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Resource Availability, Mortality, and Fertility: A Path Analytic Approach to
Global Life-History Variation

Abstract
Humans exhibit considerable diversity in timing and rate of reproduction. Life history theory (LHT) suggests
that ecological cues of resource richness and survival probabilities shape human phenotypes across
populations. Populations experiencing high extrinsic mortality due to uncertainty in resources should exhibit
faster life histories. Here we use a path analytic (PA) approach informed by LHT to model the multiple
pathways between resources, mortality rates, and reproductive behavior in 191 countries. Resources that
account for the most variance in population mortality rates are predicted to explain the most variance in total
fertility rates. Results indicate that resources (e.g., calories, sanitation, education, and health care
expenditures) influence fertility rates in paths through communicable and noncommunicable diseases. Paths
acting through communicable disease are more strongly associated with fertility than are paths through
noncommunicable diseases. These results suggest that a PA approach may help disaggregate extrinsic and
intrinsic mortality factors in cross cultural analyses. Such knowledge may be useful in developing targeted
policies to decrease teenage pregnancy, total fertility rates, and thus issues associated with overpopulation.
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Resource Availability, Mortality, and Fertility: A Path Analytic
Approach to Global Life-History Variation

MARK A. CAUDELL
1* AND ROBERT J. QUINLAN

1

Abstract Humans exhibit considerable diversity in timing and rate of
reproduction. Life-history theory (LHT) suggests that ecological cues of
resource richness and survival probabilities shape human phenotypes across
populations. Populations experiencing high extrinsic mortality due to uncer-
tainty in resources should exhibit faster life histories. Here we use a path
analytic (PA) approach informed by LHT to model the multiple pathways
between resources, mortality rates, and reproductive behavior in 191
countries. Resources that account for the most variance in population
mortality rates are predicted to explain the most variance in total fertility
rates. Results indicate that resources (e.g., calories, sanitation, education, and
health-care expenditures) influence fertility rates in paths through commu-
nicable and noncommunicable diseases. Paths acting through communicable
disease are more strongly associated with fertility than are paths through
noncommunicable diseases. These results suggest that a PA approach may
help disaggregate extrinsic and intrinsic mortality factors in cross-cultural
analyses. Such knowledge may be useful in developing targeted policies to
decrease teenage pregnancy, total fertility rates, and thus issues associated
with overpopulation.

Human populations exhibit considerable variation in timing and frequency of
reproduction. Adolescent fertility rates in Niger, for example, were over 31 times
higher than in South Korea (World Health Organization 2009). Variation in
fertility rates across populations result, in part, from differences in sources of
mortality (Roff 2002; Stearns 1992). Sources of mortality may respond differ-
ently to social resources (e.g., access to health care, water, and sanitation
services; education; income equality, etc.). Here we test hypotheses from LHT
concerning the nature of mortality (i.e., intrinsic vs. extrinsic) and mortality
effects on reproduction. In general, LHT predicts that high mortality rates cue
fast life histories which are characterized by early reproduction and relatively
low parental investment per offspring (Borgerhoff Mulder 1992; Bulled and
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Sosis 2010; Chisholm 1993; Low, Hazel, Parker, and Welch 2008; Nettle 2010;
Promislow and Harvey 1990; Quinlan 2010; Roff 2002; Stearns 1992). A key
feature of LHT, however, divides mortality causes into intrinsic and extrinsic
components. Those components of mortality have proved to be exceedingly
difficult to isolate empirically. Here we use a PA approach to untangle relations
between resources, disease, mortality, and fertility. This approach allows us to
begin to assess effects of extrinsic and intrinsic components of mortality (and the
resources associated with each) on human reproductive behavior.

Life-History Theory. LHT provides an evolutionary framework for under-
standing how environmental cues of resource richness and organismal survivor-
ship affect reproductive decisions. Theoretically, the evolution and development
of life-history strategies trend toward enhancing individual reproductive fitness
in specific environments (Roff 2002; Stearns 1992). Adaptive life-history
strategies develop, in part, in response to costs and benefits of allocating energy
(i.e., resources) to growth, maintenance, and reproduction within variable
ecological contexts. As resources invested into one life function (e.g., mating)
cannot be devoted to another (e.g., growth), trade-offs arise (Stearns 1989).

One of the most fundamental trade-offs in an organism’s life-history is
between current versus future reproduction (see review in Ellis, Figueredo,
Brumbach, and Schlomer 2009). Fitness costs and benefits associated with this
trade-off are guided by variation in life-expectancy and quality versus quantity of
offspring. Delaying reproduction allows an organism to allocate more resources
to somatic effort (i.e., growth and maintenance), thereby lengthening life-
expectancy and increasing the ability to produce and invest in higher quality
offspring. This delay, by decreasing energy devoted to reproductive effort,
lowers the quantity of offspring across the reproductive life-span. In contrast,
earlier investment in reproduction increases the quantity of potential offspring
across the reproductive life-span but shortens remaining life-expectancy as
maternal somatic resources are depleted through repeated pregnancy and
lactation. Earlier and more frequent investment in reproduction, by limiting
somatic investment, decreases the quality of offspring by reducing the amount of
parental investment per offspring (Roff 2002; Stearns 1992). A potentially
complex relationship exists between the allocation of energy to somatic and
reproductive effort and life-expectancy. Over the life-course, increased invest-
ment in somatic effort should lengthen life-span relative to other allocation decisions
within a population. However, a longitudinal study of mortality and reproduction
indicated that population mortality rates in early life had a causal role in the allocation
of both somatic and reproductive effort later in adulthood, when early life and later
population mortality rates were uncorrelated (Quinlan 2010).

Environmental Risk and Life-History. In LHT, the local nature of risk is a
major factor affecting trade-offs in the allocation of effort to somatic mainte-
nance, development, mating, and parenting (Chisholm 1999; Quinlan 2007,
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2010). LHT partitions risk into two types: extrinsic and intrinsic. Extrinsic
mortality is the risk of death that is not conditional on an organism’s reproductive
behavior (Stearns 1992:182). Statistically, we can define extrinsic mortality as
variance in the probability of death that is not accounted for by mating effort or
parenting effort (or by extension trade-offs between reproductive and somatic
effort). In other words, an organism cannot escape extrinsic mortality by
changing its behavior. It is the age-specific risk of death is equally shared by all
members of a population. Intrinsic mortality, in contrast, is the probability of
death associated with allocation of both somatic and reproductive effort.
Predation, for example, could be either extrinsic or intrinsic mortality or both.
Imagine a population of organisms in which a probability (P) of death exists from
predation at age X. Then P is a combination of factors: some are beyond an
individual’s control but others are not. The frequency by which an individual
encounters a predator depends on extrinsic factors such as the density of
predators in the environment (beyond the individual’s control) and intrinsic
factors such as the level of vigilance, time spent exposed in the landscape as a
result of mating effort, etc. (determined by allocation of effort). An individual of
a prey species in an environment with many predators may reduce the probability
of death by predation by adjusting its behavior, but always some extrinsic
probability of death by predation exists. The predation example raises an
important point about extrinsic mortality: Any age-specific probability of death
has both intrinsic and extrinsic components that can be difficult to isolate
analytically. Despite empirical challenges, extrinsic and intrinsic components of
mortality can have profound influences on adaptive behavior.

Extrinsic mortality plays a key role in the evolution of life histories and
reproductive strategies (Chisholm 1993, 1999; Promislow and Harvey 1990; Roff
2002; Stearns 1992). When extrinsic mortality is high, then organisms should
reproduce early in life to reduce mortality exposure over time and to extend the
length of the reproductive span, which should maximize fertility to “beat the
odds” that some offspring will die. Conversely, when extrinsic mortality is low,
then differential reproductive success is contingent on resources invested in
growth, development, and parental effort rather than luck. Hence, in low
extrinsic-risk environments individuals may enhance fitness by delaying repro-
duction to accrue additional resources (including knowledge and skills) and by
reducing fertility and increasing investment per offspring. Conversely, in
high-risk environments, early reproduction and minimal parental investment per
offspring can be adaptive. These predicted relationships hold among mammals:
Juvenile mortality is negatively correlated with age at maturity, age at weaning,
maternal investment, and positively correlated with litter size and pace of
reproduction (Promislow and Harvey 1990).

Extrinsic risk for humans has attracted theoretical interest since the early
1990s (e.g., Borgerhoff Mulder 1992; Chisholm 1993, 1999; Harpending,
Draper, and Pennington 1990); however, empirical work is relatively scarce.
Several studies show predicted relations between extrinsic risk and human
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life-history patterns. Mortality was negatively associated with age at reproductive
maturity among urban Americans (Wilson and Daly 1997), sub-Saharan Africans
(Gant, Heath, Ejikeme, Snell, and Briar-Lawson 2009), and in four cross-cultural
studies (Bulled and Sosis 2010; Low et al. 2008; Placek and Quinlan 2011;
Walker et al. 2006). Nettle (2010) documented similar relationships across
British neighborhoods where economically marginalized (i.e., lower resource
availability) neighborhoods displayed earlier ages at reproduction, lower birth
weights, and shorter durations of breastfeeding (see also Nettle, Coall, and
Dickins 2011). In a longitudinal study of a rural Dominican community, Quinlan
(2010) found that high infant-mortality rates predicted earlier ages of first
reproduction, although very high infant-mortality rates produced a saturation
point of parental investment resulting in reproductive delays. Support for a
relationship between mortality rates and life-history strategies is also docu-
mented among hunter�gatherer and small-scale horticulturalist groups (Walker
et al. 2006). And even the perception of mortality may influence human-
reproductive behavior (Chisholm, Quinlivan, Petersen, and Coall 2005). This
small body of research makes clear that local extrinsic risk is an important
environmental cue for shaping human-reproductive strategies, but how and when
are local environmental conditions encoded into life-histories? How do we
empirically distinguish between extrinsic and intrinsic components of mortality?
Here we use a path analytic approach to identify specific factors mediating and
moderating effects on fertility rates across 191 nations.

Although the distinction between extrinsic and intrinsic mortality is critical
for LHT predictions, partitioning mortality into extrinsic or intrinsic components
has proved very difficult (Ellis et al. 2009). In many studies, mortality rates are
commonly quantified with “all-cause” mortality parameters, such as life-
expectancy at birth (LEB) or parameters exhibiting strong correlations with LEB,
such as infant mortality (see Anderson 2010; Bulled and Sosis 2010; Low et al.
2008; Wilson and Daly 1997). Even studies using “all-cause” mortality measures
across and within taxa have demonstrated a strong positive relationship between
higher rates of mortality and faster life-history strategies. Better predictive
models and theoretical development await improved analytical strategies that can
identify components of mortality.

Resources and Life-History. Studies across and within human populations, in
agreement with findings across numerous nonhuman species, indicate that
relatively higher mortality rates are associated with both earlier onset and higher
rate of reproduction (Anderson 2010; Bulled and Sosis 2010; Low et al. 2008;
Promislow and Harvey 1990; Quinlan 2010; Stearns 1992). Unlike any other
species, however, humans are capable of producing resources that lead to
increases and decreases in survival probabilities of mortality causes and thus may
play a direct role in population mortality variation. For example, access to
medicinal resources can increase the survival probability of certain diseases
while weapons of modern warfare can decrease the survival probability of
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conflict. This capacity is important in a life-history framework as resources may
transform an extrinsic cause of mortality to an intrinsic cause. For instance,
malaria may be defined as a source of extrinsic risk when individuals lack access
to necessary medication or preventative measures. When medicines/preventative
measures become available, however, somatic investment (e.g., searching for
employment in order to afford medicine) can increase the survival probability
associated with malaria, thus making malaria an intrinsic cause of morality.
Theoretically, we expect access to malaria medicines/preventative measures will
lead to increases in a population’s LEB and thus alter the influence of mortality
from malaria on life-history strategies. Critically, a cause of mortality previously
associated with “faster” life-history strategies now cues the development of
“slower” strategies.

Previous studies examining the relationship between resources and life-
history strategies in humans have primarily focused on indirect proxies of
resource availability, such as participation in education/workforce, and their
associations with mortality (Bulled and Sosis 2010; Low et al. 2008; Wilson and
Daly 1997). Theoretically, investment in education and employment, by repre-
senting an increase in somatic investment, should coincide with delays in
reproduction and increases in LEB. Further, participation in education/workforce
should increase as population-mortality rates fall, thereby increasing the prob-
ability that future benefits of an education and employment will be accrued (Hill
and Kaplan 1999; Kaplan, Hill, Lancaster, and Hurtado 2000). Empirical support
for a relationship between investment in education/workforce and longer LEB
has found some support across cultures. Low et al. (2008) documented a
significant moderate-to-strong correlation between LEB and female secondary
school enrollment of (r � 0.405, P � 0.05). However, female participation in the
workforce did not have a significant correlation with LEB. This nonsignificant
effect may arise because a large majority of females in developing countries with
comparatively low LEB are employed in the agricultural sector (Low et al. 2008).
Bulled and Sosis (2010) documented a similar relationship with LEB displaying
a strong positive relationship with adult literacy rate (r � 0.699, P � 0.01),
overall school enrollment (r � 0.699, P � 0.01), secondary school enrollment
(r � 0.810, P � 0.01), and tertiary school enrollment (r � 0.676, P � 0.01).
However, a significant relationship did not exist between LEB and primary
school enrollment (r � 0.103, P � 0.05). The authors suggest this nonsignificant
effect indicates that a threshold of educational attainment must be reached (i.e.,
secondary) before effects on LEB are noticeable.

Predictions. The current article examines the trade-off between current and
future reproduction in 191 countries by testing two hypotheses about the onset
and frequency of female reproduction. Female fertility in the 15�19 cohort is
used as proxy for early reproduction. Frequency of reproduction in females is
represented by total fertility rates. Differences in adolescent and total fertility
rates across nations reflect variation in life-history strategies on the fast to slow
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spectrum, with earlier reproduction and higher rates indicating faster life-history
strategies and later reproduction and lower rates indicating slower strategies. The
first hypothesis tested is that causes of mortality with the greatest impact on
population mortality rates will have the largest impact on adolescent and total
fertility rates. Causes of mortality with the greatest impact on population
mortality rates include those that impact survival associated with younger age
cohorts, because mortality rates in younger cohorts have a greater relative impact
on LEB than in older cohorts. Mortality causes that preferentially impact younger
age cohorts, especially in children under five, are often communicable diseases
(e.g., HIV, malaria, pneumonia) (Leowski 1986; Lopez, Mathers, Ezzati,
Jamison, and Murray 2006; Sachs and Malaney 2002). Hence, we predict that
mortality attributable to communicable diseases accounts for more variance in
adolescent and total fertility rates than noncommunicable diseases. Beyond
differences in transmission, communicable diseases (e.g., malaria, tropical
cluster diseases) exhibit a larger impact on younger age cohorts, especially
infants, whereas many noncommunicable diseases (e.g., cancer, type 2 diabetes)
have greater impacts on older cohorts. Building upon this, the second hypothesis
tested is that resources with the greatest impact on the survival probabilities of
communicable diseases will have the greatest impact on adolescent and total
fertility rates. Resources affecting survival probabilities of communicable
diseases are those affecting transmission environments and the availability of
health care (e.g., medicine and preventative measures) (Watson, Gayer, and
Connolly 2007). Based on this reasoning, we predict resources affecting the
transmission environment and the availability of treatment and preventative
measures will have the largest impact on the survival probabilities associated
with communicable diseases.

Materials and Methods

Data Analysis. A PA approach was used to model the relationships between
resources, mortality parameters, and total fertility rates. PA is an extension of
multiple regression where regression is conducted over a set of variables. Results
of a PA, called “path coefficients,” reflect the magnitude and statistical
significance of the predicted relationships across the set of variables. PA has a
number of analytical strengths compared to the ordinary least squares (OLS)
regression techniques used in previous studies (e.g., Bulled and Sosis 2010; Low
et al. 2008; Wilson and Daly 1997). Most important among these is the ability to
correctly specify the form and complexity of life-history relationships, more
specifically the causal relationships predicted to operate between resources,
morality, and life-history strategies. Enabling this specification is the use of
mediator variables, which act as both dependent and independent variables. As
both dependent and independent variables, mediator variables allow for the
quantification of the indirect relationships, referred to as indirect effects, which
are predicted to exist between a set of variables (e.g., resources, mortality, and
fertility). Calculation of indirect effects allows for more nuanced tests of
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life-history predictions because the effect of resources on life-history strategies is
likely mediated through a resource’s prior impact on population mortality rates.
For example, access to clean water, while it may not directly impact adolescent
fertility rates, indirectly impacts these rates through prior direct effects on
mediator variables that do have direct effects on adolescent fertility rates, such as
population mortality rates. Indirect effects are calculated as the product of the
direct effects. Both direct and indirect effects are interpreted as standardized
regression coefficients.

Data Sources. Data used in the analysis was gathered from several online
databases at the UN Data portal (http://data.un.org) on 191 United Nations
countries. Resource variables represent data from years 1999�2003, causes of
mortality variables are taken from 2004, LEB from 2005, and fertility data from
2007. It would have been preferable to use resource variables collected in the
same year. However, since data for resources are not collected every year for
every country, it was not possible to find a year in which all resource variables
were collected. Data primarily are derived from civil registration records, and/or
surveys and censuses. Variable descriptions, labels, years, and data sources are
provided in Table 1.

Data Definitions. Fertility rate indicators included in the models were total
fertility rate and age-specific fertility for females 15 to 19 years old. Total
fertility rate (TFR) is the average number of births expected across a female’s
reproductive life-span if current age-specific fertility rates remained constant.
Age-specific fertility (ASF) is defined as the number of births per 1,000 women
in a given age range. Mortality rate indicators included in the model were life
expectancy at birth (LEB) and years lost to communicable (comm) and noncom-
municable diseases (noncomm). Years lost to communicable diseases reflect a
percentage of the distribution of years of life lost to communicable disease. Years
lost to noncommunicable disease are age-standardized mortality rates for
noncommunicable diseases. A complete list of the diseases included in the

Table 1. Variable Labels, Years, and Sources

Variable Label Year(s) Source

Total fertility rate TFR 2007 World Health Organization
Age-specific fertility 15�19 y.o. ASF 2007 World Development Indicator
Life-expectancy at birth LEB 2005 World Development Indicator
Years lost to communicable disease Comm 2004 World Health Organization
Years lost to noncommunicable disease Noncomm 2004 World Health Organization
Calories per capita Calorie 2000�2003 World Health Organization
Total healthcare expenditure Health 2000 World Health Organization
Female literacy rate Femlit 2000�2001 Gender Info
GINI GINI 1999�2003 Human Development Report
Access to clean water and sanitation Clean 2000 World Health Organization
Contraception-prevalence rate CPR 1999�2003 State of the World’s Children
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calculation of years lost to communicable and noncommunicable diseases can be
accessed at www.who.int. Resource indicators included in the model were access
to clean water and sanitation services (clean), total health-care expenditure
(health), calories per capita (calorie), GINI (GINI), adult female literacy (femlit),
and contraception prevalence rate (CPR). Access to clean water and sanitation is
a percentage reflecting the proportion of the population using improved drinking
water and sanitation facilities. Percentages of access to clean water and sanitation
were combined into a composite variable reflecting the proportion of the
population with access to both clean water and sanitation facilities. Total
expenditure on health care reflects the per capita expenditure from both
government and nongovernmental agencies on health-care services. Per capita
values are in US dollars and are based off the purchasing-power parity. Years lost
to communicable diseases reflect a percentage of the distribution of years of life
lost to communicable disease. The GINI coefficient is an indicator of income
inequality where a score of 0 indicates complete equality and 1 indicating
complete inequality in income. Data on adult female literacy rates reflect females
age 15 and above. Contraceptive prevalence rate includes both modern and
traditional methods.

All analyses were done in Mplus (version 6.1; Muthén and Muthén 2010)
and Stata (version 11; StataCorp 2009). As a previous study by Quinlan (2010)
documented a quadratic relationship between mortality and age at first birth,
quadratic effects between mortality parameters (i.e., LEB and mortality causes)
and fertility parameters (i.e., adolescent and total fertility) were modeled but
were not significant. Likewise, the potential for interaction effects among
resource variables was tested but did not result in a better fitting model. Several
variables were missing data from a few countries. A benefit of Mplus is that it
uses a full-information maximum likelihood estimator which uses all available
data, (i.e., N � total sample size), including cases with missing data (Brown
2006). Although the amount of missing data was small, a description of the
missing data is provided in covariance coverage matrices in Appendix C. Due to
significant levels of skewness and kurtosis in some variables (see Table 2), a
maximum likelihood estimator with robust standard errors (MLR) was used.
Correlations among the variables are provided in Table 3.

Results

Model Fit. MLR estimation converged on an admissible solution for both path
models. Global and localized fit indices indicate both models displayed good
overall fit (see Table 4). Model chi-squares were nonsignificant, model 1: X2

M �
17.62 (P � 0.309, dfM � 15), model 2: X2

M � 3.90 (P � 0.79, dfM � 7), and so
the exact-fit hypothesis, (i.e., no discrepancies between population and model
predicted matrix) cannot be rejected (Kline 2010). The Standardized Root Mean
Square Residual (SRMR) value, which can be conceptualized as the average
discrepancy between the correlations in the matrix of observed values and those
in the model predicted matrix, was below the suggested 0.08 value for both
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models (Brown 2006). For model 2, the Root Mean Square Error of Approxi-
mation (RMSEA) and the associated 90% C.I. were below the suggested .06
cut-off criteria (Hu and Bentler 1999). For model 1, the upper level of the 90%
C.I. for the RMSEA was above the suggested 0.06 cut-off criteria but still below
0.08, which is consistent with a mediocre model fit (MacCallum, Browne, and
Sugawara 1996). Hu and Bentler (1999), however, note that the RMSEA test
tends to over-reject models with small sample sizes, which characterizes the
current sample (n � 191). Evaluation of model fit through comparative fit
indices, which compare the model to a more restricted or “parsimonious” model,
provides further evidence of good fit for both path models. Both the Comparative
Fit Index (CFI) and the Tucker Lewis Index (TLI) values were above the
suggested 0.95 cut-off criteria (Hu and Bentler 1999).

Localized fit indices indicated good overall fit for both path models. For
model 2, inspection of modification indices (MI), which indicate the increase in
model X2, revealed no areas of localized ill-fit. Inspection of the MI for model 1
revealed no areas of ill-fit with the exception of two parameters, a direct path
between ASF and clean (MI � 4.545) and a correlation between femlit and LEB

Table 2. Variable Parametersa

Variable M Min�max SD Skew Kurtosis

TFR 2.94 1.2�7.2 1.53 1.05 3.24
ASF 53.14 3.16�201.41 43.58 0.98 3.13
LEB 66.7 41.21�82.10 10.65 �0.73 2.41
Comm 37.40 31�87 28.08 0.42 1.73
Noncomm 681.46 284�1309 200.29 0.00 2.58
Calorie 2689.78 1557�3814 505.83 0.16 2.39
Health 631.67 1�4570 879.29 2.05* 7.02*
Femlit 78.29 12.6�99.9 24.41 �1.07 2.97
GINI 40.86 24.7�74.3 9.42 0.50 2.99
Clean 74.63 18�100 23.84 �0.59 2.06
CPR 47.39 3�96 22.49 �0.13 2.00

See Table 1 for explanation of variable label. * Significant at P � 0.05.

Table 3. Variable Correlationsa

TFR ASF LEB Comm Noncomm Calorie Health Clean GINI Femlit CPR

TFR 1
ASF 0.783 1
LEB �0.781 �0.717 1
Comm 0.822 0.745 �0.917 1
Noncomm 0.578 0.450 �0.713 0.592 1
Calorie �0.607 �0.599 0.722 �0.733 0.623 1
Health �0.454 �0.466 0.602 �0.601 0.672 0.703 1
Clean �0.728 0.718 0.836 �0.834 �0.572 0.661 0.538 1
GINI 0.276 0.431 �0.345 0.427 0.120 �0.361 �0.372 �0.288 1
Femlit �0.735 �0.634 0.690 �0.752 �0.509 0.499 0.463 0.755 �0.184 1
CPR �0.754 �0.510 0.697 �0.698 �0.576 0.533 0.444 0.677 �0.116 0.705 1

aSee Table 1 for explanation of variable label.

Resources, Mortality, and Fertility / 109



(MI � 4.635). Inclusion of a direct path from ASF to clean and a correlation
between femlit and LEB were not significant (P � 0.05) and so were not included
in the model. Further evidence of good localized fit was displayed in the
standardized residuals, which reflect how well the variances and covariance
matrix produced by the model parameters fit the observed variance and
covariance matrix. Standardized residuals, which are interpreted as z-scores, can
be conceived as the number of standard deviations by which the predicted
residuals differ from zero-value residuals that would result from a perfectly
fitting model (Brown 2006). For model 2, no residuals above the 2.58
significance level were present. For model 1, the sole standardized residual above
the 2.58 significance level was a negative residual (�2.78) between noncomm
and ASF. As this residual is negative, it indicates that the model parameters
overestimate the observed relationship between noncomm and ASF. Although
significant, this residual is not an outlying value, which may have been indicative
of serious model misspecification, as other residuals are close to the 2.58 cut-off
point (Brown 2006).

Model Interpretation. Path diagrams representing the predicted relationship
between resources, mortality, and fertility are presented in Figures 1 and 2. These
figures can be conceptualized as the graphical equivalent of a set of regression
equations that relate the dependent and predictor variables (Byrne 2012). Each
path tested is indicated by a straight line with a single-headed arrow, which
points in the proposed direction of causality. Path coefficients (i.e., the number
immediately above or below the single-headed arrow) are standardized and are
interpreted as the expected change in SD units of the dependent variable given a
1.00 SD change in the predictor variable, controlling for the direct effects of other
variables. The curved double-headed arrows on the left side of the model indicate
correlations between pairs of predictor variables. The strength of the correlation
between two variables is indicated by the number within the curved double-
headed arrow connecting those two variables. The number inside the circles
adjacent to each dependent variable indicates the residual variance associated
with that dependent variable.

Interpretation of the path coefficients will follow the predicted relation-
ships between resources, mortality, and fertility rates. Predictors of mortality

Table 4. Global Fit Indices for Model 1 and Model 2

Model 1 Model 2

Index Values Values

�2
M 17.17 3.90

dfM 15 7
P 0.309 0.791
RMSEA (90% C.I.) 0.027 (0.000�0.076) 0.00 (0.000�0.058)
CFI 0.998 1.00
TLI 0.995 1.01
SRMR 0.015 0.009
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Figure 1. Model 1. Numbers associated with single-headed arrows are standardized path coefficients.
Numbers associated with curved double-headed arrows are correlations. Numbers within
circles are the residuals associated with a dependent variable. All path coefficients are
significant at the P � 0.05 level.

Figure 2. Model 2. Numbers associated with single-headed arrows are standardized path coefficients.
Numbers associated with curved double-headed arrows are correlations. Numbers within
circles are the residuals associated with a dependent variable. All path coefficients are
significant at the P � 0.05 level with the exception of the path between total fertility rate and
adult-female literacy rate, which was approaching significance at P � 0.077.
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causes will be discussed first followed by predictors of LEB (for model 1), and
finally predictors of adolescent and total fertility. Direct effects on a dependent
variable are discussed before discussion of the indirect effects (see Data Analysis
section for explanation of direct and indirect effects). Standardized path
coefficients predicting years lost to communicable diseases, LEB, and adolescent
and total fertility rates are translated into original metrics. Adolescent fertility
rates are rounded up to the next birth.

Results: Model 1

Mortality Causes. Resource variables accounted for 84% of the variance in
years lost to communicable disease and 59% of the variance in years lost to
noncommunicable disease (see Table 5). Access to clean water and sanitation
services had a strong effect on years lost to communicable diseases with an SD
increase predicting a 13.7 decrease in years lost controlling for other resources.
Remaining resource variables (i.e., calories, GINI, CPR, femlit) exhibited similar
effects with SD increases resulting in an approximate 4-year decrease in years
lost to communicable disease (see Table 4). The sole exception to this trend was
total health-care expenditure, which did not account for a significant portion of
variance in years lost to communicable diseases (P � 0.05). Total health-care
expenditure, however, exhibited the strongest effect on years lost to noncommu-
nicable diseases, with an SD increase, resulting in a �0.45 SD decrease in years
lost. Calories per capita and contraception use had similar impacts on years lost
to noncommunicable diseases with SD increases predicting an approximate 0.25
SD decrease. GINI exhibited the smallest effect with an SD increase (more
inequality) resulting in a 0.16 SD decrease in years lost to noncommunicable
diseases.

Life-Expectancy at Birth. Summed across direct and indirect effects,
resource variables and mortality causes accounted for 89% of the variance in
LEB (see Table 5). Significant direct effects on LEB were produced through total
health-care expenditure and years lost to communicable and noncommunicable
diseases. SD increases in years lost to communicable and nonommunicable
diseases predicted an 8.40-year and a 3.16- year decrease in LEB, respectively.
Total health-care expenditure exhibited the smallest direct effect on LEB
predicting a 0.75-year decrease. Remaining resource variables had indirect
effects on LEB through prior direct effects on years lost to communicable and/or
noncommunicable diseases. Access to clean water and sanitation services
exhibited the largest indirect effect on LEB with an SD increase, predicting a
4.10-year increase in LEB. SD increases in other resource variables had similar
but smaller impacts on LEB with calories per capita and contraception preva-
lence rate, predicting an approximate 2-year increase and total health-care
expenditure an approximate 1-year increase in LEB.
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Adolescent Fertility Rates. The final model accounted for 60% of the
variance in adolescent fertility rates (see Table 5). Variables with a direct effect
on adolescent fertility rates were LEB, the GINI coefficient, and adult-female
literacy rates. LEB had the strongest direct effect on adolescent fertility rates with
every SD increase associated with a 19-birth decrease per 1,000 adolescent
women. The GINI coefficient and adult-female literacy rate also had indirect
effects on adolescent fertility rate through prior direct effects on years lost to
communicable and/or noncommunicable diseases. Summed across both direct

Table 5. Model 1, Effect Decomposition Tablea

Dependent

COMM NONCOMM LEB ASF

LEB
Direct Effects �0.436
Indirect Effects
Total Effects �0.436

Years lost communicable
Direct Effects �0.789
Total Indirect Effects 0.344
Total Effects �0.789 0.344

Years lost noncommunicable
Direct Effects �0.297
Indirect Effects 0.130
Total Effects �0.297 0.130

Calories per capita
Direct Effects �0.184 �0.234
Indirect Effects 0.215 �0.094
Total Effects �0.184 �0.234 0.215 �0.094

Total health expenditure
Direct Effects �0.445 �0.071
Indirect Effects 0.132 �0.027
Total Effects �0.445 0.061 �0.027

Clean water and sanitation
Direct Effects �0.488
Indirect Effects 0.385 �0.168
Total Effects �0.488 0.385 �0.168

GINI (Income Inequality)
Direct Effects 0.174 �0.157 0.228
Indirect Effects �0.090 0.039
Total Effects 0.174 �0.157 �0.090 0.287

Adult-female literacy rate
Direct Effects �0.136 �0.291
Indirect Effects 0.108 �0.047
Total Effects �0.136 0.108 �0.338

Contraception prevalence
Direct Effects �0.144 �0.275
Indirect Effects 0.196 �0.085
Total Effects �0.144 �0.275 0.196 �0.085

aBolded numbers are the total effects of a variable. See Table 1 for explanation of variable label.
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and indirect effects, SD increases in female literacy rates and GINI predicted 15-
and 12-birth decreases, respectively. The impacts of mortality causes (i.e.,
communicable and noncommunicable diseases) on adolescent fertility were
completely mediated through prior direct effects on LEB. An SD increase in
years lost to communicable diseases predicted a 15-birth decrease while a smaller
indirect effect was produced by years lost to noncommunicable disease with an
SD increase predicting a 6-birth decrease. All resource variables had an indirect
effect on adolescent fertility rates. The strongest indirect effect on adolescent
fertility rate was produced through access to clean water and sanitation with an
SD increase predicting a 7-birth decrease. Calories per capita and contraception
prevalence rate predicted approximately a 4-birth decrease, respectively. Total
health-care expenditure had the smallest effect on adolescent fertility rates,
predicting a 3-birth decrease.

Results: Model 2

Mortality Causes. Resource variables accounted for 82% of the variance in
years lost to communicable and 58% of the variance in years lost to noncom-
municable disease (see Table 6). In general, both the pattern and magnitude of
relationships found between resources and mortality causes were similar to
model 1. Access to clean water and sanitation services had the strongest direct
effect on years lost to communicable diseases with an SD increase predicting a
9.6-decrease in years lost, controlling for the direct effect of other resources.
Calories per capita and adult-female literacy rates had a smaller but similar direct
effect with SD increases, resulting in an approximate 6-year decrease in years
lost to communicable disease. Income inequality and contraception prevalence
rates exhibited the smallest direct effects with an SD increase in each, predicting a
5.1-year increase and a 4.3-year decrease in years lost to communicable diseases,
respectively. Like model 1, the sole resource variable without a significant direct
effect on years lost to communicable diseases was total health-care expenditure.
Total health-care expenditure, however, exhibited the strongest effect on years lost to
noncommunicable diseases with an SD increase, resulting in an �0.46 SD decrease
in years lost. Contraception prevalence rate had the second-largest direct effect with
an SD increase, predicting an �0.281 SD decrease in years lost to noncommunicable
disease. Calories per capita exhibited the third-largest effect on years lost with an SD
increase, predicting an �0.210 SD decrease. Income inequality exhibited the
smallest direct effect on years lost to noncommunicable diseases with an SD
increase, predicting an �0.156 SD decrease.

Life-expectancy at birth was not included in model 2 as its effect on total
fertility rate was completely mediated by years lost to communicable and
noncommunicable disease. Additionally, its inclusion did not improve the global
or local fit of model 2. Due to the absence of LEB, both years lost to
communicable and noncommunicable diseases had direct effects on TFR.

114 / CAUDELL AND QUINLAN



Total Fertility Rates. The final model accounted for 76% of the variance in
total fertility rates across 191 nations (see Table 6). Again, both the pattern and
magnitude of relationships found between predictor variables and fertility were
consistent with results from model 1. Variables with a direct effect on total
fertility rates were the mortality variables of years lost to communicable and
noncommunicable disease and the resource variables of total health-care expen-
diture, contraception-prevalence rate, and adult-female literacy rate. Across all
variables, years lost to communicable disease had the largest impact with an SD
increase, predicting a 0.82-year increase in fertility across the reproductive
life-span. Contraception-prevalence rate exhibited the second-largest direct effect
with an SD increase, predicting a 0.41-year decrease in TFR. The direct effect of
adult-female literacy, which was approaching significance (P � 0.077), predicted

Table 6. Model 2, Effect Decomposition Tablea

Dependent

COMM NONCOMM TFR

Years lost to communicable disease
Direct Effects 0.537
Total Indirect Effects
Total Effects 0.537

Years lost to noncommunicable disease
Direct Effects 0.125
Indirect Effects
Total Effects 0.125

Calories per capita
Direct Effects �0.244 �0.210
Indirect Effects �0.158
Total Effects �0.244 �0.210 �0.158

Total healthcare expenditure
Direct Effects �0.457 0.136
Indirect Effects �0.057
Total Effects �0.457 0.079

Clean water and sanitation
Direct Effects �0.342
Indirect Effects �0.184
Total Effects �0.342 �0.184

GINI (Income Inequality)
Direct Effects �0.180 �0.156
Indirect Effects 0.077
Total Effects �0.180 �0.156 0.077

Adult-female literacy rate
Direct Effects �0.229 �0.141
Indirect Effects �0.123
Total Effects �0.229 �0.264

Contraception prevalence
Direct Effects �0.154 �0.281 �0.269
Indirect Effects �0.083
Total Effects �0.154 �0.281 �0.352

aBolded numbers are the total effects of a variable. See Table 1 for explanation of variable label.
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a 0.22-year decrease in TFR for every SD increase. The effect of total health-care
expenditure was of similar magnitude but in the opposing direction with an SD
increase, predicting a 0.21-year increase in TFR. Years lost to noncommunicable
disease had the smallest direct effect on TFR, with an SD increase, predicting a
0.19-year increase in fertility.

All resource variables, including those with direct effects, had indirect
effects on TFR. Indirect effects were produced through a resources prior direct
effect on years lost to communicable and/or noncommunicable diseases. Like
model 1, the largest indirect effect on total fertility rate was exhibited by access
to clean water and sanitation services with an SD increase, predicting a 0.28-year
decrease in TFR. Calories per capita had the second-largest indirect effect with an SD
increase, predicting a 0.24-year decrease in TFR. An SD increase in adult-female
literacy rates predicted a 0.19-year decrease in TFR. The indirect effects of
contraception prevalence rate and income inequality were similar in magnitude but
in the opposing direction with an SD increase, predicting a 0.13-year decrease and a
0.12-year increase, respectively. Total health-care expenditure had the smallest
indirect effect on total fertility rates with an SD increase predicting a 0.09-year
decrease in fertility across the female reproductive life-span.

Discussion

By modeling the impact of resources on the risk environment, path analysis
allows us to begin partitioning mortality into extrinsic and intrinsic
components—a crucial next step in human life-history research. Results from
both path models provide strong support for theoretical predictions and largely
concur with results of previous studies. Higher population-mortality rates, as
reflected by lower life-expectancy at birth (model 1) and greater years lost to
communicable and noncommunicable diseases (model 2), are associated with
“faster” life-history strategies, as indicated by higher adolescent and total fertility
rates. For example, as indicated by model 1, every year decrease in LEB predicts
two more births per 1,000 adolescent females Numerous studies have docu-
mented this relationship between mortality and fertility; however, the current
study models how the availability of resources, through prior impacts on
mortality, ultimately affect the timing and frequency of reproduction in humans.
In particular, the use of a PA approach enables the test of whether decreases in
resources, by mediating an individual’s ability to cope with mortality causes, lead
to faster reproductive strategies. Both models supported this relationship. In
model 1, an SD decrease in all resources, including access to education, health
care, clean water and sanitation, calories, contraception and income equality (i.e.,
GINI), predicted an SD increase in adolescent fertility (SD � 44 births/1000
females). Similarly, in model 2, an SD decrease in access to education, clean
water and sanitation, calories, and income equality combined to predict 1.58
more births across the female reproductive life-span, slightly more than an SD.
While both path models generate a more nuanced representation of the
relationship between resources and fertility rates, they also allow for the
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quantification of the relative impacts associated with each resource. A resource’s
relative impact is calculated by division of the standardized total effects (see
Tables 5 and 6). In model 1, for example, division of the total effects of female
literacy (�0.388) and total health-care expenditure (�0.027) on adolescent
fertility reveals that female literacy has a 14- times greater impact on adolescent
fertility rates.

In support of the first hypothesis, model 1 clearly demonstrated that
mortality causes accounting for the most variance in population mortality rates
account for the most variance in adolescent fertility rates. Results of both models
also support the predicted role of communicable diseases. Indeed, communicable
diseases account for more of the variance in both LEB and both indicators
fertility rates. Model 1 indicates that every SD increase in years lost to
communicable disease exhibited an almost 3-times greater impact on LEB (8.40
years) compared to noncommunicable diseases (3.16 years). Model 2 also shows
that communicable diseases account for more variance in total fertility rates.

Results of both models also supported the second hypothesis: Resources
impacting the survival probabilities of communicable diseases—by impacting
transmission, prevention, and treatment—have stronger effects on fertility than
resources impacting survival probabilities of noncommunicable diseases. Access
to clean water and sanitation showed the largest indirect effect of any resource
variable on both adolescent. Contraception-prevalence rate had the third-largest
indirect effect of all resource variables on adolescent fertility rates. Adult-female
literacy rates, which exhibited the third-largest indirect effect on total fertility in
model 2, indirectly impact the disease transmission environment as literate
females may be more educated in disease prevention (e.g., sex education).

Our results, in general, concur with predictions from LHT and previous
studies. However, a few predicted relationships were not found. In both models
total health-care expenditure did not have a significant impact on years lost to
communicable disease. This finding may indicate that total health-care expen-
diture is not a strong indicator of access to health services that specifically target
communicable diseases, or a majority of health-care funds are allocated to the
treatment of noncommunicable diseases. In the majority of developed nations,
communicable diseases with the potentially greatest impact on life-expectancy
(i.e., diseases that affect childhood mortality) have either been eradicated through
large-scale immunization programs (e.g., typhoid, cholera, and tuberculosis) or
by tactics and infrastructure improvements that decrease transmission rates (e.g.,
mosquito-prevention programs). As a result of these measures, the mortality rates
in developed countries are less impacted by communicable diseases (World
Health Organization 2009). Because the extension of adult-life expectancy
increases age-related noncommunicable diseases (e.g., cancer and heart disease)
that are expensive to treat (Narayan, Ali, and Koplan 2010), the strong
relationship between total health-care expenditure and noncommunicable dis-
eases in developed countries may disguise the effect of total health-care
expenditure on communicable diseases in developing countries. Alternatively,
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health-care funding in developing countries may not produce a significant decrease in
mortality from communicable diseases for many years. This reasoning may partly explain
the unexpected result in model 2 where total health-care expenditure predicted an increase
in total fertility rates. Future studies should incorporate indicators of health-care funding
with direct relationships to communicable diseases (e.g., access to immunization
programs and STI prevention education).

Some resources, including adult-female literacy rate, contraception-
prevalence rate and income inequality, affect fertility rates largely outside the
context of mortality. Female literacy and income inequality produced the
smallest indirect effects on LEB in model 1, but were the only resource variables
with direct effects on adolescent fertility. As such the effects of education and
income inequality on LEB may need to be more closely evaluated. Another
possibility may be that a threshold level of education must be reached before
effects on LEB are statistically noticeable (Bulled and Sosis 2010). More difficult
to explain is the weak effect of income inequality on LEB. The likely
consequences of income inequality on access to health care and overall standard
of living suggest that variation in population LEB should be intimately tied with
the GINI coefficient. However, inequality may interact with other variables in
complex ways not detectable in a global comparison.

In summary, on a global scale, resources influence life-history largely through
their impact on communicable diseases. However, in populations where disease
burdens have been substantially reduced, then other indicators of extrinsic and
intrinsic risk come into play. A promising line of research indicates that in healthy
populations psychosocial stress apparently tunes life-history development in ways
similar to mortality in less developed populations (Chisholm and Coall 2008).

Conclusion

Data from 191 countries were used to test two hypotheses operating as separate
links in the causal chain from resources to fertility rates. Results of two path models
confirm that resources with the greatest impact on the survival associated with
communicable diseases have the greatest impact on the timing and frequency of
reproduction. A PA approach generates a more nuanced representation of the direct
and indirect relationships operating between resources and reproductive behavior.
This approach suggests that some environmental factors, such as communicable
versus noncommunicable disease, appear to have effects more like extrinsic risks
versus intrinsic risks. While this study does not entirely resolve important issues in
isolating mortality sources, it does improve our understanding of how local
conditions’ influence life-history strategies. Hence, this approach may prove useful
in new theory development and in population planning.
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Appendix

Appendix A. Relationships between Indicators of Fertility

Table 7. Correlations among Fertility Rates (asf) at Every Age Cohort and Total
Fertility Rate (TFR)a

asf15_19 asf20_24 asf25_29 asf30_34 asf35_39 asf40_44 asf45_49 TFR

asf15_19 1
asf20_24 0.85 1
asf25_29 0.68 0.89 1
asf30_34 0.62 0.78 0.96 1
asf35_39 0.63 0.80 0.93 0.98 1
asf40_44 0.65 0.80 0.89 0.93 0.97 1
asf45_49 0.54 0.70 0.79 0.81 0.86 0.90 1
TFR 0.78 0.92 0.96 0.95 0.95 0.94 0.84 1

aCorrelations are calculated from raw values.
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Appendix B. Relationships between Variables and Population Size of
Country

Appendix C. Proportion of Data Present

Table 8. Correlations between Country Population Size and Variables. Across All
Variables Only Contraception Prevalence Rate Has a Significant Correlation with
Population Size (r � 0.172 P � 0.05)a

TFR Comm Noncomm Calorie Health Clean GINI CPR Femlit

population �0.052 �0.005 �0.024 0.057 �0.027 �0.028 0.091 0.172* �0.049

aCorrelations are calculated from raw values. See Table 1 for explanation of variable label.

Table 9. Covariance Coverage Matrix for Model 1 Indicates the Proportion of Raw
Data Present for Each Variable and Pairs of Variables Prior to Estimationa

ASF LEB Comm Noncomm Calorie Health Clean GINI CPR Femlit

ASF 0.921
LEB 0.916 0.921
Comm 0.916 0.916 0.995
Noncomm 0.916 0.916 0.995 0.995
Calorie 0.859 0.859 0.885 0.885 0.890
Health 0.901 0.901 0.974 0.974 0.874 0.979
Clean 0.874 0.874 0.932 0.932 0.853 0.921 0.937
GINI 0.874 0.874 0.901 0.901 0.848 0.890 0.864 0.906
Femlit 0.895 0.890 0.916 0.916 0.848 0.901 0.869 0.869 0.921
CPR 0.796 0.801 0.848 0.848 0.775 0.832 0.806 0.785 0.785 0.853

aSee Table 1 for Description of Variable Label.

Table 10. Covariance Coverage Matrix for Model 2 Indicates the Proportion of Raw
Data Present for Each Variable and Pairs of Variables Prior to Estimationa

TFR Comm Noncomm Calorie Health Clean GINI CPR Femlit

TFR 1.000
Comm 0.995 0.995
Noncomm 0.995 0.995 0.995
Calorie 0.885 0.880 0.880 0.885
Health 0.979 0.974 0.974 0.869 0.979
Cleansani 0.937 0.932 0.932 0.848 0.921 0.937
GINI 0.906 0.901 0.901 0.843 0.890 0.864 0.906
CPR 0.853 0.848 0.848 0.775 0.832 0.806 0.785 0.853
Femlit 0.927 0.916 0.921 0.848 0.901 0.874 0.874 0.791 0.927

aSee Table 1 for description of variable label.
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Appendix D. Raw Data

Table 11. Raw Dataa

Country TFR ASF LEB Comm Noncomm Cal CS Femlit GINI Health CPR

Afghanistan 7.1 125 43 77 1,309 � 25.5 12.6 60 91 10
Albania 2.1 14 76 12 752 2,875 93 98.3 33 239 60
Algeria 2.4 8 72 43 565 2,928 90.5 60.1 35.3 188 61
Andorra 1.3 � � 7 373 � 100 99.9 � 1,905 �

Angola 6.5 127 46 81 1,071 1,902 42 54.2 58.6 56 6
Antigua and Barbuda 2.1 � � 17 674 2,378 93 � 57.3 599 53
Argentina 2.3 58 75 18 515 3,180 92.5 97.2 50 814 �

Armenia 1.4 36 73 13 1,064 2,006 91 99.2 33.8 130 53
Australia 1.8 15 80 6 355 3,110 100 99 35.2 2,271 �

Austria 1.4 13 79 4 409 3,794 100 99.9 29.1 2,858 51
Azerbaijan 1.8 34 67 37 856 2,387 78 98.2 36.5 104 51
Bahamas 2 54 72 36 509 2,736 98.5 96.5 57 1,361 �

Bahrain 2.3 17 75 12 678 � � 83.6 � 820 62
Bangladesh 2.9 76 65 61 730 2,158 55.5 41.4 33.4 27 56
Barbados 1.5 43 76 22 531 2,946 100 99.7 39 916 55
Belarus 1.2 22 69 5 854 2,895 96 99.4 29.7 328 73
Belgium 1.6 8 79 5 437 3,695 100 99 33 2,519 78
Belize 3 81 76 33 677 2,867 69 77.1 51 229 34
Benin 5.5 113 60 78 835 2,537 44 23.3 36.5 50 17
Bhutan 2.2 43 65 57 708 � 66.5 34 46.8 132 35
Bolivia 3.5 79 65 54 765 2,228 60.5 80.7 58.2 282 61
Bosnia and Herzegovina 1.2 17 75 6 670 2,723 96.5 94.4 26.2 282 36
Botswana 2.9 54 49 84 594 2,256 70 81.8 61 374 48
Brazil 2.3 78 72 30 625 3,002 81.5 88.8 55 506 81
Brunei Darussalam 2.3 26 77 16 473 2,758 � 90.2 � 1,036 �

Bulgaria 1.3 43 73 5 733 2,544 99 97.7 29.2 377 86
Burkina Faso 6 132 52 82 924 2,439 32.5 15.2 39.6 41 17
Burundi 6.8 21 49 80 919 1,604 56.5 52.2 42.4 12 9
Cambodia 3.2 41 58 67 832 2,011 27 64.1 40.7 51 40
Cameroon 4.4 129 50 78 840 2,254 55 59.8 44.6 75 29
Canada 1.5 13 80 6 374 3,178 100 99 32.6 2,514 75
Cape Verde 3.4 96 70 53 591 3,286 60.5 69.2 50.5 97 61
Central African Republic 4.6 110 44 78 868 1,968 42.5 33.5 43.6 25 19
Chad 6.2 169 51 82 910 2,083 20.5 12.8 39.8 49 3
Chile 1.9 60 78 10 458 2,867 92 95.6 54.9 572 58
China 1.7 10 73 20 627 2,979 69.5 86.5 46.9 109 85
Colombia 2.2 79 72 22 483 2,576 82.5 90.7 58.5 370 78
Comoros 4.4 47 64 66 713 1,764 58.5 49.3 64.3 21 26
Congo 4.5 207 53 79 716 2,236 45 78.4 47.3 56 44
Cook Islands 2.6 � � 29 570 � 97.5 � � 436 44
Costa Rica 2.1 69 79 14 439 2,749 96.5 95.1 49.8 467 96
Côte d’Ivoire 4.5 131 57 74 559 2,588 48.5 38.6 44.6 84 13
Croatia 1.3 14 75 5 578 2,597 99 97.1 29 839 �

Cuba 1.5 46 78 9 437 2,614 94.5 99.8 40 353 77
Cyprus 1.6 7 79 9 412 3,283 100 96.3 29 1,973 .
Czech Republic 1.2 11 76 4 559 3,028 99.5 99 25.8 980 69
Dem. People’s Rep. of

Korea

1.9 � 67 40 642 2,165 79.5 � 31 1 81

Dem. Rep. of the Congo 6.7 � 46 81 921 1,557 35 74.9 44.4 8 21
Denmark 1.8 6 78 4 495 3,443 100 99.9 24.7 2379 �

Djibouti 4 24 54 72 862 2,182 74 58.4 40 90 23
Dominica 2.1 � � 20 580 2,991 90 94 49 387 50
Dominican Republic 2.8 109 72 40 794 2,319 83 87.2 50 333 73
Ecuador 2.6 83 75 34 484 2,726 84 89.7 54.4 202 73
Egypt 2.9 41 70 31 891 3,376 79 59.4 34.4 208 60
El Salvador 2.7 85 71 37 518 2,470 80.5 77.7 52.4 351 73
Equatorial Guinea 5.4 124 50 78 938 � 47 80.5 39 160 �

Eritrea 5.1 70 57 73 686 1,669 29 47.6 � 33 8
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Table 11. (continued)

Country TFR ASF LEB Comm Noncomm Cal CS Femlit GINI Health CPR

Estonia 1.5 22 73 5 664 2,946 97.5 99.8 36 521 70
Ethiopia 5.3 105 54 82 817 1,887 18 35.1 29.8 19 15
Fiji 2.8 34 68 24 767 2,778 58.5 91.9 50 160 35
Finland 1.8 12 79 4 405 3,169 100 99.9 26.9 1,794 �

France 1.9 7 80 6 387 3,597 100 99 32.7 2,542 75
Gabon 3.1 93 60 68 716 2,585 60.5 53.3 41.5 552 33
Gambia 4.8 92 55 72 830 2,273 67.5 32.8 50.2 39 18
Georgia 1.4 45 71 25 554 2,236 90 99.9 40.8 153 47
Germany 1.4 8 79 5 429 3,506 100 99 28.3 2,670 75
Ghana 3.9 66 57 73 699 2,613 40.5 49.8 40.8 65 24
Greece 1.3 9 79 4 436 3,738 98.5 94.2 34.3 1,449 �

Grenada 2.3 44 68 26 827 2,758 95.5 � 45 388 54
Guatemala 4.2 109 70 51 515 2,148 85.5 63.3 53.7 217 43
Guinea 5.5 155 56 77 844 2,320 38.5 18.1 43.3 47 9
Guinea-Bissau 7.1 129 47 83 925 2,486 44 27.4 35.5 34 10
Guyana 2.3 64 66 41 835 2,639 85.5 98.5 43.2 116 34
Haiti 3.6 48 60 67 740 2,046 40 51.2 59.5 61 32
Honduras 3.3 95 70 47 761 2,394 69 80.2 53.8 138 65
Hungary 1.3 21 73 3 693 3,552 99.5 99.3 26.9 852 77
Iceland 2 16 81 4 375 3,214 100 99 25 2738 �

India 2.8 70 64 56 713 2,489 52.5 47.8 36.8 63 56
Indonesia 2.2 41 70 31 690 2,913 64.5 86.8 34.3 37 61
Iran (Islamic Republic of) 2 20 70 28 687 2,935 88.5 70.4 43 387 79
Iraq 4.3 82 68 42 1,018 � 76 64.2 42 84 50
Ireland 2 17 79 7 459 3,701 100 99 34.3 1,950 �

Israel 2.8 15 80 9 368 3,510 100 95.9 39.2 1,845 �

Italy 1.4 5 80 5 372 3,663 100 98 36 2,061 60
Jamaica 2.5 79 72 35 605 2,686 88 91.6 45.5 313 69
Japan 1.3 5 82 8 284 2,753 100 99 38.1 1,967 56
Jordan 3.1 25 72 29 711 2,732 93.5 84.7 37.7 302 57
Kazakhstan 2.3 30 66 25 1,145 2,386 96.5 99.3 33.9 198 51
Kenya 5 104 53 82 729 2,037 46 79.7 42.5 51 39
Kiribati 4.1 � 61 42 730 2,910 46 � � 154 22
Kuwait 2.2 13 78 13 454 3,151 � 91 30 903 50
Kyrgyzstan 2.5 32 68 35 1,012 2,877 87.5 98.1 32.9 62 48
Lao People’s Dem. Republic 3.2 40 64 62 828 2,303 34 60.9 34.6 41 38
Latvia 1.3 15 71 5 710 2,720 88.5 99.8 35.7 456 48
Lebanon 2.2 17 72 20 715 3,151 99 82.2 45 801 58
Lesotho 3.4 77 43 86 581 2,304 55.5 94.5 52.6 65 37
Liberia 6.8 142 57 84 931 2,176 47.5 41.6 � 14 11
Libyan Arab Jamahiriya 2.8 3 74 29 654 3,324 84 72 35.8 385 45
Lithuania 1.3 23 71 5 635 3,293 � 99.6 36 543 47
Luxembourg 1.7 13 79 7 419 � 100 99.9 26 3,137 �

Madagascar 4.8 136 59 74 799 2,138 28 62.5 47.5 21 27
Malawi 5.6 140 47 87 796 2,166 59 49.8 37.9 38 41
Malaysia 2.6 13 74 28 623 2,917 96 85.4 49.2 289 55
Maldives 2.6 14 67 35 953 2,552 72.5 96.4 39 170 39
Mali 6.5 163 53 83 967 2,358 46.5 39.6 40.1 52 8
Malta 1.4 12 80 6 433 3,543 � 93.6 28 2,864 �

Marshall Islands 3.8 � � 34 961 � 84.5 93.7 � 580 45
Mauritania 4.4 91 63 73 812 2,762 36 43.4 39 40 9
Mauritius 1.9 39 72 10 731 2,989 97 80.5 48.1 302 76
Mexico 2.2 66 74 25 501 3,154 84.5 89.6 46.1 507 71
Micronesia (Fed. States of) 3.8 27 68 32 682 � 59 � � 216 �

Monaco 1.8 � � 7 321 � � 99 33 4,377 �

Mongolia 1.9 15 66 32 923 2,084 58 97.5 32.8 108 66
Morocco 1.8 19 71 39 655 2,966 72.5 39.6 39.5 109 63
Mozambique 2.4 155 43 81 777 1,939 34 32.7 47.3 21 16
Myanmar 5.2 19 61 56 775 2,806 65 � 40 11 34
Namibia 2.1 76 52 82 513 2,743 56.5 83.5 74.3 243 55
Nauru 3.2 � � 24 1,093 � � � � 940 36
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Table 11. (continued)

Country TFR ASF LEB Comm Noncomm Cal CS Femlit GINI Health CPR

Nepal 3 104 63 60 769 2,446 51.5 34.9 47.3 40 48
Netherlands 3.3 4 79 6 425 3,336 100 99 30.9 2,337 79
New Zealand 1.7 23 80 5 398 3,211 100 99 36.2 1,686 75
Nicaragua 2 114 72 39 705 2,223 61.5 67.8 43.1 133 72
Niger 2.8 169 56 86 1030 2,121 23 15.1 43.9 16 11
Nigeria 7.2 127 47 81 909 2,743 38.5 60.6 43.7 59 15
Niue 5.4 � � 33 595 � 100 � � 496 23
Norway 1.8 9 80 4 391 3,338 100 99.9 25.8 3,039 �

Oman 3 11 75 16 664 � 84.5 73.5 32 461 32
Pakistan 3.5 46 65 64 717 2,456 68 36 30.6 40 30
Palau 2.5 � 69 29 735 � 77.5 � 25 1,046 17
Panama 2.6 84 75 35 417 2,215 80.5 91.2 54.9 560 �

Papua New Guinea 3.8 58 57 65 772 2,177 41.5 50.9 50.9 64 32
Paraguay 3.1 74 71 33 602 2,544 68 93 58.4 309 79
Peru 2.5 56 73 41 534 2,599 73 89.4 49.6 232 71
Philippines 3.3 46 71 44 620 2,375 81 92.7 44 80 51
Poland 1.2 14 75 4 583 3,401 100 99.7 34.9 583 49
Portugal 1.5 17 78 9 456 3,757 98 91.3 38.5 1,509 �

Qatar 2.7 17 75 17 512 � 100 88.6 39 1,259 43
Republic of Korea 1.2 5 78 6 470 3,093 � 99 31.6 747 41
Republic of Moldova 1.4 35 68 10 963 2,628 85 98.6 35.6 86 68
Romania 1.3 32 72 9 706 3,329 79 96.3 31.5 320 70
Russian Federation 1.3 26 65 8 904 2,918 91.5 99.2 39.9 410 �

Rwanda 5.9 38 48 83 878 2,058 45 64.7 46.8 24 36
Saint Kitts and Nevis 2.3 � � 27 691 3,095 97.5 � 42.6 541 54
Saint Lucia 2.2 62 74 17 522 2,958 93.5 90.6 42.6 429 47
Saint Vincent and

Grenadines

2.2 60 71 31 674 2,642 � 99 56 282 �

Samoa 4 30 71 32 766 � 94.5 99.4 � 155 43
San Marino 1.3 � � 5 357 � � � � 2,870 �

Sao Tome and Principe 3.9 69 65 71 788 2,484 52 77.9 � � 30
Saudi Arabia 3.4 27 73 24 678 2,837 � 70.8 39.2 692 32
Senegal 4.7 105 55 74 852 2,270 49.5 29.2 41.3 54 12
Serbia and Montenegro 1.8 23 73 � � 2,660 96 94.1 30 411 41
Seychelles 1.7 . 72 17 650 2,437 � 92.3 � 742 �

Sierra Leone 6.5 128 46 83 1,033 1,904 34.5 24.4 42.5 17 8
Singapore 1.3 5 80 12 345 � � 88.6 42.5 1,151 62
Slovakia 1.2 21 74 5 628 2,789 100 99.7 25 603 74
Slovenia 1.3 6 78 4 480 3,149 � 99.8 28.4 1,447 74
Solomon Islands 3.9 44 63 50 694 2,221 50.5 � � 80 27
Somalia 6.1 70 47 72 1,148 � 22 25.8 30 � 15
South Africa 2.7 61 51 69 867 2,908 73 85.7 57.8 519 60
Spain 1.4 12 81 7 379 3,387 100 97.2 34.7 1,536 81
Sri Lanka 1.9 30 72 8 681 2,345 79 89.1 40.2 99 68
Sudan 4.3 59 57 57 986 2,272 51.5 50.5 51 37 8
Suriname 2.4 41 69 31 728 2,625 87 87.2 52.9 369 46
Swaziland 3.5 88 46 83 707 2,541 54.5 80.8 50.4 207 51
Sweden 1.8 8 81 5 372 3,100 100 99 25 2,283 �

Switzerland 1.4 6 81 5 360 3,435 100 99 33.7 3,265 82
Syrian Arab Republic 3.1 64 74 25 679 3,052 86.5 73.6 42 159 58
Tajikistan 3.4 29 66 72 884 1,716 72.5 99.2 32.6 41 37
TFYR Macedonia 1.4 23 74 6 737 2,695 89.5 94.1 39 470 �

Thailand 1.8 39 69 42 516 2,459 95 90.5 42.5 172 77
Togo 4.9 67 62 78 818 2,281 33.5 46.9 34.4 32 17
Tonga 3.8 23 72 31 658 � 98 99 47 163 23
Trinidad and Tobago 1.6 35 69 26 751 2,713 91.5 98 40.3 � 43
Tunisia 1.9 7 74 41 537 3,310 85.5 65.3 39.8 271 60
Turkey 2.1 40 71 26 701 3,374 90 79.6 43.6 432 73
Turkmenistan 2.5 20 63 48 1100 2,715 � 98.3 40.8 � 48
Tuvalu 3 � � 30 979 � 89.5 � � 324 31
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Table 11. (continued)

Country TFR ASF LEB Comm Noncomm Cal CS Femlit GINI Health CPR

Uganda 6.5 154 51 80 786 2,382 44 57.7 45.7 45 24
Ukraine 1.2 29 68 9 881 2,898 96.5 99.2 28 198 67
United Arab Emirates 2.3 17 79 18 410 3,333 98.5 81.7 31 1,263 28
United Kingdom 1.8 25 79 7 441 3,312 100 99 36 1,846 84
United Republic of Tanzania 5.2 131 54 79 851 1,958 43.5 62.2 34.6 30 26
United States of America 2.1 37 78 9 450 3,814 99.5 99 46.2 4,570 76
Uruguay 2.1 62 76 12 521 2,838 100 98.4 44.9 818 �

Uzbekistan 2.5 13 � 48 880 2,286 91.5 99 36.8 83 65
Vanuatu 3.8 49 69 39 749 2,583 54.5 74 � 127 38
Venezuela 2.6 90 73 21 441 2,360 � 92.7 48.2 510 77
Viet Nam 2.2 17 74 39 611 2,498 64 86.9 37.7 75 76
Yemen 5.5 70 62 60 941 2,041 54.5 30 33.4 84 28
Zambia 5.2 146 44 85 833 1,901 51.5 74.8 50.8 52 41
Zimbabwe 3.2 67 43 85 816 2,104 62.5 95.7 54 1 60

aSee Table 1 for description of variable label.
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