 180

A.2.7 Verification ... 185

A.2.8 Timing Data .. 187

A.2.9 Conclusions ... 188

SIP – Change 3 Advanced Output .. 193

A.3.1 Initiation .. 193

A.3.2 Concept Location ... 194

A.3.3 Impact Analysis .. 196

A.3.4 Prefactoring .. 200

A.3.5 Actualization ... 205

A.3.6 Postfactoring .. 212

xiii

A.3.7 Verification ... 227

A.3.8 Timing Data .. 229

A.3.9 Conclusions ... 229

SIP – Change 4 Date Search .. 235

A.4.1Initiation ... 235

A.4.2 Concept Location ... 236

A.4.3 Impact Analysis .. 236

A.4.4 Prefactoring .. 239

A.4.5 Actualization ... 243

A.4.6 Postfactoring .. 254

A.4.7 Verification ... 262

A.4.8 Timing Data .. 263

A.4.9 Conclusions ... 263

SIP – Change 5 Case Sensitive Search ... 270

A.5.1Initialization ... 270

A.5.2 Concept Location ... 271

A.5.3 Impact Analysis .. 271

A.5.4 Prefactoring .. 278

A.5.5 Actualization ... 287

A.5.6 Postfactoring .. 290

A.5.7 Verification ... 296

A.5.8 Timing Data .. 297

A.5.9 Conclusions ... 298

xiv

SIP – Change 6 Extension Search .. 303

A.6.1 Initialization .. 303

A.6.2 Concept Location ... 304

A.6.3 Impact Analysis .. 304

A.6.4 Prefactoring .. 310

A.6.5 Actualization ... 314

A.6.6 Postfactoring .. 321

A.6.7 Verification ... 329

A.6.8 Timing Data .. 331

A.6.9 Conclusions ... 331

SIP – Change 7 Properties Search ... 340

A.7.1 Initialization .. 340

A.7.2 Concept Location ... 341

A.7.3 Impact Analysis .. 341

A.7.4 Prefactoring .. 344

A.7.5 Actualization ... 344

A.7.6 Postfactoring .. 351

A.7.7 Verification ... 363

A.7.8 Timing Data .. 365

A.7.9 Conclusions ... 365

A.8 SIP – Change 8 File Chooser Bug .. 373

A.8.1 Initialization .. 373

A.8.2 Concept Location ... 374

xv

A.8.3 Impact Analysis .. 374

A.8.4 Prefactoring .. 375

A.8.5 Actualization ... 376

A.8.6 Postfactoring .. 378

A.8.7 Verification ... 379

A.8.8 Timing Data .. 379

A.8.9 Conclusions ... 379

SIP – Change 9 Date Search Bug .. 381

A.9.1 Initialization .. 381

A.9.2 Concept Location ... 382

A.9.3 Impact Analysis .. 382

A.9.4 Prefactoring .. 383

A.9.5 Actualization ... 384

A.9.6 Postfactoring .. 386

A.9.7 Verification ... 386

A.9.8 Timing Data .. 387

A.9.9 Conclusions ... 387

Appendix B. .. 390

Defect Log... 390

Appendix C. .. 391

Glossary of Terms ... 391

C.1 Class change table terms ... 392

References ... 395

xvi

Abstract .. 400

Autobiographical Statement.. 401

xvii

LIST OF TABLES

Table 5.1 Original Product backlog ... 32

Table 5.2 Product Backlog Completed .. 33

Table 5.3 Change 1 Statement verification coverage of production code files 41

Table 5.4 Change 1 Summary .. 41

Table 5.5 Change 2 Statement verification coverage of production code files 50

Table 5.6 Change 2 Summary .. 51

Table 5.7 Change 3 Statement verification coverage of production code files 63

Table 5.8 Change 3 Summary .. 64

Table 5.9 Change 4 Statement verification coverage of production code files 75

Table 5.10 Change 4 Summary .. 76

Table 5.11 Change 5 Statement verification coverage of production code files 86

Table 5.12 Change 5 Summary .. 87

Table 5.13 Change 6 Statement verification coverage of production code files 97

Table 5.14 Change 6 Summary .. 98

Table 5.15 Change 7 Statement verification coverage of production code files 107

Table 5.16 Change 7 Summary .. 108

Table 5.17 Change 8 Statement verification coverage of production code files 110

Table 5.18 Change 8 Summary .. 111

Table 5.19 Change 9 Statement verification coverage of production code files 113

Table 5.20 Change 9 Summary .. 114

Table 5.21 Product Backlog after Iteration .. 117

Table 6.1 Location of Search Algorithm Extension .. 119

xviii

Table 6.2 Comparison of Estimated Impact Set and Changed Set 121

Table 6.3 SIP Iteration timing (Hours:Minutes) .. 126

Table 6.4 Rework by Phase .. 136

Table A.1 Change 1 Concept Location Summary ... 149

Table A.2 Change 1 Concept Location Code Files Visited .. 149

Table A.3 Change 1 Impact Analysis Summary .. 152

Table A.4 Change 1 Impact Analysis Code Files Visited ... 152

Table A.5 Change 1 Actualization Summary ... 156

Table A.6 Change 1 Actualization Code Files ... 156

Table A.7 Change 1 Postfactoring Summary .. 160

Table A.8 Change 1 Postfactoring Code Files .. 160

Table A.9 Change 1 Statement Verification .. 161

Table A.10 Change 1 Timing Totals .. 162

Table A.11 Change 1 Code File Summary .. 163

Table A.12 Change 1 Current Product Backlog .. 163

Table A.13 Change 2 Concept Location summary .. 166

Table A.14 Change 2 Impact Analysis Summary .. 167

Table A.15 Change 2 Impact Analysis Code Files Visited ... 167

Table A.16 Change 2 Prefactoring Summary .. 171

Table A.17 Change 2 Prefactoring Code Files .. 171

Table A.18 Change 2 Actualization Summary ... 174

Table A.19 Change 2 Actualization Code Files ... 175

Table A.20 Change 2 Postfactoring Summary .. 181

xix

Table A.21 Change 2 Postfactoring Code Files .. 181

Table A.22 Change 2 Statement Verification .. 187

Table A.23 Change 2 Timing Totals .. 187

Table A.24 Change 2 Code File Summary .. 189

Table A.25 Change 2 Current Product Backlog .. 189

Table A.26 Change 3 Concept Location Summary ... 195

Table A.27 Change 3 Concept Location Code Files Visited .. 195

Table A.28 Change 3 Impact Analysis Summary .. 198

Table A.29 Change 3 Impact Analysis Code Files Visited ... 198

Table A.30 Change 3 Prefactoring Summary .. 202

Table A.31 Change 3 Prefactoring Code Files .. 202

Table A.32 Change 3 Actualization Summary ... 206

Table A.33 Change 3 Actualization Code Files ... 206

Table A.34 Change 3 Postfactoring Summary .. 214

Table A.35 Change 3 Postfactoring Code Files .. 214

Table A.36 Change 3 Statement Verification .. 228

Table A.37 Change 3 Timing Totals .. 229

Table A.38 Change 3 Code File Summary .. 230

Table A.39 Change 3 Current Product Backlog .. 231

Table A.40 Change 4 Impact Analysis Summary .. 238

Table A.41 Change 4 Impact Analysis Code Files Visited ... 238

Table A.42 Change 4 Prefactoring Summary .. 240

Table A.43 Change 4 Prefactoring Code Files .. 240

xx

Table A.44 Change 4 Actualization Summary ... 245

Table A.45 Change 4 Actualization Code Files ... 245

Table A.46 Change 4 Postfactoring Summary .. 255

Table A.47 Change 4 Postfactoring Code Files .. 255

Table A.48 Change 4 Statement Verification .. 262

Table A.49 Change 4 Timing Totals .. 263

Table A.50 Change 4 Code File Summary .. 265

Table A.51 Change 4 Current Product Backlog .. 266

Table A.52 Change 5 Impact Analysis Summary .. 273

Table A.53 Change 5 Impact Analysis Code Files Visited ... 273

Table A.54 Change 5 Prefactoring Summary .. 280

Table A.55 Change 5 Prefactoring Code Files .. 280

Table A.56 Change 5 Actualization Summary ... 288

Table A.57 Change 5 Actualization Code Files ... 288

Table A.58 Change 5 Postfactoring Summary .. 291

Table A.59 Change 5 Postfactoring Code Files .. 292

Table A.60 Change 5 Statement Verification .. 297

Table A.61 Change 5 Timing Totals .. 297

Table A.62 Change 5 Code File Summary .. 299

Table A.63 Change 5 Current Product Backlog .. 299

Table A.64 Change 6 Impact Analysis Summary .. 306

Table A.65 Change 6 Impact Analysis Code Files Visited ... 306

Table A.66 Change 6 Prefactoring Summary .. 312

xxi

Table A.67 Change 6 Prefactoring Code Files .. 312

Table A.68 Change 6 Actualization Summary ... 315

Table A.69 Change 6 Actualization Code Files ... 316

Table A.70 Change 6 Postfactoring Summary .. 322

Table A.71 Change 6 Postfactoring Code Files .. 322

Table A.72 Change 6 Statement Verification .. 330

Table A.73 Change 6 Timing Totals .. 331

Table A.74 Change 6 Code File Summary .. 333

Table A.75 Change 6 Current Product Backlog .. 334

Table A.76 Change 7 Impact Analysis Summary .. 342

Table A.77 Change 7 Impact Analysis Code Files Visited ... 343

Table A.78 Change 7 Actualization Summary ... 345

Table A.79 Change 7 Actualization Code Files ... 346

Table A.80 Change 7 Postfactoring Summary .. 354

Table A.81 Change 7 Postfactoring Code Files .. 354

Table A.82 Change 7 Statement Verification .. 364

Table A.83 Change 7 Timing Totals .. 365

Table A.84 Change 7 Code File Summary .. 367

Table A.85 Change 7 Current Product Backlog .. 368

Table A.86 Change 8 Impact Analysis Code Files Visited ... 374

Table A.87 Change 8 Prefactoring Summary .. 375

Table A.88 Change 8 Prefactoring Code Files .. 376

Table A.89 Change 8 Actualization Summary ... 377

xxii

Table A.90 Change 8 Actualization Code Files ... 377

Table A.91 Change 8 Statement Verification .. 379

Table A.92 Change 8 Timing Totals .. 379

Table A.93 Change 8 Code File Summary .. 380

Table A.94 Change 8 Current Product Backlog .. 381

Table A.95 Change 9 Impact Analysis Code Files Visited ... 383

Table A.96 Change 9 Actualization Summary ... 384

Table A.97 Change 9 Actualization Code Files ... 385

Table A.98 Change 9 Statement Verification .. 387

Table A.99 Change 9 Timing Totals .. 387

Table A.100 Change 9 Code File Summary .. 388

Table A.101 Change 9 Current Product Backlog .. 389

Table B.1 Defect Log... 390

xxiii

LIST OF FIGURES

Figure 5.1 Change 1 Concept location .. 35

Figure 5.2 Change 1 Impact Analysis.. 36

Figure 5.3 Change 1 Actualization .. 39

Figure 5.4 Change 2 Impact Analysis.. 43

Figure 5.5 Change 2 Prefactoring ... 45

Figure 5.6 Change 2 Postfactoring .. 48

Figure 5.7 Change 3 Impact Analysis.. 54

Figure 5.8 Change 3 Prefactoring ... 56

Figure 5.9 Change 3 Actualization .. 58

Figure 5.10 Change 3 Postfactoring .. 61

Figure 5.11 Change 4 Impact Analysis.. 67

Figure 5.12 Change 4 Prefactoring ... 69

Figure 5.13 Change 4 Actualization .. 72

Figure 5.14 Change 4 Postfactoring .. 73

Figure 5.15 Change 5 Impact Analysis.. 78

Figure 5.16 Change 5 Prefactoring ... 82

Figure 5.17 Change 5 Actualization .. 83

Figure 5.18 Change 5 Postfactoring .. 85

Figure 5.19 Change 6 Impact Analysis.. 90

Figure 5.20 Change 6 Actualization .. 93

Figure 5.21 Change 6 Postfactoring .. 95

Figure 5.22 Change 7 Actualization .. 102

xxiv

Figure 5.23 Change 7 Postfactoring .. 105

Figure 5.24 Change 9 Impact Analysis.. 112

Figure 5.25 SIP Iteration ... 115

Figure 5.26 Search Feature .. 116

Figure A.1 Change 1 Concept Location UML .. 150

Figure A.2 Change 1 Impact Analysis UML ... 154

Figure A.3 Change 1 Actualization UML ... 157

Figure A.4 Change 1 Postfactoring UML ... 160

Figure A.5 muCommander with search window .. 164

Figure A.6 muCommander Toolbar with Search icon circled 164

Figure A.7 Basic Search Feature window ... 165

Figure A.8 Change 2 Impact Analysis UML ... 169

Figure A.9 Change 2 Prefactoring UML .. 171

Figure A.10 Change 2 Actualization UML ... 175

Figure A.11 Change 2 Postfactoring UML ... 182

Figure A.12 Search window before Recursive search Change 190

Figure A.13 Search window after Recursive search Change 191

Figure A.14 Search window with new input features circled .. 192

Figure A.15 Search window with search running .. 192

Figure A.16 Search window with invalid directory error message 193

Figure A.17 Change 3 Concept location UML ... 196

Figure A.18 Change 3 Impact Analysis UML ... 200

Figure A.19 Change 3 Prefactoring UML .. 203

xxv

Figure A.20 Change 3 Actualization UML ... 207

Figure A.21 Change 3 Postfactoring UML ... 216

Figure A.22 Search window before Recursive search Change 232

Figure A.23 Search window after Recursive search Change 233

Figure A.24 Search window new input features circled ... 234

Figure A.25 Search window after search ... 235

Figure A.26 Change 4 Impact Analysis UML ... 239

Figure A.27 Change 4 Prefactoring UML .. 241

Figure A.28 Change 4 Actualization UML ... 247

Figure A.29 Change 4 Postfactoring UML ... 257

Figure A.30 Search window before Date Search Change ... 267

Figure A.31 Search window after the Date Search Change .. 268

Figure A.32 Search window with date search circled .. 269

Figure A.33 Search window with date search calendar ... 270

Figure A.34 Change 5 Impact Analysis UML ... 277

Figure A.35 Change 5 Prefactoring UML .. 281

Figure A.36 Change 5 Actualization UML ... 289

Figure A.37 Change 5 Postfactoring UML ... 293

Figure A.38 Search window before Case Sensitive Change 300

Figure A.39 Search window after Case Sensitive Change .. 301

Figure A.40 Search window case sensitive search feature circled 302

Figure A.41 Search window after a case sensitive search has finished 303

Figure A.42 Change 6 Impact Analysis UML ... 310

xxvi

Figure A.43 Change 6 Prefactoring UML .. 312

Figure A.44 Change 6 Actualization UML ... 317

Figure A.45 Change 6 Postfactoring UML ... 324

Figure A.46 Search window before the Extension Search Change 335

Figure A.47 Search window after Extension Search Change 336

Figure A.48 Search window Extension Search Feature circled 337

Figure A.49 Search window valid text in extension field .. 338

Figure A.50 Search window invalid text in extension field ... 339

Figure A.51 Search window Extension Search Change .. 340

Figure A.52 Change 7 Impact Analysis UML ... 343

Figure A.53 Change 7 Actualization UML ... 347

Figure A.54 Change 7 Postfactoring UML ... 356

Figure A.55 Search window before Properties Search Change 369

Figure A.56 Search window Properties Search Change ... 370

Figure A.57 Search window Properties Search circled.. 371

Figure A.58 Search window Archive checked, Directory disabled 372

Figure A.59 Search window search running, returning Directories 373

Figure A.60 Change 8 Impact Analysis UML ... 375

Figure A.61 Change 8 Prefactoring UML .. 376

Figure A.62 Change 8 Actualization UML ... 378

Figure A.63 Change 9 Impact Analysis UML ... 383

Figure A.64 Change 9 Actualization UML ... 385

1

Chapter 1

Introduction

The field of software engineering is over 50 years old; in his in press manuscript,

Rajlich gives a brief history [1]. Originally, mathematicians and engineers thought

software development was more of an art form than a defined process. These first

software engineers managed to produce a variety of complex, working software.

1.1 Waterfall Model

 As time went on software engineers came to a point where it was necessary to

move to a defined process modeled after processes in other engineering disciplines

known today as the waterfall model. This model had four stages:

1. Requirements

2. Design

3. Implementation

4. Maintenance

In the waterfall model each stage must be completed before the next stage is

started. To begin, the software engineers would collect requirements from the

stakeholders. Then they would use the gathered requirements to design the entire

system. Once they completed the design they would implement the program and

release it to the users. When the users reported problems, the problems would be fixed

during maintenance.

 This model ran into significant complications because the requirements of

software are volatile. In large programs, the requirements often change so drastically

while the software engineers are performing the first three steps that programs

2

delivered are completely different from the stakeholders’ current requirements. This

problem with the waterfall model was famously described by Brooks [2].

1.2 Agile Manifesto

Since Brooks published his book in 1975 software engineers developed new

processes of software development. In 2001 a group of software engineers drafted the

Agile Manifesto [3] that summarizes the foundations of these new processes:

“We are uncovering better ways of developing software by doing it and
helping others do it. We value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.”(p. 2)

The principles of the agile manifesto do not declare that processes,

documentation or any other workproduct is unimportant, but rather just a reminder that

the most import workproduct is the program along with the people who write it. The agile

manifesto is popular, it has over 10 thousand signatories [4]. Many processes include

the agile principles and research shows them to be successful; a selection is discussed

in more depth in Chapter 2. Agile principles have become so widespread that processes

in other engineering disciplines have defined their own, such as the Integrated Project

Delivery for the construction industry [5].

1.3 Solo Iterative Process Experience Report

This thesis is an experience report of the Solo Iterative Process (SIP) as defined

by Rajlich [1]. SIP describes a process of a programmer working alone on a software

project and it belongs to the group of iterative evolutionary processes. It shares many

characteristics with team iterative processes including repeated software change (SC),

3

baseline build, elicitation and analysis of requirements for the product backlog, and so

forth.

This thesis describes an implementation of a new feature by enacting SIP on a

medium sized open source program. The feature is implemented in an iteration that

consists of several software changes, each adding new functionality or fixing a bug. It

also draws on the programmer’s experience to present lessons learned about of the

individual phases of SC after performing multiple changes.

Chapter 2 surveys the previous work and Chapter 3 describes the SIP process

model. Chapter 4 describes the subject program, technologies involved, and a high

level description of the feature to be implemented. Chapter 5 contains the description of

the SIP enactment that implements the new feature. Chapter 6 contains the

measurements and discussion of the experience and Chapter 7 contains conclusions

and future work.

4

Chapter 2

Previous Work

Many different software processes are in use. Much research has been done and

continues on these processes, their tasks and the tools used to implement them. This

chapter details a current state of the art selection of these processes, tasks and tools.

2.1 Software Processes

The field of software engineering defines software processes for programmers to

use to produce high quality programs. Research has defined many software processes

and gathered data to show that these processes help programmers produce the

intended high quality programs. This section briefly looks at why agile methods of

software evolution are used; then looks more in depth at 2 solo processes and an

assortment of team software processes based on software evolution.

2.1.1 Software Evolution

Even with the amount of research and industrial use of software evolution, there

are still software engineers who use other methods of software development and

question the need for software evolution. This is addressed by Lehman [6], who draws

from personal experience and the wealth of research done on software evolution to

argue software evolution is currently the most effective approach to develop software.

He provides examples of different types of software that benefit from software evolution,

but also presents a general argument that software evolution is necessary because the

domain of software itself evolves, also called the volatility of requirements.

5

2.1.2 Solo Software Change

 There are many well defined team based software evolution processes;

however, a solo programmer can also use a process. Previous work in software

processes for a single programmer has successfully show a solo programmer can

produce high quality software; it includes work by Febbraro and Rajlich [7]. They did an

initial design of a simple point of sale program and then used SC to add functionality.

The results were compared to a version of the program created through object-oriented

design and they conclude that SC produces a simpler design. They also discuss the

important role of refactoring in SC. The point of sale program was made using the SC

process presented by Rajlich and Gosavi [8]. They identify the best practices in a how

to process for changing object-oriented software. It starts by identifying the concepts of

the change, identifying the software modules to change, then preparing, changing and

cleaning up the code after the change through refactoring. It also includes verifying the

software during the change.

2.1.3 Personal Software Process

Another software process for a solo programmer is the Personal Software

Process (PSP) [9]. This process builds on a programmer’s preexisting abilities and is

intended to prepare them for a team process. It is taught through a series of ten

programming tasks, where the student keeps track of a battery of metrics [10]. During

each task they learn from their mistakes to create higher quality software more

efficiently. Various studies have shown PSP to improve performance in both university

and industrial settings, such as one by Ferguson, Humphrey, Khajenoori, Macke and

Matvya [11]. However, the metrics used many PSP case studies are mainly the data

6

collected by the users of PSP. Johnson and Disney believe the PSP data is error prone

and outside metrics would be a better indicator [12]. They do admit that outside metrics

are difficult to obtain, even when simple, such as cost-effectiveness. Additionally, even

after calling into question the data showing the effectiveness of PSP, they still believe in

it, “… both of us consider it to be one of the most powerful software engineering

practices we have adopted in our careers.”(p. 343) Although, they rely on the data they

believe erroneous and anecdotal evidence to support their opinions.

2.1.4 Team Software Processes

There are many team software processes; many of the challenges faced by a

solo programmer are also faced by teams of programmers. The volatility of

requirements is one notable shared challenge, where the team tasks may be applicable

to a solo process. This section will look at a selection of team processes and their view

on dealing with the challenges of software engineering.

One team software process is SCRUM as defined by Schwaber [13]. It accounts

for difficulties of industrial software production; some of these are realities of any

business, such as time pressure and competition, while others are more specific to

software, such as the volatility of technology and how it reduces the availability of

programmers. It has flexibility built in with the intent to allow programmers to account for

the volatility of software development; planning is only done for short periods of time,

known as sprints. At the end of a sprint the current state of the project is reassessed

before the next sprint. Rising and Janoff [14] explain how SCRUM is suited to small

teams of programmers. They present a picture of chaos for software development in

small teams, because of requirement’s volatility. They continue that small teams can

7

limit the chaos by using SCRUM and support their contention with experience reports

using SCRUM.

Test-Driven Development as presented by Martin [15] is an agile process that is

based on writing tests, then production code that passes the tests. He lists the

processes three laws:

� “You may not write production code unless you’ve first written a failing unit

test.

� You may not write more of a unit test than is sufficient to fail.

� You may not write more production code than is sufficient to make the

failing unit test pass.” (p. 32)

Although he admits the laws are more of guidelines, he does argue the tenets produce

a structurally different code that is superior to code produced using other software

processes. This is because the code will be error free, free of bloat and deadlines will

be met. He also argues another advantage is that by definition, there will be a

comprehensive regression test suite that will encourage refactoring.

 Extreme Programming (XP) is another agile process that has a defined set of

practices the agile team follows. Müller and Tichy study issues with a subset of the

practices while introducing it to programmers who are accustomed to using other

processes [16]. They find that some of the practices such as writing tests before writing

production code and only designing a small part of a program at a time are difficult for

some programmers to accept. Furthermore, while the programmers enjoy pair

programming and believe it produces high quality code, both the programmers and

authors are unsure of its value, especially when writing simple code. They conclude that

8

its implementation requires the team to be tightly managed and there will be difficulty

scaling XP to large teams.

 Cockburn and Highsmith claim that the common factor in agile processes is the

quality of the people implementing the process [17]. They present the argument that,

“’people trump process’”(p. 131) in many of the common agile processes such as XP,

SCRUM and others. The one factor they consider to be able to overtake quality people

is organizational politics.

2.2 Software Tasks

Solo and team software processes are composed of tasks that programmers

perform to write programs. Besides software process granularity, previous research in

software evolution has also studies on the individual phases and tasks. Much of the

research into this area explains a method any programmer can use to complete a task.

This section looks at some of these tasks.

2.2.1 Concept Location & Impact Analysis

Concept location techniques in object-oriented software is studied by Marcus,

Rajlich, Buchta, Petrenko and Sergeye [18]. They start by explaining a method to bridge

the relationship between human concepts and code concepts then explain three

concept location techniques for object-oriented code: text based searching (grep),

dependency search and information retrieval techniques (IR). They give examples of

how and when to use each technique to show some advantages and disadvantages of

each, especially in respect to code concepts that are explicit and implicit.

Concept location was also studied by Chen and Rajlich [19]. They look in depth

at dependency search and its requirements. The requirements focus is on what would

9

be required for an automated tool to assist with concept location. They define a graph to

with edges made up of function calls and data flows specifically for this purpose.

Ren, Chesley and Ryder look at impact analysis by presenting 2 tools that work

together to find the impact of a SC [20]. They conclude their tool is effective because it

is able to find the reason why the majority of regression tests fail after changing code

they are unfamiliar with. Additional research into impact analysis and change

propagation by Han [21] looked at how both could be expanded beyond software

maintenance tasks and also be used during software design. This appears to be a

precursor step in the acceptance of software evolution techniques. He also performs

impact analysis and change propagation directly on the code.

2.2.2 Refactoring

Refactoring is well defined by Fowler [22], who explained basic refactorings such

as extract class, inline class, move field and others. Refactoring is also regularly

updated by Fowler and the software community through his website [23]; it has over 90

examples of refactoring currently. Mens and Tourwé [24] outline a process to that list

steps the programmer should take for a successful refactoring. This provides

programmers process for successful refactoring and includes the concept that the

programmer should include all the artifacts in a refactoring.

2.3 Software Process Tools

The research into software evolution has not been restricted to abstract

processes and tasks; but has also implemented and studied concrete tools to assist

programmers with the processes and tasks. This section looks at one tool particularly

10

suited to the SC process (section 2.1.2) and some well accepted software evolution

tools.

2.3.1 JRipples

Buckner, Buchta, Petrenko and Rajlich present a tool to assist with the tasks of

concept location, impact analysis and actualization during SC [25]. The tool provides

different methods for concept analysis, such as grep and dependency search. It also

identifies dependencies in a program and tracks a programmer’s visits to them to assist

with impact analysis and change propagation. The authors claim an automated tool is

better at these tasks and frees the programmer to do steps better suited to humans.

2.3.2 Other Software Tools

Other tools that assist with the tasks of SC are JUnit presented by Gamma and

Beck to assist with verification [26]. Another tool for verification is Abbot that adds

functional test for GUI components to JUnit [27]. To assist the programmer with

measuring verification coverage, Yang, Li and Weiss review a variety of different tools

and conclude none of the coverage tools is superior to all others; a coverage tool should

be selected based on the program and project [28].

11

Chapter 3

Solo Iterative Process

Agile methods of software evolution focus on programmers talents to produce

quality software [17]. This experience report used one such process, the Solo Iterative

Process (SIP) [1]. It is a process that a single programmer can use to create high quality

software and meet time and resource constrains. SIP helps a solo programmer with

technical goals, such as meeting the stakeholders’ requirements and the business

aspects such as paying bills. The term iterative in SIP is important to an agile method; it

means that this is a process that is repeated to obtain a finished product. An iterative

process is important so that it can adjust for the reality of volatility in software

development.

At the core of SIP is the task of SC, which has been successfully used in

research and university classrooms [29]. However, SIP is more than exclusively the task

of changing software; it includes the following tasks and workproducts necessary for a

programmer to meet the responsibilities of software engineering:

1. Product Backlog – add, organize and choose a user stories to implement

2. Software Change – implement a change request

3. Iteration/release – a special commit that can be distributed to users

4. Measuring SIP – logs the programmer keeps

SIP assists with planning by recording time spent of each task and using it to

estimate future effort. This allows the programmer to use resources more wisely,

especially his most important resource, time. If the programmer does not keep track of

his time, it will be difficult for him to estimate the effort required for future projects, if a

12

programmer cannot estimate time accurately, it will be challenging to meet users

expectations and consequently to pay bills.

3.1 Product Backlog

The Product Backlog is a collection of user stories that need to be added to the

software through change requests. User stories are simple explanations of a change a

stakeholder would like implemented in the code. They are added to the backlog by any

of the project’s stakeholders, such as users and the programmer. This is the only task of

SIP that includes stakeholders besides the programmer.

Four types of change requests are made from the user stories; they are

categorized by their purpose. If a user asks for a bug in the program to be fixed it is a

corrective change request. If the request is to add new functionality it is a perfective

change request. If the programmer adds a change request to make the source code

easier to change in the future it is a protective change request. If a change request asks

for the software to be compatible with a version of a technology it is an adaptive change

request.

The user stories are entered into a spreadsheet to limit the scope of change

requests created from them and it also allows them to be prioritized by the programmer

whenever necessary. Other mediums such as 3”x5” card can also be used to manage

the user stories in the product backlog. Many different criteria can be used to prioritize

the product backlog. To help keep it organized a programmer needs to have different

levels of priority. Four levels of priority (1 for high priority, 4 for low priority) [1] help the

programmer to quickly identify which user stories need to be addressed soon and which

ones can be handled at a later date. While all user stories use the same priority levels,

13

different descriptions are used to help the programmer properly categorize the user

stories. For perfective change requests, the descriptions are based on the business

value:

 “1. An essential functionality without which the application is useless

 2. An important functionality that users rely on

 3. A functionality that users need but can be without

 4. A minor enhancement” (chp. 5)

However, for corrective and adaptive change requests, the descriptions are based on

severity:

“1. Fatal application error

 2. Application is severely impaired (no workaround can be found)

 3. Some functionality is impaired (but workaround can be found)

 4. Minor problem not involving primary functionality” (chp. 5)

For protective change request, the descriptions are based on the threat:

“1. A serious threat, the so-called “showstoppers”; if unresolved, the project is in

serious trouble

2. An important threat that cannot be ignored

3. A distant threat that still merits attention

4. A minor inconvenience” (chp. 5)

These priorities help a programmer to prioritize the product backlog, however,

they are recommendations; not all priority 1 change requests will be done before priority

2 change requests. The programmer will use other factors to decide the actual order of

the backlog. For example, the programmer may choose a priority 3 change request over

14

a priority 2, if it requires significantly less time to implement. Likewise if users

communicate dissatisfaction because of bugs, the program will choose to move

corrective change requests forward in the backlog and other categories back. The

product backlog is reshuffled in this manner as often as the volatility of the requirements

demand.

3.1.1 Iteration Backlog

The iteration backlog is a subset of change requests of the product backlog. The

programmer chooses the iteration backlog at the start of an iteration of SIP, once the

iteration backlog is chosen and the iteration starts, no additions can be made to the

iteration backlog. The goal of the iteration is to complete the tasks in iteration backlog,

by performing the steps of SC on each change request in a pre-chosen amount of time.

However, if setbacks occur, the SIP programmer can extend the time of an iteration or

leave some change requests unfinished and return them to the product backlog. The

SIP programmer will evaluate the length of time available then select a set of change

requests he considers he can complete in the time frame The programmer needs to

limit the size of the iteration, because the longer the iteration the more the volatility of

requirements will set in, which means the more likely the programmer’s decisions will be

off the mark.

3.2 Software Change (SC)

This section is a summary of the model of software change (SC) presented by

Rajlich and Gosavi [8]. SC is the task inside the SIP process when the programmer

changes the source code; it is repeated for change requests in the iteration backlog.

The phases of SC along with a brief description are:

15

1. Initialization – chose a change request to implement in the code

2. Concept Location – find the place in the code that the ideas of the change

request are implemented

3. Impact Analysis – examine the code neighboring the concept location to

determine if it needs to be changed also

4. Prefactoring – prepare the code to make the change easier

5. Actualization – implement the change in the code

6. Postfactoring – rework the code to make future changes easier

7. Verification – confirm that the code is of high quality

8. Conclusion – commit updated code to the repository

The phases should be done in order with the exception of verification, which is

done in concurrence with prefactoring, actualization and postfactoring. Also, the phases

are a guideline for each change; individual phases such as concept location when the

programmer is familiar with the location of concept extension or postfactoring during a

trivial change request may be skipped if the programmer determines it is not necessary.

The following sub sections describe each of these phases in more detail.

3.2.1 Initialization

Initialization is the start of a change request in SC. Since the SIP programmer

already selected the iteration backlog, initialization is simply choosing one of the user

stories from the iteration backlog to be implemented. However, some user stories may

be too large to implement in one change request; in these cases the SIP programmer

divides the change request into multiple change requests. Each of these change

requests implement part of the functionality, for example, a change request could be

16

divided into three change requests, one for the GUI, one to check the input and one with

an algorithm that processes the data. The programmer then chooses to perform the GUI

change request first and update the code by committing it to the repository. This helps

the user to stay organized and measure progress.

3.2.2 Concept Location

Concept location begins with the programmer reading the change request and

separating out the concepts that need to be found in the code, which is called extraction

of significant concepts. For example, a program that explorers an operating system’s file

system receives the change request, “Add a basic search function. The search should

allow a user to search in the current directory for all or part of the title of a folder or file

and return a list of the matching files and directories.” The relevant concepts are:

• search

• current directory

• search term

• matching files and directories

Words such as “add” and “should” are instructions to the programmer and are

discarded. The programmer then determines if the concepts are likely to appear directly

in the code, which is an explicit concept and often easier to find. For example, “current

directory” is a concept that is likely to appear directly in the code and is therefore, an

explicit concept. A concept that is unlikely to appear directly in the code is an implicit

concept and generally more difficult to find. An example is “search”, since the change

request requests search functionality added to the program, it is unlikely that the code

contains search directly.

17

The programmer also adds intensions or synonyms and connotations of the

concept. In the change request the programmer adds a simple synonym of directory,

folder and determines “matching files and directories” includes the file or directory’s

name. Intensions can be very complicated, in Linux the data structure used to store

directory information is called an “inode” [30], another possibility might be to group

directories with other files, such as archive files and call the group “browsable”.

One technique used to find an intension in source code is to do a simple text

search. This is commonly known as “grep”, from the UNIX search, but modern

development tools have many different variations. In the example above, the

programmer might choose to search for “directory” or “folder” at the same time. If the

search returns a reasonable number of results, the programmer will visit the classes to

determine if they contain the concept extension. If the programmer cannot find the

concept extension, the added knowledge obtained from unsuccessful searches helps

him create new searches. If the search returns no results or too many results for the

programmer to visit, he can revise his search to include more terms, fewer terms or

combinations of terms. These grep searches are not always successful, if the

programmer is unfamiliar with the code, he may not be able to guess the intensions of

the extensions implemented in the code.

Another concept location technique is called a dependency search. The

programmer begins the search in top level class, in many programming languages the

class with the main() method. The programmer then visits the classes that handle parts

of the top level class’s responsibilities, known as suppliers and if necessary the

programmer visits the suppliers of the suppliers recursively until the concept extension

18

is located. If the programmer takes the wrong path, he backtracks to a higher level class

and takes a new path to find the concept extension.

The programmer chooses the appropriate search strategy based on knowledge

of the source code. If the programmer has very limited knowledge at the outset of

concept location, he may start with a grep search. If he gains the knowledge that the

code has poorly named identifiers, he may decide to switch to a dependency search.

Likewise, he may use a combination of strategies, such as visiting a class that is a grep

search result, then switch to a dependency search and visit its suppliers to locate the

concept extension. Ultimately, the programmer creates the initial impact set, which

contains all the classes with a concept extension.

3.2.3 Impact Analysis

 After the programmer locates the main concepts in the code, he needs to

account for the effect of changing the classes of the initial impact set. The programmer

does this by visiting the classes that have dependencies of the classes in the initial

impact set, if these classes also need changes; they are added to the estimated impact

set. Dependencies are relationships where one class allows another class to handle

some of its responsibility. If a class handles a responsibility for another class, it is a

supplier, which was previously defined (section 3.2.2) and if the class depends on a

class for part of its responsibility it is called a client. There can be a class that is not

impacted by the change request, but communicates between 2 classes that are

dependent on each other. These intermediary classes propagate the dependency and

are not added to the estimated impact set. However, the classes that have

19

dependencies with the propagating class should be visited to ensure they are not also

impacted.

A simple example of impact analysis is a change request that requires a

method’s return type to change from a type of int to a type of long. The programmer

must visit all the classes that include a call to this method because they are clients of

the method. The programmer then must determine if these classes must be changed to

match the new method return type. If the method is the parameter for an overridden

method that also has a version that accepts a long, such as the Java

System.out.print() method, the class is not added to the estimated impact set.

However, if the client stores the impacted method’s return value in a field of type int,

the client field’s type also needs change to a type long and the class is added to the

estimated impact set.

3.2.4 Prefactoring

Prefactoring is refactoring done mainly to make it easier to actualize a change.

Refactoring is rewriting source code without changing its functionality, such as dividing

a large class into 2 classes by extracting a class. An example of prefactoring is

extracting a super class from a class. The programmer can then actualize the change

by incorporating another class that inherits from the base class. This way the

functionality in the super class does not have to be duplicated and classes are not

impacted when they switch between the implementations of the super class using

polymorphism.

20

3.2.5 Actualization

Actualization is the procedure of changing the existing code or adding new

classes to add new functionality. The programmer changes the code of the classes in

the estimated impact set and adds new classes to the code if necessary. The

programmer may realize that some classes were missed during impact analysis and

need to be changed or that they do not actually need to be modified. The classes that

are changed during actualization or prefactoring are the changed set.

Actualization can be as simple as modifying a single line of code (LOC) or as

complex as changing and adding large numbers of classes. An example of a small

change is fixing a bug by changing the limit condition of a loop to prevent an array out of

bounds condition. This is a very simple actualization, but it is the entire actualization of a

corrective change request.

Larger changes require new classes to be incorporated into the code. The

classes may be incorporated through different techniques, four used in this experience

report are: polymorphism, replacement, as a new supplier or as a new component.

Polymorphism can be the easiest method; the programmer creates a new class that

inherits from a super class. This is easy because classes that are clients of the super

class can use the new class without being impacted.

Replacement is used when a basic class is removed from the code and a more

complex class is put in its place. An example of replacement is replacing a class that

finds words in a text document with one that not only finds the exact word, but also

synonyms of the word. The basic class just did a simple text match; while the new class

needs to access a database to get synonyms and then it must find any of the words

21

from the set of synonyms. The new class is much more complex; it requires much more

than just changing or adding a few methods and is therefore done by writing a new

class and then replacing the basic class.

Incorporation of a new supplier is used to expand existing functionality. A new

class is added to the source code and an object of it is added to an existing class. The

new supplier takes on responsibility for the existing class. One example of incorporation

of a supplier is a change request to add persistent data storage; a new supplier is

added to store the existing data in a database, text file or other technology.

Incorporation of a component is similar to replacement, except that nothing is

removed. This is generally done when new functionality is added. An example of

incorporation of a component is a class that saves the history of user input. Before the

incorporation of the component, the source code takes user input from a supplier class

and performs a task with it and sends it to a client. The new component class will also

get the user input from the supplier class, store it and provide it to the same client as the

other component upon request.

3.2.6 Postfactoring

Postfactoring is refactoring done after actualization and is very similar to

prefactoring. The difference is that it does not add value to the current change request;

rather its purpose is to make future changes easier in general. Some programmers may

not see the value in postfactoring, but it is important. It is an investment in the code;

without it code decay can become very severe making future change requests difficult if

not impossible.

22

A simple but effective example of postfactoring is changing the name of an

identifier. For instance, a programmer may use the name i for an iterator in a loop that

iterates through the rows of table. If the programmer changes the name i to row it will

be easier during future change requests for programmers to know what the loop does.

Individually, small changes like this may not seem significant but collectively they can

make change requests significantly easier.

3.2.7 Verification

Verification is different from the other phases of SC because it is integrated with

the phases of prefactoring, actualization and postfactoring. Its purpose is to reassure

the stakeholders that the code meets the requirements placed upon it and is of high

quality. However, because of the essential difficulties of software, no amount of

verification can guarantee its quality. Some may consider it a synonym for the various

forms of testing, such as unit and functional, but it also includes other types such as

code inspections.

Unit tests are named such because they each test one unit of the source code.

One unit may be a single method; however, it can be larger, if a method has suppliers

the unit could be the method and its suppliers. Unit testing is white box testing meaning

that the programmer can see the source code when writing and running test. A test can

test multiple conditions of a unit of code or can have multiple tests directed at it, for

example, a programmer could write 2 tests for the following method:

public void addToList(String stringToAdd){

 if(stringToAdd == null)

 throw new NullPointerException();

 listOfStrings.add(stringToAdd);

}

23

One test calls the method with a null value and one with a String value or both

conditions could be in a single test. Multiple tests are preferable because it makes the

test’s goal very clear; if a test fails, it is very easy for the programmer to identify the

reason often just by the name of the test.

Another type of verification is functional testing. It tests the functionality of a

program; it is not concerned with the structure of the code, but rather if it performs as

desired. Functional testing can be either white box testing, like unit testing or black box

testing, where the programmer does not have access to the code. It is especially useful

to test GUI components that require user input.

Verification can also include code inspection. It is not an automated test like unit

or functional tests; but rather is the programmer reading the code. It has advantages

over automated test, because programmers are inclined to see a bug that is dependent

on a particular value, such as a divide by zero condition. Automated tests are written to

test a set of values, if the set does not include the value that creates the defective

condition, the automated test will not detect the bug. However, programmers are prone

to miss errors such as misspellings that automated test can easily detect. Therefore, a

comprehensive verification plan will include multiple types of verification.

The code implementing the tests and only code that is only necessary to support

the tests is known as harness code. While the code tested that implements the features

of the program is production code. Whatever types of tests the programmer chooses it

is important that a large percentage of the production code is verified. The metric of

verification is called coverage. Test coverage can be measured in many different

granularities; one is the statement level. In the unit test example method, there are three

24

statements, one on each LOC inside the method. However, in general, not every LOC is

a statement. Statements are executable LOC, such as ifs, switches and returns.

Variable declarations, package imports and such are not statements. A comprehensive

verification strategy includes unit tests that execute a high percentage of statements.

However, even if every statement is covered, bugs can still be present. There are

multiple reasons for this, some rooted in the core principles of computer science, such

as the halting problem, but in other cases the code may be correct, the bug is because

the programmer did not understand the requirements of the user. Additionally, obtaining

complete statement coverage can be very time consuming for some code, such as

exception handling. In this case the programmer’s time is better spent on other tasks.

SC does not define a level of code coverage; the stakeholders must determine the

proper level of coverage to make good use of resources and meet their quality

requirements.

3.2.8 Conclusion

The phase of conclusion ends each SC. The programmer updates the source

code in the repository with the changed code files. This saves the change as part of the

code base and incorporates it into the code.

3.3 SIP Workproducts

The programmer produces specific workproducts to keep track of his progress.

They provide an outline of SIP programmer’s activities, so that he can make decisions

that use his resources more effectively.

25

3.3.1 Basline

A baseline is a special code update that is well verified and does not contain any

partially implemented functionality; therefore it is a good point to return to if a defect is

found later. However, not all change requests leave the code in a good state for a

baseline. For example, if a GUI is implemented during a change request, but requires

more change requests to complete its functionality, the other 2 change requests would

need to be redone. Therefore, the programmer would wait until the functionality is

completed to create the baseline. At that point, the program is stable and no change

requests would need to be redone if the programmer returned to it because of partial

functionality.

 A SIP programmer does not need to worry about conflicts with other

programmers because he is working alone. However, baselines are still important;

because the code is not seen by other programmers a SIP programmer is especially

prone to habitualization or seeing an erroneous code as correct. The more often

baselines are made the less work the programmer will lose, if it is necessary to return to

a previous baseline.

3.3.2 Iteration/release

The iteration and release phase of SIP is a special baseline. It marks the end of

an iteration of the SIP process. The iteration ends either because the programmer

completes all of the change requests in the iteration backlog or because the

programmer decides to end the iteration before the iteration backlog is empty. At the

end of an iteration the source code should be in a complete and high quality state, but

the programmer still must decide whether or not to release the program to the users or

26

to do more iterations. The programmer makes this decision mainly based on the current

business environment. If the SIP programmer believes the program is ready to be

released to users, he will release it. However, if a competitor has released a program

with functionality that the current iteration cannot compete with, the programmer will

choose to wait for a subsequent iteration to release. Additionally, other business

realities may override technical issues; if the programmer is running low on resources,

he may choose to release it. In either case the next step is to return to the product

backlog and start the next iteration.

3.3.3 Time Log

The most important one is a time log, which is a record of the amount of time the

programmer spends on each task. For tasks that include changing the code the

programmer also tracks the number of LOC added. This data helps the programmer

estimate the effort of future tasks; the programmer can use the data from a previous

change request that is similar to a current change request as an estimate so he can

plan his time accordingly. This helps the programmer to manage his time and meet the

stakeholders’ requirements.

3.3.4 Defect Log

The programmer also keeps a defect log; a record of all defects in the program. It

includes the date the defect was found, the task performed when the defect was found,

its location, its origin and when it was fixed. This helps the programmer track the time it

takes to fix defects and the tasks that most often introduce them.

27

3.3.5 Iteration Backlog Table

When the programmer chooses the iteration backlog, he will also create an

iteration backlog table. In this table the programmer will estimate the time required for

each change request using historical data from the time log. As the programmer

completes change requests, he will update the table with the actual time required. If the

programmer stays on schedule he will complete all the change requests in the iteration

backlog. If he falls behind schedule he can still complete the all the change requests in

the iteration, however, other requirements may force him to complete the iteration and

return the unfinished change requests to the product backlog for a future iteration.

28

Chapter 4

Solo Iterative Process Experience Report

This chapter presents the source code project used in this experience report and

the technologies the programmer depended on.

4.1 muCommander

The program muCommander is an open source, cross platform, advanced file

manager program [31]. It expands upon an operating systems native file manager, by

offering an expanded, customizable view. Additionally, it supports advanced features

such as browsing file systems over FTP and other connections and can browse in

archive files.

The code of muCommander is 76 KLOC and has 1,070 code files. It is written

entirely in Java. It has a JUnit [32] test suite that includes 441 tests covering 18.1

percent of the statements. Its GUI components use the Swing Java Foundation Classes

[33] and the unit tests are dependent upon JUnit.

4.2 Eclipse Technologies

The Eclipse IDE [34] is a popular Java development environment. The

programmer chose it because of the wide variety of plugins available for it. Each of the

plugins used and the reasons for choosing them is discussed in the next sections.

4.2.1 JRipples

JRipples is an Eclipse plugin that assists programmers with the tasks of

incremental change [35]. It has three different phases concept location, impact analysis

and change propagation. It assists programmers by displaying dependencies of Java

classes. It was extensively used during this project.

29

4.2.2 Clover Java Code Coverage & Test Optimization

The programmer used the Clover Java Code Coverage & Test Optimization tool

to measure test coverage [36]. Clover has many metrics, including statement coverage,

which was used as the test coverage metric. Clover has many nice features, such as

the ability to create custom metrics. All metrics collected through Clover use the

“Application classes” setting which is equivalent to the production code file definition in

this project. This means that the metrics do not include the statements or methods in

the harness.

4.2.3 Mylyn & TaskTop

Mylyn is included with Eclipse [37]; it assists users in managing and measuring

the effort of tasks. The programmer used Mylyn for its timing tools. To record and export

timing data in the minute granularity requires an additional plugin called Tasktop [38].

4.3 Other Technologies

4.3.1 Abbot Java GUI Test Framework

muCommander had no functional tests, which should be included in a complete

verification strategy. The Abbot Java GUI Test Framework is a technology that helps

build functional test [39]. It is based on the JUnit test framework and the Java Virtual

Machine automated robot classes. It has classes added to help a programmer test

many types of Swing components, including JButton, JCheckBox and JTextBox. The

programmer used Abbot to write functional tests that test the GUI components of the

change requests.

30

4.3.2 Subversion & TortoiseSVN

The project required a copy of muCommander to be stored on a version control

system (VCS). The programmer downloaded a copy of muCommander from its public

VCS and created a separate VCS for this experience report. He chose to use the

Subversion (SVN) VCS [40]. To download from, commit to and manage this VCS, the

programmer used TortoiseSVN [41]. It is an open source, easy to use VCS client; that

includes a diff tool.

4.3.3 DiffStats

DiffStats is a tool that extracts the number of LOCs added, deleted and moved in

a diff file created by TortoiseSVN. A moved line is a LOC that was deleted in one part of

the change request, but then added to another part of the program during the same

task. An example of moved code is a method extracted from one class to another during

postfactoring. It ignores blank and comment lines. It was developed by the programmer

specifically for this project.

31

Chapter 5

Solo Iterative Process: Experience Report

This chapter summarizes the 9 change requests the programmer implemented

for this experience report. While researching muCommander to find a needed feature

the programmer found the second question from the Frequently Asked Questions (FAQ)

on the muCommander website that reads:

“How can I search for a specific file?

 At the time of writing, you can’t.

 This is an often requested feature, one that we're thinking about and have

a few ideas on how to implement, but it is not there yet.” [31] (p. FAQ q. 5)

 The programmer decided to use this as the user story for the iteration described

in this experience report. The programmer then familiarized himself with the subject

program before starting the iteration. He investigated the capability of the program

through experimentation and visiting the website. He then used the program as his file

explorer for 2 days. This time was not accounted for in the timing logs nor is there a

phase of the process that includes this. It is something that the programmer often does

before attempting to perform changes on a program. The time was not recorded in the

time logs.

Implementing a full-fledged search feature is too large for one change request.

Therefore, it was divided into multiple change requests. The programmer created the

product backlog in Table 5.1.

32

Table 5.1 Original Product backlog

Title User Story

1
Basic

Search

Add a basic search function that allows a user to search in the
current directory for all or part of the title of a folder or file, and return
a list of the matching files and directories.

2
Recursive

Search
Add the ability to search inside all directories.

3
Advanced

Output
Change the output to a table similar to the main muCommander
window.

4
Date

Search
Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6
Extension

Search
Add the ability to search for files with specific extensions.

7
Properties

Search
Add options to search for files based on their properties.

8
Size

Search
Add the ability to search for a file by its size.

9
Regular

Expression
Search

Add capability to search by a regular expression.

10
Lucene
Search

Incorporate the Apache Lucene search.

During the iteration, the programmer added 2 change requests to address bugs

and did not finish all the change requests in the product backlog. Table 5.2 shows the

change requests completed during this experience report.

33

Table 5.2 Product Backlog Completed

Title User Story

1
Basic

Search

Add a basic search function that allows a user to search in the
current directory for all or part of the title of a folder or file, and return
a list of the matching files and directories.

2
Recursive

Search
Add the ability to search inside all directories.

3
Advanced

Output
Change the output to a table similar to the main muCommander
window.

4
Date

Search
Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6
Extension

Search
Add the ability to search for files with specific extensions.

7
Properties

Search
Add options to search for files based on their properties.

8
Directory
Chooser

Bug

Choosing a directory with the file chooser doesn't update the search
directory.

9 Date Bug DateOption is not removed when disabled.

5.1 Change Request 1 Basic Search

5.1.1 Initialization

This change request is: “Add a basic search function. The search should allow a

user to search in the current directory for all or part of the title of a directory or file and

return a list of the matching files and directories.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add options to activate a search in three different ways:

a. the “Go” menu

b. the quick launch toolbar

c. a hot or virtual key combination

34

2. Create a search window where the user can enter a search term, start a

search and see the results.

3. Write a search algorithm that uses a simple loop to match the search term

with files in the current directory.

5.1.2 Concept Location

The programmer extracted the following significant concepts for the change

request:

• activate the search

• current directory

• search term

• matching files and directories

• “Go” menu

• toolbar

• search window

• search algorithm

The first part of the change, activating the search functionality, will need to

conform to the methods and patterns of the current code and therefore is also the

concept to look for during concept location. The second part of the change, a search

window, the programmer planned to create as a separate class and incorporate as a

component during actualization. The programmer decided to address the third part of

the change in impact analysis, as it will probably require minor changes, if any.

The programmer started a dependency search for the concept of activating the

search feature, by marking the Launcher class, which contains the program’s main

method as propagating. JRipples added neighbors of Launcher to the set of Next code

files. Since the programmer had very limited knowledge of the program, he decided to

visit the 43 neighbors alphabetically. AbstractFile, AbstractNotifier and

ActionKeymapIO were visited and marked Unchanged. The programmer then visited

35

ActionManager; this file contains a library of all the possible actions in the program. It

is used as a central location to keep all the possible actions of the program organized.

Upon inspection, the programmer realized that this is where the search functionality

would be added, activating the search functionality will be a new action of

muCommander. This completed concept location. Figure 5.1 is a UML diagram of the

code files visited during concept location.

+main() : void

Launcher

ActionManager

AbstractFile

AbstractNotifier

ActionKeymapIO

Unchanged Propagating

Harness

ProductionLocatedLegend

Association

Aggregation

Generalization

Figure 5.1 Change 1 Concept location

5.1.3 Impact Analysis

To start impact analysis the programmer switched JRipples from concept location

phase to impact analysis phase. This changed ActionManager’s mark from Located

to Impacted and created a new Next set of code files composed of 172 of

ActionManager’s neighbors. The programmer visited 16 code files and marked 3 as

Impacted, 1 Propagating and 13 Unchanged, see Figure 5.2. The impacted classes are:

• ActionManager, the class containing the concept extension

• MainMenuBar, the class that is responsible for the “Go” menu

36

• ToolBarAttributes, the class that defines the toolbar options

The change propagated from ActionManager to ToolBarAttributes

through ToolBar. Toolbar is responsible for creating the toolbar, but delegates the

responsibility of defining the buttons on the Toolbar to ToolBarAttributes.

ActionManager

MainMenuBar

ToolBar

ToolBarAttributes FileTableModel

FileTable

ActionDescriptor

ActionFactoryCommandBar

ActionKeyMap

CommandBarButton

ActionKeyMapReader

NewWindowAction

ActionParameters

RunCommandAction

ActionProperties

RunDialog

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

Figure 5.2 Change 1 Impact Analysis

5.1.4 Prefactoring

There was no prefactoring done in this change request.

37

5.1.5 Actualization

To actualize the change request, the programmer added 2 code files. The first,

SearchAction was incorporated as a supplier of ActionManager. The existing code

uses a factory design pattern [42], which the programmer followed when implementing

SearchAction by modeling it after an existing code file that implements the pattern

named RunCommandAction. The factory design pattern allows the incorporation of

new suppliers that handle user events. The advantage to using this pattern is that

change requests that incorporate a new supplier of ActionManager are unlikely to

propagate beyond ActionManager.

The second code file contains the class SearchDialog, which creates the

search window and implements the search algorithm. It is a component of

SearchAction. To create the class, the programmer copied the existing

muCommander class RunDialog, which also creates a dialog and changed it to the

current change requests requirements. The programmer did this to help match the

coding conventions of the existing code. The fields and methods of SearchDialog are:

Fields Methods

• MainFrame mainFrame • createOutputArea()

• ShellComboBox inputCombo • createInputArea()

• JTextField inputBox • createButtonsArea()

• JButton runStopButton

• JButton searchButton

• JButton cancelButton

• keyPressed()

• actionPerformed()

• switchToSearchState()

38

• JButton clearButton

• JTextArea outputTextArea

• SpinningDial dial

• PrintStream processInput

• AbstractProces

currentProcess

• Dimension

MINIMUM_DIALOG_DIMENSION

• FileSet searchResults

• searchCommand()

• addToTextArea()

Once these 2 were incorporated, the search window was now a registered action

of muCommander. This allowed the programmer to implement the activation

functionality described in concept location, by adding the action to MainMenuBar and

ToolBarAttributes.

Two additional code files were added for the purpose of verification; 1 class for

unit testing, BasicSearchUnitTest and 1 for functional testing,

BasicSearchFuncTest. The addition of these test classes propagated to the class

Translator that was not discovered during impact analysis. Translator is a

supplier to SearchDialog; it has a sequential coupling anti-pattern because its method

loadDictionaryFile() must be called to initialize Translator, otherwise calls to

Translator’s other methods will throw an exception. However, if

loadDictionaryFile() is called a second time, it also throws an exception. This

false multiplicity anti-pattern preexisted in the code and meant that the new test classes

39

could not be run together. The programmer added a boolean getter to Translator to

check if the dictionary is loaded, but this does not address the sequential coupling anti-

pattern, so the programmer also added a protective change request to the product

backlog to change the Translator class to a singleton design pattern [42]. Since the

change propagated to the Translator class solely because of a harness class

requirement, it is considered part of the the harness for this change. The harness

classes will be described in verification (section 5.1.7). Figure 5.3 is a UML diagram of

the classes added and visited during actualization.

Figure 5.3 Change 1 Actualization

40

5.1.6 Postfactoring

During postfactoring, old comments were deleted and new comments added.

Additionally, the following fields in SearchDialog were copied from RunDialog, but

were not used in the class so they were deleted:

• ShellComboBox inputCombo

• JButton runStopButton

• JButton clearButton

• PrintStream processInput

• AbstractProces

currentProcess

5.1.7 Verification

Functional and Unit testing was added for the SearchDialog class. During

verification no bugs were found. This is most likely due to the simple nature of the

request. There was an issue with the single functional test in BasicSearchFuncTest.

It runs and passes its assertions but ends displaying a gray result, instead of the green

for pass or red for fail. This occurred because a java.lang.System.exit() call

was made by a class in the preexisting muCommander code before JUnit could make

its own call to the method . This causes the Java Virtual Machine to close JUnit before it

can finish running and display green or red. It also meant that only 1 functional test

would run, if a second test was added, it would be skipped. The programmer did not

know the cause of the problem during the change request; he researched the issue and

fixed it during change request 2 (section 5.2.4). Table 5.3 shows the statement level

41

coverage of the test harness for the production code files added during this change

request.

Table 5.3 Change 1 Statement verification coverage of production code files

Code File

Coverage of Application
Tests

Failed

Bugs

Found
Total

Statements

Covered

Statements
%

1 SearchAction 7 7 100.0 0 0

2 SearchDialog 100 87 87.0 0 0

5.1.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. For the summary of the code files visited added and changed during change

request 1 see Table 5.4.

Table 5.4 Change 1 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

5 3 4 0 4 0 1,074

5.2 Change Request 2 Recursive search

5.2.1 Initialization

This change request is: “Add the ability to search inside all the directories.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Enhance the search algorithm to:

a. recursively search in directories it encounters

42

b. start a search in a specified directory

2. Add GUI components

a. a checkbox to enable recursive searching

b. a text field to enter directories

c. a file chooser to use a GUI to select a directory

d. display the path of results, in addition to the name

e. an error message if an invalid directory is chosen

3. Add ability to stop a search before it completes

5.2.2 Concept Location

The programmer gained significant knowledge from change 1; this enabled him

to extract relevant concepts from the change request and using their intensions he

converted them to following significant concepts:

After extracting the concepts and understanding the change request, the

programmer decided to search for the first concept, the search algorithm, because it will

have to change to implement recursive searches. This made concept location

unnecessary because the programmer just implemented the search algorithm in change

1 so he knew the concept location was SearchDialog.

• search inside → recursively search • search algorithm

• any directory • search window

• file system • interrupt search

43

5.2.3 Impact Analysis

The concept extension was in SearchDialog; to start impact analysis the

programmer labeled it Impacted JRipples. The programmer visited all of the 16

production neighbors of SearchDialog, identified by JRipples and marked them

Unchanged, see Figure 5.4. The programmer visited and marked following harness

code file Impacted: BasicSearchUnitTest and BasicSearchFuncTest. This

resulted in an estimated impact set of 3 code files.

SearchDialog

FocusDialog SearchActionThemeManagerThemeData

MainFrameFileTableModel

Theme

FileTable Translator

ActionProperties

DialogToolKit

BasicSearchFuncTest

BasicSearchUnitTestAbstractFileFileSet

YBoxPanel

SpinningDial

XBoxPanel

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

Figure 5.4 Change 2 Impact Analysis

44

5.2.4 Prefactoring

In preparation for the actualization of this change request, the programmer

extracted 2 classes from SearchDialog. SearchDialog contained both the search

algorithm and the GUI components; if the programmer added the new responsibilities of

this change request to SearchDialog, it would have become large and difficult to

understand. The first class extracted from SearchDialog, SearchThread, was given

the responsibility of the search algorithm and the other, InputPanel, was extracted to

remove the GUI features displayed in the top half of the dialog that are responsible for

the user input. By separating the search logic from the GUI components, it was easier to

create a separate thread for the search algorithm to run in. This way the GUI can still

respond to user input while the search is executing.

The programmer also extracted 2 test classes from BasicSearchUnitTest.

The first, SearchThreadTest contains the tests for SearchThread and the second

InputPanelTest contains the tests for InputPanel. The classes extracted are

shown in a UML diagram in Figure 5.5.

45

Figure 5.5 Change 2 Prefactoring

The programmer planned to add additional functional tests during this change

request. To prepare for the new functional tests the programmer addressed the issue

discussed previously (section 5.1.7), which is it would pass its assertions, but display a

gray instead of green color, by modifying the ShutdownHook class. This class was not

identified during impact analysis. The programmer did a grep search and determined

that ShutdownHook contained the java.lang.System.exit() that was preventing

JUnit from completing; he added a boolean field and setter method to ShutdownHook

to allow the program to be shut down without calling java.lang.System.exit().

The functional test then passed, this resolved the issue and it increased the change set

from 3 code files to 4. Since the change propagated to the ShutdownHook class solely

because of a harness class requirement, it is considered part of the the harness for this

change.

46

5.2.5 Actualization

To add the recursive search capabilities, no new code files were added to the

project after prefactoring and the change did not propagate to any other code files.

However, the responsibility of the SearchThread class was expanded by incorporation

through replacement. The programmer wrote a new class that creates a new thread that

recursively iterates through the file system checking the files to see if their name

contains a search term and replaced the SearchThread code file in the project with

this new code file. The replacement SearchThread contained the following fields and

methods:

Fields Methods

• SearchDialog parent • main()

• AbstractFile

searchDirectory

• run()

• searchCommand()

• String searchTerm

• boolean recursiveSearch

• searchCommand(AbstractFile,

String)

In SearchDialog the programmer changed the added a new boolean that the

SearchThread object checks to determine if it should continue to iterate through the

file system. Then changed and added the following methods:

Changed Added

• actionPerformed()

• switchToSearchState()

• runCommand()

• notifyEnd()

• addSearchResult()

• setError()

47

• addTextToArea(FileSet)

• addTextToArea(String)

• getKeepSearching()

The Programmer added the following 11 fields and 10 methods to InputPanel:

Fields Methods

• JPanel directoryPanel • createDirectoryArea()

• JTextField

inputDirectoryBox

• chooseFile()

• isValidDirectory()

• JButton browseButton • getDirectory()

• JLabel

invalidDirectoryError

• flashError()

• isErrorEnabled()

• File file • isRecursive()

• JCheckBox recursiveBox • actionPerformed()

• boolean alternate • focusLost()

• Timer blinkingTimer • keyReleased()

• int blinks

• static final int

TOTALBLINKS

• static final int

BLINK_LENGTH

5.2.6 Postfactoring

After finishing the actualization phase and the change request was up and

running, the code needed to be refactored because of code decay introduced during

48

actualization. The InputPanel class had grown too large and had too much

responsibility. Two classes DirectoryPanel and FlashLabel classes were

extracted from it into new code files, see Figure 5.6. Both of these classes could have

been incorporated as suppliers to InputPanel during actualization.

To keep the test suite organized the tests in InputPanelTest that test methods

extracted to the new classes, DirectoryPanel and FlashLabel were moved into

new test classes, DirectoryPanelTest and FlashLabelTest. In

SearchDialogTest and SearchThreadTest the 4 methods that setup and

teardown for the tests were very similar; the programmer extracted them to a new

abstract class SearchDialogTestSetUp.

SearchDialog SearchThreadInputPanel

FlashLabel

DirectoryPanel SearchDialogTestSetUpSearchDialogTest

SearchThreadTestInputPanelTest

BasicSearchFuncTest

FlashLabelTest

DirectoryPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

Figure 5.6 Change 2 Postfactoring

Finally, to better organize the project, the programmer created 3 new packages:

org.severe.ui.dialog.search.panels,

org.severe.ui.dialog.search.tests and

49

org.severe.ui.dialog.search.panels.tests. Then the appropriate classes

were placed into each package.

5.2.7 Verification

Unit tests expanded from 1 class to 5 plus a super class as described in the

postfactoring (section 5.2.6). This included adding a total of 42 new tests to test the new

functionality, 15 were deleted and 23 changed. The functional tests were also

expanded, from 1 to 4 tests but remained in 1 class. During verification three bugs were

found.

Two bugs were found by 2 of the new functional tests. First, when a user inputs a

blank value for the directory an error message would appear, but when the test tried to

type in a valid directory it would be redirected to another input location before it could

complete. This was caused because an exception was thrown before text could be

entered when the directory input box was selected; the catch statement was resetting

the interface as if the user had finished entering a directory, even though they had not

had a chance to yet. The catch statement was rewritten to do nothing, there is another

catch statement to handle invalid directories after the user is finished entering.

The second bug discovered, is that a search prematurely stops if it encounters a

directory that the file system marks as readable, but is set as read-only through a

different mechanism. An example of this is a quarantine directory used by an antivirus

program. This bug was also caused by a catch statement; when this type of exception

the catch block was stopping the search, now it adds an error message, but allows the

search to continue.

50

When modifying the tests from change request 1 the programmer realized a

message displayed to the user that there were no search results found, was no longer

functioning. Previously, the results were returned all at once as a set, if the set was

empty a message was displayed to the user. Now the files are returned individually, so

there was no set to check. The programmer added a check to the method

notifyEnd() that is called when the search algorithm completes; if the output area is

empty the no search results message is added to the output area.

All of the bugs were fixed during this change request. Table 5.5 shows the

statement level coverage of the test harness for the code files added or changed during

this change request.

Table 5.5 Change 2 Statement verification coverage of production code files

Code File

Coverage of Application
Tests

Failed

Bugs

Found
Total

Statements

Covered

Statements
%

1 DirectoryPanel 52 41 78.8 0 1

2 FlashLabel 14 14 100.0 0 0

3 InputPanel 29 29 100.0 0 0

4 SearchDialog 81 76 93.8 0 1

5 SearchThread 19 19 100.0 0 1

6 ShutdownHook 41 4 9.8 0 0

5.2.8 Conclusion

The programmer committed this change request to the repository as a new

baseline. During this change request, the programmer added a class to the changed set

during prefactoring, see Table 5.6.

51

Table 5.6 Change 2 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 3 4 4 0 5 1,083

5.3 Change Request 3 Advanced Output

5.3.1 Initialization

This change request is: “Change the output to a table similar to the main

muCommander window.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Change the search results display to the muCommander table file display

2. Add a results total

3. Enable the click to navigate option on the results

5.3.2 Concept Location

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts:

• muCommander window → table file display

• output → search window output area

The programmer realized there are 2 concepts in the first functionality to add, the

current search results display and the muCommander table file display. For the first

concept, no concept location was necessary; the programmer knew it is located in the

SearchDialog code file from the previous changes. The second and third functionality

was part of impact analysis.

52

To find the second concept, the table file display in the main muCommander

window, the programmer did a dependency search starting in the Launcher code file

by marking it Propagating in JRipples. One of the JRipples’ Next set of code files,

WindowManager contained a field of type MainFrame, which because of its name

sounded very promising; he marked it Propagating in JRipples, because it has a field of

type MainFrame.

MainFrame contains 2 fields of type FolderPanel and 2 of type FileTable;

both of these code files sounded promising, because of their names. MainFrame was

marked as Propagating. One of the Next code files in JRipples’ set was FolderPanel,

which the programmer also saw in his MainFrame visit; therefore he visited it first. It

has a boolean variable treeVisible, which he changed from false to true. The

programmer rebuilt and ran the program; the tree view was now visible at startup, which

confirmed that the second concept location had been found. During concept location the

only code file visited and marked Unchanged was FocusDialog.

5.3.3 Impact Analysis

For the first step of impact analysis the programmer marked the code file

SearchDialog containing the first concept extension, the current search results

display, as Impacted in JRipples. Then the programmer visited and marked the

following code files Impacted:

• SearchThread, performs the search

• InputPanel, gets the user search criteria

• FlashLabel, displays an error to the user

53

• DirectoryPanel, gets the search directory

• SearchDialogTest

• SearchDialogTestSetUp, Impacted test classes inherits from

• SearchThreadTest

• BasicSearchFuncTest

• InputPanelTest

• FlashLabelTest

• DirectoryPanelTest

At this point, FolderPanel, the code file that contains the second concept

extension, the muCommander table display, was included in the JRipples Next set. The

programmer visited it and marked it as Impacted. The programmer visited FileTable

because it is a neighbor of both FolderPanel and MainFrame. Upon reading its

Javadoc description that it, “displays a folder’s contents”; the programmer marked it

Impacted. JRipples added code files that the programmer suspected to be suppliers of

FileTable because their names started with FileTable; he marked the following

Impacted:

• FileTableModel

• FileTableHeaderRenderer

• FileTableHeader

• FileTableConfiguration

• FileTableColumnModel

• FileTableCellRenderer

54

Finally, MainFrame was marked as Impacted because it had a private method

that created a FileTableConfiguration class need to create a FileTable that

would be impacted. At this point 328 code files were in JRipples’ Next set. The

programmer marked all of these code files as Unchanged. The estimated impact set

contained 21 code files at the end of impact analysis is in Figure 5.7, the Unchanged

code files were left off for clarity.

SearchDialog SearchThreadSearchDialogTest

BasicSearchFuncTest

SearchDialogTestSetUp
InputPanel

DirectoryPanel

FlashLabel

FolderPanel

FileTable

FileTableModel

FileTableHeaderRenderer

FileTableHeader

FileTableCellRenderer FileTableConfiguration

FileTableColumnModel

MainFrame
InputPanelTest

DirectoryPanelTest

FlashLabelTest

SearchThreadTest

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

Figure 5.7 Change 3 Impact Analysis

55

5.3.4 Prefactoring

To prepare for this change, 2 super classes AbstractFileTable and

AbstractFolderPanel were extracted from FileTable and FolderPanel

respectively. The programmer extracted these classes because objects of type

FileTable and FolderPanel classes can only be instantiated in an object of type

MainFrame. This extraction allows the file table display to be contained in other types

of objects. These were very large class extractions the original code files were 2069 and

1478 LOC respectively. Because of the size of the class extractions the task was not

broken up into smaller tasks, such as extracting methods in the current class then

moving them to the new abstract class. While that strategy may be a safe strategy,

because of the size of the class extraction, the programmer perceived to be overly

burdensome.

The strategy used was to move universal functionality to the abstract class and

leave the rest. For example, the FolderPanel class has a field, currentFolder, of

type AbstractFile, which is the directory displayed in muCommander. Since search

results do not necessarily have a common parent directory, this field was left in

FolderPanel. However, since all types of displays can have more files to display then

their size allows, the field scrollPane of type JScrollPane was moved to the

abstract class. This will allow all AbstractFolderPanels to have the capability to

scroll through the displayed files when necessary.

Additionally, 2 suppliers of FileTable, FileTableHeader and

FileTableCellRenderer had attributes of their parent type FileTable this had to

56

be changed to type AbstractFileTable. A UML diagram showing the changed and

extracted classes is in Figure 5.8.

FolderPanel

FileTable

AbstractFolderPanel

AbstractFileTable

FileTableCellRenderer FileTableHeader

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

Figure 5.8 Change 3 Prefactoring

5.3.5 Actualization

To actualize the change, 2 new classes were created and added to the program

through incorporation, SearchFolderPanel and SearchTable. These classes inherit

from the classes extracted during prefactoring AbstractFolderPanel and

AbstractFileTable. Parts of the change propagated through these new classes to

their suppliers. Then an object of type SearchFolderPanel was created in

SearchDialog and an object of SearchTable in SearchFolderPanel.

57

SearchFolderPanel Methods SearchTable Methods

• clearOutput() • doubleClick()

• setSearchResults() • setSearchResults()

 • isColumnDisplayable()

 • keyReleased()

The overall flow to display the results starts in SearchThread, which contains

the search algorithm; it finds the files that match the search term in the file system. It

then calls methods in SearchDialog to display the results. Then SearchDialog

sends the results to SearchFolderPanel, which sends them to SearchTable.

SearchTable sends the results to the class that manages its data structure,

FileTableModel and FileTableCellRenderer actually displays them to the user.

Five suppliers of SearchTable’s needed to change, they are:

• AbstractFileTable, method added to show that the table is unsorted

• FileTableModel, method added that displayed an array of AbstractFile

objects

• FileTableCellRenderer, method changed to display entire path of file, if

parent is a SearchTable object

• FileTableHeader, method changed to create content menu, if parent is a

SearchTable object

• FileTableHeaderRenderer, changed field from type FileTable to

AbstractFileTable

 Three existing test classes changed and 2 new test classes were added:

58

Changed Added

• SearchDialogTest • SearchFolderPanelTest

• SearchThreadTest • SearchTableTest

• BasicSearchFuncTest

A UML diagram showing the code files visited during actualization is in Figure

5.9.

SearchDialog

SearchThread

AbstractFileTable

AbstractFolderPanel

FileTable

SearchTable

FolderPanel

SearchFolderPanel FileTableCellRenderer

FileTableHeader

FileTableModel

FileTableHeaderRenderer

SearchFolderPanelTest

SearchTableTest

BasicSearchFuncTest

SearchDialogTest

SearchThreadTest

ActivePanelListener

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

Figure 5.9 Change 3 Actualization

5.3.6 Postfactoring

Many code smells developed during actualization. The programmer added too

much responsibility to the SearchDialog class. Therefore, he moved responsibility to

59

a newly extracted class, ButtonPanel and to 3 other classes, SearchThread,

SearchFolderPanel and MainFrame. The responsibilities moved included:

Method extracted from Class extract to

• createOutputArea() SearchFolderPanel

• createButtonArea() ButtonPanel.ButtonPanel()

• actionPerformed()

• getKeepSearching()

• getFileTableConfiguration()

ButtonPanel.actionPerfomed()

SearchThread.getKeepSearching()

MainFrame

 .getFileTableConfiguration()

Another code smell created during actualization was that the suppliers of

AbstractFileTable now had 2 sets of responsibilities, one set if called by an object

of FileTable and another if called by and object of SearchTable, in hindsight, this

could have been addressed during prefactoring. To resolve the situation the

programmer extracted a super class, AbstractFileTableModel from

FileTableModel and also extracted the SearchModel class from it.

FileTableModel and SearchTableModel both inherit from

AbstractFileTableModel and the code applicable to objects of FileTable use

FileTableModel and objects of SearchTable use SearchTableModel.

The same code smell was present in the case of FileTableCellRenderer

and FileTableHeader, however, the differences were smaller so the programmer

extracted 2 classes, SearchTableCellRenderer and SearchTableHeader that

inherit from FileTableCellRenderer and FileTableHeader respectively; they

override a subset of their super class’s methods. Once all these extra classes were

60

extracted the org.severe.ui.dialog.search.panels package had too many

classes, many of which were not panels, so a new package

org.severe.ui.dialog.search.table was created for them. The package

org.severe.ui.dialog.search.components was also created for FlashLabel.

The class extraction of AbstractFileTableModel propagated to 7 classes

not in the estimated impact set that depended on FileTableModel as a supplier. Six

of the classes required a field or temporary variable type to be changed to

AbstractFileTableModel from FileTable and 1 required a getter call to be cast

to a FileTable. The getter is inherited from AbstractFileTable; it was determined

that the best solution was to change these classes. By using a generic type future

changes should be easier.

Many of the harness classes were creating the same AbstractFile objects or

using instances created in the SearchDialogTest class. These were all extracted to

a new harness class TestConstants. Some of the code files added during this

change request were changed during postfactoring resulting in a postfactoring change

set of 32 code files, see Figure 5.10.

61

SearchDialog

SearchThread

AbstractFileTable

AbstractFolderPanel

FileTableSearchTable

FolderPanelResultsPanel

FileTableCellRenderer

FileTableHeader FileTableModel

FileTableHeaderRenderer

ResultsPanelTest

SearchTableTest

BasicSearchFuncTestSearchDialogTest

SearchThreadTest

CompareFoldersAction

InvertSelectionAction

MarkAllAction

MarkExtensionAction

OpeninBothPanelsAction

FileDrageSourceListener

MainFrame

StatusBar

AbstractFileTableModel

FlashLabel

FlashLabelTest

ButtonPanel

DirectoryPanel InputPanel

ButtonPanelTest

DirectoryPanelTest

InputPanelTest

SearchTableCellRenderer

SearchTableHeader

SearchTableModel

SearchTableCellRendererTest

SearchTableHeaderTest

SearchTableModelTest

SearchDialogTestSetUp

TestConstants

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

Figure 5.10 Change 3 Postfactoring

62

5.3.7 Verification

All the regression tests passed; no new regression tests were added for the

classes impacted by refactoring. The statement level coverage for FolderPanel,

FileTable and its suppliers was low; FileTableHeader has only 14% coverage.

Therefore a protective change request with a priority 4, minor problem not involving

primary functionality, was added to the backlog to improve the test suite of these

classes. The programmer added a similar change request for the 7 action code files

added to the impact set for the same reason; for example,

FileDragSourceListener has only 11% statement coverage, see Table 5.7

The classes in the org.severe.ui.dialog packages now each have their

own unit test class. All harness code files are in their own package, which has the same

name as the package containing the class being tested plus tests. There is 1 functional

test class, BasicSearchFuncTest. During verification 2 bugs were found, both in the

new classes extracted during postfactoring.

The first bug was in SearchTableModel; it was getting the path of the parent

folder of the search result instead of the path of the search result in the

fillCellCacheAtRow() method. The second bug was in SearchTable, in the

addSearchResultMethod(). It needs to call resizeAndRepaint(), an inherited

method after adding the first result, to allow the table to resize the columns to the

Objects in them. Both of these bugs were fixed when they were found.

63

Table 5.7 Change 3 Statement verification coverage of production code files

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 AbstractFileTable 274 195 71.2 0 0

2 AbstractFileTableMo

del

37 21 56.8 0 0

3 AbstractFolderPanel 60 35 58.3 0 0

4 ButtonPanel 23 23 100.0 0 0

5 CompareFoldersActio

n

43 6 14 0 0

6 DirectoryPanel 51 42 82.4 0 0

7 FileDragSourceListe

ner

27 3 11.1 0 0

8 FileTable 331 89 26.9 0 0

9 FileTableCellRender

er

95 84 88.4 0 0

10 FileTableHeader 28 4 14.3 0 0

11 FileTableHeaderRend
erer

18 18 100.0 0 0

12 FileTableModel 163 120 73.6 0 0

13 FlashLabel 14 14 100.0 0 0

14 FolderPanel 328 144 43.9 0 0

15 InputPanel 29 29 100.0 0 0

16 InvertSelectionActi
on

16 6 37.5 0 0

17 MainFrame 210 122 58.1 0 0

18 MarkAllAction 15 8 53.3 0 0

19 MarkExtensionAction 45 6 13.3 0 0

20 OpenInBothPanelsAct
ion

34 9 26.5 0 0

21 ResultsPanel 26 25 96.2 0 0

22 SearchDialog 42 43 97.7 0 0

23 SearchTable 34 33 97.1 0 1

24 SearchTableHeader 38 38 100.0 0 0

25 SearchTableModel 65 65 100.0 0 1

26 SearchThread 27 25 92.6 0 0

27 SearchTableCellRend
erer

10 10 100.0 0 0

28 StatusBar 207 151 72.9 0 0

64

5.3.8 Conclusion

The programmer committed this change request to the repository as a new

baseline. The changed set was 11 code files, while the estimated impact set was 21,

see Table 5.8. Two of the code files in the estimated impact set, but in the changed set

are FileTableConfiguration and FileTableColumnModel; they are suppliers to

FileTable. During impact analysis the programmer thought the changes to

FileTable were so significant that these suppliers would also have to change;

however the change never propagated to them. The other estimated impact set code

files not in the changed set were changed during postfactoring. The change was more

difficult than the programmer originally thought he simplified actualization by making the

changed set smaller. This resulted in more code smells that he addressed during

postfactoring. The programmer also changed 7 code files during postfactoring that

were not part of the estimated impact set (section 5.3.6).

Table 5.8 Change 3 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

6 21 11 2 4 10 1,099

5.4 Change Request 4 Date Search

5.4.1 Initialization

This change request is: “Allow the user search by a date of file’s modification”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add date criteria to the search algorithm

65

2. Add a check box to turn date searching on and off

3. Add text boxes to enter before and after dates

4. Add calendars to click on before and after dates

5.4.2 Concept Location

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts:

• file created/modified date • file → file name

• a specific date • calendars → Java file chooser

• search • search algorithm

The programmer determined the concept to locate is the search algorithm. No

concept location was needed for this change request. Based on experience obtained

during previous change requests the programmer knew the search is located in the

SearchThread class which was created during change 2. Functionalities 2 to 4 were

added during actualization through incorporation of new classes.

5.4.3 Impact Analysis

The programmer started a dependency search by marking the code file

containing the concept extension, SearchThread Impacted in JRipples. The

programmer then visited and marked the following code files from JRipples’ Next set

Impacted:

• SearchDialog, has an object of SearchThread whose constructor will

change

• InputPanel, date range GUI component added here

66

• BasicSearchFuncTest

• InputPanelTest

• SearchDialogTest

• SearchThreadTest

• ButtonPanel, will be responsible for checking to make sure there are no

errors in the search criteria, before a search starts

• DirectoryPanel, the error it displays will move to a central management

location for errors

• DirectoryPanelTest

• ButtonPanelTest

• TestConstants

The programmer visited AbstractFile; it has a method, getDate(), that can

be used to compare an AbstractFile’s date to a date range; since this is all the

search algorithm requires for this change request, it was marked Unchanged. This

change request will require a date to be formatted; the programmer knew

AbstractFileTable formatted a date from change request 3. AbstractFileTable

was already in JRipples’ Next set, the programmer visited it and found it calls a static

method in the class CustomDateFormat; therefore, AbstractFileTable was

marked as Propagating. JRipples added CustomDateFormat to the Next set and the

programmer visited it. It has a method, getDateFormatString() that returns a

String containing the date format based on setting in the preference file. It would

work, but it included the time, the programmer marked it Impacted; it will need a new

67

method that returns a date format without the time. The estimated impact set of 13 code

files is shown in Table 5.13.

Figure 5.11 Change 4 Impact Analysis

At this point JRipples had 112 code files in the Next set. These code files were

visited in a similar manner as in change 3. Code files such as MarkForwardAction

were just marked as Unchanged based on their names. But, other code files, such as

ResultsPanel that is part of the search dialog, were inspected more closely.

Ultimately, all of these code files were marked as Unchanged.

5.4.4 Prefactoring

To prepare for this change request the programmer extracted the class

ErrorManager from DirectoryPanel. The programmer did this because the

68

program will handle multiple types of errors; instead of having SearchDialog check

each error to see if it is enabled before a search, it will just check with this extracted

class. The following DirectoryPanel fields and responsibility was extracted from

these methods:

DirectoryPanel ErrorManager

• flashError() flashErrors()

• isErrorEnabled() isErrorEnabled()

• actionPerformed()

• focusLost()

• keyReleased()

disableError()

enableError()

disableError()

This extracted class will also flash all the enabled errors if the user tries to start a

search with an error enabled. This refactoring was done to make the change request

easier, not because of existing code smells. A matching harness class,

ErrorManagerTest was extracted from DirectoryPanelTest and the class

extractions propagated to 3 more production and 3 harness code files see Figure 5.12.

This is because the object of ErrorManager was created in SearchDialog and it

replaced dependency these code files had with DirectoryPanel.

69

SearchDialog DirectoryPanel

InputPanelTest

ErrorManagerTest

ButtonPanelTest

InputPanel

ErrorManager

BasicSearchFuncTest

ButtonPanel

DirectoryPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

Figure 5.12 Change 4 Prefactoring

5.4.5 Actualization

To actualize this change request, the programmer incorporated a new supplier of

InputPanel called DatePanel that extends JPanel. This class contains all the GUI

components of the change request description. This class gets dates from the user as

text and creates Date objects from the text. It performs error checking to make sure

that the user entered a valid date and checks to make sure that the minimum date is

less than the maximum date.

Fields Methods

• JCheckBox dateBox • createDateTextBox()

• JLabel dateLabelBefore • createCalendarButton()

• JLabel dateLabelAfter • setEnabled()

70

• JTextField minDateTextBox

• JTextField maxDateTextBox

• JButton minCalButton

• JButton maxCalButton

• DateFormat dateFormat

• FlashLabel dateError

• Date minDate

• Date maxDate

• ErrorManager errorManager

• boolean minError

• boolean maxError

• boolean minGreaterError

• datePanelSetEnabled()

• actionPerformed()

• focusLost()

• getErrorMessage()

• isError()

• dateTextBoxCheck()

• checkMinLessThan()

• getMinDate()

• getMaxDate()

• isDateSearch()

• keyReleased()

• checkYear()

To create a border for the class that has a JCheckBox in it the programmer

incorporated a supplier that was provided by Kumar under a GNU License called

ComponentTitledBorder [43]. A harness class to test it was also added.

To add GUI calendars for the user to select a date, new classes were

incorporated by the programmer. These classes were taken from a program called

JCalendar written by Toedter and available online under the GNU Lesser General

Public License [44]. The program contained more functionality then needed so specific

classes were chosen. These classes are:

• JCalendar

• JDayChooser

71

• JMonthChooser

• JYearChooser

• JSpinField

These classes used together made up a very feature rich GUI calendar with a

month drop down box and a year text box, both of which have buttons to increment or

decrement their values. They were placed in a new package called

org.severe.ui.dialog.calendar. The programmer added a unit test class for

each class and a functional test class that tests the functionality of all the classes

together. These harness code files were all added to a new package,

org.severe.ui.dialog.calendar.tests.

The programmer added a static method, getDateNoTimeFormatString(), to

CustomDateFormat that returns a DateFormat String that is the same as the date

format specified in the program’s preferences file, but without the time. This allows the

user to choose a date in the same format as the application display, but without the

time.

The SearchThread class is responsible for the search algorithm; the algorithm

is in a method recursiveSearch(). The programmer added a new method,

isInDateRange() that recursiveSearch() calls, if the user enables a date

search. A boolean parameter was added to the SearchThread constructor that is set

to true if the date search is enabled; because of this SearchDialog, which creates the

SearchThread object, was also changed. A UML diagram showing the changed and

added classes is in Figure 5.13.

72

Figure 5.13 Change 4 Actualization

5.4.6 Postfactoring

The DatePanel class that the programmer incorporated during actualization

was too large and had too much responsibility. The class DateField was extracted

from it. It extends the JTextField class, see Figure 5.14. It adds methods to

73

customize the class to only accept objects of type Date; by parsing the text entered into

Date objects

SearchDialog

SearchThreadDateSearchFuncTest

SearchThreadTest

DatePanel

DatePanelTest

ComponentTitledBorder

JCalendar

JDayChooser JMonthChooser JYearChooser

JSpinFieldTest

ComponentTitledBorderTest

JCalendarTest

JDayChooserTest JMonthChooserTest

JYearChooserTest

JCalendarFuncTest

JSpinField

DateField

DateFieldTest

SearchFuncTestSetUp

BasicSearchFuncTest

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

Figure 5.14 Change 4 Postfactoring

In the classes added from JCalendar, each class had a main() method and

methods to set the locale to a different value than the operating system. These methods

were removed because they are not needed. The programmer also performed other

74

tasks, such as moving the fields from the end of the code file to the beginning to match

the style of muCommander. ComponentTitledBorder had no Javadoc comments so

the programmer added them to make future changes easier.

Postfactoring propagated from DatePanel to InputPanel and SearchDialog

to SearchThread, which needed Javadoc added to the new method added during

actualization. In the case of existing classes such as SearchThread, the cleanup was

made necessary because of actualization.

The programmer visited the DateSearchFuncTest harness class and realized

much of the setUp() and tearDown() methods were the same as the

BasicSearchFuncTest class. The 2 classes are not neighbors, but propagate

through SearchDialog. To remove the duplicated code the programmer extracted a

super abstract class, SearchFuncTestSetUp from BasicSearchFuncTest and

DateSearchFuncTest that has setUp() and tearDown() methods. It is similar to

the abstract class SearchDialogTestSetUp that was extracted during change

request 2. All 3 of these harness code files were put in a new package

org.severe.ui.dialog.search.functional.tests. These functional tests take

significantly longer to run than unit tests; having them in their own package makes it

easier to run them separately.

5.4.7 Verification

After the change request all the regression tests passed. There was a unit test

class added for each class added during the change; in addition, an abstract class was

extracted during postfactoring to make future test easier to add. A class of constant

objects, TestConstants, was also extracted, that can be used across the test suite.

75

Finally, the programmer added 2 new functional test classes, DateSearchFuncTest

and JCalendarFuncTest; for a total of 3 functional test classes, see Table 5.9.

Table 5.9 Change 4 Statement verification coverage of production code files

Code file

Coverage of Application

Tests Failed Bugs FoundTotal

Statements

Covered

Statements
%

1 ButtonPanel 26 26 100.0 0 0

2 ComponentTitledBorder 35 35 100.0 0 0

3 CustomDateFormat 22 13 59.1 0 0

4 DateField 55 54 98.2 0 0

5 DatePanel 89 86 96.6 0 2

6 DirectoryPanel 50 41 82.0 0 0

7 ErrorManager 13 13 100.0 0 0

8 InputPanel 36 36 100.0 0 0

9 JCalendar 75 60 80.0 0 0

10JDayChooser 142 133 93.7 0 0

11JMonthChooser 76 63 82.9 0 0

12JSpinField 64 54 84.4 0 0

13JYearChooser 15 15 100.0 0 0

14SearchDialog 43 42 97.7 0 0

15SearchThread 40 38 95.0 0 0

During verification 2 bugs were found, both in the new classes created during

actualization. The first bug was in DatePanel; if the user types a date with a 2 digit

year, such as 99 or 03, the Date object created by parsing had a 1st century year. The

programmer added a new method to parse the date into a user expected date, such as

1999 or 2003. The second bug was that the FocusLost event that should trigger the

creation of Date objects to use as search criteria would be scheduled after the

ActionListener event that started the search. This would cause a search without a

76

date, even though a date was displayed to the user. The programmer added a

KeyListener event to parse the date after each keystroke to solve the problem.

5.4.8 Conclusion

The programmer committed this change request to the repository as a new

baseline. The changed set had 1 less code file than the estimated impact set, see Table

5.10. During impact analysis, the programmer thought the change would propagate to

the harness code file SearchDialogTest because SearchDialog was impacted.

However, the change to SearchDialog affected 1 LOC in 1 method. This did not

change the contract of the method with any client or supplier so the harness class was

not impacted.

Table 5.10 Change 4 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 13 12 2 16 3 1,120

5.5 Change Request 5 Case Sensitive Search

5.5.1 Initialization

This change request is: “Add capability to search by case sensitive search

terms.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add case sensitive criteria to the search algorithm

2. Add a check box to turn case sensitive searching on and off

77

5.5.2 Concept Location

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts:

• case sensitive • search

• enable/disable • search algorithm

• file → file name

No concept location was needed for this change. The concept to location, the

search algorithm, was the same as change request 4, the SearchThread class.

Functionality number 2 was identified during impact analysis.

5.5.3 Impact Analysis

To start impact analysis the programmer marked SearchThread as Impacted in

JRipples. The programmer visited and marked Impacted the following code files from

JRipples’ Next set:

• InputPanel, will add the case sensitive JCheckBox

• SearchDialog, will add an object of a class extracted from SearchThread

• DatePanel, extract fields from it DateField

• DateField, receive extracted fields from DatePanel

• DirectoryPanel, gets the user input directory

The programmer visited the harness code files in JRipples’ Next set and marked

10 Impacted; these are the test classes for classes in the Impact set already, except for

ButtonPanelTest. It is the test for, ButtonPanel, which is not in the impact set. It is

impacted, because one of its tests calls a method, searchCommand() in

78

SearchDialog whose definition will change. The programmer marked 41 code files

Unchanged, see Figure 5.15.

SearchThread

InputPanel

SearchDialog

DatePanel

DateField

ButtonPanel

DirectoryPanel

SpinningDial

AppLogger

ResultsPanel

AbstractFile

ButtonPanelTest

SearchTable YBoxPanel

SearchTableModelTest

ErrorManager

SearchTableModel

Translator

MainFrame

SearchAction

ResultsPanelTest

ActionProperties

SearchTableHeaderTest

FolderPanel

SearchTableCellRendererTest

SearchTableTest

FocusDialog

IconManager FlashLabel

CustomDateFormat

ComponentTitledBorderJCalendar

AuthException

FileFactory

SearchDialogTest

SearchThreadTest

InputPanelTest

SearchFuncTestSetUp

DateSearchFuncTest

BasicSearchFuncTest

SearchDialogTestSetUp

DatePanelTest

DateFieldTest

DirectoryPanelTest

TestConstants

AbstractFileTableAbstractFolderPanel

CommandBarIO

«datatype»

Column

AnimatedIcon

AbstractFileTableModel

ActionKeymapIO

ActionManager

DesktopManager

ShutdownHook

ThemeManager

WindowManager
Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Impacted

Figure 5.15 Change 5 Impact Analysis

79

5.5.4 Prefactoring

During impact analysis the programmer visited and realized that SearchThread

had 2 responsibilities, one to create a separate thread that iterates through the files of

the file system and 2 to check if each file met the search criteria. This made sense when

SearchThread was extracted from SearchDialog, because there was only one

search criterion, the file name. However, a second, date search criteria was added

during change request 4 and a third criteria was going to be added during the current

change request. The programmer decided to refactor this responsibility from

SearchThread during prefactoring to make it easier to add a separate the search

algorithm to run in during actualization.

During the last change a method was added to SearchThread to checks if a

file’s modified date is within a user specified date. The current structure encourages any

new change request that adds a search criterion to add a new method with logic that

checks the specific criteria. Then the recursiveSearch() method, will call this

method to see if a file meets the criteria. This will make SearchThread a very large

class, with a wide variety of responsibilities. To stop this from occurring, a strategy

design pattern [42] was implemented. This will allow any new search functionality to

create a class that decides if a file meets its criteria; the SearchThread class will not

need to know anything about the algorithm that the new search option classes

implement. This means adding new search options will be unlikely to propagate to

SearchThread.

The programmer extracted a new class from SearchThread to manage the

search criteria responsibility called SearchManager and created an interface,

80

SearchOption. Classes that implement the SearchOption interface can be added to

a list of criteria in SearchManager dynamically. These classes contain their own

algorithms to decide if a file meets their responsibility of the search criteria. When a

search is executed, SearchManager will check with all the classes on its list to decide

if a file meets all the search criteria. The class SearchThread had the responsibility to

check the date of a file extracted from it to a new class, DateOption that implements

SearchOption; SearchThread then had just its original responsibility, of recursively

stepping through the files in the file system.

This prefactoring moved the concept location from SearchThread to

SearchManager. It also meant that the class that contains the concept location,

SearchManager, would not need to be changed during actualization.

After, the new SearchManager and DateOption classes were extracted, it

became apparent that some of the responsibility left in DatePanel during the last

change, should be moved to DateField; namely the JButton that opens a dialog that

allows the user to select a date from a calendar. Even though the programmer extracted

DateField from DatePanel during the last change request, it was apparent that code

smell were still present that needed to be addressed. There were still 2 objects of type

JButton in DatePanel that should be in DateField. Additional fields moved and

methods changed from DatePanel to DateField are:

Fields Methods

• JCheckBox dateBox • createDateTextBox()

• JButton minCalButton • createCalendarButton()

81

• JButton maxCalButton

• DateFormat dateFormat

• actionPerformed()

• propertyChange()

• getMinDate()

• getMaxDate()

• isDateSearch()

The other classes that have responsibility to match the search criteria were also

changed. The responsibility for matching the search term to the file’s name was moved

from the InputPanel class to a new class SearchTermOption, which implements

SearchOption.

The recursive search and start directory responsibility were extracted to

SearchManager from SearchThread. A UML diagram showing the changed and

added classes is in Figure 5.16.

82

SearchThread

SearchDialogSearchManager

DatePanel

«interface»

SearchOption

DateFieldDateOption

InputPanel

DirectoryPanelSearchTermOption

SearchThreadTest

SearchDialogTest

SearchManagerTest

DatePanelTest

DateFieldTestDateOptionTest

InputPanelTestDirectoryPanelTest

SearchTermOptionTest

ButtonPanelTest

BasicSearchFuncTest

DateSearchFuncTest

SearchOptionTestClass

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

Figure 5.16 Change 5 Prefactoring

5.5.5 Actualization

The prefactoring prepared the code for the change very well. To actualize the

change request, the programmer changed the InputPanel class and incorporated a

new class, CaseSensitiveOption that implements the SearchOption interface

through polymorphism. InputPanel added a check box to turn case sensitive searching

on and off. It does this by swapping its SearchTermOption field for the

83

CaseSensitiveOption field. It also added a border around the recursive check box

and the case sensitive check box in the GUI to organize it.

The added CaseSensitiveOption class is very similar to the

SearchTermOption class, but it uses logic that includes the case of the search term

and the file’s name. A UML diagram showing the changed and added classes is in

Figure 5.17.

Figure 5.17 Change 5 Actualization

5.5.6 Postfactoring

The programmer addressed code smells that had developed over time during

previous change requests. It is difficult to pinpoint exactly when these smells should

have been addressed, but it is clear they need to be addressed now. For example,

when the class InputPanel was extracted from SearchDialog during change

request 2, it held all the input fields. During the change requests since then,

DirectoryPanel was extracted and DatePanel was incorporated as a component; it

now both holds other panels and instantiates objects of panels. To alleviate these code

smells during this postfactoring and clarify its responsibility, BasicOptionsPanels

84

was extracted from InputPanel; the fields moved and methods moved or impacted

are:

Fields Methods

• JTextField inputBox • createInputBox()

• JCheckBox recursiveBox

• JCheckBox caseSensitiveBox

• SearchManager searchManager

• SearchTermOption searchTerm

• CaseSensitiveOption

caseSensitiveOption

• createOptionsPanel()

• switchToSearchState()

• getInputBox()

• actionPerformed()

The classes SearchTermOption and CaseSensitiveOption had the same

methods, but all 3 used different logic. A super class was extracted from them; this also

allowed them to be swapped more easily by BasicOptionsPanels using their

abstract class type. This super class extraction was necessary because of the change;

it could have been done during prefactoring to prepare for the change. The field and

methods moved to the AbstractTermOption are:

Field Methods

• String SearchTerm • abstract setSearchTerm()

 • insertUpdate()

• removeUpdate()

A new test class for BasicOptionsPanels was extracted from InputPanel

test. In addition the class extractions impacted 6 more harness code files see Figure

85

5.18. The class SearchFuncTestSetUp is part of the estimated impact set. It was not

added to the changed set but was impacted during postfactoring.

InputPanel InputPanelTest

BasicOptionsPanels

AbstractTermOption

BasicOptionsPanelsTest

SearchTermOption

CaseSensitiveOption

SearchDialogSearchDialogTest

SearchThreadTestButtonPanelTest

SearchFuncTestSetUp

DateSearchFuncTest

BasicSearchFuncTest

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

Figure 5.18 Change 5 Postfactoring

5.5.7 Verification

At the end of the change request all regression tests passed. The programmer

followed the format of the previous change request and added a unit test for each

added class. To test the SearchManager class the programmer also created a stub

class SearchOptionTestClass and added it to the harness; it is a concrete

implementation of the SearchOption interface. No unit test class was added for the

abstract class AbstractTermOption; but both of the concrete implementations,

SearchTermOption and CaseSensitiveOption have unit test classes. All new

86

tests passed; no bugs were identified in this change. Table 5.11 shows the statement

level coverage of the test harness for the code files added during this iteration.

Table 5.11 Change 5 Statement verification coverage of production code files

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 AbstractTermOption 7 6 85.7 0 0

2 BasicOptionsPanels 45 45 100.0 0 0

3 CaseSensitiveOption 4 4 100.0 0 0

4 DateField 69 64 92.8 0 0

5 DateOption 20 20 100.0 0 0

6 DatePanel 58 57 98.3 0 0

7 DirectoryPanel 53 44 83.0 0 0

8 InputPanel 36 36 100.0 0 0

9 SearchDialog 44 43 97.7 0 0

10 SearchManager 17 17 100.0 0 0

11 SearchTermOption 4 4 100.0 0 0

12 SearchThread 25 21 84.0 0 0

5.5.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. The changed set had 1 fewer code files that the estimated impact set, see

Table 5.12. SearchFuncTestSetUp was not changed until postfactoring. The

programmer implemented the change by allowing code smells to develop, then

addressed them by moving responsibility during postfactoring (section 5.5.6).

87

Table 5.12 Change 5 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact Set

Changed
Set

Added during Total

Project Pre Act Post

0 16 15 8 2 3 1,133

5.6 Change Request 6 Extension Search

5.6.1 Initialization

This change request is: “Add the ability to search for files with specific

extensions.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add a check box to turn extension searching on and off

2. Add a text box for the user to enter file extensions

3. Add extension criteria to the search algorithm

5.6.2 Concept Location

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts:

• search by file extension • search

• add/remove from SearchManager • files → file name

• search algorithm

No concept location was needed for this change. This change request has similar

requirements to change requests 4 and 5. The concept to location, the class to

incorporate the new functionality 1 and 2, is BasicOptionsPanels. The programmer

88

knew the code responsible for functionality 3, the search algorithm, did not contain the

concept location because he refactored it during change request 5. The search

algorithm is now modified dynamically by user selections and therefore was not

impacted by this change.

5.6.3 Impact Analysis

The programmer started impact analysis by marking the code file containing the

concept location, BasicOptionsPanels, Impacted in JRipples. The programmer

visited and marked the following code files Impacted:

• AbstractTermOption, compares AbstractFile to the search term

• SearchTermOption, inherits from AbstractTermOption

• CaseSensitiveOption, inherits from AbstractTermOption

• InputPanel, contains a panel that errors are displayed in

The programmer then visited AbstractFile; it contains the methods

getFileNameWithoutExtension() and getExtension(). These methods are all

the search algorithm requires from AbstractFile, so it was marked Unchanged. The

programmer wanted to duplicate the functionality from the year input field that was part

of the date chooser added during change request 4; it shows the user if input is valid by

coloring it green or invalid by coloring it red. The programmer visited the code files in

the following order and marked them Propagating, they were not impacted, but lead to

an impacted code file:

1. DatePanel

2. DateField

3. JCalendar

89

4. JYearChooser

JRipples marked JSpinField Next and the programmer visited and marked it

Impacted because it only accepts integers, this change request requires it to also

accept alphabetic characters.

The programmer then visited the harness code files in JRipples’ Next set and

marked them Impacted:

• BasicOptionsPanelsTest

• CaseSensitiveOptionTest

• SearchTermOptionTest

• JSpinFieldTest

• TestConstants

Finally, the programmer visited the 19 production code files and 20 harness code

files in the Next set and marked them Unchanged, see Figure 5.19.

90

BasicOptionsPanels

CaseSensitiveOption

SearchThreadTest

InputPanel

Translator

SearchManager

YBoxPanel

BasicOptionsPanelsTest

AbstractTermOptionSearchDialogTest SearchDialog

ButtonPanelTest

BasicSearchFuncTest SearchFuncTestSetUp

SearchTermOptionCaseSensitiveOptionTest

SearchTermOptionTest

AbstractFile

«interface»

SearchOption

ErrorManager

DateSearchFuncTest

SearchTableModelTest SearchTable DatePanel

SearchTableModel

SpinningDial

DirectoryPanel

DateField

InputPanelTest

DatePanelTest FlashLabel

DateOption

ComponentTitledBorder

DateFieldTest CustomDateFormat

JCalendar

IconManager

JCalendarTest

JYearChooser JMonthChooser

JCalendarFuncTest

JDayChooser

JSpinFieldJYearChooserTest JMonthChooserTestJSpinFieldTest

TestConstants

DateOptionTest

DirectoryPanelTest

SearchMangerTest

SearchTableTestFileFactory

SearchTableCellRendererTest

ResultsPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Impacted

Figure 5.19 Change 6 Impact Analysis

5.6.4 Prefactoring

During impact analysis the programmer added JSpinField to the estimated

impact set. This field colors the text green if the user input is valid and red if the user

91

input is invalid as the user types. However, the JSpinField only accepts integer

values. To make it easier to add the coloring feature for alphabetical values to this

change request, a new class, FeedbackField was extracted from JSpinField. It

extends JTextField and is only responsible for changing the color of the text,

depending if the text is valid or invalid. To make FeedbackField work in general

cases; the programmer added a nested interface, InputListener. InputListener

has 1 method, isInputValid() that allows implementing classes to define what is

valid and invalid input. The field and methods of JSpinField impacted by the

extraction are:

Fields Methods

• JTextField textField

• Color darkGreen

• setValue()

• setMaximum()

• setHorizontalAlignment

• setFont()

• setForeground()

A test class FeedbackField was extracted from JSpinFieldTest. It also had

tests added for the new methods.

5.6.5 Actualization

To actualize the change request, the programmer incorporated a new supplier of

BasicOptionsPanels that extends YBoxPanel called ExtensionPanel. The class

contains a JCheckBox, FeedbackField and FlashLabel. This class adds the

components to the GUI for the user to enter extensions.

92

The programmer also added a class that implements the SearchOption

interface, ExtensionOption that is added to the list of SearchOption objects in

SearchManager when an extension search is enabled. ExtensionOption’s primary

responsibility is to check an AbstractFile’s extension against the set of user entered

extensions and return true if it is.

The programmer added the responsibility of changing between classes that

extend AbstractTermOption to compare an AbstractFile’s name to a search

term to BasicOptionsPanels. When an extension search is enabled,

BasicOptionsPanels will change between 4 different implementations of the

AbstractTermOption class. There were 2 classes to do this at the beginning of this

change request, which compare the search term to the file’s name including the

extension. The programmer created 2 new classes that compare the file’s name without

the extension to the search term, SearchTermWithoutExtensionOption and

CaseSensitiveWithoutExtensionOption that extend AbstractTermOption.

Additionally, the programmer added a FocusListener to FeedbackField to

change the text color to the default when the field has lost focus.

The test classes, ExtensionSearchFuncTest, ExtensionOptionTest and

ExtensionPanelTest were added by the programmer. FeedbackFieldTest and

BasicOptionsPanelsTest were changed. Two new harness files for use in testing

the production code related to extensions were added, testFile.log and testFile.test that

are the same as testFile.txt added in change 2, but with different extensions. Final

objects of type AbstractFile corresponding to these files were added to the class

93

TestConstants. A UML diagram showing the changed and added classes is in Figure

5.20.

ExtensionPanelExtensionPanelTest

ExtensionSearchFuncTestFeedbackFieldFeedbackFieldTest

BasicOptionsPanels

InputPanel

BasicOptionsPanelsTest

TestConstants

ExtensionOption ExtensionsOptionTest

CaseSensitiveWithoutExtensionOption

SearchTermWithoutExtensionOption

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

Figure 5.20 Change 6 Actualization

5.6.6 Postfactoring

After actualization the change request functionality worked, but the method in

BasicOptionsPanels, swapSearchTermOptions() that switched between the 4

classes that extend AbstractTermOption was confusing and would be difficult to

change in the future. The responsibility to listen to one JCheckBox and call

swapSearchTermOptions() to switch between object that inherit from

AbstractTermOption had grown and was spread across 2 classes,

94

BasicOptionsPanels and ExtensionPanel. Further, the 2 classes created during

actualization that inherit from AbstractTermOption,

SearchTermWithoutExtensionOption and

CaseSensitiveWithoutExtensionOption, had long and confusing names and

very similar responsibility. The programmer decided that instead of having 4 different

AbstractTermOption classes, there should be 1 class that listens to the 2 fields of

type JCheckBox and uses polymorphism to switch between the compare criteria. This

simplified the responsibility and combined it into 1 code file, SearchTermOption this

made it easier for the programmer to handle switching between searches with and

without extensions and made the code easier to understand. The super class and 3

other AbstractTermOption classes would all be merged into SearchTermOption.

Additionally, Action Listener would be extracted from BasicOptionsPanels and

ExtensionPanel to this code file.

The programmer changed the ExtensionOption’s method,

setExtensions(), which parses the user entered String into an array of String

extensions, to a regular expression algorithm. The rest of the refactoring was renaming

fields in FeedbackField and updating Javadoc in TestConstants. A UML diagram

showing the changed and added classes is in Figure 5.21.

95

ExtensionPanelExtensionPanelTest

ExtensionSearchFuncTestFeedbackFieldFeedbackFieldTest

BasicOptionsPanels

SearchTermOption

BasicOptionsPanelsTest

TestConstants

ExtensionOption ExtensionsOptionTest

CaseSensitiveWithoutExtensionOption

SearchTermWithoutExtensionOption

AbstractTermOption

CaseSensitiveOption

SearchTermOptionTest

CaseSensitiveOptionTest

Unchanged

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed AddedRemoved

Figure 5.21 Change 6 Postfactoring

5.6.7 Verification

The test suite exposed 3 bugs during the change request, a forth bug was

discovered through code inspection. Two of these bugs were part of the current change

request and were fixed; the other 2 were added to the backlog.

While writing the test class for the SearchTermOption code file during

postfactoring, the programmer found a bug in the insertUpdate() method. The bug

96

was found by running the test, testInsertUpdate() from the

SearchTermOptionTest class. The method insertUpdate() throws an exception

if an empty string is input in the object of type Document the method listens to. This

was resolved by adding a check for an empty String to the method.

The programmer found the second bug in SearchTermOption also, with the

test testActionPerformedCaseSensitiveBox() from the

SearchTermOptionTest class. If a case sensitive search is enabled, disabled and

enabled, without changing the search term, the case of the search term would be lost.

To fix the bug, the programmer added a field of type String to SearchTermOption

that stores the term with case, so the case can be recovered when switching between

case sensitive searches.

During impact analysis the programmer visited the DatePanel class; during this

visit the programmer realized that the datePanelSetEnabled() method did not

remove the DateOption object from the SearchManager. This means that if a date is

entered and the date JCheckBox is unchecked, a date search will still be performed.

This is the opposite of what a user would expect, but a there is an easy workaround;

just delete the date. This bug was given a priority 3, some functionality is impaired, but a

workaround can be found, therefore a change request was added to the backlog.

After prefactoring all the regression tests passed, however, during postfactoring 1

regression test, testSetMonth() from JDayChooserTest, failed. The programmer

investigated this further and discovered the test will fail if run on the last day of the

month if the next month has fewer days than the current month. The programmer did a

test through user intervention and found that the bug did not affect the program’s

97

functionality. Therefore, a priority 4, minor problem not involving primary functionality,

change request was added to the backlog to fix this bug. Table 5.13 shows the

statement level coverage of the test harness for the code files added during this

iteration.

Table 5.13 Change 6 Statement verification coverage of production code files

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 BasicOptionsPanels 38 38 100.0 0 0

2 ExtensionOption 20 20 100.0 0 0

3 ExtensionPanel 36 36 100.0 0 0

4 FeedbackField 42 42 100.0 0 0

5 InputPanel 37 37 100.0 0 0

6 JDayChooser 142 133 93.7 1 1

7 JSpinField 61 51 83.6 0 0

8 SearchTermOption 38 37 97.4 0 2

5.6.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. The changed set was 5 code files less than the estimated impact set, see

Table 5.14. All 5 of these code files were impacted during postfactoring. As in change 5

(section 5.5) the programmer simplified the change by allowing code smells to develop

then addressed them during postfactoring. Also during postfactoring he merged 4

production code files into another during postfactoring and 1 harness code file into

another (section 5.6.6), which removed 5 code files from the project.

98

Table 5.14 Change 6 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 11 6 2 7 (5) 1,137

5.7 Change Request 7 Properties Search

5.7.1 Initialization

This change request is: “Add options to search for files based on their

properties.”

To help understand the change request, the programmer envisioned the

following functionality for the change:

1. Add 4 check boxes to turn searching for each file type on and off

2. Add the 4 file types criteria to the search algorithm

The programmer extracted relevant concepts from the change request and using

their intensions he converted them to following significant concepts

• archives and read only files • 4 file types →

o hidden files

o directories

o read-only

o archives

• search for a file type

• add/remove from SearchManager

5.7.2 Concept Location

No concept location was needed for this change. This change request is similar

to change request 6. The concept to location is the same as change request 6, the class

to incorporate the new functionality 1, is BasicOptionsPanels. The programmer

99

knew the code responsible for functionality 2, the search algorithm, did not contain the

concept location just as in change request 6.

5.7.3 Impact Analysis

The programmer started impact analysis by marking the code file containing the

concept extension, BasicOptionsPanels, Impacted in JRipples.

• InputPanel, createOptionsPanel() will need to be changed.

• AbstractFile; needs a method to check if an object of it is read-only

• BasicOptionsPanelsTest

• InputPanelTest

• AbstractFileTest

• TestConstants

Changes to the AbstractFile class can have a large impact on

muCommander; JRipples added 307 code files to the Next set when it was marked

Impacted. The programmer decided not to visit all of the Next classes; the method to

add to this class is a non-abstract boolean getter this should not affect any

implementing or dependent class.

5.7.4 Prefactoring

No prefactoring was done during this change. The programmer did not see any

prefactoring that would make the change easier. That is not to say that prefactoring

could not have been done; but rather that for this change the programmer decided to do

the actualization and then perform all refactoring during the postfactoring stage.

100

5.7.5 Actualization

During actualization, the programmer incorporated a new supplier of

BasicOptionsPanels that extends JPanel and holds the 4 fields of type

JCheckBox for properties searches. This class, PropertiesPanel, has a method to

enable and disable the JCheckBox fields. PropertiesPanel implements the

ActionListener interface; it listens to the archive and directory JCheckBox fields. If

one of these boxes is checked the other is disabled, because it is impossible for a file to

be both. It also creates objects of 4 new classes that implement the SearchOption

interface. To accommodate the new panel in the GUI, InputPanel was changed to

modify the GUI layout. A test class, PropertiesPanelTest, was added for this class.

The fields and methods of the class are:

Fields Methods

• JCheckbox archiveBox

• JCheckbox directoryBox

• JCheckbox hiddenBox

• JCheckbox readOnlyBox

• archiveBoxSetEnabled()

• directoryBoxSetEnabled()

• setEnabled()

• actionPerformed()

The 4 new classes that implement the SearchOption interface in

PropertiesPanel are:

• ArchiveOption

• DirectoryOption

• HiddenOption

• ReadOnlyOption

101

They were also added through polymorphism and they add themselves to the

SearchManager object when their corresponding JCheckBox field in

PropertiesPanel is selected. They each have a SearchManager field, the

actionPerformed() method from the ActionListener interface and the

meetsCriteria() method from the SearchOption interface that returns true, if an

AbstractFile sent to it is an archive, directory, hidden file or read-only file. The

programmer added ArchiveOptionTest, DirectoryOptionTest,

HiddenOptionTest and ReadOnlyTest, test classes for these classes.

The AbstractFile class had methods isArchive(), isDirectory() and

isHidden(); but it did not have an isReadOnly() method. The programmer added

the method and added a test for it to AbstractFileTest. This part of the change

impacted a class not found during impact analysis, ProxyFile. ProxyFile is a

concrete implementation of AbstractFile that must override all of AbstractFile’s

methods, so when the programmer added the method isReadOnly() to

AbstractFile, a test in ProxyFileTest failed. To correct this the programmer

added an overridden method isReadOnly() to ProxyFile.

Finally, 3 new harness files were added to the project, an archive file, a hidden

file and a read-only file. The programmer then added fields corresponding to them to the

TestConstants class. A UML diagram showing the changed and added classes is in

Figure 5.22.

102

PropertiesPanel

ArchiveOption DirectoryOption HiddenOption ReadOnlyOption

AbstractFile

ProxyFile

BasicOptionsPanelsInputPanel

PropertiesPanelTest

ArchiveOptionTest

DirectoryOptionTest HiddenOptionTest

ReadOnlyOptionTest

PropertySearchFuncTest

TestConstants

AbstractFileTest

BasicOptionsPanelsTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

Figure 5.22 Change 7 Actualization

5.7.6 Postfactoring

During actualization the programmer caused code smells to develop in

PropertiesPanel. The responsibility to disable the archive JCheckBox when the

directory JCheckBox is selected and vice-versa is misplaced. The programmer

103

extracted a new class from PropertiesPanel, called SearchOptionBox. It adds the

responsibility of an antonym SearchOptionBox. When a SearchOptionBox is

selected, it disables a registered antonym box.

The programmer placed the responsibility to add and remove the 4 code files,

ArchiveOption, DirectoryOption, HiddenOption and ReadOnlyOption that

implement SearchOption in these classes. This was also misplaced, there is

duplicated because of it in these 4 classes, so the programmer extracted this

responsibility to SearchOptionBox. This class now is solely responsible for the

actions of selecting the JCheckBox. This left the 4 classes that implement

SearchOption with 1 method, meetsCriteria(). These classes could have been

made into anonymous classes, but the programmer chose to keep them in their own

files, because it makes the code clearer in his opinion. The fields and methods of

SearchOptionBox are:

Fields Methods

• SearchOption searchOption

• SearchManager searchManager

• SearchOptionBox antonym

• addAntonym()

• removeAntonym()

• hasAntonym()

• getAntonym()

• enableOption()

• setEnabled()

• actionPerformed()

The classes InputPanel and BasicOptionsPanels shared the responsibility

of laying out the GUI parts dealing with search options such as recursive searches,

104

extension searches, property searches and date searches. After actualization it stood

out that this was not clearly organized. The programmer extracted OptionsPanel from

InputPanel to layout all of GUI classes that contain search options. One of these

classes, BasicOptionsPanels, had the JTextField that contains the search term.

The programmer does not consider the search term a search option, so it was extracted

to a new class SearchTermPanel. The fields and methods of OptionsPanel are:

Fields Methods

• BasicOptionsPanel

basicOptionsPanel

• ExtensionPanel

extensionPanel

• PropertiesPanel

propertiesPanel

• DatePanel datePanel

• JPanel topPanel

• createPanel()

• createTopPanel()

• addComponent()

• setEnabled()

This left InputPanel responsible for the layout of 4 objects of type JPanel.

Three of these are separate production code classes, DirectoryPanel,

SearchTermPanel and OptionsPanel. The fourth JPanel holds a static JLabel, a

JLabel that displays search option errors and an icon that is animated when a search

is running. This panel is not significant enough for its own class; therefore it is created in

a method, createLabelPanel() in InputPanel.

This refactoring resulted in broken contracts and propagated to 9 code files not in

the changed set or the estimated impact set. The only one of these that is production

105

code is SearchDialog it has a method call that to request the cursor be placed in; it

requires a call to SearchTermPanel to get the object that the cursor will be placed in.

It is an anti-pattern that the programmer would like to remove, but the programmer did

not think the anti-pattern was worth the effort required to remove it. The other code files

not in the changed set were all part of the harness see Figure 5.23.

Figure 5.23 Change 7 Postfactoring

106

The programmer did not plan to extract SearchTermPanel and OptionsPanel

classes at the start of the change. However, after the change code smells were present

in BasicOptionsPanels and InputPanel that needed to be dealt with. The

programmer made the mistake of thinking the harness code files had similar

dependencies as the production code files they test, which is not the case. The harness

code files have more dependencies than the production code files they test because the

tests not only have dependencies of the class being tested, but also dependencies of

the dependencies. A test class may need objects of a few levels of dependencies.

Additionally, the test’s assertions may require an object of a dependency of the class

being tested, especially in the case of methods with void return types.

5.7.7 Verification

After actualization and postfactoring all regression tests passed. The

programmer found 3 bugs during the change; 2 during actualization and 1 during

postfactoring. The first bug was found during actualization, the test,

testSetEnabled() in the PropertiesPanelTest code file failed when it was

written. The programmer added a call to the super method in the overridden method

setEnabled() in PropertiesPanel then the test passed.

The programmer discovered a bug created during a previous change request

during actualization. When the programmer investigated the failed test,

testSetEnabel(), he ran a manual intervention test. During this test he discovered

that, if a directory to search in is chosen with the GUI file chooser, the search directory

is not updated. A bug level 3 bug was added to the backlog, because there is an easy

workaround, just click on the directory field before starting a search, this forces the text

107

in the directory field to be read in and the search to execute correctly. Table 5.15 shows

the statement level coverage of the test harness for the code files added during this

iteration.

Table 5.15 Change 7 Statement verification coverage of production code files

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 AbstractFile 233 170 73.0 0 0

2 ArchiveOption 1 1 100.0 0 0

3 BasicOptionsPanel 13 13 100.0 0 0

4 DirectoryOption 1 1 100.0 0 0

5 DirectoryPanel 53 44 83.0 1 1

6 HiddenOption 1 1 100.0 0 0

7 InputPanel 27 27 100.0 0 0

8 OptionsPanel 43 43 100.0 0 0

9 PropertiesPanel 24 24 100.0 2 2

10 ProxyFile 64 54 84.4 0 0

11 ReadOnlyOption 1 1 100.0 0 0

12 SearchDialog 44 43 97.7 0 0

13 SearchOptionBox 23 23 100.0 0 0

14 SearchTermPanel 11 11 100.0 0 0

The third bug the programmer discovered during postfactoring. The tests

testArchiveBoxSetEnabled() and testDirectoryBoxSetEnabled() both

failed after the class SearchOptionBox was extracted from PropertiesPanel.

During the class extraction the programmer neglected to add the lines

archiveBox.addAntonym(directoryBox); and

108

directoryBox.addAntonym(archiveBox); to the PropertiesPanel

constructor. The programmer added the lines and finished postfactoring.

5.7.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. The changed set and the estimated impact set were equal, see Table 5.16.

However, ProxyFile was added to the changed set during actualization it was

overlooked by the programmer during impact analysis. InputPanelTest was not

impacted until postfactoring and is therefore not part of the changed set. Also during

postfactoring 9 code files that were not part of the estimated impact set were impacted

(section 5.7.6). This was because the programmer decided to do more refactoring than

planned because the responsibilities of SearchDialog had become unclear; this

affected 1 production code file and 8 harness code files.

Table 5.16 Change 7 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 7 7 0 11 6 1,154

5.8 Change Request 8 File Chooser Bug

5.8.1 Initialization

This change request is a bug from the defect log: “Choosing a directory with the

file chooser does not update the search directory.”

5.8.2 Concept Location

The programmer extracted significant concepts from the change request and

using their intensions he converted them to following significant concepts:

109

• directory

• file chooser

• search directory

No concept location was needed for this change. This bug was identified during

change request 7 through a code inspection; the concept extension is in the

DirectoryPanel code file.

5.8.3 Impact Analysis

Impact analysis also was not necessary for this change request. The

programmer was familiar with the concept extension. He knew the change request

would propagate to no other production code files. He included 2 harness code files

DirectoryPanelTest and BasicSearchFuncTest to add tests to prevent this bug

from reoccurring.

5.8.4 Prefactoring

The programmer extracted a method called directoryFieldUpdate() from

the existing keyReleased() method in DirectoryPanel. All of the body of

keyReleased() was extracted to the new method. He did this because the

KeyListener interface and its keyReleased() method will be replaced during

actualization to fix the bug. The programmer also added a test for the new method, to

DirectoryPanelTest.

5.8.5 Actualization

To actualize the change request, the programmer replaced the KeyListener

interface in DirectoryPanel with a DocumentListener interface. This interface

110

initiates an event if the text in a JTextField is changed regardless of the source; the

KeyListener interface only initiated events if the user types a key with the

KeyListener when the directory chooser updated the text field, there was no event.

The programmer then added tests to DirectoryPanelTest for the

DocumentListener interface’s methods and deleted the test for the keyListener()

method. He added a test to BasicSearchFuncTest that uses the GUI file chooser to

select a directory to search and asserts that the selected directory is the current search

directory.

5.8.6 Postfactoring

No Postfactoring was necessary for this change request.

5.8.7 Verification

After actualization and postfactoring all regression tests passed Table 5.17

shows the test coverage of DirectoryPanel after the change request.

Table 5.17 Change 8 Statement verification coverage of production code files

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 DirectoryPanel 55 54 98.2 0 0

5.8.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. The changed set include was the same as the estimated impact set, see

Table 5.18.

111

Table 5.18 Change 8 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 3 3 0 0 0 1,154

5.9 Change Request 9 Date Search Bug

5.9.1 Initialization

This change request is a bug from the defect log: “The DateOption is not

removed from the SearchManager when it is disabled.”

5.9.2 Concept Location

The programmer extracted significant concepts from the change request and

using their intensions he converted them to following significant concepts:

• DateOption

• not removed

• SearchManager

• disabled

No concept location was needed for this change. This bug was identified during

change request 6; the concept extension is in the DatePanel code file.

5.9.3 Impact Analysis

Impact analysis also was not necessary for this change request. The

programmer was familiar with the concept extension. He knew the change request

would propagate to DateField and DateOption, see Figure 5.24. He also included

the following harness code files to add tests to prevent this bug from reoccurring:

112

• DatePanelTest

• DateFieldTest

• DateOptionTest

• DateSearchFuncTest

Figure 5.24 Change 9 Impact Analysis

5.9.4 Prefactoring

No prefactoring was necessary for this change request.

5.9.5 Actualization

To actualize the change request, the programmer added the ActionListener

interface to the DateOption class. He then added the DateOption objects initialized

in DatePanel as listeners to the dateBox field. This will add and remove objects of

this class to the set of SearchOption objects in SearchManager as appropriate. The

change propagated to DateField, which had a redundant method call in its

113

focusLost() method that was adding the DateOption object back into

SearchManager.

The programmer then changed tests in DatePanelTest and DateOptionTest

to test the new contracts. He then added a test to DateSearchFuncTest that enables

and disable a date search and asserts that the DateOption objects are removed from

SearchManager. The change request did not propagate to the DateFieldTest

harness code file, its tests still passed after the redundant call was removed from

DateField.

5.9.6 Postfactoring

No Postfactoring was necessary for this change request.

5.9.7 Verification

After actualization and postfactoring all regression tests passed. Table 5.19

shows the test coverage of the changed production code files after the change request.

Table 5.19 Change 9 Statement verification coverage of production code files

Code File

Coverage of Application

Tests Failed Bugs Found Total

Statements

Covered

Statements
%

1 DatePanel 62 61 98.4 0 0

2 DateField 68 64 94.1 0 0

3 DateOption 21 21 100.0 0 0

5.9.8 Conclusion

The programmer committed the updated code to the repository as a new

baseline. The changed set was less than the estimated impact set, see Table 5.20. The

114

programmer decided the test in DateFieldTest still sufficiently tested the changed

code and that the tests in the 3 changed harness files would prevent the bugs return.

Table 5.20 Change 9 Summary

Number in Code files

Inspected
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0 7 6 0 0 0 1,154

5.10 Build

At the end of the iteration, the programmer thoroughly tested muCommander by

running all the regression tests. He confirmed all tests passed and was confident that no

new bugs were introduced during the iteration. He then created a special baseline,

which he used to create a version of the program without the harness code for release

to the users. This completed the iteration and release. There were 40 new code files

added and 22 code files changed in muCommander, see Figure 5.25.

115

SearchAction

SearchDialogErrorManager SearchManager

DirectoryPanel

SearchTermPanel

SearchTermOption

OptionsPanel

FlashLabel

BasicOptionsPanel

DatePanel ExtensionPanel

PropertiesPanel
DateField

DateOption

FeedbackField
ExtensionOption

SearchOptionBox

«interface»

SearchOption

ArchiveOption DirectoryOption HiddenOption ReadOnlyOption

AbstractFolderPanel

SearchTable

AbstractFileTable

JCalendar

JYearChooser JMonthChooser JDayChooser

JSpinField

ComponentTitledBorder

SearchTableModel

AbstractFileTableModel

SearchTableHeader

SearchTableCellRenderInputPanel ResultsPanelButtonPanel

FileTable FileTableModel

ActionManager

MainMenuBar
ToolBar

ToolBarAttributes

FolderPanel

FileTableHeader

FileTableCellRenderer

SearchThread

Changed

AddedLegend

Association

Aggregation

Generalization

Figure 5.25 SIP Iteration

The iteration added search functionality to muCommander, see Figure 5.26.

116

Figure 5.26 Search Feature

The programmer did not complete the entire iteration backlog. Three of the 10

changes from the iteration backlog were returned to the product backlog, see Table

5.21. The programmer completed the iteration before the iteration backlog was empty

because he believed that the feature was in a high-quality state and his user were ready

for the feature.

117

Table 5.21 Product Backlog after Iteration

Title User Story

1
Size

Search Add the ability to search for a file by its size.

2
Regular

Expression
Search

Add capability to search by a regular expression.

3
Lucene
Search Incorporate the Apache Lucene search.

4
JDayChoos
erTest Bug

The test testSetMonth() fails on last day of month, if next
month has fewer days

118

Chapter 6

Discussion

This chapter presents the programmer’s experience in the phases of SC. It then

presents the exceptions to SIP the programmer made during the iteration. Next reasons

solo programmers should use SIP are discussed. After that the amount of rework

required and criticism of the process are discussed. Then the technologies used in the

iteration are reviewed. Finally, the threats to this thesis’s validity are discussed.

6.1 Concept Location

Performing multiple changes on a single program presented an opportunity to

look at how a concept extension moved over the iteration. At the beginning of the

iteration, the concept extension “search algorithm” was not explicitly present in the

code; it was an implicit concept. It was implemented in change 1, but it was a trivial

concept that didn’t require its own class; it was part of SearchDialog. The algorithm

was simply a for loop that added files to a set if the file’s name contained the search

term; it was simple and met the needs of the feature.

In prefactoring of change 2, the search algorithm was extracted to its own class

called SearchThread. Then during actualization, SearchThread was replaced with a

more complex class that created a separate thread for the algorithm to run in and also

added recursive ability. When it came across a directory it called itself to search the

directory. This algorithm was more complicated but at its core it still just checked if the

file’s name contained the search term.

The next large change to the search algorithm came in change 4, which added

the capability to search by a file’s last modified date. The programmer modified the

119

search algorithm, now if the file’s name contained the search term, the algorithm then

checked if the date search feature was turn on and if so, checked if the file’s modified

date was in the search range. The algorithm became more complicated and this

introduced a code smell, but the programmer didn’t refactor the algorithm, because the

code was still understandable and the section was small.

Change 5 was to add the ability to match a file’s name to the search term

including case. This required adding another criterion to the search algorithm. The

programmer considered just adding another condition to the current search algorithm.

However, the implementation would have been confusing, it would have had to switch

between case sensitive and insensitive and then check the date search feature

requirements. The resulting code would have been long and procedural, which is not

good object-oriented code and would have made the code smells unacceptable. At this

point the search criteria had become a concept extension significant enough to warrant

its own class, so he extracted the portion of search algorithm that checks files against

the search criteria to a new class, SearchManager, see Table 6.1.

Table 6.1 Location of Search Algorithm Extension

SearchManager required features that added a search criterion to implement an

interface called SearchOption. Then at runtime as the user inputs the search criteria,

the SearchOption implementation for that criterion is added to a list in

SearchManager, when the search is run, each file is checked against the criteria in

120

SearchManager’s list. This change to the search algorithm meant that future changes

can add new criteria, but the change will be unlikely to propagate to SearchManager,

which is what happened. Changes 6 and 7 added new search criteria, but

SearchManager was not impacted.

The search algorithm shows how a concept extension can evolve from a simple

trivial extension to a complex extension spanning multiple classes during SC. It started

as a for loop with an if condition that didn’t warrant its own class and grew to the point

that it required multiple classes. This is characteristic of SC, only the requirements

necessary for a feature are implemented during a change; looking ahead to future

changes and implementing a search algorithm to meet their needs is improper.

However, SC can still be used to implement complex features and relationships in the

code.

6.1.1 Exit Criteria

Exit criteria of the concept location are well-defined: The concept location ends

when the appropriate concept location has been found.

6.2 Impact Analysis

During the iteration of SIP, the programmer was not always able to accurately

predict the estimated impact set. Table 6.2 shows the estimated impact set in code files

for each change request versus the code files in the changed set. In 4 of the 7 change

requests, the 2 are not equal. This section looks at reasons why.

121

Table 6.2 Comparison of Estimated Impact Set and Changed Set

Change Request

Production Code
Files

Harness Code
Files

Percent (%)

EIS Changed Set EIS Changed Set Precision Recall

1 Basic Search
3 4 0 0

100.0 75.0

2 Recursive Search
1 2 2 2

100.0 75.0

3 Advanced Output
14 8 7 3

52.4 100.0

4 Date Search
6 6 7 6

92.3 100.0

5 Case Sensitive
6 6 10 9

93.8 100.0

6 Extension Search
6 3 5 3

54.5 100.0

7 Properties Search
3 4 4 3

85.7 85.7

8 File Chooser Bug
1 1 2 2

100.0 100.0

9 Date Search Bug
3 3 4 3

85.7 100.0

Legend

true positive = estimated impact set ∩ changed set

true negative = estimated impact set ∪ changed set

false positive = estimated impact set - changed set

false negative = changed set - estimated impact set

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

6.2.1 Overestimate in Change 3

Change 3 included a super class extraction [23] from the class FileTable, a

large class with many clients and 6 suppliers. The programmer added all 6 suppliers to

122

the estimated impact set; however two of the suppliers were not impacted by the

prefactoring or by actualization. The programmer also included 4 classes in the

estimated impact set that were not impacted until postfactoring.

6.2.2 Overestimate in Change 6

The programmer added 3 classes to the estimated impact set that were not

impacted until postfactoring. The classes, SearchTermOption,

CaseSensitiveOption and AbstractTermOption handle the responsibility for the

search term; the programmer predicted these classes would be impacted during the

change. However, the details of the implementation were more complicated than he

thought. He attempted to keep actualization as simple as possible by incorporating 2

new classes that created code smells. Later, during postfactoring he combined the

responsibility impacting the 3 classes and removing the code smells.

6.2.3 Missed Impact in Change 7

An example of missed impact is in change 7 where programmer missed the

impact on 1 production class and several harness classes. The programmer reported

that clients and suppliers to the abstract class AbstractFile wouldn’t be impacted by

the change; AbstractFile interacted with 308 classes as identified by JRipples and

the programmer failed to inspect all of them.

The programmer had visited and used AbstractFile in other change requests

and became confident that he understood the class and its neighbors. However, during

change 7 it became apparent that the code did not work as the programmer believed.

The programmer was unfamiliar with the proxy design pattern [42]. The class

ProxyFile is a subclass of AbstractFile within that pattern and overrides all the

123

abstract methods of AbstractFile so that subclasses of ProxyFile can override

only those methods that are necessary to meet their specific responsibilities. A

programmer with knowledge of this design pattern would have visited ProxyFile and

added it to the estimated impact set.

6.2.4 Programmer Missteps

When a programmer does not include a class in the estimated impact set, it is

easy to assume a programmer misstep is the cause. One can appreciate that in

complex software even the most careful programmer can miss an impacted class. The

missed impact of change 7 (section 6.2.3) is an example that demonstrates three types

of programmer missteps.

The programmer was under a deadline and students must finish projects for

grades, so that they may graduate in time. The programmer could have visited all 308

neighbors of AbstractFile and identified the impact to ProxyFile; however, visiting

and analyzing all of the neighbors of AbstractFile would have been time consuming.

The programmer made the decision not to spend the time and move on. This is

acceptable under SIP, the programmer chooses when to stop one phase and move on

to the next. This is an area the programmer would like to see defined better (see section

6.7.3).

Additionally, the programmer’s reasons for not visiting all the neighbors of

AbstractFile also showed habitualization. He had visited and used AbstractFile

in other change requests and became confident that he understood the class. However,

during the change request it became apparent that the code did not work as the

programmer believed, leading to the addition of ProxyFile to the changed set. From

124

the experience obtained during the iteration the programmer believes habitualization

should be considered in future improvements to SIP.

Finally, the programmer was also unfamiliar with the design pattern proxy [42],

which ProxyFile implements. If the programmer had been more familiar with this

design pattern, he could have identified ProxyFile as a likely impacted class and

visited it.

The missed impact of change 7 is an example that includes all three types of

programmer missteps. If the programmer had not made all three of the missteps, he

could have identified ProxyFile and added it to the estimated impact set. This

suggests that a careful programmer with knowledge of the program and its technologies

is unlikely to leave classes out of the estimated impact set.

6.2.5 Harness Code Impact

The impact of a change on harness code was greater than the impact on

production code and was more difficult to predict. An example of this is in change 7. The

programmer performed a class extraction [23] that impacted 9 classes because a field

was extracted to the new class. Of the 9 classes, 1 was production code and 8 were

harness code. The production code class was limited to 1 class because the

programmer implemented a strategy design pattern [42] during change 5.

Refactoring specific to harness code was looked at in [45]. The paper describes

how to identify bad smells that are common to harness code. The programmer didn’t

have this knowledge during the iteration and did not follow many of their suggestions.

While these refactoring techniques would have resulted in better code, the programmer

does not believe they would resolve difficulty identifying impact to harness code

125

because he found harness classes often have many more class interactions than the

classes they test. A possible area of future work is to identify design patterns specifically

for harness code.

6.2.6 Exit Criteria

A perfect exit criterion would be to visit all the neighbors of the impacted and

propagating classes. However in the case of large neighbor sets, this is burdensome

and time consuming. An analogy is in testing which often allows less than 100 percent

coverage. Whenever the programmer concluded that more than 60 percent of the

impacted classes were inspected, he exited the impact analysis phase with the

conviction that the scope of prefactoring and actualization is sufficiently understood and

the quality of the SC will not be negatively impacted.

6.3 Actualization experience and overhead

The programmer did all of the types of actualization described previously (section

3.2.5). Change 8 simply changed a single production class by adding new methods and

deleting existing methods. Other changes, such as change 2 included the more

complex incorporations, like incorporation through replacement. In the programmer’s

experience the key to making actualization easier is prefactoring. Change 5

actualization (section 5.5) simply required modifying 1 production class and

incorporating 1 production class. This was because the programmer did an extensive

prefactoring. This contrasts with change 3 (section 5.3) where actualization was much

more difficult for the programmer. He did perform prefactoring, but limited it to 2 classes;

the code was not ready for the change. He then had to implement a workaround during

actualization and correct the code smells during postfactoring at a higher cost.

126

From a business point of view, actualization is the most important part of the

change because it is the only phase that adds to the value the user can see. For this

reason it is used as the business value of software. The other phases are only important

to the solo programmer and are considered overhead. If we consider the time spent

performing actualization plus actualization testing to be the cost of the increase in

business value then adding new business value took 49 hours and 43 minutes, see

Table 6.3, while the complete work on the iteration took 144 hours and 24 minutes, then

the overhead rate is approximately 66%.

Table 6.3 SIP Iteration timing (Hours:Minutes)

Change

Phase/Action 1 2 3 4 5 6 7 8 9 Total

Concept
Location

0:22 0:00 0:33 0:00 0:00 0:00 0:00 0:00 0:00 0:55

Impact
Analysis

2:08 2:28 3:23 1:26 1:02 0:55 0:38 0:00 0:00 12:00

Prefactoring 0:00 1:22 2:11 1:41 9:32 3:06 0:00 0:07 0:00 17:59

Prefactoring
Testing

0:00 2:43 0:07 0:41 2:53 0:55 0:00 0:09 0:00 7:28

Actualization 5:34 3:41 4:08 4:42 1:36 2:20 2:57 0:16 0:23 25:37

Actualization
Testing

5:02 1:52 6:42 3:34 0:49 2:36 2:32 0:37 0:22 24:06

Postfactoring 0:23 2:57 15:49 4:46 2:35 3:18 3:54 0:00 0:00 33:42

Postfactoring
Testing

0:12 7:34 5:34 1:28 1:19 2:08 4:22 0:00 0:00 22:37

Total 13:41 22:37 38:27 18:18 19:46 15:18 14:23 1:09 0:45 144:24

127

6.3.1 Exit Criteria

The programmer’s exit criterion for actualization was based on a quality of

implementation of the change request. The programmer determined that when all tests

(unit, functional and regression) passed the requirements had been met. The

programmer made sure that each part of the change request is tested, including both

valid and invalid inputs, and that the statement coverage of new or modified code is

close to 60 percent or more.

6.4 Refactoring Experience

Pre- and postfactoring have different purposes, but at their core they are both just

opportunities to refactor. In the programmer’s experience they are a good time to apply

design patterns to the code. At times he found it difficult to both implement the change

and apply a design pattern during actualization. Accounting for change propagation and

incorporating the new functionality was difficult enough.

The programmer applied a composite pattern [42] numerous times during both

refactoring phases. In prefactoring of change 2 (section 5.2) he extracted InputPanel

from SearchDialog to apply it. He then applied the pattern again during

postfactoring by extracting DirectoryPanel from InputPanel. From this experience

the programmer found both phases to be well adapted to applying patterns because the

design pattern implementation could be separated from the other programming

activities.

6.4.1 Prefactoring

During change 1 the programmer skipped prefactoring. In hindsight, he could

have extracted classes for the input and output panels that would have made the

128

change actualization easier. That was later remedied by prefactoring during change 2,

but at a higher cost because larger amount of code had to be moved.

This contrasts with the prefactoring phase of change 8. The programmer could

have skipped prefactoring here too, but a simple extract a method [23] prefactoring

made replacing one interface with another much easier. Overall, the programmer found

that aggressive prefactoring often makes the following actualization much easier.

6.4.2 Prefactoring Exit Criteria

The prefactoring was completed when the local structure of the code was

suitable for actualization. In particular, all large significant concepts involved in

actualization had a class of their own and for that, some classes were extracted from

other classes if necessary. If the planned actualization used polymorphism, the base

class was introduced by refactoring. If the planned actualization used a pattern

(composite) [42], the pattern was fully prefactored before actualization started.

6.4.3 Postfactoring

Impact analysis does not attempt to predict postfactoring; postfactoring involves

judging the new situation that arises after actualization, and sometimes may be skipped

entirely. At times it involves general clean-up that may include consequences of several

changes.

For example, the class InputPanel was added in change 2 and it added

responsibility during change 3, 4 and 5, making it large and difficult to understand. In

postfactoring after change 5, the programmer solved this accumulated problem by

extracting the class BasicOptionsPanels from InputPanel. It contained the GUI

components responsible for the search term, case sensitive and recursive search

129

inputs. InputPanel was left with the responsibility to assemble all of the panels

responsible for search input. After the class extraction both of the classes were

responsible for a single significant concept extension, making future changes easier.

6.4.4 Postfactoring Exit Criteria

Beck and Fowler used vaguely defined “bad smells” as the entry criterion for

refactoring and quoted Grandma Beck, “If it stinks, change it.” [22](p. 75). The

programmer reversed this vague adage into: “When it no longer stinks, stop.” More

specifically, the programmer used the following criterion: When each new code

construct has an identifier that explains its responsibility, all new or modified methods

deal with a single responsibility, and all new or modified classes implement a single

significant concept, then the postfactoring is done. The programmer used the LOC

metric as a guideline to identify artifacts likely to break these criteria; methods longer

than 10 LOC and classes longer than 100 LOC were scrutinized. However the

postfactoring was limited to the new or modified code and the programmer did not

attempt to refactor the rest of the muCommander.

6.5 Verification

There were 11 bugs introduced during the SIP iteration. Of these, 9 were fixed

immediately in the same change. No regression bugs were found in the intact code in

any of the changes, all bugs were introduced in the changing code. The programmer

added to the test harness a new unit test class for each new production code class, and

a functional tests for each new feature, such as date and extension searches.

130

6.6 SIP Exceptions

While SIP worked quite well for the programmer during the iteration, there were

some exceptions that didn’t neatly fit into the process. These exceptions to the process

while relativity minor suggest that SIP can be improved upon.

6.6.1 Changing Behavior during Refactoring

The programmer performed refactorings that changed the behavior of the

program. In change 3 postfactoring stage the programmer extracted the responsibility of

stopping the thread that is created to iterate through the file system from

SearchDialog to SearchThread. When the programmer did this he reworked the

code in a way that also improved the response time of stopping the search. After

actualization, there was a short delay, of about a second after pressing the “Stop”

button. When the programmer extracted the responsibility to stop the thread he also

added a method to ResultsPanel called notifyEnd() that SearchThread calls

when a search is stopped. This changed the behavior of the program. The programmer

justified this exception because of its small size (it added 1 LOC to SearchThread and

a 4 LOC method to ResultsPanel) and because the behavior change to the program

was small. However, it was an exception to SIP.

During the iteration there were several times when the programmer was not sure

if the modification he was doing is allowed during that phase or not. Additionally, even if

the programmer correctly separated refactoring and actualization, the programmer

found the strict separation of the two phases to be burdensome at times. He makes

suggestions to this issue in SIP criticism (section 6.9).

131

6.6.2 Additional Commits

The last exception is that the programmer committed the code to the repository

not just at the end of the change, but also after prefactoring and actualization. The

process only allows for the code to be committed at the conclusion of the change. This

may have forced the programmer to be more diligent separating refactoring from

actualization. If there was no record of the code in between phases programmers may

mix these phases changing the outcome of the process.

6.7 Proposed SIP Evolution

SIP served the programmer well during the iteration. The following section

describes possible improvements and times the programmer broke from the process.

6.7.1 Phase continuity has priority over concepts

The programmer found it artificial to separate the refactoring and actualization

stages. Changes often dealt with multiple concepts, such as GUI and data structure. In

these cases the he was tempted to do the three phases on each concept individually

instead of performing all the prefactoring, then all the actualization and finally all the

postfactoring. In the programmer’s experience it is easier to manage one concept at a

time.

An example is in change 2, the programmer extracted InputPanel to handle

the user input and SearchThread for the search algorithm during prefactoring. He then

added GUI components to InputPanel and replaced SearchThread with a more

capable class during actualization. Finally, during postfactoring he extracted 2 classes

from InputPanel and extracted misplaced responsibility to SearchThread. The

132

programmer felt it would have been easier to with each concept individually because

that is a more natural way for him to perform tasks.

A solution to this would be to have a cycle inside SC from the end of

postfactoring to the beginning of prefactoring. Since phases can be skipped a

programmer could do the necessary phases for each concept. A disadvantage is that

the program could be in a broken state at the end of a phase. Under the current process

the program is stable at the end of each phase.

6.7.2 Local and renaming refactoring during actualization

During the iteration the programmer was often temped to do local refactoring

during actualization, which is not allowed under SC. An example of local refactoring is

extracting a method. At times immediately after adding a method to a class, the

programmer would realize that the method had multiple responsibilities and should be

divided into 2 methods. However, under SC the programmer had to wait until

postfactoring to address this. This means that the programmer would either have to

remember or make a note to do the refactoring later. By putting it off until later the

programmer could forget to do it resulting in code decay or may have to study the code

again to accomplish it resulting in wasted time. The programmer found this to contrast

with the importance of refactoring. These types of refactoring should be allowed during

actualization.

The programmer found that sometimes the first name given to an identifier was

not the best name. Under SC he is required to wait until postfactoring to rename the

identifier. This makes renaming an identifier more difficult, which discourages it

effectively encouraging the programmer to allow code decay. In the past renaming was

133

problematic taking the programmer away from the subtask at hand, however, with the

current state of the art refactoring tools and unit testing tools available this is an

antiquated strategy. A programmer can now rename an identifier and be confident he

will not introduce bugs. Therefore, this type of refactoring should be allowed during

actualization.

6.7.3 Exit Criteria

During the iteration the programmer developed exit criteria based on his best

judgment because SC does not have a defined set of exit criteria. After the

programmer’s experience from the iteration, he believes that a formally defined set of

exit criteria for all phases to be a next step for SIP because it would help assure solo

programmers that they are correctly enacting the process.

6.7.4 Enactment Rules

The SIP process requires enactment rules. These rules are set by the

programmer and may vary from one project to the next. An example of one such rule is

that the 60 percent of the program’s new statements will have unit test coverage. The

areas where these rules are need should be identified and possible rules should be

written. One way to do this would be to have different levels such as low, medium and

high levels for each rule that a programmer can choose from.

6.8 SIP versus Ad hoc

Chapter 2 presented previous research on software research. It demonstrated

the idea that a well-defined process is required to produce quality software and it is

clearly well accepted in the field of software engineering. However, this idea is mostly

focused on teams producing software. A reasonable programmer may still ask the

134

question, “Why should a solo programmer use a defined process over ad hoc

methods?”

Humphrey wondered why it is so difficult to get programmers to adopt PSP in

spite of the evidence that they produced higher quality software faster [46]. The paper

continues by presenting methods that instructors can use to encourage the use of PSP.

This raises the question, “If there is so much evidence that PSP works and

programmers still do not want to use it, why force programmers?” This question is

answered by Humphrey in his personal experience using PSP, “The results were truly

amazing. I was more productive, the quality of my work improved sharply, and I could

make accurate personal plans.” (p. 3) Supplementary evidence of PSP’s effectiveness

is presented [11]. This case study showed programmer’s LOC per hour increased and

defect rates decreased when using PSP.

The underlying reasons that programmers should adopt PSP are the same

reasons programmers should use SIP; it will help them produce higher quality software

faster. By recording the time the individual phases of SC take, the programmer will be

able to predict how long similar phases will take in the future. Additionally, if a particular

phase consumes a large amount of a programmer’s time, he will be able to address it.

The programmer can change techniques, such as using a dependency search instead

of a grep search for concept location, through external training or by introducing

software tools to assist with the phase. An ad hoc programmer does not have this

information, so he cannot use previous phase times to make future estimates and

cannot target specific phases for improvement. Actually, the ad hoc programmer does

not even have defined phases, which would make reasonable guesses even more

135

difficult. Finally, a SIP programmer will know if his abilities are improving or deteriorating

over time allowing him to adjust for the volatility inherent in software engineering.

The SIP programmer in this experience report experienced similar results. One

specific example is the phase of prefactoring; as the programmer became more

experienced in SIP he was able to take better advantage of it. During change request 1

the programmer skipped prefactoring altogether. In hindsight he could have still used

RunDialog as a template, but also deleted unneeded code and extracted classes for

the input and output panels. This would have made the phase actualization easier. This

contrasts with the prefactoring phase of change request 8; which was a much smaller

change. The programmer could have skipped prefactoring here too, but a simple extract

method made replacing one interface with another much easier because the code was

ready for the change. Overall, the more the programmer became experienced with SIP,

the faster the change requests could be completed with fewer defects; even if he is not

required to, he will use SIP in his future programming projects.

6.9 Amount of Rework

A proponent of up-front software design can argue that SC requires significant

rework by producing temporary code that later gets discarded. The programmer

estimated the amount of rework in the SIP iteration using LOC granularity. The three

possibilities for each LOC changed during a change request are:

1. added - new to the program and therefore cannot be rework

2. moved - was in the wrong place, it is not rewritten, not rework

3. deleted or replaced

136

A LOC was deleted because it was replaced with better functionality or it was

never needed to begin with; we used this deleted code as an indicator of the amount of

rework. LOCs are organized by phase and rework is calculated as deleted LOC divided

by added LOC, see right column of Table 6.4.

While there was a significant rework during some individual phases, the average

amount of rework over the iteration was 27 percent. Boehm and Basili found that rework

accounted for 40 to 50 percent of a project [47]. While this one iteration of SIP is not

enough to draw the conclusion that SIP requires less rework than other processes, it

does indicate that SIP does not require significantly more rework than other software

processes.

These figures were collected by a program the programmer wrote for this

experience report. It compared diff files created by TortoiseMerge. A LOC with a ‘+’ as

the first character is an added LOC, similarly a LOC with a ‘-‘ as the first character is a

deleted LOC. The program then compared each deleted LOC to the set of added LOCs;

if it was in the added set, the LOC was removed from both the added and deleted sets

and it was added to the moved set. Additionally, this threat was not presented to the

programmer until after the programmer finished change request 7.

Table 6.4 Rework by Phase

Change
Request

Phase
Deleted
÷÷÷÷Added

1

Prefactoring 0.0%

Actualization 0.0%

Postfactoring 533.3%

2

Prefactoring 59.7%

Actualization 11.4%

Postfactoring 71.2%

3
Prefactoring 38.6%

Actualization 8.6%

137

Postfactoring 49.6%

4

Prefactoring 22.9%

Actualization 0.3%

Postfactoring 137.6%

5

Prefactoring 32.5%

Actualization 2.6%

Postfactoring 73.3%

6

Prefactoring 19.5%

Actualization 6.6%

Postfactoring 100.0%

7

Prefactoring 0.0%

Actualization 0.6%

Postfactoring 78.0%

8

Prefactoring 0.0%

Actualization 25.0%

Postfactoring 0.0%

9

Prefactoring 0.0%

Actualization 14.0%

Postfactoring 0.0%

Total 27.0%

6.10 Technologies

The programmer did not find collecting the data for the iteration to be overly

burdensome. He believes that the software engineering tools used during the iteration

made collecting the data easier; especially in the case of timing the phases. This

section describes the programmer’s experience with the software engineering tools

used during the iteration.

6.10.1 JRipples

The JRipples tool was especially useful during impact analysis. Certain classes

can have hundreds of neighbors and identifying all of them can be a tedious and time

138

consuming task. In this study, the programmer used it to identify classes that interact

with a class; without this tool, the action would be much more tedious and error prone.

While the programmer found JRipples to be very useful, he did find features that

would be valuable to add. Some of the features are trivial, while others may be difficult.

The most thought-provoking feature is to add the ability to tell the programmer when to

stop impact analysis. While much research has been done on impact analysis (section

2.2.1) there is not a well-defined set of exit criteria, so adding this to JRipples is not

straight forward.

During impact analysis the programmer ran into this problem, he didn’t know

when to stop impact analysis. This is especially true when a class had a large number

of neighbors and visiting them all was unpractical. For instance, during change 7

marking AbstractFile Impacted added 307 to the Next set of classes. This is too

many to effectively inspect. Even if he spent the time to visit all these classes, he

believed that the visits would have become so repetitive that he would have likely

missed potential impact. An analogy showing why a large set of neighbors is

unreasonable is from concept location; if a programmer performed a grep search and

was presented with hundreds of results he would probably revise his query. However, a

programmer doesn’t make queries during impact analysis; he visits the neighbors of

impacted and propagating classes.

JRipples has heuristic tools to identify the neighbors that are most likely to be

impacted. The analysis tools assign high values to the classes most likely to be

impacted and low values to those less likely to be impacted. It has different algorithms

to assign these values and it could be useful to a programmer. The programmer didn’t

139

use these tools, which could have helped. However, these tools still wouldn’t answer the

fundamental question, “When do I stop impact analysis?” The tools give all neighbors a

value, if the programmer chooses a value and only inspected all classes with higher

values; it would be arbitrary and fundamentally not any better than letting the

programmer choose when to end impact analysis. More research needs to be done on

identifying a stop point for impact analysis.

This presents an aspect of muCommander for evaluation; there are classes that

have a large percentage of the classes of the program as neighbors. AbstractFile

has over 300 neighbors, which is more than 25 percent of the program others such as

ActionManager have more than 10 percent of the classes as neighbors. The classes

are reused instead of being duplicated, which is good, but impact analysis becomes

difficult. It is easy to argue that a file system explorer that mainly displays and

manipulates files will have class that is extensively used throughout the program.

However, in the case of ActionManager, it is less clear if it is necessary for it to

interact with so many other classes. ActionManager implements a factory design

pattern that in part limits the impact of changes; however, it has a deficiency that makes

impact analysis difficult. Its implementation requires that classes to add code to

ActionManager to register their action. If ActionManager had the ability to find the

action classes, it would have fewer neighbors, making impact analysis seem easier, but

this would also create hidden dependencies making impact analysis difficult in a

different way. Further research into how design patterns affect impact analysis is

needed.

140

Another change request for JRipples is to improve the filter. JRipples has a filter

to show children and parents of a class. However, it was unclear to the user exactly how

the filter defined the parent and child of a class. The programmer would rather have an

option in the right click context menu that shows only the classes that interact with a

selected class. Currently if a programmer marks a class as Propagating in JRipples, the

classes that interact with that class will be marked Next and added to the set of Next

classes. When the programmer marked a class as Propagating he wanted to visit only

the classes that interact with the propagating class, however he found it difficult to

identify which classes interact with the propagating class with JRipples.

JRipples also has a serious bug that needs to be addressed. The Hierarchical

view, which displays classes, their fields and methods, is extremely slow to sort. It is so

slow that is it unusable on a project the size of muCommander. It can be used with

small projects and faster computers could probably handle larger programs than slower

machines. The table view, which only displays classes, does not appear to suffer from

this deficiency. However, the hierarchical view is default view, so this bug is one of the

first impressions JRipples gives to the users.

The last change is to save the state of JRipples when Eclipse closes. Currently,

the programmer must remember to save the current JRipples state before exiting

Eclipse. On the next startup the programmer must then reload the correct state from a

JRipples menu. This contradicts many other plugins that automatically save their states

when Eclipse exits. On several occasions the programmer forgot do this and lost the

information gathered in his programming session. Additionally, it should regularly save

141

the state in the background in case of a program crash. This change request may be of

little research interest, but is very important from a usability standpoint.

6.10.2 Clover Java Code Coverage & Test Optimization

The programmer used Clover to collect the statement level test coverage for the

project. It performed well; Clover included total statements and percent of statements

covered from the entire program to method granularity. It also highlights the statements

executed in green and those not executed in red. Clover also allows the user to create

custom metrics based on the standard metrics. The programmer created a metric

containing the number of statements covered that helped him with reports.

The one problem the programmer had with Clover is that if it is used with the

Eclipse debugger, it adds an extra call to a method in one of its classes for every

statement. This made debugging very slow and difficult. The issue is compounded

because once Clover is enabled on a project, the project must be run with it. This

appears to be a bug because it adds an option to run projects with it. This implies that

the Eclipse basic run should be without Clover, but it includes Clover.

6.10.3 Mylyn & Tasktop

Mylyn and Tasktop worked very well. The programmer found the interface to log

timing data for different phases to be very easy. It has a feature that pauses the timer if

the Eclipse window is not the active one. The programmer found this very useful, he

could respond to an email without having to manually pause the timer without corrupting

it.

142

6.10.4 Abbot Java GUI Test Framework

Abbot was easy for the programmer to use after the first 2 changes. The

functional tests are written very similar to JUnit tests. The built in robot test classes are

easy to work with; there are specific classes for the Swing library classes. Overall Abbot

worked well for the programmer, but he did run into a few issues, which lead to change

requests.

The first issue was that the tests run much slower than unit tests, instead of a

fraction of a second, many took over a second. This is not just an issue of setup

overhead because some of the unit tests also required a similar amount of setup. It is in

part because Abbot does not support a onetime setup method for an entire test suite; if

numerous objects must be created, they must be created for each test in the suite.

These issues lead to 2 change requests, one to do an optimization of Abbot and the

second to add the capability for a onetime setup method like in JUnit.

A related issue was that the tests were inconsistent, which seemed to be caused

by the excessive use of resources. When tests classes were run individually, they would

pass without problem. When all the tests in the project were run, at times they would

pass and others they wouldn’t. The error given was usually that Abbot couldn’t find the

GUI component. Rerunning the tests was one workaround. Another was to add a delay

to the test, but this would slow the test even more and may not work if the tests are run

on other computers. This should be addressed with the optimization change.

The last issue was that Abbot was not able to find some modified Swing

components. An example of this is the ComponentTitledBorder class it adds Swing

components to a border. This class did not have a specific Abbot tester and the existing

143

Abbot tester could not find the component in the border. The programmer created a

workaround, based on the components coordinates, but they could fail on other

computers. The programmer would like more documentation on how to write general

custom testers.

6.10.5 Subversion & TortoiseSVN

Subversion and TortoiseSVN meet all the version control system needs of the

programmer.

6.10.6 DiffStats

The programmer created DiffStats because he was unable to find a diff tool that

could provide the metrics he required. He found a variety of diff tools that could visually

show the user added, deleted and changed LOC in a single file. However, these tools

didn’t provide LOC totals for the categories. This tool analysis is very simple and should

be expanded and refined for future use.

6.11 Threats to Validity

This experience report contains data from one iteration of SIP, done by a specific

programmer in a specific program. Further research is recommended before concluding

that the results apply in general. Transferring this experience to other contexts should

be done with caution.

In particular the programmer that performed the iteration may be a subject that is

particularly susceptible to adopting SIP. He had written a variety of programs in a

university setting, which made him familiar with many aspects of programming such as

object-oriented technology, design patterns and data structures. However, when

introduced to SIP he did not have the skills to perform changes to large unfamiliar

144

programs. If the programmer had been less knowledgeable, he may not have been able

to successfully perform a SIP iteration at all. Likewise, if the programmer already was

able to make changes on large programs he was unfamiliar with, he may have found

SIP inadequate.

The program selected may also have contributed to the success of the

experience report. The program used was in a state that was ready for SC. Programs

can suffer from code decay to the point where it is impossible to perform SC on them

[1]. If a program was used that was closer to the point where SC was impossible, the

programmer may not have been successful.

Another threat is that SIP does not require, nor exclude any particular software

tools. This experience report used a variety of tools. One or all of these may be required

for a successful SIP iteration. In particular, the programmer is unsure how he could

have performed impact analysis without JRipples. Identifying neighbors of classes

would have been difficult and the iteration may have failed. The other tools may have

been just as integral to the SIP iteration.

Finally, the SIP iteration was done in a university setting with a professor and a

peer standing in for users. These users have different motivations than users of

commercial, open source and other users of software. These other types of users are

almost certainly more common than a professor and a peer. While SIP meet the needs

of these users, it is possible that it would not meet the needs of other users.

145

Chapter 7

Future Work and Conclusions
7.1 Future Work

This chapter presents issues and questions raised during the iteration that

require more study and then presents the conclusions of the experience report.

7.1.1 Level of adoption Study

The SC process at the core of SIP has been taught by Dr. Rajlich at Wayne State

University for several years. An interesting follow up study would be to see if students

continue to use the SC process in their future classes or professional careers. Johnson,

et al. looked into the adoption of PSP (section 2.1.3) they found no studies into adoption

rates, but reported that,

…anecdotal evidence does not support the second conjecture [that
a student will use PSP when not required in a classroom setting]. For
example, a report on a workshop of PSP instructors reveals that in one
course of 78 students, 72 of them “abandoned” the PSP because they felt
“it would impose an excessively strict process on them and that the extra
work would not pay off.” [48](p. 2)

This would indicate that a study into the adoption rates of both SC and PSP could

provide valuable insight. The SC process is a less invasive process for programmers to

implement. However, PSP provides tailored metrics to each programmer showing its

value. Measuring the adoption rate would be a real validation of each processes’ value,

beyond the classroom.

 An adoption rate comparison would also provide valuable information to the

developers of future software processes. If SIP and the SC process is adopter by

programmers at a significantly greater rate, future processes should take this into

account. Conversely, if PSP is adopted at a higher rate by programmers after they are

146

no longer required to use it, the metrics convincing the programmer of its value

outweigh the cost of the process. If both processes are adopted at a low rate, then new

ideas could be considered.

7.1.2 Team Processes Research

In addition to SIP Rajlich also defined team processes [1]. These processes

include the Agile Iterative Process (AIP) for small teams of programmers and the

Directed Iterative Process (DIP) and Centralized Iterative Process (CIP) for large teams.

Performing an experience report or case study to confirm these processes would be

one next logical step. AIP appears to be a reasonable candidate for a group of students

in a university setting such as a classroom or for a research project. DIP is more suited

to a case study in an industrial setting; a suitable candidate may be difficult to identify

though. A case study of CIP could be performed on an open source project. A team of

students could be the managers and code owners with the open source project’s

community serving as the programmers and testers. A possible open source project is

JRipples. An advantage to this is that it would also improve JRipples making the phases

of the SC process easier. However, JRipples may not have a large enough community

for the case study. Another problem for this case study would be assuring that the open

source community used the SC process to implement the change requests. The code

owners could require the timing data and other metrics with each commit, but it would

still be difficult to know for certain.

7.2 Conclusion

This thesis shows that SIP can be followed literally and used by a single

programmer to add functionality to large open source software. A single programmer

147

who had university experience in programming, limited experience in Java programming

and was unfamiliar with the muCommander project was able to add functionality to it

using SIP.

The core of SIP is the task of SC. It was used in this experience report as an

instructional framework to add functionality to a large open source program. The new

functionality is shown to have a low number of defects through testing. Additionally, if

the functionality added in this experience report does not meet the requirements of the

stakeholders for any number of reasons, SIP has a mechanism in place to meet the

requirements; new change requests can be added to the product backlog at any time.

Further iterations of SIP could add to the functionality of this experience report, change

it or remove it completely as the stakeholders require. New change requests also

provide a method to fix any defects found in the future. This is important since testing

cannot guarantee the absence of defects [1]. This demonstrates how a solo

programmer can use SIP to meet the project’s needs and goals.

148

APPENDIX A.

SIP – Change 1 Basic Search

This appendix contains the change reports summarize in chapter 5. The

programmer of this experience report filed after each change request.

A.1.1 Initiation

Add a basic search function that allows a user to search in the current directory

for all or part of the title of a folder or file, and return a list of the matching files and

directories It is an application which enhances an operating system’s file explorer.

However, it does not have any search capabilities, which would help a user find files,

folders or contents of files.

This change request will add a basic search function. The search will allow a

user to search in the current folder for all or part of the title of a folder or file. It will return

a list of the matching files and folders.

The search functionality can be activated in three different ways. First the user

can use the programs menu to select Go → Search..., second the user can select a

binocular icon on the quick launch toolbar, finally, the user can use a hot or virtual key

combination of Ctrl + F. All three options open a new window where the user can type

search terms and start a search. The window will also display the list of results, if any.

A.1.2 Concept Location

The concept location to find is the muCommander “Go” menu where the option

will be added to initiate a search. The programmer started a dependency search by

marking the Launcher class, which contains the program’s main method as propagating.

149

JRipples added 43 neighbors of Launcher to the set of Next code files. Since the

programmer did not know anything about the program, he decided to visit them one by

one. AbstractFile, AbstractNotifier and ActionKeymapIO were visited and

marked Unchanged. The programmer then visited ActionManager this file contains a

library of all the possible actions in the program. It is used as a central location to keep

all the possible actions of the program organized. Upon inspection, the programmer

realized that this was where the search functionality would be added, the “Go” menu

would be part of the impact analysis. This completed concept location. Table

A.1summarizes the concept location code file totals and Table A.2 lists the code files

visited during concept location. Figure A.1 is a UML diagram of concept location.

 Table A.1 Change 1 Concept Location Summary

Title Code Files Comments

Visited Propagating Unchanged

Basic Search 5 1 3

 Table A.2 Change 1 Concept Location Code Files Visited

Code File Tool used Located? Comments

1 Launcher JRipples →
Propagating

Propagating This is the main start location
for the program

2 AbstractFile JRipples →
Unchanged

Unchanged This class is used by
muCommander to store data
about files

3 AbstractNotifier JRipples →
Unchanged

Unchanged This class displays user
notifications

4 ActionKeymapIO JRipples →
Unchanged

Unchanged This class read user defined
keyboard commands or hot
keys

5 ActionManager JRipples →
Located

Located This class is where all the
concepts of the program are
registered

150

+main() : void

Launcher

ActionManager

AbstractFile

AbstractNotifier

ActionKeymapIO

Unchanged Propagating

Harness

ProductionLocatedLegend

Association

Aggregation

Generalization

 Figure A.1 Change 1 Concept Location UML

A.1.3 Impact Analysis

To start impact analysis the programmer switched JRipples from concept location

phase to impact analysis phase. This changed ActionManager’s mark from Located

to Impacted and created a new Next set of code files composed of 172 of

ActionManager’s neighbors. Since the programmer was unfamiliar with the

ActionManager, he visited the 6 likely clients and suppliers of ActionManager

because their names started with Action. The programmer marked these 6 code files,

ActionDescriptor, ActionFactory, ActionKeyMap, ActionKeyMapReader,

ActionParameters and ActionProperties Unchanged.

The programmer gained knowledge from these visits and decided to concentrate

further impact analysis on finding the menus where the options to open a search

window would be added. He visited CommandBar and CommandBarButton and

marked them Unchanged, they did not handle the menu responsibility. The next visit

151

was to MainMenuBar, which is responsible for the “Go” menu where the search option

would be added, it was marked as Impacted. JRipples added its neighbors to the Next

set of code files for a current total of 194. The programmer continued looking for the

class responsible for the toolbar, which will also get a search option. During this search

he noticed the NewWindowAction code file marked Next and visited it because its

name sounded like it may be relevant. It did not need to be changed and so he marked

it Unchanged. He then visited RunCommandAction for the same reason but also

marked in Unchanged.

The programmer then found ToolBar in the list of Next code files and visited it.

It did contain the responsibility for adding buttons, but it depends on a supplier to define

the buttons; it was marked as Propagating. ToolBarAttributes was visited next; it is

responsible for defining the toolbar buttons, so the programmer marked it Impacted.

The programmer still was not sure how to access files to search them. He visited

FileTable from the Next set, it did not contain a method to access the files displayed

in it. The programmer suspected its field of type FileTableModel would, so he

marked it as Propagating. FileTableModel was added to the set of Next code files by

JRipples, which now totaled 241. It contained the necessary methods to access the files

to search so it was marked as Unchanged. At the point FileTable should be marked

Unchanged because it does not propagate to an impacted class, but JRipples does not

allow this.

The programmer performed one final task, because he was unfamiliar with the

code conventions of muCommander, he visited the code file RunDialog and marked it

Unchanged. The programmer chose RunDialog because it was part of the Next set

152

and it had dialog in the name. He will use it during actualization; the new class that will

handle the responsibility of creating a dialog for the search will be modeled after it. The

programmer stopped impact analysis because the he determined the impact of the

change would not propagate further; there were 240 code files in the Next set that were

not visited. Table A.3 is a summary of the code files visited during impact analysis.

Table A.4 shows the total of each type of code file during impact analysis. Figure A.2 is

a UML diagram of impact analysis.

 Table A.3 Change 1 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Basic
Search

17 3 1 13 240

 Table A.4 Change 1 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 ActionManager JRipples →
Impacted

Impacted This class registers all
actions in the program

2 ActionDescriptor JRipples →
Unchanged

Unchanged

3 ActionFactory JRipples →
Unchanged

Unchanged

4 ActionKeyMap JRipples →
Unchanged

Unchanged Thought this class might
register hot keys but it does
not register them in the
code

5 ActionKeyMapReade

r

JRipples →
Unchanged

Unchanged Thought this class might
register hot keys but it does
not register them in the
code

6 ActionParameters JRipples →
Unchanged

Unchanged

7 ActionProperties JRipples →
Unchanged

Unchanged

153

8 CommandBar JRipples →
Unchanged

Unchanged Not the toolbar I am looking
for

9 CommandBarButton JRipples →
Unchanged

Unchanged Not the toolbar I am looking
for

10 MainMenuBar JRipples →
Impacted

Impacted This toolbar has the Go
menu

11 NewWindowAction JRipples →
Unchanged

Unchanged

12 RunCommandAction JRipples →
Unchanged

Unchanged

13 ToolBar JRipples →
Propagating

Propagating This is the quick launch
toolbar

14 ToolBarAttributes JRipples →
Impacted

Impacted This is the class that loads
the icons for the quick
launch toolbar

15 FileTable JRipples →
Unchanged

Unchanged This was marked as
Propagating, but the path
was found not to be
Impacted. The data was
never undone in JRipples, it
is incorrectly marked..

16 FileTableModel JRipples →
Unchanged

Unchanged This class will be used for
the search feature, but it
does not need to be
changed, its interface can
be used as is

17 RunDialog JRipples →
Unchanged

Unchanged This class will be the model
for a new class responsible
for the search

154

ActionManager

MainMenuBar

ToolBar

ToolBarAttributes FileTableModel

FileTable

ActionDescriptor

ActionFactoryCommandBar

ActionKeyMap

CommandBarButton

ActionKeyMapReader

NewWindowAction

ActionParameters

RunCommandAction

ActionProperties

RunDialog

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

 Figure A.2 Change 1 Impact Analysis UML

A.1.4 Prefactoring

There was no prefactoring done in this change request.

A.1.5 Actualization

To actualize the change request the existing ActionManager class required 3

new classes to register a new action. These classes are defined in 1 code file; 2 of the

155

classes are nested inside the third. The programmer added a new supplier code file,

SearchAction through incorporation. It contains a class also called SearchAction

with 2 nested classes inside of it called Factory and Descriptor, which return attributes

of the action as required by ActionManager.

The second code file, SearchDialog, contains a single class. It creates a new

window that contains components for the search criteria to be entered and a list of

results displayed. This class was based upon an existing muCommander class,

RunDialog, which also opens a new window for user input. It was used so that the

code’s current naming conventions and styles could be followed. This way the change

request will blend in with the existing code.

The programmer encountered a problem while adding the harness code files.

The tests would throw an exception because the singleton Translator class was not

initialized, the translator needs to be loaded by each harness code file in its

oneTimeSetUp() method. This caused another problem, if 2 harness code files were

run at the same time they both would initialize the Translator. To correct for this the

programmer add a boolean field, isLoaded. The field is initialized to false and then

set to true when the Translator is initialized. The programmer did not realize this

would be an issue during impact analysis. The Translator code file was added to the

changed set

Two additional code files were added for the purpose of verification; 1 class for

unit testing, BasicSearchUnitTest and 1 for functional testing,

BasicSearchFuncTest. These classes will be described in verification (section

A.1.7). The total of each class by type of visit is listed in Table A.5. Table A.6 is a

156

summary of the changes made to each class during actualization and the LOC added

and deleted. Figure A.3 is a UML of actualization.

Since there is no search feature in the current program, there was no package

that the new search feature fit into. Therefore, the programmer added a new package

org.severe.main.ui.SearchDialog to hold the new code files.

 Table A.5 Change 1 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Basic
Search

8 4 4 1 3 1

 Table A.6 Change 1 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchAction Added class 28 0 28

2 SearchDialog Added class 209 0 209

3 MainMenuBar Changed method 3 0 3

4 ToolBarAttributes Changed method 2 0 2

5 ActionManager Changed method 2 1 3

6 Translator Added field, method 3 0 3

7 BasicSearchUnitTest Added test class 92 0 92

8 BasicSearchFuncTest Added test class 104 0 104

157

 Figure A.3 Change 1 Actualization UML

A.1.5.1 SearchAction code file

SearchAction is a class that requires a few simple methods that return

parameters so the ActionManager class can register what to do upon certain events.

All these methods and the Factory class must be defined, but if a parameter does not

apply to the registered class, it can just return null. SearchAction has 2 nested

classes, Factory and Descriptor.

The Factory class is a static class that actually creates an instance of the

SearchAction class and registers it with the MainFrame window. It only contains a

constructor that calls the SearchAction constructor. The program uses a factory

pattern of static classes inside of a class to create the class instead of calling the

158

constructor of the class directly. It appears the development team does this to keep

track of class instances so they are not created repeatedly. The Descriptor class is

also static and contains the parameters for the class. The class also registers a hot key.

A.1.5.2 SearchDialog class

The SearchDialog class was modeled on the RunDialog class. The

programmer did this because both of the classes create a new window; this allowed the

new code to blend with the existing code. RunDialog takes a text command and

creates a new process to execute the command, then reports back any error messages;

SearchDialog gets the current folder that the user has selected in its parent window

and searches it. While they do both create a window to get user information from the

user, their functionality ends there, so they are very different classes.

A.1.5.3 MainMenuBar class

The programmer added a separator bar and the Search selection to the

MainMenuBar method. Additionally the added code was limited to the Go menu section

of the method.

A.1.5.4 ToolBarAttributes class

The ToolBarAttributes class actualization was very similar to the

MainMenuBar actualization. They both define toolbars through which the user can

select specific functionality. Because, a search feature is probably an often used

feature, it was added to the quick launch toolbar defined in the ToolBarAttributes;

this allows the user to open the search window with a single mouse click.

To modify this class only 2 LOCs need to be added to the method that adds the

toolbar icons. To make this work, an image of the icon was added to the

159

custom\images.action folder named Search.png. This was done quickly because of

previous Java programming experience. The methods of software evolution do not

provide strategies to do this.

A.1.5.5 ActionManager class

This class is set up so that it only requires 1 LOC to be added to register a new

action. The single LOC calls the 2 static classes from the SearchAction class. The

change is done to the registerActions() method; all actions are listed in

alphabetical order.

A.1.5.6 Translator class

The programmer added a boolean field, isLoaded which is initialized to false

by default and a getter for it. The loadDictionaryFile() method sets the

isLoaded field to true, so that the method will not be called again.

A.1.5.7 BasicSearchUnitTest class

This class was added, it is the unit test suite for the search classes; it has 5 tests.

A.1.5.8 BasicSearchFuncTest class

This class is a functional test suite for searches; it has 1 test. There is an issue

with this test class. It passes it assertions, but stops before it finishes. It then displays a

gray result, instead of the desired green or test fail red. This harness class uses the

Abbot functional test framework. The programmer is unfamiliar with the framework and

is therefore unsure the cause of the problem. The programmer decided to complete the

change and correct the issue at a later date.

160

A.1.6 Postfactoring

The postfactoring was very straight forward. Old comments were deleted and

new comments added. Additionally, 2 unused methods were deleted. The total of each

class by type of visit is listed in Table A.7. Table A.8 is a summary of the refactoring

type and LOC added and deleted during postfactoring. Figure A.4 is a UML of

postfactoring.

 Table A.7 Change 1 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Basic
Search

3 2 0 0 1 0

 Table A.8 Change 1 Postfactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchDialog Javadoc 1 17 18

2 BasicSearchFuncTest Removed unused code 3 0 3

 Figure A.4 Change 1 Postfactoring UML

A.1.6.1 SearchDialog class

The programmer updated the Javadoc of this class.

161

A.1.6.2 BasicSearchFuncTest class

This class uses the Java robot to automate functional tests. The robot can run so

fast that the programmer cannot tell what the test is doing, to assist with actualization,

the programmer added delays to the test. Those delays were removed during

postfactoring.

A.1.7 Verification

Functional and Unit testing was added to the code for the new search

functionality. During verification no bugs were found. This is most likely due to the

simple nature of the request. There is an issue with the single functional test in

BasicSearchFuncTest. It runs and passes its assertions but ends displaying a gray

or unfinished result. The programmer was unfamiliar with the Abbot GUI Test

Framework and decided to address this issue in a future changes. Verification was time

consuming; however, because the programmer was unfamiliar with testing in Java.

Coverage for each production code file is available in Table A.9.

 Table A.9 Change 1 Statement Verification

 # Code File

Coverage of Application
Tests

Failed

Bugs

Found
Total

Statements

Covered

Statements
%

1 SearchAction 7 7 100.0 0 0

2 SearchDialog 100 87 87.0 0 0

3 MainMenuBar 259 155 59.8 0 0

4 ToolBarAttributes 33 3 9.1 0 0

5 ActionManager 205 187 91.2 0 0

6 Translator 146 69 47.3 0 0

162

A.1.8 Timing

The Google Desktop Gadget, Task List and Timer worked very well for the first

part of the Feature Request. It is a very simple tool that worked well and came with the

added benefit of also having a note pad. Unfortunately, it developed an issue after using

it for a while. When a task is closed out it is erased immediately and cannot be saved.

So all tasked must be paused and left open or the data will be lost. For this reason, the

programmer will try Mylyn with Tasktop, a tool for Eclipse during the next change

request. Table A.10 contains the timing data for the change.

 Table A.10 Change 1 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:22

Impact Analysis 2:08

Prefactoring 0:00

Prefactoring Testing 0:00

Actualization 5:34

Actualization Testing 5:02

Postfactoring 0:23

Postfactoring Testing 0:12

A.1.9 Conclusions

The basic search function is complete. The feature is very simple and it is likely

that it will not have enough functionality for many users. It is a good start for a fully

functional search feature.

Table A.11lists the totals for each set of code files for each change request of

this iteration to date. The current state of the product backlog is in Table A.12. Figure

163

A.5 to Figure A.7 are screen shots of muCommander showing the change request

functionality.

 Table A.11 Change 1 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

Table A.12 Change 1 Current Product Backlog

Title Complete User Story

1 Basic
Search

x
Add a basic search function that allows a user to search in
the current directory for all or part of the title of a folder or
file, and return a list of the matching files and directories.

2 Recursive
Search

Add the ability to search inside all directories.

3 Advanced
Output

Change the output to a table similar to the main
muCommander window.

4 Date
Search

Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6 Extension
Search

Add the ability to search for files with specific extensions.

7 Properties
Search

Add options to search for files based on their properties.

8 Size
Search

Add the ability to search for a file by its size.

9
Regular

Expression
Search

Add capability to search by a regular expression.

10 Lucene
Search

Incorporate the Apache Lucene search.

164

 Figure A.5 muCommander with search window

 Figure A.6 muCommander Toolbar with Search icon circled

165

 Figure A.7 Basic Search Feature window

SIP – Change 2 Recursive search

A.2.1 Initiation

Add the ability to search inside all directories. The program muCommander is an

application which enhances an operating systems file explorer. During the first change

request, basic search capabilities were added which helps a user find files in a specific

directory.

This change request will add recursive search features to the basic search

functionality. The search feature will now have the ability to recursively search the file

system, commonly known as searching in subdirectories or searching in subfolders.

When the search window opens, it will have the current directory entered as a default,

which is basically what the basic search did; however, now the user will also be able to

166

type in a new directory or use a standard GUI window to open any directory in the file

system. There is also error checking with messages to help the user select a valid

directory to search in.

Finally, an option was added to allow the user to stop the search before it

completes and display the partial results. This option is needed for searches in

directories that have a large number of directories and files.

A.2.2 Concept Location

The programmer identified the search algorithm as the significant concept

extension. No concept location was necessary because he just implement it in change

request 1 and knew it was located in SearchDialog. Table A.13 contains a summary

of the number of each type of class.

 Table A.13 Change 2 Concept Location summary

Title Code Files Comments

Visited Propagating Unchanged

Recursive
search

0 0 0 Concept located in
SearchDialog class

.

A.2.3 Impact Analysis

The concept location was found in SearchDialog and was labeled as impacted

by JRipples. When visiting a class during impact analysis, it was evaluated to see if it

would be impacted by the following tasks:

1 – Adding an input box so that the user may specify the directory to search in.

2 – A procedure to provide a way for the user to browse the file system.

3 – Adding error checking techniques to alert the user to the incorrect directory

and to stop a search that may cause unintended issues.

167

4 – A way to choose to search in the subdirectories of the search directory

5 – Display the entire path of each result to the user in the output area

Only the SearchDialog class itself and its test classes were found to be

impacted. There were no propagations. The SearchDialog was created in the first

change request of this project. It allowed very basic search functionality. It was just a

way to add search functionality to muCommander without the change becoming very

large and unmanageable. As such, SearchDialog needs some changes performed on

it to build it into something that has real value to a user. A UML diagram of all the

dependencies listed by JRipples is in Figure A.8.

The estimated impact set contains the SearchDialog test class and its test

classes, BasicSearchUnitTest and BasicSearchFuncTest. The number of code

files analyzed and their counts are provided in Table A.14. Table A.15 shows the code

files visited during impact analysis.

 Table A.14 Change 2 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Recursive
search

19 3 0 16
Recursive

search

 Table A.15 Change 2 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 SearchDialog JRipples →
Impacted

Impacted This class contains the
current search capability.

2 BasicSearchUnitTest JRipples →
Impacted

Impacted Test class will have to be
updated.

3 BasicSearchFuncTes JRipples →
Impacted

Impacted Test class will have to be
updated.

4 AbstractFile JRipples → Unchanged This is the class with the
information on the file

168

Unchanged system.

5 ActionProperties JRipples →
Unchanged

Unchanged This class is part of the
system that manages

actions.

6 DialogToolKit JRipples →
Unchanged

Unchanged This class helps create
windows in

muCommander look and
feel.

7 FileSet JRipples →
Unchanged

Unchanged This class is a container
that holds files.

8 FileTable JRipples →
Unchanged

Unchanged This class works with
FileTableModel to display

a directories contents.

9 FileTableModel JRipples →
Unchanged

Unchanged This class works with
FileTable to display a
directories contents.

10 FocusDialog JRipples →
Unchanged

Unchanged This class adds to the
basic Swing component

JDialog functionality

11 MainFrame JRipples →
Unchanged

Unchanged This class creates the
main window the user

sees when muCommander
is started.

12 SearchAction JRipples →
Unchanged

Unchanged This registers the
SearchDialog class with

muCommander

13 SpinningDial JRipples →
Unchanged

Unchanged This class is a GUI
component.

14 Theme JRipples →
Unchanged

Unchanged The Theme classes help
keep the GUI

componenets consistent
throughout

muCommander.

15 ThemeData JRipples →
Unchanged

Unchanged

16 ThemeManager JRipples →
Unchanged

Unchanged

17 Translator JRipples →
Unchanged

Unchanged This class contains
different languages for

GUI components.

169

18 XBoxPanel JRipples →
Unchanged

Unchanged This class helps create
GUI components in

muCommander look and
feel.

19 YboxPanel JRipples →
Unchanged

Unchanged This class helps create
GUI components in

muCommander look and
feel.

SearchDialog

FocusDialog SearchActionThemeManagerThemeData

MainFrameFileTableModel

Theme

FileTable Translator

ActionProperties

DialogToolKit

BasicSearchFuncTest

BasicSearchUnitTestAbstractFileFileSet

YBoxPanel

SpinningDial

XBoxPanel

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

 Figure A.8 Change 2 Impact Analysis UML

A.2.4 Prefactoring

In preparation for the implementation of this change request, the programmer

extracted 2 classes from SearchDialog; which contained the entire search

functionality. One class extracted formSearchDialog, SearchThread, was to

170

remove the logic of the search and another, InputPanel, was extracted to remove the

GUI features displayed in the top half of the dialog. SearchDialog contained as much

responsibility as it reasonably could, this will allow those features to grow during this

change without any one class becoming cumbersome. Also, by separating the search

logic from the GUI components, it will be possible to have the logic run in a separate

thread. This way the GUI can still respond to user input while the search is being run.

The programmer also extracted 2 test classes from BasicSearchUnitTest.

The first, SearchThreadTest contains the tests for SearchThread and the second

InputPanelTest contains the tests for InputPanel.

The programmer modified the ShutdownHook class so that the functional tests

could be extended. This class was not identified during impact analysis. During

regression testing the programmer realized that the issue with the functional test, which

is it would pass its assertions, but display a gray instead of green color, was that

somewhere a System.exit() call was being made and this was stopping JUnit from

completing the test. The programmer did a grep search and found that only the classes

Launcher and ShutdownHook contained this call. Launcher only made the call, if the

program could not be started, so a method was added to ShutdownHook to allow the

program to be shut down without calling System.exit(). The functional test then

passed. This increased the change set to 4 classes.

A table with the count of each type of class is in Table A.16. Additionally, a

summary of each refactored class is in Table A.17. A UML showing the significant

relationships of this refactoring is in Figure A.9.

171

 Table A.16 Change 2 Prefactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Recursive
search

4 4 4 0 0 1

 Table A.17 Change 2 Prefactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchThread Extracted class 16 0 16

2 InputPanel Extracted class 39 0 39

3 SearchDialog Extracted class from 33 101 134

4 SearchThreadTest Extracted class 75 0 75

5 InputPanelTest Extracted class 49 0 49

6 BasicSearchUnitTest
Renamed class & Classes extracted

from
51 48 99

7 BasicSearchFuncTest Extracted method 46 73 119

8 ShutdownHook Changed & modified method 7 1 8

 Figure A.9 Change 2 Prefactoring UML

172

A.2.4.1 SearchThread class

The class extraction consisted of moving the part of the searchCommand()

method that searches the file system, to the new class. Eight LOCs were removed from

the original 49 line method searchCommand() in SearchDialog. The method was

then refactored again to inline variables. It is now 10 LOCs and is the only method in

SearchThread.

A.2.4.2 InputPanel class

This class extraction consisted of moving the createInputArea() method

from SearchDialog and its 14 LOCs to a new class that inherits from the return type,

XBoxPanel of the method. Getters for the GUI input box were also needed for

SearchDialog’s searchCommand() method. A new data member of type

InputPanel, named inputPanel was added to SearchDialog. It was then

initialized in the SearchDialog constructor. The data member inputBox was also

moved to InputPanel, so getters were substituted for it. The class has 5 methods, 1 is

for testing.

A.2.4.3 SearchDialog class

Eight LOCs were removed from the original 49 line method searchCommand(),

to extract the SearchThread class. A field type of SearchThread was added to

SearchDialog. The InputPanel class extraction removed a method,

createInputArea() and a data type, inputBox, but added a data type of

InputPanel.

The switchToSearchState() method added a boolean parameter, so it can

now enable or disable the search state. The searchCommand() method now calls this

173

method to disable the search state. This removed another 4 LOCs from

searchCommand(); it is now 16 LOCs. The class now has 13 methods, 5 are for

testing.

A.2.4.4 SearchThreadTest class

This test class was extracted from BasicSearchUnitTest. One test was

extracted from the testSearchCommand() method. It was then divided into 2 tests, 1

for a file that existed and should be found and 1 that did not exist that should not. A test

for the constructor was also added for a total of 3 tests.

A.2.4.5 InputPanelTest class

This test class was also extracted from BasicSearchUnitTest. One test was

extracted from the testSwitchToSearchState() method. It tests the

switchToSearchState() method that was extracted from SearchDialog’s

switchToSearchState(). Tests for the constructor and getters were also added for

a total of 4 tests.

A.2.4.6 BasicSearchUnitTest

This test class had the test functionality for the SearchThread and

InputPanel classes removed. It now contains 5 tests. Since all test are aimed at the

SearchDialog class, it was renamed SearchDialogTest.

A.2.4.7 BasicSearchFuncTest

This test class had 1 test divided into 2, or 1 extracted from the first test. One test

tests for a search that returns a result and the other for a search that returns no results.

This will make diagnosing future bugs easier.

174

The setUp() method was also refactored, changing some of the Abbot finder

calls to getters that already exist for the unit test. This makes the code easier to read

and faster.

A.2.4.8 ShutdownHook class

This class was modified to allow for multiple functional tests. The abbot functional

test suite could not close the program without this class calling System.exit(),

which causes JUnit to stop running tests. A type, new constructor and if statement were

added to stop the System.exit() call when desired.

A.2.5 Actualization

To add the recursive search capabilities, no new classes were added after the

prefactoring and the change did not propagate to any other classes. A summary of the

change propagation is in Table A.18. The change did require substantial new code to be

added to the SearchDialog, SearchThread and InputPanel classes along with

their test classes. Each class actualization is summarized in Table A.19. A UML

diagram showing the relationships of the actualization is in Figure A.10.

 Table A.18 Change 2 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Recursive
search

7 7 0 0 0 0

175

 Table A.19 Change 2 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchDialog Added methods 62 18 80

2 SearchThread Added Inheritance & methods 36 10 46

3 InputPanel Added methods 201 39 240

4 SearchDialogTest Added and modified tests 64 6 70

5 SearchThreadTest Added and modified tests 81 75 156

6 InputPanelTest Added and modified tests 106 49 155

7 BasicSearchFuncTest Added and modified tests 30 4 34

 Figure A.10 Change 2 Actualization UML

A.2.5.1 SearchDialog Class

The SearchDialog class at the start of the change held the entire search

functionality. However, after the search method was extracted from it, it became the

user interface class for the search functionality. The input panel was also extracted; it

now contains the output and search and cancel buttons.

A boolean field was added to notify SearchThread if the user stops a search

in progress. This is effectively a thread kill, which was deprecated in Java.2. There are

176

also methods added that SearchThread can call to add search results to the output

area, notify SearchDialog that a search has completed and to display an error.

Searches that search recursively can be much longer, so the button that starts a

search, searchButton had the capability to stop an in progress search added to it.

The cancel button that closes the window also had this capability added.

The capability to add results as they are found was added by extracting a method

from searchCommand() and changing its parameter from a FileSet as to a single

AbstractFile.

A method called notifyEnd() was added for SearchThread to notify

SearchDialog that it had completed the search. The method changes the

SearchDialog back to the search state and displays a message to the user if the

search returned no results.

A method was added that displays any errors to the user in the same box as the

results. It is called by the searchCommand() method if there is an Exception during the

SearchThread creation or by the SearchThread if there is an Exception while

searching.

These were the major parts added to the SearchDialog class during

actualization.

A.2.5.2 SearchThread Class

The SearchThread class was extracted from the SearchDialog class during

prefactoring. The search method created during prefactoring replaced its search code

with a recursive method all to add the recursive capability to it, so it can search in

subdirectories.

177

The class extraction was done in prefactoring, which defined the basic class

responsibility. The class was made to extend the Thread class, allowing it to run in its

own thread. This required the addition of a constructor that initializes 4 fields and 2

other methods, main() and run().

Also, the searchCommand() method was made recursive, so that it can search

in directories. A helper method of the same name was added to provide the recursive

method with the initial directory to search and the term to search for.

A.2.5.3 InputPanel class

The first part added was an interface for the user to choose a directory to search

in. At the start of actualization when the InputPanel class was instantiated, it would

only search in the directory defined as the current directory by the MainFrame class.

Now the user can choose the directory, but the default is still the current directory as

defined by the MainFrame class. This required a parameter be added to the

constructor so the directory field can start in the current directory.

To choose a directory the user can either type out a path or choose one through

another dialog that is a standard Java dialog. If the user types an invalid directory, error

checking is in place so a search cannot start unless a valid directory is entered.

Basically, the AbstractFile class that was used in the first change has a method that

returns true if a path is valid. SearchDialog checks for a valid directory when user

moves the cursor off the input line. If the directory is invalid a red “Invalid Directory”

error appears and a search will not start. If the user then inputs a valid path the error will

disappear and the search capability will become re-enabled. To accomplish this,

178

listeners were added for focus events and key events, along with the GUI components

to display the error message.

Also added was a box which the user can check or uncheck to include or not

include subdirectories in their search. When a search is initiated the box is inspected for

the presence of a check and the search acts appropriately.

Five fields were added that display the directory field, the button to open another

dialog to browse for the start directory, a label with an error to be displayed if an invalid

directory is typed in, a checkbox to turn the recursive mode on and off and a JPanel to

organize the components. These fields are initialized in the constructor or a

createDirectoryArea() method that is called by the constructor. They were also

added to the setEnabled() method so they can be disabled during searches and

enabled after the search is over. A method isRecursive() was added that just

returns true if the recursive checkbox field is selected.

The methods chooseFile(), isvalidDirectory(), isErrorEnabled()

and getDirectory() were added. The chooseFile() method opens a

JFileChooser() when the browse button is pressed and isErrorEnabled()

returns true if the error is visible to the user. The method isValidDrectory() checks

to make sure a valid directory is entered in the directory field and getDirectory()

takes the String from the directory and retrieves the AbstractFile associated with

it.

Five additional fields were created in the class that flash the invalid directory

error to the user if the user tries to search without entering a valid directory. These fields

are either initialized when declared or in the constructor. The methods flashError(),

179

actionPerformed(), focusLost() and keyReleased() were added. The

flashError() method starts a Timer. When the Timer goes off, the

actionPerformed() method alternates the error label form visible to invisible. The

focusLost() makes the error visible if the user leaves the directory field with an

invalid directory entered. The keyReleased() method will turn the error off if the user

enters a valid directory.

A.2.5.4 SearchDialogTest class

Three tests were modified to work with the new search process. Five new tests

were added to test the new methods added to SearchDialog to communicate with

SearchThread.

A.2.5.5 SearchThreadTest class

The 2 existing tests were modified to allow for searching with the new thread

capability. A test was added to test the new recursive capability.

A.2.5.6 InputPanelTest class

Seven tests were added to test the new components and functionality added to

the InputPanel class. One test was modified to include testing for the new

components.

A.2.5.7 BasicSearchFuncTest class

Two tests were added, one to test the recursive search capability and one to test

the invalid directory error. The 2 existing tests had to be modified to enter a directory as

is now required.

180

A.2.6 Postfactoring

After finishing the actualization stage and the feature was up and running, but the

code needed to be refactored because of the actualization. This consisted mainly of

cleaning up the code and adding getters and setters for the verification process. The

InputPanel class had grown too large and had too much responsibility. The

DirectoryPanel and FlashLabel classes were extracted from it. To keep the test

suite organized the tests in InputPanelTest that test methods extracted to these new

classes were moved into new test classes DirectoryPanelTest and FlashLabel.

In SearchDialogTest and SearchThreadTest the 4 methods that setup and

teardown for the tests were very similar; they were extracted to a new abstract class

SearchDialogTestSetUp.

Finally, to better organize the project, 3 new packages were created:

org.severe.ui.dialog.search.panels,

org.severe.ui.dialog.search.tests and

org.severe.ui.dialog.search.panels.tests. Then the appropriate classes

were placed into each package.

A summary of postfactoring is available in Table A.20 and a summary of

postfactoring changes of each class is in Table A.21. A UML diagram of the

postfactoring class relationships is in Figure A.11.

181

 Table A.20 Change 2 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Recursive
search

7 7 5 0 0 0

 Table A.21 Change 2 Postfactoring Code Files

Class Task
Lines of Code

Added Deleted Total

1 SearchDialog Extracted method from 42 42 84

2 SearchThread Rename method 3 3 6

3 InputPanel Extracted class from 12 152 164

4 DirectoryPanel Extracted class 126 0 126

5 FlashLabel Extracted class 42 0 42

6 SearchDialogTest Extracted super class from 46 77 123

7 SearchThreadTest Extracted super class from 15 52 67

8 InputPanelTest Extracted class 9 59 68

9 DirectoryPanelTest Extracted class 88 0 88

10 FlashLabelTest Extracted class 34 0 34

11 SearchDialogTestSetUp Extracted super class 51 0 51

12 BasicSearchFuncTest Javadoc 23 18 41

182

SearchDialog SearchThreadInputPanel

FlashLabel

DirectoryPanel SearchDialogTestSetUpSearchDialogTest

SearchThreadTestInputPanelTest

BasicSearchFuncTest

FlashLabelTest

DirectoryPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

 Figure A.11 Change 2 Postfactoring UML

A.2.6.1 SearchDialog class

This class had a method extracted, a field renamed and Javadoc updated. The

method stopSearchThread() was extracted from actionPerformed(). It

replaced duplicated code activated when the cancel button or search button were

pressed. The field searchButton was renamed searchStopButton, to better reflect

the functionality that was added during actualization.

A.2.6.2 SearchThread class

One method was renamed. The method searchCommand() with parameters

AbstractFile and String was renamed to recursiveSearch with the same

parameters. This method gained recursive functionality during actualization and this

new name better reflects that.

183

A.2.6.3 InputPanel class

This class was moved from the org.severe.ui.dialog.search package to

the new org.severe.ui.dialog.search.panels package. It also had 2 classes

extracted, which included 10 fields extracted, 1 field added, 16 methods extracted 3

methods modified and all of the interfaces it implemented were also removed with the

class extractions. The classes DirectoryPanel and FlashLabel were the classes

extracted.

A.2.6.4 DirectoryPanel class

This class was extracted from InputPanel. It is located in the new

org.severe.ui.dialog.search.panels package. It contains the text field that the

user enters a directory to search in, a button for the user to open a dialog to select a

directory from the file system and a text label of type FlashLabel that displays an

error to the user when an invalid directory is entered. This class implements the

interfaces ActionListener, KeyListener and FocusListener and implements

the methods required by these. It has 2 methods to layout the GUI components, an

overridden setEnabled() method and the methods isValidDirectory(),

getDirectory(), flashError() and isErrorEnabled() all extracted from

InputPanel.

A.2.6.5 FlashLabel class

This class was extracted from InputPanel. The object of its type is contained in

DirectoryPanel. Its class is located in the new

org.severe.ui.dialog.search.panels package. It implements the

ActionLisener interface. It is an extension of the swing JLabel class. It adds a

184

method flash(), which will cause the label to flash to notify the user that corrective

action is necessary. It accomplishes this by using the Timer class to set itself visible or

not visible, when the flash() method is called.

A.2.6.6 SearchDialogTest class

This class had a super class SearchDialogTestSetUp extracted from it, had 2

fields added to replace numerous inline calls. The super class extracted removed the

oneTimeSetUp(), setUp(), oneTimeTearDown() and tearDown() methods. The

setUp() method was only partially extracted, this class still contains an

implementation that calls the super constructor. Two fields were also extracted to the

new super class.

A.2.6.2.7 SearchThreadTest class

This class also had the super class SearchDialogTestSetUp extracted from

it, which included removing the same methods as SearchDialogTest and removing 1

field. Also, 1 test was modified to inline a method call.

A.2.6.8 InputPanelTest class

This class had the test classes DirectoryPanelTest and FlashLabelTest

extracted. This included 7 tests and was done to keep the tests organized. An inline

method call used by one of the tests was also updated to a new name.

A.2.6.9 DirectoryPanelTest class

This class was extracted from InputPanelTest. It contains 8 tests, 6 of which

were extracted from InputPanelTest.

185

A.2.6.10 FlashLabelTest class

This class was extracted from InputPanelTest. It contains 3 tests, one of

which was extracted from InputPanelTest.

A.2.6.11 SearchDialogTestSetUp abstract class

This super class was extracted from SearchDialogTest and

SearchThreadTest. It contains 4 methods oneTimeSetUp(), setUp(),

oneTimeTearDown() and tearDown(). These methods create an instance of the

SearchDialog class that can be used to test it or its components. The code to do this

was repeated in both classes, so it made more sense to put it in its own class that can

be extended. It contains 3 fields.

A.2.6.12 BasicSearchFuncTest class

This class had 2 fields added to replace numerous long inline method calls. This

caused all 4 of its tests to be modified.

A.2.7 Verification

Unit tests expanded from 1 class to 5 plus a super class. A total of 42 new tests

were added to test the new functionality, 15 were deleted and 23 modified. The

functional tests were also expanded, but remained in 1 class. During verification 3 bugs

were found.

Two tests were added to check for proper behavior of the GUI components with a

variety of user inputs. Two bugs were found as a result of this testing.

In the case when a user inputs a blank value for the directory an error message

would appear, but when the test tried to type in a valid directory it would be redirected to

another input location before it could complete. The automated testing was stopped and

186

the defect was manually confirmed. Then, upon code inspection, the bug was identified,

when a user went back to enter a correct directory an exception was being thrown. An

error handling method, setError() was causing this unwanted input redirection, when

it was called from the exception catch. Now the exception is not caught because the

user needs a chance to enter a valid directory. If the user does not enter a valid

directory the error will be caught and handled later.

The second bug discovered, was again an exception throwing error. There can

be certain directories that the file system marks as readable, but are set as read-only

through a different mechanism. An example of this is a quarantine directory used by an

antivirus program. When the search ran into this type of directory, it throws an

exception. Code was added to catch this exception which stopped the search. This

gave an unwanted behavior of stopping the search when valid results might still be

possible. The setError() method was altered to handle the exception by just printing

a message to the user with the directory path that was not searched, but continue the

search to the rest of the file system.

The unit test classes were organized so that there is a test class for each class

added. Furthermore, the test classes were placed in their own packages with the same

name as the class that are directed at with tests appended to the end. This was done to

facilitate removal for a release.

By modifying the tests from change 1 Basic Search it was realized a message

displayed to the user that there were no search results found, was no longer

functioning. The message was re-enabled, so that the user would know that the search

had run without a match. The original 2 tests passed after prefactoring,

187

testSwitchToSearchState() and testSearchDialog() were not modified;

however, testSearchCommand() had to be reworked for the new functionality.

Coverage for each production code file is available in Table A.22.

 Table A.22 Change 2 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 SearchDialog 81 76 93.8 0 1

2 SearchThread 19 19 100.0 0 1

3 InputPanel 29 29 100.0 0 0

4 DirectoryPanel 52 41 78.8 0 1

5 FlashLabel 14 14 100.0 0 0

6 ShutdownHook 41 4 9.8 0 0

A.2.8 Timing Data

Table A.23 contains the timing data for the change.

 Table A.23 Change 2 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:00

Impact Analysis 2:28

Prefactoring 1:22

Prefactoring Testing 2:43

Actualization 3:41

Actualization Testing 1:52

Postfactoring 2:57

Postfactoring Testing 7:34

188

A.2.9 Conclusions

The recursive search change is complete. It makes the overall search feature

much more useful. The overall feature does need more to be at the level users expect,

but the next few changes should make a large difference.

This change included more refactoring then the first change. The prefactoring for

this change prepared the code for the change. The change would have been difficult

without refactoring, extracting the SearchThread class made it easier to add a separate

thread to search the file system. Without this refactoring, SearchDialog would have

been suffered from code decay; it would have been large and had many responsibilities.

The changed set was 4 classes, 1 larger than the estimated impact set, because

a class, ShutdownHook, needed a method added so that the functional tests could

finish running. During the change the programmer discovered why the functional test

had displayed gray during change 1 and added a workaround as described in the

prefactoring phase.

Table A.24 summarizes the number of classes for the different phases of the

change. Table A.25 is the current state of the product backlog. Figure A.12 to Figure

A.16 are screen shots of before and after the change request.

189

 Table A.24 Change 2 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

 Table A.25 Change 2 Current Product Backlog

Title Complete User Story

1 Basic
Search

x

Add a basic search function that allows a user to search
in the current directory for all or part of the title of a
folder or file, and return a list of the matching files and
directories.

2 Recursive
Search

x Add the ability to search inside all directories.

3 Advanced
Output

Change the output to a table similar to the main
muCommander window.

4 Date
Search

Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6 Extension
Search

Add the ability to search for files with specific
extensions.

7 Properties
Search

Add options to search for files based on their properties.

8 Size
Search

Add the ability to search for a file by its size.

9
Regular

Expression
Search

Add capability to search by a regular expression.

10 Lucene
Search

Incorporate the Apache Lucene search.

190

 Figure A.12 Search window before Recursive search Change

191

 Figure A.13 Search window after Recursive search Change

192

 Figure A.14 Search window with new input features circled

 Figure A.15 Search window with search running

193

 Figure A.16 Search window with invalid directory error message

SIP – Change 3 Advanced Output

A.3.1 Initiation

Change the output to a table similar to the main muCommander window. It is an

application which enhances an operating systems file explorer. During the first change

request, basic search capabilities were added; which helps a user find files in a specific

directory. For the second change request recursive search features were added. These

allowed the user to choose directories and search them recursively.

This change request will add advanced output features to the search

functionality. The search window will now display the search results in the same format

as the rest of muCommander. This is a more attractive GUI that includes icons, the size

of the file and other information. It will also allow the user to select a file and display it in

194

the main muCommander window. However, it was decided that only a limited feature

set of muCommander would be included. So the user will be able to sort the files by

name, size and others and select a file and go to it in the main muCommander program.

The user will not have access to features such as opening the file directly or renaming

files. The number of files and directories will also be displayed.

A.3.2 Concept Location

This change request is to combine 2 parts of muCommander; the search window

output area and the table display that is used in the main window of muCommander. To

accomplish this, 2 concepts needed to be located; the search window and the table file

display. For one concept, no concept location was necessary; the advanced output

features are to be added to the search window, which shares it concept location with the

last change, the SearchDialog code file.

To find the other concept, the file display in the main muCommander window, a

dependency search was done starting in the Launcher code file, which has the

program’s main method. The programmer marked Launcher as Propagating in

JRipples, which in turn marked 44 code files as Next. The code file FocusDialog was

visited, but was marked as Unchanged because it was described as a modal dialog.

Since the main window of an application cannot be modal, no further investigation was

necessary. Returning to the set of Next code files the next promising code file was

WindowManager. This code file contained a variable of type MainFrame, which

because of its name sounded very promising. The programmer marked the

WindowManger code file as Propagating in JRipples, which marked an additional 35

code files as Next. The variable type MainFrame was one of these and it was visited.

195

MainFrame contains 2 variables of type FolderPanel and 2 of type

FileTable; both of these code files sounded promising, because of their names.

MainFrame was marked as Propagating; this caused JRipples to mark 247 more

code files as Next. The code file FolderPanel from the MainFrame visit, was of

particular interest and was visited first. It has a boolean variable treeVisible, which

was changed to true. This caused the tree view to be visible when the program was run,

which confirmed that the concept location had been found.

Table A.26 contains the totals for each type of code file visited and Table A.27

summarizes the code files visited during concept location. Figure A.17 is a UML of the

dependency search path.

 Table A.26 Change 3 Concept Location Summary

Title
Code Files

Comments
Visited Propagating Unchanged

Advanced
Output

6 3 1
No CL was done for one

concept

 Table A.27 Change 3 Concept Location Code Files Visited

Code File Tool used Located? Comments

1 Launcher JRipples →
Propagating

Propagating This is the main start location
for the program

2 FocusDialog JRipples →
Unchanged

Unchanged

3 WindowManager JRipples →
Propagating

Propagating This singleton class creates all
the MainFrame objects

4 MainFrame JRipples →
Propagating

Propagating This class creates the main
muCommander window

5 FolderPanel JRipples →
Located

Located The concept is located here

196

Launcher

WindowManager

MainFrame

FolderPanel

FocusDialog

Unchanged

Propagating

Legend

Harness

Production

Located

Association

Aggregation

Generalization

 Figure A.17 Change 3 Concept location UML

A.3.3 Impact Analysis

During concept location the programmer located 2 concepts. One the search

window was located in the SearchDialog code file. The second the table that displays

files was located in the FolderPanel code file.

The first step of impact analysis by the programmer was to mark the code file

SearchDialog as Impacted in JRipples. JRipples marked 19 code files as Next. Then

SearchThread was visited and marked as Impacted; it performs the search and will

have to change how it returns results. No additional code files were marked as Next as

a result. After that, 4 test classes were marked as Impacted,

SearchDialogTestSetUp, SearchDialogTest, SearchThreadTest and

BasicSearchFuncTest; this caused JRipples to add 10 additional code files to the

Next set. Three suppliers and clients of SearchDialog were visited and marked as

197

Impacted: InputPanel, FlashLabel and DirectoryPanel, along with their test

code files. JRipples added 3 code files to the Next set; for a total of 24 code files

marked as Next. Included in this set was FolderPanel, which holds the second

concept location.

FolderPanel was visited and marked as Impacted; 112 code files were now

included in the Next set. FileTable was visited because an object of its type is

created in FolderPanel and it was seen in MainFrame with FolderPanel during

concept location. The Javadoc description states that it “displays a folder’s contents”;

the programmer it was marked as Impacted. Now 188 code files were marked as Next

in JRipples. The code files that were suspected to contain suppliers of FileTable

because their names started with FileTable were visited. FileTableModel,

FileTableHeaderRenderer, FileTableHeader, FileTableConfiguration,

FileTableColumnModel and FileTableCellRenderer were all marked as

Impacted. JRipples still had 188 code files marked as Next. These code files were

visited; MainFrame was marked as Impacted because it had a method that created a

FileTableConfiguration class need to create a FileTable.

At this point 328 code files were in the Next set. The programmer marked all of

these code files as Unchanged; for some of the code files an inspection of just reading

the name was sufficient, such as CalculateCheckSumDialog which could easily be

confidently marked Unchanged. However, others such as FolderTreePanel, which

clearly could have been impacted, were visited more closely along with code fides

whose responsibilities could not be determined, such as DataList. These code files

198

have been left of the UML of impact analysis in Figure A.18 because of space

constraints.

The estimated impact set contained 21 code files at the end of impact analysis.

These code files are listed in Table A.29; the 328 code files marked Unchanged have

been left off. Table A.28 summarizes the number of code files visited during impact

analysis and their final marks.

 Table A.28 Change 3 Impact Analysis Summary

Title

Code files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Advanced
Output

349 21 0 328
Advanced

Output

 Table A.29 Change 3 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 SearchDialog JRipples →
Impacted

Impacted This code file contains one
concept location

2 SearchThread JRipples →
Impacted

Impacted This code file is responsible for
actually searching the file

system.

3 SearchDialogTestSetUp JRipples →
Impacted

Impacted

4 SearchDialogTest JRipples →
Impacted

Impacted

5 SearchThreadTest JRipples →
Impacted

Impacted

6 BasicSearchFuncTest JRipples →
Impacted

Impacted Creates SearchDialog

7 InputPanel JRipples →
Impacted

Impacted Supplier to SearchDialog

8 FlashLabel JRipples →
Impacted

Impacted Supplier to SearchDialog

9 DirectoryPanel JRipples →
Impacted

Impacted Supplier to SearchDialog

199

10 InputPanelTest JRipples →
Impacted

Impacted

11 FlashLabelTest JRipples →
Impacted

Impacted

12 DirectoryPanelTest JRipples →
Impacted

Impacted

13 FolderPanel JRipples →
Impacted

Impacted This code file contains the
second concept location

14 FileTable JRipples →
Impacted

Impacted This code file is the main
supplier to FolderPanel

15 FileTableModel JRipples →
Impacted

Impacted Supplier to FileTable

16 FileTableHeaderRender
er

JRipples →
Impacted

Impacted Supplier to FileTable

17 FileTableHeader JRipples →
Impacted

Impacted Supplier to FileTable

18 FileTableConfiguratio
n

JRipples →
Impacted

Impacted Supplier to FileTable

19 FileTableColumnModel JRipples →
Impacted

Impacted Supplier to FileTable

20 FileTableCellRenderer JRipples →
Impacted

Impacted Supplier to FileTable

21 MainFrame JRipples →
Impacted

Impacted Creates FileTableConfiguration

200

Figure A.18 Change 3 Impact Analysis UML

A.3.4 Prefactoring

 FileTabe and FolderPanel classes can only be contained in an object of

type MainFrame the programmer did this prefactoring to allow the file table display to

be contained in other types of objects. To prepare for this change the classes

201

AbstractFileTable and AbstractFolderPanel were extracted from FileTable

and FolderPanel respectively. These were very large class extractions the original

code files were 2069 and 1478 LOC respectively. Because of the size of the class

extractions the task was not broken up into smaller tasks, such as extracting methods in

the current class then moving them to the new abstract class. While that strategy may

be a safe strategy, because of the size of the class extraction, it was perceived to be

overly burdensome.

The strategy used was to move universal functionality to the abstract class and

leave the rest. For example, the FolderPanel class has a field, currentFolder, of

type AbstractFile, which contains the parent directory currently displayed in

muCommander. Since search results do not have a common parent directory, this

attribute was left in FolderPanel. However, since all types of displays can have more

files to display then their size allows, the attribute JScrollPane scrollPane was

moved to the abstract class. This will allow all AbstractFolderPanels to have the

capability to scroll through the displayed files when necessary.

Additionally, 2 suppliers of FileTable, FileTableHeader and

FileTableCellRenderer had attributes of their parent type FileTable this had to

be changed to type AbstractFileTable. Table A.30 shows the change propagation

set of prefactoring. Table A.31 shows the LOC added and deleted during prefactoring.

Figure A.19 is a UML diagram of the code files changed and added during prefactoring.

202

 Table A.30 Change 3 Prefactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Advanced
Output

4 4 2 0 0 0

 Table A.31 Change 3 Prefactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 FileTable Extracted super class from 103 466 569

2 FileTableCellRenderer Changed method 3 3 6

3 FileTableHeader Changed method 3 3 6

4 FolderPanel Extracted super class from 47 129 176

5 AbstractFileTable Extracted super class 574 0 574

6 AbstractFolderPanel Extracted super class 121 0 121

203

FolderPanel

FileTable

AbstractFolderPanel

AbstractFileTable

FileTableCellRenderer FileTableHeader

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

 Figure A.19 Change 3 Prefactoring UML

A.3.4.1 AbstractFolderPanel abstract class

This class was extracted from FolderPanel. It extends JPanel and contains

an AbsractFileTable. Its other fields are a JScrollPane, a MainFrame and 5

fields of type Color to set the border and background colors. This also represents its

responsibilities.

A.3.4.2 FolderPanel code file

AbstractFolderPanel was extracted from this code file. It was left with the

responsibility for the current folder displayed in its FileTable. It also has a tree view

204

display and a nested class to change the current folder. This code file was still large,

619 LOC.

A.3.4.3 AbstractFileTable abstract class

This class was extracted from FileTable. It contains a FileTableModel,

which holds the table’s data and a FileTableCellRender that formats each cell of

the table. It also has fields to set default column values, the current row, if the table is

the active table and double click timing information. This was all deemed to be common

to all tables and would facilitate the change.

A.3.4.4 FileTable class

AbstractFileTable class was extracted from this class. The remaining

responsibilities of this class include, a MainFrame class that it belongs to, changing a

file’s name, a field of type QuickSearch, which allows a simple search in a folder and

a HashMap that contains the table’s listeners. This class was still large after the class

extraction, 590 LOC.

A.3.4.5 FileTableHeader class

This class needed to have its constructor parameter changed from FileTable

to AbstractFileTable because it was being called from AbstractFileTable with

a this call.

A.3.4.6 FileTableCellRenderer

This class needed its constructor parameter changed from type FileTable to

AbstractFileTable for the same reason as FileTableHeader.

205

A.3.5 Actualization

To actualize the change, 2 new classes were created, SearchFolderPanel

and SearchTable. These classes inherit from the classes extracted during

prefactoring AbstractFolderPanel and AbstractFileTable. Parts of the change

propagated through these new classes to their suppliers. Then an object of type

SearchFolderPanel was created in SearchDialog and an object of SearchTable

in SearchFolderPanel.

The overall flow to display the results starts in SearchThread, which finds the

files that match the search term in the file system. It then calls methods in

SearchDialog to display the results. There were methods to do this at the start of the

change, created in change 2 (section A.2). These methods were modified and added to;

then SearchDialog sent the results to SearchFolderPanel, which sent them to

SearchTable. SearchTable sends the results to the class that manages its data

structure, FileTableModel and FileTableCellRenderer actually displays them to

the user.

All of the previous code files were impacted by the change. In addition, 3 more

suppliers to SearchTable needed to be modified along with 3 test classes and 2 new

test classes were added. Table A.32 shows the change propagation set of actualization.

Table A.33 shows the LOC added and deleted during actualization by code file. Figure

A.20 is a UML diagram of the code files changed and added during actualization.

206

 Table A.32 Change 3 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Advanced
Output

18 10 4 0 4 0

 Table A.33 Change 3 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchThread Changed method 10 6 16

2 SearchDialog Added, changed methods 138 25 163

3 SearchFolderPanel Added class 52 0 52

4 SearchTable Added class 67 0 67

5 FileTableModel Added methods 42 0 42

6 FileTableCellRenderer Changed method 23 5 28

7 FileTableHeader Added, changed methods 53 2 55

8 FileTableHeaderRenderer Changed variable type 1 1 2

9 AbstractFileTable
Added, deleted, changed

methods
6 4 10

10 SearchFolderPanelTest Added test class 55 0 55

11 SearchTableTest Added test class 90 0 90

12 BasicSearchFuncTest Added, changed tests 133 4 137

13 SearchDialogTest
Added, deleted, changed

tests
65 25 90

14 SearchThreadTest changed tests 19 5 24

207

SearchDialog

SearchThread

AbstractFileTable

AbstractFolderPanel

FileTable

SearchTable

FolderPanel

SearchFolderPanel FileTableCellRenderer

FileTableHeader

FileTableModel

FileTableHeaderRenderer

SearchFolderPanelTest

SearchTableTest

BasicSearchFuncTest

SearchDialogTest

SearchThreadTest

ActivePanelListener

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

 Figure A.20 Change 3 Actualization UML

A.3.5.1 SearchThread class

The changes to this class were all done to its recursiveSearch() method.

The method was sending error messages to SearchDialog, but it was not supported

anymore, the new table can only display files, so errors are now sent to the applications

log. A second check to make sure the search should continue was added.

SearchDialog used to ignore a few extra results found before the SearchThread

would die, but this also would not be supported in the modified methods.

A.3.5.2 SearchDialog class

This class had the largest amount of code change, 138 LOC added and 25 LOC

deleted. The method addSearchResult() was substantially modified. It previously

just sent the results to another method to be displayed in a JTextArea, but now sends

208

them to a new field of SearchFolderPanel. So addSearchResult() was changed

to initializes a new array field to store the results and resize it as needed. It also

increments 2 integer fields to keep a count of directories and files found during the

search. Finally, it starts a timer, so that results are displayed in batches.

The timer is activated every 200ms and it calls a method,

repaintSearchTable(), to send the current set of results to SearchFolderPanel;

it also displays the results totals. To stop the timer, when SearchThread has finished

the search, it calls a modified notifyEnd() method. This method, stops the timer,

calls repaintSearchTable(), to make sure all the results are displayed and calls

switchToSearchState() with a true value.

The method switchToSearchState() was modified. If invoked with its

parameter is set to true, it now calls stopSearchThread(). If set to false, it resets the

results total fields and reinitializes the array of results. It also clears the results totals

that are on display and calls the clearOutput() method in the SearchPanel class.

A method goToSelection() was added that takes an AbstractFile as a

parameter. It calls a method in the parent class of SearchDialog, MainFrame, to

open the AbstractFile’s parent and set the AbstractFile as selected. Then it

closes the SearchDialog.

A method was added that was copied from MainFrame, called

getFileTableConfiguration(). It creates a configuration class that is required

when SearchDialog creates an instance of the new SearchFolderPanel class.

The only change made to this method was to remove a boolean parameter, isLeft

and replace it with the value of false.

209

The FocusListener interface was added to SearchDialog along with its 2

methods focusLost() and focusGained(). These methods change the default

button to null, if the SearchTable has focus; if the SearchTable loses focus the

searchStopButton of SearchDialog is set to default. Finally, the constructor was

modified to create an instance of SearchFolderPanel instead of calling

createOuputArea().

A.3.5.3 SearchFolderPanel class

This class was created to implement AbstractFolderPanel. It has a

clearOutput() method that calls a method from SearchTable called

clearSelection() and the method setSearchResults() calls

setSearchResults() also in SearchTable . Its constructor calls the super class

constructor and creates an instance of SearchTable.

A.3.5.4 SearchTable class

This class was created to implement AbstractFileTable. It has a method

setSearchResults() that takes an array of objects of type AbstractFile and

sends them to FileTableModel. It also calls the methods setLastRow() and

resizeAndRepaint() from its super class. It overrides the method doubleClick()

that calls the goToSelection() method in SearchDialog, when the user clicks on a

result in the SearchTable.

The method isColumnDisplayable() was overridden, it decides what

columns in the table are valid to be displayed based on the directory chosen by the

user.

210

The keyReleased() method was overridden to catch the up, down and enter

keys. It enables the user to select the next file in the table with the up and down arrow

keys or to close the search and open the selected file in MainFrame with the enter key.

The constructor calls the super class constructor and a method

sortByNothing() in the super class. This is done to show the user the table is not

sorted by default, they can sort it after a search, if they desire.

A.3.5.5 FileTableModel class

This class contains the data structure for the results displayed in classes that

extend AbstractFileTable. A method, setSearchResults() was added that

takes an array of objects of type AbstractFile. It takes data from the objects of

AbstractFile such as theirs names and sizes and creates loads it into a 2

dimensional array and creates 2 more arrays of the same size; one for the sort order of

the files and one of the files in the array that are marked.

A.3.5.6 FileTableCellRenderer class

This class creates the Objects that the cells in an AbstractFileTable class

display. The method getTableCellRendererComponent() was modified. If its

parent AbstractFileTable is an instance of a SearchTable, instead of its normal

behavior of displaying just the AbstractFile’s name, it will display a period plus the

path after the directory that was searched in, plus the file name. This gives the user the

full path of the file in an easy to read format that is less likely to be cut off. It also sets

the cells tooltip to the entire file path and name.

211

A.3.5.7 FileTableHeader class

This class creates a content menu that the MainFrame class listens to. The

method mouseClicked() was modified to create a context menu that it can listen to, if

its parent is a SearchTable. The ActionListener interface was added to listen for

this new menu; its actionListener() method changes the SearchTable header as

requested.

A.3.5.8 FileTableHeaderRenderer class

This class was a client of FileTable, to enable it to be a client for all classes

that extend AbstractFileTable, it was necessary to change a type of a temporary

variable and a cast assigned to the variable from type FileTable to

AbstractFileTable in the method getTableCellRendererComponent().

A.3.5.9 AbstractFileTable abstract class

This class had a method added. The responsibility to sort the table is here. All

the existing sort methods required a column to be selected. However, results are added

in the order they are found, which does not match any of the columns. So a method

sortByNothing() was added that does not sort by any column.

A.3.5.10 SearchFolderPanelTest class

This class was created to unit test the SearchFolderPanel class. It extends

SearchDialogTestSetUp and has 4 tests.

A.3.5.11 SearchTableTest class

This class was created to unit test the SearchTable class. It extends

SearchDialogTestSetUp and has 8 tests.

212

A.3.5.12 BasicSearchFuncTest class

This class is a functional test suite. It had 3 tests modified and 8 tests added.

A.3.5.13 SearchDialogTest class

This class is the unit test suite for the SearchDialog class. It had 7 tests

modified, 6 tests added and 1 deleted.

A.3.5.14 SearchThreadTest class

This class is the unit test suite for the SearchThread class. It had 3 tests

modified.

A.3.6 Postfactoring

After the actualization phase, many code smells were present. This was

addressed during postfactoring. During actualization the programmer added too much

responsibility to the SearchDialog class. It had 1 class extracted, ButtonPanel and

responsibility moved to 3 other classes, SearchThread, SearchFolderPanel and

MainFrame.

The suppliers to AbstractFileTable now had 2 sets of responsibilities, 1 set

if the inherited class is FileTable and 1 set if the inherited class was SearchDialog,

in hindsight, this should have been addressed during prefactoring. To resolve the

situation the programmer extracted a super class, AbstractFileTableModel from

TableModel and also extracted the SearchModel class that inherits from it.

In the case of FileTableCellRenderer and FileTableHeader classes 2

new classes, SearchTableCellRenderer and SearchTableHeader, were created

that inherited from the existing supplier and they just overrode a subset of their super

class’s methods; see code file descriptions for more information. This actualization

213

phase gave these classes 2 different responsibilities depending on the caller, therefore

to make future changes easier this was done to preserve the code. Once all these extra

classes were created the org.severe.ui.dialog.search.panels package had

too many classes, many of which were not panels, so a new package

org.severe.ui.dialog.search.table was created for them. The package

org.severe.ui.dialog.search.components was also created for FlashLabel.

The new extracted class AbstractFileTableModel propagated to 7 classes

not in the estimated impact set or changed set that depended on FileTableModel as

a supplier. Six of these classes required a field or temporary variable type to be

changed to AbstractFileTableModel and one required a getter call to be cast to a

FileTable. During impact analysis, it was thought that the type of the getter that these

classes use to get the FileTableModel could be kept. However, the getter is inherited

from AbstractFileTable; it was determined that the best solution was to change

these classes. By using a generic type future should be easier.

Many of the test classes were creating the same objects of AbstractFile or

using instances created in the SearchDialogTest class. These were all extracted to

a new class TestConstants.

Table A.34 shows the change propagation set of postfactoring. Table A.35 shows

the LOC added and deleted during postfactoring. Figure A.21 is a UML diagram

showing all the classes changed and added during postfactoring.

214

 Table A.34 Change 3 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Advanced
Output

31 31 10 0 2 7

 Table A.35 Change 3 Postfactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchDialog

Extracted class from,
moved field from,
deleted unused

methods

64 250 314

2 SearchThread Moved field 19 6 25

3 MainFrame Changed method 1 1 2

4 ResultsPanel Renamed class 41 24 65

5 SearchTable Moved class 31 17 48

6 AbstractFileTableModel Extracted super class 110 0 110

7 FileTableModel
Extracted super class

from
15 124 139

8 SearchTableModel Extracted class 144 0 144

9 FileTableCellRenderer Extracted class from 55 49 104

10 SearchTableCellRenderer Extracted class 42 0 42

11 FileTableHeader Extracted class from 46 97 143

12 SearchTableHeader Extracted class 71 0 71

13 AbstractFileTable Changed methods 10 11 21

14 CompareFoldersAction Changed field 3 3 6

15 InvertSelectionAction Changed field 2 2 4

16 MarkAllAction Changed field 2 2 4

17 MarkExtensionAction Changed field 2 2 4

18 OpenInBothPanelsAction Added cast 1 1 2

19 FileDragSourceListener Changed field 2 2 4

20 StatusBar Changed field 2 2 4

215

21 FileTable Changed field 6 4 10

22 FlashLabel Moved class 1 1 2

23 ButtonPanel Extracted class 57 0 57

24 DirectoryPanel Changed method 3 3 6

25 InputPanel Javadoc 0 0 0

26 SearchDialogTest
Changed tests,

moved tests from
21 82 103

27 SearchThreadTest
Extracted constants,

changed tests
25 31 56

28 ResultsPanelTest Renamed class 48 27 75

29 SearchTableTest Moved class 37 37 74

30 SearchTableModelTest Added test class 241 0 241

31 SearchTableCellRendererTest Added test class 46 0 46

32 SearchTableHeaderTest Added test class 56 0 56

33 FlashLabelTest Moved class 2 2 4

34 ButtonPanelTest Added test class 58 0 58

35 DirectoryPanelTest Extracted constants 5 5 10

36 InputPanelTest Javadoc 0 0 0

37 SearchDialogTestSetUp
Extracted constant,

field
3 2 5

38 BasicSearchFuncTest Changed tests 48 59 107

39 TestConstants Extracted class 18 0 18

216

SearchDialog

SearchThread

AbstractFileTable

AbstractFolderPanel

FileTableSearchTable

FolderPanelResultsPanel

FileTableCellRenderer

FileTableHeader FileTableModel

FileTableHeaderRenderer

ResultsPanelTest

SearchTableTest

BasicSearchFuncTestSearchDialogTest

SearchThreadTest

CompareFoldersAction

InvertSelectionAction

MarkAllAction

MarkExtensionAction

OpeninBothPanelsAction

FileDrageSourceListener

MainFrame

StatusBar

AbstractFileTableModel

FlashLabel

FlashLabelTest

ButtonPanel

DirectoryPanel InputPanel

ButtonPanelTest

DirectoryPanelTest

InputPanelTest

SearchTableCellRenderer

SearchTableHeader

SearchTableModel

SearchTableCellRendererTest

SearchTableHeaderTest

SearchTableModelTest

SearchDialogTestSetUp

TestConstants

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

 Figure A.21 Change 3 Postfactoring UML

217

A.3.6.1 SearchDialog class

The fields searchStopButton, cancelButton and resultsTotalLabel,

which are all in the south portion of SearchDialog and initialized in the method

createButtonArea() were extracted to a new class ButtonPanel. Appropriate

parts of the actionPerformered() method was also extracted to ButtonPanel

The field of the array of objects of AbstractFile that holds the results from the

search, the integers that hold the results totals and the timer were all moved to the

SearchFolderPanel class. The FocusListener responsibility was also moved and

the FocusListener interface was removed. After the remaining responsibilities were

extracted from the actionPerformed() method, it was removed along with the

ActionListener interface.

The field keepSearching, was moved to the SearchThread class. The man in

the middle that existed, repaintSearchTable(), which now just called a method in

SearchFolderPanel was removed, it was replaced with a call directly from

SearchThread to SearchFolderPanel.

A method that was copied from MainFrame,

getFileTableConfiguration() was removed and replaced with a call to the

method in MainFrame.

A.3.6.2 SearchThread class

The field keepSearching was moved here from SearchDialog. A method

stopSearching() that sets it to false, to tell SearchThread that a user has canceled

a search was added. Calls to SearchDialog and to SearchFolderPanel that

replaced a man in the middle in SearchDialog were added.

218

A.3.6.3 MainFrame class

This class is the parent of SearchDialog. The MainFrame class had a method

copied to SearchDialog, but not substantially changed during actualization. It was

responsible for creating a FileTableConfiguration class. This responsibility was

transferred back to MainFrame, which required the visibility of the method to be

reduced to public.

A.3.6.4 SearchFolderPanel and ResultsPanel class

SearchFolderPanel was renamed ResultsPanel, which better describes

what it is, namely a JPanel that contains the search results; it does not contain a folder

and does not search.

The timer field from SearchDialog was moved here but was later removed

altogether after the extraction of AbstractFileTableModel and SearchModel

rendered it unnecessary.

The responsibility to change the default button focus was moved from

SearchDialog here. The FocusListener interface was already implemented by the

base class AbstractFolderPanel, so the methods already existed.

The integer fields that hold the results totals were moved here from

SearchDialog. The method clearOutput() was modified to reset these along with

clearing the results from the SearchTable; it was then renamed clearResults() .

A notifyEnd() method was added that calls the update() method in

SearchTable. It also sets the final results totals in the resultsTotalLabel, by

calling setResultsTotal() in ButtonPanel.

219

The method setSearchResults() was modified to take a single

AbstractFile as a parameter. It sends it to the SearchTable by means of the

addSearchResult() method. This method also adds to the results totals and calls the

setResultsTotal() method in ButtonPanel.

A.3.6.5 SearchTable class

This class added an integer field named row that keeps track of the maximum

row. The method addSearchResult() was modified to accept a single

AbstractFile; it calls addSearchResult() with a single AbstractFile as a

parameter. It then calls the repaintRow() method in its parent class,

AbstractFileTable with the field row as a parameter; it then increments row.

The update() method was added. It is just a delegate method to call the

inherited protected method resizeAndRepaint() from JTable. The class

ResultsPanel needs to call this method at the end of each search so a new method

with a visibility of public was needed.

The method clearSelection() was overridden. It now calls its super method,

reset the row field, calls the TableModel clear() method and

resizeAndRepaint().

Finally, this class was moved to the new

org.severe.ui.dialog.search.table package.

A.3.6.6 AbstractFileTableModel abstract class

This super class was extracted from FileTableModel. It contains the data

structure that an AbstractFileTable can display. The FileTableModel class

allowed search results to be displayed, but was implemented with arrays. This works

220

well for displaying the contents of a directory, however, it was easy to overload this

class with data. A timer was added during actualization to only add an array of objects

of AbstractFile to this class every 200ms. This workaround was not ideal; this class

was extracted, so that a new class could be implemented using collections that

automatically expand instead of arrays.

The fields long markedTotalSize, int nbRowsMarked, SortInfo

sortInfo and int sizeFormat were extracted to this new class. The methods

associated with these responsibilities were also extracted. These included,

setSizeFormat(), setSortInfo(), getFirstMarkableRow(),

isRowMarked(), setRangeMarked(). The methods that referred to the file data to

be displayed in the AbstractFileTable were made into abstract methods that the

classes implementing this class could override. These included getCachedFile(),

getFiles(), getFileRow(), getFileAt().

The method getFileComparator() changed visibility from default to

protected, so that the implementation classes could call it. The sortRows() and

fillCellCache() methods were also made abstract, because they also depend on

the data storage implementation.

A.3.6.7 FileTableModel class

This class had AbstractFileTableModel extracted from it. No new methods

were added. See AbstractFileTableModel (section A.3.6.6) for a description of the

methods removed. If a method was made abstract in AbstractFileTableModel, its

implementation was not changed in this class. Additionally, the 2 overloaded methods

addSearchResults() were moved to SearchTableModel.

221

A.3.6.8 SearchTableModel class

This class implements the AbstractFileTableModel class. It is similar to the

FileTableModel class but instead of storing the AbstractFile objects in arrays

that need to be manually resized as results are added; it uses Java standard collections

that automatically resize. Specifically, it stores all AbstractFile objects passed to it in

an ArrayList. It then caches the file’s data, such as name, date and size as objects in

a HashMap, with the AbstractFile object as the key. When called upon to sort the

AbstractFile objects by a criteria, it sorts the ArrayList using the Java

Collections.sort() method. It can then look up the sorted file’s data from the

HashMap as needed. This method made much easier to read code and ran very quickly

and smoothly. The capability to mark multiple files was not supported, because it is not

supported by a SearchTable.

The overloaded method addSearchResults() that accepted an array of

AbstactFile objects was deleted. The addSearchResults() method that accepted

a single AbstractFile object was renamed addSearchResult() to reflect its

current responsibility.

The responsibility to create a String with a partial or full path and the name of

the file was extracted from FileTableCellRenderer to the method

fillCellCachAtRow() method. This method creates objects for

FileTableCellRenderer to display. The responsibility to create this String did not

fit with the responsibility of FileTableCellRenderer; however,

SearchTableModel was already doing other simple data processing tasks, so moving

it here made sense.

222

A.3.6.9 FileTableCellRenderer class

This class had 1 method that was very large,

getTableCellRenderComponent(). This method formats an AbstractFileTable

cell for display. It does all the tasks such as getting the String to display, setting the

colors, fonts and the tool tip. During actualization if statements were added to change

this behavior if its supplier class was a SearchTable. This just expanded the method

and made the code smells even more pungent. The method had 6 methods,

getQuickSearch(), setMatches(), setLabel(), truncateText(),

setbackGroundColor(), and setOutLine() extracted from it. This not only made

the code easier to read, but was done to make it easier for a class to override specific

parts of the original method, without duplicating code.

The class field tableModel also changed type from FileTable to

AbstractFileTable. The if statements that were added during actualization to create

different functionality for the SearchTable were extracted from setLabel(),

setBackgroundColor() and getQuickSearch().

A.3.6.10 SearchTableCellRenderer

This class extends FileTableCellRenderer; it overrides the methods

setLabel(), setBackgroundColor() and getQuickSearch(). The setLabel()

overridden method calls the super, but sets the tool tip to the entire AbstractFile

path and name displayed in the row. The setBackgroundColor() method does not

call the super method, but rather removes functionality to shade the background color

which is unsupported in a SearchTable. The getQuickSearch() method just

returns null, because it too is unsupported in a SearchTable().

223

A.3.6.11 FileTableHeader class

This class, like FileTableCellRenderer had 2 separate paths, 1 if it was a

supplier to a FileTable and 1 if it was a supplier to a SearchTable. This also could

easily be solved through inheritance. The class SearchTableHeader was extracted

from it. This changed the class back into its state before the change started, except that

its field table is now an AbstractFileTable instead of a FileTable.

To do this an if block was extracted from the mouseClicked() method and the

ActionListener interface, its method actionPerformed() fields checkBoxList

and checkboxMenuItemExt were moved to the SearchTableHeader class.

A.3.6.12 SearchTableHeader class

This class was extracted from the FileTableHeader class. It contains a

method mouseClicked() that overrides the method in FileTableHeader. It creates

a context menu that it listens to. The class also implements an ActionListener

interface and the actionPerformed() method listens to the context menu created by

the mouseClicked() method.

A.3.6.13 AbstractFileTable abstract class

This class had its FileTableModel field changed to an

AbstractFileTableModel. The return type and parameter type for the getter and

setter for this field also changed, which propagated to 7 other classes.

The calls to setCellRenderer() and seTableHeader() were removed from

this class, so the implementing class could set their own. The constructor parameters

were also changed. An AbstractFileTableModel was added, so that the

implementing classes could set their own.

224

A.3.6.14 Classes impacted by the change of AbstractFileTable’s fileTable field

These 7 code files were not part of the estimated impact set.

CompareFoldersAction, InvertSelectionAction, MarkAllAction,

MarkExtensionAction, OpenInBothPanelsAction, FileDragSourceListener

and StatusBar were all affected by the type change of the field tableModel in the

AbstractFileTable class. The class OpenInBothPanelsAction, required its call

to the getter for this field to be cast to the type FileTableModel. The other classes all

required their FileTableModel fields to be changed to the

AbstractFileTableModel type.

A.3.6.15 FileTable class

This class now calls setTableHeader() and setCellRenderer() in its

constructor to so that it FileTableHeader and FileTableCellRenderer supply

those responsibilities. Likewise it added a FileTableModel to the super constructor

call.

A.3.6.16 FlashLabel class

This class was moved to a new package

org.severe.ui.dialog.search.components.

A.3.6.17 ButtonPanel class

This class was extracted from SearchDialog. It contains the south panel of

SearchDialog. This includes a JLabel that displays the total results found during a

search. It contains the objects of JButton to start, stop and cancel searches. It

implements the ActionListener interface and listens to the 2 buttons. It also has a

method that takes 2 integers as parameters and sets the text of the JLabel with these.

225

A.3.6.18 DirectoryPanel class

The method actionPerformed() had a temporary variable assignment

changed to a call to the static File.separator() method. It was making a system

call to determine the file separator path. The temporary variable was then inlined.

A.3.6.19 InputPanel class

Javadoc comments were clarified.

A.3.6.20 SearchDialogTest class

This class is the unit test suite for the SearchDialog class. It had 5 tests

modified and 1 deleted. Three tests were moved to ResultsPanelTest 3 to

ButtonPanelTest.

A.3.6.21 SearchThreadTest class

This class is the unit test suite for the SearchThread class. All 4 of its tests

were modified. The objects of AbstractFile it used for testing were moved to

TestConstants.

A.3.6.22 ResultsPanelTest class

This class is the unit test suite for the ResutlsPanel class. It had 4 test

modified and 3 moved from SearchDialogTest.

A.3.6.23 SearchTableTest class

This class is the unit test suite for the SearchTable class. It was moved to the

org.severe.ui.dialog.table.tests package. It had 5 tests modified, 1 added

and 1 deleted.

226

A.3.6.24 SearchTableModelTest class

This class is the unit test suite for the SearchTableModel class. It was added

and has 19 tests.

A.3.6.25 SearchTableHeaderTest class

This class is the unit test suite for the SearchTableHeader class. It was added

and has 3 tests.

A.3.6.26 FlashLabelTest class

This class is the unit test suite for the FlashLabel class. It was moved to the

org.severe.ui.dialog.components package.

A.3.6.27 ButtonPanelTest class

This class is the unit test suite for the ButtonPanel class. It was added and has

4 tests.

A.3.6.28 DirectoryPanelTest class

This class is the unit test suite for the DirectoryPanel class. It had 3 tests

modified the AbstractFile constants they referred to were moved to

TestConstants.

A.3.6.29 InputPanelTest class

This class had a Javadoc update.

A.3.6.30 SearchDialogTestSetUp abstract class

This class creates an instance of SearchDialog for testing by classes that

extend it. The path to the test files defined as a String constant was moved to the

TestConstants class. It also added a field of type SearchTableModel that can be

used in tests.

227

A.3.6.31 BasicSearchFuncTest class

This is the functional test suite for the search functionality. It had 9 test tests

modified. The objects of AbstractFile it uses for testing were moved to

TestConstants. It added a new field of type SearchTableModel for use in tests.

A.3.6.32 TestConstants final class

This class was created to organize fields that are commonly referenced in tests.

This includes 5 objects of AbstractFile and the test directory path String.

A.3.7 Verification

After prefactoring and postfactoring all the regression tests passed. No new

regression tests were added for the abstract classes extracted from FolderPanel,

FileTable and FileTableModel. The classes in the org.severe.ui.dialog

packages now each have their own test class. All tests are in their own package, which

has the same name as the package containing the class being tested plus tests. There

is 1 functional test class, BasicSearchFuncTest. During verification 2 bugs were

found, both in the new classes created during postfactoring. Coverage for each

production code file is available in Table A.36.

The first bug was in SearchTableModel; when it was getting the path parent of

the search result instead of the path search result in the fillCellCacheAtRow()

method. The second bug was in SearchTable, in the addSearchResultMethod().

It needs to call resizeAndRepaint(), an inherited method after adding the first

result, to allow the table to resize the columns to the Objects in them.

228

 Table A.36 Change 3 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 SearchDialog 43 42 97.7 0 0

2 SearchThread 27 25 92.6 0 0

3 SearchTableCellRenderer 10 10 100.0 0 0

4 SearchTableHeader 38 38 100.0 0 0

5 SearchTableModel 65 65 100.0 0 1

6 SearchTable 34 33 97.1 0 1

7 ButtonPanel 23 23 100.0 0 0

8 DirectoryPanel 51 42 82.4 0 0

9 InputPanel 29 29 100.0 0 0

10 ResultsPanel 26 25 96.2 0 0

11 FlashLabel 14 14 100.0 0 0

12 AbstractFileTable 274 195 71.2 0 0

13 AbstractFileTableModel 37 21 56.8 0 0

14 FileTable 331 89 26.9 0 0

15 FileTableCellRenderer 95 84 88.4 0 0

16 FileTableHeader 28 4 14.3 0 0

17FileTableHeaderRenderer 18 18 100.0 0 0

18 FileTableModel 163 120 73.6 0 0

19 AbstractFolderPanel 60 35 58.3 0 0

20 FolderPanel 328 144 43.9 0 0

21 MainFrame 210 122 58.1 0 0

22 CompareFoldersAction 43 6 14 0 0

23 InvertSelectionAction 16 6 37.5 0 0

24 MarkAllAction 15 8 53.3 0 0

25 MarkExtensionAction 45 6 13.3 0 0

26 OpenInBothPanelsAction 34 9 26.5 0 0

27 FileDragSourceListener 27 3 11.1 0 0

28 StatusBar 207 151 72.9 0 0

229

A.3.8 Timing Data

Table A.37 contains the timing data for the change.

 Table A.37 Change 3 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:33

Impact Analysis 3:23

Prefactoring 2:11

Prefactoring Testing 0:07

Actualization 4:08

Actualization Testing 6:42

Postfactoring 15:49

Postfactoring Testing 5:34

A.3.9 Conclusions

This change could be described as an epic; however, it is difficult to see a logical

way to divide it into smaller pieces. Adding the existing table from another part of the

program is a do it or do not do it proposition. It would have been more difficult to add 1

column of the table at a time or some other piece of the table.

Alternately, a few parts of the change could have been left out; such as the ability

to click on a file, which causes the search window to close and the file to be selected in

muCommander’s main window. The issue here is that again, it would have been more

difficult to add later; but also this only required 2 methods, in already impacted classes.

So the size of the change would have been only trivially affected.

Some of the postfactoring could have been skipped and added to the backlog;

but the programmer already had the knowledge to do the postfactoring and was right

there in the code. To delay the postfactoring to another change would have just made it

230

more difficult. Most of the change was the refactoring of the code; the actualization itself

was reasonable. That said the process worked very well; this change shows that SIP

can handle a large change. The prefactoring phase made the actualization phase

simpler. The postfactoring phase allowed the code to be improved in ways that were not

apparent at the start of the change.

The changed set was only 11 compared to 21 code files in the estimated impact

set. Of these 10 code files, 8 were impacted during postfactoring, 2 were not impacted.

These 2 code files are suppliers to FileTable and the programmer assumed that a

change this large would propagate to all of FileTable’s suppliers. An additional 7

code files were impacted during postfactoring. This is because the programmer

changed the return type of a getter method that was extracted from FileTable to

AbstractFileTable.

Table A.38 shows the total number of code files in each set of each phase of the

change. Table A.39 is the current state of the product backlog. Figure A.22 to Figure

A.25 show screen shots of muCommander before and after the change

 Table A.38 Change 3 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Added Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

231

 Table A.39 Change 3 Current Product Backlog

Title Complete User Story

1 Basic
Search

x

Add a basic search function that allows a user to search
in the current directory for all or part of the title of a
folder or file, and return a list of the matching files and
directories.

2 Recursive
Search

x Add the ability to search inside all directories.

3 Advanced
Output

x Change the output to a table similar to the main
muCommander window.

4 Date
Search

Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6 Extension
Search

Add the ability to search for files with specific
extensions.

7 Properties
Search

Add options to search for files based on their properties.

8 Size
Search

Add the ability to search for a file by its size.

9
Regular

Expression
Search

Add capability to search by a regular expression.

10 Lucene
Search

Incorporate the Apache Lucene search.

232

 Figure A.22 Search window before Recursive search Change

233

 Figure A.23 Search window after Recursive search Change

234

 Figure A.24 Search window new input features circled

235

 Figure A.25 Search window after search

SIP – Change 4 Date Search

A.4.1Initiation

Allow the user search by a date of file’s modification to the Search Feature in

muCommander. It is an application which enhances an operating systems file explorer.

During the first 3 change requests, search capabilities were added, which helps a user

find files in the file system.

This change request will add the capability to the search within a specified date

range. The programmer will add 2 boxes to accept a minimum and a maximum date.

The search results will include files modified between these 2 dates. Next to these

boxes will be 2 icons that will open GUI calendars to select a date. A checkbox will be

236

added to allow the user to choose to use or not use this functionality. The program will

also validate the input dates.

A.4.2 Concept Location

No concept location was needed for this change request. Based on experience

obtained during previous change requests the programmer knew the search is

performed by the SearchThread class which was created during change 2.

A.4.3 Impact Analysis

The code file containing the concept location, SearchThread was marked as

Impacted in JRipples, by the programmer. That caused JRipples to mark 7 code files as

Next. From these code files, SearchDialog was marked as Impacted; it will need to

change, because it creates an object of type SearchThread, which will change. This

caused JRipples to mark 18 more code files as Next. The programmer then marked

InputPanel as Impacted; it will hold the new GUI panel to choose a date range to

search. JRipples added 4 code files to the set of Next code files for a current total of 27

code files.

The harness code files BasicSearchFuncTest, InputPanelTest,

SearchDialogTest and SearchThreadTest were all marked as Impacted. There

were now 39 code files marked as Next. The programmer visited ButtonPanel and

marked it as Impacted; it will be responsible for checking to make sure there are no

errors in the search criteria, before a search starts. The set of code files marked Next

was now 40. DirectoryPanel was visited and marked as Impacted; it has the only

error currently, now that multiple errors will be possible, there needs to be a central

237

management location for errors. The set of code files marked as next was again 40. The

harness code files DirectoryPanelTest, ButtonPanelTest and TestConstants

were all marked as Impacted. This did not add any code files to the Next set, so the set

of Next code files was now 37.

The programmer visited AbstractFile; it has a method, getDate(), that can

be used to compare an AbstractFile’s date to a date range; therefore, it was marked

Unchanged. This change request will require a date to be formatted, the same way it is

in AbstractFileTable. AbstractFile was already marked as Next; therefore the

programmer visited it. The class calls a static method in CustomDateFormat;

therefore, AbstractFileTable was marked as Propagating. Then

CustomDateFormat was visited; it has a method, getDateFormatString() that

returns a date format String based on setting in the preference file. It would work, but

it included the time, since usually users do not want to be that specific when searching,

the programmer decided the day, month and year would be fine grained enough. Thus,

CustomDateFormat was marked as Impacted; it will need a new method that returns a

date format without the time. This left 112 code files in the Next set.

These code files were visited in a similar manner as in change 3. Code files such

as MarkForwardAction were just marked as Unchanged based on their names. But,

other code files, such as ResultsPanel that is part of the search dialog, were visited

more closely. Ultimately, these code files were marked as Unchanged.

Table A.40 lists the totals of each type of code file visited. Table A.41 lists the

code files visited during impact analysis, it leaves off the 112 code files marked

238

Unchanged at the end of impact analysis for clarity. A UML diagram of impact analysis

is in Figure A.26.

 Table A.40 Change 4 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Date
Search

117 14 1 112 0

 Table A.41 Change 4 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 SearchThread JRipples →
Impacted

Impacted Concept Location

2 SearchDialog JRipples →
Impacted

Impacted Creates an instance
of SearchThread

3 InputPanel JRipples →
Impacted

Impacted Will hold a GUI date
panel

4 SearchDialogTest JRipples →
Impacted

Impacted

5 SearchThreadTest JRipples →
Impacted

Impacted

6 BasicSearchFuncTest JRipples →
Impacted

Impacted

7 InputPanelTest JRipples →
Impacted

Impacted

8 ButtonPanel JRipples →
Impacted

Impacted Needs to check for
an error when search

button pushed

9 DirectoryPanel JRipples →
Impacted

Impacted Will need to move its
error state to a
central location

10 DirectoryPanelTest JRipples →
Impacted

Impacted

11 ButtonPanelTest JRipples →
Impacted

Impacted

12 TestConstants JRipples →
Impacted

Impacted

239

13 AbstractFile JRipples →
Unchanged

Unchanged Has a getDate()
method, nothing else

needed

14 AbstractFileTable JRipples →
Propagating

Propagating Has table with
formatted date.

15 CustomDateFormat JRipples →
Impacted

Impacted Needs new method
to create date format

w/o time

 Figure A.26 Change 4 Impact Analysis UML

A.4.4 Prefactoring

To prepare for this change request the programmer extracted the class

ErrorManager from DirectoryPanel. The programmer did this because the

program will handle multiple types of errors; instead of having SearchDialog check

each error to see if it is enabled before a search, it will just check with this new class.

This new class will also blink all the enabled errors if the user tries to start a search with

240

an error enabled. This refactoring was done to make the change request easier, not

because of existing code smells.

Table A.42 lists the totals of each type of code file visited. Table A.43 lists the

code files visited during prefactoring and the LOCs added and deleted in each. A UML

diagram of prefactoring is in Figure A.27.

 Table A.42 Change 4 Prefactoring Summary

Title Code Files

Visited Changed Added Propagating Unchanged Added to
Changed Set

Date
Search

8 8 2 0 0 0

 Table A.43 Change 4 Prefactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 ErrorManager Extracted class, added methods 32 0 32

2 DirectoryPanel Extracted class from 10 13 23

3 InputPanel Changed method 3 2 5

4 SearchDialog Changed methods 8 5 13

5 ButtonPanel Changed method 8 2 10

6 ErrorManagerTest Extracted class, added methods 60 0 60

7 DirectoryPanelTest Moved tests from, changed test 5 14 19

8 InputPanelTest Changed method 2 1 3

9 ButtonPanelTest Changed methods 10 0 10

10 BasicSearchFuncTest Changed methods 3 3 6

241

SearchDialog DirectoryPanel

InputPanelTest

ErrorManagerTest

ButtonPanelTest

InputPanel

ErrorManager

BasicSearchFuncTest

ButtonPanel

DirectoryPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

 Figure A.27 Change 4 Prefactoring UML

A.4.4.1 ErrorManager class

The programmer extracted this class from DirectoryPanel. It has 1 field of

type HashSet that holds objects of FlashLabel. There are 5 methods:

enableError(), disableError(), flashErrors() and 2 isErrorEnabled()

methods. One of the isErrorEnabled() methods takes no parameters, it returns true

if any errors are enabled, while the other takes a parameter of type FlashLabel and it

returns true if that error is enabled. The enableError() and disableError()

methods also take a FlashLabel and add or remove it from the HashSet. The

flashErrors() methods, just calls the flash() method in each enabled

FlashLabel.

242

A.4.4.2 DirectoryPanel class

This class had the ErrorManager class extracted from it; this included 2

methods, flashError() and isErrorEnabled(). Three methods that called the

method setVisible() on the field directoryError, now call ErrorManager’s

enableError() and disableError() methods.

A field of type ErrorManager was added. A parameter of type ErrorManager

was also added to the constructor, which sets the field to the parameter.

During refactoring the programmer noticed that the visibilities of this classes

fields were all set to public. This probably was done by the Eclipse refactoring tool when

the class was extracted from InputPanel and not noticed at the time. The visibilities

were all changed to private, which did not propagate.

A.4.4.3 InputPanel class

This class’s constructor changed; it added a parameter of type ErrorManager,

which it passes to DirectoryPanel. This class creates an object of ErrorManger.

A.4.4.4 SearchDialog class

The programmer added a field of type ErrorManager. It creates an object of

that type in the constructor and passes it to the InputPanel and ButtonPanel

objects it creates. The if statement that called the methods isErrorEnabled() and

flashError() in class DirectoryPanel was extracted from the method

searchStopButton() to ButtonPanel.

A.4.4.5 ButtonPanel class

This class added a field of type ErrorManager and a parameter of the same

type to its constructor, which it uses to set the field. An if statement extracted from

243

SearchDialog was added to the actionPerformed() method. It called a method

isErrorEnabled() in DirectoryPanel to check if the error was enabled and if it

was called flashError(). These methods were changed to call isErrorEnabled()

and flashErrors() in ErrorManager.

A.4.4.6 ErrorManagerTest class

This class is the unit test suite for the ErrorManager class it was added during

this change request. It has 5 tests, 2 of which, testFlashErrors() and

testIsErrorEnabled() were moved from DirectoryPanelTest.

A.4.4.7 DirectoryPanelTest class

This class is the unit test suite for the DirectoryPanel class. It had 1 test

changed and 2 test moved to ErrorManagerTest, testFlashError() and

testIsErrorEnabled().

A.4.4.8 InputPanelTest class

This class is the unit test suite for the InputPanel class. It had its setUp()

method changed, it had to add a parameter of type ErrorManager to the InputPanel

constructor call it makes to create and object of type InputPanel.

A.4.4.9 ButtonPanelTest class

This class is the unit test suite for the ButtonPanel class. It had 1 test added.

A.4.4.10 BasicSearchFuncTest class

This class is a functional test suite. It had 3 tests changed.

A.4.5 Actualization

To actualize this change request, the programmer added a new class of type

DatePanel that extends JPanel. This class contains all the GUI components of the

244

change request description. This class gets dates from the user as text and creates

Date objects from the text. It performs error checking to make sure that the user entered

a valid date and checks to make sure that the minimum date is less than the maximum

date. To create a border for the class that has a JCheckBox in it the programmer

added a class that was provided by Kumar under a GNU License [43]. A test class for it

was also added.

To add GUI calendars for the user to select a date, new classes were added by

the programmer. These classes were taken from a program called JCalendar written

by Toedter and available online under the GNU Lesser General Public License [44]. The

program contained more functionality then needed so specific classes were chosen.

These classes are JCalendar, JDayChooser, JMonthChooser, JYearChooser

and JSpinField. These classes used together made up a very feature rich GUI

calendar with a month drop down box and a year text box, both of which have buttons to

increment or decrement their values. All of these classes were changed and added into

muCommander. They were placed in a new package called

org.severe.ui.dialog.calendar. A unit test class was added for each class

taken from JCalendar and a functional test class was added that tests all the classes

together. These test classes were all added to a new package,

org.severe.ui.dialog.calendar.tests.

muCommander displays each file’s modified date in the GUI with the time;

entering the time when doing a date search seemed overly burdensome. The

CustomDateFormat class had a static method getDateNoTimeFormatString()

added that returns a DateFormat String based data from the applications

245

preferences file, but without the time. This allows the user to choose a date in the same

format as the application display, but without the time.

Table A.44 lists the totals of each type of code file visited. Table A.45 lists the

code files visited during actualization and the LOCs added and deleted in each. A UML

diagram of actualization is in Figure A.28.

 Table A.44 Change 4 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Date
Search

7 7 16 0 0 0

 Table A.45 Change 4 Actualization Code Files

Code File Task
Lines of Code

Comments
Added Deleted Total

1 DatePanel
Added
class

308 0 308

2 ComponentTitledBorder
Added
class

40 5 45
Imported

class started
with 94 LOC

3 CustomDateFormat
Added
method

5 0 5

4 JCalendar
Added
class

24 14 38
Imported

class started
with 147 LOC

5 JDayChooser
Added
class

25 3 28
Imported

class started
with 274 LOC

6 JMonthChooser
Added
class

19 1 20
Imported

class started
with 170 LOC

7 JYearChooser
Added
class

6 4 10
Imported

class started
with 44 LOC

8 JSpinField Added 8 3 11 Imported

246

class class started
with 133 LOC

9 ErrorManager

Added,
changed
methods

5 1 6

10 InputPanel
Changed
methods

11 1 12

11 SearchThread

Added,
changed
methods

19 2 21

12 SearchDialog
Changed
method

2 1 3

13 DatePanelTest
Added
class

213 0 213

14 DateSearchFuncTest
Added
class

181 0 181

15 ComponentTitledBorderTest
Added
class

123 0 123

16 JCalendarTest
Added
class

110 0 110

17 JDayChooserTest
Added
class

151 0 151

18 JMonthChooserTest
Added
class

95 0 95

19 JYearChooserTest
Added
class

71 0 71

20 JSpinFieldTest
Added
class

147 0 147

21 JCalendarFuncTest
Added
class

98 0 98

22 SearchThreadTest
Changed

tests
29 4 33

23 TestConstants Added field 1 0 1

247

 Figure A.28 Change 4 Actualization UML

A.4.5.1 DatePanel class

This class was created during actualization by the programmer. It contains a

JCheckBox field that allows the user to enable and disable a date search. There are 2

JTextField objects for the user to enter dates in, 2 JButton objects that open

JCalendar dialogs, 2 JLabel objects to describe the JTextField objects, 2 Date

248

and 2 boolean error fields that can be set when an invalid date is entered. These fields

all correspond to a minimum and maximum date range. There are also fields of type

DateFormat for the date format String, a FlashLabel to display an error, an

ErrorManager and a boolean minGreatestError that is true when the minimum

date is greater than the maximum.

The border for this class was set to a ComponentTitledBorder this allows the

JCheckbox to be added to the border. The methods include createDateTextBox(),

which initializes the JTextField objects and createCalendarButton() that

initializes the JButton objects. The setEnabled() method was overridden so that it

only enables the JCheckBox unless the JCheckbox is selected, in which case it

enables all the components. The method datePanelSetSelected() is called by

setEnabled() to enable the components. The actionPerformed() method listens

to the JCheckBox and JButton fields. The focusLost() method listens to the

JTextField objects and sets the Date fields when they lose focus.

The getErrorMessage() method returns a String error message based

upon which boolean errors are true. The isError() method returns true if any of the

boolean errors are true. The dateTextBoxCheck() method tries to parse the text in

the JTextField objects into a Date. The checkMinLessThan() method checks if

the minimum Date is greater than the maximum Date. There are getters for the Date

fields and an isDateSearch() that returns true if the JCheckBox is selected. The

keyReleased() method calls the dateTextboxCheck() method if the text in one of

the JTextField objects is updated and stops displaying the user error if the date has

been changed to a valid one.

249

A.4.5.2 ComponentTitledBorder class

The ComponentTitledBorder class was added to the project by the

programmer. It was written by Kumar and is available under the terms of the GNU

Lesser General Public License [43]. The Java swing libraries do not have a way to add

a check box to a panel’s border that enables the inner components. This is a very

popular way to organize a panel in many C++ frameworks. This class uses the

paintBorder() method to draw a component such as a check box in the border. It

then forwards MouseEvent objects that happen to that component to keep the

components contracts with its suppliers. The only changes made to this class were to

add getters for testing.

A.4.5.3 CustomDateFormat class

One static method was added to this class, getDateNoTimeFormat(). It

returns a DateFormat string based upon the date string defined in the application’s

preferences file.

A.4.5.4 JCalendar class

This class was written by Toedter and is being used under the GNU Lesser

Public License [44]. It and its suppliers, JDayChooser, JMonthChooser,

JYearChooser and JSpinField create a GUI calendar that a user can select a date

from. A GUI dialog calendar is not part of the Swing libraries, but has been done by

others in many different ways, so one was selected add added instead of reinventing it.

The programmer made the following changes to this class; it was changed from

extending JPanel to extending JDialog, so that it does not need to be added to a

container to be displayed. The constructors were changed; one had an integer

250

parameter removed and replaced with a parent of type Component. This allows the

dialog to open near the JButton that creates an instance of it. The other constructor

takes no parameters and opens the dialog in non-modal mode for testing. They both call

a new init() method that initializes the dialog. This method is similar to the old

constructor, but it also adds a JLabel to display the dialogs title. An if statement was

added to the propertyChange() method that disposes of the dialog. Finally, the main

method was removed because it will no longer work now that the JCalendar extends

JDialog.

A.4.5.5 JDayChooser class

This class is a supplier to JCalendar class and was also written by Toedter

[44]. The programmer added 2 fields, 1 a static field of type int that gets the system

double click interval and the other of type long that records a click time to determine if it

is within the double click interval. The constructor was changed to call

setRolloverEnabled() to false for all of the JButton objects that represent the

days. The actionPerformed() method was changed to listen for both single and

double clicks on the JButton days. Now if the user double clicks a button, it will call

firePropertyChange() to tell JCalendar to dispose itself. A bug was addressed

here, that 2 ActionEvent objects can be created when a JButton is clicked on. One

of these is created without a time and is now ignored. This allowed some commented

code in the keyPressed() method that allows the user to traverse between days with

the arrow keys.

251

A.4.5.6 JMonthChooser class

This class is a supplier to JCalendar class and was also written by Toedter

[44]. The only changes made by the programmer were to add getters for testing.

A.4.5.7 JYearChooser class

This class is a supplier to JCalendar class and was also written by Toedter

[44]. The setValue() method’s visibility was changed by the programmer from

protected to public, so it can be called by DatePanel. A getter was added for testing.

A.4.5.8 JSpinField class

This class is a supplier to JCalendar class and was also written by Toedter

[44]. The programmer made the following changes, the setValue() method no longer

calls firePropertyChange() and the setValue() method’s visibility was lowered

to public from protected for testing. Two getters were added for testing.

A.4.5.9 ErrorManager class

This class had an overloaded method added by the programmer,

enableError(), with an additional boolean parameter. When it is set to false the

error is added so the isErrorEnabled() method will return true, but the

FlashLabel will not be set to visible. This was done to make the state of errors is

current, but the user can be given time to correct it on their own without having an error

displayed until appropriate. The disableError() method also added a call to

FlashLabel repaint() to make sure a disabled error is removed from the GUI.

A.4.5.10 InputPanel class

The programmer added a DatePanel to the constructor of this JPanel class

and a FlashLabel error message from DatePanel’s getErrorLabel() method to

252

its inner panel. This location will be a good place to show errors to the user without

crowding the panel where they choose the search criteria. A call to DatePanel’s

setEnabled() method was added to the switchToSearchState() method. A

getter for the DatePanel object was also added.

A.4.5.11SearchThread class

The programmer added a boolean field to enable a date search. The

constructor added a boolean parameter that sets the new field. The

recursiveSearch() method now calls isDateInRange() for each AbstractFile

to check if it is in the date range specified, if the date search is enabled. The

isDateInRange() method was added. It takes an AbstractFile as a parameter

and checks to make sure it is in the date range entered in the DatePanel.

A.4.5.12 SearchDialog class

The call in the searchCommand() method that creates an object of type

SearchThread had a parameter added to match the new SearchThread constructor.

The parameter is set by a call to DatePanel’s isDateSearch() method.

A.4.5.13 DatePanelTest class

This class was added, it is the unit test suite for the DatePanel class; it has 17

tests.

A.4.5.14 DateSearchFuncTest class

This class was added it is a functional test suite for the DatePanel class and its

suppliers; it has 6 tests.

253

A.4.5.15 ComponentTitledBorderTest class

This class was added, it is the unit test suite for the ComponentTitledBorder

class; it has 12 tests.

A.4.5.16 JCalendarTest class

This class was added, it is the unit test suite for the JCalendar class; it has 11

tests.

A.4.5.17 JDayChooserTest class

This class was added, it is the unit test suite for the JDayChooser class; it has

12 tests.

A.4.5.18 JMonthChooserTest class

This class was added, it is the unit test suite for the JMonthChooser class; it

has 11 tests.

A.4.5.19 JYearChooserTest class

This class was added, it is the unit test suite for the JYearChooser class; it has

5 tests.

A.4.5.20 JSpinFieldTest class

This class was added, it is the unit test suite for the JSpinField class; it has 14

tests.

A.4.5.21 JCalendarFuncTest class

This class was added it is a functional test suite for the JCalendar class and its

suppliers; it has 6 tests.

254

A.4.5.22 SearchThreadTest class

This class is the unit test suite for the SearchThread class. It had 4 test

changed and 2 tests added.

A.4.5.23 TestConstants class

This class contains static final fields used by the test suite. It added a field of type

long that is set to the length of a day in milliseconds.

A.4.6 Postfactoring

The DatePanel class that was created during actualization by the programmer

was too large and had too much responsibility. So the class DateField was extracted

from it. It extends the JTextField class; it adds methods to customize the class to

only accept Date objects. The class handles the parsing of text to Date objects.

The programmer extracted an abstract class, SearchFuncTestSetUp from

BasicSearchFuncTest and DateSearchFuncTest that has setUp() and

tearDown() methods. It is similar to the class SearchDialogTestSetUp that was

extracted during change 2. All 3 of these classes were put in a new package

org.severe.ui.dialog.search.functional.tests. These functional tests take

significantly longer to run than unit test; having them in their own package makes it

easier to run them separately. The programmer did this extraction because the

functional tests expanded to 2 classes with similar setUp() and tearDown() methods

during actualization.

The other classes changed during postfactoring were cleaned up; for example,

unused methods were removed, fields were moved to the beginning of the class as

other classes in muCommander and the Javadoc was updated. In the classes added

255

from other sources, JCalendar, its suppliers and ComponentTitledBorder this was

necessary because these classes were intended for general use. There were some

parts that did not match the code style of muCommander and were not needed. In the

case of existing classes such as SearchThread, the cleanup was made necessary

because of actualization.

Table A.46 lists the totals of each type of class visited. Table A.47 lists the

classes visited during postfactoring and the LOCs added and deleted in each. A UML

diagram of postfactoring is in Figure A.29.

 Table A.46 Change 4 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Date
Search

20 19 3 1 0 0

 Table A.47 Change 4 Postfactoring Code Files

Code File Task
Lines of Code

Comments
AddedDeletedTotal

1 DatePanel

Extracted class
from, extracted

methods
58 180 238

2 DateField Extracted class 121 0 121

3 ComponentTitledBorder Javadoc 0 0 0

4 JCalendar
Removed field,

changed methods
7 25 32

5 JDayChooser
Moved fields,

methods
14 33 47

6 JMonthChooser
Moved fields

methods
10 29 39

7 JYearChooser
Moved fields,

methods
4 15 19

8 JSpinField Moved fields 7 10 17

256

9 SearchThread Javadoc 0 0 0

10 SearchFuncTestSetUp Class extracted 71 0 71

11 BasicSearchFuncTest
Class extracted

from
2 66 68

12 DateSearchFuncTest
Class extracted

from
25 78 103

13ComponentTitledBorderTest Javadoc 0 0 0

14 DateFieldTest Extracted class 115 0 115

15 DatePanelTest
Extracted class

from
20 102 122

16 JCalendarTest Javadoc 0 1 1

17 JDayChooserTest Javadoc 4 3 7

18 JMonthChooserTest Javadoc 0 0 0

19 JYearChooserTest Method removed 4 3 7

20 JSpinFieldTest Javadoc 0 2 2

21 JCalendarFuncTest Method removed 1 9 10

22 SearchThreadTest Javadoc 5 4 9

257

SearchDialog

SearchThreadDateSearchFuncTest

SearchThreadTest

DatePanel

DatePanelTest

ComponentTitledBorder

JCalendar

JDayChooser JMonthChooser JYearChooser

JSpinFieldTest

ComponentTitledBorderTest

JCalendarTest

JDayChooserTest JMonthChooserTest

JYearChooserTest

JCalendarFuncTest

JSpinField

DateField

DateFieldTest

SearchFuncTestSetUp

BasicSearchFuncTest

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

 Figure A.29 Change 4 Postfactoring UML

A.4.6.1 DatePanel class

This class had a class, DateField, extracted from it. Two Date fields and 2

boolean error fields were extracted, along with parts of the methods

createDateTextBox(), actionPerformed() and all of focusLost(),

focusGained(), dateTextBoxCheck(), keyPressed(), keyReleased(),

keyTyped() and checkYear(). This included the responsibility for initializing the

258

JTextField objects that the user can enter dates in and parsing the text to create

Date objects. The JTextField fields changed their types to DateField objects.

A PropertyChangeListener interface was added; it listens for

PropertyChangeEvent objects from the 2 DateField objects. A new showError()

method was extracted from actionPerformed(), datePanelSetEnabled() and

propertyChanged().

A.4.6.2 DateField class

This class was extracted from DatePanel. It extends JTextField; it adds

fields of type Date, DateFormat, SimpleDateFormat, a boolean for errors and 3

static final String objects used to identify PropertyChangeEvent objects it fires.

The class implements the KeyListener and FocusListener interfaces. There is a

setter for the Date, which will also call firePropertyEvent() to notify listeners that

the date has changed. A setText() method that takes a Date as a parameter, an

isError() method that returns true if an invalid date is entered in the field.

The dateTextBoxCheck() method was extracted from DatePanel, but it was

simplified; before it had a JTextField parameter, but now since it can only check its

JTextField, it was removed. The error message responsibility was also removed from

this method. The checkYear() method was extracted from DatePanel. The only

change was to make its temporary variable of type SimpleDateFormat a class field.

The focusLost() method now calls setText() with the Date field and

firePropertyChange() to inform listeners they should now display an error

message, if appropriate. The keyReleased() method was extracted from

259

DatePanel; it could be reduced because it does not have to have different paths for 2

JTextField objects. It now just handles its own KeyEvent objects.

A.4.6.3 ComponentTitledBorder class

This class had its Javadoc updated.

A.4.6.4 JCalendar class

This class had its unused Locale field removed, along with its getters and setters.

The method setCalendar() called firePropertyChange() but there are no

listeners for it, so it was removed. The fields were moved from the end of the class file

to the beginning to match the rest of muCommander and Javadoc added.

A.4.6.5 JDayChooser and JMonthChooser class

These classes had the getter and setter for Locale removed, they will only use

the system Locale. Their main() methods were removed, they are not needed. The

fields were moved from the end of the class file to the beginning to match the rest of

muCommander and Javadoc added.

A.4.6.6 JYearChooser class

This class had its unneeded main() method removed. The fields were moved

from the end of the class file to the beginning to match the rest of muCommander and

Javadoc added.

A.4.6.7 JSpinField class

The fields were moved from the end of the class file to the beginning to match

the rest of muCommander and Javadoc added.

A.4.6.8 SearchThread class

This class had its Javadoc updated.

260

A.4.6.9 SearchFuncTestSetUp abstract class

This class was extracted from BasicSearchFuncTest and

DateSearchFuncTest. It contains the setUp() and tearDown() methods that

create an instance of SearchDialog for testing. It has 8 fields corresponding to

regularly used components of the SearchDialog for the test to use. It also has 3 tester

fields that are part of Abbot that the tests can use.

A.4.6.10 BasicSearchFuncTest class

This class is a functional test suite. It had its setUp() and tearDown()

methods extracted to SearchFuncTestSetUp, along with all of its fields.

A.4.6.11 DateSearchFuncTest class

This class is a functional test suite. It had its setUp() and tearDown()

methods extracted to SearchFuncTestSetUp, it still has a setUp() method call that

calls the super method and initializes its 2 remaining fields, 9 were extracted. It had 2

tests and 1 test helper method changed.

A.4.6.12 ComponentTitledBorderTest class

This class had its Javadoc updated.

A.4.6.13 DateFieldTest class

This class is the test suite for the DateField class. Seven tests were moved

from DatePanelTest then they were combined into 3 tests. There are 8 total tests.

A.4.6.14 DatePanelTest class

This class is the test suite for the DatePanel class. Seven tests were moved

from DatePanelTest. Three tests were changed, there are 10 remaining tests.

261

A.4.6.15 JCalendarTest class

This class is the test suite for the JCalendar class; its Javadoc was updated

and used imports removed.

A.4.6.16 JDayChooserTest class

This class is the test suite for the JDayChooser class; its Javadoc was updated

and used imports removed.

A.4.6.17 JMonthChooserTest class

This class is the test suite for the JMonthChooser class; its Javadoc was

updated.

A.4.6.18 JYearChooserTest class

This class is the test suite for the JYearChooser class; its Javadoc was

updated, used imports and before class was removed.

A.4.6.19 JSpinFieldTest class

This class is the test suite for the JSpinField class; its Javadoc was updated

and used imports removed.

A.4.6.20 JCalendarFuncTest class

This class is the functional test suite for the JCalendar class and its suppliers;

its Javadoc was updated, used imports and tearDown() method was removed.

A.4.6.21 SearchThreadTest class

This class is the test suite for the SearchThread class; its Javadoc was

updated and used imports removed.

262

A.4.7 Verification

After prefactoring and postfactoring all the regression tests passed. No new

regression tests were added. All tests are in their own package, which has the same

name as the package containing the code file being tested plus tests. There are 3

functional test classes. During verification 2 bugs were found, both in the new classes

created during actualization.Table A.48 lists the coverage of each production code file

added during the SIP and its statement coverage by the test suite.

 Table A.48 Change 4 Statement Verification

Code file

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 SearchDialog 43 42 97.7 0 0

2 SearchThread 40 38 95.0 0 0

3 ErrorManager 13 13 100.0 0 0

4 ComponentTitledBorder 35 35 100.0 0 0

5 DateField 55 54 98.2 0 0

6 ButtonPanel 26 26 100.0 0 0

7 DatePanel 89 86 96.6 0 2

8 DirectoryPanel 50 41 82.0 0 0

9 InputPanel 36 36 100.0 0 0

10 JCalendar 75 60 80.0 0 0

11 JDayChooser 142 133 93.7 0 0

12 JMonthChooser 76 63 82.9 0 0

13 JYearChooser 15 15 100.0 0 0

14 JSpinField 64 54 84.4 0 0

15 CustomDateFormat 22 13 59.1 0 0

The first bug was in DatePanel; if the user types a date with a 2 digit year, the

Date was parsed as 1st century year. A new method was added to parse the Date into

263

a user expected date. The second bug was that a the Date objects were not being read

in before a search started, which could cause a search without a Date, even though a

date was displayed to the user. Adding a KeyListener to parse the Date after each

keystroke solved the problem.

A.4.8 Timing Data

Table A.49 contains the timing data for the change request.

 Table A.49 Change 4 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:00

Impact Analysis 1:26

Prefactoring 1:41

Prefactoring Testing 0:41

Actualization 4:42

Actualization Testing 3:34

Postfactoring 4:46

Postfactoring Testing 1:28

A.4.9 Conclusions

This change request added a significant number of code files to muCommander,

but the change request required less effort than change 3. This is because the

programmer reused 6 code files from outside sources that just needed slight

modifications to be added to the project. These code files provided functionality that is

missing from the Swing libraries, but are available in many other language libraries and

frameworks. For example, the ComponentTitledBorder is a popular feature in many

C++ frameworks. This is why there was no real reason to write these classes again,

many others have already solved these problems and made them available for use.

264

The impact set was 1 code file smaller than the estimated impact set. The

SearchDialogTest code file did not need to be changed. It is difficult to determine

how the test code files will change. In this case, the programmer assumed that since

SearchDialog needed to change, then its test would change. However, only the call

to SearchThread’s constructor needed to change. This did not require any additional

testing.

This change request presented a challenge to coordinate the date parsing and

error messages. Making sure a search cannot happen with an invalid date, but not

displaying the date so frequently, is complicated. The quirks of the Gregorian calendar

are broad; the programmer believes that there is a high probability of bugs appearing at

certain dates. Looking at the code after postfactoring, it is clear that having the Date

parsing done in 1 code file and another code file handle the responsibility of when to

display the date was much simpler. An easier solution would have been to create the

DateField code file first, but that design was not apparent to the programmer at the

time.

The prefactoring of extracting a class to manage the errors will make future

change requests that require displaying an error easier with a smaller impact set. For

instance, the ButtonPanel now checks with the ErrorManager class when the

JTextField startStopButton is pressed; so if a new error is needed, so long as it

uses the ErrorManager class, ButtonPanel will not be impacted, but it will still know

if an error is enabled or not.

265

Table A.50 shows the total number of code files in each set of each phase of the

change request. Table A.51 is the current state of the product backlog. Figure A.30 to

Figure A.33 show screen shots of muCommander before and after the change request.

 Table A.50 Change 4 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact

Set

Impact
Set

Added during Total

Added Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4
Date

Search
0 13 12 2 16 3 1,120

266

 Table A.51 Change 4 Current Product Backlog

Title Complete User Story

1 Basic
Search

x

Add a basic search function that allows a user to search
in the current directory for all or part of the title of a
folder or file, and return a list of the matching files and
directories.

2 Recursive
Search

x Add the ability to search inside all directories.

3 Advanced
Output

x Change the output to a table similar to the main
muCommander window.

4 Date
Search

x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

Add capability to search by case sensitive search terms.

6 Extension
Search

Add the ability to search for files with specific
extensions.

7 Properties
Search

Add options to search for files based on their properties.

8 Size
Search

Add the ability to search for a file by its size.

9
Regular

Expression
Search

Add capability to search by a regular expression.

10 Lucene
Search

Incorporate the Apache Lucene search.

267

 Figure A.30 Search window before Date Search Change

268

 Figure A.31 Search window after the Date Search Change

269

 Figure A.32 Search window with date search circled

270

 Figure A.33 Search window with date search calendar

SIP – Change 5 Case Sensitive Search

A.5.1Initialization

The program, muCommander enhances an operating systems file explorer.

During the first 4 change requests, search capabilities were added; which include:

searching for a term, searching in any file system directory, recursively searching in

subfolders, displaying results in a GUI table with the look and feel of the muCommander

application and searching within a specified date range.

This change request is: “Add capability to search by case sensitive search

terms.” A check box will be added to the GUI display that will allow the user to turn this

271

capability on and off. To organize the GUI better a border will be added around the new

check box and the recursive search check box.

A.5.2 Concept Location

No concept location was needed for this change. Based on experience obtained

during previous changes the programmer knew the search is performed by the

SearchThread class which was created during change 2.

A.5.3 Impact Analysis

To start impact analysis the programmer marked SearchThread as Impacted in

JRipples. This marked 9 classes as Next. During the visit the programmer realized that

SearchThread had 2 responsibilities, 1 to iterate through the files of the file system

and 1 to check if each file met the search criteria. This made sense at first, because

there was only 1 search criterion, the file name. However, a second, date search criteria

was added in the last change and a third was going to be added this change. The

programmer decided to refactor this responsibility from SearchThread during

prefactoring. This requirement influenced the programmer’s decisions during impact

analysis.

The class InputPanel was visited and marked as Impacted because it contains

the GUI panel that the case sensitive check box will be added to; JRipples added 12

classes to the Next set. The programmer then visited SearchDialog, which was

marked as Impacted because a new class created during this change that holds all the

search criteria would be instantiated there. JRipples increased the Next set to 30

classes. The programmer then visited DatePanel, which was marked as Impacted

because it would be affected by the prefactoring. JRipples increased the Next set to 36

272

classes. To make the prefactoring already mentioned easier, the responsibility for the

buttons that open the date picker would be moved from DatePanel to DateField;

therefore DateField was also marked as Impacted. JRipples added 1 class to the

Next set, so it was still 36 classes. The programmer visited ButtonPanel and did not

see any reason it would be impacted, it was marked Unchanged. DirectoryPanel

was visited next; the user chooses the directory to search through this class, which is

related to the search criteria, so it was marked as Impacted. JRipples added 3 classes

to the Next set; a subset of the Next set, the 21 classes that are not test classes were

visited by the programmer and marked Unchanged. These classes did not have any

responsibility related to the search criteria.

The programmer then visited the test classes and marked SearchThreadTest,

InputPanelTest, SearchDialogTest, DatePanelTest, DateFieldTest,

DirectoryPanelTest, ButtonPanelTest, BasicSearchFuncTest,

DateSearchFuncTest and SearchFuncTestSetUp as impacted. These are the test

classes for classes in the Impact set already, except for ButtonPanelTest; it is the

test for, ButtonPanel, which is not in the impact set. It is impacted, because one of its

tests calls a method, searchCommand() in SearchDialog that will be modified. The

remaining 5 test classes were marked as Unchanged. After the programmer marked all

these classes, JRipples added 13 classes as Next. The programmer marked these

classes as Unchanged. They are all required by the various impacted test classes to set

up the tests and would not be modified.

273

The total classes of each mark are listed in Table A.52 and the classes visited

during impact analysis are listed in Table A.53. A UML diagram of impact analysis is

shown in Figure A.34.

 Table A.52 Change 5 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Case
Sensitive
Search

57 16 0 41 0

 Table A.53 Change 5 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 SearchThread JRipples →
Impacted

Impacted Concept Location

2 InputPanel JRipples →
Impacted

Impacted Case sensitive
check box to be

added here

3 SearchDialog JRipples →
Impacted

Impacted Will add new class
object to manage

search criteria

4 DatePanel JRipples →
Impacted

Impacted Extract responsibility
to DateField

5 DateField JRipples →
Impacted

Impacted Receive
responsibility from

DatePanel

6 ButtonPanel JRipples →
Unchanged

Unchanged

7 DirectoryPanel JRipples →
Impacted

Impacted Will be impacted by
search criteria
prefactoring

8 AbstractFile JRipples →
Unchanged

UnchangedAlready returns file’s
name with case

9 ActionProperties JRipples →
Unchanged

Unchanged

10 AppLogger JRipples →
Unchanged

Unchanged

274

11 AuthException JRipples →
Unchanged

Unchanged

12 ComponentTitledBorder JRipples →
Unchanged

Unchanged

13 CustomDateFormat JRipples →
Unchanged

Unchanged

14 ErrorManager JRipples →
Unchanged

Unchanged

15 FileFactory JRipples →
Unchanged

Unchanged

16 FlashLabel JRipples →
Unchanged

Unchanged

17 FocusDialog JRipples →
Unchanged

Unchanged

18 FolderPanel JRipples →
Unchanged

Unchanged

19 IconManager

JRipples →
Unchanged

Unchanged

20 JCalendar JRipples →
Unchanged

Unchanged

21 MainFrame JRipples →
Unchanged

Unchanged

22 ResultsPanel JRipples →
Unchanged

Unchanged

23 SearchAction JRipples →
Unchanged

Unchanged

24 SearchTable JRipples →
Unchanged

Unchanged

25 SearchTableModel JRipples →
Unchanged

Unchanged

26 SpinningDial JRipples →
Unchanged

Unchanged

27 Translator JRipples →
Unchanged

Unchanged

28 YBoxPanel JRipples →
Unchanged

Unchanged

29 SearchThreadTest JRipples → Impacted

275

Impacted

30 InputPanelTest JRipples →
Impacted

Impacted

31 SearchDialogTest JRipples →
Impacted

Impacted

32 DatePanelTest JRipples →
Impacted

Impacted

33 DateFieldTest JRipples →
Impacted

Impacted

34 DirectoryPanelTest JRipples →
Impacted

Impacted

35 ButtonPanelTest JRipples →
Impacted

Impacted

36 BasicSearchFuncTest JRipples →
Impacted

Impacted

37 DateSearchFuncTest JRipples →
Impacted

Impacted

38 SearchFuncTestSetUp JRipples →
Impacted

Impacted

39 SearchTableTest JRipples →
Unchanged

Unchanged

40 SearchTableCellRendererTest JRipples →
Unchanged

Unchanged

41 SearchTableHeaderTest JRipples →
Unchanged

Unchanged

42 ResultsPanelTest JRipples →
Unchanged

Unchanged

43 SearchTableModelTest JRipples →
Unchanged

Unchanged

44 SearchDialogTestSetUp JRipples →
Unchanged

Unchanged

45 AbstractFileTable JRipples →
Unchanged

Unchanged

46 AbstractFileTableModel JRipples →
Unchanged

Unchanged

47 AbstractFolderPanel JRipples →
Unchanged

Unchanged

276

48 ActionKeymapIO JRipples →
Unchanged

Unchanged

49 ActionManager JRipples →
Unchanged

Unchanged

50 AnimatedIcon JRipples →
Unchanged

Unchanged

51 Column JRipples →
Unchanged

Unchanged

52 CommandBarIO JRipples →
Unchanged

Unchanged

53 DesktopManager JRipples →
Unchanged

Unchanged

54 ShutdownHook JRipples →
Unchanged

Unchanged

55 TestConstants JRipples →
Unchanged

Unchanged

56 ThemeManager JRipples →
Unchanged

Unchanged

57 WindowManager JRipples →
Unchanged

Unchanged

277

 Figure A.34 Change 5 Impact Analysis UML

278

A.5.4 Prefactoring

The SearchThread class searches the file system and contains the logic that

decides if a file matches the search criteria and should be added to the set of results or

not. During the last change a method was added to it that checks if a file’s modified date

is within a user specified date. The current structure encourages any new change that

adds a search criterion to add a new method with logic that checks the specific criteria.

Then the recursiveSearch() method, will call this method to see if a file meets the

criteria. This will make SearchThread a very large class, with a wide variety of

responsibilities. To stop this from occurring a Strategy design pattern was implemented

[42]. A new class was created to manage the search criteria responsibility,

SearchManager. An interface, SearchOption, was also created. Classes that

implement this interface can be added to a list in SearchManager dynamically. These

classes contain their own algorithms to decide if a file meets their responsibility of the

search criteria. When a search is executed, SearchManager will check with all the

classes on its list to decide if a file meets all the search criteria. The class

SearchThread had the responsibility to check the date of a file extracted from it to a

new class, DateOption that implements SearchOption; SearchThread then had

just its original responsibility, of recursively finding the files in the file system.

This prefactoring moved the concept location from SearchThread to

SearchManager. This was done to make actualization simpler and to make future

changes easier. It is now possible to add many different search criteria to the program

with a small impact set. This prefactoring also meant that the class that contains the

concept location, SearchManager, would not need to be changed during actualization.

279

After, the new SearchManager and DateOption classes were created, it

became apparent that some of the responsibility left in DatePanel during the last

change, should be moved to DateField; namely the JButton that opens a dialog that

allows the user to select a date from a calendar. The DateField class was extracted

from DatePanel because it had enough responsibility to warrant its own class.

However, now either DatePanel or DateField must create an object of a new class,

DateOption that will implement the date checking algorithm. Instead of DatePanel

creating 2 objects of this new class, each DateField will implement its own object of

DateOption. This left 2 objects of type JButton in DatePanel that could be moved

to DateField. This refactoring could have been done during the postfactoring phase of

change 4, but it was not clear to the programmer at that time. The necessity of adding

the new DateOption object, made this refactoring clear.

The other classes that have responsibility to match the search criteria were also

changed. The responsibility for matching the search term to the file’s name was moved

from the InputPanel class to a new class SearchTermOption, which implements

SearchOption.

The recursive search and start directory responsibility were also moved to

SearchManager, so that all of the search logic would be in 1 class. However, these

criteria were given their own methods in SearchManager, because they are not

compared against a file’s criteria, but rather they set up the search.

The total of each class by type of visit is listed in Table A.54. Table A.55 is a

summary of the refactoring type and LOC added and deleted during prefactoring. Figure

A.35 is a UML of prefactoring.

280

 Table A.54 Change 5 Prefactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Case
Sensitive
Search

15 15 8 0 0 0

 Table A.55 Change 5 Prefactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 SearchThread Extracted class from 11 32 43

2 SearchDialog Added field, modified method 10 8 18

3 SearchManager Extracted class 49 0 49

4 SearchOption Created interface 6 0 6

5 DatePanel Extracted fields, methods from 28 88 116

6 DateField Extracted fields, methods 71 33 104

7 DateOption Extracted class 58 0 58

8 InputPanel Added field, modified methods 42 19 61

9 DirectoryPanel Added field, modified methods 8 3 11

10 SearchTermOption Extracted class 37 0 37

11 SearchThreadTest Modified method, tests 20 13 33

12 SearchDialogTest Modified method, test 8 9 17

13 SearchManagerTest Modified tests 92 0 92

14 DatePanelTest Modified method, tests 3 25 28

15 DateFieldTest Added method, modified tests 55 12 67

16 DateOptionTest Modified tests 75 0 75

17 InputPanelTest Modified method 3 2 5

18 DirectoryPanelTest Modified methods 3 6 9

19 SearchTermOptionTest Added test class 56 0 56

20 ButtonPanelTest Modified test 4 1 5

21 BasicSearchFuncTest Modified tests 4 4 8

22 DateSearchFuncTest Modified tests 7 12 14

23 SearchOptionTestClass Added class for tests 14 0 14

281

SearchThread

SearchDialogSearchManager

DatePanel

«interface»

SearchOption

DateFieldDateOption

InputPanel

DirectoryPanelSearchTermOption

SearchThreadTest

SearchDialogTest

SearchManagerTest

DatePanelTest

DateFieldTestDateOptionTest

InputPanelTestDirectoryPanelTest

SearchTermOptionTest

ButtonPanelTest

BasicSearchFuncTest

DateSearchFuncTest

SearchOptionTestClass

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

 Figure A.35 Change 5 Prefactoring UML

A.5.4.1 SearchThread class

This class had the fields searchDirectory and recusiveSearch extracted

to SearchManager. The field searchTerm was extracted to SearchTermOption and

dateSearch was extracted to DatePanel. The method, isDateInRange() was

moved to DateOption. The constructor now only receives 2 parameters of type

SearchDialog and SearchManager.

282

The method, recursiveSearch() now just checks a file by calling

isFileValid() in SearchManager, to see if it meets the search criteria. It also calls

the methods isRecursiveSearch() and getSearchDirectory() in

SearchManager to get the parameters removed from the SearchThread constructor.

The method had the String parameter removed.

A.5.4.2 SearchDialog class

This class added a field of type SearchManger. It creates an instance of it in its

constructor, passes it to InputPanel and SearchThread when it creates an instance

of each. The method searchCommand() was merged with searchStopButton(),

because it was now only 2 lines. This method merge could have been done during

change 4, but was missed.

A.5.4.3 SearchManager class

This class was created; it manages the criteria for a search. It contains an

ArrayList of SearchOptions, a boolean isRecursive and an AbstractFile

searchDirectory. The last 2 were extracted from SearchThread.

There are methods, addOption(), removeOption() and

containsOptions() to add and remove SearchOption objects from the

ArrayList. The method isFileValid() is called by SearchThread to see if a file

meets the searches criteria. This method iterates through the ArrayList and calls the

meetsCriteria() of each SearchOption. If they all return true the method returns

true; if one returns false, it returns false.

283

A.5.4.4 SearchOption interface

This interface needs to be implemented by classes that need to have criteria

added to the search. It contains 1 method, meetsCriteria() that takes an

AbstractFile as a parameter and should return true if the file meets the criteria and

false if not.

A.5.4.5 DatePanel class

This class had the JButton fields that open a dialog calendar extracted to the

DateField class and the parts of the actionPerformed() method that listened for

them. The createCalendarButton() method was also moved to DateField. The 2

getters getMinDate() and getMaxdate() that called the getDate() method the

appropriate DateField objects, were removed.

A.5.4.6 DateField class

This class added a field of type DateOption, which is initialized from a

parameter passed to the constructor. The field of type DateFormat was only read

once, so it was inlined. The class extended JTextField, but this was changed to

JPanel and a field of type JTextField was added to the class.

The methods createTextField() was extracted from the constructor and it

now initializes the field of type JTextField instead of the base type of the class. The

method createCalendarButton() was moved from DatePanel. The method

setEnabled() was overridden to enable and disable all the Component objects.

The KeyListener interface was changed for a DocumentListener. This

made the code simpler; the KeyListener differentiates between different types of

KeyEvent objects, while the DocumentListener differentiates between adding and

284

removing text. The method keyReleased() from KeyListener had a workaround

added to check if it was an event that added or removed text. Now with the

DocumentListener, the code was divided between the insertUpdate() and

removeUpdate() methods. This also allowed null checks to be removed from

setText(). Finally, a call to DateOption setDate() was added to the setDate()

method, so that the DateOption object would always have the most recently entered

date.

A.5.4.7 DateOption class

This class implements the SearchOption interface. It has an abstract nested

class and 2 nested classes that implement it. These classes all have 1 method,

compare() which takes 2 longs as parameters. This was done so that the

meetsCriteria() method could use polymorphism. The classes were nested

because they are very small, 1 method with 1 LOC. This kept all the logic of the date

search criteria in 1 file. This could be seen as a workaround for Java’s lack of

polymorphism at the method level.

One of the nested class’s implementation returns true if the first parameter is

greater and the second if the second parameter is greater. These classes allow the

logic of the meetsCriteria() method from the SearchOption interface to be

changed through polymorphism; this allows the same DateOption class to be used for

both the minimum date and maximum date. The logic is set by a boolean parameter in

the constructor.

285

A.5.4.8 InputPanel class

This class added the ActionListener interface; it listens to the

recursiveBox field and calls the setRecursive() method in the SearchManager.

Fields of type SearchManager and SearchTermOption were added. The

SearchTermOption is added to the SearchManager’s list of search criteria by

default in the constructor. It is never removed. The methods createInputBox(),

createLabelPanel() and createOptionsPanel() were extracted from the

constructor.

A.5.4.9 DirectoryPanel class

This class added a field of type SearchManager. It now updates the directory by

calling setSearchDirectory() in SearchManager, from its constructor with the

start directory and from keyReleased() when one is entered.

A.5.4.10 SearchTermOption class

This class implements the SearchOption interface; its meetsCriteria()

method returns true if the search term is in any part of the file name regardless of case.

It has 1 field of type String that stores the search term. It also implements a

DocumentListener that listens to the document in the JTextField field in

InputPanel. When the Document of the JTextField is updated, the String is

updated.

A.5.4.11 SearchThreadTest class

This class is the unit test suite for the SearchThread class. It had its setUp()

method modified and its tearDown() method, which was empty removed. All 6 of its

tests were modified.

286

A.5.4.12 SearchDialogTest class

This class is the unit test suite for the SearchDialog class. It had 1 test and its

setUp() method modified.

A.5.4.13 SearchManagerTest class

This class was added, it is the unit test suite for the SearchManager class; it

has 9 tests.

A.5.4.14 DatePanelTest class

This class is the unit test suite for the DatePanel class. It had 1 test and its

setUp() method modified and 3 tests added.

A.5.4.15 DateFieldTest class

This class is the unit test suite for the DateField class. It added a

setUpOneTime() method had 2 tests and its setUp() method modified. One test was

deleted and 2 added.

A.5.4.16 DateOptionTest class

This class was added, it is the unit test suite for the DateOption class; it has 5

tests.

A.5.4.17 InputPanelTest class

This class is the unit test suite for the InputPanel class. It had its setUp()

method modified.

A.5.4.18 DirectoryPanelTest class

This class is the unit test suite for the DirectoryPanel class. It had its

setUp() method modified and its tearDown() method, which was empty removed.

287

A.5.4.19 SearchTermOptionTest class

This class was added, it is the unit test suite for the SearchTermOption class;

it has 3 tests.

A.5.4.20 ButtonPanelTest class

This class is the unit test suite for the ButtonPanel class. It had one test modified.

A.5.4.21BasicSearchFuncTest class

This class is a functional test suite. It had 4 tests modified.

A.5.4.22 DateSearchFuncTest class

This class is a functional test suite. It had 3 tests modified.

A.5.4.23 SearchOptionTestClass class

This class is an implementation of the SearchOption interface for use in tests.

It has a constructor that sets a boolean field, which the meetsCriteria() method

returns. There is no logic.

A.5.5 Actualization

The prefactoring prepared the code for the change very well. One class,

InputPanel was modified and one class CaseSensitiveOption was added.

InputPanel added a check box to turn case sensitive searching on and off. It does

this by swapping its SearchTermOption field for the CaseSensitiveOption field. It

also added a border around the recursive check box and the case sensitive check box

in the GUI to organize it.

288

The added CaseSensitiveOption class is very similar to the

SearchTermOption class, but it uses logic that includes the case of the search term

and the file’s name.

The total of each class by type of visit is listed in Table A.56. Table A.57 is a

summary of the changes made to each class during actualization and the LOC added

and deleted. Figure A.36 is a UML of actualization.

 Table A.56 Change 5 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Case
Sensitive
Search

3 3 2 0 0 0

 Table A.57 Change 5 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 InputPanel Added, modified methods 53 5 58

2 CaseSensitiveOption Added Class 37 0 37

3 InputPanelTest Added, modified tests 68 3 71

4 CaseSensitiveOptionTest Added class 53 0 53

5 BasicSearchFuncTest Added tests 22 0 22

289

 Figure A.36 Change 5 Actualization UML

A.5.5.1 InputPanel class

This class added fields of type JCheckBox and CaseSensitiveOption. The

JCheckBox was added to the GUI in the createOptionsPanel() method. It along

with the existing JCheckBox for recursive searches were both placed in their own

YBoxPanel and a border was put around them.

The CaseSensitiveOption field is initialized in the constructor, but not added

to the SearchManager. Logic was added in the actionPerformed() method to call

a new swapSearchTermOptions() method that changes out the

SearchTermOption for the CaseSensitiveOption. This causes the search to use

the case sensitive logic. If the user unchecks the JCheckBox, the 2 will be swapped

again.

A.5.5.2 CaseSensitiveOption class

This class implements the SearchOption interface; this allows it to be added to

the SearchManager. It is very similar to SearchTermOption; its meetsCriteria()

method returns true if the search term is in any part of the file name, but it includes

290

case. It has 1 field of type String that stores the search term. It also implements a

DocumentListener that listens to the Document in the JTextField field in

InputPanel. When the Document of the JTextField is updated, the String is

updated.

A.5.5.3 InputPanelTest class

This class is the unit test suite for the InputPanel class. It had its setUp()

method modified, 3 test were added, 2 modified and 1 extracted from another.

A.5.5.4 CaseSensitiveOptionTest class

This class was added, it is the unit test suite for the CaseSensitiveOption

class; it has 3 tests.

A.5.5.5 BasicSearchFuncTest class

This class is a functional test suite. It had 2 tests added.

A.5.6 Postfactoring

When the class InputPanel was extracted from SearchDialog during change

2, it held all the input fields. During the changes since then, DirectoryPanel was

extracted from it and DatePanel was added to it. It now both holds other panels and

creates panels. To clarify its responsibility, BasicOptionsPanels was extracted from

it. InputPanel still creates a small panel that has 2 JLabel objects and an

AnimatedIcon, because this panel has a mixture of Component objects that do not

belong to any one group. The only other responsibility InputPanel has for this panel is

to turn the AnimatedIcon on and off when a search starts or stops. This small

responsibility does not belong to any of the supplier classes of InputPanel, so it was

left there.

291

The classes SearchTermOption and CaseSensitiveOption had the same

methods, but used a different logic in 3 of them. A super class was extracted from them;

this also allowed them to be swapped more easily using their abstract class type. This

super class extraction was necessary because of the change and could have been

done during prefactoring to prepare for the change. This may have been slightly easier

overall, but the change is the same in the end.

The total of each class by type of visit is listed in Table A.58. Table A.59 is a

summary of the refactoring type and LOC added and deleted during postfactoring.

Figure A.37 is a UML of postfactoring.

 Table A.58 Change 5 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to
Changed

Set

Case
Sensitive
Search

11 11 3 0 0 0

292

 Table A.59 Change 5 Postfactoring Code Files

Code File Task
Lines of Code

Added Deleted Total

1 InputPanel Extracted class from 19 90 109

2 BasicOptionsPanels Extracted class 97 0 97

3 AbstractTermOption Extracted super class 30 0 30

4 SearchTermOption Extracted super class from 2 24 26

5 CaseSensitiveOption Extracted super class from 2 24 26

6 SearchDialog Modified method 1 1 2

7 InputPanelTest Modified, moved tests from 5 75 80

8 BasicOptionsPanelsTest Added, moved tests 111 0 111

9 SearchDialogTest Modified test 2 2 4

10 SearchThreadTest Modified tests 5 6 11

11 ButtonPanelTest Modified tests 1 1 2

12 SearchFuncTestSetUp Modified method 4 3 7

13 DateSearchFuncTest Modified tests, method 5 7 12

14 BasicSearchFuncTest Modified tests 55 50 105

293

InputPanel InputPanelTest

BasicOptionsPanels

AbstractTermOption

BasicOptionsPanelsTest

SearchTermOption

CaseSensitiveOption

SearchDialogSearchDialogTest

SearchThreadTestButtonPanelTest

SearchFuncTestSetUp

DateSearchFuncTest

BasicSearchFuncTest

Legend

Unchanged

Propagating

Legend

Association

Aggregation

Generalization

Changed

Harness

Production

Added

 Figure A.37 Change 5 Postfactoring UML

A.5.6.1 InputPanel class

The class BasicOptionsPanels was extracted from this class. The extraction

included the fields of type JTextField that holds the search term, the JCheckBox

objects that turn the recursive and case sensitive search on and off, the

SearchTermOption, CaseSensitiveOption and SearchManager. The methods

createInputBox(), swapSearchTermOptions() and actionPerformed() were

also extracted. A portion of createOptionsPanel that made a YBoxPanel was also

extracted. Now this method just combines the DatePanel and a YBoxPanel from a

call to getBasicOptionsPanel() in BasicOptionsPanels.

294

A.5.6.2 BasicOptionsPanels class

This class was extracted from InputPanel. It creates 2 YBoxPanel objects, 1

contains 2 JCheckBox objects, 1 JCheckbox, is listened to by the

actionPerformed() method and calls the setRecursive() method in

SearchManager when its selected. The other JCheckBox is also listened to by

actionPerformed() and swaps the between array index zero and 1, when it is

selected. This array is of type AbstractTermOption and contains objects of type

SearchTermOption and CaseSensitiveOption objects.

The other YBoxPanel contains a JLabel and a JTextField that contains the

search term. The JTextField is listened to by the SearchTermOption and

CaseSensitiveOption. Since these fields all have an association, they were placed

in the same class. However, they are not in the same YBoxPanel in the GUI, so there

are 2 methods, getInputFieldPanel() and getBasicOptionsPanel() that

return the YBoxPanel objects to be added in the appropriate place by InputPanel.

Finally, to make the swapping between the object at index 1 and 2 of the array of

type AbstractTermOption, a nested enum was created. The values are

INSENSITIVE and SENSITIVE and there is a method getOpposite() that returns

the other value.

A.5.6.3 AbstractTermOption abstract class

This class was extracted from the SearchTermOption and

CaseSensitiveOption classes. It contains the field of type String that holds the

search term. The constructor and methods, changedUpdate(), insertUpdate()

and removeUpdate() were also extracted. The method setSearchTerm() is

295

different in each class, but needed to be referenced from a reference of

AbstractTermOption, so it was added as an abstract method.

A.5.6.4 SearchTermOption class

This class had the AbstractTermOption super class extracted from it. It lost

the field and methods described in AbstractTermOption.

A.5.6.5 CaseSensitiveOption class

This class had the AbstractTermOption super class extracted from it. It lost

the field and methods described in AbstractTermOption.

A.5.6.6 SearchDialog class

A chained method call to get the parameter for

setInitialFocusComponent() in the constructor had to add an extra call; because

the getInputBox() method was extracted from InputPanel to

BasicSearchOptionsPanels.

A5.6.7 InputPanelTest class

This class is the unit test suite for the InputPanel class. It had 5 tests moved to

BasicOptionsPanelsTest and 3 modified.

A.5.6.8 BasicOptionsPanelsTest class

This class was added, it is the unit test suite for the BasicOptionsPanels

class; it has 9 tests, 5 were moved from InputPanelTest.

A.5.6.9 SearchDialogTest class

This class is the unit test suite for the SearchDialog class. It had 1 test

modified.

296

A.5.6.10 SearchThreadTest class

This class is the unit test suite for the SearchThread class. It had 5 tests

modified.

A.5.6.11 ButtonPanelTest class

This class is the unit test suite for the ButtonPanel class. It had 1 test modified.

A.5.6.12 SearchFuncTestSetUp abstract class

This is a class that is extended by test classes that need a SearchDialog

object for testing. It added a field of type JCheckBox and modified its setUp()

method.

A.5.6.13 DateSearchFuncTest class

This class is a functional test suite. It had 2 tests and a test helper method

modified.

A.5.6.14 BasicSearchFuncTest class

This class is a functional test suite. It had 11 tests modified.

A.5.7 Verification

After prefactoring and postfactoring all the regression tests passed. No new

regression tests were added. All new tests passed; no bugs were identified in this

change. Coverage for each production code file is available in Table A.60.

297

 Table A.60 Change 5 Statement Verification

Code File

Coverage of Application

Tests Failed Bugs FoundTotal

Statements

Covered

Statements
%

1 SearchDialog 44 43 97.7 0 0

2 SearchThread 25 21 84.0 0 0

3 SearchManager 17 17 100.0 0 0

4 DateField 69 64 92.8 0 0

5 BasicOptionsPanels 45 45 100.0 0 0

6 DatePanel 58 57 98.3 0 0

7 DirectoryPanel 53 44 83.0 0 0

8 InputPanel 36 36 100.0 0 0

9 SearchTermOption 4 4 100.0 0 0

10 DateOption 20 20 100.0 0 0

11CaseSensitiveOption 4 4 100.0 0 0

12 AbstractTermOption 7 6 85.7 0 0

A.5.8 Timing Data

Table A.61 contains the timing data for the change request.

 Table A.61 Change 5 Timing Totals

Phase Time
(hh:mm)

Concept Location 0:00

Impact Analysis 1:02

Prefactoring 9:32

Prefactoring Testing 2:53

Actualization 1:36

Actualization Testing 0:49

Postfactoring 2:35

Postfactoring Testing 1:19

298

A.5.9 Conclusions

This change had a large prefactoring, that directly impacted the size change set

of actualization. It moved the concept location from a dual responsibility class to its own

class. After the prefactoring, actualization was much simpler. It required 1 class to be

modified and 1 to be created along with 2 test classes modified and 1 created. The

prefactoring organized the criteria for a search; the logic for each criterion is now in its

own class. It also meant that the class that contained the concept location did not need

to be modified during actualization. In general, the impact set to add a criterion should

be much smaller.

Additionally, because of the use of inheritance and polymorphism a search

criterion is only added when it has been enabled. This will allow many different criteria

options without slowing simple searches. Before the change, there was procedural

checking to see if a criteria was enabled for each file checked; had this pattern

continued, a search done with only a term would have had to check all the criteria for

each file, even if the criteria was not enabled. This would have made for a slow search;

now only the enabled criteria will be checked. The Strategy design pattern organizes the

source code for future changes and should provide good performance even if a large

number of search criteria are added.

One harness code file was in the estimated impact set called

SearchFuncTestSetUp but was not changed during prefactoring or actualization. it

was changed during postfactoring. Table A.62 lists the totals for each set of code files

for each change of this iteration to date. Table A.63 is the current state of the product

299

backlog. Figure A.38 to Figure A.41 are screen shots of muCommander showing the

change.

 Table A.62 Change 5 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4 Date Search 0 13 12 2 16 3 1,120

5
Case

Sensitive
0 16 15 8 2 3 1,133

 Table A.63 Change 5 Current Product Backlog

Title Complete User Story

1 Basic
Search

x

Add a basic search function that allows a user to search
in the current directory for all or part of the title of a
folder or file, and return a list of the matching files and
directories.

2 Recursive
Search

x Add the ability to search inside all directories.

3 Advanced
Output

x Change the output to a table similar to the main
muCommander window.

4 Date
Search

x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

x Add capability to search by case sensitive search terms.

6 Extension
Search

Add the ability to search for files with specific
extensions.

7 Properties
Search

Add options to search for files based on their properties.

8 Size
Search

Add the ability to search for a file by its size.

300

9
Regular

Expression
Search

Add capability to search by a regular expression.

10 Lucene
Search

Incorporate the Apache Lucene search.

 Figure A.38 Search window before Case Sensitive Change

301

 Figure A.39 Search window after Case Sensitive Change

302

 Figure A.40 Search window case sensitive search feature circled

303

 Figure A.41 Search window after a case sensitive search has finished

SIP – Change 6 Extension Search

A.6.1 Initialization

Add the ability to search for files with specific extensions to the search feature in

muCommander. It is an application which enhances an operating system’s file explorer.

During the first 5 change requests, search capabilities were added which include:

• searching for a file whose name contains a certain term, both case

sensitive and insensitive

• searching in any file system directory

• recursively searching in subfolders

304

• displaying results in a GUI table with the look and feel of the

muCommander application

• searching within a specified date range

This change request will add the capability to search for files with a specific

extension. A check box will be added to the GUI display that will allow the user to turn

this capability on and off. A text box will also be added that will allow the user to enter

one or more file extensions, separated by a semicolon, to search for.

Finally, when the extension search is enabled, the user entered search term will

not be compared against the file’s extension. This will give the search more capability.

For example, if the search term is “txt” and the extension is “log”, the search will only

return results such as “Some txt file.log”, but not all files with a txt extension.

A.6.2 Concept Location

No concept location was needed for this change. Based on experience obtained

during previous changes the programmer knew the concept was located in the

BasicOptionsPanels class which was created during change 5.

A.6.3 Impact Analysis

The programmer started impact analysis by marking the code file containing the

concept location, BasicOptionsPanels, Impacted in JRipples; this marked 14 code

files as Next. AbstractTermOption was visited and marked as Impacted because

this change request will modify how a file’s name is compared to the search term. For

the same reason, the programmer marked SearchTermOption and

CaseSensitiveOption, which inherit from AbstractTermOption as Impacted. The

Next set now contained 15 code files. The programmer then visited AbstractFile; it

305

contained methods getFileNameWithoutExtension() and getExtension().

These methods are all the change request requires from AbstractFile, so it was

marked Unchanged.

The programmer then visited InputPanel; which was marked as Impacted

because it contains the panel that errors are displayed in and this change request will

need to display an error. The Next set of code files was now 22. DatePanel was then

visited and marked as Propagating because the programmer will use the test field from

the date picker added during change 4 in this change request. Following this path, the

programmer marked DateField then JCalendar then JYearChooser as

Propagating. Then JSpinField was visited and marked as Impacted because it only

accepts integers, this change request would require it to also accept alphabetic

characters. The Next set created by JRipples was now 35 code files. The programmer

then visited the other code files that are related to the date picker and their test classes,

JDayChooser, JMonthChooser, JCalendarFuncTest, JCalendarTest,

JMonthChooserTest, JSpinFieldTest and JYearChooserTest. All were marked

Unchanged; except JSpinFieldTest, which will need to be changed with

JSpinField. The Next set was now 28 code files.

The programmer then visited and marked the test classes

BasicOptionsPanelsTest, CaseSensitiveOptionTest and

SearchTermOptionTest as Impacted; these will need to change to test the new

functionality in the classes they are directed at. The Next set was now 26 code files.

The programmer visited the 15 production code files in the Next set and marked them

Unchanged. The harness code files were then visited, 10 were marked Unchanged;

306

TestConstants was marked Impacted because new AbstractFile objects would

be added to test the extension search. This added 7 code files to the Next set. The

programmer visited these and marked them Unchanged to end impact analysis. Table

A.64 shows the code file totals for impact analysis and Table A.65 lists each code file

visited. Figure A.42 is a UML of visited code files.

 Table A.64 Change 6 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Extension
Search

54 11 4 39 0

 Table A.65 Change 6 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 BasicOptionsPanels
JRipples →
Impacted

Impacted
Concept
Location

2 AbstractTermOption
JRipples →
Impacted

Impacted
File name

comparison will
change

3 SearchTermOption
JRipples →
Impacted

Impacted
File name

comparison will
change

4 CaseSensitiveOption
JRipples →
Impacted

Impacted
File name

comparison will
change

5 AbstractFile
JRipples →
Unchanged

Unchanged
Has needed

methods

6 InputPanel
JRipples →
Impacted

Impacted
Contains error

panel

7 DatePanel
JRipples →
Propagating

Propagating
Propagates to

JSpinField

8 DateField
JRipples →
Propagating

Propagating
Propagates to

JSpinField

9 JCalendar JRipples → Propagating Propagates to

307

Propagating JSpinField

10 JYearChooser
JRipples →
Propagating

Propagating
Propagates to

JSpinField

11 JSpinField
JRipples →
Impacted

Impacted

Contains field
that changes

color on invalid
input

12 JDayChooser
JRipples →
Unchanged

Unchanged

13 JMonthChooser
JRipples →
Unchanged

Unchanged

14 JCalendarFuncTest
JRipples →
Unchanged

Unchanged

15 JCalendarTest
JRipples →
Unchanged

Unchanged

16 JMonthChooserTest
JRipples →
Unchanged

Unchanged

17 JSpinFieldTest
JRipples →
Impacted

Impacted
Code file test

directed at
Impacted

18 JYearChooserTest
JRipples →
Unchanged

Unchanged

19 BasicOptionsPanelsTest
JRipples →
Impacted

Impacted
Code file test

directed at
Impacted

20 CaseSensitiveOptionTest
JRipples →
Impacted

Impacted
Code file test

directed at
Impacted

21 SearchTermOptionTest
JRipples →
Impacted

Impacted
Code file test

directed at
Impacted

22 ComponentTitledBorder
JRipples →
Unchanged

Unchanged

23 CustomDateFormat
JRipples →
Unchanged

Unchanged

24 DateOption
JRipples →
Unchanged

Unchanged

308

25 DirectoryPanel
JRipples →
Unchanged

Unchanged

26 ErrorManager
JRipples →
Unchanged

Unchanged

27 FlashLabel
JRipples →
Unchanged

Unchanged

28 IconManager
JRipples →
Unchanged

Unchanged

29 SearchDialog
JRipples →
Unchanged

Unchanged

30 SearchManager
JRipples →
Unchanged

Unchanged

31 SearchOption
JRipples →
Unchanged

Unchanged

32 SearchTable
JRipples →
Unchanged

Unchanged

33 SearchTableModel
JRipples →
Unchanged

Unchanged

34 SpinningDial
JRipples →
Unchanged

Unchanged

35 Translator
JRipples →
Unchanged

Unchanged

36 YBoxPanel
JRipples →
Unchanged

Unchanged

37 BasicSearchFuncTest
JRipples →
Unchanged

Unchanged

38 ButtonPanelTest
JRipples →
Unchanged

Unchanged

39 DateFieldTest
JRipples →
Unchanged

Unchanged

40 DatePanelTest
JRipples →
Unchanged

Unchanged

41 DateSearchFuncTest
JRipples →
Unchanged

Unchanged

42 InputPanelTest
JRipples →
Unchanged

Unchanged

309

43 SearchDialogTest
JRipples →
Unchanged

Unchanged

44 SearchFuncTestSetUp
JRipples →
Unchanged

Unchanged

45 SearchTableModelTest
JRipples →
Unchanged

Unchanged

46 SearchThreadTest
JRipples →
Unchanged

Unchanged

47 TestConstants
JRipples →
Impacted

Impacted
Need to add

fields

48 DateOptionTest
JRipples →
Unchanged

Unchanged

49 DirectoryPanelTest
JRipples →
Unchanged

Unchanged

50 SearchManager
JRipples →
Unchanged

Unchanged

51 SearchTableTest
JRipples →
Unchanged

Unchanged

52 FileFactory
JRipples →
Unchanged

Unchanged

53 SearchTableCellRendererTest
JRipples →
Unchanged

Unchanged

54 ResultsPanelTest
JRipples →
Unchanged

Unchanged

310

BasicOptionsPanels

CaseSensitiveOption

SearchThreadTest

InputPanel

Translator

SearchManager

YBoxPanel

BasicOptionsPanelsTest

AbstractTermOptionSearchDialogTest SearchDialog

ButtonPanelTest

BasicSearchFuncTest SearchFuncTestSetUp

SearchTermOptionCaseSensitiveOptionTest

SearchTermOptionTest

AbstractFile

«interface»

SearchOption

ErrorManager

DateSearchFuncTest

SearchTableModelTest SearchTable DatePanel

SearchTableModel

SpinningDial

DirectoryPanel

DateField

InputPanelTest

DatePanelTest FlashLabel

DateOption

ComponentTitledBorder

DateFieldTest CustomDateFormat

JCalendar

IconManager

JCalendarTest

JYearChooser JMonthChooser

JCalendarFuncTest

JDayChooser

JSpinFieldJYearChooserTest JMonthChooserTestJSpinFieldTest

TestConstants

DateOptionTest

DirectoryPanelTest

SearchMangerTest

SearchTableTestFileFactory

SearchTableCellRendererTest

ResultsPanelTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Impacted

 Figure A.42 Change 6 Impact Analysis UML

A.6.4 Prefactoring

The programmer added the class JSpinField as part of the date chooser that

opens when the user clicks on a calendar icon. This field colors the text green if the

311

user input is valid and red if the user input is invalid as the user types. However, the

JSpinField only accepts integer values. To make it easier to add the coloring feature

for alphabetical values to this change request, a new class, FeedbackField was

extracted from JSpinField. It extends JTextField and is only responsible for

changing the color of the text, depending if it is valid or invalid. To make

FeedbackField work in general cases; the programmer added a nested interface,

InputListener. InputListener has 1 method, isInputValid() that allows

implementing classes to define what is valid and invalid input.

This refactoring removed responsibility from JSpinField, but it did not

significantly change the size of JSpinField, 54 LOC were deleted, but 46 were added

to JSpinField. JSpinField’s JTextField was replaced with FeedbackField and

the CaretListener interface was replaced with InputListener. However, the code

file FeedbackField is 97 LOC, so the production code was increased by 89 LOC. This

is because to give FeedbackField sufficient generality to be used multiple cases, it

has 3 constructors, 12 getters and setters for its colors and 3 new methods for its

interface. If this feature had not been desired for use in another class, it would not have

been necessary to do this refactoring.

A test class FeedbackField was extracted from JSpinFieldTest. It also had

tests added for the new methods. Table A.66 shows the code file visited and Table A.67

summarizes the changes to each code file. Figure A.43 is a UML of the code files

visited.

312

 Table A.66 Change 6 Prefactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Extension
Search

2 2 2 0 0 0

 Table A.67 Change 6 Prefactoring Code Files

Code File Task
Lines of Code

Added DeletedTotal

1 JSpinField Extracted class from 46 54 100

2 FeedbackField Extracted class 97 0 97

3 JSpinFieldTest Extracted test class from 2 13 15

4 FeedbackFieldTest Extracted test class 132 0 132

 Figure A.43 Change 6 Prefactoring UML

A.6.4.1 JSpinField class

The programmer extracted FeedbackField from this class. The field of type

Color was extracted. The field of type JTextField was changed to type

FeedbackField and its name was changed from textField to feedbackField.

The renaming modified the constructor and methods setValue(), setMaximum(),

313

setHorizontalAlignment(), setFont(), setForeground(), setEnabled(),

actionPerformed() and getTextField().

The constructor and the method setValue() had their responsibility for color

moved to FeedbackField. The interface CaretListener and its method

caretUpdate() were also extracted to FeedbackField. The interface

InputListener and its method isValidInput() were added. The method listens to

input in the FeedbackField and returns true if it is valid. It also updates an int field if

the input is valid.

The programmer deleted the main() method that is unneeded, but was missed

in previous refactoring.

A.6.4.2 FeedbackField code file

The programmer extracted the Feedback class from JSpinField. It extends

JTextField and adds responsibility to color the text inside the JTextField a valid

color or invalid color depending on input. It also has a default color for when it is not in

focus. There is a constructor with these colors as parameters and getters and setters

that allow them to be customized.

The interface CaretListener and its method caretUpdate() were extracted

from JSpinField. The method calls a new method checkValidUpdate() and sets

the color to valid if it returns true, invalid if false.

To allow classes that create an object of this class to define what is valid and

invalid text, it has a nested interface InputListener, with 1 method,

isValidInput() that should return true if the input is true. The instantiating class can

add or remove itself as a listener through the addInputListener() and

314

removeInputListener() methods. These methods add or remove the listener from

a field of type HashSet. The method checkValidUpdate() iterates through the

listeners in the HashSet and calls their isValidInput() method; if any returns false,

it returns false, if all return true, it returns true.

A.6.4.3 JSpinFieldTest class

This is the test class for the JSpinField class. The programmer extracted the

FeedbackFieldTest class from this test class. The extraction included the test,

testCaretUpdate(). One test was modified.

A.6.4.4 FeedbackFieldTest class

This is the test class for the FeedbackField code file. The programmer

extracted it from JSpinFieldTest. One test, testCaretUpdate() was extracted

and 14 tests were added.

A.6.5 Actualization

To actualize the change request, the programmer created a new class that

extends YBoxPanel called ExtensionPanel. The class contains a JCheckBox,

FeedbackField and FlashLabel. It is a supplier to BasicOptionsPanels and was

incorporated as a component. This class adds the components to the GUI for the user

to enter extensions.

The programmer also added a class that implements the SearchOption

interface, ExtensionOption that is added to the list of SearchOption objects in

the SearchManager when an extension search is enabled. ExtensionOption’s

primary responsibility is to check an AbstractFile’s extension against the set of user

entered extensions and return true if it is.

315

The programmer added the responsibility of changing between classes that

extend AbstractTermOption to compare an AbstractFile’s name to a search

term to BasicOptionsPanels. When an extension search is enabled,

BasicOptionsPanels will change between 4 different implementations of the

AbstractTermOption class. There were 2 classes to do this at the beginning of this

change request, which compare the search term to the file’s name including the

extension. The programmer created 2 new classes that compare the file’s name without

the extension to the search term, SearchTermWithoutExtensionOption and

CaseSensitiveWithoutExtensionOption that extend AbstractTermOption.

Additionally, the programmer added a FocusListener to FeedbackField to change

the text color to the default when the field has lost focus.

The test classes, ExtensionSearchFuncTest, ExtensionOptionTest and

ExtensionPanelTest were added by the programmer. FeedbackFieldTest and

BasicOptionsPanelsTest were changed. Two new files to be used with the

extension tests were added, testFile.log and testFile.test that are the same as

testFile.txt added in change 2, but with different extensions. Final AbstractFiles

corresponding to these files were added to the class TestConstants. Table A.68

shows the code files visited and Table A.69 lists the code files changed. Figure A.44 is

a UML of code files visited.

 Table A.68 Change 6 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Extension
Search

6 6 7 0 0 0

316

 Table A.69 Change 6 Actualization Code Files

Code File Task
Lines of Code

AddedDeleted Total

1 ExtensionPanel Added class 88 0 88

2 BasicOptionsPanels
Changed
methods

58 17 75

3 ExtensionOption Added class 34 0 34

4 SearchTermWithoutExtensionOption Added class 14 0 14

5 CaseSensitiveWithoutExtensionOption Added class 14 0 14

6 FeedbackField
Added
method

14 3 17

7 InputPanel
Changed
methods

3 2 5

8 ExtensionPanelTest
Added test

class
71 0 71

9 BasicOptionsPanelsTest
Changed

method, tests
16 11 27

10 ExtensionOptionTest
Added test

class
27 0 27

11 FeedbackFieldTest
Added

methods
11 2 13

12 ExtensionSearchFuncTest
Added test

class
103 0 103

13 TestConstants Added fields 4 0 4

317

ExtensionPanelExtensionPanelTest

ExtensionSearchFuncTestFeedbackFieldFeedbackFieldTest

BasicOptionsPanels

InputPanel

BasicOptionsPanelsTest

TestConstants

ExtensionOption ExtensionsOptionTest

CaseSensitiveWithoutExtensionOption

SearchTermWithoutExtensionOption

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

 Figure A.44 Change 6 Actualization UML

A.6.5.1 ExtensionPanel class

The programmer added this class to the project. It has fields of type JCheckBox,

FeedbackField, FlashLabel, SearchManager, ErrorManager,

ExtensionOption, BasicOptionsPanel, Pattern and a static final String. The

JCheckBox and FeedbackField get the user input. The FlashLabel displays errors

to the user when added to the ErrorManager. The ExtensionOption is added to

the SearchManager when the extension search is enabled. BasicOptionsPanels is

a client of this class, one of its methods is called when the extension search is modified.

318

The Pattern and String are used to check if the user has input any characters into

the FeedbackField that are invalid in a file extension.

The class implements the InputListener interface. The isValidInput()

method uses the Pattern field to check the text entered by the user into the

FeedbackField is valid. It also adds the FlashLabel to the ErrorManager, if the

input is invalid.

The class also implements the ActionListener interface. The

actionPerformed() method listens for the JCheckBox. It enables the

FeedbackField and adds the ExtensionOption to the SearchManager. It also

calls the method swapSearchTerms() in basicOptionsPanels.

A.6.5.2 BasicOptionsPanels class

The programmer added a field of type ExtensionPanel to this class. The

method getBasicOptionsPanel() return type was changed to a JPanel. A

temporary variable of type JPanel was added and the ExtensionPanel along with

the YBoxPanel already created in the method, then the JPanel is returned.

Another field of type AbstractTermOption was also added. The method

swapSearchTermOptions() was changed. It had taken a parameter of type Case; it

then removed the opposite AbstractTermOption of the parameter from the

SearchManager and added the AbstractTermOption corresponding to the Case.

This would no longer work, because now there are 4 AbstractTermOption objects

and the caller of this method may not know which AbstractTermOption to switch to.

The parameter was changed to a boolean type. If set to true it will change to the

AbstractTermOption that is used with an extension search; if false it switches

319

between the case sensitivity AbstractTermOption objects. Since the Swing libraries

are not thread safe, the modifier synchronized was added to the method.

The array field of type AbstractTermOption was expanded from size 2 to 4.

The nested enum, Case added 2 values INSENSITIVE_WO_EXT and

SENSITIVE_WO_EXT along with a method switchExtension() that returns the Case

value with the same case sensitivity, but opposite extension concept. The

getOpposite() method was changed to add the 2 new values.

A.6.5.3 ExtensionOption class

The programmer added this class to handle the responsibility of checking if an

AbstractFile’s extension matches any of the search criteria extensions. It has 1

array field of type String that holds the search extensions. It implements the

SearchOption interface; the method meetsCriteria() from the interface gets an

AbstractFile’s extension and compares it to each of the extensions in the array of

extensions; if any of the extensions match it returns true.

The getExtensions() method returns the array of String extensions, but it

also initializes the array if it is null so it never returns null. The setExtensions()

methods takes a single String and parses it into an array and assigns it to the array

field of String objects.

A.6.5.4 SearchTermWithoutExtensionOption class

The programmer added this class to enable extension searches to not compare

an AbstractFile’s extension with the search term. It extends

AbstractTermOption. Its meetsCriteria() method returns true if the

AbstractFile’s name without the extension contains the search term, ignoring case.

320

A.6.5.5 CaseSensitiveWithoutExtensionOption class

The programmer added this class to enable extension searches to not compare

an AbstractFile’s extension with the search term, but include case. It extends

AbstractTermOption. Its meetsCriteria() method returns true if the

AbstractFile’s name without the extension contains the search term, including case.

A.6.5.6 FeedbackField code file

The programmer added the FocusListener interface to this code file. The

interface’s focusLost() method changes the fields text color to the default color if the

current color is valid. Also, the default color is only initialized to black if a null color is

passed to the constructor.

A.6.5.7 InputPanel class

This class had to add its ErrorManager object to the BasicOptionsPanels

object creation call. It also adds the FlashLabel that displays an extension error to the

same location as the date error.

A.6.5.8 ExtensionPanelTest class

This class was added, it is the unit test suite for the ExtensionPanel class; it

has 5 tests.

A.6.5.9 BasicOptionsPanelsTest class

This class is the unit test suite for the BasicOptionsPanels class. It had its

setUp() method and 5 tests changed.

A.6.5.10 ExtensionsOptionTest class

This class was added, it is the unit test suite for the ExtensionOption class; it

has 2 tests.

321

A.6.5.11 FeedbackFieldTest class

This class is the unit test suite for the FeedbackField class. It had 2 tests

changed and 1 added.

A.6.5.12 ExtensionSearchFuncTest class

This class is a functional test suite for extension searches. It extends

SearchFuncTestSetUp and 6 has tests.

A.6.5.13 TestConstants class

This class holds public static final fields used by the unit and functional tests. It

added 2 fields of type AbstractFile corresponding to 2 new files added to the project

with log and test extensions.

A.6.6 Postfactoring

After actualization the change request functionality worked, but the method in

BasicOptionsPanels that switched between the 4 classes that extend

AbstractTermOption was confusing and would be difficult to change in the future.

The responsibility to listen to 1 JCheckBox and switch between 2 classes had grown

and was spread across 2 classes, BasicOptionsPanels and ExtensionPanel.

Further, 2 of these classes created during actualization,

SearchTermWithoutExtensionOption and

CaseSensitiveWithoutExtensionOption, had long and confusing names and

very similar responsibility. The programmer decided that instead of having 4 different

AbstractTermOption objects, there should be 1 class that listens to the 2

JCheckBox objects and uses polymorphism to switch between the compare criteria.

The programmer decided to simplify this responsibility and combine it into 1 code file,

322

SearchTermOption. The super class and 3 other AbstractTermOption classes

would all be merged into it. Additionally, ActionListener objects would be extracted

from BasicOptionsPanels and ExtensionPanel to this code file.

The programmer changed the ExtensionOption’s method,

setExtensions(), which parses the user entered String into an array of String

extensions, to a regular expression algorithm. The rest of the refactoring was renaming

fields in FeedbackField and updating Javadoc in TestConstants. Table A.70

shows the code files visited and Table A.71 lists the changed code files. Figure A.45 is

a UML of code files visited.

 Table A.70 Change 6 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Extension
Search

17 12 (5) 0 0 0

 Table A.71 Change 6 Postfactoring Code Files

Code File Task
Lines of Code

AddedDeleted Total

1 SearchTermOption

Merged
classes to,

added
interfaces,
classes,
methods

104 6 110

2 AbstractTermOption Merged class 0 30 30

3 CaseSensitiveOption Merged class 0 15 15

4 SearchTermWithoutExtensionOption Merged class 0 14 14

5 CaseSensitiveWithoutExtensionOption Merged class 0 14 14

6 ExtensionOption
Changed
methods

12 7 19

323

7 BasicOptionsPanels

Extracted,
moved
method

8 62 70

8 ExtensionPanel
Extracted
method

18 18 36

9 FeedbackField
Renamed

field
10 10 20

10 SearchTermOptionTest

Merged class
to, added,
changed
method,

added tests

44 1 45

11 CaseSensitiveOptionTest Merged class 0 53 53

12 ExtensionsOptionTest

Added
method,
added,

changed
tests

45 3 48

13 BasicOptionsPanelsTest

Added,
changed

tests
37 59 96

14 ExtensionPanelTest
Changed

method, tests
17 9 26

15 FeedbackFieldTest
Changed

tests
7 7 14

16 ExtensionSearchFuncTest
Changed

method, tests
24 18 42

17 TestConstants Javadoc 0 0 0

324

ExtensionPanelExtensionPanelTest

ExtensionSearchFuncTestFeedbackFieldFeedbackFieldTest

BasicOptionsPanels

SearchTermOption

BasicOptionsPanelsTest

TestConstants

ExtensionOption ExtensionsOptionTest

CaseSensitiveWithoutExtensionOption

SearchTermWithoutExtensionOption

AbstractTermOption

CaseSensitiveOption

SearchTermOptionTest

CaseSensitiveOptionTest

Unchanged

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed AddedRemoved

 Figure A.45 Change 6 Postfactoring UML

A.6.6.1 SearchTermOption code file

The programmer merged the AbstractTermListener super class with this

class. This added a field of type String and the 3 DocumentListener methods

changedUpdate(), insertUpdate() and removeUpdate().

The programmer also merged the responsibility from the classes

CaseSensitiveOption, SearchTermWithoutExtensionOption and

325

CaseSensitiveWithoutExtensionOption into this code file. This was done by

adding 2 nested interfaces, FileNameChooser and CaseSensitiveChooser, with 2

nested classes for each interface.

The FileNameChooser interface is implemented by the nested classes

FileNameWithoutExt and FileNameWithExt. Both of these classes have a single

method, chooseFileName(), which takes a parameter of type AbstractFile and

returns its name as a String. The difference is that the method in

FileNameWithoutExt returns the name without the extension and

FileNameWithExt returns the name with the extension.

The CaseSensitiveChooser interface is implemented by the nested classes

CaseSensitive and CaseInsensitive. Both of these classes have a single

method, chooseCase() that takes a String as a parameter and returns a String.

The difference is that the CaseInsensitive implementation converts the String to

lower case before returning it, while the CaseSensitive implementation just returns

the original String.

The nested classes are used by the meetsCriteria() method from the

SearchOption interface. The FileNameChooser method chooseFilename() is

passed the AbstractFile to get the appropriate file name. Then the name is passed

to the CaseSensitiveChooser method chooseCase() that returns the name as a

String in the proper case. That String is compared to the search term String and

meetsCriteria() finally returns true, if the search term is contained in the String.

The CaseSensitiveChooser method chooseCase() also is used by the

setSearchTerm() method to set the search term to the proper case for the search.

326

The ActionListener for the case sensitive JCheckBox was extracted from

BasicOptionsPanels. The portion of the actionPerformed() method that listens

for the case sensitive JCheckBox was extracted from the method with the same name.

It now calls a new method setCaseSensitve(), which switches between the classes

that implement the CaseSensitiveChooser.

The ActionListener for the extension JCheckBox was extracted from the

ExtensionPanel class. The portion of the actionPerformed() method that listens

for the extension JCheckBox was extracted from the method with the same name. It

now calls a new method setFileNameChooser(), which switches between the

classes that implement the FileNameChooser.

This would appear to make this code file large and have diverse responsibility;

however after the change request the code file has 112 LOC as measured by Clover. Its

responsibility is also clear, to compare the search term to a file’s name.

A.6.6.2 Deleted classes

The AbstractTermOption abstract class, CaseSensitiveOption,

SearchTermWithoutExtensionOption and

CaseSensitiveWithoutExtensionOption classes all were merged with

SearchTermOption and removed from the project.

A.6.6.3 ExtensionOption class

The programmer changed the setExtensions() method. The method parses

a String into a String array of extensions. The parsing removes leading white

space, semicolons, periods and commas. This was done with a loop that used 4 calls to

the String startsWith() method. This was replaced with a regular expression

327

algorithm. To do this 2 fields, one of type String containing the characters and one of

type Pattern were added to the class.

The method meetsCriteria() was changed so that a null check of its

parameter of type AbstractFile is done first.

A.6.6.4 BasicOptionsPanels class

The programmer extracted the responsibility of switching between the different

search term search options from this class to SearchTermOption. The array field of

type AbstractTermOption was deleted along with the nested enum Case and the

field of the same type. The swapSearchTerms() method also extracted to

SearchTermOption along with the portion of actionPerformed() that listened to

the case sensitive JCheckBox.

A new field of type SearchTermOption was added. It was added as a

DocumentListener to the field of type JTextField that the user enters a search

term in and as an ActionListener to the case sensitive JCheckBox field.

A.6.6.5 ExtensionPanel class

The programmer extracted the portion of the actionPerformed() method that

listens to the extension JCheckBox field and called swapSearchTermOptions() in

BasicOptionsPanels to SearchTermOption. This required the

BasicOptionsPanels parameter in the constructor to be replaced with a parameter

of type SearchTermOption. The object received from this parameter, was added to

the extension JCheckBox as an ActionListener.

328

A.6.6.6 FeedbackField code file

The programmer renamed the field of type HashSet that contains the

InputListeners from update to listeners to better describe what it holds. The method

checkValidUpdate() was also renamed to checkInputListeners().

A.6.6.7 SearchTermOptionTest class

This class is the unit test suite for the SearchTermOption class. It added a

setUpBeforeClass() method, had its setUp() method changed and added 2 tests.

A.6.6.8 CaseSensitiveOptionTest class

This class is unit test suite for the CaseSensitiveOption class. Since the

CaseSensitiveOption class was merged with the SearchTermOption class, this

test class was removed from the project.

A.6.6.9 ExtensionOptionTest class

This is the unit test suite for the ExtensionOption class. It added a

setUpBeforeClass() method, 2 tests were changed and 4 tests were added.

A.6.6.10 BasicOptionsPanelsTest class

This is the unit test suite for the BasicOptionsPanels class. It had a field

renamed, 7 tests were changed and 2 tests were added.

A.6.6.11 ExtensionPanelTest class

This class is the unit test suite for the ExtensionPanel class. It had its

setUp() method changed and 4 tests were changed.

A.6.6.12 FeedbackFieldTest class

This class is the unit test suite for the FeedbackField class. It had 5 tests

changed.

329

A.6.6.13 ExtensionSearchFuncTest class

This class is a functional test suite for extension searches. It had its setUp()

method changed and 7 tests were changed.

A.6.6.14 TestConstants class

This class holds public static final fields used by the unit and functional tests. It

had its Javadoc updated.

A.6.7 Verification

The test suite exposed 3 bugs during the change request, a forth bug was

discovered through code inspection. Two of these bugs were part of the current change

request and were fixed; the other 2 were added to the backlog.

After prefactoring all the regression tests passed. During postfactoring 1 test,

testSetMonth() from JDayChooserTest, failed. The programmer investigated this

further and discovered the test will fail if run on the last day of any month if the next

month has fewer days. The programmer did a test through user intervention and found

that the bug did not affect the program’s functionality. Therefore, a priority 4, minor

problem not involving primary functionality, change request was added to the backlog to

fix this bug. No new regression tests were added.

During impact analysis the programmer visited the DatePanel class; during this

visit the programmer realized that the datePanelSetEnabled() method did not

remove the DateOption object from the SearchManager. This means that if a date is

entered and the date JCheckBox is unchecked, a date search will still be performed.

This is the opposite of what a user would expect, but a there is an easy workaround;

330

just delete the date. This bug was given a priority 3, some functionality is impaired, but a

workaround can be found, therefore a change request was added to the backlog.

While writing the test class for the SearchTermOption code file during

postfactoring, the programmer found a bug in the insertUpdate() method. The bug

was found by running testInsertUpdate() from the SearchTermOptionTest

class. An exception was thrown by insertUpdate() if an empty String was input in

the Document it listens to. This was resolved by adding a check for an empty String.

The programmer found a second bug in SearchTermOption, with the test,

testActionPerformedCaseSensitiveBox() from the SearchTermOptionTest

class. If a case sensitive search was enabled, disabled and enabled, without changing

the search term, the case of the search term would be lost. The programmer added a

field to SearchTermOption to fix the bug. The new field stores the term with case, so

the case can be recovered when switching between case sensitive searches. Coverage

for each production code file is available in Table A.72.

 Table A.72 Change 6 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found

Total

Statements

Covered

Statements
%

1 FeedbackField 42 42 100.0 0 0

2 BasicOptionsPanels 38 38 100.0 0 0

3 ExtensionPanel 36 36 100.0 0 0

4 InputPanel 37 37 100.0 0 0

5 JSpinField 61 51 83.6 0 0

6 SearchTermOption 38 37 97.4 0 2

7 ExtensionOption 20 20 100.0 0 0

331

A.6.8 Timing Data

Table A.73 contains the timing data for the change request.

 Table A.73 Change 6 Timing Totals

Phase Time
(hh:mm)

Concept Location 0:00

Impact Analysis 0:55

Prefactoring 3:06

Prefactoring Testing 0:55

Actualization 2:20

Actualization Testing 2:36

Postfactoring 3:18

Postfactoring Testing 2:08

A.6.9 Conclusions

Prefactoring extracted 1 production code file, FeedbackField and made it

much more useful for general use by other classes. This made it simpler to use in this

change request, which extended the look and feel of a previous change into this change

request.

The actualization was more difficult for the programmer. The design used by

BasicOptionsPanels to switch between 2 classes that extend

AbstractTermOption was difficult to extend to 4 classes that extend

AbstractTermOption without bugs. This was not apparent to the programmer at the

beginning of the change request otherwise he would have refactored these classes

during prefactoring. Because of this difficulty the programmer knew he would delete the

2 new classes that extend AbstractTermOption during postfactoring, therefore he

did not write a test class for these classes. The classes were also very simple, so there

332

was not a large concern of bugs in the classes themselves. During postfactoring, the

functionality was tested by new tests added to the SearchTermOptionTest class.

The strategy pattern [42] used to add and remove search criteria worked well.

The programmer believes using this pattern has greatly reduced the changed set from

the procedural pattern that was in SearchThread until change 5.

The changed set was 5 code files less than the estimated impact set. The 5 code

files were changed during postfactoring. The change was complex and the programmer

found it easier to allow code smells to develop during actualization and address them in

postfactoring. Table A.74 lists the totals for each set of code files for each change

request of this iteration to date. Table A.75 is the current state of the product backlog.

Figure A.46 to Figure A.51 are screen shots of muCommander showing the change

request functionality.

333

 Table A.74 Change 6 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4
Date

Search
0 13 12 2 16 3 1,120

5
Case

Sensitive
0 16 15 8 2 3 1,133

6
Extension

Search
0 11 6 2 7 (5) 1,137

334

Table A.75 Change 6 Current Product Backlog

Title Complete User Story

1
Basic

Search
x

Add a basic search function that allows a user to search in
the current directory for all or part of the title of a folder or
file, and return a list of the matching files and directories.

2
Recursive

Search
x Add the ability to search inside all directories.

3
Advanced

Output
x Change the output to a table similar to the main

muCommander window.

4
Date

Search
x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

x Add capability to search by case sensitive search terms.

6
Extension

Search
x Add the ability to search for files with specific extensions.

7
Properties

Search
Add options to search for files based on their properties.

8 Date Bug

DateOption is not removed when disabled.

9
Size

Search
Add the ability to search for a file by its size.

10
Regular

Expression
Search

Add capability to search by a regular expression.

11
Lucene
Search

Incorporate the Apache Lucene search.

12
JDayChoos
erTest Bug

The test testSetMonth() fails on last day of month, if next
month has fewer days

335

 Figure A.46 Search window before the Extension Search Change

336

 Figure A.47 Search window after Extension Search Change

337

 Figure A.48 Search window Extension Search Feature circled

338

 Figure A.49 Search window valid text in extension field

339

 Figure A.50 Search window invalid text in extension field

340

 Figure A.51 Search window Extension Search Change

SIP – Change 7 Properties Search

A.7.1 Initialization

Add options to search for files based on their properties. The program,

muCommander, is an application which enhances an operating system’s file explorer.

During the first 6 change requests, search capabilities were added; which include:

• searching for a file whose name contains a certain term, both case

sensitive and insensitive,

• searching in any file system directory

• recursively searching in subfolders

341

• displaying results in a GUI table with the look and feel of the

muCommander application

• searching for files with a certain extension

• searching for files modified within a specified date range

This change request will add the capability to search for files with specific

properties. Four check boxes will be added to the GUI display that will allow the user to

select which properties to search for. The properties to add are: archive file, directory,

hidden file and read-only file. When one of the check boxes is selected a search will

only return results of that type. If 2 or more boxes are selected, the file must meet all of

the criteria; for example, if hidden file and read-only file are both selected, the results of

the search will only include files that are both hidden and read-only. Since a file cannot

be both an archive and a directory, if one of these properties is selected the other will be

disabled.

A.7.2 Concept Location

No concept location was needed for this change. Based on experience obtained

during previous changes the programmer knew the concept was located in the

BasicOptionsPanels class which was created during change 5.

A.7.3 Impact Analysis

The programmer started impact analysis by marking the code file containing the

concept location, BasicOptionsPanels, Impacted in JRipples; this marked 17 code

files as Next. One of the Next set, InputPanel was visited and marked as Impacted. It

has the object of BasicOptionsPanels and one of its methods,

createOptionsPanel() will need to be changed. JRipples added 10 code files to the

342

Next set. The programmer then visited AbstractFile. The change requires that it has

methods to check all of the properties being added. It did not have a method to check if

an object of it is read-only, therefore it was marked Impacted. JRipples added 307 code

files to the Next set for a total of 332.

The programmer then visited harness files BasicOptionsPanelsTest,

InputPanelTest, AbstractFileTest and TestConstants marked them all Next.

JRipples added their neighbors to the Next set, which now contained 329 code files.

This programmer decided not to visit the remaining set of Next classes. Most of

the program is dependent on AbstractFile. The method the programmer planned to

add to this class is a non-abstract boolean getter this should not affect any

implementing or dependent class. Table A.76 show the total of each type of code file

during impact analysis. Table A.77 is a summary of the code files visited during impact

analysis. Figure A.52 is a UML diagram of impact analysis.

 Table A.76 Change 7 Impact Analysis Summary

Title

Code Files

Comments
Visited Impacted Propagating Unchanged

Not
Visited

Properties
Search

7 7 0 0 329

343

 Table A.77 Change 7 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 BasicOptionsPanels
JRipples →
Impacted

Impacted Concept Location

2 InputPanel
JRipples →
Impacted

Impacted
Will need to change to

accommodate new
features

3 AbstractFile
JRipples →
Impacted

Impacted
Needs new boolean

getter method

4 BasicOptionsPanelsTest
JRipples →
Impacted

Impacted

5 InputPanelTest
JRipples →
Impacted

Impacted

6 AbstractFileTest
JRipples →
Impacted

Impacted

7 TestConstants
JRipples →
Impacted

Impacted
Will need new test

AbstractFile objects

BasicOptionsPanels

InputPanel

AbstractFile

InputPanelTest

BasicOptionsPanelsTest

AbstractFileTest

TestConstants

Legend

Unchanged

Propagating

Legend

Harness

Production

Association

Aggregation

Generalization

Impacted

 Figure A.52 Change 7 Impact Analysis UML

344

A.7.4 Prefactoring

No prefactoring was done during this change. The programmer did not see any

prefactoring that would make the change easier. That is not to say that prefactoring

could not have been done; but rather that for this change the programmer decided to do

the actualization and then perform all refactoring during the postfactoring stage.

A.7.5 Actualization

During actualization, the programmer created a new class that extends JPanel

and holds the 4 JCheckBox objects for properties searches. This new class was added

to muCommander through incorporation. This class, PropertiesPanel, has a method

to enable and disable the JCheckBox objects. It implements the ActionListener

interface and listens to the archive and directory JCheckBox objects. If one of these

boxes is checked the other is disabled, because it is impossible for a file to be both. It

also creates objects of 4 new classes that implement the SearchOption interface.

Additionally, a test class, PropertiesPanelTest, was added for this class.

The programmer added 4 new classes that implement the SearchOption

interface, ArchiveOption, DirectoryOption, HiddenOption and

ReadOnlyOption, through incorporation. They add themselves to the

SearchManager object when their corresponding JCheckBox is selected. They each

have a meetsCriteria() method from the SearchOption interface that returns

true, if an AbstractFile sent to it is an archive, directory, hidden file or read-only file.

The programmer added ArchiveOptionTest, DirectoryOptionTest,

HiddenOptionTest and ReadOnlyTest, test classes for these classes.

345

The AbstractFile class had methods isArchive(), isDirectory() and

isHidden() but it did not have an isReadOnly() method. The programmer added

one and added a test for it to AbstractFileTest. This part of the change impacted a

class not found during impact analysis, ProxyFile. ProxyFile must override all of

AbstractFile’s methods, so when the method isReadOnly() was added to

AbstractFile, a test in ProxyFileTest failed (section A.7.7). The programmer

added an overridden method isReadOnly() to ProxyFile.

The programmer then added an object of type PropertiesPanel to the

BasicOptionsPanels. To accommodate the new panel in the GUI, InputPanel was

changed to modify the GUI layout.

Finally, 3 new files for use in unit and functional tests were added to the project,

an archive file, a hidden file and a read-only file. The programmer then added fields

corresponding to them to the TestConstants class.

The total of each class by type of visit is listed in Table A.78. Table A.79 is a

summary of the changes made to each class during actualization and the LOC added

and deleted. Figure A.53 is a UML of actualization.

 Table A.78 Change 7 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Property
Search

7 7 11 0 0 1

346

 Table A.79 Change 7 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 PropertiesPanel Added class 89 0 89

2 ArchiveOption Added class 23 0 23

3 DirectoryOption Added class 23 0 23

4 HiddenOption Added class 23 0 23

5 ReadOnlyOption Added class 27 0 27

6 AbstractFile Added method 3 0 3

7 ProxyFile Added method 4 0 4

8 BasicOptionsPanels
Added field, changed

methods
39 3 42

9 InputPanel Changed method 2 2 4

10 PropertiesPanelTest Added test class 76 0 76

11 ArchiveOptionTest Added test class 43 0 43

12 DirectoryOptionTest Added test class 43 0 43

13 HiddenOptionTest Added test class 39 0 39

14 ReadOnlyOptionTest Added test class 39 0 39

15 AbstractFileTest Added test 5 0 5

16 BasicOptionsPanelTest Changed tests 7 2 9

17 PropertySearchFuncTest Added test class 205 0 205

18 TestConstants Added fields 8 0 8

347

PropertiesPanel

ArchiveOption DirectoryOption HiddenOption ReadOnlyOption

AbstractFile

ProxyFile

BasicOptionsPanelsInputPanel

PropertiesPanelTest

ArchiveOptionTest

DirectoryOptionTest HiddenOptionTest

ReadOnlyOptionTest

PropertySearchFuncTest

TestConstants

AbstractFileTest

BasicOptionsPanelsTest

Unchanged Propagating

Harness

ProductionLegend

Association

Aggregation

Generalization

Changed Added

 Figure A.53 Change 7 Actualization UML

A.7.5.1 PropertiesPanel class

The programmer added this class; it extends JPanel and contains 4

JCheckBox fields. These fields correspond to archive, directory, hidden and read-only

348

searches. They each have a class implementing the SearchOption and

ActionListener interfaces added as a listener.

The setEnabled() method was overridden to also enable the 4 JCheckBox

objects when the class is enabled. The class also implements the ActionListener

interface; it listens to the archive and directory JCheckBox objects. When one is

checked the other is disabled in the actionPerformed() method. The methods

archiveBoxSetEnabled() and directoryBoxSetEnabled() are called by

setEnabled() and only enable the JCheckBox if the other is not.

A.7.5.2 ArchiveOption class

This class implements the ActionListener and SearchOption interfaces. It

listens to the archive JCheckBox object in PropertiesPanel and adds itself to the

SearchManager, if the box is checked. The meetsCriteria() method calls

AbstractFile’s isArchive() method and returns the boolean value returned by

that method.

A.7.5.3 DirectoryOption class

This class implements the ActionListener and SearchOption interfaces. It

listens to the directory JCheckBox object in the PropertiesPanel and adds itself to

the SearchManager, if the box is checked. The meetsCriteria() method calls

AbstractFile’s isDirectory() method and returns the boolean value returned

by that method.

A.7.5.4 HiddenOption class

This class implements the ActionListener and SearchOption interfaces. It

listens to the hidden JCheckBox object in the PropertiesPanel and adds itself to

349

the SearchManager, if the box is checked. The meetsCriteria() method calls

AbstractFile’s isHidden() method and returns the boolean value returned by

that method.

A.7.5.5 ReadOnlyOption class

This class implements the ActionListener and SearchOption interfaces. It

listens to the read-only JCheckBox object in the PropertiesPanel and adds itself to

the SearchManager, if the box is checked. The meetsCriteria() method calls

AbstractFile’s isReadOnly() method and returns the boolean value returned by

that method.

A.7.5.6 AbstractFile abstract class

The programmer added a method isReadOnly() to this class. The method

checks the AbstractFile’s permissions to see if writing is permitted; if it is it returns

true, else it returns false.

A.7.5.7 ProxyFile class

The programmer missed this class during impact analysis. According to JRipples

this class has 322 neighbors the programmer did not visit these classes during impact

analysis. However, this class is a proxy implementation of AbstractFile and it

requires that all non-final methods be overridden. To enforce this,

testAllMethodsOverriden() fails if a method in AbstractFile’s is not

overridden by ProxyFile.

The programmer added a method isReadOnly() to this class. The method

overrides isReadOnly() from AbstractFile. It just calls isReadOnly() in

AbstractFile and returns the same value. The test,

350

testAllMethodsOverriden() did not need to be changed because it dynamically

searches for methods in AbstractFile and fails if ProxyFile does not override

them.

A.7.5.8 BasicOptionsPanels class

The programmer added a field of type PropertyPanel to this class. The

method getBasicOptionsPanel() was then changed to call the method add()

with this field as a parameter. The programmer organized the JPanel returned from the

method getBasicOptionsPanel() by adding 2 JSeparator objects and the layout

of the panel was changed to a GridBagLayout. The setEnabled() method now

also calls the setEnabled() method in PropertiesPanel.

A.7.5.9 InputPanel

The programmer changed the createOptionsPanel() method to put the

DatePanel object below the BasicOptonsPanel because the 2 did not fit next to

each other without expanding the width of the search window.

A.7.5.10 PropertiesPanelTest class

This class was added, it is the unit test suite for the PropertiesPanel class; it

has 6 tests.

A.7.5.11 ArchiveOptionTest class

This class was added, it is the unit test suite for the ArchiveOption class; it

has 3 tests.

A.7.5.12 DirectoryOptionTest class

This class was added, it is the unit test suite for the DirectoryOption class; it

has 3 tests.

351

A.7.5.13 HiddenOptionTest class

This class was added, it is the unit test suite for the HiddenOption class; it has

3 tests.

A.7.5.14 ReadOnlyOptionTest class

This class was added, it is the unit test suite for the ReadOnlyOption class; it

has 3 tests.

A.7.5.15 AbstractFileTest class

This class is the unit test suite for the AbstractFile class. It had 1 test added.

A.7.5.16 BasicOptionsPanelsTest class

This class is the unit test suite for the BasicOptionsPanels class. It had 3

tests changed

A.7.5.17 PropertySearchFuncTest class

This class is a functional test suite for property searches. It extends

SearchFuncTestSetUp and has 11 tests.

A.7.5.18 TestConstants class

This class holds public static final fields used by the unit and functional tests. It

added 4 fields of type AbstractFile corresponding to 4 files to be used for testing.

One of these files is an archive, one a directory, one a hidden file and one a read-only

file.

A.7.6 Postfactoring

During actualization code smells developed in PropertiesPanel. The

responsibility to disable the archive JCheckBox when the directory JCheckBox is

selected and vice-versa is misplaced. The programmer extracted a new class from

352

PropertiesPanel, called SearchOptionBox. It adds the responsibility of an

antonym SearchOptionBox. When a SearchOptionBox is selected, it disables a

registered antonym box.

The programmer placed the responsibility to add and remove the 4 classes,

ArchiveOption, DirectoryOption, HiddenOption and ReadOnlyOption that

implement SearchOption in these classes in actualization. This was also misplaced,

so the programmer extracted this responsibility to SearchOptionBox. This class is

now solely responsible for the actions of selecting the JCheckBox. This left the 4

classes that implement SearchOption with 1 method, meetsCriteria(). These

classes could have been made into anonymous classes, but the programmer chose to

keep them in their own files, because it makes the code clearer.

The classes InputPanel and BasicOptionsPanels shared the responsibility

of laying out the GUI parts dealing with search options such as recursive searches,

extension searches, property searches and date searches. After actualization it stood

out that this was not clearly organized. The programmer created a new class,

OptionsPanel to layout all of GUI classes that contain search options. One of these

classes, BasicSearchOptionsPanels, had the JTextField that contains the

search term. The programmer does not consider the search term a search option, so it

was extracted to a new class SearchTermPanel.

This left InputPanel responsible for the layout of 4 panels. Three of these are

separate production code classes, DirectoryPanel, SearchTermPanel and

OptionsPanel. The forth panel holds a JLabel that displays a static String, a

second JLabel that displays search option errors and an icon that is animated when a

353

search is running. This panel is not significant enough for its own class; therefore it is

created in a method, createLabelPanel() in InputPanel.

This refactoring resulted in broken contracts to clients of InputPanel and

BasicOptionsPanels; this resulted in the programmer adding 9 code files to the

changed set. The only 1 of the 9 added to the changed set that is production code is

SearchDialog it has a method call that is responsible for requesting a Component to

be the default when the dialog is created (section A.7.6). It is an anti-pattern that the

programmer would like to remove, but it is a small concept that does not warrant its own

class and the programmer is not aware of a listener that can accomplish this.

The other code files added to the change set were all part of the harness. These

code files are: BasicSearchFuncTest, ExtensionSearchFuncTest,

SearchFuncTestSetUp, SearchTermOptionTest, ButtonPanelTest,

ExtensionPanelTest, SearchDialogTest and SearchThreadTest. The

programmer did not plan to do to extract the SearchTermPanel and OptionsPanel

classes at the start of the change. However, after the change code smells were present

in BasicOptionsPanels and InputPanel that needed to be dealt with. The

programmer decided not to visit the production code files that these harness code files

test during impact analysis because he was familiar with them from his experiences in

past changes. However, the programmer made the mistake of thinking the harness

code files had similar dependencies as the production code files they test, which is not

the case.

The harness code files have more dependencies than the production code files

they test because the tests must not only create the dependencies of the class being

354

tested, but also the dependencies of the dependencies. A test class may need objects

of a few levels of dependencies. Additionally, the test’s assertions may require an object

of a dependency of the class being tested, especially in the case of methods with void

return types. These circumstances make it likely that the changed set of the harness will

be greater than the estimated impact set if refactoring not anticipated during impact

analysis is done.

The total of each class by type of visit is listed in Table A.80. Table A.81 is a

summary of the refactoring type and LOC added and deleted during postfactoring.

Figure A.54 is a UML of postfactoring.

 Table A.80 Change 7 Postfactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Property
Search

27 27 6 0 0 9

 Table A.81 Change 7 Postfactoring Code Files

Code File Task
Lines of Code

AddedDeleted Total

1 InputPanel Extracted class from 24 35 59

2 OptionsPanel Extracted class 84 0 84

3 BasicOptionsPanel
Renamed class, extracted

class from
6 89 95

4 SearchTermPanel Extracted class 27 0 27

5 PropertiesPanel Extracted class from 31 62 93

6 ArchiveOption Extracted class from 1 16 17

7 DirectoryOption Extracted class from 1 16 17

8 HiddenOption Extracted class from 1 16 17

9 ReadOnlyOption Extracted class from 1 20 21

10 SearchOptionBox Extracted class 55 0 55

355

11 SearchDialog Changed method 1 1 2

12 AbstractFile Javadoc 0 0 0

13 InputPanelTest Changed tests 7 5 12

14 OptionsPanelTest Added test class 65 0 65

15 BasicOptionsPanelTest

Renamed class, changed
method, changed, extracted

tests
24 65 89

16 SearchTermPanelTest Changed tests 52 0 52

17 PropertiesPanelTest
Added method, changed,

extracted tests
13 37 50

18 ArchiveOptionTest Changed, extracted tests 4 22 26

19 DirectoryOptionTest Changed, extracted tests 4 22 26

20 HiddenOptionTest Changed, extracted tests 4 18 22

21 ReadOnlyOptionTest Changed, extracted tests 4 18 22

22 SearchOptionBoxTest Added test class 113 0 113

23 AbstractFileTest Javadoc 0 0 0

24 PropertySearchFuncTest Changed method, test 9 5 14

25 BasicSearchFuncTest Changed tests 2 2 41

26 ExtensionSearchFuncTest Changed test 1 1 2

27 SearchFuncTestSetUp Changed method 2 2 4

28 SearchTermOptionTest Changed method, tests 16 16 32

29 ButtonPanelTest Changed test 1 1 2

30 ExtensionPanelTest Changed method 2 5 7

31 SearchDialogTest Changed test 2 2 4

32 SearchThreadTest Changed tests 7 7 14

33 TestConstants Added code blocks 23 0 23

356

 Figure A.54 Change 7 Postfactoring UML

A.7.6.1 InputPanel class

The programmer extracted the fields DatePanel and BasicOptionsPanel to

OptionsPanel along with the method, createOptionsPanel(). The calls to their

setEnabled() method were removed from the switchToSearchState() method.

357

The programmer then added new fields of type SearchTermPanel and

OptionsPanel. Calls to these fields setEnabled() were added to

switchToSearchState().

A.7.6.2 OptionsPanel class

The programmer extracted this class from InputPanel, it extends JPanel. It

has fields of type BasicOptionsPanel, ExtensionPanel, PropertiesPanel,

DatePanel and JPanel. The method, createPanel() is called from the constructor;

it adds the return value of the method createTopPanel() to the class along with the

DatePanel object. The method, createTopPanel() lays out the field objects

BasicOptionsPanel, ExtensionPanel and PropertiesPanel in the field object

of type JPanel by calling addComponent(). The method addComponent() is a

convenience method, that adds a Component to the JPanel field, in a designated grid

cell. Finally, there is an overridden setEnabled() method that calls setEnabled()

in all the inner panels.

A.7.6.3 BasicOptionsPanel class

The programmer extracted the fields, of type JTextField, and

SearchTermOption along with the methods, initInputFieldPanel() and

getInputFieldPanel() to a new class SearchTermPanel. Next the fields

ExtensionPanel and PropertiesPanel along with the method

getBasicOptionsPanel were extracted to OptionsPanel. The calls to these fields

setEnabled() methods were extracted to the appropriate class from the

setEnabled() method.

358

This left this class with 2 fields of type JCheckBox that handle the responsibility

for recursive and case sensitive searches. The programmer changed the class to

extend YBoxPanel and renamed it from BasicOptionsPanels to

BasicOptionsPanel since it now only handles the responsibility for 1 panel.

A.7.6.4 SearchTermPanel class

The programmer extracted this class from BasicOptionsPanel. It contains a

single field of type JTextField. It lays out that field and a static JLabel. There is also

an overridden method setEnabled() to enable the field and request the focus when

called.

A.7.6.5 PropertiesPanel class

The programmer extracted a new class, SearchOptionBox from this class. The

responsibility contained in the methods archiveBoxSetEnabled() and

directoryBoxSetEnabled() was extracted to this new class. The

ActionListener and its method actionPerformed() was also extracted to

SearchOptionBox. Next the 4 fields of type JCheckBox were changed to type

SearchOptionBox.

The constructor was long and difficult to follow; it repeated similar code 4 times to

initialize the 4 JCheckBox fields. A new method addAtCell() was extracted from it.

A.7.6.6 ArchiveOption, DirectoryOption, HiddenOption and ReadOnlyOption class

These classes were all created during actualization; they all had the same code

in their constructors and actionPerformed() methods. The programmer extracted

the field of type SearchManager and the ActionListener interface with its methods

359

actionPerformed() to SearchOptionBox from all of these classes. This left the

constructor empty, so it was deleted.

A.7.6.7 SearchOptionBox class

The programmer extracted this class from PropertiesPanel,

ArchiveOption, DirectoryOption, HiddenOption and ReadOnlyOption. The

class extends JCheckBox. It is responsible for adding and removing a SearchOption

class from the SearchManager object passed to its constructor, when the JCheckBox

is selected. It is also responsible for disabling a registered antonym SearchOptionBox

when it is selected.

This class has 3 fields of type SearchOption, SearchManager and

SearchOptionBox. The SearchOptionBox field is an antonym box that is disabled

when this object of SearchOptionBox is selected.

The class implements the ActionListener interface. The

actionPerformed() method calls enableOption() and if the antonym field is not

null, it will call its setEnabled() method. The c method calls the method

addOption() on the field object of type SearchManager passing the field object of

type SearchOption if this object is selected, otherwise it calls removeOption() with

the same field.

The method setEnabled() is also overridden; it only enables this object if it

does not have a selected antonym.

A.7.6.8 SearchDialog class

The programmer did not visit or include this class in the estimated impact set.

The class was impacted because its constructor calls an inherited method,

360

setInitialFocusComponent(), to put the cursor in the field that accepts search

terms. This field was extracted from BasicOptionsPanels to SearchTermPanel it

did not make sense to create a man-in-the-middle by leaving the getter for the field in

BasicOptionsPanels, so SearchDialog was impacted.

The method call in the constructor

getBasicOptionsPanels().getInputBox() on the field object of type

InputPanel had to be changed to getSearchTermPanel().getInputBox(). This

method call’s return value is the parameter passed to

setInitialFocusComponent().

A.7.6.8 AbstractFile class

The programmer added Javadoc to the method added during actualization.

A.7.6.9 InputPanelTest class

This class is the unit test class for the InputPanel class. It had 3 tests

changed.

A.7.6.10 OptionsPanelTest class

This class was added, it is the unit test suite for the OptionsPanel class; it has

5 tests.

A.7.6.11 BasicOptionsPanelTest class

This class is the unit test class for the BasicOptionsPanel class. It had 2 tests

changed, 2 added and 5 deleted. Its setUp() method was changed and it was

renamed, dropping the ‘s’ after Panel just as the class it tests did.

361

A.7.6.12 SearchTermPanelTest class

This class was added, it is the unit test suite for the SearchTermPanel class; it

has 4 tests.

A.7.6.13 PropertiesPanelTest class

This class is the unit test class for the PropertiesPanel class. It had 1 test

changed and 3 deleted. A method setUpBeforeClass() was added to call the static

method loadDictionaryFile() in the Translator class.

A.7.6.14 ArchiveOptionTest, DirectoryOptionTest, HiddenOptionTest and

ReadOnlyOptionTest classes

These are the unit test classes for ArchiveOption, DirectoryOption,

HiddenOption and ReadOnlyTest classes. They all had 1 test changed and 1

deleted.

A.7.6.15 SearchOptionBoxTest class

This class was added, it is the unit test suite for the SearchOptionBox class; it

has 10 tests.

A.7.6.16 AbstractFileTest class

This class is the unit test class for the AbstractFile class. It had Javadoc

added to a test added during actualization.

A.7.6.17 PropertySearchFuncTest class

This class is a functional test suite for property searches. Its setUp() method

and 2 tests were changed.

A.7.6.18 BasicSearchFuncTest class

This class is a functional test suite for basic searches. Two tests were changed.

362

A.7.6.19 ExtensionSearchFuncTest class

This class is a functional test suite for extension searches. One test was

changed.

A.7.6.20 SearchFuncTestSetUp abstract class

This is a class that is extended by test classes that need a SearchDialog

object for testing. It changed its setUp() method.

A.7.6.21 SearchTermOptionTest class

This class is the unit test class for the SearchTermOption class. Its setUp()

method and 2 tests were changed.

A.7.6.22 ButtonPanelTest class

This class is the unit test class for the ButtonPanel class. It had 1 test

changed.

A.7.6.23 ExtensionPanelTest class

This class is the unit test class for the ExtensionPanel class. Its setUp()

method was changed.

A.7.6.24 SearchDialogTest class

This class is the unit test class for the SearchDialog class. It had 1 test

changed.

A.7.6.25 SearchThreadTest class

This class is the unit test class for the SearchThread class. It had 5 tests

changed.

363

A.7.6.26 TestConstants class

This class holds public static final fields used by the unit and functional tests. The

programmer added 2 static code blocks to set the properties on 2 of the fields added

during actualization, so that it does not need to be done manually by programmers after

checking out the project from the repository.

A.7.7 Verification

During actualization and postfactoring all regression tests passed. The

programmer found 3 bugs during the change; 2 during actualization and 1 during

postfactoring. The first bug found during actualization, the test, testSetEnabled() in

the PropertiesPanelTest harness code file failed. The programmer added a call to

the super method in the overridden method setEnabled() in PropertiesPanel

then the test passed.

The programmer discovered a bug from a previous change request during

actualization. When the programmer investigated the failed test, testSetEnabel(),

he ran a manual intervention test. During this he discovered that, if a directory to search

in is chosen with the file chooser, the search directory is not updated. A bug was added

to the backlog.

The third bug the programmer discovered was during postfactoring. The tests

testArchiveBoxSetEnabled() and testDirectoryBoxSetEnabled() both

failed after the class SearchOptionBox was extracted from PropertiesPanel.

During the class extraction the programmer neglected to add the lines

archiveBox.addAntonym(directoryBox); and

directoryBox.addAntonym(archiveBox); to the PropertiesPanel

364

constructor. The programmer added the lines and continued with postfactoring. Table

A.82 shows the statement level verification coverage of each production code file

changed.

 Table A.82 Change 7 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found Total

Statements
Covered

Statements
%

1 SearchOptionBox 23 23 100.0 0 0

2 BasicOptionsPanel 13 13 100.0 0 0

3 OptionsPanel 43 43 100.0 0 0

4 PropertiesPanel 24 24 100.0 2 2

5 SearchTermPanel 11 11 100.0 0 0

6 ArchiveOption 1 1 100.0 0 0

7 InputPanel 27 27 100.0 0 0

8 DirectoryOption 1 1 100.0 0 0

9 SearchDialog 44 43 97.7 0 0

10 HiddenOption 1 1 100.0 0 0

11 ReadOnlyOption 1 1 100.0 0 0

12 AbstractFile 233 170 73.0 0 0

13 ProxyFile 64 54 84.4 0 0

365

A.7.8 Timing Data

Table A.83 contains the timing data for the change.

 Table A.83 Change 7 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:00

Impact Analysis 0:38

Prefactoring 0:00

Prefactoring Testing 0:00

Actualization 2:57

Actualization Testing 2:32

Postfactoring 3:54

Postfactoring Testing 4:22

A.7.9 Conclusions

The programmer mistakenly thought that this change would be simpler than it

was to actualize. The timing data shows that the change’s actualization and prefactoring

phase took longer than change 6, which the programmer considered more difficult. The

total time of the change was 94% of the change 6 total time. The impact analysis should

have been more rigorous. This led to extra time being spent on testing during

postfactoring.

The changed set of 7 code files was equal to the estimated impact set. However,

an extra production code file was impacted and one of the harness code files was not.

During actualization, a regression test failed because the class ProxyFile, an

implementation of AbstractFile, did not implement a method the programmer added.

The programmer mistakenly assumed that an added boolean getter would not have an

impact. However, ProxyFileTest requires ProxyFile to override all

366

AbstractFile’s methods. The harness code file InputPanelTest did not need to

be changed.

During postfactoring 9 code files that were not part of the estimated impact set or

the changed set were impacted. At the start of postfactoring it became clear to the

programmer that the responsibility held in InputPanel and BasicOptionsPanels

could be better organized. The programmer extracted OptionsPanel and moved

responsibility between these code files. This opportune reorganization impacted the 9

additional code files.

After completing this change request, the search feature of muCommander has

grown quite capable. It still has room to grow, but it provides a user a large combination

of methods to search for files in the file system. Table A.84 lists the totals for each set of

code files for each change request of this iteration to date. Table A.85 is the current

product backlog. Figure A.55 to Figure A.59 are screen shots of muCommander

showing the change request functionality.

367

 Table A.84 Change 7 Code File Summary

Change

Number in Code files

Visited
Concept
Location

Estimated
Impact

Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4
Date

Search
0 13 12 2 16 3 1,120

5
Case

Sensitive
0 16 15 8 2 3 1,133

6
Extension

Search
0 11 6 2 7 (5) 1,137

7
Properties

Search
0 7 7 0 11 6 1,154

368

 Table A.85 Change 7 Current Product Backlog

Title Complete User Story

1
Basic

Search
x

Add a basic search function that allows a user to search in
the current directory for all or part of the title of a folder or
file, and return a list of the matching files and directories.

2
Recursive

Search
x Add the ability to search inside all directories.

3
Advanced

Output
x Change the output to a table similar to the main

muCommander window.

4
Date

Search
x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

x Add capability to search by case sensitive search terms.

6
Extension

Search
x Add the ability to search for files with specific extensions.

7
Properties

Search
x Add options to search for files based on their properties.

8
Directory
Chooser

Bug
Choosing a directory with the file chooser doesn't update the
search directory.

9 Date Bug

DateOption is not removed when disabled.

10
Size

Search
Add the ability to search for a file by its size.

11
Regular

Expression
Search

Add capability to search by a regular expression.

12
Lucene
Search

Incorporate the Apache Lucene search.

13
JDayChoos
erTest Bug

The test testSetMonth() fails on last day of month, if next
month has fewer days

369

 Figure A.55 Search window before Properties Search Change

370

 Figure A.56 Search window Properties Search Change

371

 Figure A.57 Search window Properties Search circled

372

 Figure A.58 Search window Archive checked, Directory disabled

373

 Figure A.59 Search window search running, returning Directories

A.8 SIP – Change 8 File Chooser Bug

A.8.1 Initialization

Choosing a directory with the file chooser does not update the search directory.

The programmer discovered a bug in muCommander during change request 7 through

code inspection. He determined that it was caused during the prefactoring phase of

change request 5. The issue is that a user can type a directory directly into the text box

to search it, but if the user chooses a directory from the GUI file chooser, the search

374

directory is not updated. The programmer added this bug to the product backlog as a

priority 3 bug because there is a workaround.

A.8.2 Concept Location

No concept location was needed for this change. The programmer found this bug

during a code inspection; the concept extension is located in the DirectoryPanel

code file.

A.8.3 Impact Analysis

No impact analysis was necessary. The programmer identified the file with the

concept extension, DirectoryPanel as the only production code file in the estimated

impact set. He added the harness code files DirectoryPanelTest and

BasicSearchFuncTest so he could add tests to prevent the bug from reoccurring.

Table A.86 lists the code files in the estimated impact set. Figure A.60 shows a UML

diagram of the estimated impact set.

 Table A.86 Change 8 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 DirectoryPanel Code inspection Impacted
Contains concept

extension.

2 DirectoryPanelTest
Previous

Knowledge
Impacted Not Visited

3 BasicSearchFuncTest
Previous

Knowledge
Impacted Not Visited

375

 Figure A.60 Change 8 Impact Analysis UML

A.8.4 Prefactoring

The programmer extracted a method called directoryFieldUpdate() from

the existing keyReleased() method in DirectoryPanel. All of the body of

keyReleased() was extracted to the new method. He did this because the

KeyListener interface and its keyReleased() method will be replaced during

actualization to fix the bug. The programmer also added a test for the new method, to

DirectoryPanelTest.

Table A.87 is the total code files the change propagated to. Table A.88 is a

summary of the LOC for each code file and Figure A.61 is a UML of prefactoring.

 Table A.87 Change 8 Prefactoring Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Directory
Chooser

Bug
2 2 0 0 0 0

376

 Table A.88 Change 8 Prefactoring Code Files

Code File Task
Lines of Code

AddedDeleted Total

1 DirectoryPanel Extracted method 3 0 3

2 DirectoryPanelTest Added test 6 0 6

 Figure A.61 Change 8 Prefactoring UML

A.8.4.1 DirectoryPanel class

The programmer extracted the method directoryFieldUpdate() method

from the method keyReleased(). The extracted method contains the entire body of

keyReleased(), which now just calls the extracted method. The programmer did this

to make it easier to replace the keyReleased() method during actualization.

A.8.4.2 DirectoryPanelTest class

This class is the unit test suite for the DirectoryPanel class. It had 1 test

added.

A.8.5 Actualization

To actualize the change request, the programmer replaced the KeyListener

interface with a DocumentListener interface. This interface initiates an event if the

text in a JTextField is changed regardless of the source; the KeyListener interface

only initiated events if the user typed a key. So when the directory chooser updated the

text field, there was no event.

377

The programmer then added tests to DirectoryPanelTest for the

DocumentListener interface’s methods and deleted the test for the keyListener()

method. He then added a test to BasicSearchFuncTest that uses the GUI file

chooser to select a directory to search and asserts that the selected directory is the

current search directory.

The total of each class by type of visit is listed in Table A.89. Table A.90 is a

summary of the changes made to each class during actualization and the LOC added

and deleted. Figure A.62 is a UML of actualization.

 Table A.89 Change 8 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Directory
Chooser

Bug
3 3 0 0 0 0

 Table A.90 Change 8 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 DirectoryPanel Added, deleted, changed methods 10 9 19

2 DirectoryPanelTest Added, deleted tests 9 3 12

3 BasicSearchFuncTest Added test 23 0 23

378

 Figure A.62 Change 8 Actualization UML

A.8.5.1 DirectoryPanel class

The programmer removed the KeyListener interface from this class and its 3

methods. Only the keyReleased() method from the interface was used; it called

directoryFieldUpdate() on a key released event. The programmer added a

DocumentListener interface, with its 3 methods. The insertUpdate() and

removeUpdate() methods both call directoryFieldUpdate(). The third interface

method is changedUpdate() is unused.

A.8.5.2 DirectoryPanelTest class

This class is the unit test suite for the DirectoryPanel class. It had 2 tests

added and 1 deleted.

A.8.5.3 BasicSearchFuncTest class

This class is a functional test for basic search functionality. It had 1 test added.

A.8.6 Postfactoring

No Postfactoring was necessary for this change request.

379

A.8.7 Verification

All regression tests passed after the change request. No new bugs were found.

Table A.91 shows the test coverage of DirectoryPanel, the only production code file

changed.

 Table A.91 Change 8 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found Total

Statements
Covered

Statements
%

1 DirectoryPanel 55 54 98.2 0 0

A.8.8 Timing Data

Table A.92 contains the timing data for the change.

 Table A.92 Change 8 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:00

Impact Analysis 0:00

Prefactoring 0:07

Prefactoring Testing 0:09

Actualization 0:16

Actualization Testing 0:37

Postfactoring 0:00

Postfactoring Testing 0:00

A.8.9 Conclusions

This bug fix went smoothly; extracting a method during prefactoring made

actualization simple. The functional test added during actualization is important, it will

assure that if this bug is added to the program again the programmer will know it quickly

and can address it before it is committed to another baseline.

380

Table A.93 lists the totals for each set of code files for each change request of

this iteration to date. Table A.94 is the current product backlog.

 Table A.93 Change 8 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1
Basic

Search
5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4 Date Search 0 13 12 2 16 3 1,120

5
Case

Sensitive
0 16 15 8 2 3 1,133

6
Extension

Search
0 11 6 2 7 (5) 1,137

7
Properties

Search
0 7 7 0 11 6 1,154

8
Date

Chooser
Bug

0 3 3 0 0 0 1,154

381

 Table A.94 Change 8 Current Product Backlog

Title Complete User Story

1
Basic

Search
x

Add a basic search function that allows a user to search in
the current directory for all or part of the title of a folder or
file, and return a list of the matching files and directories.

2
Recursive

Search
x Add the ability to search inside all directories.

3
Advanced

Output
x Change the output to a table similar to the main

muCommander window.

4
Date

Search
x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

x Add capability to search by case sensitive search terms.

6
Extension

Search
x Add the ability to search for files with specific extensions.

7
Properties

Search
x Add options to search for files based on their properties.

8
Directory
Chooser

Bug

x Choosing a directory with the file chooser doesn't update the
search directory.

9 Date Bug

DateOption is not removed when disabled.

10
Size

Search
Add the ability to search for a file by its size.

11
Regular

Expression
Search

Add capability to search by a regular expression.

12
Lucene
Search

Incorporate the Apache Lucene search.

13
JDayChoos
erTest Bug

The test testSetMonth() fails on last day of month, if next
month has fewer days

SIP – Change 9 Date Search Bug

A.9.1 Initialization

The DateOption is not removed from the SearchManager when it is disabled.

The programmer discovered a bug in during the impact analysis phase of change

request 6. When the JCheckBox that turns the date search on and off is unchecked to

382

turn the date search off, the DateOption objects are not removed from the

SearchManager. This means that the date search is still enabled, resulting in

incomplete search results. If the date search is never enabled or if dates are not entered

in the DateField objects, the search will be correct; therefore, this bug has a priority of

3.

A.9.2 Concept Location

No concept location was needed for this change. The programmer found this bug

during a code inspection; the concept extension is located in the DatePanel code file.

A.9.3 Impact Analysis

No impact analysis was necessary. Based on knowledge from previous change

requests the programmer knew that the code file with the concept extension,

DatePanel and DateField and DateOption would all be in the estimated impact

set. He added the harness code files DatePanelTest, DateFieldTest,

DateOptionTest and DateSearchFuncTest so he could add tests to prevent the

bug from reoccurring. Table A.95 lists the code files in the estimated impact set. Figure

A.63 shows a UML diagram of the estimated impact set.

383

Table A.95 Change 9 Impact Analysis Code Files Visited

Code File Tool used Impacted? Comments

1 DatePanel Code inspection Impacted Concept Location

2 DateField
Previous

Knowledge
Impacted

Supplier to DatePanel Not
Visited

3 DateOption
Previous

Knowledge
Impacted

Supplier to DatePanel Not
Visited

4 DatePanelTest
Previous

Knowledge
Impacted Not Visited

5 DateFieldTest
Previous

Knowledge
Impacted Not Visited

6 DateOptionTest
Previous

Knowledge
Impacted Not Visited

7 DateSearchFuncTest
Previous

Knowledge
Impacted Not Visited

 Figure A.63 Change 9 Impact Analysis UML

A.9.4 Prefactoring

No prefactoring was necessary for this change request.

384

A.9.5 Actualization

To actualize the change request, the programmer added the ActionListener

interface to the DateOption class. He then added the DateOption objects initialized

in DatePanel as listeners to the dateBox field. This will add and remove objects of

this class to the set of SearchOption objects in SearchManager as appropriate. The

change propagated to DateField, which had a redundant method call in its

focusLost() method that was adding the DateOption object back into

SearchManager.

The programmer then changed tests in DatePanelTest and DateOptionTest

to test the new contracts. He then added a test to DateSearchFuncTest that enables

and disable a date search and asserts that the DateOption objects are removed from

SearchManager. The change request did not propagate to the DateFieldTest

harness code file, its tests still passed after the redundant call was removed from

DateField.

The total of each class by type of visit is listed in Table A.96. Table A.97 is a

summary of the changes made to each class during actualization and the LOC added

and deleted. Figure A.64 is a UML of actualization.

 Table A.96 Change 9 Actualization Summary

Title

Code Files

Visited Changed Added Propagating Unchanged
Added to

Changed Set

Date
Search

Bug
7 6 0 0 1 0

385

 Table A.97 Change 9 Actualization Code Files

Code File Task
Lines of Code

Added Deleted Total

1 DatePanel Changed method 6 4 10

2 DateField Changed method 1 2 3

3 DateOption Added method 8 1 9

4 DatePanelTest Changed test 10 0 10

5 DateOptionTest Added test 14 0 14

6 DateSearchFuncTest Added test 11 0 11

 Figure A.64 Change 9 Actualization UML

A.9.5.1 DatePanel class

The programmer added the existing objects of DateOption to the

ActionListener of JCheckBox field dateBox in the constructor.

A.9.5.2 DateField class

The focusLost() method had called the dateTextCheckBox() method, but

it was redundant, so the programmer removed it.. He also added a condition to the if

statement to only call the setText() method, if the DateField object is enabled.

386

Either of these conditions could cause the DateOption object to be added back to the

SearchManager incorrectly. During change request 5, the programmer was probably

trying to address these conditions when he introduced the bug.

A.9.5.3 DateOption class

The ActionManager interface and its actionPerformed() method was

added to this class. Objects of this class are added to the dateBox JCheckBox field in

DatePanel; when the box is selected, the actionPerformed() method calls the

class’s setEnabled() method with dateBox’s isSelected() method as a

parameter.

A.9.5.4 DatePanelTest class

This class is the unit test suite for the DatePanel class. It had 1 test changed.

A.9.5.5 DateOptionTest class

This class is the unit test suite for the DateOption class. It had 1 test added.

A.9.5.6 DateSearchFuncTest class

This class is a functional test for date search functionality. It had 1 test added.

A.9.6 Postfactoring

No Postfactoring was necessary for this change request.

A.9.7 Verification

All regression tests passed after the change request. No new bugs were found.

Table A.98 shows the test coverage of the production code files changed.

387

 Table A.98 Change 9 Statement Verification

Code File

Coverage of Application
Tests
Failed

Bugs
Found Total

Statements
Covered

Statements
%

1 DatePanel 62 61 98.4 0 0

2 DateField 68 64 94.1 0 0

3 DateOption 21 21 100.0 0 0

A.9.8 Timing Data

Table A.99 contains the timing data for the change.

 Table A.99 Change 9 Timing Totals

Phase
Time

(hh:mm)

Concept Location 0:00

Impact Analysis 0:00

Prefactoring 0:00

Prefactoring Testing 0:00

Actualization 0:23

Actualization Testing 0:22

Postfactoring 0:00

Postfactoring Testing 0:00

A.9.9 Conclusions

This bug fix went smoothly. The focusLost() method of DateField had a

redundant call to the dateTextCheckBox() method, which caused the fix to take

slightly longer than planned. However, it was quickly found and fixed for a successful

bug fix.

Table A.100 lists the totals for each set of code files for each change request of

this iteration to date. Table A.101 is the current product backlog.

388

 Table A.100 Change 9 Code File Summary

Change

Number in Code Files

Visited
Concept
Location

Estimated
Impact Set

Changed
Set

Added during Total

Project Pre Act Post

0
Original
Baseline

N/A N/A N/A N/A N/A N/A 1,070

1 Basic Search 5 3 4 0 4 0 1,074

2
Recursive

search
0 3 4 4 0 5 1,083

3
Advanced

Output
6 21 11 2 4 10 1,099

4 Date Search 0 13 12 2 16 3 1,120

5
Case

Sensitive
0 16 15 8 2 3 1,133

6
Extension

Search
0 11 6 2 7 (5) 1,137

7
Properties

Search
0 7 7 0 11 6 1,154

8
Directory

Chooser Bug
0 3 3 0 0 0 1,154

9
Date Search

Bug
0 7 6 0 0 0 1,154

389

 Table A.101 Change 9 Current Product Backlog

Title Complete User Story

1
Basic

Search
x

Add a basic search function that allows a user to search in
the current directory for all or part of the title of a folder or
file, and return a list of the matching files and directories.

2
Recursive

Search
x Add the ability to search inside all directories.

3
Advanced

Output
x Change the output to a table similar to the main

muCommander window.

4
Date

Search
x Allow the user search by a date of file’s modification.

5
Case

Sensitive
Search

x Add capability to search by case sensitive search terms.

6
Extension

Search
x Add the ability to search for files with specific extensions.

7
Properties

Search
x Add options to search for files based on their properties.

8
Directory
Chooser

Bug

x Choosing a directory with the file chooser doesn't update the
search directory.

9 Date Bug x DateOption is not removed when disabled.

10
Size

Search
Add the ability to search for a file by its size.

11
Regular

Expression
Search

Add capability to search by a regular expression.

12
Lucene
Search

Incorporate the Apache Lucene search.

13
JDayChoos
erTest Bug

The test testSetMonth() fails on last day of month, if next
month has fewer days

390

APPENDIX B.

Defect Log

This appendix contains Table B.1the defect log at the end of the SIP iteration.

 Table B.1 Defect Log

Fou

nd

Tim

e

Ta

sk Location Description

Orig

in

Origin

Task

Fix

ed

Dat

e

Dat

e

2/1

3

8:2

5 Act DirectoryPanel

Blank directory throws

uncaught Exception

2/1

3 Act

2/1

3

2/1

3

9:1

7 Act SearchThread

Inaccessible directory throws

Exception

2/1

3 Act

 2/1

3

9:3

4 Act SearchDialog No results not showing up

2/1

3 Act

 2/2

7

7:5

5 Act SearchTable Results not showing up in table

2/2

7 Act

2/2

7

3/4

3:3

4

Po

st SearchTableModel

Shows parent name if searching

root 3/4 Post 3/4

3/1

4

1:2

5 Act DatePanel

Search results outside of date

range

3/1

4 Act

3/1

4

3/1

4

1:4

7 Act DatePanel

Two digit years show up as 1st

century

3/1

4 Act

3/1

4

3/2

8

10:

23 IA

DatePanel.datePanelSet

Enabled()

DateOption not removed

when disabled

3/1

4 Act

6/2

3

3/3

1

4:2

5

Po

st

JDayChooserTest.testSe

tMonth()

Fails on last day of month, if

next month has fewer days

3/1

4 Act

3/3

1

4:0

7

Po

st

SearchTermOption.inser

tUpdate()

Empty string in

searchTermBox throws

Exception

3/3

1 Post

3/3

1

3/3

1

4:3

4

Po

st SearchTermOption

Case lost on searchTerm

when switching between case

sensitive/insensitive

3/3

1 Post

3/3

1

4/8

2:3

2 Act DirectoryPanel

Choosing a directory with the

file chooser does not update

the search directory

3/1

7 Pre

6/2

2

391

APPENDIX C.

Glossary of Terms

This appendix is a list of terms used in the thesis.

Actualization/Postfactoring Code Files Changed: Any code file modified during the

phase; this may include code files that were created during an earlier phase of the

change that are not included in the changed set.

Production Code File: A code file as defined in this document that is not a harness

code file.

Changed Set: The set of code files that existed before the change and were modified

during any phase of the change.

Code file: When used in a table or count, such as “the set of code files was 12” the

term code file refers to a file that contains at least one class, enum or interface. If a

code file contains multiple classes, enums or interfaces or some combination of these, it

will be counted as 1 code file.

Harness: Any code that is a test or stub or simulation.

Harness Code file: Any code file that contains exclusively harness.

Lines of Code: Line of code (LOC) refers to non-comment lines of code (NCLOC)

which is any single line of code, that does not start will a comment or is a blank line. The

added and deleted numbers are all derived from a program DiffStats written for the

project.

Testing Coverage: The verification section lists test coverage by code file. It lists the

coverage of the production code files written during the iteration by the entire test suite.

392

The production code files that existed in muCommander at the start of the SIP iteration

are not listed. At that time, it was deemed that the existing muCommander regression

tests were adequate. This means that if refactoring is done to an existing

muCommander and the regression tests pass, the refactoring is deemed to be of

adequate quality. If evidence is found during the iteration that the test regression test

suite is inadequate, a change to improve the regression test suite will be added to the

product backlog for the code file as a protective change.

C.1 Class change table terms

These terms are used in the Prefactoring, Actualization and Postfactoring Code

File tables in Appendix A.

Added class: This class was added to the project.

Removed class: This class was removed from the project.

Moved class: This class was moved from one package to another.

Renamed class: This class had its name changed.

Extracted class: This class was created in this phase by a class extraction.

Extracted class from: One or more classes were extracted from this class.

Merged class: This class was merged into another class.

Merged class to: A class was merged into this class.

Extracted super class: This abstract class was created in this phase by a super class

extraction.

Extracted super class from: One abstract class was extracted from this class.

Added method: One or more methods were added to the class.

Changed method: One or more methods were changed in the class.

393

Deleted unused method: One or more methods that were never called were deleted.

Extracted method: One or more methods had partial responsibility extracted to a

method from another method.

Renamed method: One or more methods in this class had their names changed.

Moved method: One or more methods were moved to this class.

Moved method from: One or more methods were moved from this class.

Removed method: One or more methods were deleted from this class.

Renamed field: One or more fields were renamed.

Extracted field: One or more fields were extracted from method variables.

Changed Field: One or move fields changed type.

Moved Field: One of more fields were moved to this class.

Moved Field from: One or more were moved from this class.

Changed variable type: One or more temporary variables’ type changed.

Added cast: One or more method calls were cast.

Extracted constant: One or more constants were extracted from method variables.

Added code block: One or more static code blocks were added.

Added test: One or more tests were added to the class.

Changed test: One or more tests were changed in the class.

Extracted test: One or more tests had partial responsibility extracted to a test from

another test.

Renamed test: One or more tests in this class had their names changed.

Moved test: One or more tests were moved to this class.

Moved test from: One or more tests were moved from this class.

394

Removed test: One or more tests were deleted from this class.

Javadoc: The Javadoc of this class was updated.

395

REFERENCES

[1] Rajlich, V. Software Engineering: The Contemporary Practice. To be published by

CRC Press, 2011.

[2] Brooks, F. P. The mythical man-month: essays on software engineering. Addison-

Wesley Reading, MA, 1995.

[3] Fowler, M. and Highsmith, J. The agile manifesto. Software Development, 9, 8

(August 2001), 28-35.

[4] Fowler, M. AgileSignatory. http://martinfowler.com/bliki/AgileSignatory.html, Date

Accessed: June 29, 2011.

[5] Matthews, O. and Howell, G. A. Integrated project delivery: an example of relational

contracting. Lean construction journal, 2, 1 (April 2005), 46-61.

[6] Lehman, M. M. and Ramil, J. F. Software evolution and software evolution

processes. Annals of Software Engineering, 14, 1 (December 2002), 275-309.

[7] Febbraro, N., Rajlich, V. The Role of Incremental Change in Agile Software

Processes. In Proceedings of the Agile Conference (Washington, D.C., 13 - 17

August, 2007). Agile 2007, 2007.

[8] Rajlich, V. and Gosavi, P. Incremental change in object-oriented programming.

Software, IEEE, 21, 4 (July/August 2004), 62-69.

[9] Humphrey, W. Introduction to the personal software process (sm). Addison-Wesley,

Reading, MA, USA, 1996.

[10] Humphrey, W. S. Using a defined and measured personal software process.

Software, IEEE, 13, 3 (May 1996), 77-88.

396

[11] Ferguson, P., Humphrey, W. S., Khajenoori, S., Macke, S. and Matvya, A. Results

of applying the personal software process. Computer, 30, 5 (May 1997), 24-31.

[12] Johnson, P. M. and Disney, A. M. A critical analysis of PSP data quality: Results

from a case study. Empirical Software Engineering, 4, 4 (December 1999), 317-

349.

[13] Schwaber, K. Scrum development process. In Proceedings of the OOPSLA'97

Business Object Workshop (Atlanta, Georgia, USA, 6 October, 1997). Citeseer,

1997.

[14] Rising, L. and Janoff, N. S. The Scrum software development process for small

teams. Software, IEEE, 17, 4 (July/August 2000), 26-32.

[15] Martin, R. C. Professionalism and test-driven development. IEEE Software, 24, 3

(May/June 2007), 32-36.

[16] Müller, M. M. and Tichy, W. F. Case study: extreme programming in a university

environment. In Proceedings of the 23rd International Conference on Software

Engineering (Toronto, Ontario, Canada, 2001). IEEE Computer Society, 2001.

[17] Cockburn, A. and Highsmith, J. Agile software development, the people factor.

Computer, 34, 11 (November 2001), 131-133.

[18] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M. and Sergeyev, A. Static techniques

for concept location in object-oriented code. In Proceedings of the 13th International

Workshop on Program Comprehension (St. Louis, Missouri, USA, 15-16 May,

2005). IEEE, 2005.

397

[19] Chen, K. and Rajlich, V. Case study of feature location using dependence graph. In

Proceedings of the 8th International Workshop on Program Comprehension

(Limerick , Ireland, 10 - 11 June, 2000). IEEE, 2000.

[20] Ren, X., Chesley, O. C. and Ryder, B. G. Identifying failure causes in java

programs: An application of change impact analysis. IEEE transactions on software

engineering, 32, 9 (September 2006), 718-732.

[21] Han, J. Supporting impact analysis and change propagation in software

engineering environments. In Proceedings of the Eighth IEEE International

Workshop on incorporating Computer Aided Software Engineering] (London , UK

14 - 18 July, 1997), 1997.

[22] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. R. Improving the

design of existing code. Addison−Wesley, 1999.

[23] Fowler, M. Refactoring. http://refactoring.com/, Date Accessed: June 6, 2011, 2011.

[24] Mens, T. and Tourwé, T. A survey of software refactoring. Software Engineering,

IEEE Transactions on, 30, 2 (Feb 2004), 126-139.

[25] Buckner, J., Buchta, J., Petrenko, M. and Rajlich, V. JRipples: A tool for program

comprehension during incremental change. In Proceedings of the 13th International

Workshop on Program Comprehension (IWPC, 15-16 May, 2005). IEEE, 2005.

[26] Gamma, E. and Beck, K. JUnit: A cook's tour. Java Report, 4, 5 (August 1999), 27-

38.

[27] Thornton, M., Edwards, S. H., Tan, R. P. and Pérez-Quiñones, M. A. Supporting

student-written tests of gui programs. In Proceedings of the 39th SIGCSE technical

398

symposium on Computer science education (Portland, OR, USA, 12-15 March

2008). ACM, 2008.

[28] Yang, Q., Li, J. J. and Weiss, D. A survey of coverage based testing tools. In

Proceedings of the 2006 international workshop on Automation of software test

(Shanghai, China, 23 May, 2006). ACM, 2006.

[29] Petrenko, M., Poshyvattyk, D., Rajlich, V. and Buchta, J. Teaching software

evolution in open source. Computer, 40, 11 (November 2007), 25-31.

[30] The Linux Information Project Inode Definition. http://www.linfo.org/inode.html, Date

Accessed: June 28, 2011.

[31] Bernard, M. MuCommander. http://www.mucommander.com/, 2011.

[32] Beck, K. JUnit. http://JUnit.org, 2011.

[33] Oracle Swing (Java Foundation Classes).

http://download.oracle.com/javase/6/docs/technotes/guides/swing/, 2011.

[34] The Eclipse Foundation Eclipse. http://www.eclipse.org/, 2011.

[35] Petrenko, M. JRipples. http://jripples.sourceforge.net/, 2011.

[36] Atlassian Pty Ltd. Clover Java Code Coverage & Test Optimization.

http://www.atlassian.com/software/clover/, 2011.

[37] The Eclipse Foundation Mylyn. http://www.eclipse.org/mylyn/, 2011.

[38] Tasktop Technologies Tasktop. http://tasktop.com/, 2011.

[39] Wall, T. Abbot Java GUI Test Framework.

http://abbot.sourceforge.net/doc/overview.shtml, 2008.

[40] Apache Software Foundation Subversion. http://subversion.apache.org/, 2011.

[41] The TortoiseSVN Team TortoiseSVN. http://tortoisesvn.net/, 2011.

399

[42] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design patterns: elements of

reusable object-oriented software. Addison-wesley Reading, MA, 1995.

[43] Kumar, S. ComponentTitledBorder.

http://www.jroller.com/santhosh/entry/component_titled_border, 2005.

[44] Toedter, K. JCalendar. http://www.toedter.com/en/jcalendar/, 2009.

[45] Van Deursen, A., Moonen, L., van den Bergh, A. and Kok, G. Refactoring test code.

Technical Report 869201, Citeseer, Amsterdam, The Netherlands, 2001.

[46] Humphrey, W. S. Why don't they practice what we preach? Annals of Software

Engineering, 6, 1 (March 1998), 201-222.

[47] Boehm, B. and Basili, V. R. Software defect reduction top 10 list. Software

engineering: Barry W. Boehm's lifetime contributions to software development,

management, and research, 34, 1 (January 2007), 75.

[48] Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore, C., Miglani, J., Zhen, S. and

Doane, W. E. J. Beyond the Personal Software Process: Metrics collection and

analysis for the differently disciplined. In Proceedings of the 25th International

Conference on Software Engineering (Portland, Oregon, 2003). IEEE Computer

Society, 2003.

400

ABSTRACT

AN EXPERIENCE REPORT OF THE SOLO ITERATIVE PROCESS

by

CHRISTOPHER DORMAN

August 2011

Advisor: Dr. Václav Rajlich

Major: Computer Science

Degree: Master of Science

The field of software engineering is over 50 years old; originally, mathematicians

and engineers thought software development was more of an art form than a defined

process. These first software engineers managed to produce a variety of complex,

working software; however, many software engineers today use agile processes. This

thesis is an experience report in an agile process called the Solo Iterative Process.

In this thesis, previous research is reviewed in previous solo processes, team

processes, individual phases of software evolution and software evolution tools. Then

the Solo Iterative Process is defined. To begin the experience report a subject software,

a change request and the tools and technologies are identified. Then 9 change requests

are performed on the subject software. The discussion looks at matters of individual

phases that occur over a set of change requests.

401

AUTOBIOGRAPHICAL STATEMENT

Christopher Dorman is and shall forever be the author of this thesis.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2011

	An experience report of the solo iterative process
	Christopher Dorman
	Recommended Citation

