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ABSTRACT Beyond forming bone, osteoblasts play
pivotal roles in various biologic processes, including
hematopoiesis and bone metastasis. Extracellular vesicles
(EVs) have been implicated in intercellular communica-
tion via transfer of proteins and nucleic acids between
cells. We focused on the proteomic characterization
of nonmineralizing (NMOBs) and mineralizing (MOBs)
human osteoblast (SV-HFOs) EVs and investigated their
effect on human prostate cancer (PC3) cells by micro-
scopic, proteomic, and gene expression analyses. Proteo-
mic analysis showed that 97% of the proteins were shared
among NMOB and MOB EVs, and 30% were novel
osteoblast-specific EV proteins. Label-free quantification
demonstrated mineralization stage-dependent 5-fold en-
richment of 59 and 451 EV proteins in NMOBs and
MOBs, respectively. Interestingly, bioinformatic analyses
of the osteoblast EV proteomes and EV-regulated prostate
cancer gene expression profiles showed that they con-
verged on pathways involved in cell survival and growth.
This was verified by in vitro proliferation assays where
osteoblast EV uptake led to 2-fold increase in PC3 cell
growth compared to cell-free culture medium-derived
vesicle controls. Our findings elucidate the mineralization
stage-specific protein content of osteoblast-secreted EVs,
show a novel way by which osteoblasts communicate with
prostate cancer, and open up innovative avenues for
therapeutic intervention.—Morhayim, J., van de Peppel,
J-» Demmers, J. A. A., Kocer, G., Nigg, A. L., van Driel, M.,
Chiba, H., van Leeuwen, J. P. Proteomic signatures of
extracellular vesicles secreted by nonmineralizing and
mineralizing human osteoblasts and stimulation of tumor
cell growth. FASEB J. 29, 274-285 (2015). www.fasebj.org
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OSTEOBLASTS ARE THE BONE CELLS of mesenchymal origin
that contribute to the strength of the skeletal system by
bone matrix production and mineralization (1, 2). The dis-
covery of various cytokines and chemokines secreted

Abbreviations: EV, extracellular vesicles; MOB, mineralizing
osteoblasts; NMOB, nonmineralizing osteoblasts
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by osteoblasts have underlined the importance of paracrine
signaling in the establishment of favorable microenvi-
ronments that support the regulation of bone homeostasis
as well as the growth, survival, and maintenance of neigh-
boring bone marrow cells (3, 4). In cancer, the osteoblastic
microenvironment acts as a premetastatic niche by at-
tracting bone-metastasizing tumors (5, 6). Identifying the
regulatory mechanism of osteoblast paracrine signaling
network may help us design therapeutics to reduce the risk
of bone disorders and metastases.

Extracellular vesicles (EVs) have emerged as a novel
class of cellular messengers involved in communication
via exchange of bioactive cargo, such as lipids, proteins,
and nucleic acids, among cells (7, 8). EVs are released
under physiologic and pathologic conditions, and they are
involved in various developmental and biologic processes
as well as in disease progression (9, 10). Thanks to their
bioactive content and biocompatibility, EVs have been of
increasing interest for their applications as biomarkers,
vaccines, and drug-delivery agents (11-13). Although
there are no defined terms yet to classify different types
of EVs, 3 processes of EV biogenesis have been well
documented. Exocytosis of multivesicular bodies releases
small vesicles (10-100 nm) called exosomes and exosome-
like vesicles (14). Budding from the plasma membrane
releases a heterogeneous group of vesicles (100-1000 nm),
usually referred to as microvesicles (15). Cells undergoing
apoptosis also release EVs as apoptotic bodies (0.8-5 um)
formed by the breakdown of dying cells (16). Osteoblasts
secrete EVs called matrix vesicles (30-300 nm), which are
mainly involved in mineralization of the newly forming
bone matrix via hydroxyapatite deposition (17). Reports
describing the protein profiles of matrix vesicles
secreted by osteoblast cell lines from different species
indicated that they contain a broad variety of proteins
important for bone mineralization (18-20). However,
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there a few studies demonstrate that matrix vesicles
contain signaling proteins and growth factors, such as
BMPs and VEGF, suggestive of a role in intercellular
communication (21). However, comprehensive informa-
tion about osteoblast-secreted EVs with roles other than
mineralization is still lacking.

In this study, we extensively characterized human
osteoblast-secreted EVs in terms of size, morphology, and
protein content. We report their role in communication
with bone-metastasizing human prostate cancer cells. We
focused on identifying the unique and abundant proteins
packaged within EVs secreted at various time points
during osteoblast differentiation under both mineralizing
and nonmineralizing conditions. We also delineated the
biologic function of osteoblast EVs by showing that they
enter human prostate cancer (PC3) cells and stimulate
their growth in vitro. Our findings define a role for
osteoblast EVsin intercellular communication and provide
a foundation for the development and utilization of EVs
as treatment agents.

MATERIALS AND METHODS
Cell culture

Simian virus 40 immortalized human osteoblast cell line (SV-HFO
cells) established from normal human fetal calvaria was cultured
as described previously with modifications (22). Cell culture
medium was supplemented with FCS (Gibco, Paisley, United
Kingdom) that was depleted of serum-derived EVs by ultracen-
trifugation at 100,000g 90 min, 4°C). PC3 cells were cultured
in a-MEM (Gibco) supplemented with streptomycin/penicillin,
1.8 mM CaCl, (Sigma-Aldrich, St. Louis, MO, USA), and 10% FCS
at37°C. For functional experiments, PC3 cell culture medium was
supplemented with 2% FCS.

Extracellular vesicle isolation

SV-HFOs were refreshed with serum-free medium before EV
isolation. After 24 h, the conditioned medium was subjected to
low-speed centrifugation (1500 rpm, 5 min; 4500 rpm, 10 min)
followed by ultracentrifugation (20,000g, 30 min; 100,000g, 1 h at
4°C) using a SW28 rotor (Beckman Coulter, Fullerton, CA, USA).
The 100,000g EV pellet derived from 20 ml conditioned medium
was resuspended in 20 ul fixative for TEM, 100 ul PBS for
biochemical assays and immunoblotting, and 100 wl PC3 culture
medium for functional experiments. EVs were labeled with
PKHG67 (Sigma-Aldrich) according to the manufacturer’s instruc-
tions. The amount of experimental EV dose was determined
(%, v/v). Cell- and serum-free SV-HFO culture medium was
processes the same way as the conditioned medium and was used
as a control for functional experiments.

Biochemical assays

Alizarin staining, protein concentration, alkaline phosphatase
(ALPL) activity assay, and DNA quantification were per-
formed as described previously (23). In brief, mineralization of
the bone matrix was monitored by Alizarin Red staining of the
calcium matrix. Cells were fixed with 70% ethanol for 60 min
on ice. After fixation, cells were washed with 1X PBS twice and
stained with Alizarin Red solution (saturated Alizarin Red in
demineralized water titrated to pH 4.2 with 0.5% ammonium
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hydroxide) for 10 min. Protein concentration was determined
using the BCA kit (Pierce Biotechnology, Rockford, IL, USA)
following the manufacturer’s instructions. ALPL activity of the
whole-cell lysates and EVs was determined in a colorimetric
assay detecting the release of paranitrophenol from para-
nitrophenyl phosphate upon reaction catalyzed by endoge-
nous ALPL. The activity was displayed as enzyme units per
milligrams of total protein. DNA was quantified by spectro-
fluorometry using ethidium bromide. Samples were analyzed
by a microplate reader using an excitation filter of 340 nm
and an emission filter of 590 nm.

Immunoblot analysis

Protein samples were prepared by mixing the EVs (in PBS) with
6X reducing sample buffer immediately after isolation. EV
proteins (3 ug total protein per sample) were separated by SDS-
PAGE at 200 V and transferred onto a nitrocellulose membrane
(Hybond-ECL; Amersham Biosciences, Buckinghamshire, United
Kingdom). After blocking nonspecific signal with 5% BSA in
TBS/0.1% Tween-20, the membrane was incubated with primary
antibodies against annexin A2 (rabbit polyclonal antibody, 1:500;
Abcam, Cambridge, United Kingdom) and CD63 (rabbit poly-
clonal antibody, 1:1000; Santa Cruz Biotechnology, Dallas,
TX, USA). Membranes were probed with secondary antibody
conjugated with IRDye 800CW (1:5000, goat anti-rabbit; Li-Cor,
Lincoln, NE, USA) using Odyssey Infrared Imaging System
according to the manufacturer’s instructions (Li-Cor).

Flow cytometry

PCS3 cells were incubated with different concentrations (% v/v)
of PKH67-labeled day 12 osteoblast EVs and EV control. After
overnight culture, the mean fluorescence intensity was detected
by flow cytometry (BD Accuri C6; BD Biosciences, San Jose,
CA, USA) using the FITC channel. Absolute cell counts were
determined using counting beads (BD Biosciences).

Transmission electron microscopy

EVs were fixed in 4% formaldehyde (37% solution; Merck, New
York, NY, USA) in 1% glutaraldehyde (25% solution, Merck) at
4°C (Trump fixative). Fixative was removed by incubating the
sample in Millonig buffer (NaHoPO4*H,0O) (BDH Chemicals,
Radnor, PA, USA) for 6 h, followed by postfixation with 1%
osmium tetroxide (4% solution; Electron Microscopy Sciences,
Hatfield, PA, USA). The samples were rinsed with distilled water
and a series of acetone concentrations (50%, 70%, 90%, 96%,
100%). The EV pellets were incubated on pure epoxy resin for
1hat37°C, then embedded in fresh epoxy and polymerized for
12 h at 60°C. The polymerized resin was cut into thin sections
(40-60 nm) with an ultramicrotome (Ultracut UCT; Leica,
Wetzlar, Germany) and a diamond knife (Diatome, Hatfield,
PA, USA) and mounted on a copper grid. The sample was
detected by transmission electron microscopy (Morgagni;
Philips/FEI, Hillsboro, OR, USA).

4Pi microscopy

EV uptake by PC3 cells was monitored using a 4Pi microscope,
which is a confocal fluorescence microscope with an improved
axial resolution by a factor of 5 to 7 over conventional confocal
microscopes (24). PC3 cells were seeded on poly-L-lysine-coated
quartz coverslips. After overnight incubation with PKH67-labeled
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EVs, cells were washed with PBS, fixed with 10% formalin, and
stained with concanavalin A (Alexa Fluor 647 conjugate; Life
Technologies, Carlsbad, CA, USA). The fixed cells were washed
3 times with 0.01 M PBS and then impregnated 3 times with
glycerol 87%. The coverslip was mounted on a special 4Pi sample
holder and covered with another quartz coverslip, using glycerol
87% as mounting medium, giving the whole beam path a
refractive index of 1.458 (25). The coverslips were sealed with
2-componentsilicon (Picodent Twinsil; Wipperfiirth, Germany).
Images were taken with a Leica 4Pi TCS microscope using two
opposing X100 1.35 NA glycerol HCX PL APO objectives. A
2-photon Ti-sapphire laser (Mai Tai; Spectra Physics, Santa Clara,
CA, USA) was used for excitation at a wavelength of 800 nm (26).
Avalanche photo diodes were used for detection of the signals
with a 500 to 550 nm bandpass filter for PKH67 and a 647 to 703 nm
bandpass filter for Alexa647. Images were deconvoluted with
Imspector (Max-Planck Innovation, Munich, Germany). Images
and the video were generated using the Image] 3D Viewer plugin.

Mass spectrometry

EV proteins (8 ug protein per sample) were separated by NuPage
Novex 4-12% Bis-Tris gel (Life Technologies), then stained with
Coomassie (Bio-Rad, Hercules, CA, USA) for 1 h and destained
with water overnight. The 1D SDS-PAGE gel lanes were cut into
2 mm slices with an automatic gel slicer and subjected to in-
gel reduction with dithiothreitol, alkylation with iodoacetamide
(D4, 98%; Cambridge Isotope Laboratories Inc., Tewksbury, MA,
USA), and digestion with trypsin (sequencing grade; Promega,
Madison, WI, USA) (27). Nanoflow liquid chromatography cou-
pled to a tandem mass spectrometer (LC-MS/MS) was performed
on a Series 1100 capillary LC system (Agilent Technologies,
Santa Clara, CA, USA) coupled to an LTQ-Orbitrap XL mass
spectrometer (Thermo Scientific, Waltham, MA, USA) operating
in positive mode (28). Peptide mixtures were trapped on a
ReproSil C18 reverse-phase column (Dr. Maisch GmbH,
Ammerbuch-Entringen, Germany; 1.5 cm X 100 um, packed
in house) at a flow rate of 8 ul/min. Peptide separation was
performed on ReproSil C18 reversed-phase column (Dr. Maisch
GmbH; 15 cm X 50 wm, packed in house) using a linear gradi-
ent from 0 to 80% B [A = 0.1% formic acid; B = 80% (v/v)
acetonitrile, 0.1% formic acid] in 170 min and at a constant
flow rate of 200 nl/min using a splitter. The column eluent
was directly sprayed into the electrospray ionization source
of the mass spectrometer. Mass spectra were acquired in
continuum mode, and fragmentation of the peptides was
performed in a data-dependent mode.

Microarray analysis

PC3 cells were incubated with day 12 osteoblast EVs and their
controls for 4, 24, and 48 h. Total PC3 cell RNA was isolated
using the TRIzol (Life Technologies) extraction method
according to the manufacturer’s instructions. RNA samples
were prepared for microarray analysis using the Illumina
TotalPrep RNA Amplification Kit (Ambion; Life Technolo-
gies) according to the manufacturer’s instructions. Biotiny-
lated cRNA was hybridized to HumanHT-12 v4 Expression
BeadChip (Illumina, San Diego, CA, USA) microarray chips
according to the manufacturer’s protocol. Data acquisition
was performed using iScan (Illumina).

Bioinformatic analysis

The raw MS data were analyzed by MaxQuant software (version
1.3.0.5) (29). A false discovery rate of 0.01 for proteins and
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peptides and a minimum peptide length of 6 amino acids
were required. The Andromeda search engine (30) was used to
search the MS/MS spectra against the Uniprot database
(taxonomy: Homo sapiens, release HUMAN_2013_04) concate-
nated with the reversed versions of all sequences (maximum of
2 missed cleavages; 0.6 Da fragment mass tolerance, enzyme
specificity: trypsin). Only proteins identified with at least 2
unique peptides and 2 quantitation events were considered for
analysis. The data from the replicates were combined as averages
of labelree quantification intensity values for each EV group
defined by the mineralization condition and the day of culture.
Perseus 1.3.0.4 (Max Planck Institute of Biochemistry, 2012)
was used to generate the heat map and scatter plots based on
iBAQ values. DAVID Bioinformatics Resources v6.7 was used
to categorize the proteins into overrepresented processes using
our previously described SV-HFO gene expression data set as
abackground (31, 32). ExoCarta database (release date: May 29,
2012) was used for comparative EV analysis. Ingenuity (Ingenuity
Systems; http://www.ingenuity.com) was used to analyze the
interaction between EV proteome and PC3 genes using the path
explorer tool in My Pathway analysis.

Statistical analysis

The results were described as mean = sb based on at least 2
independent experiments. Significance was calculated by a
2-way ANOVA test, and P values of <0.05 were considered
significant.

RESULTS

Characterization of human osteoblast EVs during
differentiation and under different
mineralization conditions

In this study, we used human preosteoblasts (SV-HFOs),
which differentiate into mature osteoblasts that produce
extracellular matrix and deposit calcium when stimu-
lated with dexamethasone (22). Throughout this study,
dexamethasone-treated and non-dexamethasone-treated
osteoblasts are referred to as mineralizing (MOB) and
nonmineralizing (NMOB) osteoblasts, respectively. To
reduce serum-derived EV contamination, we cultured the
osteoblasts in medium supplemented with EV-depleted
serum followed by serum-free medium for 24 h before
EV isolation. Osteoblasts behaved normally under these
modified conditions, and they underwent proper differ-
entiation and mineralization, as shown by Alizarin Red S
staining of the calcium deposited in the matrix and ALPL
activity (Fig. 14, B).

We isolated EVs secreted by both MOBs and NMOBs on
days 5, 12, and 19 of culture by a series of ultracentrifu-
gation steps; we refer to these 6 different EV preparations
as EV groups. Transmission electron microscopy images
showed that osteoblast EVs had irregular and spherical
structures in wide ranges of diameters, depending on the
stage of differentiation and mineralization (Fig. 1C). EVs
secreted by NMOBs were more heterogeneous in size
(50-1000 nm) than EVs secreted by MOBs (50-250 nm).
We further verified the presence of EVs by testing for known
EV proteins, such as CD63 and annexin A2 (ANXAZ2), by
Western blot analysis (Fig. 1D) (33). We confirmed the
presence of matrix vesicles within the EV groups derived
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Figure 1. Characterization of EVs secreted by NMOBs and MOBs on days 5, 12, and 19 of culture. A) Alizarin Red S staining of
the calcium deposited in the bone matrix. B) ALPL activity (mean * sb) of osteoblasts during differentiation. ALPL activity is
shown as enzyme unit per milligram (U/mg) of total protein. C) Transmission electron microscopy images (original
magnification, X28,000) of each EV group. Scale bar, 500 nm. D) Western blot analysis of EV proteins (3 ug/lane) in NMOB-
EVs (=) and MOB-EVs (+) using antibodies against CD63 and ANXAZ2. F) ALPL activity (mean * sb) measured in NMOB-EVs

and MOB-EVs (n = 3).

from MOBs by measuring ALPL activity that was absent
in EV groups of NMOBs (Fig. 1E). These results show
that human osteoblasts secrete EVs under both non-
mineralizing and mineralizing conditions at different
stages of osteoblast differentiation regardless of matrix
vesicle activity, suggesting a role not primarily linked to
mineralization.

Proteomic profiling of NMOB-EVs and MOB-EVs

EV proteomes of NMOBs and MOBs on days 5, 12, and
19 of culture were analyzed by mass spectrometry, as
previously described (28, 34). Briefly, proteins of isolated
EVs were separated by SDS-PAGE electrophoresis, in-
gel digested, and analyzed by LC-MS/MS. Altogether, we
detected 1120 proteins, among which 946 proteins (84%)
were detected in every EV group despite the morphologic
differences shown in Fig. 1C. These proteins consisted
of commonly known vesicle proteins and were mainly
annotated to a wide array of vesicle-related molecular
functions and biologic processes (Fig. 24). Furthermore,
the overlapping proteins included osteoblast-related pro-
teins linked to skeletal development, mesenchymal differ-
entiation, calcium ion binding, and phosphatase activity,
which can be attributed to the activity of matrix vesicles
(Supplemental Table 1). Figure 2B shows a schematic rep-
resentation of the overrepresented protein families found
in all EV groups.

Next, we combined the protein data from all 3 time
points for each of the mineralization conditions. The Venn
diagram in Fig. 3A shows that 1090 proteins (97% of the
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total proteins) were overlapping. Four and 26 proteins
were uniquely detected in NMOB-EVs and MOB-EVs,
respectively. Comparison with the ExoCarta database (33)
showed that the majority of the mineralization condition-
specific proteins (3 of 4 NMOB-EV and 22 of 26 MOB-EV
proteins) as well as 352 overlapping proteins were uniquely
detected in our osteoblast EVs at the time of the analysis
(Fig. 3A). Gene ontology (GO) annotation analysis indi-
cated that these osteoblast-specific proteins were mostly
annotated to ribonucleoprotein complex, RNA binding,
ribosome, initiator factor, and nucleotide binding (Fig. 3B).
Table 1 lists the osteoblast-specific proteins that were
uniquely detected in either NMOB-EVs or MOB-EVs.
Together, these findings show that osteoblast EVs are
enriched with known vesicular proteins while they also
contain unique proteins depending on the mineraliza-
tion condition.

Label-free quantitative distribution of osteoblast
EV proteins

Absolute protein abundances can be estimated by label-
free methods based on quantification using the peak
intensities of the LC-MS/MS data. We used the iBAQ
values from the MaxQuant analysis output to identify
the most abundant proteins in each EV group and com-
pared the protein abundances between the different EV
groups (35). The most abundant EV proteins were the
commonly known vesicular proteins, such as ANXA2,
GAPDH, CD9, ENOI, and PDCD61P, for all EV groups
(Fig. 4A) (33). Interestingly, all EV groups contained
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Figure 2. Protein profiling of NMOB-EVs and MOB-EVs on
days 5, 12, and 19 of culture. A) GO annotations for cellular
components, molecular functions, and biologic processes of
EV proteins shared across the 6 EV groups (n = 2). Only the
highest significantly (Benjamini P < 0.001) overrepresented
terms are shown. B) Schematic representation of the protein
families detected in all EVs determined on the basis of
literature and Ingenuity analyses.

high levels of histones. The multiscatter plots in Fig. 4B
show a strong correlation between the protein content
of the different EV groups. EV proteins isolated at dif-
ferent time points during culture showed a higher corre-
lation when compared within a culture condition (i.e,
within NMOBs and MOBs) than between the culture
conditions. The differences between EVs derived from
NMOBs and MOBs became more apparent as the cells
started to mineralize on day 12 (day 5, r= 0.959; day 12,
r=0.912; day 19, r= 0.905).

Next, we compared the average intensities of NMOB-EV
and MOB-EV proteins isolated on the same day of cul-
ture to identify specifically enriched EV proteins. Proteins
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Figure 3. Identification of novel osteoblast-specific EV proteins.
A) Venn diagram showing numbers of proteins in EVs derived
from NMOBs and MOBs and comparison with proteins reported
in ExoCarta. B) GO annotations of novel osteoblast EV proteins
(A) not recorded in ExoCarta. Only the highest significantly
(Benjamini P < 0.001) overrepresented terms are shown.
Brackets indicate number of proteins for each term.

with more than 5-fold increase in iBAQ) intensities were
regarded as more abundant in either one of the EV groups
on that specific day of culture (Fig. 4C-E). In accordance
with the scatter plots, the number of abundant MOB-
EV proteins showed a strong increase from 46 to 279
and 321 on day 12 (onset of mineralization) and 19 (full
mineralization), respectively (Fig. 4D, E). Surprisingly,
these proteins were mostly annotated to RNA binding and
processing, and not to matrix vesicle—-dependent min-
eralization. NMOB-EVs were mainly enriched with cell
adhesion—associated extracellular matrix proteins and
chromosomal proteins. Table 2 provides a representative
list of proteins that were detected with more than 5fold
abundance in NMOB-EVs and MOB-EVs. The Venn
diagrams in Fig. 4/ and G show the distribution of the
proteins (Fig. 4C-E) specifically enriched in either NMOB-
EVs (Fig. 4F) or MOB-EVs (Fig. 4G) over the different
culture time points. HMGA2, PLAU, TNC, and HIST1HIC
were highly abundant at every time point in NMOB-EVs.
MOB-EVs were enriched with 22 proteins throughout
culture, among which ALPL and CD109 showed the most
striking abundance. These results show that despite the
similarity in protein content, osteoblast EVs are enriched
with distinct proteins depending on the mineralization
condition and the stage of differentiation.
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TABLE 1. List of osteoblast-specific proteins uniquely detected in either NMOB-EVs or MOB-EVs

Osteoblast UniProt accession Gene symbol Description
NMOB-EV QIBUB4 ADATI tRNA=specific adenosine deaminase 1
P19784 CSNK2A2 Casein kinase II subunit alpha
Q02539 HISTIHIA Histone H1.1
MOB-EV Q8TDN6 BRIX1 Ribosome biogenesis protein BRX1
homolog
P45973 CBX5 Chromobox protein homolog 5
Q777A1 CNTRL Centriolin
QIUBL6 CPNE7 Copine-7
QINVP1 DDX18 ATP-dependent RNA helicase DDX18
P23743 DGKA Diacylglycerol kinase alpha
QIHCEO EPG5 Ectopic P granules protein 5 homolog
P46976 GYGI Glycogenin-1
Q13151 HNRNPAO Heterogeneous nuclear
ribonucleoprotein A0
000425 IGF2BP3 Insulinlike growth factor 2 mRNA-
binding protein 3
043731 KDELR3 ER lumen protein retaining receptor 3
Q6VAB6 KSR2 Kinase suppressor of Ras 2
015243 LEPROT Leptin receptor gene-related protein
QYHOPO NT5C3 Cytosolic 5-nucleotidase 3
Q8TAD7 0CCI Overexpressed in colon carcinoma 1
protein
Q5T091 RERI Protein RER1
QIGZN7 ROGDI Protein rogdi homolog
P67812 SECIIA Signal peptidase complex catalytic
subunit SEC11A
P61011 SRP54 Signal recognition particle 54 kDa
protein
Q13242 SRSF9 Serine/arginine-rich splicing factor 9
014787 TNPO2 Transportin-2
P11172 UMPS Uridine 5-monophosphate synthase

Effect of osteoblast EVs on PC3 cell growth

We next tested the functionality of EVs in intercellular
communication. For this, we chose the osteoblast-prostate
tumor cell interaction. Proteomics analyses indicated
that the EV proteome content of NMOBs and MOBs
started to show greater specificity on day 12 of culture.
Therefore, we focused on day 12 EVs. We analyzed
whether osteoblast EVs regulate PC3 cell growth and
survival in vitro. First we evaluated the uptake of
osteoblast EVs by PC3 cells using fluorescence labeling.
High-resolution 4Pi microscopy analysis confirmed that
PC3 cells internalized the PKHG67-labeled osteoblast
EVs within 24 h (Fig. 5A, B, Supplemental Video). Flow
cytometry analyses indicated that EV uptake was dose
dependent (Fig. 5C).

We then performed microarray analysis to investigate
the effect of osteoblast EV treatment on the gene ex-
pression profile of PC3 cells. We incubated PC3 cells
with day 12 NMOB-EVs and MOB-EVs, and collected RNA
after 4, 24, and 48 h. Interestingly, treatment with the 2
different EV groups resulted in regulation of different
sets of prostate cancer genes (Supplemental Table 2).
We identified 98 and 76 genes that were regulated more
than 1.5fold by NMOB-EVs and MOB-EVs, respectively,

PROTEOMIC SIGNATURES OF EXTRACELLAR VESICLES

compared to the control-treated cells (Fig. 5D). The 2
overlapping genes were F'THLS and LOC728499, and they
were down- and up-regulated by both EV groups, re-
spectively. The majority of the genes in both treatment
groups were down-regulated (74 of 96 genes by NMOB-
EVs and 48 of 74 genes by MOB-EVs). Ingenuity analysis
indicated that even though the regulated genes were
different, they were annotated to similar molecular and
cellular functions mainly related to cell growth and survival
(P<<0.05). We assessed the effect of osteoblast EVs on PC3
cell growth by culturing the tumor cells with different EV
concentrations for 5 d. Both NMOB-EVs and MOB-EVs
induced 2fold increase of absolute cell numbers com-
pared to control-treated cells (Fig. 5E).

We used bioinformatics to integrate the proteomics
and microarray data, and thus correlate the proteome
of day 12 osteoblast EVs to the EV-regulated PC3 genes.
We used Ingenuity software to build a network show-
ing the direct molecular relationships between the EV
proteins and the regulated PC3 genes for each treatment
group (Fig. 6). Twenty-five of the 98 NMOB-EV-regulated
PC3 genes were mapped with 157 of 980 day 12 NMOB-
EV proteins (Fig. 6A). The majority of the proteins were
annotated to vesicle and ribosomal proteins, and mainly
interacted with YWHAG and PAK2. For the MOB-EV
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Figure 4. Comparative proteomic analysis of EVs secreted from NMOBs and MOBs during 19 d of culture. A) Heat map showing
protein abundances (iBAQ values) across the 6 EV groups. The most abundant proteins including the top identified EV markers
(ExoCarta) are shown next to the heat map. Red, high abundance; green, low abundance; gray, no signal. B) Multiscatter plots
show the strong correlation between NMOB-EV and MOB-EV protein abundances. Venn diagrams (C-G) show the number of
proteins that are at least 5-fold more abundant in either NMOB-EVs or MOB-EVs on (C) day 5, (D) day 12, and (E) day 19, and
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treatment, 38 of 76 genes interacted with 337 proteins
of 1079 day 12 MOB-EV proteins (Fig. 6B). Most of the
mapped proteins were ribosomal proteins and interacted

predominantly with RAD2I and CDK5. Together, these  stimulate cell growth.
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results show that NMOB-EVs and MOB-EVs are both in-
ternalized by PC3 cells and regulate the expression of
different prostate genes, but with both converging to
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TABLE 2. Representative list of proteins significantly enriched (> 5-fold) in either NMOB- or MOB-EVs

Osteoblast UniProt accession

Gene symbol

Description

NMOB-EV
Extracellular matrix proteins

P08253 MMP2 72 kDa type IV collagenase
P00749 PLAU Urokinase-type plasminogen activator
Q15582 TGFBI Transforming growth factor f—induced protein ig-h3
P35442 THBS2 Thrombospondin-2
P24821 TNC Tenascin
P13611 VCAN Versican core protein
Chromosomal proteins
P07305 HIFO Histone H1.0
P16403 HISTIHIC Histone H1.2
P62805 HISTIH4A Histone H4
P17096 HMGA1 High mobility group protein HMG-I
P52926 HMGA2 High mobility group protein HMGI-C
MOB-EV
Ribonucleoprotein complexes
Q00839 HNRNPU Heterogeneous nuclear ribonucleoprotein U
Q12906 ILF3 Interleukin enhancer-binding factor 3
P49207 RPL34 60S ribosomal protein 1.34
P62847 RPS24 408 ribosomal protein S24
Q92616 GCNIL1 Translational activator GCN1
RNA binding proteins
QINR30 DDX21 Nucleolar RNA helicase 2
QIY2L1 DIS3 Exosome complex exonuclease RRP44
P20042 EIF2S2 Eukaryotic translation initiation factor 2 subunit 2
Q01081 U2AFI1 Splicing factor U2AF 35 kDa subunit
QI9HAV4 XPO5 Exportin-5
Nucleotide binding proteins
QIUNB6 G3BP2 Ras GTPase-activating protein-binding protein 2
P54652 HSPA2 Heat shock-related 70 kDa protein 2
000425 IGF2BP3 Insulinlike growth factor 2 mRNA-binding protein 3
Q14566 MCM6 DNA replication licensing factor MCM6
P22694 PRKACB cAMP-dependent protein kinase catalytic subunit
GTPase activity
P84085 ARIS5 ADP-ribosylation factor 5
QINZN4 EHD2 EH domain—containing protein 2
P20591 MX1 Interferon-induced GTP-binding protein Mx1
P61020 RAB5B Ras-related protein Rab-5B
P08134 RHOC Rho-related GTP-binding protein RhoC
Other
Q09666 AHNAK Neuroblast differentiation-associated protein AHNAK
P05186 ALPL Alkaline phosphatase, tissue-nonspecific isozyme
Q8ND76 CCNY Cyclin-Y; Cyclin-Y-like protein 2
6YHK3 CD109 CD109 antigen
Q13451 FKBP5 Peptidyl-prolyl cis-trans isomerase FKBP5
DISCUSSION Osteoblasts actively undergo sequential events of dif-

The findings described in this study showed that both
NMOBs and MOB:s secrete EVs selectively packaged with
known vesicle proteins as well as an interesting range of
proteins unique to the mineralization and differentiation
status of the osteoblasts. Osteoblast EVs enter human
prostate cancer cells, regulate the expression of cell
growth-related prostate cancer genes, and stimulate
their growth in vitro, demonstrating their active role in
intercellular communication.

PROTEOMIC SIGNATURES OF EXTRACELLAR VESICLES

ferentiation along the course of their maturation. Previous
work by our group showed the importance of studying
protein and genetic composition of osteoblasts at dif-
ferent stages of their differentiation (22, 28). Here
we used awell-characterized human preosteoblast cell
model to isolate EVs at 3 stages of differentiation to gain
a comprehensive understanding of the osteoblast EV
proteome: premineralization (day 5), onset of mineral-
ization (day 12), and full mineralization (day 19). We also
isolated EVs from NMOBs at the same culture time points
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as a comparison to elucidate the EV proteins not pri-
marily linked to mineralization and thus understand
their role in cell communication. Interestingly, 84% of
the total proteins were shared between all the EV groups,
and 97% were detected at least in one of the time points
in both NMOB-EVs and MOB-EVs. This was surprising
because the transmission electron microscopy images
showed clear morphologic differences between the EVs
secreted by osteoblasts under different mineralization
conditions. A large number of the overlapping proteins
were novel proteins, primarily associated with ribonu-
cleoproteins, which were not recorded in the EV database
ExoCarta at the time of the analysis. Even though we
cannot exclude the notion that part of these proteins may
be arising from nonspecific background, recent studies
reporting the presence of vesicle-associated RNA binding
proteins suggest that our osteoblast EVs contain novel
proteins linked to known vesicle-related processes (36, 37).

We hypothesized that despite the similarities in cargo,
the different EV groups are specifically enriched with
distinct proteins, thus providing clues to their biologic
function. Label-free quantification is a useful proteomics
tool to compare the relative abundances of proteins across
different samples, which leads to a selection of proteins
that can be analyzed for molecular function. All of the EV
groups described in this study contained abundant levels
of the classic vesicle proteins, such as annexins (ANXAZ2,

Figure 5. Internalization of day
12 osteoblast EVs and their func-
tional effect on PC3 cells. A and
B) 4Pi images showing the up-
take of PKH67-labeled NMOB-
EVs by PC3 cells. A) A 3-D
reconstruction of all confocal
stacks. B) Half plane showing
the EVs inside the cells. Images
are representative for MOB-EVs
uptake. Red, cell membrane and
nucleus; green, PKH67-labeled
EVs (Supplemental Movie). C)
Flow cytometry analysis shows
dose-dependent uptake (mean *
sp) of PKH67-labeled EVs by PC3
cells (n = 2). Fold change is de-
termined relative to untreated
cells. D) Venn diagram showing
PC3 genes regulated in response to
day 12 osteoblast EVs (2.86% v/v)
by at least 1.5-fold. Numbers in
brackets denote the genes that
were up- and down-regulated
by the respective EV group. E)
Fold change of PC3 cell count
(mean * sp) after 5 d of in-
cubation with different EV doses
(n=3). *P < 0.05, **P < 0.01.
Control, cell{ree culture medium
processed the same way as condi-
tioned medium.
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ANXAG), tetraspanins (CD9, CD81), and metabolic pro-
teins (GAPDH, LDHA), thus verifying the robustness
of these proteins as vesicle markers. It is interesting to
note that histones were also among the highly enriched
proteins detected in all EV groups. In fact, we previ-
ously showed that histone proteins were among the
most abundant proteins in human bone, suggesting the
likelihood of possessing extranuclear roles (38). There
have been an increasing number of studies reporting
the functionality of circulating nuclear proteins as well
as their presence in apoptotic bodies, exosomes, and
microvesicles (7, 39—41). Although the abundances of the
predominant proteins were similar across all EV groups, we
detected unique group of proteins that were at least 5-fold
more abundant in EVs secreted by either NMOBs or
MOB:s at a given culture time point. Among the bone-
related proteins, ALPL was significantly enriched in
MOB-EVs with an increasing abundance in time, which
paralleled the vesicular and cellular ALPL activity.
Mineralization is indeed one of the most important
processes of bone formation, with a major role for matrix
vesicles. Thus, it is not surprising to observe the high
level of vesicular ALPL activity in MOB-EVs compared
to the donor cells. However, the GO analyses showing
overrepresentation of vesicle-related processes over bone-
related processes suggested a role for EVs not primarily
linked to mineralization. The most striking differences
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Figure 6. Ingenuity network analysis showing the direct relationship maps between the EV-regulated PC3 genes and day 12 EV
proteins for (A) NMOB-EV and (B) MOB-EV treatments. Green, down-regulated PC3 genes; red, up-regulated PC3 genes; gray,
EV proteins; black, EV proteins annotated to vesicles and ribosomes. The most predominantly mapped PC3 genes are

highlighted (blue line).

between the EV groups were the enrichment of adhesion
proteins and RNA binding proteins in NMOB-EVs and
MOB-EVs, respectively.

To investigate the role of EVs in intercellular commu-
nication, we tested EV uptake by prostate cancer cells and
their effect on prostate cancer cell growth. Prostate cancer,
which is one of the most frequently diagnosed cancers
among men, is primarily associated with bone metastasis
(42). Osteoblast microenvironment consisting of a net-
work of receptors and secreted factors acts as an attractive
force and regulator of tumor cell growth (43). We showed
that PC3 prostate cancer cells dose-dependently internal-
ized PKH67-labeled EVs derived from both NMOBs
and MOBs. The fluorescence intensity of PC3 cells
treated with MOB-EVs was higher than those treated with
NMOB-EVs at any given EV dose. Because of the chal-
lenges of absolute quantification of EVs, it is difficult to
make an accurate quantitative comparison between the EV
groups (44). Moreover, the mode of internalization may
contribute to the difference in fluorescence signal. EVs
that are internalized via endocytosis are more likely to
retain a stronger PKH67 signal compared to the EVs that
transfer their cargo via fusion in a host cell’s plasma
membrane. Here, we observed that osteoblast EVs retained
their fluorescence upon overnight culture. Therefore it
seems that endocytosis is involved in their uptake;
however, we cannot rule out the involvement of other
uptake modes.

PROTEOMIC SIGNATURES OF EXTRACELLAR VESICLES

Studying the molecular mechanism of cancer survival
and growth is an important area of investigation. In
particular, bone metastasis, which is considered an
incurable stage of the disease, is of great interest with
clinical significance. Our EV treatment studies demon-
strated that both NMOB-EVs and MOB-EVs stimulated
the growth of PC3 cells in vitro. This shows that os-
teoblast EVs are not only internalized by the prostate
cancer cells but also that they are functional and can
stimulate prostate cancer cell growth. This was further
supported by PC3 cell gene expression analysis, which
revealed the EV-regulated prostate cancer genes were
mainly involved in cell survival and growth. It is
important to note that the 2 EV groups affected the
regulation of different sets of prostate cancer genes,
which were annotated to similar molecular functions.
This was most likely due to the differences in their
bioactive cargo, which may act via different pathways
but lead to the same biologic outcome.

Proteomic analyses showed that there are differences
in protein abundances between day 12 NMOB-EVs and
MOB-EVs. When we mapped the EV proteins with the
regulated prostate genes in an interaction network, we
found that the MOB-EV-regulated genes were mostly
mapped with ribosomal and RNA binding proteins.
Previous studies showed the role of ribosomal proteins
in physiologic events, such as proliferation and cell
growth, besides the well-known role in protein
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biosynthesis (45). Lai and Xu (46) showed that ribosomal
proteins are also involved in cancer progression and
metastasis. In particular, ribosomal proteins have been
shown to have elevated expression levels in prostate
tumors and hence play an important role in prostate
cancer development (47, 48). NMOB-EV-regulated genes
were mostly mapped with known vesicle proteins, mainly
consisting of signaling proteins and chaperones, as well as
ribosomal proteins that may act via different pathways
than the MOB-EV proteins. The 14-3-3 family proteins
are involved in various signaling cascades and have
been shown to be regulators of prostate cancer tumor
formation with the exception of 14-3-3¢ protein, a tumor
suppressor, which is, most interestingly, not present in
osteoblast EVs (49, 50). Chaperones such as heat shock
proteins have been shown to be negative regulators
of apoptosis during prostate tumorigenesis, suggesting
an antiapoptotic role for our chaperone-containing
osteoblast EVs (51). With the growing interest in the
field, more comprehensive information on EV compo-
sition and knowledge of their molecular function in
diverse biologic and pathologic processes is becoming
of utmost importance. Alternatively, increasing reports
on EV biogenesis, content, and targeting may provide
the basis for their exploitation as carriers of therapeutic
cargo for targeted cancer therapy, cell therapy, and
tissue engineering (52-54). In this study, we demonstrated
that osteoblast EVs play a role in the cross-talk between
osteoblasts and prostate cancer cells, highlighting the
importance of EV cargo in cancer regulation. We
anticipate that deeper investigation of EV function in
the bone microenvironment will help us develop
preventive or curative therapies for a broad range of
pathologic conditions.

In conclusion, our data provide insights into the
morphology and proteomic composition of osteoblast
EVs at different stages of differentiation under mineral-
izing and nonmineralizing conditions. The proteomic
analyses presented here suggest a role for osteoblast
EVs in intercellular communication besides a well-
characterized role in mineralization. We further demon-
strate the existence of an EV-driven interaction between
osteoblasts and prostate cancer cells, stressing the
clinical/pathophysiological significance of our data.
Challenges still remain, however, because we need opti-
mized tools to quantify and separate different subpopu-
lations of EVs and to interpret the roles of individual
proteins in the context of communication. The present
study unequivocally demonstrates that osteoblasts pro-
duce EVs that can enter other cells and stimulate their
proliferation. This provides an additional way by which
osteoblasts may regulate their microenvironment—not
only in metastatic prostate cancer cells but also in the
surrounding bone marrow cells, such as hematopoietic
stem cells and osteoclasts.
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