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A proof of the gap labeling conjecture.

Michigan Math. J51 (2003),no. 3,537-546.

FEATURED REVIEW.

This joint review covers the two papers in the heading as well as an article by J. Bellissar
R. Benedetti and J.-M. Gambaudo [“Spaces of tilings, finite telescopic approximations, and ga
labeling”, Comm. Math. Phys., to appear] (hereafter BO, KP and BBG, respectively).

The gap labeling theorem was originally conjectured by Bellissaréfam number theory to
physics (Les Houches, 198%38-630, Springer, Berlin, 1998R1221111 (94e:4612D)The
problem arises in a mathematical version of solid state physics in the context of aperiodic tiling:
Its three proofs, discovered independently by the authors above, all kethreory. Here is the
core result of these papers:

Let > be a Cantor set and let

Y xZP - %

be a free and minimal action @ on X with invariant probability measure. Let
p:C(2)—C
and
7,:0(8) x 2% — C
be the traces induced pyand denote likewise their induced mapdirtheory. Then
1 (Ko(C(%))) =7, (Ko(C(3) x Z%))

as subsets dR.
We shall try to explain why this core result has anything to do with something called gap labeling
This review is organized as follows:
(1) The origin of the problem and its formulation in mathematical terms.
(2) Foliated spaces as a setting for the common formalism.
(3) The BBG proof.
(4) Common features of the BO and KP proofs.
(5) The BO proof.
(6) The KP proof.
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(7) Earlier partial results.

1. The origin of the problem. We model the motion of a particle in a solid via the tight binding
approximation as follows. The solid is modeled by a tiling, where the tiles represent the locatior
of the atoms, and the particle hops from tile to tile. The (simplified!) quantum mechanical mode
of this motion is a certain self-adjoint Scltlinger operator on the space of square summable
functions on the set of tiles. So the position of the particle is represented by a tile and momentu
corresponds to translation. We are interested in the spectrum of this operator. In the crys:
context, Bloch theory shows that the periodic structure of the atoms leads to a spectrum consisti
of bands—i.e., a union of closed intervals, and hence there are gaps in the spectrum. The challe
in the present problem is to determine the gaps in the spectrum of thédiaiper operator in a
solid which is not periodic but is almost periodic.

More formally, a tilingT of R? is a collection of subset&, t,, . .. } called tiles, such that their
union isR¢ and their interiors are pairwise disjoint. We assume that each tile is homeomorphic t
a closed ball. Any translafg + z of 7' by somex € R is again a tiling. Take the s@&t+ R¢ of all
translates and endow it with a metric: fok ¢ < 1, say, the distance betwe@&handTs in T + R?
is less than if there are vectors,, x, of length less than such thafl}; + xz; andT; + x5 coincide
on the open balB(0, 1/¢). Let Q denote the closure df + R in this metric. TherR? acts on
2; the action is denoted. The spacé is the continuous hull of the tiling. (This is the quick and
dirty definition of the metric an€l: there are much better and more natural definitions—cf. BBG.)

We assume that for any > 0 there are only finitely many subsetsiofvhose union has diameter
less thanR (the so-called finite pattern condition), which ensures tha compact. The orbit of
T is obviously dense. We assume that every orbit is dense: in other words, tiRit #ation on
2 is minimal. This is the case if and only if for every finite patehin 7" there is someRk > 0
such that for eaclr € R there is a translate dP contained inT’N B(z, R). This is called the
repetitivity condition.

There is an equivalent version of this construction using the notion of repetitive Delone sel
of finite type due to Lagarias. Bellissard, D. J. L. Herrmann and M. Zarrouatiiections
in mathematical quasicrystal207-258, Amer. Math. Soc., Providence, RI, 20081798994
(2002a:82101)replaced a discrete point set by the sum of mass one Dirac measures at each Si
The compactness of the hull is then a trivial consequence of well-known theorems in measu
theory. This point of view is more natural from the point of view of the hull topology.

Atiling T is aperiodic ifT + x # T for all z € R? . {0}, and a tiling is strongly aperiodic
contains no periodic tilings. Assume henceforth thas strongly aperiodic and satisfies the finite
pattern and repetitivity conditions; thésis compact with a free and minim&F-actionw. There
is a naturalC*-algebra to model the situation, namélyQ)) x RY, referred to by Bellissard as the
noncommutative Brillouin zone. Bellissard’s deep insight was to regard the dynamical system v
thisC*-algebra as a noncommutative space, in the sense introduced by Alain Connes, and to sh
that the resolvents of the S@dinger operator lie in it. Gaps in the spectrum will yield projections
in C(Q) x R? and the classes of those projections lighip(C(2) x R?). Any trace on the*-
algebra yields a homomorphiski,(C(Q2) x RY) — R whose image is a countable subgroup of
R. For natural choices of the trace, these numbers have physical and mathematical meaning. Tl
are related to the integrated density of states and also can be obtained experimentally. Thus i
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worthwhile to try to determine this subgrouplRf

L. A. Sadun and R. F. Williams [Ergodic Theory Dynam. Syste&t8$2003), no. 1, 307-316;
MR1971208 (2004a:3702B%howed that the hulf2 contains a Cantor sef with a minimal
Z-action such that there is a homeomorphism

¥ xR =2 Q.

(The set> can be constructed as a canonical transversal. To do so, each prototile is associa
with a point in its interior; then tak& to be the union of the tilings having one tile with point

at the origin. Therk is defined modulo the choice of a point in each prototile. In the description
via a Delone set there is no choice, since the position of atoms is already fixed and therefo
the transversal becomes “canonical’.) This homeomorphism does not conjug#é de&ons.
However, KP show that there is a strong Morita equivalence of associdtathebras

C(X)xZ~C(Q) xR?

and so these tw@'*-algebras have isomorphi€-theory groups. We regaid with its Z¢-action
as a discrete model for the foliated sp&te

2. Foliated spaces. Every pointihhas an open neighborhood of the fotimx N, whereU is
open inR¢ and N is a Borel subset of?. If N were an open subset of Euclidean space then this
would be the local picture of a foliated manifold. This is not the case generally. Instead, this is th
local picture of a foliated space.

A side note on terminology. In ancient times a lamination was a space obtained by deleting sor
leaves of a foliated manifold. C. C. Moore and the review&@opal analysis on foliated spaces
Springer, New York, 1988y1IR0918974 (89h:58184¥econd edition, Cambridge Univ. Press, to
appear] introduced foliated space to describe a space whose local pictiire i§ as above.
This includes laminations as well as other situations such as the continuous hull. This usage
found, e.g., in [A. Candel and L. ConloBRoliations. |, Amer. Math. Soc., Providence, RI, 2000;
MR1732868 (2002f:57058) More recently,E. Ghys [in Dynamique et gonétrie complexes
(Lyon, 1997) ix, xi, 49-95, Soc. Math. France, Paris, 1998R1760843 (2001g:3706Band
others have taken to using lamination for this more general concept. We will stick with the foliate
space terminology.

Suppose given Z’-invariant probability measure: C(X) — C. This gives rise to an invariant
transverse measure énwith corresponding Ruelle-Sullivan currefit and associated homology
class

[Cul € Hi(Q).

HereH denotes tangential homology [cf. C. C. Moore and C. L. Schochet, op. cit. (Chapter III)].
This gives rise to traces
p:C(X)—C and 7,:C(Z)xZ - C
and associated homomorphisms
1 Ko(C(2)) =R and 7,: Ko(C(X) x Z%) — R.
The groupK,(C (X)) is isomorphic taC' (X, Z), the continuous, integer-valued functions®n
and we may describe its image under the traC&,(C(3))) as the subgroup dk generated by
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the measures of the clopen setsbfit is not very hard to prove that

M(KO(C(Z))) cr, (KO(C(E) X zd)).

The deepest part of the gap labeling theorem is to demonstrate that this inclusion is actually
equality of sets.

Note that each gap in the spectrum of the self-adjoint operator associated to the motion of t|
particle in the initial tiling corresponds to a projection in the-algebraC () x R? of the foliated
space2 and hence to a class in

Ko(C(Q) xRY) =2 Ko (C(2) x Z%).

Bellissard, Herrmann and Zarrouati [op. cit.] proved that the integrated density of the states of tt
operator depends only upon the noncommutative spaitself, and not upon the operator. Thus
the possible values of the gap labeling are independent of the choice of operator; they depend o
upon the noncommutative topology Qf

All three proofs of the gap labeling theorem proceed by translating the gap labeling probler
to tangential cohomology via some version of the Chern character and then by a combination
direct computation and deep general results.

3. The BBG proof. BBG consider a somewhat more general situation than described above. |
this review focuses upon thi€-theory result, we must omit details. We urge the reader to study
the paper, as it has interesting applications beyond the immeideoretic concern of the gap
labeling theorem. BBG provide a geometric analysis of the foliated space itself. They represe
Q2 as topologically conjugate to the inverse limit of expanding flattening sequences of branche
oriented flat manifolds of dimensiah (BOF d-manifolds) withR¢ action by parallel transport
under constant vector fields. The cohomology of the BOF manifolds is analyzed combinatoriall
via cellular conomology and a spectral sequence is used to calculdtettiory of the associated
C*-algebras. Taking direct limits then yields a very concrete descriptidn.6f' (2 x R?)). The
associated Ruelle-Sullivan maps are then explicitly calculated. BBG use a partial Chern charac
mapc and then must deal with the diagram

Ko(C(Q) xRY —— HYC(Q) x RY)

lTu i(—)ﬂC,,

o~

R e R
wherenC,, is the cap product by the clags,] € H] () of the Ruelle-Sullivan current induced
by the trace. Their proof requires the use of Connes’ Thom isomorphism theorem [A. Conne
Adv. in Math.39(1981), no. 1, 31-58¥IR0605351 (82j:46084)s well as cyclic cohomology
[A. Connes, inGeometric methods in operator algebras (Kyoto, 1982144, Longman Sci.
Tech., Harlow, 1986 R0866491 (88k:58149)
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4. Common features of the BO and the KP proofs. Consider the diagram
Ky(C(X)) ——R
Ko(C(E x74)) 5 R

L |=

Ko(C(QxRY)) 5 R

Tg Qe Tz
Ka(C (%)) R
La 1=
HIQ;R) 9N R
whereX is the given Cantor set with the givé{ action,
Q=% xzuR?

is the suspension of the actiop, is Connes’ Thom isomorphism, is the map induced by the
inclusion of C'*-algebras, m.e. is the isomorphism induced by the Morita equivalence 6f'the
algebras, and (this is a result of T. Fack and G. Skandalis [Invent. M4i{i981), no. 1, 7-14;
MR0621767 (829:46113)

¢.([E]) = ind.[Dg] € Ko(C(Q xRY))

whereind,[Dg]| is the analytic index of the Dira® operator twisted by the bundig. The top
square commutes by the definition of the traces. The middle square is shown to commute
looking carefully at properties of the Morita equivalence.

The bottom rectangle commutes by the index theorem for foliated spaces. KP prove this as F
2.4, and BO prove it as BO 4.2. (Sin@ds a foliated space but not a foliated manifold, one needs
the version of the Index Theorem established by Moore and the reviewer [op. cit.].) The analogo
result of BBG is Theorem 6.1, which they prove by reduction to a result in cyclic cohomology [A.
Connes, op. citMR0866491 (88k:58149)

5. The BO proof. BO filter the leaves ©fand obtain a pair of spectral sequences

E? = H,(2;C(Q,2)) = K.(C*(C(Q) xR))

and

E?=H,(Z% C(Q,R)) = H(C(Q) x RY).
The Chern character induces a natural transformation

ch: E" — E'.

Both spectral sequences collapse atfHdevel, essentially becaust ® Q is an isomorphism.
This makes it possible to explicitly identify the image of

ch: K. (C*(C(Q) xRY)) — H*(C(Q) xRY)
asH,(Z; C(Q,7)). This integrality result leads to an identification of the top component of the
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Chern character and implies the gap labeling theorem.

6. The KP proof. KP rely on a less commutative approachzlet x R — Q be the quotient
map, letL denote the union of the hyperplanes parallel to the coordinate axis and going throug
the points ofZ?, letY = =(X x L) andj: Q — Y — Q be the inclusion, and let

a: Ko(C(X)) — Ko(C(Q) xRY)

be the map described by Connes fMohcommutative geomefricademic Press, San Diego,
CA, 1994;MR1303779 (95}:46063)p. 120)] (modified for foliated spaces) that associates—to a
clopen set in a transversal to a foliation—a projection in its foliation algebra. They show (KP 3.2
that the natural diagram

Ko(C(%)  —— Ko(C(Q) xR

lﬁ Tcp
Ki(Co(2=Y)) == K4(C(Q))
commutes, wherg is Bott periodicity. Then an explicit study of the partial Chern charadigr
implies the gap labeling theorem.

7. Earlier results. To complete this review, we note that there were previous partial resul
on the problem. The conjecture was first established in the £asé by Bellissard [op. cit.]
using the Pimsner-Voiculescu long exact sequence, and thelcafewas done by A. van Elst
[Rev. Math. Phys6 (1994), no. 2, 319-34N1R1269302 (95f:46122)using a similar technique.
The d = 2 result was reestablished using the Kasparov spectral sequence in [J. Bellissard,
Contensou and A. Legrand, C. R. Acad. Sci. Pais. $ Math. 326 (1998), no. 2, 197-200;
MR1646928 (99h:4613])In the case where the hull is given by an actionZdfon a Cantor
setY, A. H. Forrest and J. R. Hunton [Ergodic Theory Dynam. Systétgl999), no. 3, 611
625; MR1695911 (2000e:1900BYised spectral sequence techniques to prove thakttieeory
group is isomorphic to the group cohomololy (Z%; C (%, Z)), which made calculation possible
in many practical situations that occur in physics, as well as theas&

{Editorial remark: The paper by Bellisard, Benedetti and Gambaudo (BBG) is expected t
appear, and will be linked to this review once it is indexed in the MR datapase.

Reviewed byClaude Schochet
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