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A B S T R A C T

Several mutations in nuclear genes encoding for mitochondrial components have been associated with

an increased cancer risk or are even causative, e.g. succinate dehydrogenase (SDHB, SDHC and SDHD

genes) and iso-citrate dehydrogenase (IDH1 and IDH2 genes). Recently, studies have suggested an

eminent role for mitochondrial DNA (mtDNA) mutations in the development of a wide variety of cancers.

Various studies associated mtDNA abnormalities, including mutations, deletions, inversions and copy

number alterations, with mitochondrial dysfunction. This might, explain the hampered cellular

bioenergetics in many cancer cell types. Germline (e.g. m.10398A>G; m.6253T>C) and somatic mtDNA

mutations as well as differences in mtDNA copy number seem to be associated with cancer risk. It seems

that mtDNA can contribute as driver or as complementary gene mutation according to the multiple-hit

model. This can enhance the mutagenic/clonogenic potential of the cell as observed for m.8993T>G or

influences the metastatic potential in later stages of cancer progression. Alternatively, other mtDNA

variations will be innocent passenger mutations in a tumor and therefore do not contribute to the

tumorigenic or metastatic potential. In this review, we discuss how reported mtDNA variations interfere

with cancer treatment and what implications this has on current successful pharmaceutical

interventions. Mutations in MT-ND4 and mtDNA depletion have been reported to be involved in

cisplatin resistance. Pharmaceutical impairment of OXPHOS by metformin can increase the efficiency of

radiotherapy. To study mitochondrial dysfunction in cancer, different cellular models (like r0 cells or

cybrids), in vivo murine models (xenografts and specific mtDNA mouse models in combination with a
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spontaneous cancer mouse model) and small animal models (e.g. Danio rerio) could be potentially

interesting to use. For future research, we foresee that unraveling mtDNA variations can contribute to

personalized therapy for specific cancer types and improve the outcome of the disease.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction: the cancer’s cell energy supply

In normal physiology, mitochondria are very important in the
cell as they produce most of the adenosine triphosphate (ATP) via

the oxidative phosphorylation system (OXPHOS), which is a
necessary energy supply for cellular processes.

The OXPHOS system consists of five protein complexes (complex
I–V). All complexes are partly encoded by the mitochondrial DNA
(mtDNA), except for complex II, which is completely nuclear encoded
[1]. The OXPHOS system also consists of electron carriers that are
situated in the inner mitochondrial membrane (Fig. 1B) [2]. Approxi-
mately 0.15–2% of the electrons that enter the electron transport
chain (ETC) [3] can escape the OXPHOS cycle, resulting in the
formation of superoxide. Increased exposure to this OXPHOS-related
superoxide may not only affect the nearby located mtDNA but also
the nuclear DNA (nDNA), proteins and lipids, resulting in impaired
proteins and/or enhanced reactive oxygen species (ROS) production
[4]. mtDNA mutations can lead to a decreased efficiency of the ETC
and can cause more ROS production [5,6]. It has been shown both in

vitro and in vivo that the OXPHOS system and OXPHOS-related
superoxide can have a major influence on tumor progression [7]. As
the electron transport chain is the most important site of ROS
generation, mutations in mtDNA can cause more ROS production
[8]. Evidence suggests when mitochondrial integrity is compromised
by excessive ROS formation or mtDNA instability, cancer progression
is enhanced. Increased ROS levels and oxidative damage are observed
in fibroblasts of patients with mtDNA mutations [6]. To protect
against ROS, cells have an antioxidant network from which important
antioxidant enzyme groups are catalases, glutathione peroxidases,
thioredoxins, peroxiredoxins, glutathione transferases and superox-
ide dismutases (SODs). SODs are capable of catalyzing the dismuta-
tion of superoxide into hydrogen peroxide and oxygen [9]. One of
these SOD family members, manganese superoxide dismutase
(MnSOD) (Fig. 1B), is located in the matrix of mitochondria [10]. Many
types of human cancer cells have reduced MnSOD activity compared
to their originated cells [11]. Increased MnSOD expression was able to
suppress tumor cell growth and tumor formation in MCF7, A172R,
U118, SCC25 and DU145 cells [12]. It has been suggested that MnSOD
is a tumor suppressor gene [13] and that mutations found in its
promoter region could explain the reduced MnSOD activity
[14]. Additionally, also antioxidants are involved in this network.
The hydrophilic non-protein thiol, glutathione (GSH), is an important
ROS scavenger. In a cell, GSH mainly exits in its reduced form, but is
able to oxidize into glutathione disulfide (GSSG), with a ratio between
30:1 and 100:1. However, this ratio can decrease upon oxidative
stress [15]. Additionally, GSSG can be converted back into GSH driven
by glutathione reductase, the catalyzer for this reaction [16]. An
inadequate antioxidant response, where antioxidants are not able to
maintain ‘normal’ physiological ROS levels, will lead to a vicious circle
of ROS production and create cellular damage [6,17].

Warburg observed in 1927 that cancer cells rely less on the
OXPHOS system, but rather on glycolysis for ATP production and
therefore produce high amounts of lactate, even in the presence of
oxygen. This phenomenon is known as the Warburg effect, or
aerobic glycolysis [18]. Many cancer types have a tendency to be
highly glycolytic and mitochondria in cancers cells also show altered
cristae, membrane composition and membrane potential [4,19],
resulting in an aberrant mitochondrial function influencing ROS
production and apoptosis [4,20]. ROS production can be increased
due to aberrant mitochondrial function causing cells to be more
prone to apoptosis by activating the mitochondrial permeability
transition pore [21–23]. However, increased apoptosis could also be
independent of ROS as observed in for instance the mutator mouse
model [24]. In cancer, inhibition of factors initiating apoptosis could

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Global representation of the OXPHOS system and the link to glycolysis in a cell. (A) Overview of the mitochondrial DNA. The genes coding for subunits of OXPHOS

complex I are ND1-ND6 and ND4L. Genes for cytochrome c oxidase (complex IV) are COI-COIII. The gene encoding for Cytochrome B of complex III abbreviated with Cyt

B. Additionally the subunits of Complex V (ATP synthase) are ATPase 6 and 8 abbreviated with A6 and A8 respectively. The 22 tRNAs are indicated with a single letter. The two

ribosomal RNAs encoded by the mtDNA are 12S and 16S. The displacement loop is represented as D-loop and contains sequences for initiation for replication and transcription

including the origin of heavy-strand replication (OH). The light strand replication origin is indicated by OL. The position of the Light strand promoter is shown as LSP and the

position of the heavy-strand promotor as HSP. (B) Overview of OXPHOS system. When glucose enters the cell it is converted to glucose-6-phosphate, after which it undergoes

glycolysis. The final step of glycolysis is the formation of pyruvate and reduced nicotinamide adenine dinucleotide (NADH). Pyruvate can be either transformed into lactate

and nicotinamide adenine dinucleotide (NAD) by lactate dehydrogenase (LDH) or can be transported immediately into the mitochondria. This transport is mediated by a

mitochondrial pyruvate carrier (MPC) which transports pyruvate across the outer mitochondrial membrane (OMM), the intermembrane space (IMS) and the inner

mitochondrial membrane (IMM) into the mitochondrial matrix, where pyruvate dehydrogenase (PDH) catalysis it is converted into acetyl coenzyme A (acetyl CoA). At the

same time, the MPC transports hydroxide out of the mitochondria. Acetyl CoA is able to enter the Krebs cycle, where organic acid oxidation takes place and results in succinate

production as part of the Krebs cycle and NADH. Electrons from NADH can enter the electron transport chain (ETC), formed by complex I, complex II, complex III and complex

IV (I–IV). CI is also known as NADH dehydrogenase/NADH ubiquinone oxidoreductase, the largest of the oxidative phosphorylation (OXPHOS) complexes, and is one of the

starting points of enrolling the electrons into the ETC [5]. The ETC transports electrons through the IMM, toward coenzyme Q (Q), after which they are transferred to complex

III (III). The electrons can also skip CI and be transported via flavin containing enzyme complexes directly toward Q [2]. Another route for electron donation to the ETC is via

complex II, succinate dehydrogenase/succinate ubiquinone oxidoreductase (II), where succinate is reduced and electrons are transferred toward coenzyme Q and complex III

(III). Via complex III and cytochrome c (C), electrons are moved toward CIV. During electron transport, a proton gradient is formed over the IMM by CI, CIII and CIV, which

drives protons into the mitochondrial matrix via, CV, ATP synthase (V) with concomitant production of ATP [2,260]. All complexes combined are called OXPHOS. In total,

OXPHOS can produce up to 36 mol of ATP per mol of glucose [261]. Additionally reactive oxygen species can be formed which can be transferred into H2O2 by manganese

superoxide dismutases (MnSOD). H2O2 and glutathione can be transformed into H2O and oxidized under the influence of glutathione peroxidase (GPx). Via glutathione

reductase (GR) and nicotinamide (NNT) eventually NAD+ can be formed again.
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drive cells toward an actively proliferating state with ROS escalation
and DNA damage. The paradox between ROS and apoptosis, in aging
or cancer has been extensively reviewed by Wallace [22,25]. Mito-
chondrial dysfunction can be observed in tumors, particularly in
those that are aggressive and growing rapidly [26,27]. Simonnet
et al. compared mitochondrial enzymes and DNA contents in renal
cell carcinoma (RCC) to normal kidney tissue. Mitochondrial
impairment was increased from the less aggressive to the most
aggressive RCCs and correlated with a considerably decreased
content of OXPHOS complexes [27]. To maintain optimal ATP levels,
some tumor cells are able to stimulate the glycolysis pathway upon
pharmacological inhibition of the OXPHOS system. In contrary, after
inhibition of glycolysis, the OXPHOS system cannot compensate for
the loss of ATP production in these same cells [28,29]. This is,
however, not universal as other tumor cell lines are still capable of
maintaining high ATP contents when they are deprived of glucose
[30,31]. The extent of changes in mitochondrial respiratory capacity
seems to depend on the tumor type and its micro-environmental
characteristics, such as hypoxia and hormones [32–34]. Adaptation
of these processes might affect the tumor responsiveness to
therapies, which points to a potential therapeutic target for new
cancer therapies.

2. Mutations in nuclear-encoded mitochondrial genes can
cause cancer

Next to the conventional cancer causing mutations (e.g. TP53

encoding for p53 which is involved in proliferation, apoptosis and
DNA repair [35–37]), some cancers (e.g. paraganglioma) are found
to be associated with a mutation in one of the nuclear
mitochondrial genes encoding for OXPHOS subunits or parts of
the Krebs cycle.

Patients suffering from this disease have a dysfunctional
succinate dehydrogenase (SDH), better known as complex II, which
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is composed of four subunits. Whereas mutations in subunit A are
mostly responsible for Leigh’s disease (a rare neurometabolic
disorder), mutations in subunits B, C or D mainly cause para-
ganglioma [38–41]. In a xenograft study studying a SDHC missense
mutation it was found that mice formed benign tumors comparable
with paragangliomas [41]. In 2 other studies investigating families
with paragangliomas carrying mutations in SDHD [39] or SDHC [40]
a causative role was found for these mutations and a tumor
suppressor function for the genes was suggested [39,40].

Nevertheless, a family with mutated SDHA was recently
reported to have paraganglioma as well [42]. A proposed
mechanism in patients could be that mitochondrial ROS increases
and more oxidative damage occurs. This could result in oncogenic
transformation as occurs for paragangliomas [41].

Additionally, mutations in succinate dehydrogenase have been
found in breast cancer, gastrointestinal stromal cancer and renal
carcinomas [43–45]. For other cancers like uterine leiomyomas
and RCCs [46,47], associations with mutations were found in other
nuclear-encoded mitochondrial genes such as fumarate hydratase.
Heterozygous mutations have been reported in the gene encoding
for fumarate hydratase, which catalyzes the reversible hydration of
fumarate to malate, a Krebs cycle substrate (see Fig. 1B)
[48]. Similarly, for iso-citrate dehydrogenase, catalyzing the
conversion of isocitrate into 2-glutarate in the Krebs cycle,
mutations in the cytoplasmic (IDH1) and the mitochondrial
(IDH2) isoforms are reported in a wide variety of human cancer
types such as: acute myeloid leukemia [49,50], angioimmuno-
blastic T-cell lymphomas [51], cartilaginous tumors [52], colorec-
tal cancer [53], glioblastomas [54], glioma [55] and prostate cancer
[56]. For a more extended review see Gaude and Frezza [57].

Although, evidence for a causative role of the latter mentioned
mutations in oncogenesis is mostly indirect, the consequent
changes in metabolite levels such as succinate have been shown to
influence hypoxia inducible factor (HIF) stabilization [58].

3. Mitochondrial DNA mutations and cancer

Over recent years, accumulating evidence suggests that mtDNA
mutations may also contribute to a cell’s potential to become a
cancer cell [59–61], ultimately leading to tissue invasion and
metastasis. mtDNA variations, such as deletions, point mutations
and copy number differences, are associated with a wide variety of
cancer types [62–72].

3.1. Genetic insight into mtDNA

3.1.1. mtDNA characteristics

The mtDNA is a 16.5 kb double-stranded, circular-shaped DNA
molecule that is distinct from nDNA in several ways: (1) mtDNA is
only maternally inherited; (2) mammalian cells can contain
thousands of mtDNA molecules, but they nevertheless represent
only a minor percentage of the total DNA [73]. As mtDNA is
polyploid, a mitochondrion contains five to ten copies of mtDNA,
which can differ in composition from each other. Homoplasmy
indicates that the mtDNA copies in a cell are all identical, while a
mixture of wild-type and variant copies is referred to as
heteroplasmy [74]; (3) mtDNA is almost completely comprised
of coding sequence. It codes for 13 OXPHOS subunits, 22 tRNAs and
2 rRNAs; less than 10 percent of the entire mtDNA is non-coding
[1] (Fig. 1A). This non-coding region is mainly located in the
displacement (D)-loop, a 1.1 kb region involved in mtDNA
replication and transcription. In addition, mtDNA encoded genes
do not contain introns and have none or only a few non-coding
bases between them. The coding sequences of some of the encoded
genes are even overlapping, i.e. they share several mtDNA bases
[1]. Consequently, changes in the mtDNA are more likely to have
functional consequences than nDNA variations [68,75,76]; (4) in
the mitochondrial genome, transcription starts from one of the two
mitochondrial promoters and can take place on both DNA strands.
Subsequently, transcription produces a polycistronic precursor
RNA that results in individual tRNA, rRNA and mRNA molecules
after processing; (5) mtDNA replication occurs independent of the
cell cycle which is therefore referred to as relaxed replication. This
means that the number of mtDNA molecules replicated per cell
cycle is only restricted by the levels of available replication
machinery factors and nucleotides [77,78]; (6) mtDNA has a higher
mutation frequency compared to the nDNA in mammals
[79,80]. Possible explanations are: mtDNA is located close to the
ROS producing OXPHOS and mtDNA lacks protective histones
[81,82]. However, there is a debate about the protective role of
histones, as there is also evidence showing that the electrons can
transfer easily from histones to DNA leading to damage [83] and
under some conditions (exposure to Cu(II)/H2O2) histones can even
enhance DNA damage [84]. It is also suggested that DNA-binding
proteins of mitochondrial nucleoids can be as equally protective as
histones for mtDNA under H2O2 or X-ray exposure [85,86].

3.1.2. Mitochondrial DNA maintenance

The replication of mtDNA is maintained via DNA polymerase g
(POLG1 and POLG2 genes) [87], mitochondrial transcription factor
A (TFAM) [88], Twinkle (C10orf2) [42], mitochondrial 12S rRNA
dimethylase 1 and mitochondrial 12S rRNA dimethylase 2 (TFB1M

and TFB2M, synonyms: mtTFB or Mtf1) [48], mitochondrial single
stranded DNA binding protein (mtSSB) [89] and mitochondrial
RNA polymerase gene (POLRMT) [72]. Both polymerase g and TFAM
are essential for maintaining mtDNA copy number and integrity
[90–94]. More frequent point mutations and deletions were
observed when introducing mutations in the exonuclease domain
of POLG resulting in misincorporation of nucleotides [95,96]. Fur-
thermore, compared to nDNA, mtDNA damage persists longer [82].

In murine models having a complete knockout for TFAM, loss of
mtDNA and severe OXPHOS defects are observed leading to
embryonic death [94]. Inducible knock-down leads to cell death of
the targeted cell type [97,98]. In 2011, Balliet and colleagues
showed that fibroblasts lacking TFAM exhibited mitochondrial
dysfunction and increased oxidative stress due to the loss of
certain OXPHOS components and over-production of hydrogen
peroxide and lactate [99].

3.1.3. mtDNA dynamics

Mitochondria are able to change their number and shape in
different cell types under varying physiological conditions
[100,101]. One possible way for mitochondria to maintain their
integrity and thus to ensure a healthy population is by exchanging
mtDNA through constant fission and fusion processes. It can guard
a cell by allowing the mitochondria to fuse or divide and thereby
protect the cell from detrimental effects of (accumulating) mtDNA
mutations [102].

Mitophagy, a degradation process of mitochondria through
autophagy, controls the number of mitochondria in the cell and
initiates the removal of dysfunctional and damaged mitochondria
[103]. Previous studies had already shown that defective
mitochondria displayed increased mitophagy [104,105]. So when
a mutation leads to a reduced mitochondrial membrane potential
(depolarization of mitochondria) the mutation causes a phenotyp-
ical change and mitochondria loose therefore their ability to
function normal. Consequently, the mitochondria are not able to
re-fuse with the mitochondrial network after fission and are
recycled [106].

When a somatic mtDNA mutation first occurs, it will be in one
mtDNA molecule. The process of random genetic drift, i.e. the
change in the frequency of a variant in a population due to random
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sampling, will at first determine the persistence and expansion or
loss of this mutation since it will not have significant functional
effects and thus selection advantage as a single copy. These
mutations are not targeted by mitophagy and via fusion dominant
mutations can become homoplasmic [68]. It is known from
haplogroup studies that mtDNA variation can have an effect on
how efficient electron transport and ATP production are coupled in
the mitochondria [107]. In that sense, varying percentages of
mutant mtDNA can lead to bioenergetic defects ranging from mild
mitochondrial dysfunction to severe metabolic distress and cell
death [108] or they can lead to more optimal functioning of the
OXPHOS process. In combination with the proposed model that
cancer metabolism switches from mainly glycolysis to preferen-
tially OXPHOS and back during the cancer process [109], this
suggests that mutations reaching certain heteroplasmy levels by
random genetic drift resulting in a detrimental (stimulating
glycolysis) or beneficial effect on OXPHOS will be selected and
clonogenic expanded in these respective metabolism waves.

3.2. Germline mtDNA mutations associated with cancer

Different studies have explored the association between
germline mtDNA mutations and cancer. There are indications that
different germline mutations could actually contribute to the
development of a certain cancer type in a specific population.

Different human populations can be distinguished by different
human mtDNA haplogroups which are defined by unique sets of
mtDNA polymorphisms, reflecting mutations accumulated by a
discrete maternal lineage [110]. The haplogroups are associated
with region-specific mtDNA sequence variation as a result of
genetic drift and/or adaptive selection for an environment-favored
mitochondrial function [107,111]. Tanaka et al. classified 30 dif-
ferent haplogroups in a retrospective study and found that the risk
in the population M7b2 haplogroup was related to increased risk
for hematopoietic cancer [112]. Furthermore, Booker et al. showed
that haplogroup U was related to a 2.5-fold increased risk for
developing renal cancer in Caucasian American men [113]. They
also reported a two-fold increased risk for development of prostate
cancer, a finding which was supported by Canter et al. [113,114].

Bai et al. identified two different haplogroups that influence
breast cancer risk in a Caucasian population: haplogroup K
indicates an increased risk whereas haplogroup U is a protective
haplogroup [115]. Additionally, they identified four different single
nucleotide polymorphisms (SNPs) that influence cancer risks in
certain populations.

The m.10398A is especially of interest as it also defines the
European haplogroup N [116]. The revised Cambridge Reference
Sequence (rCRS) [117] has an A as reference nucleotide. In the
paper of van Oven et al. a different sequence was published based
on a phylogenetic approach. Here it was shown that the original
wild-type nucleotide on this position should be a G and this site is
prone for mutations as the G>A polymorphism occurs in different
haplogroups [116]. Annotations in this paper are based on the rCRS
nomenclature and HGVS guidelines.

The m.10398A>G and m.16519T>C variants were found to be
related to an increased risk of breast cancer. Two other SNPs,
m.13708G>A and m.3197T>C, were identified as protective
variations [115]. Interestingly, in a population of African-American
women, the m.10398A variant led to an increased risk of invasive
breast cancer [118]. In an Indian population with haplogroup N, an
association was found between m.10398A and breast and
esophageal cancer [119]. However, in another study by Francis
et al. within an Indian population no correlation was found
between the m.10398A polymorphism and increased breast cancer
risk [120]. In a study performed by Mosquera-Miguel et al. also no
association was found for this variation in a Spanish population
[121]. Recently, Salas et al. reanalyzed all studies and no
correlation could be found regarding the m.10398A>G SNP [122].

For prostate cancer, Petros et al. have demonstrated an
association for four different germline mutations in cytochrome
oxidase subunit I (m.6253T>C, m.6340C>T, m.6261G>A, and
m.6663A>G) in a cohort study. Additionally in a proof of principle
study they showed for the germline mutation m.8993T>G in
ATP6 a 7-fold enhanced tumor volume for mutants compared to
wild-type tumors. This indicates that mtDNA germline variations
could play a role in tumor growth for prostate cancer [66].

For pancreatic cancer Wang et al. investigated if pancreatic
cancer risk increase was associated with mtDNA SNPs however no
correlation could be observed [123]. Navaglia et al. showed by
sequencing the D-loop region that germline m.16519T worsened
the prognosis in pancreatic cancer patients. However, somatic
D-loop mutations seemed not to be involved [124]. Also Half-
danarson et al. investigated if survival outcome in pancreatic
cancer could be predicted based on mtDNA variations by using a
SNP approach; but they did not find a relationship between certain
SNPs and pancreatic survival [125]. However, Lam et al. found
using genome wide sequencing an association with pancreatic
cancer and the variant m.5460G>A encoding for a non-synonymous
p.A331T substitution in the ND2 gene. In the same study it was found
that haplogroup K was correlated with a reduced risk compared
to haplogroup H, however this could be a false positive finding,
since these results were inconsistent with previous data and the
amount of haplogroup K participants was very low. Additionally,
in haplogroup N the amount of rare singleton (variants unique to
a single participant) variations in HV2 and 12S RNA regions was
increased compared to controls. The same was found for
singletons ND4 and ND5 among patients with haplogroup L
[65], These findings indicate that mtDNA variations might
contribute to pancreatic cancer risk, however this needs to be
further investigated.

The mentioned studies above took different approaches to
identify mtDNA variations. Multiple studies only looked at certain
SNPs [66,115,118,120,121,123–125] and others performed com-
plete mtDNA sequencing to pick up variants [65], which give more
inside in the different types of variations. It should be taken into
account that also individual non-synonymous polymorphisms are
able to influence mitochondrial function and that restricting
analysis to haplogroup variation does not cover the load of mtDNA
variation. Epistatic interactions (interactions between 2 or more
variations) between the mtDNA and the nDNA are worth
investigating in relation to cancer predisposition or development.
There seems to be some evidence that germline polymorphisms
and haplogroups are related to different cancer types. Note that
studies finding germline mtDNA variations often face high
frequencies of functional polymorphisms and high mutation rates
can lead to the rise of the same mutation in different populations
and therefore should be adjusted for population substructures as it
is done in similar to Genome Wide Association studies. Otherwise,
the SNPs can just mark different ancestral populations and not
causal mechanisms [126].

Identifying germline mutations related to a specific cancer
type in a defined population can be very difficult, as the same
mutation can lead to a different risk in another population. From
this perspective, somatic mtDNA mutations have an advantage as
they are only carried in the tumor and not the patients’ normal
tissue [68].

3.3. Somatic mtDNA mutations related to cancer

In 1998, Polyak et al. demonstrated that somatic variations in
the mtDNA were present in the primary tumors of colorectal
cancer patients [68]. In the following years, numerous somatic



Fig. 2. Cybrid model for investigating the influence of mtDNA on cancer. Cybrids are produced by combining nucleated cells without mtDNA (r0 cells) with cytoplasm from non-

nucleated cells (cytoplasts). A cytoplast is made by removing the nucleus through ultracentrifugation (7200 RPM), leaving a cell that only contains mitochondria with mtDNA.

Nucleated cells without mtDNA (r0 cells) are formed by the depletion of the mtDNA by exposing the cells to ethidium bromide (Etbr). As these cells contain nuclear DNA, they

define the nuclear background of the cybrid. Fusion of r0 cells with the cytoplasts leads to the formation of cybrids.
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mtDNA mutations were reported in a wide variety of tumors (e.g.

colorectal, breast, bladder, esophageal, head and neck, ovarian,
renal, leukemia, lung and thyroid cancer) [67–69,127–131]. Fur-
thermore, somatic mutations have been shown to influence cancer
progression and metastasis [66,71,132,133]. Data analysis by
Larman et al. showed that, across 5 different cancer types,
displayed somatic mtDNA mutations ranging, from 13% in
glioblastoma to 63% frequency in rectal adenocarcinomas
[133]. Some data suggests that the effect of the somatic mtDNA
mutations and the degree or nature of the tumorigenesis effect
depend on the functional and threshold effect of the mutation
[134–136]. For instance, the m.3460G>A/MT-ND1 mutation
(decrease in complex I activity) result in different tumorigenic
potential as determined by colony forming efficiency and tumor
growth of osteosarcoma cybrids (cytoplasmic hybrids, Fig. 2) [135]
compared to the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1

mutation (severe structural and functional complex I alteration).
More severe alterations in complex I (m.3571insC/MT-ND1 and the
m.3243A>G/MT-TL1 mutation) resulted in a reduced tumorigenic
potential both in vitro and in vivo, compared with cells displaying
milder complex I dysfunction (m.3460G>A/MT-ND1 mutation)
[135].

3.4. Changes in mtDNA copy number and its association with cancer

The number of mtDNA molecules could be another factor of
consideration since this can affect proper mitochondrial function
too [137]. Other reviews describe this subject in more depth or
have been exclusively dedicated to this subject (see [138]). Here
we give a short summary on this subject; however, this is not a
complete list regarding observed changes of mtDNA copy number
in cancer. The association between copy number variation and
cancer is still subject of debate. Different trends have been
reported in multiple tumor types. Both an increase and a decrease
in mtDNA copy number have been reported to be associated with
an increased risk for tumorigenesis. In genomic DNA extracted
from blood an elevated copy number (compared to matched
control subjects) has been observed in of patients with various
cancers e.g. breast cancer [139], RCCs [140], non-small cell lung
cancer [63]. Additionally, there are also studies investigating
mtDNA copy number in tumor tissues. In tumor tissues compared
to matched control subjects an elevated copy number was found
for endometrial cancer [141], glioblastoma [142], head and neck
cancer [143] and ovarian cancer [144]. Also in tumor tissue
compared with paired non-tumor tissue from the same patient an
elevated copy number have been found for colorectal carcinoma
[145], esophageal squamous cell carcinoma [146], metastatic
fibrolamellar carcinomas [147], prostate cancer [148] and thyroid
carcinoma [149].

Increased mtDNA copy numbers in tumors could possibly be
explained by an increase of oxidative stress [150]. However, the
precise mechanisms have not been fully understood. Potentially
mtDNA replication could be increased to compensate for metabolic
effects caused by mtDNA variations or oxidative stress [138].

In contrast, decreased mtDNA copy numbers have been
reported in patients compared to matched tissue subjects for
astrocytoma [151] and Ewings sarcoma [152], and in tumor versus

non-tumor tissue samples from the same patient for breast cancer
[149], lung cancer [153], primary fibrolamellar carcinoma [147],
gastric cancer [154], hepatocellular carcinoma [147] and RCC



Fig. 3. Representation of different scenarios possibly explaining how mitochondrial genes encoded in nDNA or mtDNA could contribute to cancer. When a cell gains

clonogenic potential and evolves into a primary tumor or metastasis, different alterations occur in nuclear encoded mitochondrial genes and mtDNA. Potentially three

different scenarios could describe and explain these observations. In the causative model, mutations in mitochondrial genes encoded either in the nDNA or mtDNA cause the

development of a carcinoma and/or metastasis. The multiple-hit model describes a scenario where different types of mutations (in classic oncogenes or tumor suppressor

genes and in mtDNA or nDNA OXPHOS genes) together contribute to the clonogenic potential and the development of a carcinoma or metastasis. Mutations can follow

sequentially or a driver mutation needs additional mutations after which it can express its mutagenic or metastatic potential resulting in a pathogenic phenotype.

Additionally, also low heteroplasmic mtDNA mutation levels can be increased via drift. This increased mutation percentage could thereby exhibit the pathogenic effect of the

mutation. The third scenario consists of passenger mutations observed in the tumor but not contributing to an increased clonogenic or metastatic potential. The mutations

can accumulate or disappear over time (genetic-drift). All different models can exist in the same tumor site, tumor or tumor type.
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[155]. A twin study found that a reduced mtDNA copy number was
related to an increased risk for the development of RCC [156].

Furthermore, there are indications that the depletion of mtDNA
in cancer cells can be responsible for disease progression
[157]. Lowered mtDNA is correlated with metastasis in patients
suffering from Ewing’s sarcomas [152]. In addition, shorter survival
time was related to low mtDNA copy numbers in patients suffering
from astrocytoma [151]. Again, a reverse observation was made for
head and neck tumors where increased mtDNA copy number was
found to be associated with a decreased survival [158].

Low mtDNA content can be caused by p53 or POLG1 mutations,
resulting in tumor initiation or progression [152,159–161]. The
POLG1 gene was found to be mutated in 63% of breast tumors, and
thought to be responsible for a depletion of mtDNA in these tumors
[160]. TFAM mutations associated with a lowered TFAM protein and
a decreased mitochondrial copy number were found in colorectal
cancers with microsatellite instability while no TFAM mutations
were observed in colorectal cancers with microsatellite stability.
Additionally TFAM mutated cells (TFAM frame-shift mutation) were
able to grow larger tumors in vivo [93] and lowered mtDNA copy
number and more oxidative mtDNA damage was observed in TFAM+/

� mice [94,162]. When this model was crossbred with the
adenomatous polyposis coli multiple intestinal neoplasia (APC�/+)
mouse cancer model, mtDNA instability enhanced tumorigenesis
[162]. These findings suggest that both polymerase g and TFAM
might play an important role in tumorigenesis. Although, it is not
investigated if POLG1 and TFAM mutations influence oncogenic
transformation as such, a promotion of oncogenic potential after
primary transformation has been shown especially for TFAM [93].

There have been several reports of higher cancer incidence with
both increased and decreased copy numbers in the same tumor
type. An example is RCC, for which both increased [140] and
decreased copy numbers has been described [155,156]. Further-
more, there seems to be no specificity for tumor type or primary
site. The exact molecular and metabolic differences between the
cancer types that relate to these copy number differences should
be examined in more detail for a plausible rationale to be found.

Previously, we discussed several types of nuclear encoded
mitochondrial and mtDNA mutations exhibiting mitochondrial
dysfunction and how they relate to cancer and cancer therapy (see
Fig. 3). (1) Certain mutations display a causative effect for nuclear
encoded mitochondrial and mtDNA genes in cancer. Some of the
mutations in nuclear encoded mitochondrial genes have been
reported to behave like tumor suppressor genes (like SDH or
MnSOD) and loss of function or lowered expression increases
tumor formation. Additionally, it has also been reported that
mtDNA depletion can result in a tumorigenic phenotype in vitro as
well as in vivo [51]. (2) The multiple-hit model could be an
explanation for the observed alterations of mtDNA variations
observed in cancer as most scientific findings presented only an
association of mtDNA mutations in cancer. These mutations are not
directly involved in generating the neoplastic phenotype but can
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be responsible for tumor progression or play an important role in
the metastatic potential of the tumors. Additionally, such
mutations can also influence the outcome of disease by promoting
cancer treatment insensitivity. However, there is also a second
mechanism for the multiple-hit model possible. In this mechanism
some driver mutations, without direct selective value, can be
randomly fixed via random-drift. In this manner they only express
their clonogenic or metastatic potential at a later stage and only in
combination with other driver mutations. (3) Another option could
be that neutral mtDNA mutations occur random and are not
related to clonogenic potential or metastatic potential and are
subject to genetic drift (= can disappear or accumulate) and are so
called bystander (or passenger) mutations. However, it is likely
that combination of the different models takes place in a tumor.

4. mtDNA and cancer treatment implications

In cancer patients, the choice of therapy depends on multiple
factors such as the histopathology of the tumor, the stage of the
disease and the patient’s condition. The three most commonly used
treatment options, sometimes combined with one another, are
surgery, chemotherapy and radiotherapy.

4.1. Chemotherapy

mtDNA abnormalities affect the response and outcome of
therapies in cancer patients. As described in a review by Singh et al.
different studies have already shown that alterations in mtDNA
can result in chemotherapy resistance [4]. It has been reported that
mutations in the NADH dehydrogenase subunit 4 (MT-ND4)
contributed to acquired chemoresistance during paclitaxel carbo-
platin treatment [163].

However, it also has been suggested that mtDNA variations can be
induced by chemotherapy. In a case report a patient with ovarian
carcinoma had a mtDNA mutation in the MT-ND4 gene (m.10875T>C)
which occurred after chemotherapy treatment [163]. A second study
observed that in a leukemia patient 6 months after chemotherapy
more mtDNA variations were found compared to the samples
withdrawn prior to treatment [8]. In the same study, leukemia
patients treated with a fludarabine/alkylator-based chemotherapy
regimen displayed an increase in mtDNA mutations in primary
leukemic cells compared to non-treated patients [8]. Additionally,
accumulation of mtDNA damage even persisted after ending
doxorubicin treatment and was associated with adverse effects such
as cardiotoxicity [164]. Therefore it seems that de novo variations can
be induced by chemotherapy. Another possibility is that due to
selection a very low heteroplasmy mutation load could be increased in
the patients due to its clonogenic advantageous property. Both
possible mechanisms should be further investigated as well as the
observations should be validated in larger study populations before
any conclusions could be drawn.

Another chemotherapeutic drug, cisplatin, is able to accumu-
late in the mitochondria, causing impairment of mtDNA and
mtRNA synthesis [165]. This drug has been shown in vitro to induce
more adduct formation in the mtDNA compared to the nuclear
DNA [166]. In addition, cisplatin leads to caspase-dependent
apoptosis by changing the mitochondrial membrane permeability
and resulting in the release of cytochrome c into the cytosol,
subsequently activating caspase 8 and 9 [167]. For the intestines, a
correlation was observed between the mitochondrial density and
cisplatin sensitivity. Cisplatin sensitivity was limited in normal
ileum tissue having a low mitochondrial density, while the
opposite was observed for the normal duodenum tissue, which
has a high mitochondrial density. In line with these findings, in

vitro cultured cells depleted from their mtDNA, rho-zero cells (r0,
Fig. 2) generated from normal intestinal epithelial cell lines (IEC-6)
showed a four- to five-fold increased resistance against cisplatin
compared to their parental counterparts [168]. This can be
explained by the fact that cisplatin-induced adduct formation in
mtDNA measured in head and neck squamous cell carcinoma cell
lines can be up to 500 times higher compared to nDNA
[169]. However, it has also been suggested that mtDNA mutations
lead to an increased ROS production and that combination with
chemotherapeutics with the same effect (like cisplatin) can lead to
exhaustion of a cell’s antioxidant capacity/response and thereby
eventually lead to apoptosis [170–172]. Correlations of ROS
production and sensitivity to 2-methoxyestradiol, a ROS generat-
ing agent, have already been reported [173,174].

There seems to be some evidence that mtDNA variations could
contribute to chemotherapy resistance and some drugs directly
interact with the mtDNA. The observations also apply to
radiotherapy, another conventional cancer therapy.

4.2. Radiation therapy

Ionizing radiation (IR) is a widely used cancer therapy that results
in cellular damage in a direct or indirect cellular manner. The direct
mechanism involves the transfer of energy from incident photons or
particles to target molecules in their path. ROS are formed in the
presence of oxygen, resulting in secondary damage [175]. Upon DNA
damage, cells might undergo a temporary cell cycle arrest to repair
the damage or die, mainly by mitotic catastrophe and only partly by
apoptosis [176]; both processes require ATP [177,178], and might
involve directly or indirectly mitochondria as both are at least in part
dependent on mitochondrial membrane permeabilization. This
suggests that mitochondria are potentially involved in downstream
irradiation effects [179,180].

Studies have shown that r0 cells are more radioresistant than
parental cells containing wild-type mtDNA [181,182]. Human
fibroblast and pancreatic cancer r0 cells have shown higher survival
rates following radiation, which could be related to decreased G2/M
cell cycle arrest [181] or decreased apoptosis without alterations in
cell cycle distribution [182]. Improved survival could not be linked to
differences in antioxidant enzyme expression [181]. In contrast,
other studies did not identify differences in survival after irradiation
between human fibroblast and osteosarcoma in parental versus r0

cells, although less micronuclei (fragments found in the cytoplasm
which originates from nuclear DNA and correlates with dose/quality
of irradiation [183]) formation was observed in r0 cells after
irradiation [184,185].

A differential radiation response was observed between a normal
B-lymphoblastoid cell line and the mitochondrial mutant cell lines
for Leigh’s syndrome (m.8993T>G mutation in MTATP6 ATP
synthase gene) or Leber’s optic atrophy (m.11778G>A mutation
in MTND4 gene) [186,187]. In both cell lines, the apoptosis-related
genes showed a remarkable up-regulation compared to the control
cell line. However, the repair of the irradiation-induced double-
stranded breaks was different for each of the mutant cell lines.
Repair was significantly decreased in cells with Leigh’s mutation,
leading to worse short-term radiation survival, while for the Leber’s
cells, double-strand breaks could be repaired resulting in better
short-term radiation survival although the studies were not
performed in cell lines with the same background [186,188]. In a
recently published in vivo study it was shown that irradiation of a
SiHa cell line with induced mitochondrial dysfunction (showing a
decrease of oxygen consumption upon exposure to ethidium
bromide) lead to an increased time to reach the endpoint compared
to their parental counterpart [189].

There are also indications that mtDNA variation may not only
affect radiotherapy outcome, but that radiotherapy and chemo-
therapy itself also can induce mutations in the mtDNA. Wardell
et al. observed an increased number of point mutations and
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deletions in patients treated with radiotherapy and chemotherapy
[190]. Additionally, a decrease in mtDNA content has been
reported as a result of radiotherapy in cancer patients [191]. How-
ever, another study found no evidence that radiotherapy for
pediatric cancer, which resulted in scatter radiation to the ovaries,
is associated with the mitochondrial genome mutation frequency
in female cancer survivors and their children [192]. In conclusion,
mtDNA mutations (induced by radiotherapy or germline) can also
affect the response and therefore the outcome of radiotherapy
although the precise role and mechanisms are not yet fully
understood.

4.3. Mitochondrial function interventions in cancer therapy

ROS is one of the major processes implicated in cancer. It may
be possible to reduce the ROS escalation caused by dysfunctional
OXPHOS using metformin, a type II diabetes drug that is used to
suppress gluconeogenesis and, among others, inhibits ROS
production as well as mitochondrial complex I [193–195]. A
previous study showed that type II diabetes patients have an
increased risk of developing cancer with a poorer prognosis
[196]. In 2005, Evans et al. observed a correlation between a
reduced risk of developing cancer and treatment of type II diabetes
patients with metformin [197], which was recently confirmed in a
large cohort study [198].

Metformin activates adenosine monophosphate activated
protein kinase (AMPK) and therefore stimulates muscles to take
up glucose from the blood, a process also activated by exercise
[197]. Furthermore, the activation of the cell metabolism regulator
AMPK results in inhibition of mTORC1 and its downstream
signaling pathway, thereby decreasing protein synthesis and cell
proliferation crucial for tumors [199,200]. The combination of
metformin and radiation therapy was shown to be successful in

vitro since cellular survival was decreased [201]. Song et al. found
that metformin was able to increase radiosensitivity of cancer cells
in vitro and enhance radiation-induced growth delay of fibrosar-
coma tumors as well as non-small cell lung cancer [202,203]. When
metformin treatment was combined with 2-deoxyglucose (2-DG, a
glucose analog), it resulted in an energetic stress cell death
[204,205]. Instead of using a glucose analog, glucose uptake could
be inhibited by other substances (e.g. Pholertin, WZB117 or
Fasentin) to enact a similar mechanism [206–208]. Inhibition of
glucose uptake of the cell could also be a potential target for
tumors with a dysfunctional OXPHOS system [209].
Table 1
Comparison of different in vitro, in vivo and ex vivo mitochondrial models.
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Both chemo- and radiotherapy could be influenced by mtDNA
variations. Additionally, a combination therapy including conven-
tional therapies and drugs influencing mitochondrial function
could be explored as a therapeutic option for cancer patients.

5. Opportunities and pitfalls in studies using mtDNA models

Multiple studies have identified potential associations between
mtDNA variations and cancer [62–71,210]. Mutations/deletions
and copy number variations in the mtDNA are able to affect proper
OXPHOS function and consequently change predisposition for a
disorder. mtDNA variations (de novo, inherited, caused by ROS
production in tumors or by cancer treatments) can promote tumor
development and progression. Different mtDNA models are
available for diagnostic and research purposes. Table 1 presents
a short representation of in vitro, in vivo and ex vivo models.

5.1. In vitro mtDNA models

Effects of mtDNA depletion are commonly investigated in the r0

cell model, mammalian cells depleted of mtDNA by exposure to
ethidium bromide (Etbr) [211]. Consequently, r0 cells rely
completely on glycolysis instead of oxidative phosphorylation
for energy production. Removal of Etbr leads to mtDNA repopula-
tion and therefore it should be used throughout the entire
experiment. Etbr treatment can lead to stalled proliferation [212],
is genotoxic to cells in vitro (http://ntp.niehs.nih.gov) and can lead
to off-target effects on the nDNA. Therefore this model is not
suitable for in vivo studies.

Most studies on pathophysiology have exploited fibroblasts
derived from patients with mtDNA diseases or mutations. These
models allow for high-throughput screening [75,76,213] and
testing of potential therapies in vitro. Unfortunately, the con-
sequences of OXPHOS-related defects are sometimes less pro-
nounced in in vitro fibroblast cultures, since cells are capable of
switching from oxidative phosphorylation toward glycolysis under
specific culturing conditions [214]. In addition, these cells are
generally not able to form tumors by themselves. Therefore
fibroblasts are not suitable for investigating the link between
cancer and mtDNA.

A cybrid cell line is another model used to study the effect of
mtDNA variations in cancer. These are cell lines with the nuclear DNA
background of a tumor cell line [132] and the mtDNA of another cell
line (Fig. 2). The mtDNA can come from a patient-derived cancer cell
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M.W. van Gisbergen et al. / Mutation Research 764 (2015) 16–30 25
line, a fibroblast or a lymphocyte cell line. The main advantage of
these cybrids is the ability to investigate whether phenotypes and
biochemical changes are related to changes in the nDNA or mtDNA.
Furthermore, cybrid models enable the investigation of in vitro and in

vivo effects of different mtDNA mutations in cancer cell lines and
tumors with the same nuclear background [215]. A possible
disadvantage is the dependency on naturally occurring patient
mtDNA variations.

5.2. Mitochondrial animal models

Patients with variations in their mtDNA are often unique, so
grouping them is very difficult. Therefore, data obtained from
patient studies should be carefully interpreted with respect to
large inter-individual variation. The use of murine models is in this
respect advantageous, as experimental settings can be better
controlled than in patient studies. For instance, cell lines with the
same nuclear genetic background harboring one mtDNA variation
can be used as xenograft models. Additionally, to easier investigate
the molecular mechanisms, specific mitochondrial murine models,
such as the POLG mutator mouse, can be used either combined
with mouse models which spontaneously develop cancer.

Currently, different mouse models are available to unravel the
pathways involved in mtDNA mutations and cancer (Table 1). The
most studied mouse model created for translational research in
this particular field is the POLG knock-in mouse. These mice lack
the proofreading function of pol g and therefore show an
accumulation of mutations and deletions in their mtDNA
[216]. In homozygous mice, but not in heterozygous mice, a
premature aging phenotype resulting in effects such as heart
enlargement and hearing impairment has been observed. Howev-
er, no cancer development has been reported [216,217]. Another
mouse model carries a mutation in the complex I subunit NADH
dehydrogenase ubiquinone Fe-S protein 4 (NDUFS4). These mice
displayed a phenotype similar to that in human patients carrying a
NDUFS4 mutation, and a full knockout was lethal at approximately
seven weeks of age [218,219]. A heterozygote mutant of the
NDUFS4 mice was viable and still showed the biochemical changes
observed in patients suffering from Leigh’s syndrome [220].

A third model, the thymidine phosphorylase (Tp) and uridine
phosphorylase (Upp) double knockout mouse model (Tp�/�Upp-

1�/�) has been developed for studying mitochondrial neurogas-
trointestinal encephalomyopathy (MNGIE). Murine UPP-1, unlike
human UPP-1, cleaves thymidine as well as uridine; therefore, the
full capacity to cleave mouse thymidine is abolished in this mouse
model [221–223]. In addition, deficiencies of complex I and IV
could be observed in the brain of very old Tp�/�Upp-1�/� mice
[223]. This thymidine-induced dNTP imbalance has been recently
demonstrated to be overcome by the metabolic switch into the
salvage pathway in acute lymphoblastic leukemia cells, therefore
avoiding the lethal replication stress and the subsequent tumor
progression. Accordingly, strategies focused on inhibition of this
switch have been suggested as metabolic intervention in acute
lymphoblastic leukemia [224]. Tp is found to be overexpressed in
different tumors (e.g. non-small-cell lung cancer and colorectal
cancer) and seems to play an important role in angiogenesis,
invasion and metastasis of tumors [225,226]. A study by
Moghaddam et al. found that Tp has angiogenic properties and,
in a MCF7 breast cancer xenograft model, Tp overexpression led to
faster tumor growth [227]. In contrast, low Tp expression
correlates to the favorable prognosis of gastric cancer treated
with chemotherapy [228,229] and promoter methylation has been
proposed as a mechanism of its expression down regulation in
different cancer cells [230,231].

Mice can be given a trigger (e.g. a toxin such as nitrosamino-
ketone) or have a nuclear gene background such as the K-rasLA
mouse model to develop cancer [232,233]. This in combination
with a murine model with a pathological mtDNA background could
lead to the creation of a model containing both the mtDNA
phenotype and the cancer phenotype to investigate the contribu-
tion of both parameters to the phenotype of the tumor.

As every mouse strain has specific differences and it is labor
intensive to make genetic mouse models for every human
phenotype, another option is to use small animal models specially
created for studying the mitochondrial DNA mutation pathology.
Animal models, such as Danio rerio (zebra fish) [234], Drosophila

melanogaster (fruit fly) [235] and Caenorhabditis elegans (round
worm) [236], develop rather quickly and the model can be
manipulated by directly adding compounds to the food, medium or
water, or irradiating their culture dish. Because the evolutionary
distance to humans is larger than for mice, some of these
organisms do not contain all the organs affected in humans [237].

5.3. OXPHOS inhibitors in cellular models for therapeutic

interventions

Several studies demonstrated that inhibition of glycolysis could
be a possible treatment option for cancers with compromised
mitochondrial function (see review Pelicano et al. [209]). As these
cancers rely more on aerobic glycolysis (Warburg effect), driving
the tumors to use OXPHOS instead would lead to sever energetic
stress. Cells with mtDNA mutations or with a lack of oxygen
(hypoxia) are not able to use alternative energy sources such as
fatty acids and amino acids to produce metabolic intermediates
which can be used in the Krebs cycle for ATP production through
OXPHOS. In these cells inhibition of glycolysis could induce cell
death [238,239]. For instance, in an in vitro system using human
leukemia cells (HL-60) and human lymphoma cells (Raji), cells
with a respiration defect were less sensitive to cytostatic drugs like
1-b-D-arabinofuranosylcytosine (ara-C), doxorubicin (Adriamy-
cin), taxol and vincristine [29]. However, lonidamine, 3-bromo-
pyruvate and 2-deoxyglucose are known inhibitors of glycolysis
that showed promising results [29,204,205,240]. In addition,
partial inhibition of OXPHOS can be achieved by inhibition of
the different complexes of the OXPHOS system. The pesticide
rotenone is known for its ability to inhibit complex I [219]. It can be
used in an experimental set-up at low concentrations, but it is not
likely to obtain U.S. Food and Drug Administration (FDA) approval
for usage in humans due to toxic effects (e.g. irritation of the
respiratory tract and apoptosis of erythrocytes) [241,242]. Metfor-
min, an FDA approved drug prescribed to patients with type II
diabetes [199], is another inhibitor of complex I [193]. However, as
discussed above metformin is also used as an anti-cancer drug by
inhibiting the mTOR signaling through activation of AMPK. A more
potent drug for complex I inhibition is phenformin [243] a drug
related to metformin from the biguanide class that is able to inhibit
the development and growth of MCF7 and MDAMV231 tumors in a
xenograft mouse model [244]. Additionally, it also affects the
mTOR signaling pathway [245]. In xenograft melanomas and in
genetically modified mice for melanomas (BRAFV600E) combined
therapy of phenformin and PLX4720 showed a significant growth
reduction whereas treatment with only phenformin or PLX470
resulted in growth inhibition but no tumor regression [245]. How-
ever, FDA has redrawn phenformin from the North-American
market in 1977, due to its association with fatal lactic acidosis in
diabetic patients.

6. Future prospects

There is still a lot of debate about the precise relationship
between mtDNA variants, OXPHOS abnormalities and cancer. Are
these mtDNA variations driving disease, involved in disease
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progression or implicated in treatment response and adaptation to
treatment? Or are they merely passenger observations?

6.1. Detecting mtDNA mutations

Various platforms can be used to identify mtDNA mutations in
tumor material or other specimens. Using mutation specific
restriction digestion or restriction fragment length polymorphism
(RFLP) analysis, screening for common mtDNA mutations becomes
possible [246]. Denaturing high performance liquid chromatogra-
phy can be used to determine heteroplasmy mtDNA mutations
[247]. Pyrosequencing allows accurate quantification of the
heteroplasmy levels of a variation [248]. For detection of mtDNA
deletions long-range PCR [249,250] or quantitative real-time PCR
based methods [251] and southern blotting [252] could be used.
Though, currently there is more desire for high-throughput
methods of which some of these are listed below.

Random Mutation Capture (RMC) assay is based on single
molecule amplification which facilitates the user in measuring
relative values of the spontaneous mutation frequency and mtDNA
deletions [253]. Another method is digital deletion detection (3D
assay) and is based on the RMC method; with 3D it is also possible
to identify rare deletion events [254]. Currently, next generation
sequencing (NGS) of mtDNA is the standard for determination of
homo- and heteroplasmic variations. Heteroplasmy depends on
tissue type; therefore somatic mutations in tumor tissue are
mainly heteroplasmic since tumors exist out of different cell types.
NGS has an enhanced sensitivity for detecting low levels of
heteroplasmy and has as well an increased coverage [255]. The
previously used platform, MitoChip, is commonly used for the
identification of homoplasmic mutations. Although the detection
range is limited, also some heteroplastic variants can be found
[256,257]. mtDNA variants detected with MitoChip usually have to
be confirmed using conventional Sanger sequencing.

6.2. Identification of potential drug targets

mtDNA research is not only pursuing the identification of
variations of mtDNA that are involved in cancer and its treatment,
but also the identification of potential drug targets. The ideal
treatment would be to repair the appropriate defective mtDNA
sequence, although this would be almost impossible for cancer-
related somatic mtDNA mutations. Different strategies to achieve
this goal have been suggested for severe germline mtDNA
mutations. For example, blocking the replication of mutated
mtDNA by peptide nucleic acid might result in repopulated cells
with unaffected wild-type DNA [258]. However, as interventions
specifically for mtDNA are difficult to implement, mitochondria
and mtDNA can be targeted at multiple downstream steps of
physiological processes. Drugs can interact with mitochondrial
permeability, membrane potential, energy supply, antioxidants,
ROS production and apoptosis. For instance, influencing the
function of B-cell lymphoma 2 (Bcl-2), an anti-apoptotic protein,
might be used as a target. Bcl-2 is often overexpressed in solid
tumors and contributes to resistance to conventional therapies
[259]. Possible targets in the cell are the mitochondrial outer
membrane proteins (e.g. monocarboxylate transporter 1 (MCT1)
and mitochondrial pyruvate carriers (MPCs)) or inner membrane
proteins (complex I, complex II, complex III, complex IV and
complex V), the ETC and the Krebs cycle.

Alternatively, variations in mtDNA can be exploited to tailor
patients’ therapy. It is unlikely that all patients with different
variations causing OXPHOS deficiency will benefit from the same
treatment. To illustrate, for tumors with heteroplasmic driver
mutations interventions that stimulate mtDNA quantity can result
in high mutation levels and should be avoided to prevent that
tumors become more therapy resistant. In this case, stimulating
mitophagy could be a better option to eliminate the mutation.
Altogether, personalized treatments should be carefully evaluated
in respect to the pathological process in the tumors of the cancer
patients.

7. Conclusions

Over the last decade, the role of mitochondria and, more
specifically, mtDNA in cancer has started to be explored. Different
signaling processes and ROS production have been implicated in
the development and progression of cancer, and these processes
can be affected by changes in the mtDNA. However, the exact
molecular mechanisms are not yet known. The link between
mtDNA and different processes (DNA damage, ROS and apoptosis)
and how this plays a role in cancer remains especially vague and is
not well defined. In this review, we discussed 3 different types of
models (Fig. 3) of nuclear encoded and mitochondrial encoded
DNA mutations and how they relate to cancer and cancer therapy.
The mutations can have a causative effect, could depended on the
multiple hit model or can be just neutral the so-called passenger
mutations. Although a combination of these models could occur in
the tumor.

Future research should focus on establishing whether these
processes are causes or consequences and under which circum-
stances, and exploring whether they are connected or unrelated to
changes in the mtDNA. Upon progressive knowledge about the role
of mtDNA, it will be possible to better understand cancer initiation
and progression and to improve the prognosis and treatment of
patients.
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