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Abstract We handle two major issues in applying extreme value analysis to finan-
cial time series, bias and serial dependence, jointly. This is achieved by studying bias
correction methods when observations exhibit weak serial dependence, in the sense
that they come from β-mixing series. For estimating the extreme value index, we pro-
pose an asymptotically unbiased estimator and prove its asymptotic normality under
the β-mixing condition. The bias correction procedure and the dependence structure
have a joint impact on the asymptotic variance of the estimator. Then we construct
an asymptotically unbiased estimator of high quantiles. We apply the new method
to estimate the value-at-risk of the daily return on the Dow Jones Industrial Average
index.
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1 Introduction

In financial risk management, a key concern is on modelling and evaluating potential
losses occurring with extremely low probabilities, i.e., tail risks. For example, the
Basel committee on banking supervision suggests regulators to require banks hold-
ing adequate capital against the tail risk of bank assets measured by the value-at-risk
(VaR). The VaR refers to a high quantile of the loss distribution with an extremely
low tail probability.1 Estimating such risk measures thus relies on modeling the tail
region of distribution functions of asset values. To serve such a purpose, statistical
tools stemming from extreme value theory (EVT) are obvious candidates. By inves-
tigating data in an intermediate region close to the tail, extreme value statistics em-
ploys models to extrapolate intermediate properties to the tail region. Although this
attractive feature of extreme value statistics makes it a popular tool for evaluating tail
events in many scientific fields such as meteorology and engineering, it has not yet
emerged as a dominating tool in financial risk management. This is potentially due to
some crucial critiques on applying EVT to financial data; see e.g. [4]. The critiques
are mainly on two issues: the difficulty in selecting the intermediate region in estima-
tion, and the validity for financial data of the maintained assumptions in EVT. This
paper tries to deal with the two critiques simultaneously and provide adapted EVT
methods that overcome the two issues jointly.

We start with explaining the problem on selecting the intermediate region in es-
timation. Extreme value statistics usually uses only observations in an intermediate
region. This has been achieved by selecting the highest (or lowest, when dealing with
the lower tail) k = k(n) observations in a sample with size n. The problem of se-
lecting k is sometimes referred to as “selecting the cutoff point”. Theoretically, the
statistical properties of EVT-based estimators are established for k such that k → ∞
and k/n → 0 as n → ∞. In applications with a finite sample size, it is necessary to
investigate how to choose the number of high observations used in estimation. For
financial practitioners, two difficulties arise: firstly, there is no straightforward pro-
cedure for the selection; secondly, the performance of the EVT estimators is rather
sensitive to this choice. More specifically, there is a bias–variance tradeoff: with a
low level of k, the estimation variance is at a high level which may not be acceptable
for the application; by increasing k, i.e., using progressively more data, the variance
is reduced, but at the cost of an increasing bias.

Recent developments in extreme value statistics provide two types of solutions for
selecting the cutoff point. The first aims to find the optimal cutoff point that balances
the bias and variance assuming that the bias term in the asymptotic distribution is
finite; see e.g. [3, 8] and [12]. The second type corrects the bias under allowing that
the bias term in the asymptotic distribution is at an infinite level; see e.g. [10]. In
comparison with the optimal cutoff point method, the bias correction procedure usu-
ally requires additional assumptions, such as a third order condition. Nevertheless,
it is preferred to the optimal cutoff point approach because of the following relative

1In the revised Basel II accord and the subsequent Basel III accord, the VaR measures for risks on both
trading and banking books must be calculated at a 99.9 % level.
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advantages. First, since bias correction methods allow an infinite bias term in the
asymptotic distribution, they correspondingly allow choosing a higher level of k than
that chosen in the optimal cutoff point approach. Second, by choosing a larger k, bias
correction methods result in a lower level of estimation variance with no asymptotic
bias. Third, in practice, bias correction procedures lead to estimates that are less sen-
sitive to the choice of k. This mitigates the difficulty in the selection of the cutoff
point.

The other criticism on applying extreme value statistics to financial data is on the
fact that most existing EVT methods require independent and identically distributed
(i.i.d.) observations, whereas financial time series exhibit obvious serial dependence
features such as volatility clustering. This issue has been addressed in works dealing
with weak serial dependence; see e.g. [15] and [5]. The main message from these
studies is that usual EVT methods are still valid; only the asymptotic variance of
estimators may differ from that in the i.i.d. case.

Since the selection of the cutoff point and the serial dependence in data have been
handled separately, the literatures addressing these two issues are mutually exclusive.
In the bias correction literature, it is always assumed that the observations form an
i.i.d. sample; in the literature on dealing with serial dependence, the choice of k is
assumed to be sufficiently low such that there is no asymptotic bias. Therefore, it is
still an open question whether we can apply the bias correction technique to datasets
that exhibit weak serial dependence. This is what we intend to address in this pa-
per.

We consider a bias correction procedure on estimating the extreme value index and
high quantiles for β-mixing stationary time series with common heavy-tailed distri-
bution. The bias term stems from the approximation of the tail region of distribution
functions. In EVT, a second order condition is often imposed to characterize such an
approximation. Such a condition is almost indispensable for establishing asymptotic
properties of estimators. To correct the bias, one needs to estimate the second order
scale function, the function A in (2.3) below. The existing literature is restricted to
the case A(t) = Ctρ with constants C �= 0 and ρ < 0. The estimation of C requires
extra conditions. Instead, we estimate the function A in a nonparametric way which
makes the analysis and application smoother.

The asymptotically unbiased estimator we obtain has the following advantages.
Firstly, it allows serial dependence in the observations. Secondly, one may apply the
unbiased estimator with a higher value of k, which reduces the asymptotic variance
and ultimately the estimation error thanks to the bias correction feature. Thirdly, the
theoretical range of potential choices of k is larger for our asymptotically unbiased
estimators than for the original estimators. This makes the choice of k less crucial.
All these features become apparent in simulation and application.

The paper is organized as follows. Under a simplified model without serial de-
pendence, Sect. 2 presents the bias correction idea for the Hill estimator. Section 3
presents the general model with serial dependence, and in particular the regularity
conditions we are dealing with. Section 4 defines the asymptotically unbiased es-
timators of the extreme value index and quantiles. In addition, we state the main
theorems on the asymptotic normality of these two estimators. The bias correction
procedure and the serial dependence structure have a joint impact on the asymp-
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totic variances of the estimators. Section 5 discusses such a joint impact for several
examples. Section 6 demonstrates finite sample performance of the asymptotically
unbiased estimators based on simulation. An application to estimate the VaR of daily
returns on the Dow Jones Industrial Average index is given in Sect. 7. All proofs are
postponed to the Appendix.

2 The idea of bias correction under independence

For the sake of simplicity, we first introduce our bias correction idea under the as-
sumption of independent and identically distributed (i.i.d.) observations in this sec-
tion. We show later that our bias correction procedure also works for β-mixing se-
ries.

2.1 The origin of bias

Let (X1,X2, . . .) be an i.i.d. sequence of random variables with a common distribu-
tion function F . We assume that this distribution function belongs to the domain of
attraction with a positive extreme value index. We present the domain of attraction
condition with respect to the quantile function U := (1/(1−F))←, where ← denotes
the left-continuous inverse function. That is, there exists a positive number γ such
that

lim
t→∞

U(tx)

U(t)
= xγ , x > 0. (2.1)

Such a distribution function F is also called a heavy-tailed distribution. The rela-
tion (2.1) governs how a high quantile, say U(tx), can be extrapolated from an inter-
mediate quantile U(t). Clearly, estimating the extreme value index γ is a major step
in estimating high quantiles.

In the heavy-tailed case, [14] proposes for the parameter γ the estimator

γ̂k := 1

k

k∑

i=1

logXn−i+1,n − logXn−k,n, (2.2)

where X1,n ≤ X2,n ≤ · · · ≤ Xn,n are the order statistics and k is an intermediate se-
quence such that k → ∞ and k/n → 0 as n → ∞.

To obtain the asymptotic normality of the Hill estimator (and most other estimators
in EVT), it is necessary to quantify the speed of convergence in (2.1). We thus assume
a second order condition on the function U as follows. Suppose that there exist a
positive or negative function A with limt→∞ A(t) = 0 and a real number ρ ≤ 0 such
that

lim
t→∞

U(tx)
U(t)

− xγ

A(t)
= xγ xρ − 1

ρ
,

for all x > 0. This is equivalent to

lim
t→∞

logU(tx) − logU(t) − γ logx

A(t)
= xρ − 1

ρ
; (2.3)
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see for instance [13, Proof of Theorem 3.2.5]. The parameter ρ controls the speed of
convergence, both of the sample maximum towards an extreme value distribution and
for the extreme value estimators towards a normal distribution. Larger absolute values
of ρ mean a better speed of convergence. This is illustrated in the last paragraph of
Sect. 2.2.

The estimator γ̂k is consistent under the domain of attraction condition (2.1). Un-
der the second order condition (2.3), the asymptotic normality can be established for
i.i.d. observations as

√
kλ

(
γ̂kλ − γ

) d−−→ N
(

λ

1 − ρ
,γ 2

)
,

if the intermediate sequence (kλ) satisfies

lim
n→∞

√
kλA(n/kλ) = λ, (2.4)

where λ is a finite constant. This condition imposes an upper bound on the speed at
which kλ goes to infinity. The asymptotic bias for the Hill estimator is consequently
given by the term λ

1−ρ
.

To obtain an asymptotically unbiased estimator, we first estimate the bias term
and then subtract that from γ̂k . The asymptotically unbiased estimator is then given
as γ̂k − ̂Biask , where

Biask := A(n/k)

1 − ρ
. (2.5)

A formal definition of the asymptotically unbiased estimator is given in Eq. (4.2)
below. It is clear that the second order parameter ρ plays an important role in the bias
term.

2.2 Estimating the bias term

The estimation of the bias term requires estimating the second order parameter ρ and
the second order scale function A appearing in the condition (2.3). The parameter ρ

controls the speed of convergence of most γ estimators. In the following, we restrict
the study to the case ρ < 0 because the estimation of the bias term exploits the regular
variation feature of the function A, whereas the case of slow variation (ρ = 0) is
difficult to handle. In the bias correction literature, in order to establish asymptotic
properties of estimators of ρ, it is necessary to choose a higher intermediate sequence
kρ = kρ(n) such that kρ → ∞, kρ/n → 0 and

√
kρ A(n/kρ) → ∞

as n → ∞; see e.g. [11]. This provides a lower bound to the speed at which kρ goes
to infinity. Also, a third order condition is useful. Suppose that there exist a positive
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or negative function B with limt→∞ B(t) = 0 and a real number ρ′ ≤ 0 such that

lim
t→∞

1

B(t)

(
logU(tx) − logU(t) − γ logx

A(t)
− xρ − 1

ρ

)

= 1

ρ′

(
xρ+ρ′ − 1

ρ + ρ′ − xρ − 1

ρ

)
, (2.6)

for all x > 0. If the observations are i.i.d., the asymptotic normality of all existing
estimators of ρ, including the one we use in (4.1) below, holds under the condition
(2.6) and with a sequence (kρ) such that as n → ∞, kρ → ∞, kρ/n → 0 and

√
kρA(n/kρ) → ∞,

√
kρA2(n/kρ) → λ1,

√
kρA(n/kρ)B(n/kρ) → λ2, (2.7)

where λ1 and λ2 are both finite constants; see for instance [11] and [2]. Here, since
we are going to deal with β-mixing series, we need to re-establish the asymptotic
property of the ρ estimator. The details are left to the Appendix.

In order to avoid extra bias stemming from the third order condition, the k se-
quence we use for the asymptotically unbiased estimator of the extreme value index
is of a lower order, compared to the kρ sequence. More specifically, we use a sequence
(kn) such that as n → ∞, kn → ∞, kn/kρ → 0 and

√
knA(n/kn) → ∞,

√
knA

2(n/kn) → 0,
√

knA(n/kn)B(n/kn) → 0. (2.8)

Comparing our asymptotically unbiased estimator with the original Hill estimator,
the k sequences used for estimation are at different level. The conditions on (kn) and
(kλ) imply that kn/kλ → +∞ as n → ∞. Since the asymptotic variance of both the
asymptotically unbiased estimator and the original Hill estimator is of an order 1/k,
using a sequence (kn) increasing faster than (kλ) leads to a lower asymptotic variance
of our asymptotic unbiased estimator compared to that of the original Hill estimator.

In addition, the k sequence used for the asymptotically unbiased estimator is
more flexible in the following sense. The third order condition (2.6) implies that
A and B are regularly varying functions with index ρ and ρ′, respectively. Con-
sider the special case that A(t) ∼ Ctρ and B(t) ∼ Dtρ

′
as t → ∞ for some con-

stant C and D. Then the condition that
√

kλA(n/kλ) → λ restricts the level of

kλ as kλ = O(n
2ρ

2ρ−1 ), whereas condition (2.8) implies that kn = O (nτ ) for any
τ ∈ (

2ρ
2ρ−1 ,

2(ρ+max(ρ,ρ′))
2(ρ+max(ρ,ρ′))−1 ).

3 The serial dependence conditions

In this section, we present the serial dependence conditions on the time series we
are going to deal with. The serial dependence structure follows from the so-called
β-mixing conditions. The β-mixing conditions have been introduced by [19, 5, 7] and
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[20] as follows. Let (X1,X2, . . .) be a stationary time series with common distribution
function F . Let Bj

i denote the σ -algebra generated by Xi, . . . ,Xj . The sequence is
said to be β-mixing or absolutely regular if

β(m) := sup
�≥1

E

[
sup

E∈B∞
�+m+1

∣∣
P[E|B�

1] − P[E]∣∣
]

−→ 0

as m → ∞. The constants β(m) are called the β-mixing constants of the sequence.
The asymptotic normality of the original Hill estimator has been established for

β-mixing sequences in [5, 7] with some mild extra conditions. With a sequence (kλ)

such that
√

kλA(n/kλ) → λ as n → ∞, it is proved that

√
kλ

(
γ̂kλ − γ

) d−−→N
(

λ

1 − ρ
,σ 2

)
,

where σ 2 is equal to γ 2 under independence but is more complicated otherwise.
The extra conditions for establishing the asymptotic normality of the Hill estimator
are the following list of regularity conditions. Suppose there exist a constant ε > 0,
a function r(·, ·) and a sequence � = (�n) such that as n → ∞,

(a) β(�)
�

n + �k−1/2 log2 k → 0;

(b) n
�k

Cov(
∑�

i=1 1{Xi>F−1(1−kx/n)},
∑�

i=1 1{Xi>F−1(1−ky/n)}) → r(x, y), for any

0 ≤ x, y ≤ 1 + ε;
(c) For some constant C,

n

�k
E

[( �∑

i=1

1{F−1(1−ky/n)<Xi≤F−1(1−kx/n)}
)4

]
≤ C(y − x),

for any 0 ≤ x < y ≤ 1 + ε and n ∈N.

Drees [5] shows that the condition (a) is fulfilled if the original time series
(X1,X2, . . . ) is geometrically β-mixing, i.e., β(m) = O(ηm) for some η ∈ (0,1).
In that case, one may take �n = [−2 logn/ logη]. In [7], Drees remarks that the con-
dition (b) holds if all vectors (X1,X1+m) belong to the domain of attraction of a
bivariate extreme value distribution. In that case, for any sequence k, one may take
a sequence � such that �k/n → 0 as n → ∞. The limit function r(x, y) depends
only on the tail dependence structure of (X1,X1+m) for m ∈ N. These two suffi-
cient versions of conditions (a) and (b) hold for some known time series models,
namely the ARMA, ARCH and GARCH models; see the examples in Sect. 5 below.
Lastly, the condition (c) has been verified for these time series models as well. In
addition, for all these models, it is only necessary to have k = o(nζ ) for some ζ < 1
as n → ∞ in order to satisfy the regularity conditions. This is compatible with the
requirement on the sequence (kλ) in extreme value analysis as follows. Under the
second order condition, |A(t)| is regularly varying with index ρ. Therefore, given
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any ε > 0, for sufficiently large t , we have that |A(t)| > Ctρ−ε for some positive
constant C; see inequality (B.1.19) in [13]. Together with the condition (2.4), we get
that kλ = o(nζ ) for any ζ >

2ρ−ε
2ρ−1−ε

. Therefore, the sequence (kλ) is compatible with
condition (c).

We intend to correct the bias while allowing the observations to follow the β-mix-
ing condition and the regularity conditions. Since the asymptotic bias of the original
Hill estimator under serial dependence has the same form as in (2.5), we can construct
an asymptotically unbiased estimator for β-mixing sequences with exactly the same
form as in the case of independence. Nevertheless, due to the serial dependence, the
asymptotic property of the estimator has to be re-established. This is what we do in
the next section.

4 Main results

We start by introducing the estimator of the second order parameter. Then we state
our main results on the asymptotic properties of the asymptotic unbiased estimators
of the extreme value index and high quantiles.

4.1 Estimating the second order parameter

We adopt the notations of [11] as follows. For any positive number α, denote

M
(α)
k := 1

k

k∑

i=1

(logXn−i+1,n − logXn−k,n)
α,

R
(α)
k := M

(α)
k − 
(α + 1)(M

(1)
k )α

M
(2)
k − 2(M

(1)
k )2

,

S
(α)
k := α(α + 1)2
2(α)

4
(2α)

R
(2α)
k

(R
(α+1)
k )2

,

s(α)(ρ) := ρ2(1 − (1 − ρ)2α − 2αρ(1 − ρ)2α−1)

(1 − (1 − ρ)α+1 − (α + 1)ρ(1 − ρ)α)2
.

Then the estimator of the second order parameter ρ is defined as

ρ̂
(α)
k := (s(α))←(S

(α)
k ). (4.1)

4.2 Asymptotically unbiased estimator of the extreme value index

We now write explicitly the asymptotically unbiased estimator of the extreme value
index. Let kρ and kn, satisfying (2.7) and (2.8), be the number of observations se-
lected for estimating ρ and γ , respectively. For some positive real number α, we
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define the asymptotically unbiased estimator as

γ̂kn,kρ ,α := γ̂kn − M
(2)
kn

− 2γ̂ 2
kn

2γ̂kn ρ̂
(α)
kρ

(1 − ρ̂
(α)
kρ

)−1
, (4.2)

where γ̂kn denotes the original Hill estimator as in (2.2).
The following theorem shows the asymptotic normality of our asymptotically

unbiased estimator for β-mixing series. The consistency of the estimator could be
obtained under the second order condition without requiring the third order condi-
tion.

Theorem 4.1 Suppose that (X1,X2, . . .) is a stationary β-mixing time series with
continuous common marginal distribution function F . Assume that F satisfies the
third order condition (2.6) with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose that
the two intermediate sequences (kρ) and (kn) satisfy the conditions in (2.7) and (2.8),
respectively. Suppose that the regularity conditions (a)–(c) hold with the intermediate
sequence (kn). Then

√
kn

(
γ̂kn,kρ ,α − γ

) d−−→N (0, σ 2),

where

σ 2 := γ 2

ρ2

(
(2 − ρ)2c1,1 + (1 − ρ)2c2,2 + 2(2 − ρ)(ρ − 1)c1,2

)
,

with

ci,j :=
∫∫

[0,1]2
(− log s)i−1(− log t)j−1

(
r(s, t)

st
− r(s,1)

s
− r(1, t)

t
+ r(1,1)

)
dsdt,

and r(·, ·) defined in the regularity condition (b).

Compared to the original Hill estimator, we use different k sequences, namely (kn)

and (kρ), in the asymptotically unbiased estimator γ̂kn,kρ ,α . These k sequences are
compatible with the regularity conditions. Recall that the third order condition (2.6)
implies that A2 and AB are regularly varying functions with index 2ρ and ρ + ρ′,
respectively. Conditions (2.7) and (2.8) ensure that kn, kρ are o(nζ ) for some ζ < 1
and consequently yield the compatibility of these two sequences with the regularity
conditions. In general, as long as the original sequence (kλ) is compatible with the
regularity conditions, so are (kn) and (kρ).

We remark that our estimator is also valid as an asymptotically unbiased estimator
of the extreme value index when the observations are i.i.d. In that case, the result is
simplified to

√
kn

(
γ̂kn,kρ ,α − γ

) d−−→N
(

0,
γ 2

ρ2

(
ρ2 + (1 − ρ)2)

)
.
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4.3 Asymptotically unbiased estimator of high quantiles

We consider the estimation of high quantiles. High quantile here refers to the quan-
tile at a probability level 1 − p, where the tail probability p = pn depends on
the sample size n: as n → ∞, pn = O(1/n). The goal is to estimate the quantile
x(p) = U(1/p). In extreme cases such that npn < 1, it is not possible to have a
nonparametric estimate of such a quantile.

We propose the asymptotically unbiased estimator

x̂kn,kρ ,α(p) := Xn−kn,n

(
kn

np

)γ̂kn,kρ ,α

(
1 −

(M
(2)
kn

− 2γ̂ 2
kn

)(1 − ρ̂
(α)
kρ

)2

2γ̂kn(ρ̂
(α)
kρ

)2

)
.

The first factor Xn−kn,n(
kn

np
)γ̂kn,kρ ,α in this formula follows a similar structure as the

quantile estimator in [23]. Having the additional term is to correct the extra bias in-
duced by using a high level kn; see a similar treatment in [1] for the quantile estimator
using an asymptotically unbiased probability-weighted moment approach.

The following theorem shows the asymptotic normality of the quantile estimator
x̂kn,kρ ,α(p).

Theorem 4.2 Suppose that (X1,X2, . . .) is a stationary β-mixing time series with
continuous common marginal distribution function F . Assume that F satisfies the
third order condition (2.6) with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose that
the two intermediate sequences (kρ) and (kn) satisfy the conditions in (2.7) and (2.8),
respectively. Assume in addition that n → ∞, npn/kn → 0 and log(npn)/

√
kn → 0.

Suppose that the regularity conditions (a)–(c) hold with (kn). Then
√

kn

log(kn/(npn))

(
x̂kn,kρ ,α(pn)

x(pn)
− 1

)
d−−→ N (0, σ 2),

with σ 2 as defined in Theorem 4.1.

5 Examples

In our framework, we model the serial dependence by the β-mixing condition and
the extra regularity conditions. In this section, we give a few examples that satisfy
those conditions. The studies referred to below have documented that these examples
satisfy the regularity conditions for any sequence k such that k = o(nζ ) for some
ζ < 1 as n → ∞.

– The k-dependent process and the autoregressive (AR) process AR(1); see
[19, 7, 20].

– The AR(p) processes and the infinite moving averages (MA) processes; see [18, 6].
– The finite MA processes; see [15, 19, 6, 20].
– The autoregressive conditional heteroskedasticity process ARCH(1); see [6, 7].
– The generalized autoregressive conditional heteroskedasticity (GARCH) process-

es; see [21, 5].
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We review some simple cases of these processes and provide a comparison of the
asymptotic variance under dependence to that under independence, and to that of the
original Hill estimator under serial dependence.

5.1 Autoregressive model

Consider first the stationary solution of the AR(1) equation

Xi = θXi−1 + Zi, (5.1)

for some θ ∈ (0,1) and i.i.d. random variables Zi . The distribution function of the
innovations is denoted by FZ . Assume that FZ admits a positive Lebesgue density
which is L1 Lipschitz-continuous; see [7, Eq. (42)]. Suppose that as x → ∞,

1 − FZ(x) ∼ px−1/γ �(x) and FZ(−x) ∼ qx−1/γ �(x)

for some slowly varying function � and p = 1 − q ∈ (0,1). Then from Sect. 3.2
of [7], we get that 1 − F(x) ∼ dθ (1 − FZ(x)) as x → ∞, where dθ = (1 − θ1/γ )−1.
Furthermore, the regularity conditions hold with

r(x, y) = x ∧ y +
∞∑

m=1

(
cm(x, y) + cm(y, x)

)
,

where cm(x, y) = x ∧ yθm/γ .
Let us denote by σ 2(θ, γ,ρ) the asymptotic variance of

√
k(γ̂k,kρ ,α − γ ). First,

we compare the asymptotic variance under model (5.1) with that under independence
by calculating the ratio σ 2(θ, γ,ρ)/σ 2(0, γ, ρ). Second, we compare σ 2(θ, γ,ρ)

with the asymptotic variance σ 2
H of the original Hill estimator under serial depen-

dence when using the same k sequence. From [5], we get that under serial depen-
dence,

√
k(γ̂H − γ ) converges to a normal distribution with asymptotic variance

σ 2
H = γ 2r(1,1). The two ratios are given by

σ 2(θ, γ,ρ)

σ 2(0, γ, ρ)
= 1 + 2θ1/γ

1 − θ1/γ
+ 2ρ(1 − ρ)

1 − 2ρ(1 − ρ)

θ1/γ log θ1/γ

(1 − θ1/γ )2
,

σ 2(θ, γ,ρ)

σ 2
H

= 1

ρ2

(
1 − 2ρ(1 − ρ) + 2ρ(1 − ρ)

θ1/γ log θ1/γ

(1 − θ1/γ )2 + 2θ1/γ (1 − θ1/γ )

)
.

In the first row of Fig. 1, we plot these ratios against the extreme value index
γ for different values of the parameters θ and ρ. From Fig. 1(a), we note that the
variation of the first ratio is mainly due to that of θ . The parameter ρ plays a relatively
minor role. We further give a numerical illustration with γ = 1 and ρ = −1. With
i.i.d. observations, the asymptotic variance of

√
k(γ̂k,kρ ,α − γ ) is 5. Instead, if the

observations follow the AR(1) model with θ = 0.5, then the asymptotic variance
of

√
k(γ̂k,kρ ,α − γ ) is close to 20. Hence, overlooking the serial dependence may

severely underestimate the range of confidence intervals.
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Fig. 1 Ratios between asymptotic variances

Differently, we observe from Fig. 1(b) that the variation of the second ratio is
mainly due to that of ρ. Although this ratio is greater than one, it does not imply that
the asymptotically unbiased estimator has a higher asymptotic variance because the
current comparison is conducted using the same k level for both estimators, whereas
the k value used in the asymptotically unbiased estimator can be at a much higher
level than that used for the Hill estimator. Theoretically, the conditions on (kn) and
(kλ) guarantee that kn/kλ → +∞. Thus the variance of our estimator is at a lower
level asymptotically. Practically, if we consider the example ρ = −1, then the ratio
is between 5 and 7. Under such an example, if we use in the asymptotically unbiased
estimator a kn seven times higher than kλ used for the original Hill estimator, we get
an estimator with lower variance. If the level of ρ is closer to zero, then the ratio
will be at a higher level. Correspondingly, one needs a higher level of kn to offset
the higher ratio. Nevertheless, together with the fact that the asymptotically unbiased
estimator does not suffer from the bias issue, it may still perform better in terms of
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having a lower root mean squared error. Such a feature will show up in the simulation
studies in Sect. 6 below.

5.2 Moving average model

Consider now the stationary solution of the MA(1) equation

Xi = θZi−1 + Zi, (5.2)

where the innovation Z satisfies the same conditions as in the AR(1) model in the pre-
vious subsection. Again from Sect. 3.2 of [7], we get that 1 −F(x) ∼ dθ (1 − FZ(x))

as x → ∞, where dθ = 1 + θ1/γ . One can also compute

r(x, y) = x ∧ y + (1 + θ1/γ )−1(x ∧ yθ1/γ + y ∧ xθ1/γ ).

We calculate the two ratios when comparing the asymptotic variance of the asymp-
totically unbiased estimator under serial dependence to that under independence, and
that of the original Hill estimator under dependence as

σ 2(θ, γ,ρ)

σ 2(0, γ, ρ)
= 1 + 2θ1/γ

1 + θ1/γ
+ 2ρ(1 − ρ)

1 − 2ρ(1 − ρ)

θ1/γ log θ1/γ

1 + θ1/γ
,

σ 2(θ, γ,ρ)

σ 2
H

= 1

ρ2

(
1 − 2ρ(1 − ρ) + 2ρ(1 − ρ)

θ1/γ log θ1/γ

(1 + θ1/γ ) + 2θ1/γ

)
.

In the second row of Fig. 1, we plot the variations of these ratios with respect
to the extreme value index γ for different values of the parameters θ and ρ. The
general feature is comparable to that observed from the first row. A notable difference
between Figs. 1(a) and 1(c) is that although the ratios are both increasing in θ and
the absolute value of ρ, their convexities with respect to γ are different in the two
models: we observe a concave (resp., convex) relation in γ under the MA(1) (resp.,
AR(1)) model.

5.3 Generalized autoregressive conditional heteroskedasticity model

Consider the stationary solution to the recursive system of equations
{

Xt = εtσt ,

σ 2
t = λ0 + λ1X

2
t−1 + λ2σ

2
t−1,

where the εt are i.i.d. innovations with zero mean and unit variance. The stationary
solution Xt of this GARCH(1,1) model follows a heavy-tailed distribution, even if
the innovations εt are normally distributed; see [16] and [9]. The extreme value index
of the GARCH(1,1) model can be derived from the Kesten theorem on stochastic
difference equations; see [16]. Nevertheless, the calculation is not explicit.

In addition, the stationary GARCH(1,1) series satisfies the β-mixing condition
and the regularity conditions; see [21] and [5]. Thus, it can be considered as an ex-
ample for which we can apply the asymptotically unbiased estimators. Since it is
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difficult to explicitly calculate the r(·, ·) function and consequently the asymptotic
variance, we opt to use simulations to show the performance of the asymptotically
unbiased estimator under the GARCH model.

6 Simulation

6.1 Data generating processes

The simulations are set up as follows. We consider four data generating processes
for simulating the observations used in our simulation study. Suppose Z follows the
distribution FZ given by

FZ(x) =
{

(1 − p)(1 − F̃ (−x)) if x < 0,

1 − p + pF̃ (x) if x > 0,

where F̃ is the standard Fréchet distribution function, F̃ (x) = exp(−1/x) for x > 0,
and p = 0.75. Then FZ belongs to the domain of attraction with extreme value in-
dex 1. We construct three time series models based on i.i.d. observations Zt as fol-
lows:

Model 1. Independence: Xt = Zt (can be regarded as MA(1) with θ = 0);
Model 2. AR(1): Xt given by (5.1) with θ = 0.3;
Model 3. MA(1): Xt given by (5.2) with θ = 0.3.

In all three models, the theoretical value of γ is 1. In addition, we also construct a
GARCH(1,1) model as in Sect. 5.3. We remark that the heavy-tailed feature of the
GARCH(1,1) model does not depend on whether the innovations follow a heavy-
tailed distribution. Nevertheless, empirical evidence supports using heavy-tailed in-
novations for modeling financial time series; see e.g. [17] and [22]. Correspondingly,
we use the Student-t distribution as the distribution of innovations.2 All parameters
in the simulated GARCH(1,1) model are equal to the estimates from the real data
application in Sect. 7.

Model 4. GARCH(1,1): Xt given as in Sect. 5.3 with λ0 = 8.26 × 10−7,
λ1 = 0.052, λ2 = 0.941. The innovation term follows the standardized Student-t
distribution with degree of freedom ν = 5.64.

Following [16], we calculate the extreme value index γ of the series in Model 4 as
0.258.

In our simulation study, we also compare the performance of our asymptotically
unbiased quantile estimator to that of the original Weissman [23] estimator. For that
purpose, we estimate x(0.001) for simulated samples from the four data generat-
ing processes. We conduct pre-simulations to get the theoretical values of x(0.001);
for each model, we simulate 500 samples with sample size 106 and obtain 500 es-
timations of x(0.001). Table 1 reports the median of these 500 values for each
model.

2In order to get a unit variance, we simply normalize the standard Student-t distribution with degree of
freedom ν by its standard deviation

√
ν/(ν − 2).
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Table 1 Simulated theoretical
values of x(0.001) under
Models 1–4

Model 1 Model 2 Model 3 Model 4

749.80 1072.26 972.85 0.0592

6.2 Estimation procedure

For each data generating process, we simulate N = 1000 samples with sample size
n = 1000 each. First, we focus on the extreme value index γ . We apply both the
original Hill estimator and the asymptotically unbiased estimator in (4.2) to each
sample. To apply the asymptotically unbiased estimator, we use the following proce-
dure.

– Estimate the second order index ρ by (4.1) with α = 2.
– Denote by m the number of positive observations in the sample. For each k

satisfying k ≤ min(m − 1, 2m
log logm

), calculate the statistic

S
(2)
k = 3

4

(M
(4)
k − 24(M

(1)
k )4)(M

(2)
k − 2(M

(1)
k )2)

M
(3)
k − 6(M

(1)
k )3

.

– If S
(2)
k ∈ [2/3,3/4], then let

ρ̂k = −4 + 6S
(2)
k +

√
3S

(2)
k − 2

4S
(2)
k − 3

.

– If S
(2)
k < 2/3 or S

(2)
k > 3/4, then ρ̂k does not exist.

– The parameter ρ is estimated as ρ̂kρ with

kρ = sup

{
k : k ≤ min

(
m − 1,

2m

log logm

)
and ρ̂k exists

}
.

– Estimate the extreme value index by (4.2) for various values of kn,3 using ρ̂kρ .

Here the choice of kρ in the first step follows the recommendation in [11].
Next, we estimate the high quantile x(0.001) by both the original Weissman es-

timator and the asymptotically unbiased estimator as in Sect. 4.3. When applying
the asymptotically unbiased estimator for high quantiles, we use the same ρ̂kρ as
above.

Once we have obtained the estimates in the N = 1000 samples as γ̂
(j)
k for

j = 1,2, . . . ,N , we calculate the average absolute bias (ABias) and the root mean

3For Models 1–3, we use kn = 10,11, . . . ,700, while for Model 4, we use kn = 10,11, . . . ,450 due to a
lower number of positive observations.
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Fig. 2 Estimating the extreme
value index—Model 1

square error (RMSE) for the two extreme value index estimators by

ABiask =
∣∣∣∣∣

1

N

N∑

j=1

γ̂
(j)
k

γ
− 1

∣∣∣∣∣ and RMSEk =

√√√√√
1

N

N∑

j=1

(
γ̂

(j)
k

γ
− 1

)2

.

Then we plot the results against the corresponding k values in Figs. 2, 3, 4, 5 for each
model, respectively.
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Fig. 3 Estimating the extreme
value index—Model 2

Similarly, we obtain the ABias and RMSE for the two high quantile estimators.
The ABias and RMSE for the four models are plotted in Figs. 6, 7, 8, 9, respec-
tively.

6.3 Results

Regarding the estimation of the extreme value index, we observe that even with a
rather high level of k, our asymptotically unbiased estimator does not suffer from a
significant bias, at least for the first three models; see Figs. 2–4. In Model 4, the bias
term increases with respect to k, but still stays at a lower level than that of the original
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Fig. 4 Estimating the extreme
value index—Model 3

Hill estimator; see Fig. 5. In addition, we compare the reduction of RMSE when
switching from the original Hill estimator to the asymptotically unbiased estimator.
Across the first three models, the best levels of RMSE are reached for the largest
values of k. In Model 4, the RMSE has a different pattern as k increases. However, the
reduction is the most significant in Model 4. Although the lowest achieved RMSE for
the asymptotically unbiased estimator is at a comparable level as the lowest RMSE
for the original Hill estimator for Models 2 and 3, the decrease of the RMSE with
respect to k demonstrated by the asymptotically unbiased estimator allows a more
flexible choice of k compared to the U-shaped RMSE demonstrated by the original
Hill estimator.
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Fig. 5 Estimating the extreme
value index—Model 4

Regarding the estimation of high quantiles, we observe from Figs. 6–9 that our
goal in reducing the bias is well illustrated on a finite sample when using large k

values. In addition, the RMSE of our asymptotically unbiased quantile estimator stays
at a lower level than that of the original Weissman estimator for high levels of k. It
is remarkable that the reduction in RMSE is higher for dependent series than for
independent series.

To conclude, the simulation studies show that under bias correction, the estimators
for extreme value index and high quantiles remain stable for a wider range of k values
even if the dataset exhibits serial dependence. The bias correction method under serial
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Fig. 6 Estimating the high
quantile—Model 1

dependence thus helps to tackle the two major critiques for applying extreme value
statistics to financial time series.

7 Application

We apply the asymptotically unbiased estimators on the extreme value index and
high quantiles to evaluate the downside tail risk in the Dow Jones Industrial Aver-
age (DJIA) index. We collect the daily index from 1980 to 2010 and compute the
daily loss returns. The indices and loss returns are presented in Figs. 10(a) and 10(b).
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Fig. 7 Estimating the high
quantile—Model 2

From the figures, we observe that although the loss return series can be regarded as
stationary, there is evidence of serial dependence such as volatility clustering. More
concretely, by fitting the GARCH(1,1) model with Student-t distributed innovations
to our dataset, we obtain estimates as λ̂0 = 8.26 × 10−7, λ̂1 = 0.052, λ̂2 = 0.941 and
ν̂ = 5.64. The existence of serial dependence prevents us from treating the series as
i.i.d. observations. The serial dependence has to be accounted for when performing
extreme value analysis.

Our goal is to estimate the value-at-risk of the return series at the 99.9 % level,
which corresponds to a high quantile with tail probability 0.1 %, i.e., x(0.001). From
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Fig. 8 Estimating the high
quantile—Model 3

8088 daily observations, a nonparametric estimate can be obtained by taking the
eighth highest order statistic. We thus get 7.16 % as the empirical estimate.

Next, we apply both the original Hill estimator and the asymptotically unbiased es-
timator to estimate the extreme value index of the loss return series. We start with esti-
mating the second order parameter ρ. Following the estimation procedure in Sect. 6.2,
we choose kρ = 3515 and obtain that ρ̂ = −0.611. Next we apply both estimators for
kn = 50,51, . . . ,2000. Since we do not employ a parametric model for the time se-
ries, there is no explicit formula for calculating the asymptotic variance of the two
estimators. Therefore, we opt to use a block bootstrapping method to construct the
confidence interval for the extreme value index.
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Fig. 9 Estimating the high
quantile—Model 4

The block bootstrapping follows the routine tsboot in the package boot in R.
The block lengths are chosen to have a geometric distribution (sim=geom) with
mean l=200. By repeating such a bootstrapping procedure 50 times, we obtain
50 bootstrapped estimates for each estimator. The sample standard deviation across
the 50 estimates gives an estimate of the standard deviation of the underlying estima-
tor for given kn. We construct the 95 % confidence interval using the point estimate
and the estimated standard deviation. This procedure is applied to all values of kn

and for both estimators. The point estimates of the extreme value index as well as
the lower and upper bounds of the confidence intervals are plotted against different
choices of kn in Fig. 11.
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Fig. 10 Historical time series
of the DJIA index

Lastly, we apply both the original Weissman estimator and the asymptotically un-
biased version to estimate the VaR at 99.9 % level. The construction of the confidence
intervals follows a similar block bootstrapping procedure. The results are plotted in
Fig. 12.

From the two figures, we observe that the estimates using the bias correction tech-
nique stay stable for a larger range of k values. In contrast, the estimates based on the
original Hill estimator suffer from a large bias starting from k ≥ 400. When applying
the original EVT estimators, it is possible to choose k only around 250, which corre-
sponds to 3 % of the total sample. Correspondingly, we obtain an estimated extreme
value index at 0.349 from the Hill estimator and an estimated VaR at 0.06549 from
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Fig. 11 Estimating the extreme
value index for the DJIA index

the Weissman estimator. With our asymptotically unbiased estimators, we can take
k = 1000 and obtain an estimated extreme value index at 0.280 with an estimated
VaR at 0.05898. Note that the point estimates of the VaR are below, but close to,
the empirical estimate. In addition to the point estimation, we investigate the confi-
dence intervals of the estimated VaR. The Weissman estimator results in a 95 % confi-
dence interval as [0.04268,0.08831], while the confidence interval obtained from our
asymptotically unbiased estimator is [0.04219,0.07577]. Hence we conclude that the
bias correction procedure helps to obtain a more accurate estimate with a narrower
confidence interval.
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Fig. 12 Estimating the VaR at
99.9 % level for the DJIA index
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Appendix: Proofs

The asymptotically unbiased estimator of the extreme value index is based on the
sample moments

M
(α)
k := 1

k

k∑

i=1

(logXn−i+1,n − logXn−k,n)
α

defined in Sect. 4.1. One can write these statistics as functionals of the tail quantile
process (Qn(t) := Xn−[kt],n)t∈[0,1] via

M
(α)
k =

∫ 1

0

(
log

Qn(t)

Qn(1)

)α

dt .

Therefore, to derive the asymptotic properties of the asymptotically unbiased esti-
mator, we first establish those of the tail quantile process and the moments. We first
show that the tail quantile process can be approximated by a Gaussian process as in
the following result.

Proposition A.1 Suppose that (X1,X2, . . .) is a stationary β-mixing time series
with continuous common marginal distribution function F . Assume that F satisfies
the third order condition (2.6) with parameters γ > 0, ρ < 0 and ρ′ ≤ 0. Suppose
that an intermediate sequence k satisfies, as n → ∞, that k → ∞, k/n → 0 and√

kA(n/k)B(n/k) = O(1). In addition, assume that the regularity conditions (a)–(c)
hold. Then, for a given ε > 0, under a Skorohod construction, there exist two functions
Ã ∼ A and B̃ = O(B), where A and B are the second and third order scale func-
tions in (2.6), and a centered Gaussian process (e(t))t∈[0,1] with covariance function
r defined as in the regularity condition (b) such that, as n → ∞,

sup
t∈(0,1]

t1/2+ε

∣∣∣∣
√

k

(
log

Qn(t)

U(n/k)
+ γ log t

)
− γ t−1e(t)

− √
kÃ(n/k)

t−ρ − 1

ρ
− √

kÃ(n/k)B̃(n/k)
t−ρ−ρ′ − 1

ρ + ρ′

∣∣∣∣ −→ 0 a.s.

Proof By writing Xi = U(Yi) where each Yi follows a standard Pareto distribu-
tion, we obtain that (Y1, Y2, . . . ) is a stationary β-mixing series satisfying the reg-
ularity conditions. This is a direct consequence of Yi = 1/(1 − F(Xi)). We write
Qn(t) = Xn−[kt],n = U(Yn−[kt],n) and focus first on the asymptotic properties of the
process (Yn−[kt],n)t∈[0,1]. By verifying the conditions in Drees [7, Theorem 2.1], we
get that under a Skorohod construction, there exists a centered Gaussian process
(e(t))t∈[0,1] with covariance function r defined in the regularity condition (b) such
that for ε > 0, as n → ∞,

sup
t∈(0,1]

t1/2+ε

∣∣∣∣
√

k

(
t
Yn−[kt],n

n/k
− 1

)
− t−1e(t)

∣∣∣∣ −→ 0 a.s. (A.1)
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Next, we present an inequality on the function U based on the third order condi-
tion (2.6). Under that condition, there exist two functions Ã ∼ A and B̃ = O(B) such
that for any δ > 0, there exists some positive number u0(δ) such that for all u ≥ u0
and ux ≥ u0,

∣∣∣∣∣

logU(ux)−logU(u)−γ logx

Ã(u)
− xρ−1

ρ

B̃(u)
− xρ+ρ′ − 1

ρ + ρ′

∣∣∣∣∣ ≤ δxρ+ρ′
max(xδ, x−δ) . (A.2)

This inequality is a direct consequence of applying de Haan and Ferreira [13, Theo-
rem B.3.10] to the function f (u) = logU(u) − γ logu.

We combine the asymptotic property of (Yn−[kt],n)t∈[0,1] in (A.1) with the inequal-
ity (A.2) as follows. Taking u = n/k and ux = Yn−[kt],n in (A.2), we get that given
any 0 < δ < −ρ − ρ′, for sufficiently large n > n0(δ), with probability 1,

∣∣∣∣ logQn(t) − logU(n/k) − γ log

(
k

n
Yn−[kt],n

)
− Ã(n/k)

( k
n
Yn−[kt],n)ρ − 1

ρ

− Ã(n/k)B̃(n/k)
( k
n
Yn−[kt],n)ρ+ρ′ − 1

ρ + ρ′

∣∣∣∣

≤ δÃ(n/k)B̃(n/k)

(
k

n
Yn−[kt],n

)ρ+ρ′+δ

. (A.3)

By applying (A.1), we bound the four terms in (A.3) that contain kn

n
Yn−[knt],n to get

t1/2+ε

∣∣∣∣
√

k

(
log

( k

n
Yn−[kt],n

)
+ log t

)
− t−1e(t)

∣∣∣∣ −→ 0 a.s.,

t1/2+ε

∣∣∣∣
√

k

(
( k
n
Yn−[kt],n)ρ − 1

ρ
− t−ρ − 1

ρ

)
− t−ρ−1e(t)

∣∣∣∣ = o(t−ρ)

−→ 0 a.s.,

t1/2+ε

∣∣∣∣
√

k

(( k

n
Yn−[kt],n

)ρ+ρ′
− t−ρ−ρ′

)
− (ρ + ρ′)

(
t−ρ−ρ′−1e(t)

)∣∣∣∣

= o
(
t−ρ−ρ′) −→ 0 a.s.,

t1/2+ε

(
k

n
Yn−[kt],n

)ρ+ρ′+δ

= O(t1/2−ρ−ρ′+ε−δ) = O(1) a.s.

When taking n → ∞, with the facts that supt∈(0,1] t1/2+εt−1 |e(t)| = O(1) a.s.,√
kÃ(n/k)B̃(n/k) = O(1) and Ã(n/k), B̃(n/k) → 0, the proposition is proved due

to the arbitrary choice of δ. �

By applying Proposition A.1, we get the asymptotic properties of the moments
M

(α)
k as follows.
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Corollary A.2 Assume that the conditions in Proposition A.1 hold. Then under the
same Skorohod construction as in Proposition A.1, as n → ∞,

√
k
(
M

(α)
k − γ α
(α + 1)

) − αγ αP
(α)
1 − √

kÃ(n/k)γ α−1 
(α + 1)

ρ

(
1

(1 − ρ)α
− 1

)

− √
kÃ(n/k)B̃(n/k)γ α−1 
(α + 1)

ρ + ρ′

(
1

(1 − ρ − ρ′)α
− 1

)

− √
kÃ(n/k)2γ α−2 
(α + 1)

2ρ2

(
1

(1 − 2ρ)α
− 2

(1 − ρ)α
+ 1

)
−→ 0 a.s.,

where the P
(α)
1 are normally distributed random variables with mean zero. In addi-

tion,

Cov
(
P

(α)
1 ,P

(α̃)
1

) =
∫∫

[0,1]2
(− log s)α−1(− log t)α̃−1

×
(

r(s, t)

st
− r(s,1)

s
− r(1, t)

t
+ r(1,1)

)
ds dt,

with the covariance function r defined as in the regularity condition (b).

Proof of Corollary A.2 Recall that

M
(α)
k =

∫ 1

0

(
log

Qn(t)

U(n/k)
− log

Qn(1)

U(n/k)

)α

dt .

Under the same Skorohod construction as in Proposition A.1, we get that as n → ∞,

sup
t∈(0,1]

t1/2+ε

∣∣∣∣
√

k

(
log

Qn(t)

Qn(1)
− γ (− log t)

)
− γ

(
t−1e(t) − e(1)

)

− √
kÃ(n/k)

t−ρ − 1

ρ
− √

kÃ(n/k)B̃(n/k)
t−ρ−ρ′ − 1

ρ + ρ′

∣∣∣∣ −→ 0 a.s.

The second order expansion (1 + x)α = 1 + αx + α(α−1)
2 x2 + o(x2) yields that as

n → ∞,

sup
t∈(0,1]

t1/2+ε

∣∣∣∣
√

k

((
log

Qn(t)

Qn(1)

)α − γ α(− log t)α
)

− αγ α(− log t)α−1(t−1e(t) − e(1)
)

− √
kÃ(n/k)αγ α−1(− log t)α−1 t−ρ − 1

ρ

− √
kÃ(n/k)B̃(n/k)αγ α−1(− log t)α−1 t−ρ−ρ′ − 1

ρ + ρ′

− √
kÃ2(n/k)

α(α − 1)

2
γ α−2(− log t)α−2

(
t−ρ − 1

ρ

)2 ∣∣∣∣ −→ 0 a.s.
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Some terms are omitted because we have supt∈(0,1] t1/2+εt−1 |e(t)| = O(1) a.s. and

Ã(n/k) → 0 as n → ∞.
By taking ε < 1/2, we can then take the integral of (log Qn(t)

Qn(1)
)α on (0,1] and use

the fact that
∫ 1

0 (− log t)a−1t−bdt = 
(a)
(1−b)a

for b < 1 to obtain the result in the corol-

lary. The random term is P
(α)
1 = ∫ 1

0 (− log t)α−1(t−1e(t) − e(1)) dt . The covariance
can be calculated from there. �

Next, we handle the estimator of the second order parameter ρ. The estimator of
ρ is based on a different sequence (kρ) satisfying (2.7). Because (kρ) satisfies the

condition in Proposition A.1, we get the asymptotic properties of the moments M
(α)
kρ

as in Corollary A.2. Then, following the same lines as in the proof of Gomes et al.
[11, Theorem 2.2], we get the following result.

Proposition A.3 Suppose that (X1,X2, . . .) is a stationary β-mixing time series with
continuous common marginal distribution function F . Assume that F satisfies the
third order condition (2.6) with parameters γ > 0, ρ < 0, ρ′ ≤ 0. Suppose that an
intermediate sequence (kρ) satisfies (2.7). In addition, assume that the regularity
conditions hold. Then for the ρ-estimator defined in (4.1) and as n → ∞,

√
kρÃ(n/kρ)

(
ρ̂

(α)
kρ

− ρ
)

is asymptotically normally distributed.

We remark that analogously to the result in Theorem 2.1 in Gomes et al. [11], the
consistency of the ρ-estimator for β-mixing time series can be proved under only the
second order condition (2.3) and weaker conditions on (kρ).

Finally, we can use the tools built in Corollary A.2 and Proposition A.3 to prove
our main results.

Proof of Theorem 4.1 From Corollary A.2, with (kn) satisfying (2.8), under the same
Skorohod construction as in Proposition A.1, the Hill estimator has the expansion

√
kn

(
γ̂kn − γ

) − γP
(1)
1 − √

knÃ(n/kn)
1

1 − ρ
−→ 0 a.s.,

which leads to

√
kn

(
γ̂ 2
kn

− γ 2) − 2γ 2P
(1)
1 − √

knÃ(n/kn)
2γ

1 − ρ
−→ 0 a.s.

Together with the asymptotic properties of M
(2)
kn

obtained again from Corollary A.2,
this implies that

√
kn

(
M

(2)
kn

− 2γ̂ 2
kn

) − 2γ 2(P (2)
1 − 2P

(1)
1

) − √
knÃ(n/kn)

2γρ

(1 − ρ)2
−→ 0 a.s.
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Thus, the asymptotic unbiased estimator has the expansion, almost surely as n → ∞,

√
kn

(
γ̂kn,kρ ,α − γ

)

= √
kn

(
γ̂kn − γ

) − 1

2γ̂kn ρ̂
(α)
kρ

(1 − ρ̂
(α)
kρ

)−1

√
kn

(
M

(2)
kn

− 2γ̂ 2
kn

)

= γP
(1)
1 + √

knÃ(n/kn)
1

1 − ρ

− 1

2γ̂kn ρ̂
(α)
kρ

(1 − ρ̂
(α)
kρ

)−1

(
2γ 2(P (2)

1 − 2P
(1)
1

) + √
knÃ(n/kn)

2γρ

(1 − ρ)2

)

= γP
(1)
1 −

γ (1 − ρ̂
(α)
kρ

)

ρ̂
(α)
kρ

(
P

(2)
1 − 2P

(1)
1

)

+ √
knÃ(n/kn)

ρ

(1 − ρ)2

(
1 − ρ

ρ
−

1 − ρ̂
(α)
kρ

ρ̂
(α)
kρ

)
. (A.4)

In the last step, we use the fact that γ̂kn → γ a.s. as n → ∞. Further, the relation

kn/kρ → 0 implies that
√

knÃ(n/kn)√
kρÃ(n/kρ)

→ 0 as n → ∞. Thus, according to Proposi-

tion A.3 and Cramér’s delta method, we get that as n → ∞,

√
knÃ(n/kn)

ρ

(1 − ρ)2

(
1 − ρ

ρ
−

1 − ρ̂
(α)
kρ

ρ̂
(α)
kρ

)
P−→ 0.

Together with the consistency of ρ̂
(α)
kρ

, the expansion (A.4) implies that as n → ∞,

√
kn

(
γ̂kn,kρ ,α − γ

) P−→ γ

ρ

(
P

(1)
1 (2 − ρ) + P

(2)
1 (ρ − 1)

)
.

The theorem is proved by using the covariance structure of (P
(1)
1 ,P

(2)
1 ) given in

Corollary A.2. �

Proof of Theorem 4.2 Denote dn := kn/(npn) and Tn = (M
(2)
kn

−2γ̂ 2
kn

)(1−ρ̂
(α)
kρ

)2

2γ̂kn {ρ̂(α)
kρ

}2
. With

P
(α)
1 defined in Corollary A.2, following the lines of the proof of Theorem 4.1, we

obtain that under the same Skorohod construction as in Proposition A.1,

√
kn

(
Tn − Ã( n

kn
)

ρ

)
− γ (1 − ρ)2

ρ2

(
P

(2)
1 − 2P

(1)
1

) −→ 0 a.s.
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as n → ∞, which implies that Tn → 0 a.s. Together with
√

knÃ
2( n

kn
) → 0 as required

in condition (2.8), we have the stronger result that as n → ∞,

√
knÃ

(
n

kn

)
Tn −→ 0 a.s. (A.5)

Consider the expansion
√

kn

logdn

(
x̂kn,kρ ,α(pn)

x (pn)
− 1

)

=
√

kn

logdn

(
Xn−kn,nd

γ̂kn,kρ ,α

n

x (pn)
− 1

)
(1 − Tn) −

√
kn

logdn

Tn

= d
γ
n U( n

kn
)

U( 1
pn

)

( √
kn

logdn

(Xn−kn,n

U( n
kn

)
− 1

)
d

γ̂kn,kρ ,α−γ

n

+
√

kn

logdn

(
d

γ̂kn,kρ ,α−γ

n − 1
))

(1 − Tn)

−
√

kn

logdn

(
Tn − Ã( n

kn
)

ρ

)
+ Tn

√
knÃ( n

kn
)

logdn

U( 1
pn

)d
−γ
n

U( n
kn

)
− 1

Ã( n
kn

)

d
γ
n U( n

kn
)

U( 1
pn

)

−
√

knÃ
2( n

kn
)

logdn

U( 1
pn

)d
−γ
n

U( n
kn

)
− 1

Ã( n
kn

)

d
γ
n U( n

kn
)

U( 1
pn

)
− 1

Ã( n
kn

)

−
√

knÃ( n
kn

)(Ã( n
kn

) + B̃( n
kn

))

logdn

U( 1
pn

)d
−γ
n

U( n
kn

)
−1

Ã( n
kn

)
+ 1

ρ

Ã( n
kn

) + B̃( n
kn

)

=: I1 − I2 + I3 − I4 − I5.

The third order condition in (2.6) implies that as n → ∞,

∣∣∣∣∣

U( 1
pn

)d
−γ
n

U( n
kn

)
− 1

Ã( n
kn

)
+ 1

ρ

∣∣∣∣∣ = O

(
Ã

( n

kn

)
+ B̃

( n

kn

))
. (A.6)

The limit relation in (A.6) further implies that as n → ∞,

U( 1
pn

)d
−γ
n

U( n
kn

)
− 1

Ã( n
kn

)
−→ − 1

ρ
and

U( 1
pn

)d
−γ
n

U( n
kn

)
−→ 1.

Combining (A.6) with condition (2.8), we get that I4 → 0 and I5 → 0 as n → ∞.
Next, from (A.5), we get that I2 → 0 and I3 → 0 a.s., as n → ∞.
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Lastly, we deal with the term I1. Denote the limit of
√

kn(γ̂kn,kρ ,α −γ ) as 
. Then
we have that as n → ∞,

√
kn

logdn

(
d

γ̂kn,kρ ,α−γ

n − 1
)

−→ 
 a.s.,

which yields 1
logdn

d
γ̂kn,kρ ,α−γ

n → 0 a.s. Together with the facts that Tn → 0 a.s. and

√
kn

(
Xn−kn,n

U( n
kn

)
− 1

)
= O(1) a.s.

as n → ∞, we get that I1 → 
 a.s. as n → ∞. The theorem is proved by combining
the limit properties of the five terms in the expansion. �
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