Wayne State University DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2012

Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors

Daochun Sun Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Recommended Citation

Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). *Wayne State University Dissertations*. Paper 558.

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS

by

DAOCHUN SUN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2012

MAJOR: MOLECULAR BIOLOGY AND GENETICS

Approved by:

Advisor

Date

© COPYRIGHT BY

DAOCHUN SUN

2012

All Rights Reserved

DEDICATION

This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them.

ACKNOWLEDGMENTS

I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true.

I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr. Gregory Kapatos for his understanding and support at the critical time, and Dr. James Garbern for his suggestions for this project at the very beginning. I gratefully acknowledge Dr. Janice Kraniak for her generous help during these years, her assistance with my experiments, and for especially teaching me the importance of precision in science. I also want to thank Mrs. Suzanne Shaw and Mrs. Mary Ann from CMMG, and Mrs. J'nice Stork from Karmanos Cancer Institute for their consideration and assistance throughout my study, and making my overseas education feel like home.

TABLE OF CONTENTS

Dedication	ii
Acknowledgementsii	ii
List of Tables	vi
List of Figuresvi	ii
List of Supplementary Tablesi	X
List of Abbreviations	x
Chapter I: Neurofibromin, a RAS-GAP and more	1
Introduction	1
Chapter II: Identification of downstream gene expression regulation of neurofibromin 2	1
Summary	1
Materials and Methods2	3
Results	8
Discussion	8
Chapter III: The role of BMP2 in MPNST cells	9
Summary 5	9
Materials and Methods	1
Results	4
Discussion	2

Chapter IV: Conclusions and significance	
References	
Abstract	
Autobiographical Statement	

v

LIST OF TABLES

Table 1: Mutations assayed for each of the 19 oncogenes in the OncoCarta v1.0 Mutation Panel. 53
Table 2: Definition of data set and pathway association
Table 3: EDN1 related gene expression changes in DS-6 with literature supports55
Table 4: Canonical pathways associated to the down-regulated genes in DS-955
Table 5: Literature based pathways associated to the downregulated genes in DS-9
Table 6: Canonical pathways associated to the upregulated genes in DS-9
Table 7: Literature based pathways associated to the upregulated genes in DS-957
Table 8: Canonical pathways associated to the downregulated genes in DS-1057
Table 9: Literature based pathways associated to the downregulated genes in DS-10
Table 10: Canonical pathways associated to the upregulated genes in DS-10

LIST OF FIGURES

ig. 1 Domain scheme of neurofibromin with reported protein-ligand interactions	
Fig. 2 The signaling pathways downstream of RAS14	
Fig. 3 Neurofibromin and Phos-ERK1/2 in MPNST cell lines	
Fig. 4 Scheme of intersection analysis of gene profiles	
Fig. 5 Verification of interference conditions in MPNST cell lines	
Fig. 6 Quantitative RT-PCfR verification of <i>Edn1</i> expression in microarrays	
Fig. 7 EDN1 related molecules network built by the IPA	
Fig. 8 Quantitative RT-PCR analysis of <i>Edn1</i> mRNA expression in MPNST cell lines	
Fig. 9 <i>Bmp2</i> mRNA expression in NF1-associated tissue samples	
Fig. 10 Quantitative RT-PCR verification of <i>Bmp2</i> mRNA change in different comparisons	
Fig. 11 Neurofibromin status influences the Bmp2 mRNA expression in STS26T (<i>Nf1</i> ^{+/+})46	
Fig. 12 Inducible RAS expression system in $STS26T(Nf1^{+/+})$	
Fig. 13 Inducible oncogenic RAS failed to change the expression of Bmp2 mRNA47	
Fig. 14 Status of phosphorylated SMAD1/5/8 in MPNST cell lines	
Fig. 15 si <i>Bmp2</i> inhibited <i>Bmp2</i> mRNA accumulation and the phosphorylation of SMAD1/5/8	
Fig. 16 NRAS and BMP2 influence the activity of SMAD1/5/8 independently67	

Fig.	7 Efficacy of LDN-193189 concentration series to inhibit SMAD1/5/8 in T265(<i>Nf1</i> ^{-/-})	69
Fig.	.8 LDN-193189 time dependent inhibition of phosphorylation of SMAD1/5/8 in T265(<i>Nf</i> ^{/-})	; 69
Fig.	9 Migration of MPNST cell lines with LDN-193189 at 24 h in scratch assay with different FBS concentration	76
Fig.	20 The growth curve of T265NonKD	76
Fig.	21 Bmp2 knockdown by lentivirus in ST88-14(<i>Nf1</i> ^{-/-}) impaires cell migration	77
Fig.	2 BMP2 and LDN-193189 influenced the invasion ability of ST88-14(<i>Nf1</i> ^{-/-}) and T265(<i>Nf1</i> ^{-/-})	78
Fig.	23 <i>Bmp2</i> stable knockdown lines indicated decreased invasion properties compared to the control lines.	79

LIST OF SUPPLEMENTARY TABLES

Suppl. Table 1: Primers for qRT-PCR	
Suppl. Table 2: DS-5	87
Suppl. Table 3: DS-6	
Suppl. Table 4: DS-7	97
Suppl. Table 5: DS-8	98
Suppl. Table 6: DS-9	99
Suppl. Table 7: DS-10	177

LIST OF ABBREVIATIONS

- 4EBP1: eukaryotic translation initiation factors 4E binding protein 1
- ALK: Activin-receptor-Like-Kinase
- BMPs: bone morphogenetic proteins
- CDK4: cyclin dependent kinase 4
- CSRD: cysteine and serine rich domain
- Dox: doxycycline
- Edn1: Endothelin 1
- EGFR: epidermal growth factor receptor
- eIF4E: eukaryotic translation initiation factor 4E
- ERK1/2: extracellular signal-regulated kinase1/2
- ESC: embryonic stem cell
- FDA: US Food and Drug Administration
- FISH: fluorescence in situ hybridization
- FTI: farnesyl protein transferase inhibitor
- FTS: S-trans, trans-farnesylthiosalicylic acid
- GAP: GTPase activating protein
- GEF: guanine nucleotide exchange factor
- GePS: Genomatix Pathway System
- GRD: GAP-related domain
- HSC: normal human Schwann cell
- IPA: ingenuity pathway analysis
- IRS1: insulin receptor substrate
- MAPK: mitogen-activated protein kinase

MPNST: Malignant peripheral nerve sheath tumor

- mTOR: mammalian target of rapamycin
- mTORC1: RATOR (regulatory associated protein of mTOR) complex 1
- mTORC2: RICTOR (rapamycin-insensitive companion of mTOR) complex 2
- NLS: nuclear localization sequence
- NSCLC: non-small cell lung cancer
- NT5E: Ecto-5'-nucleotidase
- PDGFR: platelet-derived growth factor receptor
- PDK1: 3-phosphoinositide-dependent protein kinase 1
- PH: PH-like domain
- PI(3,4)P2: phosphatidylinositol 3,4-bisphosphate
- PI(3,4,5)P3: phosphatidylinositol 3,4,5-trisphosphate
- PI3K: phosphoinositide 3-kinase
- PKA: protein kinase A
- PKC: protein kinase C
- qRT-PCR: quantitative polymerase chain reaction
- RHEB: RAS homolog enriched in brain
- S6K1: S6 kinase/ribosomal
- SCLC: small cell lung carcinoma
- SDS-PAGE: SDS polyacrylamide gel electrophoresis
- SKPs: skin-derived precursors
- STAT3: signal transducer and activator of transcription-3
- SYN: Syndecan binding region
- TGF-beta: transforming growth factor-beta
- TSC: tuberous sclerosis complex

VEGFR: vascular endothelial growth factor receptor

CHAPTER I: Neurofibromin, a RAS-GAP and more

Introduction

Neurofibromatosis type I (NF1, OMIM 162200), formerly known as von Recklinghausen Disease, is an autosomal dominant genetic disorder with an incidence of 1:3000 live births. The clinical hallmark features of NF1 are cutaneous neurofibromas, café-au-lait spots, Lisch nodules, and freckling of axillary and inguinal regions (Huson, et al., 1988). Although most neurofibromas develop in adult patients, NF1 can also occur in much younger individuals with manifestations including cognitive deficits, bone deformations, plexiform neurofibromas, optic glioma and a variety of neurologic syndromes (Czyzyk, et al., 2003; Watson, 1967). This inherited disorder is due to the various mutations of the Nfl gene at 17q11.2 that encodes neurofibromin (Bader, 1986; Riccardi, 1992). Neurofibromin is known as a tumor suppressor because of its well characterized RAS GTPase activating protein related domain (GRD) which negatively regulates RAS activity by accelerating the hydrolysis of the active GTP-bound RAS (Xu, et al., 1990). Humans with a genetic mutation in one of the Nf1 alleles show a predisposition for many different kinds of tumors. Patients with plexiform neurofibromas have increased lifetime risk for transformation to highly malignant peripheral nerve sheath tumors (MPNST) (Evans, et al., 2002b), and glioblastoma multiforme can be another malignant manifestation in NF1 patients (Gutmann, et al., 2002). Surgery, the primary treatment, is limited by tumor infiltration and therefore patients often experience high relapse rates. Increased RAS and RAF/MEK/ERK pathways activities have been reported (Basu, et al., 1992) in the patients, however, RAS and/or MEK1/2 targeted therapeutic strategies have met with limited success (Kalamarides, et al., 2012).

The regulation of RAS pathway by RAS-GRD (330 amino acids) in neurofibromin is paramount in development and tumorigenesis; however, as a protein with 2818 amino acids, the functions of most other domains are not very clear. An $NfI^{-/-}$ mouse model with complete loss-of-function of neurofibromin shows embryonic lethality resulting from cardiac abnormalities (Jacks, et al., 1994), but an inducible neurofibromin GRD alone could not rescue the lethality of $NfI^{-/-}$ in mouse embryos (Ismat, et al., 2006). Another intriguing fact is that many different types of single nonsense mutations in the NfI gene encoding region outside the GRD sequence can also lead to the NfI manifestation in patients (L.M.Messiaen, 2008). These findings indicate that neurofibromin may participate in different mechanisms in addition to acting as a RAS GTPase activating protein in development and tumorigenesis. A new strategy is required to explore the function of neurofibromin in various cellular processes and mechanisms.

In this study, we hypothesize that the NF1-related aberrant gene regulations can be

identified by the systematic gene expression profile comparisons using MPNST cell lines with different *Nf1* status. By revealing and characterizing those gene expression changes, the signaling cascades associated with NF1 malignancy may be specified and served as druggable targets for the rational treatment of NF1-related tumors.

Nf1 gene structure and neurofibromin functions

The *Nf1* gene is located at 17q11.2 and spans 280 kb of genomic DNA. It has 57 constitutive exons and 4 alternative splices, encoding a 12 kb mRNA transcript, with a \sim 9 kb open reading frame (Upadhyaya M, 1998). The *Nf1* gene is conserved in many organisms. Bernards et al. reported more than 98% homology between human and mouse amino acid sequences (Bernards, et al., 1993) and approximately 60% homology between Drosophila and human (The, et al., 1997). A much conserved CpG-island-containing promoter has been found in the *Nf1* gene however hypermethylation of this region does not appear to be a common mechanism to silence *Nf1* expression in any NF1-related tumors (Horan, et al., 2000; Horan, et al., 2004). The *Nf1* gene has a myriad of pseudogene sequences on several other human chromosomes revealed by fluorescence *in situ* hybridization (FISH) using labeled *Nf1* cDNA, but none of these pseudogenes encodes a functional protein (Gasparini, et al., 1993). From the study of Luijten et al., these pseudogene sequences are the result of multiple independent

partial duplications of the *Nf1* gene at chromosome 17 followed by sequential inter-chromosomal transposition events (Luijten, et al., 2001).

Neurofibromin is ubiquitously expressed with highest expression level in neural tissues, bone, kidney and spleen (Theos and Korf, 2006). *Nf1* knockout in mice causes embryonic lethality because of abnormal heart development (Brannan, et al., 1994). The protein, neurofibromin, has ~280 kDa molecule weight with several domains such as RAS-GRD, cysteine and serine rich domain (CSRD), tubulin binding domain (TUB), Sec-14 domain, PH-like domain (PH), and Syndecan binding region (SYN) (Fig.1) (S. Welti, 2008). Using a yeast two hybrid system, several proteins have been reported to interact with neurofibromin, including Syndecan (Hsueh, et al., 2001), Caveolin (Boyanapalli, et al., 2006), tubulin (Bollag, et al., 1993), protein kinase A (PKA) (Izawa, et al., 1996) and C (PKC) (Mangoura, et al., 2006), kinesin-1 (Hakimi, et al., 2002), and the amyloid precursor protein (De Schepper, et al., 2006). However, the biological implications of those interactions are still not clear.

The most intensively studied domain in neurofibromin is RAS-GRD encoded by exon 21 to 27a and works as a GTPase activating protein (GAP) to accelerate the hydrolysis of RAS-GTP and inactivate RAS activity. Increased RAS activity has been demonstrated in the cells derived from both NF1 patients and transgenic mice. Phenotypic features of overactive RAS, such as increased proliferation and survival, have been identified in $NfI^{+/-}$ and $NfI^{-/-}$ neural stem cells of mice (Dasgupta, et al., 2005). Hiatt et al. reported that the expression of the neurofibromin GRD domain, not p120GAP GRD can restore normal growth and cytokine signaling in primary murine embryonic ($NfI^{-/-}$) fibroblasts and hematopoietic cell cultures (Hiatt, et al., 2001). Klose et al. demonstrated that a missense mutation in *NfI* RAS GRD (R1276P) leading to an 8000-fold loss of catalytic activity compared to the wild type counterpart is sufficient to cause most NF1 phenotypes (Klose, et al., 1998).

However, some studies also indicated GRD independent tumor suppressor activities in neurofibromin. Johnson et al. reported the malignant transformation efficiency by v-HRAS in the neurofibromin overexpressed NIH3T3 cell line was much lower than the control cells (Johnson, et al., 1994). Another study by Ismat et al. showed that inducible ubiquitous expression of neurofibromin GRD rescued the mid-gestation lethality of *Nf1* null embryos, but the mouse died shortly after birth resulting from aberrant proliferation of neural crest-derived tissues (Ismat, et al., 2006). Shapira et al. showed that neurofibromin conferred sensitivity to apoptosis by both RAS-dependent and RAS-independent pathways (Shapira, et al., 2007). These studies suggest that RAS activity deregulation may not completely explain all the phenotypes in the patients and mice models, and neurofibromin GRD independent function may contribute to the biological development and tumor initiation.

Fig. 1 Domain scheme of neurofibromin with reported protein-ligand interactions. Colored domains and interaction partners are confirmed by structural analysis, and grey domains are indicated by biochemical experiments. Red circles mark the positions of missense mutations found in patients (including amino acid deletions and tandem duplication). Additional features are potential phosphorylation sites for PKA (blue circles) and PKC-alpha (yellow circles, only serine phosphorylation) a bipartite nuclear localization sequence (NLS) and several caveolin binding motifs (CBDs). The GRD indicated in the dark blue is the minimal GAP domain, in midblue the crystallized fragment and in light blue whole fragment with sequence homology to the p120-GAP protein, overlapping with the Tub and Sec domain. CSRD: Cysteine and serine rich domain; Tub: tubulin binding region; Sec: Sec14-like domain; Ph: PH-like domain (D.Kaufmann, 2008). Figure is adapted from *Neurofibromatoses* (S. Welti, 2008) with modification.

For other domains in neurofibromin, Sec14 domain is a lipid-binding domain first identified in S. cerevisiae phosphatidylinositol transfer protein (Sec14p) and also reported in RhoGAPs. Sec14p-like proteins show a great amount of diversification in terms of physiological function and ligand specificity. In neurofibromin, Sec14 domain folds into a globular Sec14p-like lipid binding cage (D'Angelo, et al., 2006) closed by an amphipathic helical segment (Sha, et al., 1998). This structure enables Sec14 domain to hypothetically shuttle lipids between membrane compartments through the aqueous medium (D.Kaufmann, 2008). The PH domain of neurofibromin is identified by comparison with protein data bank, which is believed to interact closely with Sec14 domain in neurofibromin. Generally, PH-like domains show various functions in their host proteins which include structural scaffolds for ligand binding and coupling to signal transduction pathways (Di Paolo and De Camilli, 2006; Duncan, et al., 2005). However, it is hard to predict the precise function of the PH-like domain in neurofibromin considering limited similarity in sequence and structure with other members of the PH superfamily.

Malignant peripheral nerve sheath tumor

Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that develops from the peripheral nerves, preexisting benign neurofibromas, or Schwann cells. Approximately 50% of MPNST occur in the setting of NF1 genetic disease (OMIM ID #162200) with the remainder occurring from NF2 patients or sporadically (Matsui, et al., 1993; Sorensen, et al., 1986). The lifetime risk for NF1 patients to develop an MPNST is 8~13% (Evans, et al., 2002b), and the five-year survival rate is 34-43% (Wanebo, et al., 1993). NF1 patients are most frequently diagnosed with MPNST in the third and fourth decades of life whereas the sporadic form of MPNST is most frequently diagnosed in the sixth and seventh decades of life (Evans, et al., 2002a).

MPNST is thought to arise from the accumulation of additional genetic events in precursor Schwann cells. Neurofibromas are benign tumors and may or may not be associated with the *Nf1* gene. Plexiform neurofibromas are almost exclusively *Nf1*-associated and easily progress to MPNST. Mouse model studies have indicated a heterozygous *Nf1* status was required for the Schwann cells derived plexiform neurofibroma formation and tumor microenvironment (Zhu, et al., 2002). Localized cutaneous neurofibromas and diffuse cutaneous neurofibromas are 90% sporadic and have lower malignant potential (Carroll and Ratner, 2008). However, whether the status of the *Nf1* gene is the only dominator to the malignancy is still questionable.

Currently, several MPNST cell lines are being used as *in vitro* study models, including ST88-14($Nf1^{-/-}$), T265($Nf1^{-/-}$), sNF96.2($Nf1^{-/-}$), sNF02.2($Nf1^{-/-}$) and STS26T($Nf1^{+/+}$). The first four cell lines are Nf1-deficient MPNST, whereas

8

STS26T($NfT^{+/+}$), with the wild type NfT gene, is from a sporadic MPNST. A cytogenetic study of ST88-14($NfT^{-/-}$) showed that the NfT locus has been deleted from one allele while the transcriptional activity on the other allele is greatly decreased (Reynolds, et al., 1992). In addition, a heterozygous nonsense mutation in NfT (C910T) in codon 304 (R304X) of exon 7 was identified in this line (Barkan, et al., 2006). For the T265($NfT^{-/-}$) cell line, there is no NfT mutation reported, however the neurofibromin was hardly detectable in it. The sNF96.2($NfT^{-/-}$) cell line was derived from an NF1 patient with a recurrent mass associated with nerve tissue diagnosed as MPNST. It has an abnormal karyotype and complete loss of heterozygosity with no detectable wild type NfT allele (Fieber, et al., 2003). The sNF02.2($NfT^{-/-}$) was derived from a lung metastasis MPNST in an NF1 patient. The STS26T($NfT^{+/+}$) cell line, with the wild type NfT gene, was established from a sporadic malignant Schwannoma, however, Tp53 expression was completely absent (Dahlberg, et al., 1993; Miller, et al., 2006).

Targeting signaling pathways in the neurofibromatosis type I

Neurofibromin-NRAS axis

Given the function of neurofibromin as a GAP, the increased RAS activity in neurofibromas and NF1-related MPNSTs is the strong rationale emphasizing the focus on neurofibromin-regulated RAS pathway as a potential treatment target in MPNST (Bottillo, et al., 2009; Perry, et al., 2001). There are three types of related *Ras* genes, which encode highly homologous NRAS, HRAS and KRAS (isoforms 4A and 4B). Localization of RAS is critical for its activation. A post-translational modification called prenylation is required to facilitate attachment of RAS to inner cell membrane where the guanine nucleotide exchange factor (GEF) catalyzes the GTP to replace the GDP-bound RAS. During this process, a 15-carbon farnesyl group is transferred from a farnesyl pyrophosphate and linked to the cysteine from the C-terminus of the RAS, and thereafter, the last three residues of the C-terminus are cleaved and the prenylated cysteine is methylated, which enables the membrane localization. This modification that facilitates the inner membrane localization of RAS is a rate-limiting step for the activity of RAS (Basso, et al., 2006; Roy, et al., 2005). The GTP-bound RAS is activated and initiates a myriad of signalling cascades to control cell processes.

Two classes of drugs have been used to inhibit the activation of RAS. Lovastatin, from the statin family, can inhibit HMG-CoA reductase and has been clinically used for lowering cholesterol. As an intermediate of cholesterol biosynthesis, farnesyl pyrophosphate synthesis is impaired by HMG-CoA reductase inhibition (Morgan, et al., 2003), which subsequently impairs the prenylation of RAS. Phase I clinical trials to evaluate lovastatin on improvement of neurocognitive and learning deficits are currently ongoing (NCT00853580, NCT00352599). The second class of drugs belongs to the

farnesyl protein transferase inhibitor (FTI) family that can catalyze the transfer of a farnesyl group to RAS. Growth inhibition of ST88-14(*Nf1*^{-/-}) has been observed after the treatment with FTI BMS-186511, and the patients demonstrates good tolerance profiles (Widemann, et al., 2006; Yan, et al., 1995). Clinical trials using FTI such as tipifarnib to treat young NF1 patients and progressive plexiform neurofibromas (NCT00021541) passed a phase I trial but was suspended at the phase II trial. Some in vitro studies combining lovastatin with FTI suggested promising effects such as arresting cell cycle at the G1 phase and leading to apoptosis by increasing caspase activity in NF90-8(Nf1^{-/-}) and ST88-14(*Nf1^{-/-}*) with no toxic effects in normal rat Schwann cells (Wojtkowiak, et al., 2008). However, it was determined that FTI did not effectively block the NRAS and KRAS prenylation, membrane association and transforming activity, since another type of prenylation of NRAS and KRAS by geranylgeranyl transferase has been reported when farnesyl transferase is inhibited (Lerner, et al., 1997; Whyte, et al., 1997). It can be helpful to combine the inhibitors for the both geranylgeranyl and farnesyl transferases to suppress RAS activation in vivo (Sun, et al., 1998). Previous research from our group identified that HRAS is undetectable, KRAS is weakly detectable, and NRAS is the predominant form of RAS from the other two in MPNST cell lines (Mattingly, et al., 2006).

The RAF-MEK1/2-ERK1/2 axis

RAF is one immediate downstream mediator of RAS and is activated by RAS-GTP (Katz and McCormick, 1997). The significance of the RAF-MEK1/2-ERK1/2 axis in controlling the proliferation and survival of NF1-associated MPNSTs has been characterized in both animal models and human patient cell lines (Johannessen, et al., 2005; Mattingly, et al., 2006). This axis promotes cellular proliferation through upregulation of cyclin D1 expression, and increases the phosphorylation of cyclin dependent kinase 4 (CDK4) and retinoblastoma protein pRB (Chang, et al., 2003). Phosphorylated MEK1/2 has been reported to be present in 91% of 140 MPNST tissues (72 NF1 patients and 68 not), compared with 21% of benign neurofibromas (Zou, et al., 2009a).

Several studies have provided disappointing results for RAF-MEK1/2-ERK1/2 targeted strategies. Sorafenib is a tyrosine kinase inhibitor with multiple effects including inhibition of RAF-dependent phosphorylation of MEK1/2, vascular endothelial growth factor receptor (VEGFR) I, II and III, platelet derived growth factor receptor beta (PDGFRB) and c-Kit (Rini, 2007). However, the results from its clinical Phase II trial were disappointing because of its very limited effects on patients with advanced soft tissue sarcomas (von Mehren, et al., 2012). As the downstream effectors of RAS, MEK1/2-targeted strategies are promising (Diwakar, et al., 2008). The effects of

MEK1/2-blocking agents, such as U0126, CI-1040 and PD98059 were evaluated in the MPNST cell lines (Mattingly, et al., 2006). Although all three drugs showed concentration-dependent proliferation suppression in tested cell lines, PD98059 has primary cytostatic effects, and U0126 and PD184352 (CI-1040) were cytotoxic, which limited their clinical application (Mattingly, et al., 2006).

The PI3K-AKT-mTOR axis

Based on similar clinical features and molecular phenotypes with other disorders known as phakomatoses, Johannessen et al. found that neurofibromin regulated the PI3K-AKT-mTOR (mammalian target of rapamycin, mTOR) axis in NF1-associated MPNST (Johannessen, et al., 2005). Using a cell-based high-throughput chemical library screening approach, Banerjee et al. found that the growth of MPNST can be inhibited by cucurbitacin-I, an inhibitor of the signal transducer and activator of transcription-3 (STAT3), and demonstrated that neurofibromin can regulate cell growth through PI3K-mTOR-STAT3 signaling (Banerjee, et al., 2010).

Loss of neurofibromin leads to the increased activity of RAS, and further elevates the RAF-MEK1/2-ERK1/2 axis and PI3K-AKT-mTOR axis, which promote cell proliferation and survival, respectively. Abbreviations: RAF, Raf proto-oncogene serine/threonine-protein kinase; ERK1/2, extracellular signal-regulated kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; TSC: tuberous sclerosis complex; Rheb: RAS homolog enriched in brain; 4EBP1: eukaryotic translation initiation factors 4E binding protein 1; eIF4E: eukaryotic translation initiation factors 4E; S6K1, S6 kinase/ribosomal; IRS1, insulin receptor substrate 1; GF, growth factor.

The hyperactive RAS in the situation of *Nf1* deficiency can activate PI3K which catalyzes the phospholipid second messengers, phosphatidylinositol two 3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]. These two phospholipids promote the translocation of 3-phosphoinositide-dependent protein kinase 1 (PDK1), and PDK1 phosphorylates AKT at Ser473 and Thr308, which activates AKT and enables the phosphorylation of AKT downstream effectors including The activated mTOR forms two complexes, mTORC1 and mTORC2 by mTOR. binding to RAPTOR (regulatory associated protein of mTOR, complex 1) or RICTOR (rapamycin-insensitive companion of mTOR, complex 2), respectively. mTORC1 can activate the downstream S6 kinase (S6K1/ribosomal) and the eIF4E (eukaryotic translation initiation factor 4E) to regulate protein translation process (Guertin and Sabatini, 2005). mTORC2 can phosphorylate AKT leading to a positive feedback to further increase the activity of mTORC1. However, the S6K1, downstream of mTORC1, has a negative effect on AKT activity by phosphorylating insulin receptor substrate (IRS1) protein, the inactive form of IRS1 which cannot stimulate PI3K (LoPiccolo, et al., 2008). Both AKT and mTOR have been demonstrated to have increased activities in MPNST cell lines, $sNF02.2(Nf1^{-/-})$, $sNF96.2(Nf1^{-/-})$, $T265(Nf1^{-/-})$, $ST88-14(Nf1^{-/-})$ and the sporadic MPNST STS26T($Nf1^{+/+}$) and patient tissues (Zou, et al., 2009b). These studies focused interest on the mTOR pathway as a potential drug target.

Rapamycin and its several other analogues have been evaluated in the MPNST cell

lines. Rapamycin is an antifungal agent isolated from Easter Island. It has been approved by US Food and Drug Administration (FDA) for use after renal transplantation as an immunosuppressant. These compounds function as the inhibitor of mTORC1, which suppresses the downstream protein synthesis initiation (Wan and Helman, 2007). Rapamycin and its derivative RAD001 have been demonstrated to inhibit the proliferation of NF1-related and sporadic MPNST cell lines (Johannessen, et al., 2005) and the xenograft growth of STS26T($Nf1^{+/+}$) (Johansson, et al., 2008). However, the inhibitory effect of rapamycin and RAD001 on MPNST proliferation is reversible after stopping the drug treatment. Despite these limitations, several clinical trials (NCT00652990, NCT00634270, NCT01412892, NCT01365468, NCT01031901) are currently testing the rapamycin or RAD001 on plexiform neurofibromas, alleviation of tuberous sclerosis complex, and low-grade gliomas in children.

Gene expression studies in NF1-related MPNSTs

Gene expression microarray studies have been widely used to identify the gene signatures of the MPNST. Lee et al. first applied the cDNA microarray to the comparison of $T265(Nf1^{-/-})$ cell line and normal human Schwann cells, and they identified about 900 differentially expressed genes in $T265(Nf1^{-/-})$ out of 4608 cDNA probes (Lee, et al., 2004). Watson et al. tested the primary human NF1-associated and sporadic MPNST samples by using oligonucleotide microarrays representing 8100

unique human genes, but they failed to define a reliable molecular signature to distinguish sporadic and NF1-associated MPNST tissue samples (Watson, et al., 2004). Miller et al. compared eight MPNST cell lines with normal human Schwann cells and identified a molecular signature consisting of 159 genes that could separate them (Miller, et al., 2006b). Research from this group compared the primary human samples from different subtypes of neurofibromas and MPNSTs, and the results indicated that the overexpressed gene *Sox9* may provide a biomarker of survival gene in NF1-related MPNSTs (Miller, et al., 2009).

The above studies have provided enormous data on gene expression changes in MPNSTs, however, a direct analysis of aberrantly expressed gene regulation by neurofibromin deficiency or their relationship to RAS-MEK signaling were not demonstrated.

NF1 tumorigenesis and microenvironment

NF1 is an autosomal dominant disease, and haploinsufficiency of *Nf1* has been proven to induce some clinical traits in the NF1 patients. In particular, the study of Cichowski et al. suggested that loss of heterozygosity in the *Nf1* locus is required to form the neurofibromas (Cichowski, et al., 1999). To form the malignant neurofibromas, additional genetic defects in *Tp53*, *Pten*, and *Cdkn2a* have been reported (Castle, et al., 2003; Zhu, et al., 2002). Heterozygous mouse models with both *Nf1* and *Tp53* developed MPNST with complete penetrance (Vogel, et al., 1999). In addition, overexpression of PDGFR (platelet-derived growth factor receptor) and EGFR (epidermal growth factor receptor) have been reported by gene expression profiling studies as well as by quantitative RT-PCR in MPNST tumor samples (Levy, et al., 2004).

The connection between Nf1-related malignancy and microenvironment has been well-established by the knockout mice studies. Although the combined Nf1 and Tp53 heterozygous mice showed 100% penetrance for MPNST occurrence, Nf1 heterozygous mice failed to develop neurofibromas (Jacks, et al., 1994). However, when the Nfl was selectively knocked out in Schwann cells by Cre/LoxP methodology but with heterozygous Nfl status in other somatic tissues, the mice developed classic plexiform neurofibromas with mast cell infiltration, resembling human neurofibromas (Zhu, et al., 2002). This study confirmed the Schwann cell origin of plexiform neurofibromas and indicated that Nf1 haploinsufficiency in the tumor surroundings and nullizygosity at Nf1 locus in Schwann cell were both required for the neurofibroma formation. A recent study revealed that there are different susceptible windows for Schwann cells to develop plexiform neurofibromas (Le, et al., 2011). When Nfl was knocked out from Schwann cell precursors at E12.5 or immature stage in the neonates with the Nfl heterozygous background, all the mice exhibited plexiform neurofibromas along the spinal cord after 5 to 6 months, however, NfI ablation in adult mice seldom leads to the tumor formation according to this study.

The microenvironment was demonstrated to contribute to *Nf1*-associated dermal neurofibromas. Le et al. identified *Nf1*-deficient skin-derived precursors (SKPs) that can give rise to plexiform or dermal neurofibromas with support from their local microenvironment after *ex vivo* ablation of *Nf1* in SKPs and subsequent implanting into the vicinity of the sciatic nerve in mice (Le, et al., 2009). This study highlighted that the surrounding neurons and adjacent cell types may form the specific microenvironment to facilitate the differentiation of SKPs to the Schwann cell lineage, which created an opportunity to form neurofibromas. A mouse embryonic stem cell (ESC) model has proved that neuregulin-1, normally secreted by neurons, could induce the ESC to differentiate into Schwann cells *in vitro* (Roth, et al., 2007). These facts emphasize the role of microenvironment in *Nf1*-related tumorigenesis.

In addition to the communication between Schwann cells and neurons during tumor formation, mast cells were identified as another effector in microenvironment to contribute to the process. When EGFP; $NfI^{+/-}$ bone marrow was transferred to lethally irradiated mice (*Krox20; NFI*^{flox/flox}), multiple discrete tumors formed from the dorsal root ganglia of recipients and extensive EGFP labeled mast cells infiltration around the peripheral nerve were observed after 6 months (Yang, et al., 2008). Furthermore, Yang et al. demonstrated that bone marrow transplant with mutant c-kit receptor and $NfI^{+/-}$ to the same recipients as above decreased the evidence of tumors, which indicated the inhibition of c-kit receptor could be an effective method to treat the neurofibromas (Yang,

et al., 2008). Currently, imatinib mesylate, an inhibitor of c-kit dependent tyrosine receptor kinase, is at the phase II clinical trial for neurofibroma treatment (Kalamarides, et al., 2012).

In summary, the knowledge of molecular mechanisms in NF1-related tumorigenesis has been greatly accumulated by recent studies, and many details indicate that the functions of neurofibromin are not limited to the GTPase activating protein to regulate RAS signaling. Since there are so few therapeutic strategies targeting NF1-related tumors in clinics, a systematic study to reveal the signaling cascades downstream of neurofibromin is required to identify the pathological mechanisms and pathways so as to suggest new therapeutic targets.

In the following chapters, we establish a high-throughput method to classify the aberrant gene expression changes according to the NRAS, MEK1/2 signaling in MPNST cell lines and reveal novel neurofibromin related but NRAS-MEK1/2 independent pathways.

CHAPTER II: Identification of downstream gene expression regulation of neurofibromin

Summary

The hypothesis in the dissertation is that the NF1-related aberrant gene regulations can be identified by systematic gene expression profile comparisons using MPNST cell lines with different Nf1 status. We expected to use microarray analysis in MPNST cell lines to develop a detailed scheme of gene expression and identify novel regulation of downstream targets of neurofibromin thus leading to a better of understanding of molecular mechanisms of this disease and new concepts for drug discovery. Although the elevated NRAS and mitogen-activated protein kinase (MAPK) have been characterized in NF1 patients and animal models (Kraniak, et al., 2010; Martin, et al., 1990), the gene expression changes specific to these pathological pathways have not been elucidated. To answer these questions, we developed gene expression data by Agilent whole human genome microarray under designed scenarios where the NRAS and MEK1/2 activities were manipulated. ST88-14($Nf1^{-/-}$) was employed to identify neurofibromin related differentially expressed genes accumulated during the MPNST tumorigenesis and Nf1 interference in STS26T(Nf1^{+/+}) was used to identify acute Nf1 deficiency responses. By integrating Nf1-dependent gene expression with that of altered

NRAS and MEK1/2 interference, we could discriminate neurofibromin-related from NRAS and MEK1/2 dependent gene expression changes, and these genes may reveal new mechanisms in neurofibromin-related tumorigenesis.
Materials and Methods

Cell culture and chemical treatment

Human MPNST ST88-14(*Nf1*^{-/-}) cells (a generous gift from T. Glover, University of Michigan, Ann Arbor, MI, USA) and STS26T($Nf1^{+/+}$) cells (a generous gift from D. Scoles, Cedars-Sinai Medical Center, Los Angeles, CA, USA) were maintained in RPMI 1640 medium (Invitrogen) supplemented with 5% fetal bovine serum (Hyclone Laboratories). T265($Nf1^{-/-}$) cell line (a generous gift from G. De Vries, Hines VA Hospital, Hines, Illinois, USA) was cultured in DMEM (Invitrogen) supplemented with 5% fetal bovine serum. $sNF96.2(Nf1^{-/-})$ and $sNF02.2(Nf1^{-/-})$ cell lines were purchased from American Type Culture Collection and cultured in DMEM supplemented with 10% fetal bovine serum. Normal human Schwann cell lines HSC291, HSC361, and HSC338 (generous gifts from Patrick M. Wood, University of Miami Miller School of Medicine, Miami, FL, USA) were cultured in DMEM supplemented with 10% FBS, 2 µM forskolin, and 10 nM heregulin. Cell lines were checked periodically for mycoplasma with Venor GeM Mycoplasma Detection Kit (Sigma-Aldrich). Cultures were propagated for no more than 3 months, 10 μ M U0126 (CalBiochem) was applied to the ST88-14(Nf1^{-/-}) pre-seeded in 10 cm plate for 18h before harvest for mRNA.

siRNA gene knockdown

Human *Nf1* siRNA, *NRas* siRNA, control siRNA and siRNA Transfection Reagent (Santa Cruz Biotechnology) were used according to the manufacturer's instructions. STS26T(*Nf1*^{+/+}) cells were plated at 1.5×10^5 cells per 10 cm plate 24 h prior to transfection. 4 µl of siRNA (~30nM) and 4 µl of siRNA transfection reagent, each diluted in 400 µl of OptiMem (Invitrogen), were combined and after a 30 minute incubation added to the 3.2 ml of OptiMem in each plate. The same amount of scrambled control siRNA was used as control. Following a 6 h incubation of cells with transfection solution, medium was replaced by growth medium. Cells were harvested 48 to 72 h later. For ST88-14(*Nf1*^{-/-}), similar protocols were used for *NRas* knockdown and detection.

Western blotting

Cells grown from 30% to 80% confluence were washed with ice cold PBS, scraped and then were lysed with RIPA buffer (150 mM NaCl; 1% Triton X-100; 0.5% deoxycholic acid, 0.1% SDS; 50 mM Tris-Cl; pH 8.0) supplemented with 2% protease inhibitor cocktail, 1% PMSF (from stock at 10 mg/ml in methanol), 1 mM Na₃VO₄, 1 mM Na₄P₂O₇.10H₂O, and 1 mM NaF. Secondary antibodies were conjugated to IRdye infrared dyes (Rockland). Signal was detected and the bands were quantified using the Odyssey infrared imaging system and software (Licor Biosciences).

Antibodies used in these experiments were rabbit polyclonal anti-neurofibromin (#sc-67, Santa Cruze Biotechnology), goat polyclonal anti-NRAS (#ab77392, Abcam), mouse monoclonal anti-phospho-ERK1/2 (#9106, Cell Signaling), rabbit polyclonal anti-ERK1/2 (#9106, Cell Signaling), and mouse monoclonal anti-α-tubulin (#T5168, Sigma-Aldrich). Neurofibromin, phosphorylated ERK1/2 and NRAS in cell lysates were run on 8%, 10% and 15% SDS polyacrylamide gel electrophoresis (SDS-PAGE), respectively. Around 80 µg protein lysate was loaded in each well, and nitrocellulose transfer membrane (Protran, Whatmann GmbH) was used for protein transfer.

RNA isolation and microarray analysis

Total RNA was extracted from the cells using RNeasy mini Kit (#74106, Qiagen) with genomic DNA removal by RNase-Free DNase Set (#79254, Qiagen). RNA integrity was determined by an Agilent Bioanalyzer 2100. Labeled targets were synthesized from the purified RNA using linear amplification and indirect labeling by incorporation of aminoallyl-labeled nucleotide with the TargetAmp 1-round aminoallyl-aRNA amplification kit 101 (Epicentre Technologies), which was subsequently modified by the covalent addition of Alexa dye (Epicentre Technologies). Gene expression microarray experiments were performed using the 60-mer oligonucleotide arrays (Agilent Whole Human Genome Oligo Microarray chip 44K).

Two color hybridizations were performed by using a standardized common reference sample (Universal Human Reference RNA, Agilent) and the standard hybridization methods described by the manufacturer (Agilent).

Gene expression data was analyzed with the open source R Statistical Environment (www.r-project.org) using libraries from the Bioconductor Project (www.bioconductor.org). Microarray data was normalized within arrays using Lowess normalization followed by normalizing between arrays using quantile normalization as implemented in the Bioconductor library *limma* (Smyth, et al., 2005). Gene expression changes among samples were determined using a moderated t-test implemented in 'limma'.

Gene ontology and pathway analysis

Ingenuity Pathway Analysis (IPA) software (Ingenuity System, http://www.ingenuity.com) and Genomatix software suite (http://www.genomatix.de/) were used in the gene function enrichment and pathway analysis. Generally, gene official names with fold change from different data sets were used as input, and the software generates the biologically significant terms or pathways based on the classic knowledge and latest literature reports. All the analyses were conducted following the manufacturer's instruction and default settings.

Quantitative Real time PCR using SYBR green I

Three batches of independent total RNA from the same preparations for microarray were reverse transcribed by SuperScript® First-Strand Synthesis System (Invitrogene). The qRT-PCR SYBR green master mix was purchased from Invitrogene. ABI 7500 Sequence Detection System was used to determine the relative quantity of a specific gene from the cDNA template. Default running parameters were used. Primer sequences for validation are show in supplementary table 1.

Results

OncoCarta oncogene survey in the MPNST cell lines

Hyperactive RAS and MAPK activities are hallmarks of the abnormal signal transduction at the molecular level in NF1 patients. Whereas in most situations cells exhibit oncogene-induced senescence after activation of RAS, loss-of-function of *Nf1* in neurofibromas only results in a transitory growth arrest, and finally give rise to MPNSTs by escaping the growth limitation (Courtois-Cox, et al., 2006). A second hit could be one theory to explain this escape from oncogene-induced senescence; however, the mechanism is not completely clear.

Because MPNST cell lines are the malignant cell type developed from neurofibromas, these cell lines could hold the keys to the phenomenon. We assembled five MPNST cell lines, and sequenced 238 known mutations in 19 oncogenes, ABL-1,AKT-1, AKT-2, BRAF, CDK-4, EGFR, ERBB2, FGFR-1, FGFR-3, FLT-3, JAK-2, KIT, MET, PDGFRa, PIK3CA, H-RAS, K-RAS, N-RAS, and RET (Table 1) based on OncoCarta Panel V1.0 (Sequenom, San Diego, CA, USA) (Sun, et al., 2012). ST88-14(*Nf1*^{-/-}), T265(*Nf1*^{-/-}), sNF96.2(*Nf1*^{-/-}) and sNF02.2(*Nf1*^{-/-}) were derived from NF1 patients with either undetectable or extremely low neurofibromin protein expression as demonstrated by western blotting analysis (Fig. 3). STS26T(*Nf1*^{+/+}) cells were derived from a sporadic MPNST and have functional neurofibromin (Kraniak, et al., 2010). We first determined the neurofibromin level in all available MPNST cell lines and a normal human Schwann cell (HSC361), with the wild type of neurofibromin, was used as a positive control.

From the OncoCarta sequencing result, none of the candidate mutations was identified in the five different MPNST cell lines. This result suggested that oncogene mutation related effects were not necessary in the formation of MPNSTs, especially in the context of hyperactive NRAS due to neurofibromin loss. At the same time, this suggested that hyperactive NRAS, resulting from *Nf1* deficiency, in an *Nf1* haplo-insufficient microenvironment can initiate the neoplasia and the necessary changes in the surrounding tissues that promote the pro-survival signaling to the *Nf1* null Schwann cells leading to malignancy and bypassing the anti-cancer mechanisms.

Pathway intervention and intersection analysis scheme in MPNST cell lines

To determine and classify neurofibromin-dependent gene expression, we applied pathway-specific interventions. Using chemical and genetic pathway interference in the ST88-14($Nf1^{-/-}$), we identified gene expression profiles specific to MEK1/2 and NRAS, the predominant RAS isoform in NF1-associated MPNST cell lines (Mattingly, et al., 2006). The comparison between ST88-14($Nf1^{-/-}$) and normal human Schwann cells (HSC) was used to capture the genes deregulated during tumorigenesis after loss of the

Nf1 gene in ST88-14(*Nf1^{-/-}*). Gene expression changes specific to an *Nf1* deficiency can be further revealed by siRNA interference to *Nf1* in STS26T(*Nf1^{+/+}*), a sporadic MPNST cell line with wild type *Nf1* expression (Dahlberg, et al., 1993; Miller, et al., 2006b). Using Agilent whole human genome 4X44K two color microarrays, we investigated neurofibromin, NRAS and MEK1/2 related gene expression profiles.

The gene expression changes were defined as the following data sets (DS):

DS-1) siRNA targeted knockdown of human *Nf1* gene (versus a scrambled control siRNA) in STS26T(*Nf1*^{+/+}), a sporadic MPNST, was performed to distinguish the gene changes specific to an *Nf1* knockdown.

DS-2) siRNA targeted knockdown of human *NRas* (versus a scrambled control siRNA) in ST88-14(*Nf1*^{-/-}) was performed to identify *NRas* knockdown associated gene changes.

DS-3) Administration of the MEK1/2 inhibitor, U0126 (versus DMSO control) to ST88-14($Nf1^{-/-}$) to identify MEK1/2 pathway influenced genes.

DS-4) Comparison of gene expression of ST88-14($NfI^{-/-}$), a *Nf1* associated MPNST cell line, versus gene expression of normal human Schwann cells (HSC) to identify gene expression changes associated with an *Nf1* deficiency.

In ST88-14($NfI^{-/-}$), the *NRas* siRNA decreased the expression of NRAS on the protein level by 60% and decreased phosphorylated ERK1/2 by 50%, confirming that hyperactive NRAS in ST88-14($NfI^{-/-}$) was a strong upstream signal activating the MEK-ERK pathway (Fig. 5a). U0126, an inhibitor of MEK1/2 in NF1 associated

MPNST cells (Kraniak, et al., 2010), reduced the level of phosphorylated ERK1/2 by 90% after 18 h treatment at 10 μ M (Fig. 5b). In the sporadic MPNST cell line STS26T(*Nf1*^{+/+}), *Nf1* siRNA (si*Nf1*) knockdown efficiency after 48 h of neurofibromin was evaluated by western blotting and neurofibromin was found to decrease by approximately 90% at the protein level compared to scrambled control siRNA treated (Fig. 5c). Phosphorylated ERK1/2 increased by about 1.6-fold in si*Nf1* treated STS26T(*Nf1*^{+/+}) cells, indicating that the neurofibromin-NRAS-MEK1/2 axis was functional in the sporadic MPNST (Fig. 5c).

The differentially expressed gene lists from each comparison provided the basis for the intersection analysis of the gene expression profiles. The overlapped genes were then classified into cell signaling axes based on their trend of changes defined in Table 2. For example, given that MEK1/2 is downstream of RAS, if a gene is upregulated when NRAS is inhibited, and is also upregulated when MEK1/2 is inhibited, the regulation of this gene is hypothetically under control of RAS-MEK1/2 axis meaning that the suppressed RAS may upregulate that gene through the decreased activity of MEK1/2. With similar reasoning, we associated the overlapped genes to the specific signaling axis, and defined the genes that belong to neurofibromin related but NRAS and MEK1/2 independent.

Around 60 differentially expressed genes were randomly chosen to verify the microarray results by quantitative polymerase chain reaction (qRT-PCR) and ~97% of

Neurofibromin is undetectable in ST88-14($NfI^{-/-}$) and T265($NfI^{-/-}$), and there is a very weak band in sNF96.2($NfI^{-/-}$) and sNF02.2($NfI^{-/-}$). Neurofibromin is wild type in STS26T($NfI^{-/-}$) and HSC361. The phosphorylation of ERK1/2 increases in ST88-14($NfI^{-/-}$), T265($NfI^{-/-}$), sNF96.2($NfI^{-/-}$) and sNF02.2($NfI^{-/-}$) compared to the HSC361. The figure represents one of the three independent expmeriment replicates.

Fig. 4 Scheme of intersection analysis of gene profiles

The intersection analysis scheme of gene expression profiles is indicated by Venn diagram. The comparison scheme to identify expression changes associated to neurofibromin, but independent from NRAS and MEK1/2 pathways, is indicated.

(a) Western blotting indicated the NRAS and phosphorylated ERK1/2 protein were greatly decreased comparing to scrambled control siRNA after 48h treatment of si*NRas* in ST88-14(*Nf1*^{-/-}) cells. (b) Western blotting indicated the levels of phosphorylated ERK1/2 were significantly decreased after U0126 treatment of 18 h compared to DMSO control in ST88-14(*Nf1*^{-/-}) cells. (c) Neurofibromin decreased after 48h treatment of si*Nf1* whereas phosphorylated ERK1/2 increased compared to scrambled control siRNA in STS26T(*Nf1*^{+/+}) cell line.

the trends were confirmed. The verified list for genes and primers are provided in supplementary table 1.

Intersection analysis revealed the pathway related gene expression changes in ST88-14(*Nf1*^{-/-})

As we expected, in ST88-14($NfI^{-/-}$) cell line, when comparing the lists of genes from any two of the three experiments (ST88-14 vs. HSC, si*NRas* vs. control, and U0126 vs. DMSO), we found a substantial number of differentially expressed genes shared by the lists (Table 2). This demonstrated that our methods of inhibition, si*NRas* and U0126, were functionally consistent. The genes differentially expressed when comparing ST88-14($NfI^{-/-}$) and HSC included gene changes due to the tumorigenesis process in addition to the genes regulated by a wild type neurofibromin. We employed *NfI* interference in STS26T($NfI^{+/+}$) to delineate the genes due to the neurofibromin deficiency from the genes associated with tumorigenesis.

The loss-of-function of neurofibromin and hyperactive NRAS have been characterized in ST88-14($Nf1^{-/-}$) (Kraniak, et al., 2010). To identify specific targets of neurofibromin-NRAS axis (DS-5), we defined two patterns of gene expression changes in the comparisons of ST88-14($Nf1^{-/-}$) versus HSC (DS-4) and siNRas versus scrambled control (DS-2): 1) gene expression upregulated in DS-4, but downregulated in DS-2, or 2) downregulated in DS-4 but upregulated in DS-2 (Table 2, DS-5 in supplementary table

2).

Gene set enrichment analysis (GSEA) by Genomatix Pathway System (GePS) revealed that the gene ontology (GO) term in biological process such as "positive regulation of heart contraction" (GO: 0045823), including genes Adm and Tpm1, and "cellular component morphogenesis" (GO: 0032989), including genes Adm, Met, Ptprz1, Tpm1 and Smad3 were significantly enriched. Another interesting gene consistent with these patterns was Rgs16, which can activate the GTPase of G protein alpha unit so as to inhibit the signal transduction from the outside of the cell. Rgs16 expression in ST88-14(*Nf1*^{-/-}) decreased by 5.6-fold and increased by about 2-fold in the si*NRas* treated compared to the scramble control siRNA. This pattern suggested Rgs16 expression was regulated by neurofibromin-NRAS negatively associated with the increased RAS activity. Considering the complex signaling downstream G-protein subunits including ERK1/2, PI3K and adenylate cyclases, the downregulation of Rgs16 by increased NRAS could serve another strong enhancer of the MPNST tumorigenesis. The loss of Rgs16 has been reported in some breast cancers, associated with PI3K signaling (Liang, et al., 2009).

Gene expression that increased in ST88-14($NfI^{-/-}$) compared to HSC in DS-4 and decreased in the U0126 treated cells in DS-3, or alternately decreased expression of genes in DS-4 but increased expression in DS-3, could be the regulatory targets of neurofibromin-MEK1/2 axis (Table 2, DS-6 in supplementary table 3). GSEA indicated

that ontology terms like "cell cycle" (GO:0007049, p-value=7.65e-8), "cell cycle arrest" (GO:0007050, p-value=3.49e-7) and "regulation of serine/threonine kinase activity" (GO:0071900, p-value=3.48e-4) were among the most significant terms. These biological process terms were consistent with the ERK1/2 suppression related cell cycle arrest (Meloche and Pouyssegur, 2007) and inhibition effects of U0126 to MEK1/2 (Mattingly, et al., 2006), suggesting deregulation of these processes after defects of neurofibromin-MEK1/2 axis in MPNSTs. *Sox9*, which is listed in DS-6, has been reported as a biomarker in MPNSTs because of its overexpression in NF1-related malignancies and its role in the tumor survival (Miller, et al., 2009). DS-6 confirmed that the *Sox9* expression was higher in ST88-14(*Nf1*^{-/-}) compared to HSC and indicated that *Sox9* expression can be downregulated by U0126. Additionally, *Sox9* expression did not change in the si*NRas* treated sample, which indicated a new mechanism in which *Sox9* expression is regulated by neurofibromin-MEK1/2 but not by NRAS in ST88-14(*Nf1*^{-/-}) cells.

Also in DS-6, we observed *Edn1* (Endothelin 1) to be strongly inhibited by U0126 (Fig. 6), indicating that the MEK1/2 cascade signaling was prominent in its mRNA expression regulation. Results from Integrated Pathway Analysis (IPA) identified that among the genes that have been reported to be regulated by EDN1, mRNA expression of 8 genes were positively associated with mRNA level of *Edn1* in DS-6, consistent with literature supported trend of change. These genes were *Apln*, *Cdc25a*, *Egfr*, *Errfi1*, *Fst*,

Il8, Mmp9, and Ptger4 (Table 3) (Fig. 7). EDN1 is a secreted protein with multiple physiological effects on cellular development, differentiation, vasoconstriction and mitogenesis (Stow, et al., 2011). Actually, we have observed *Edn1* RNA to be highly expressed in several MPNST cell lines (Fig. 8). It may be an important effector under the regulation of neurofibromin-MEK1/2 axis during development and tumorigenesis.

Comparing DS-2 (siNRas vs. control) and DS-3 (U0126 vs. DMSO), genes both up-regulated or both down-regulated in the two different data sets, were identified as NRAS-MEK1/2 axis (Table 2, DS-7 in supplementary table 4). Ecto-5'-nucleotidase (NT5E) that converts AMP to adenosine was down-regulated in both data sets, and Sunaga et al. reported that NT5E was down-regulated in non-small cell lung cancer (NSCLC) lines with KRAS knockdown (Sunaga, et al., 2011). NT5E has also been associated with cell cycle and apoptosis in breast cancer, arterial calcifications and immunodeficiency diseases (Edwards, et al., 1978; St Hilaire, et al., 2011; Zhi, et al., 2010). Our study indicated its expression was positively controlled by NRAS-MEK1/2 axis in ST88-14($NfT^{-/}$) cells.

Identification of neurofibromin-related gene expression changes independent from NRAS and MEK1/2 pathways in MPNST cells

For the three comparative scenarios involving ST88-14($NfI^{-/-}$) cells (Fig. 4), removal from DS-4 of the genes that overlapped with DS-2 and with DS-3 enabled us to identify

37

Fig. 6 Quantitative RT-PCfR verification of *Edn1* expression in microarrays

Edn1 gene expression changes in microarrays is verified by qRT-PCR indicating the gene *Edn1* was overexpressed in the ST88-14($Nf1^{-/-}$) cells compared to the HSC. Data is presented as the means of three independent experiments \pm SD.

Fig. 7 EDN1 related molecules network built by the IPA

The network was built by the IPA pathway tool based on the literature. Each molecule was colored according to the ratios in the comparison between ST88-14($NfI^{-/-}$) and HSC, DS-4. Red indicates increased mRNA expression in ST88-14($NfI^{-/-}$) vs. HSC and green indicates decreased mRNA expression in ST88-14($NfI^{-/-}$) vs. HSC.

Fig. 8 Quantitative RT-PCR analysis of *Edn1* mRNA expression in MPNST cell lines The relative *Edn1* mRNA expression of different MPNST cell lines and normal human Schwann cell (HSC361) are presented. *Edn1* mRNA expression was significantly higher in MPNST cell lines compared to the HSC. Paired t-test, n=3, **p<0.01. Data is presented as the means of three independent experiments \pm SD.

those genes that were independent of the NRAS and MEK1/2 pathways, namely DS-9 (Fig. 4, Table 2, and DS-9 in supplementary table 6). The genes in this data set were NRAS and MEK1/2 independent but neurofibromin related in ST88-14(*NfT*^{-/-}) cells. There were 1474 down-regulated and 1223 up-regulated genes in DS-9. We performed pathway analysis using the GePS from the Genomatrix program, which can map the genes to the canonical and literature supported pathways (Werner, 2007). GePS provides the significance evaluation by fisher exact test to compare the expected number of genes in one pathway/term in the genome to the number of the genes mapped to the same pathway/term in the list. For the downregulated genes, the canonical pathway analysis are shown Table 4 and Table 5, p < 0.01. For the upregulated genes, the canonical pathways and literature supported pathways are shown as Table 6 and Table 7, p < 0.01.

We then created a dataset of *Nf1* directly regulated genes in Schwann cell derived MPNST cell lines, by knocking down *Nf1* with siRNA in STS26T(*Nf1*^{+/+}) cells comparing to scrambled control siRNA (DS-1). By overlapping DS-9 with DS-1, we identified 142 unique genes that were downregulated and 73 unique genes that were upregulated in both DS-1 and DS-9, namely DS-10 (Table 2, Fig. 4 supplementary table 7). Genes in this overlap suggested that their expression was under the regulation of neurofibromin, but independent from the NRAS and MEK1/2 pathway. Among the downregulated changes, the canonical pathway analysis by GePS identified "NOTCH"

pathway genes, including *Adam10*, *Ncstn and Adam17*, and "Toll-like receptor signaling", including *Tollip* and *Mapk14* (Table 8). The literature supported pathways are shown in Table 9. For the upregulated changes, "signaling by *BMP2*" was reported by GePS to be significant (Table 10). The GO term SMAD signal transduction (GO:0060395, p-value=1.16e-3) including *Hipk2* and *Bmp2* was significant in the functional enrichment analysis by GePS. These results drew our attention to the aberrant expression of *Bmp2* in NF1-related MPNST cell. It was notable that GO term RAS GTPase binding (GO:0017016, p-value=4.70e-4) including *Dock4*, *Myo5b*, *Srgap1* and *Als2* was also significant in up-regulated changes indicating possible multiple regulatory mechanisms of activated NRAS activity after loss of function of neurofibromin.

Bmp2 overexpression was independent from the status of NRAS and MEK1/2 in MPNSTs but related to neurofibromin function

As members of transforming growth factor-beta (TGF-beta) superfamily, bone morphogenetic proteins (BMPs) play various roles in morphogenesis and homeostasis in many tissues. Recent studies have pinpointed the role of BMPs in molecular processes associated with different human cancers (Singh and Morris, 2010). Interestingly, we also found BMP2 as one of 2827 differentially expressed transcripts in Miller's microarray data on NF1 associated tissue samples, and based on that data, we found the there was a positive association between *Bmp2* expression and malignancy of NF1-associated tumor (Miller, et al., 2009) (Fig. 9).

We verified differential Bmp2 gene expression by quantitative RT-PCR under the experimental conditions analyzed by microarray (Fig. 10). Briefly, Bmp2 mRNA was overexpressed in ST88-14(Nf1^{-/-}) compared to the normal human Schwann cells. Consistent with the microarray data, there was no significant difference in ST88-14($NfI^{-/-}$) treated with U0126 or siNRas compared to controls. In STS26T($NfI^{+/+}$), three different siNfl oligos were used to verify the association between neurofibromin and Bmp2 All three of the oligos significantly inhibited the neurofibromin and expression. increased the *Bmp2* mRNA expression (Fig. 11). We next used an inducible oncogenic RAS expression system in STS26T($Nf1^{+/+}$) cells which mimic the loss of function of GTPase-activating domain of neurofibromin (Kraniak, et al., 2010) to study the NRas dependence of *Bmp2* expression in MPNST cells. After removal of doxycycline from the cultural media, the oncogenic RAS was induced and ERK1/2 phosphorylation was increased (Fig. 12). However, Bmp2 expression did not change significantly with increased RAS activity in this cell model (Fig. 13), indicating that the increased expression of Bmp2 mRNA was dependent on neurofibromin but independent of the NRAS activity.

Fig. 9 Bmp2 mRNA expression in NF1-associated tissue samples

The data plotted is from the gene expression study in NF1 patient tissues by Miller et al. 2009. The normalized probe intensities of Bmp2 in normal human cells (NHSC) and different neurofibromas are shown. In normal human Schwann cells and cells from benign dermal neurofibromas, the expressions of Bmp2 are relatively low. In high risk plexiform neurofibromas and malignant peripheral nerve sheath tumors, Bmp2 expression is dramatically increased.

Fig. 10 Quantitative RT-PCR verification of *Bmp2* mRNA change in different comparisons

In ST88-14($NfT^{-/-}$), the expression of Bmp2 was significantly higher than normal human Schwann cells (HSC). However, si*NRas* and U0126 failed to significantly affect Bmp2expression compared to the controls, respectively. Paired t-test, n=3, **p<0.01. Data is presented as the means of three independent experiments ± SD

Fig. 11 Neurofibromin status influences the Bmp2 mRNA expression in STS26T $(NfI^{+/+})$

Three different si*Nf1* oligos inhibited neurofibromin expression in STS26T(*Nf1*^{+/+}) as shown in western blotting. *Bmp2* mRNA increased in STS26T(*Nf1*^{+/+}) after 48 h treatment with three different si*Nf1* oligos compared to the scrambled control, respectively. Paired t-test, *p<0.05, **p<0.01, n=3. Data is presented as the means of three independent experiments \pm SD.

HA-tagged oncogenic RAS was induced in $STS26T(Nf1^{+/+})$ with the removal of doxcycline (Dox) from the culture media. 48 h after Dox removal, the phosphorylated ERK1/2 and HA-tagged RAS increased.

Fig. 13 Inducible oncogenic RAS failed to change the expression of Bmp2 mRNA In STS26T($Nf1^{+/+}$), oncogenic RAS was induced by removing doxycycline (Dox).

The *Bmp2* mRNA accumulation did not change significantly compared with the non-induced cells (NoDox). The data shown is the means of three independent experiments \pm SD. No significant difference identified by paired t-test, n=3, p<0.05.

Discussion

The RAS-GAP domain of neurofibromin is the best described functional domain in this 250 kDa protein. However, the malignant phenotypes of neurofibromin deficient MPNST cells cannot be totally rescued by the GAP domain reconstitution alone (Ho, et al., 2007; Ismat, et al., 2006). Furthermore, RAS-targeted therapeutic approaches, such as S-trans, trans-farnesylthiosalicylic acid, provide limited efficacy in clinical studies of NF1 (Kalamarides, et al., 2012; Widemann, et al., 2006). The understanding of complex neurofibromin function in development and tumorigenesis requires insight into *Nf1* related biological processes not only associated RAS-MEK1/2-ERK1/2 axis but also independent of it.

To answer these questions, we used Schwann cell derived MPNST cell lines with different *Nf1* status and the gene expression profiles at multiple different means of interference to reveal the possible function of neurofibromin in MPNST. Because the *Nf1*-related neurofibromas seldom have oncogene induced senescence, we doubted whether there could be an oncogene mutation as an additional hit to *Nf1* heterozygous Schwann cells to promote tumorigenesis. We sequenced the known 238 mutations from 19 oncogenes in ST88-14(*Nf1^{-/-}*), T265(*Nf1^{-/-}*), sNF96.2(*Nf1^{-/-}*), sNF02.2(*Nf1^{-/-}*) and STS26T(*Nf1^{+/+}*), however, none of these relatively common mutations in oncogenes were identified in the above five cell lines. Based on these results, we can say that oncogene

mutation related effects may not be necessary in the formation of MPNSTs, especially in the context of hyperactive RAS due to *Nf1* loss. The constitutively active RAS pathway provides strong pro-survival signals through its downstream RAF-MEK1/2-ERK1/2 and PI3K-AKT-mTOR signaling pathways. These activated pathways may abrogate the selective pressures against mutations in oncogenes such as *Akt1*, *Akt2*, *Braf*, and *Pi3kca* during tumorigenesis, and explain why the common oncogene mutations in cancer were not observed in this study. It is worth noting that among the five MPNST cell lines, only STS26T(*Nf1*^{-/-}) has the null *Tp53*, and all of the others have the wild type *Tp53* (Li, et al., 2004; Lopez, et al., 2011; Miller, et al., 2006b).

In this study, we performed pathway-specific interventions to the MPNST cell lines using genetic and chemical methods. The intersection analysis of the gene expression changes across these treatments enabled us to classify those changes specific to the NRAS and MEK1/2 pathways, and further to discover novel changes in MPNST cell lines independent from those pathways. This is the first study that associates gene expression changes to specific pathways activated in MPNST cell lines so as to identify novel neurofibromin related gene expression changes independent of NRAS and MEK1/2 pathway. In ST88-14($NfT^{-/-}$), the intersection analysis helps to classify DS-9, and DS-9 was further refined by neurofibromin association in STS26T($NfT^{+/+}$) to create DS-10 which specified genes that were neurofibromin-related but NRAS and MEK1/2 independent changes in gene expression.

By using pathway analysis tools, such as Integrated Pathway Analysis (IPA), which has the ability to integrate literature mining with biological information, novel hypotheses can be generated. For example, EDN1 has been reported to play an important role in heart development (Chen, et al., 2010) and is associated with cardiac hypertrophy in patient cohort studies (Castro, et al., 2007). These facts may explain the embryonic lethality due to failure of heart development in the Nf1 knockout mouse model and likewise increased risk for a variety of cardiovascular disorders in NF1 patients (Friedman, et al., 2002). We identified 8 potential downstream effectors of EDN1, those genes may contribute to the malignancy of MPNSTs cooperated with EDN1. Another example is the overexpressed gene Adm in DS-5. Adm encodes the protein adrenomedullin which functions as systemic vasodilator and natriuretic peptide, and high Adm mRNA level has been correlated to hypertension (Jiang, et al., 2004) and myocyte hypertrophy (Romppanen, et al., 1997; Tsuruda, et al., 2003). NF1 patients with hypertension have been reported (Demarchi, et al., 2011; Montani, et al., 2011), but the mechanism is still not clear. In the Nfl knockout mouse model, Xu et al. reported that cardiomyocyte-specific knockdown of Nf1 contributed to cardiac hypertrophy (Xu, et al., 2009). These clues and the gene expression changes identified could serve as the mechanistic basis for an NF1-related cardiovascular disease study.

The expression pattern of *Bmp2* in the MPNST tissues and DS-10 drew our attention to the possible function of BMP2 in MPNSTs. *Bmp2* expression deregulation has been

associated to many types of cancers including ovarian (Kiyozuka, et al., 2001; Le Page, et al., 2006), glioma (Liu, et al., 2009), salivary adenocarcinoma (Hatakeyama, et al., 1993), pancreatic cancer (Kleeff, et al., 1999). The in vitro studies on the cell lines indicate that *Bmp2* transcripts increase about 17-fold in non-small cell lung carcinoma (NSCLC) (Langenfeld, et al., 2003) and about 25-fold in small cell lung carcinoma (SCLC) (Bieniasz, et al., 2009) compared to the normal tissue. The Bmp2 copy number increase has been reported as well in early prostate cancer (Doak, et al., 2007). However, studies also show that exogenous BMP2 may lead to the cell cycle arrest in G1-phase in some gastric cancer (Wen, et al., 2004), and suppress estradiol-induced proliferation of MCF-7 mediated through upregulation of p21^{CIP1/WAF1} protein and hypophosphorylation of pRB (Arnold, et al., 1999; Ghosh-Choudhury, et al., 2000). The growth stimulatory and inhibitory effects of BMP2 may vary according to the cell type, differentiation stage and the cancer microenvironment. The inhibitory effect of BMP2 is not observed in MPNST cell lines, as the levels of phosphorylated RB are generally higher in many MPNST cell lines than the normal human Schwann cell line (Miller, et al., 2006b) and $p21^{CIP1/WAF1}$ is even undetectable in T265(Nf1^{-/-}) cell line (Lee, et al., 2004). These observations encouraged us to explore other possible mechanisms to explain the actions of BMP2 in MPNSTs.

Gene name	Mutation sites checked
ABL-1	G250e, Q252h, Y253h, Y253F, e255K, e255V, D276G, F311L, T315I, F317L, M351T, e355G, F359V, h396r
AKT-1	V461L, p388T, L357T, e319G, V167A, Q43X, e17del
AKT-2	S302G, r371h
BRAF	G464r, G464V/e, G466r, F468C, G469S, G469e, G469A, G469V, G469r, G469r, D594V/G, F595L, G596r, L597S, L597r, L597Q, L597V, T599I, V600e, V600K, V600r, V600L, K601N, K601e
CDK-4	r24C, r24h
ECEP	r108K, T263p, A289V, G598V, e709K/h, e709A/G/V, G719S/C, G719A, M766_A767insAl, S768I, V769_D770insASV, V769_D770insCV, p753S, A750p, T751A, T751p, T751I, S752I/F, S752_I759del, L747_Q ins, e746_T751del, I ins (combined), e746_A750del, T751A (combined), L747_e749del, A750p (combined), L747_T750del, p ins (combined), L747_S752del, Q ins, (combined), D770, N771 ACC (V769, D770 ins ASV/V/769, D770 ins ASV/ D770, N771 ins G
EGFK	 L747_S752del, Q Ins (combined) D770_N771.AGG/V769_D770InsASV/V769_D770InsASV, D770_N771InsG, N771_p772.SVDNr, p772_h773insV, h773.NpY, h773_V774insNph/ph/h, V774_C775inshV, T790M, L858r, L861Q, e746_T751del, e746_A750del, e746_T751del, e746, T751del, S752D, L747_e749del, L747_T750del, L747_S752del, L747_T751del, L747_S752del,
ERBB2	L755p, G776S/LC, G776VC/VC, A775_G776insYVMA, p780_Y781insGSp, p780_Y781insGSp, S779_p780insVGS
FGFR-1	S125L, p252T
FGFR-3	G370C, Y373C, A391e, K650Q/e, K650T/M
FLT-3	I836del, D835h/Y
JAK-2	V617F
КІТ	D52N, Y503_F504insAY, W557r/r/G, V559D/A/G, V559I, V560D/G, K550_K558del, K558_V560del, K558_e562del, V559del, V559_V560del, V560del, Y570_L576del, e561K, L576p, p585p, D579del, K642e, D816V, D816h/Y, V825A, e839K, M552L, Y568D, F584S, p551_V555del, Y553_Q556del
MET	r970C, T992I, Y1230C, Y1235D, M1250T
PDGFRa	V561D, T674I, F808L, D846Y, N870S, D1071N, D842_h845del, I843_D846del, S566_e571.K, I843_S847.T, D842V
РІКЗСА	r88Q, N345K, C420r, p539r, e542K, e545K, Q546K, h701p, h1047r/L, h1047Y, r38h, C901F, M1043I
H-RAS	G12V/D, G13C/r/S, Q61h/h, Q61L/r/p, Q61K
K-RAS	G12C, G12r, G12S, G12V, G12D, G12A, G12F, G13V/D, A59T, Q61e/K, Q61L/r/p, Q61h/h
N-RAS	G12V/A/D, G12C/r/S, G13V/A/D, G13C/r/S, A18T, Q61L/r/p, Q61h, Q61e/K
RET	C634r, C634W, C634Y, e632_L633del, M918T, A664D

Table 1: Mutations assayed for each of the 19 oncogenes in the OncoCarta v1.0Mutation Panel.

A total of 238 mutations in 19 oncogenes were assayed in ST88-14(Nf1^{-/-}), T265(Nf1^{-/-}),

```
sNF96.2(Nf1^{-/-}) sNF02.2(Nf1^{-/-}) and STS26T(Nf1^{+/+}). There was no mutation mentioned
```

in this table identified in all five cell lines.

53

Data Set	Intersection Operation	Pattern Definition	Gene	Pathway Axis
DS-5	DS-4 ∩ DS-2	(22	Neurofibromin-NRAS in ST88(<i>Nf1</i> -⊱)
DS-6	DS-4 ∩ DS-3	(🛖 in ST88 🛛 🖶 in U0126) OR (🜉 in ST88 🛛 🏫 in U0126)	208	Neurofibromin-MEK1/2 in ST88(<i>Nf1-</i> -)
DS-7	DS-2 ∩ DS-3	(20	NRAS-MEK1/2 in ST88(Nf1-/-)
DS-8	DS-4 ∩ DS-2 ∩ DS-3	(5	Neurofibromin-NRAS-MEK1/2 in ST88(<i>Nf1-</i> ^)
DS-9	DS-4 \ (DS-2UDS-3)	(🛨 OR 🜉 in ST88) NOT IN (si <i>NRas</i> and U0126)	2697	NRAS-MEK1/2 independent in ST88(Nf1)
DS-10	DS-1 ∩ DS-9	(💼 in siNF1) AND [(💼 in ST88) NOT IN (si <i>NRas</i> AND U0126)] OR (🜉 in siNF1) AND [(🜉 in ST88) NOT IN (si NRas AND U0126)]	73 142	Neurofibromin related NRAS- MEK1/2 independent in MPNSTs

Table 2: Definition of data set and pathway association

The patterns of gene change in data set comparison were defined to associate the genes to the specific signal axis. \clubsuit : gene increase, \clubsuit : gene decrease. \cap : Intersection operation, U: Union operation, \setminus : Relative Complement operation, **AND, OR, NOT IN**: Logic operation.

Gene	Log Ratio ST88/HSC	Log Ratio U0126/DMSO	Location	Entrez Gene Name	Citation:PMID
APLN	2.12	-0.95	Extracellular Space	apelin	20843995
CDC25A	2.10	-1.27	Nucleus	cell division cycle 25 homolog A (S. pombe)	14742443
EGFR	3.50	-0.79	Plasma Membrane	epidermal growth factor receptor	<u>17616694</u>
ERRFI1	1.86	-1.16	Cytoplasm	ERBB receptor feedback inhibitor 1	<u>10749885</u>
FST	2.72	-1.25	Extracellular Space	follistatin	11790131
IL8	3.68	-4.89	Extracellular Space	interleukin 8	10438717
MMP9	2.76	-0.76	Extracellular Space	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	<u>21127388</u>
PTGER4	3.72	-1.20	Plasma Membrane	prostaglandin E receptor 4 (subtype EP4)	15347673
EDN1	3.83	-1.525	Extracellular Space	endothelin 1	

 Table 3: EDN1 related gene expression changes in DS-6 with literature supports.

Based on the IPA analysis, the mRNA of 8 genes in DS-6, neurofibromin-MEK1/2 axis

related data set, changed positively associated with the mRNA level of *Edn1* with literature supports. The Pubmed IDs of the specific support article are indicated.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
Trk receptor signaling mediated by the MAPK pathway	1./3t 04	11	3.207	34	FOS, SRF, MAPK1, PRKCD, MLF2C, KRAS, MAPKAPK2, RTL1, RPS6KA1, MAPK14, RAP1A
CD28 signaling (CD4 T cell receptor signaling (JNK cascade))	2.64F-04	14	5.000	53	HLA-DPA1, MAP2K2, ITPR3, FOS, HLA-DRB5, HLA-DRB1, JUN, ITFR1, HLA-DFB1, HLA-DRB3, PPP3CB, FOSI 2, HLA-DRBA, HLA-DRB4
Ceramide signaling pathway	2.66L-04	13	4.434	4/	RIPK1, MAP2K2, MAPK1, PRKCD, SMPD1, TRADD, PRKRA, ASAT1, RB1, CRADD, CTSD, BCL2, NFKBIA
IKK-NF-kappaB cascade (CD4 T cell receptor signaling)	3.435-04	20	8.867	94	PIK3R1, HLA-DPA1, MAP2K2, ITPR3, FOS, HLA-DR85, MAPK1, HLA-DR81, IUN, ITPR1, HLA- DPB1, ILLA DRB3, PPP3CB, KRAS, IKBKB, FOSL2, FYN, ILLA DRA, NEKBIA, ILLA DRB4
T cell receptor signaling (PLC gamma, PKC, Ras and ERK cascade) (CD4 T cell receptor signaling (ERK cascade))	4.19E-04	12	4.056	43	HEA-DPA1, MAP2K2, ITPE3, HEA-DRB5, MAPK1, HEA-DRB1, ITPR1, HEA-DPB1, HEA-DRB3, KRAS, HEA-DRA, HEA-DRB4
Osteopontin-mediated events	9.60± 04	y	2./36	29	PIK3R1, ITGB3, FOS, GSN, SPP1, MAPK1, JUN, ILK, NFKBIA
toll-like receptor pathway	1.325.03	10	3.396	36	FOS, TOLLIP, TLR6, JUN, IKBKB, PPARA, MYD88, MAPK14, NFKBIA, CD14
IL2-mediated signaling events	1.375-03	13	5.188	55	PIK3R1, RI IOA, MAP2K2, FOS, MAPK1, JUN, STAM, IRS2, KRAS, MAPKAPK2, FYN, MAPK14, BCL2
signal transduction through il 1r	1.66L 03	10	3.490	37	FOS, IL1RAP, TOLLIP, JUN, IKBKB, PLBF1, IL6, MYD88, MAPK14, NFKBIA
trefoil factors initiate mucosal healing	1.665 03	10	3.490	37	PIK3R1, RHOA, MAP2K2, MAPK1, ERBB2, IKBKB, CASP9, RPS6KA1, NFKBIA, CASP6
tsp-1 induced apoptosis in microvascular endothelial cell	2.16F-03	4	0.560	7	FOS, IUN, FYN, MAPK14
PDGFR-beta signaling pathway	3.131-03	21	11.226	119	TGB3, RHOA, MAP2K2, FOS, SRF, MAPK1, PRKCD, LRP1, GAB1, JUN, RP56KA3, ARPC1B, KRAS, C3orf10, DOK1, RAB5A, FYN, PTEN, RAP1A, ARHGDIA, SPHK1
p75(NTR)-mediated signaling	3 170 03	14	6 320	67	APH1B, PIK3R1, NCSTN, RHCA, NGFRAP1, RHOB, IKBKB, CASP9, MYD88, NGFR, ARHGDIA, SORT1, CASP6, ADAM17
antigen processing and presentation	3.28F-03	5	1.132	12	HLA-A, HLA-DRB1, B2M, TAP1, HLA-DRA
role of egf receptor transactivation by goors in cardiac hyperlrophy	3.29E 03	9	3.207	34	RHOA, MAP2K2, LOS, MAPK1, JUN, EDNRB, IKBKB, RPS6KA1, NI KBIA
ceramide signaling pathway	3.29E 03	9	3.207	34	RIPK1, MAP2K2, MAPK1, SMPD1, TRADD, CRADD, IKBKB, BCL2, NI KBIA
Influence of ras and rho proteins on g1 to s transition	4.19E 03	8	2.736	29	PIK3R1, RHOA, MAP2K2, MAPK1, RB1, IKBKB, CDKN1B, NFKBIA
IKK activation signaling (through PKC theta and CARMA1:BCI 10:MAIT1) (CD4 T call receptor signaling (NF-kB cascade))	427-03	13	5 849	67	PICRET, HEA-DRAT, HERC, HEA-DRET, HEA-DRET, HERC, HEA-DRET, H
prion pathway	4.68± 03	6	1.698	18	HSPA5, LAMA2, LAMB2, LAMC1, LAMA4, BCL2
Netrin-mediated signaling events	5.265.03	8	2.830	30	TRIO, PIK3R1, DOCK1, RHOA, MAP2K2, MAPK1, FYN, PITPNA
er associated degradation (erad) pathway	6.310.03	6	1.792	19	EDEM1, RDX1, MAN2A2, CANX, MAN1A2, MAN2B1
Beta1 Integrin cell surface interactions	7.440.03	13	6.226	66	CD81, LAMA2, COL11A2, COL7A1, SPP1, COL18A1, LAMB2, LAMC1, TNC, ITGB1, THBS2, LAMA4, CD14
li 6-mediated signaling events	7 695 03	10	4 2 4 5	45	PIK3R1, TIMP1, IUNB, EOS, A2M, PRKCD, GAB1, IUN, ILG, MAPK14
Caspase cascade in apoptosis	7.79E-03	11	4.905	52	RIPK1, VIM, TFAP2A, GSN, SLK, TRADD, CRADD, CASP9, SATB1, BCL2, CASP6
ErbB2/ErbB3 signaling events	8.73E 03	9	3.679	39	DOCK7, MAP2K2, ERBB3, FOS, MAPK1, JUN, PPP3CB, KRAS, ERBB2
Signaling events regulated by Ret tyrosine kinase	8 73F 03	9	3 679	39	PIK3R1, RHOA, MAPK1, GAB1, IUN, GERA1, IRS2, DOK1, RAP1A
FrbB4 signaling events	9 72 03	8	3 113	33	LRIG1, MAPK1, EREG, ERBB2, LIBEGE, EYN, WWOX, ADAM17
pten dependent cell cycle arrest and apoptosis	9.810-03	5	1.415	15	PIK3R1, ILK, ITGB1, CDKN1B, PTEN
ErbB receptor signaling network	9.811-03	5	1.415	15	FRBB3, TGFA, FRFG, FRBB2, HBFGF

Table 4: Canonical pathways associated to the down-regulated genes in DS-9

Downregulated genes in the DS-9 were uploaded to the GePS of Genomatix, and then

mapped to the significant canonical pathways by GePS, p < 0.01.

Pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
LYSOSOMAL	6.13F 09	32	10.660	111	IGOLN2, ARSA, PNPLAG, BACE1, CSH1, RABGA, CISB, GUSB, LAMP1, AGA, CLCN5, PMP22, NPC2, RNASF1, GBA, PLP1, SMPD1, RHOB, SCARB2, FIF2AK3, FFA1, RAB7B, RAB9A, CD63, LAMP2, CASP9, GNPTAB, TMFM9B, CTSD, RAB5A, NPC1, SORT1
ENDOCYTIC	3.81F 05	34	16.717	174	IGOLN2, CD59, MMP14, IHAHP2, BACL1, LOT1, RAB6A, HAP2A, LAMP1, CLCN5, NPC2, LY2, A2M, IFI30, COL18A1, LRP1, ARFG, RHOB, SCARB2, FFA1, LRP8, R2M, PIK3C3, S100B, RHOJ, AKAP13, CD63, LAMP2, CTSD, RAB5A, NPC1, RABEP1, SH3KBP1, CD14
RAB, MEMBER RAS ONCOGENE FAMILY	9.65F-04	20	9.508	99	ITATIF2, RAB5A, RASD1, RAB18, LAMP1, SH3GLD1, RAB31, RAB14, RAB2A, ARF6, EEA1, PIK3C3, RABGC, RAB78, RAB9A, ITGB1, RAB5A, RABFP1, NGFR, UNC13B
RHOA RAS HOMOLOG	2.87E-03	25	14.022	146	MYE12B, HMK2, RHOA, ARHGEF12, RTKN, MSN, PPP1R12A, BVES, COL18A1, SRF, PLCE1, SLK, RHOB, ICAM1, CINND1, EDNRB, ACTG2, TNC, ARHGAP5, AKAP13, RAP1GDS1, OPHN1, RDX, NG R, ARHGDIA
SPHINGOMYELIN PHOSPHODIESTERASE 1, ACID LYSOSOMAL	3.75F-03	6	1.632	17	PRKCD, SMPD1, ASAH1, CTSD, SORT1, SPHK1
MATRIX METALLOPROTEINASE	4.54F-03	25	14.502	151	MMP14, MMP28, TIMP1, MMP17, PTPD, CTSR, RSG, TTAP2A, MMP15, DDR1, CD9, TIMP3, SFRPINF2, SPP1, MAPK1, I RP1, JUN, I GAI \$1, MMP19, GPNMB, ITGB1, MAPK14, MCAM, ADAM17, ADAM154
FOCAL ADHESION KINASE 1	6.41F 03	24	14.118	147	TRIO, MMP14, ARHGAP21, ITGR3, TIMP1, FMP2, PFPD, RHOA, ARHGFF12, NOV, SFMA3B, CD9, HLA-DRB5, SPP1, SLK, ILK, VWF, LGALS8, BS11, TNC, ITGB1, FYN, PTEN, MCAM
SECRETORY	6.57L 03	42	28.620	298	TGOLN2, CUTA, GIB1, BACE1, ANXA1, HSPA5, ATOX1, LCALS3, RAB5A, LMAN1, NCSTN, CTSB, GUSB, RAB18, LAMP1, STGGAL1, ETH1, ITPR3, LY2, RHOQ, CANX, PLP1, ABCA1, RAB2A, LRP1, RHOB, VWL, LILZAK3, LLA1, ATPZA2, NUCB2, CALU, SCG5, SDL4, CPD, TAP1, TMLD10, PPIB, CTSD, UNC13B, SORT1, ADAM17
NUCLEAR FACTOR (ERYTHROID DERIVED 2), 45KDA	7.59F-03	3	0.4802	5	FOS, JUN, NFF21 2
INTEGRIN LINKED KINASE	9.14E-03	11	4.994	52	MYL12B, PARVA, NOV, LEF1, SPP1, JUN, ILK, RHOB, MYL9, HGB1, PTEN

Table 5: Literature based pathways associated to the downregulated genes in DS-9

In GePS analysis, the downregulated genes in DS-9 were mapped to the significant

pathways supported by literature, p < 0.01.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
Validated targets of C-MYC transcriptional activation	2.56E-04	17	6.712	87	NPM1, BCAT1, PEG10, NME1, ENO1, ODC1, PIM1, TAF12, KAT2A, NME2, CDCA7, RCC1, DKC1, HSPD1, PMAIP1, TK1, NCL
alk in cardiac myocytes	6.85E-04	8	2.083	27	CHRD, BMP4, GATA4, BMP7, TGFB1, BMP2, NPPB, NKX2-5
BARD1 signaling events	7.92E-04	9	2.623	34	NPM1, CCNE1, BACH1, FANCL, ATR, RAD50, CSTF1, FANCG, PCNA
hop pathway in cardiac development	1.68E-03	3	0.309	4	GATA4, HOPX, NKX2-5
E2F transcription factor network	5.90E-03	13	6.018	78	CEBPA, CCNE1, RANBP1, TYMS, KAT2A, WASF1, E2F2, PRMT5, E2F6, MYBL2, TK1, PLAU, HIC1
EphrinB-EPHB pathway	7.60E-03	3	0.463	6	EPHB4, EPHB2, EFNB2
Syndecan-4-mediated signaling events	9.45E-03	7	2.469	32	FZD7, TFPI, FGF2, FGFR1, LAMA1, PTK2, MDK
cdk regulation of dna replication	9.77E-03	5	1.389	18	CCNE1, MCM2, ORC5, MCM6, KITLG

Table 6: Canonical pathways associated to the upregulated genes in DS-9

The upregulated genes in DS-9 were mapped to the significant canonical pathway by

GePS, p < 0.01.

Pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
DIFFERENTIATION	7.99L-07	c)	38.713	524	CEEPA, MYB, IL7, IFRD1, NME1, HOXA3, EZH2, BMP4, DLL1, PPARG, POU4F1, NFATC1, HOXA9, RLN2, GATA4, DKK1, TEX3, IGF2, GFRC5A, S100A2, BHLHE41, DKK2, MSX2, GOT2, CD24, MDF1, TAL1, BMP6, BMIY, WN110B, I G12, G5C, NKX2-1, INI IGF110, HOXC13, PIM15, MYB12, ML51, NKX3-2, I G1R1, CLDN1, FGF9, ISH22, K13, OLIG1, MIR1/HG, BMP2, CYP2781, CU34, IH47, KIH6, CO20, NEH, FOX12, I G-8, ZFPG4, MDK, GATA6, NKX2-5, D1X1, II 17RD, MNAT1, PLAG12, WNT5A, ZNE521, I IFR, WT1, HOXA5, STOM
HEDGEHOG	1.456-04	22	9.457	128	CHRD, FOXG1, LHX2, DMP4, MTSS1, TDX3, GAS1, MSX2, WNT108, NKX2, 1, MEIS2, NKX3, 2, FGF9, HMG82, FOXA1, RMP2, ALDHLA2, TDX1, HOXA13, WNT5A, SMO, FOXF1
WINGLESS TYPE	1.06E-03	46	29.109	394	TWIST2, EZH2, BMP4, NKD2, SULF2, SALL1, GPC4, BBS2, DKK1, TBX3, DKK2, DOCK4, FZD7, MSX2, FZD2, FPC/M, CD24, SIXT, MOFL, KI/A/1199, SOX3, RAF1, WNT100, RUNX3, DOCK3, TMFRSF110, WNT3, MTST, HOX89, FGF9, PTIX2, HMGB2, EX11, TCF15, LKP5, IKX3, BMP2, C/or F68, FOXL2, HTC1, NK081, NKX2 5, FLAGL2, WITSA, LRP4, WT1
LOW DENSITY LIPOPROTEIN RECEPTOR RELATED PROTEIN	1.16E-03	17	7.536	102	IGFBP3, LPL, DKK1, VSNL1, DKK2, CLU, RELN, MEST, SDC1, LRP5, CTGF, SORL1, PLAU, SHC1, MDK, WNT5A, LRP4
DEVELOPMENTAL	3.95F-03	17	8.422	114	CEDPA, IL7, NMEL, EZI12, DMP4, SIX1, RELN, RUNX3, NKX2-1, NEFI1, FOXL2, TCF3, MDK, NKX2-5, WNT5A, SMO, W11
FIBROBLAST GROWTH FACTOR	4.27E-03	27	15.884	715	PLCG1, FOXG1, LLX2, DMP4, ODC1, SULF2, GPC4, TDX3, FGFRL1, MSX2, SPRY1, SOX3, DMP7, FGF2, NIX2-1, WNT3, MFST, FGFR1, FGF9, FXT1, SDC1, HS6ST2, ALD+1A2, TBX1, DACH1, PLAU, IL17RD
CYCLIN D3	5.37E-03	6	1.699	23	RPS6KB1, KIT, EIF4EBP1, AR, KITLG, TCF3
AMP ACTIVATED PROTEIN KINASE	5.37E-03	6	1.699	23	NME1, KLC1, NME2, PRKCZ, TBC1D4, ATIC
NUCLEAR RECEPTOR SUBFAMILY 5, GROUP A, MEMBER 1	5.66E-03	8	2.807	38	CDK7, DUSP1, GA1A4, KA12A, LOX17, NK0B1, NLBP3, W11
E2F TRANSCRIPTION FACTOR 1	6.59E 03	9	3.472	47	MYB, ATR, SKP2, TYWS, E2F2, MYBL2, PCNA, PHB, RNF2
ERYTHROPOIETIN	8.31E 03	11	4.8/6	66	MYB. PIM1. LYN. HIF1A. KIT. TAL1. SOCS3. STA158. CD34. KITLG. SHC1
FMS LIKE RECEPTOR TYROSINE KINASE 3	0.10F-03	8	3.020	41	CERPA, 117, PIM1, LYN, KIT, TAL1, KITLG, DLX1
PARATHYROID HORMONE	9.311-03	11	4.950	67	ADCY1, PPARG, DUSP1, DKK1, MSX2, RCS2, BMP6, TNERSETTB, LXT1, BMP2, CYP27B1

Table 7: Literature based pathways associated to the upregulated genes in DS-9

In GePS analysis, the upregulated genes in DS-9 were mapped to the significant

pathways supported by literature, p < 0.01.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
generation of amyloid b-peptide by ps1	5.01E-04	2	0.037	4	ADAM10, BACE1
Notch secretory pathway (C. elegans)	6.63E-03	3	0.392	42	ADAM10, NCSTN, ADAM17
regulation of target gene expression by AP-1	1.89E-02	2	0.298	23	MAPK14, TOLLIP
p75(NTR)-mediated signaling	2.36E-02	3	0.626	67	NGFRAP1, NCSTN, ADAM17
p38 cascade (IL-1 signaling pathway)	2.38E-02	2	0.243	26	MAPK14, TOLLIP
regulation of target gene expression by AP-1	2.38E-02	2	0.243	23	MAPK14, TOLLIP
NOTCH	3.38E-02	3	0.719	77	ADAM10, NCSTN, ADAM17
ahr signal transduction pathway	3.68E-02	1	0.037	4	AIP
toll-like receptor pathway	4.37E-02	2	0.336	36	MAPK14, TOLLIP
signal transduction through il1r	4.59E-02	2	0.346	37	MAPK14, TOLLIP

Table 8: Canonical pathways associated to the downregulated genes in DS-10

In GePS analysis, the downregulated genes in DS-10 were mapped to the significant

canonical pathway, p < 0.05.

Pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
MATRIX METALLOPROTEINASE	4.47E-04	8	1.835	151	CCL2, MAPK14, RUNX2, MCAM, CD151, DDR1, MMP17, ADAM17
DISCOIDIN DOMAIN RECEPTOR	5.69E-04	3	0.170	14	MAPK14, RUNX2, DDR1
JANUS KINASE	3.82E-03	7	2.017	166	CCL2, HEXIM1, KCNN4, IRF9, PMP22, SOCS2, IFI16
AMYLOID BETA (A4) PRECURSOR PROTEIN	6.58E-03	4	0.753	62	ADAM10, MARCKS, NCSTN, BACE1

Table 9: Literature based pathways associated to the downregulated genes in DS-10

In GePS analysis, the downregulated genes in DS-10 were mapped to the literature

supported significant pathways, p < 0.05.

Canonical pathway	P-value	# Genes (observed)	# Genes (expected)	# Genes (total)	List of observed genes
Arf6 signaling events	6.68E-03	2	0.122	35	PXN, ADRB2
Signaling by BMP	1.43E-02	1	0.014	4	BMP2
Fc-epsilon receptor I signaling in mast cells	2.01E-02	2	0.224	62	LAT2, PXN
cell to cell adhension signaling	4.26E-02	1	0.043	12	PXN
phospholipase c-epsilon pathway	4.60E-02	1	0.047	13	ADRB2
the prc2 complex sets long-term gene silencing through modif	4.95E-02	1	0.0506	14	RBBP4

Table 10: Canonical pathways associated to the upregulated genes in DS-10

The upregulated genes in DS-10 were mapped to the canonical pathway, p < 0.05.
CHAPTER III: The role of BMP2 in MPNST cells

Summary

The comparative analysis of gene expression profiles using data sets from mechanism-specific interventions enabled us to classify the signaling pathways that are regulated by neurofibromin. Among the neurofibromin-related genes whose expression was NRAS and MEK1/2 independent, we focused on the upregulation of *Bmp2*. BMP2 is a secreted protein which is overexpressed in many different tumor types and to be involved in various processes, reviewed by Singh et al. (Singh and Morris, 2010). The data from Miller et al. 2009 suggested the positive association of Bmp2 expression with the malignancy of different stages of neurofibromas. To address this observation, we first confirmed the status of BMP2-SMAD1/5/8 signaling in MPNST cells. BMP2 stimulation promoted the phosphorylation of SMAD1/5/8 in MPNST cells after overnight Then, by targeted knockdown of BMP2 using shRNA and serum starvation. LDN-193189, a BMP2 signaling inhibitor, we blocked the BMP2-SMAD1/5/8 signaling in the MPNST cells. LDN-193189 effectively inhibited phosphorylated SMAD1/5/8 in a dose dependent manner. In MPNST cells treated with LDN-193189 and the stable BMP2 knockdown cell lines, there was no significant differences in growth rate. However, we found that cell migration and invasion of MPNST cell lines were impaired under the above conditions that blocked BMP2-SMAD1/5/8 signaling.

These findings suggest the overexpressed BMP2 in the MPNSTs contributes to the malignant phenotype of MPNST cells and can be used to manipulate the malignant phenotype of MPNSTs in patients.

Materials and Methods

Lentivirus shRNA mediated stable *NRas* knockdown and inducible oncogenic RAS expression system

Stable MPNST cell lines with targeted gene knockdown and scrambled sequence were constructed by lentivirus based shRNA technology. The lentivirus vector containing shRNAs targeting NRAS and scrambled sequence were packed using the Trans-Lentiviral[™] Packaging System (TLP4615, Open Biosystem, Thermo) in 293T cells. The virus particles were harvested and titered according to the manufacturer's protocol. The ST88-14 cells were incubated with viral particles for 4 h and selected by 0.5 µg/ml puromycin for 5 days. Selected cells were confirmed by fluorescence microscopy for GFP expression.

Tet-off (BD Biosciences) cell line conditionally expressing the oncogenic form of RAS-G12V was established using the parent Schwann cell line $STS26T(Nf1^{+/+})$. The procedure is described in a previous study from our lab (Kraniak, et al., 2010).

Scratch recovery assay

Cells were seeded at 1×10^6 cells/well in 6-well plates and pre-incubated with LDN-193189 at the same concentrations used in the scratch experiment overnight. The

scratch was made on 100% cell monolayer by a plastic tip. To better quantify the cell migration images, T265(*Nf1*^{-/-}) and ST88-14(*Nf1*^{-/-}) were infected by the GFP expressed lentivirus to create T265NonKD and ST88NonKD cell lines. T265NonKD cells were cultured at 0.1% or 5% FBS with 0 μ M, 0.001 μ M, 0.01 μ M and 0.1 μ M LDN-193189. Because ST88NonKD survived poorly with 0.1% FBS, 1% FBS were used in the experiment. ST88NonKD were cultured at 1% and 5% FBS with same LDN-193189 concentration series. Cell migration was monitored after 24 h of cell culture by Olympus IX71 fluorescent microscope, and the area of the scratched region in pixels was quantified by slidebook 4.2. This assay was repeated independently at least three times.

Matrigel invasion assay

BD BioCoatTM Growth Factor Reduced MATRIGELTM invasion Chamber was used to access the invasion ability of the ST88-14(*Nf1*^{-/-}) and T265(*Nf1*^{-/-}). Briefly, 2.5X10⁴ cells were added to the upper chamber coated by Matrigel without serum but with the BMP2 and/or LDN-193189. Cells were stimulated by 200 ng/ml BMP2 for 24 h in the chamber before evaluation. Cells with LDN-193189 were pretreated with 0.1 μ M/ml LDN-193189 overnight before seeding to the chambers, and the media was changed to fresh 0.1 μ M/ml LDN-193189 with/without BMP2 200 ng/ml for 24 h for evaluation. 5% FBS was used as attractant in the lower chamber. After 24 h, the cells remaining in the chamber were removed by the cotton swab and invaded cells present on the other side of the bottom of chamber were fixed and stained by Diff-Quick Stain (Biochemical Science, Inc., Swedesboro, NJ). The invaded cells were counted under the microscope and all experiments were repeated three times following the manufacturer's instructions.

Statistical analysis

Experiments were subject to at least three independent replicates. For qRT-PCR and scratch assay results, paired t-test was used to determine the significant differences at 95% or 99% confident interval. For the western blotting results, one sample-test was used on the ratios between the treated and controls from different replicates, 95% or 99% confident intervals were indicated on the figures.

Results

BMP2 regulation of Smad1/5/8 activity is independent of NRAS in MPNST cells

In the canonical signaling, BMP2 exerts its function by binding to specific type I and II receptors to form a complex with a serine-threonine kinase activity resulting in the phosphorylation of SMAD1/5/8 proteins. Phosphorylated SMAD1/5/8 bind to SMAD4 and translocate to the nucleus to regulate gene expression (Massague, et al., 2005). However, the roles of BMP2 in tumorigenesis are diverse including the epithelial to mesenchymal transition, metastasis, and angiogenesis (Singh and Morris, 2010). We found that SMAD1/5/8 phosphorylation was increased in 3 MPNST cell lines, ST88-14($Nf1^{-/-}$), T265($Nf1^{-/-}$) and sNF96.2($Nf1^{-/-}$), compared to normal human Schwann cells (Fig. 14a). The BMP2-SMAD1/5/8 pathway activity in ST88-14(Nf1^{-/-}) was further evaluated by BMP2 stimulation after overnight serum starvation. Treating with 100 ng/ml BMP2 stimulated the phosphorylation of SMAD1/5/8 in 15 min after overnight serum starvation, but with limited additional phosphorylation after BMP2 treatment at 200 ng/ml (Fig. 14b). Because BMP2 was overexpressed in MPNST cells, we suspected that the overexpressed BMP2 could promote SMAD1/5/8 activity. After siBmp2 treatment of ST88-14(Nf1^{-/-}) cells, Bmp2 expression decreased by ~60%, as determined by qRT-PCR (Fig. 15a) and the phosphorylation of SMAD1/5/8 was inhibited as demonstrated by western blotting (Fig. 15b).

A recent report indicated that suppression of RAS activity by salirasib, a S-trans, trans-farnesylthiosalicylic acid (FTS), inhibited the expression of *Bmp4*, and thereafter perturbed BMP4 related SMAD signaling in MPNST cell lines (Barkan, et al., 2011). To verify that NRAS suppression resulted in negative regulation of SMAD1/5/8 signaling, we transfected ST88-14(*Nf1^{-/-}*) cells with si*NRas* and found that SMAD1/5/8 phosphorylation decreased by ~40% compared to control. However, when si*Bmp2* was transfected into ST88-14(*Nf1^{-/-}*) cells, the phosphorylation of SMAD1/5/8 was inhibited by ~80%, greater than that from the NRAS knockdown alone (Fig. 15b). A combination of si*NRas* and si*Bmp2* failed to inhibit phosphorylation of SMAD1/5/8 beyond that of si*Bmp2* alone. We observed similar results in the comparison between *NRAS* stable knockdown cell line (ST88-*NRas*KD) and non-silencing control cell line (ST88-*Non*KD) (Fig. 16). Together, these data indicated that although both NRAS and BMPs can control downstream SMADs, BMP2 exerted a greater influence on the phosphorylation of SMAD1/5/8 than NRAS.

LDN-193189 inhibits BMP2-SMAD1/5/8 in time and concentration dependent manner

To study the BMP2-SMAD1/5/8 pathway in the MPNST cell lines, we utilized

Western blotting indicated higher phosphorylation of SMAD1/5/8 in the MPNST cell lines compared to the normal human Schwann cells. BMP2 stimulation for 15 min was applied to ST88-14($Nf1^{-/-}$) after overnight serum starvation. 100 ng/ml increased the phosphorylated SMAD1/5/8 about 2-fold. 200 ng/ml had limited effects to further increase the phosphorylation compared to 100 ng/ml suggesting the signaling pathway saturation in short time.

Fig. 15 si*Bmp2* inhibited *Bmp2* mRNA accumulation and the phosphorylation of SMAD1/5/8

(a) siBmp2 significantly decreased the Bmp2 mRNA expression in ST88-14(Nf1^{-/-}) cell line by quantitative RT-PCR. Paired t-test, n=3, *p<0.05. Data is presented as means of three independent experiments \pm SD. (b) Western blotting indicated both siNRas and siBmp2 can decrease the phosphorylated SMAD1/5/8, however, siBmp2 has stronger inhibition effects on SMAD1/5/8 phosphorylation than siNRas alone.

Fig. 16 NRAS and BMP2 influence the activity of SMAD1/5/8 independently Western blotting indicated the decreased phosphorylation of SMAD1/5/8 in stable NRAS knockdown cell line ST88-*NRas*KD compared to the non-silencing control cell line ST88-*Non*KD. In ST88-*NRas*KD, 48 h after si*Bmp2* treatment, the phosphorylated SMAD1/5/8 decreased further compared to that in scrambled siRNA control sample.

LDN-193189 which has strong potency to bind BMP2 preferred type I receptors (known as Activin-receptor-Like-Kinase, ALK), ALK2, ALK3 and ALK6 (Cuny, et al., 2008) and subsequently suppress BMP2-SMAD1/5/8 signaling. We evaluated the inhibition efficacy of LDN-193189 at different concentrations and time intervals in MPNST cells to optimize the drug application. We found that treatment of T265(*Nf1*^{-/-}) cells with 0.01 μ M LDN-193189 for 15 min can inhibit phosphorylation of SMAD1/5/8 nearly completely (Fig. 17). We further evaluated the time dependency of the drug. T265(*Nf1*^{-/-}) were treated with 0.01 μ M LDN-193189 and proteins were harvested at different time points. The inhibitory effects were rapid but decreased with time, and ~50% inhibition was retained at 24 h post treatment (Fig. 18).

LDN-193189 inhibits the migration and invasion of MPNSTs in vitro

Late stage MPNSTs have been reported to frequently metastasize to the lungs, lymph nodes, and liver (Wong, et al., 1998). Because *Bmp2* expression increased in NF1-related malignant tumors (Miller, et al., 2009) (see Fig. 9), BMP2 may affect malignancy via enhancement of cell migration and invasion (Clement, et al., 2005; Gordon, et al., 2009). Therefore, we assessed BMP2 effects on these malignant properties of MPNST cell lines. We tested the MPNST cell line migration with various concentrations of LDN-193189, and quantified the ability of cells to migrate to the scratched gap. We quantified the cell migration images of two MPNST cell lines,

Fig. 17 Efficacy of LDN-193189 concentration series to inhibit SMAD1/5/8 in T265(*Nf1*^{-/-})

LDN-193189 concentration series indicated the effective inhibition of the phosphorylation of SMAD1/5/8 after 1.5 h incubation in T265($Nf1^{-/-}$) cell line with 5% FBS culture medium.

Fig. 18 LDN-193189 time dependent inhibition of phosphorylation of SMAD1/5/8 in T265($Nf^{/-}$).

 $0.01 \mu M$ LDN was applied to the T265(*Nf1*^{-/-}) and the proteins were harvested at the indicated time points. The phosphorylated SMAD1/5/8 decreased with time after the LDN-193189 treatment.

T265NonKD and ST88NonKD, which were previously infected by lentivirus with non-silencing shRNA expressing a green fluorescence protein (GFP). Using 0.1% and 5% fetal bovine serum (FBS) in T265NonKD, the area of the gap at different LDN-193189 concentrations was measured by determining the number of pixels in the gap (Fig. 19a). There were significant differences of the gap area starting from 0.01 μ M with respect to the 0 μ M at 24 h after the scratch. In order to determine whether the observed effects of LDN-193189 in the migration assay reflected effects on growth retardation, the growth rate of the cell line T265NonKD with 0.01 µM LDN-193189 at 0.01% FBS and with 0.1 µM LDN-193189 at 5% FBS were evaluated compared to the control, respective (Fig. 20). No significant effect on growth rate was observed at each condition, which suggested the cell growth did not influence the change in the area of the gap at 24 h in the scratch assay. Similar results were observed in ST88NonKD (Fig. 19b) with 1% and 5% FBS, respectively. To further confirm the specificity of BMP2 stimulated migration, we constructed the stable BMP2 knockdown line (ST88Bmp2KD) and non-silencing control (ST88NonKD) cell lines (Fig. 21a), and used them in the scratch assay (Fig. 21b). There were significant differences between the areas of gap from these two cell lines at 1% or 5% FBS concentrations at 24 h after the scratch (Fig. 21c), but no significant differences in the growth rate (Fig. 21d) of these two cell lines were observed. This indicated that the differences in scratch assay were resulting from cell migration and not proliferation rates within the scratch.

The effect of BMP2 on the invasion properties of MPNST cells was measured by low growth factor Matrigel invasion assay. Matrigel was placed on the bottom membrane in the upper chamber, and the cells that digested the Matrigel and invaded through the 8 μ m pores were counted on the other side of membrane. Medium with 5% FBS in the well of each 24-well plate was used as the attractant and BMP2 and/or LDN-193189 were added into the serum free media in the upper chamber with same amount of cells. After 24 h, cells on the other side of membrane were stained by Quick-Diff and counted using microscopy. The ability of invasion of MPNST cells was significantly increased by 200 ng/ml BMP2 stimulation, and the addition of LDN-193189 completely blocked the effect induced by BMP2 on MPNST cell invasion (Fig. 22). Bmp2 stable knockdown cells, ST88BMP2KD and T265BMP2KD, also had reduced invasive properties compared to ST88NonKD and T265NonKD, respectively (Fig. 23). Therefore, abrogation of BMP2 signaling in MPNST cells impaired the motility and invasive abilities of those cells and also suggested BMP2 signaling could promote the malignant phenotypes of MPNSTs. Collectively, these data indicate that the motility and invasiveness of MPNST, as malignant properties, could be reduced by using BMP2 as a therapeutic target.

Discussion

In chapter II, the differentially expressed genes were classified according to the expression patterns. Based on the intersection analysis, neurofibromin-related but NRAS and MEK1/2 independent gene expression was identified in DS-10. From the DS-10, *Bmp2* was chosen for further study because of 1) the significance of BMP2 signaling in pathway analysis and 2) its expression profile in the data of Miller et al. 2009 that showed the positive association between *Bmp2* expressions with increasing malignancy of NF1-related tissues (Fig. 9). Interestingly, a case report suggested a connection between acute deterioration of plexiform neurofibroma and exogenous BMP2 treatment to facilitate bone fusion after surgery (Steib, et al., 2010).

Bmp2 overexpression resulting from *Nf1* deficiency but independent of NRAS and MEK1/2 activities was verified in a variety of MPNST cell models. Although the convergence of NRAS and SMAD signaling was observed in this study, the regulation of SMAD 1/5/8 signaling by BMP2 was far stronger than that by NRAS alone, which indicated that BMP2-SMAD1/5/8 may contribute independently to MPNST formation or malignant phenotypes, via mechanisms to control cell motility, invasiveness and tumor growth, as it does in other tumor types (Singh and Morris, 2010). Although BMP2 and BMP4 have certain overlapping pathway and functional redundancy, these two factors are regulated by different mechanisms (Fritz, et al., 2004). Barkan et al. 2011 reported that

application of FTS in ST88-14 cell leads to significant alteration in transcriptome including decrease of expression of *Bmp4*. We did not find decreased *Bmp4* expression after inhibition of *NRas* by siRNA in our data set, but we identified the expression of *Gdf6*, also known as *Bmp13*, to be greatly increased in ST88-14(*Nf1*^{-/-}) (DS-4) and decreased in si*NRas* treated sample (DS-2). GDF6 is believed to bind the same type I and II receptors as BMP2, which results in phosphorylation/activation of SMAD1/5/8 (Williams, et al., 2008). This mechanism may explain the phosphorylation/activation of SMAD1/5/8 that we observed in the regulation of SMAD1/5/8 by the NRAS pathway.

To evaluate BMP2-SMAD1/5/8 signaling in MPNST cell lines, LDN-193189, a selective inhibitor to BMP2-activated type I receptor kinase (ALK1, ALK2, ALK3, and ALK6), was employed in this study. LDN-193189 has been applied as the BMP-activated type I receptor inhibitor (Yu, et al., 2008), and a recent study indicated it can inhibit the ability of ALK2 and ALK3 to phosphorylate GST-SMAD1 *in vitro* at an IC₅₀ of 45 nM and 100 nM, respectively. However, its inhibition to ALK4 and ALK5 is with higher IC₅₀ at 0.3 μ M and 0.5 μ M, respectively, indicating a lesser effect on TGF β signaling (Vogt, et al., 2011). From the specificity test in the same study, LDN-193189 inhibited 24 out of 121 protein kinases by >50% at 1 μ M, which suggested us that a lower concentration was needed to minimize possible side effects. We studied the concentration dependency and time dependency of LDN-193189 in MPNST cell lines and chose 0.01 μ M of LDN-193189 for the most of experiments in this study, which is

lower than the concentration that could have significant side effects based on study of Vogt et al 2011.

Inhibition of BMP2-SMAD1/5/8 signaling by LDN-193189 impaired the motility and invasiveness of MPNST cell lines *in vitro*, and these effects were confirmed by BMP2 shRNA interference by lentivirus infection. Gordon et al. reported BMP2 could increase MMP2 (type IV collagenase) expression in pancreatic cancer cell line through the SMAD1-dependent mechanism (Gordon, et al., 2009). This mechanism may have been present in the MPNST cells that we tested.

LDN-193189 can rapidly inhibit the BMP2-SMAD1/5/8 signaling at low concentrations, however, the inhibitory effect decreased with the time. There is no significant growth arrest effect on the MPNST cells, indicating the inhibitory effects of LDN-193189 on the malignant phenotypes could be reversible. This may limit its application for only BMP2 targeted treatment, but this strategy could still cooperate with other treatments to control the malignant phenotype of MPNSTs.

1% FBS

h li

24h

5% FBS

75

Fig. 19 Migration of MPNST cell lines with LDN-193189 at 24 h in scratch assay with different FBS concentration

Scratch assay indicated the LDN-193189 treatment inhibition to migration under different FBS concentrations. Figures were captured under the fluorescent microscope at 24 h after scratches and then the pixels in the gap (the dark area) were quantified by Slidesbook software and shown as a bar graph. Paired t-test, * p<0.05, ** p<0.01. Data is expressed as means of three independent experiments \pm SD. (a) T265Non(*Nf1*^{-/-}) migration at 0.1% FBS and 5% FBS (b) ST88Non(*Nf1*^{-/-}) migration at 1% and 5% FBS.

Fig. 20 The growth curve of T265NonKD

No significant differences were shown in the growth rate of T265NonKD cell lines at 0.1% FBS with 0.01 μ M LDN-193189 or at 5% FBS with 0.1 μ M LDN-193189 compared with DMSO treated control at different time points, respectively. Data is expressed as mean \pm SD, and this figure represents one of three independent experiments. Each time point was replicated 4 times within each experiment.

Fig. 21 Bmp2 knockdown by lentivirus in ST88-14(*NfT*^{-/-}) **impaires cell migration** (a) Quantitative RT-PCR indicated the endogenous *Bmp2* expression were significantly inhibited by the shRNA lentivirus in ST88-14(*NfT*^{-/-}). Data is presented as mean of experiments \pm SD, representing one of three independent replicates. (b) Scratch assay images compared the migration ability of ST88Bmp2KD and ST88NonKD at 24 h after scratch with 1% FBS and 5% FBS at 24 h. (c)The number of pixels in the gap (black area) from the images were quantified and shown as the bar graph. Data is represented as mean \pm SD of three independent experiments, paired t-test, n=3, * p<0.05. (d) Cell growth curve of ST88Bmp2KD and ST88NonKD within 48 h. No significant growth

rate differences were observed between these two cell lines at 1% FBS and 5% FBS. This figure represents one of three independent experiments. Each time point was replicated 4 times within each experiment.

Fig. 22 BMP2 and LDN-193189 influenced the invasion ability of ST88-14(*NfT*^{-/-}) and T265(*NfT*^{-/-})

The number of cells invaded to the matrigel and presented on the other side of the insert chamber under different conditions was quantified by microscopy after the Quick-Diff stain. With the 0.1 μ M LDN-193189 in the upper chamber for 24 h, the invasion ability was significantly inhibited in both ST88-14(*Nf1*^{-/-}) and T265(*Nf1*^{-/-}) compared to the controls without treatments. 200 ng/ml BMP2 in the upper chambers for 24 h promoted the invasion of two cell lines significantly compared to the controls, and the BMP2-related invasion effects were blocked by LDN-193189. Data is expressed as means ± SD of three independent experiments, paired t-test, ** p<0.01, n=3.

Fig. 23 *Bmp2* stable knockdown lines indicated decreased invasion properties compared to the control lines.

Cells were seeded at 2.5×10^4 with no serum medium in the insert chambers and 5% FBS was used as attractant. The numbers of invaded BMP2 knockdown cell lines and control cell lines were counted. Data is presented as the mean \pm SD of three independent experiments, paired t-test, ** p<0.01.

CHAPTER IV: Conclusions and significance

In this dissertation work, I focused on a systematic screen of the downstream gene regulation resulting from neurofibromin deficiency in the MPNST cells. By associating the differentially expressed genes to biological pathways, I identified novel mechanisms to explain the malignancy of the MPNST cell lines and potential therapeutic targets for MPNST treatment.

Loss-of-function of *Nf1* predisposes the formation of multiple different tumors. Although many of these tumors are benign such as dermal, plexiform neurofibromas, and optical pathway gliomas (Lee and Stephenson, 2007), the patients can develop malignant tumors with high mortality such as MPNSTs and glioblastoma multiforme (Blatt, et al., 1986). NF1 patients with benign neurofibromas have 8~13% life risk to develop into MPNST (Evans, et al., 2002b) and up to 50% of MPNSTs are associated with *Nf1* deficiency (Matsui, et al., 1993; Sorensen, et al., 1986).

The clinical management of MPNST is quite challenging because of its inherently aggressive nature and limited diagnostic and therapeutic options. MPNST cells frequently undergo genetic alterations that cause them to be refractory to traditional treatments such as chemotherapy (Casanova, et al., 1999). Surgical resection as a treatment provides a limited outcome to both local recurrence and distant metastases. Many preclinical studies and clinical trials are currently testing strategies to target the activated downstream pathways of neurofibromin in MPNSTs, including RAS, MEK1/2, and mTOR. A better understanding of the signaling transduction of neurofibromin in MPNST may provide novel therapeutic targets to control or reduce the malignancy of the tumor.

Gene expression profile screening is generally used to identify the disease signatures on the molecular level. Previous NF1-related large scale microarray studies mainly focused on differentiating the benign and malignant tumor types, or characterizing gene signatures of MPNSTs. Although the differentially expressed genes improved the understanding of NF1 disease, diverse information did not provide an integrated signaling network or reveal the aberrant gene regulation mechanisms in NF1-related tumors. Currently, the RAS and MEK1/2 targeted strategies are not very successful; however the interference to the alternative downstream target such as mTOR is promising. Novel targets for the tumor treatment can be offered by systematically screening to stratify the pathway related gene expression changes.

In this study, MPNST cell lines with different neurofibromin status provided good models to classify the signaling pathway related gene expression changes. The hyperactive NRAS and MEK1/2 have been characterized in ST88-14($Nf1^{-/-}$) (Mattingly, et al., 2006) and functions of wild type neurofibromin in STS26T($Nf1^{+/+}$) to regulate RAS and ERK1/2 activities have been confirmed as well (Kraniak, et al., 2010). By gene profile comparisons based on pathway interference in these two cell lines, I

associated the gene expression changes to the specific pathways in MPNSTs, which is the first time to provide the pathway-oriented gene regulations in MPNSTs. Furthermore, according to the biological causality among the interfered pathways, the set theory operation allowed us to identify the neurofibromin-associated but NRAS and MEK1/2 independent changes, enabling the possibility to study the neurofibromin deficiency related novel signaling associated or not with NRAS and MEK1/2.

In chapter II, I described the experiment design and set theory operations to associate the differentially expressed genes to the signaling axis. The results revealed the potential regulatory mechanisms for these genes, and a good example was *Sox9*. SOX9 was reported to function as a pro-survival biomarker in MPNSTs from Miller's large scale microarray analysis about NF1-related cells and tissues (Miller, et al., 2009). However, the mechanism of regulation of *Sox9* expression is unclear. According to our results, the increased expression of *Sox9* is probably dependent on the activated MEK1/2 in MPNSTs. Similar candidates, such like *Edn1*, *Nt5e* and *Rgs16*, that may influence the tumor formation and malignant phenotypes in each category are also discussed in chapter II.

Gene set enrichment analysis by GePS software identified significant gene ontology terms and pathway terms from the gene lists in each category, and the significant terms provide sources for hypothesis generation. From the canonical pathway analysis of the upregulated gene in DS-10, we found the term "signaling of BMP2". This term drew our attention to the aberrant expression of BMP2 in the NF1-related cell lines and human samples. Actually, a positive association of *Bmp2* expression with the increasing malignancy of NF1 tumors has been indicated as one of 2827 differentially expressed transcripts in NF1-related tumors compared to the normal human Schwann cell in Miller's data. This suggested us a strong connection between the *Bmp2* overexpression and MPNST malignancy. I validated the *Bmp2* expression changes in microarray analysis by qRT-PCR. By using the inducible oncogenic RAS system in STS26T(*Nf1*^{+/+}) cells, I concluded that the increased RAS and MAPK activity do not significantly influence the *Bmp2* expression in STS26T(*Nf1*^{+/+}) cells.

Next, I evaluated the possible causality between BMP2 overexpression and malignant phenotypes in MPNST cell lines in chapter III. BMP2 overexpression has been reported in multiple tumors, such as prostatic adenocarcinoma, bladder cancer, breast cancer and prostate cancer (Hatakeyama, et al., 1993; Hung, et al., 2008; Miyazaki, et al., 2003), and involves many cancer processes, including metastasis, motility, and invasiveness (Langenfeld, et al., 2003; Park, et al., 2008). We found that the phosphorylation of SMAD1/5/8, the downstream effector of BMP2 signaling, is relatively higher in the MPNSTs than in the normal human Schwann cells. Then, by employing *Bmp2* shRNA or receptor inhibition by LDN-193189, we inhibited the BMP2-SMAD1/5/8 signaling in ST88-14(*Nf1*^{-/-}) and T265(*Nf1*^{-/-}) cells, and quantified their inhibitory effects on the cell migration and invasion. The results confirmed that

BMP2-SMAD1/5/8 inhibition impaired the migration and invasion properties of ST88-14($Nf1^{-/-}$) and T265($Nf1^{-/-}$) cells, indicating that the BMP2 controls these malignant properties of MPNST cells. Although NRAS regulation to the SMAD1/5/8 activity in our cell models was confirmed by NRAS specific siRNA and shRNA, we did not observed the *Bmp4* expression decrease as observed by Barkan et al. in their study of FTS treatment (Barkan, et al., 2011). Actually, our study suggests the expression decrease of *Gdf6* (*Bmp13*) could explain the inhibitory effects of NRAS knockdown on the SMAD1/5/8 activity, while the FTS related *Bmp4* decrease identified by Barkan et al. could be the FTS specific effects on the MPNST cells.

In summary, we systematically described the downstream gene expression changes in MPNSTs under the scenarios of *Nf1* knockdown, *NRas* knockdown and MEK1/2 inhibition. By comparing different data sets, the overlapped gene expression changes were associated to the pathways activated in the cell models. This is the first study to reveal the pathway-orientated gene expression changes in a MPNST cell line. I not only characterized the NRAS and MEK1/2 specific gene changes, but also identified ones that neurofibromin-related and independent of NRAS and MEK1/2, which provided novel molecular mechanisms to support the further drug target studies. We identified the overexpression of *Bmp2* and verified its roles in the malignant phenotypes in the MPNSTs. All these studies significantly expend our knowledge of gene regulations of MPNST, and offer novel insights in the future therapeutic strategy in NF1-related tumor types.

APPENDIX: SUPPLEMENTARY TABLES

Suppl. Table 1: Primers for qRT-PCR

Gene	Forward Primer	Reverse Primer	
ACTG2	CTGGAGAAGAGCTATGAGCTG	ATCTCCTTCTGCATCCTGTC	
ANXA4	CCGGTCTCGTGGGCAGAGGAA	ACTCAGGGCCAGACAGCGGG	
APC	TGTCCCTCCGTTCTTATGGAA	TCTTGGAAATGAACCCATAGGAA	
ATF3	GGCGGAGGTGGGGTTAGCTT	TGGGGCAAGGTGCTGAAAATCCT	
Bcl2	GATGTCGCCCCTGGTGGACAAC	GGGCCGTACAGTTCCACAAAGGC	
BMP2	GACACTGAGACGCTGTTCC	CCATGGTCGACCTTTAGG	
BMP4	TCCATGCTGTACCTGGATGA	TGAGTGGATGGGAACGTGT	
CCND1	TATTGCGCTGCTACCGTTGA	CCAATAGCAGCAAACAATGTGAAA	
CCND2	TGGAGCTGCTGTGCCACG	GTGGCCACCATTCTGCGC	
CDH1	CAGCCACAGACGCGGACGAT	CTCTCGGTCCAGCCCAGTGGT	
CDH2	CCTGCGCGTGAAGGTTTGCC	CCAAGCCCCGCACCACAAT	
CDKN2A	CATAGATGCCGCGGAAGGT	CCCGAGGTTTCTCAGAGCCT	
CHEK1	TCTCGGCTCCAGCACCACGA	GGCCGCTCTGGGCCTGAAAG	
CSNK1E	TGAGGGGTCCTCTCTGTGCCC	CCGATCTTCCGTCCCAGGCG	
CTNNB1	CCCACTGGCCTCTGATAAAGG	ACGCAAAGGTGCATGATTTG	
CTNND1	TGCTGTGGTGGCTGGGATGC	AGGAGGGAGAGAGACCCCCTCA	
DKK1	TTCCAAGAGATCCTTGCGTT	ACCCCATTGATTGTTATCTTGA	
DOCK4	CAAGTTCTGCTCCATCGAGT	CTTTTTCAGGTGCAGAGAGATTTGG	
EDN1	GAGAAACCCACTCCCAGTCC	GATGTCCAGGTGGCAGAAGT	
ETV4	GAGGCCGAGCGAAGGAAATGCA	TTTTCGGGCGCAGCAGACAGTT	
FMN1	TTTGCCTGCCTCGGTTGGGG	TGGGAGGGGGCATCCCAGAT	
FZD2	TCTCCGGCTGCTCAGTCCGAC	AACTTTACTCGCGGCCGCAG	
GATA6	CCTTCGGCGAGCGCTGTTTGTT	CTCTGCCGGAAAACTGCAGCCT	
GSK3Beta	CTCCTCATGCTCGGATTCA	TGCAGAAGCAGCATTATTGG	
IGF2	GTGCTGCATCGCTGCTTACG	GGAAGTACGGCCTGAGAGGT	
IGF2R	GTTGTCTGCCCTCCAAAGAA	CCTTTGGAGTACGTGACAAG	
LEF1	CGACGCCAAAGGAACACTGACATC	GCACGCAGATATGGGGGGGAGAAA	
MAPK14	GCCGAGCTGTTGACTGGAAG	GGAGGTCCCTGCTTTCAAAGG	
MMP1	AAGACAAAGGCAAGTTGAAAAGCGG	TGGTTTCCCAGTCACTTTCAGCCC	
MMP2	TGATCTTGACCAGAATACCATCGA	GGCTTGCGAGGGAAGAAGTT	
MMP9	CCTGGAGACCTGAGAACCAATC	CCACCCGAGTGTAACCATAGC	
MSX2	GGAGCGGCGTGGATGCAGGAA	AAGCACAGGTCTATGGAACGG	
MYC	CGTCTCCACACATCAGCACAA	CACTGTCCAACTTGACCCTCTTG	

Gene	Forward Primer	Reverse Primer
MYLK	GGCACCCCGTGAGGAGACA	GGCCTTGGGCGTTGGAAGCA
NPPB	TGGGAAGCAAACCCGGACGC	GCCCGGGAAGGTGCTGTCTG
NRP1	CAGAGCGCTCCCGCCTGAAC	AAATGGCGCCCTGTGTCCCG
PAX3	GAGTGAGCGCGAGCCTCTGCAC	AGGTGGTTCTGCTCCTGCG
PIK3R3	GAGAGGGGAATGAAAAGGAGA	ATCATGAATCTCACCCAGACG
PTEN	CCGAAAGGTTTTGCTACCATTCT	AAAATTATTTCCTTTCTGAGCATTCC
RUNX2	CCAACCCACGAATGCACTATC	TAGTGAGTGGTGGCGGACATAC
SMAD3	TCCTGGCTACCTGAGTGAAGA	GTTGGGAGACTGGACGAAAA
SNAI1	CAGTGCCTCGACCACTATGCCG	CGGTGGGGTTGAGGATCTCCG
SOX9	AGACCTTTGGGCTGCCTTAT	TAGCCTCCCTCACTCCAAGA
SPARC	CTGCCTGCCACTGAGGGTTCC	TCCAGGCAGAACAACAAACCATCC
SPIN4	GCGAGCCCGCCATCTCTACG	CGTGAGCACTGGGACAGCGT
TGFß1	AAGGACCTCGGCTGGAAGTGC	CCGGGTTATGCTGGTTGTA
Twist1	CACTGAAAGGAAAGGCATCA	GGCCAGTTTGATCCCAGTAT
VEGFA	TTTACTGCTGTACCTCCACCA	ATCTCTCCTATGTGCTGGCTTT
VEGFC	GGGAAGAAGTTCCACCATCA	ATGTGGCCTTTTCCAATACG
WNT10B	GCACTGTATTGCTCCTCCCACTT	ATAGGGACTCCCCAGCCAAA
WNT5A	AGAAGAAACTGTGCCACTTGTATCAG	CCTTCGATGTCGGAATTGATACT
Zeb1	GGCAGAGAATGAGGGAGAAG	CTTCAGACACTTGCTCACTACTC
Zeb2	GTGACAAGACATTCCAGAAAAGCAG	GAGTGAAGCCTTGAGTGCTC
ZNF185	GCGGATCTGAGCAACTTGTC	TTCTGGGGTACTGGGATCTG
PXN	ATGGCTTCGCTGTCGGATTT	ATGAACCCTCCTCGTCCTG
кіт	GCACAATGGCACGGTTGAAT	TGGGGATGGATTTGCTCTTTGT
GATA4	GGAGGAAGGAGCCAGCCTA	CCTATTGGGGGCAGAAGACG
NKX2-5	AGAGCCGAAAAGAAAGCCTG	CACCGACACGTCTCACTCAG
LAT2	AGTGGTGTTGGCATCAGCTT	GCCTCTTGTGATGCTGAGAGT
FOXA1	TGAAACCAGCGACTGGAACA	ATGTTGCCGCTCGTAGTCAT

Suppl. Table 2: DS-5

DS-5, the intersection of DS-4 (ST88-14 vs. HSC) and DS-2 (siNRas vs. Scrambled control siRNA), is hypothetically under the control of Neurofibromin-NRAS axis in ST88-14($Nf1^{-/-}$) cells, and matching the pattern: 1) increase in ST88-14 vs. HSC but decrease in si*NRas* vs. scrambled control siRNA treated ST88-14, or 2) decrease in ST88-14 versus HSC but increase in si*NRas* versus scrambled control treated ST88-14.

Gene	ST88 vs HSC	ST88 vs HSC	siNRas vs SC88	siNRas vs SC88	Discriptoins
In DS-5	.logFC	.adjPVal	.logFC	.adjPVal	
ADM	5.06	0.0000	-0.68	0.0025	adrenomedullin
ANXA4	-1.21	0.0000	0.60	0.0020	annexin A4
ATCAY	2.89	0.0000	-0.63	0.0035	ataxia, cerebellar, Cayman type
ATF3	-1.42	0.0000	1.04	0.0002	activating transcription factor 3
C9orf150	-1.92	0.0000	0.69	0.0036	chromosome 9 open reading frame 150
CLINT1	1.28	0.0000	-1.18	0.0010	clathrin interactor 1
EPB41L4B	2.81	0.0000	-1.12	0.0003	erythrocyte membrane protein band 4.1 like 4B
FLI1	5.38	0.0000	-0.67	0.0077	Friend leukemia virus integration 1
GDF6	4.10	0.0000	-0.76	0.0044	growth differentiation factor 6
LMO7	2.14	0.0000	-0.70	0.0020	LIM domain 7
MET	1.00	0.0000	-0.93	0.0000	met proto-oncogene (hepatocyte growth factor
					receptor)
PBLD	-1.13	0.0000	0.66	0.0058	phenazine biosynthesis-like protein domain
					containing
PTPRZ1	-4.50	0.0000	0.96	0.0017	protein tyrosine phosphatase, receptor-type, Z
					polypeptide 1
RGS16	-2.48	0.0000	1.02	0.0054	regulator of G-protein signaling 16
SERBP1	0.79	0.0000	-0.60	0.0024	SERPINE1 mRNA binding protein 1
SH3D19	-1.60	0.0000	0.65	0.0037	SH3 domain containing 19
SMAD3	3.07	0.0000	-0.76	0.0092	SMAD family member 3
SNCAIP	3.15	0.0000	-0.68	0.0086	synuclein, alpha interacting protein
SPIN4	1.43	0.0000	-0.66	0.0041	spindlin family, member 4
SRD5A1	-1.03	0.0000	0.71	0.0035	steroid-5-alpha-reductase, alpha polypeptide 1
					(3-oxo-5 alpha-steroid delta 4-dehydrogenase
					alpha 1)
THSD7A	-3.26	0.0000	0.77	0.0094	thrombospondin, type I, domain containing 7A
TPM1	2.45	0.0000	-0.79	0.0019	tropomyosin 1 (alpha)

Suppl. Table 3: DS-6

DS-6, intersection of DS-4 (ST88-14 vs. HSC) and DS-3 (U0126 vs. DMSO), is hyperthetically under the control the Neurofibromin-MEK1/2 axis in ST88-14($NfI^{-/-}$) cells with matching the pattern: 1) increase in ST88-14 versus HSC but decrease in U0126VsDMSO, or 2) decrease in ST88-14 versus HSC but increase in U0126 versus

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	Descriptions
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
AFMID	1.48	0.0000	-0.66	0.0025	arylformamidase
AHCYL2	-0.92	0.0000	0.59	0.0010	adenosylhomocysteinase-like 2
ANXA4	-1.21	0.0000	1.24	0.0000	annexin A4
APLN	2.12	0.0000	-0.95	0.0064	apelin
ARG2	-2.16	0.0000	1.19	0.0008	arginase, type II
ARHGAP1	1.63	0.0000	-1.05	0.0005	Rho GTPase activating protein 11B; Rho GTPase
1A					activating protein 11A
ARL2BP	-0.87	0.0000	0.60	0.0005	ADP-ribosylation factor-like 2 binding protein
ARL6IP5	-1.45	0.0000	0.85	0.0001	ADP-ribosylation-like factor 6 interacting protein 5
ARMCX1	-1.57	0.0000	0.80	0.0014	armadillo repeat containing, X-linked 1
ARMCX3	-2.60	0.0000	0.69	0.0019	armadillo repeat containing, X-linked 3
ATF3	-1.42	0.0000	1.01	0.0026	activating transcription factor 3
ATP2B4	-3.43	0.0000	1.04	0.0003	ATPase, Ca++ transporting, plasma membrane 4
BRCA1	1.74	0.0000	-0.85	0.0042	breast cancer 1, early onset
BTN3A1	-1.83	0.0000	0.66	0.0008	butyrophilin, subfamily 3, member A1
BTN3A2	-2.37	0.0000	0.87	0.0072	butyrophilin, subfamily 3, member A2
BTN3A3	-1.90	0.0000	0.92	0.0038	butyrophilin, subfamily 3, member A3
C11orf82	2.32	0.0000	-0.85	0.0061	chromosome 11 open reading frame 82
C12orf24	2.20	0.0000	-0.71	0.0097	chromosome 12 open reading frame 24
C15orf42	1.43	0.0000	-0.96	0.0006	chromosome 15 open reading frame 42
C15orf52	-5.65	0.0000	0.78	0.0021	chromosome 15 open reading frame 52
C1orf198	-2.61	0.0000	1.09	0.0005	chromosome 1 open reading frame 198
C3orf23	-2.53	0.0000	0.99	0.0000	chromosome 3 open reading frame 23
C3orf26	1.16	0.0000	-0.81	0.0001	chromosome 3 open reading frame 26
C4orf3	-1.16	0.0000	0.71	0.0003	chromosome 4 open reading frame 3
C5orf41	-1.62	0.0000	1.11	0.0010	chromosome 5 open reading frame 41

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
C6orf35	-1.66	0.0000	0.76	0.0001	chromosome 6 open reading frame 35;
					hCG1820764; tetratricopeptide repeat domain 28
C6orf89	-1.50	0.0000	0.68	0.0005	chromosome 6 open reading frame 89
C9orf140	1.45	0.0000	-0.98	0.0005	chromosome 9 open reading frame 140
C9orf150	-1.92	0.0000	1.05	0.0001	chromosome 9 open reading frame 150
CCNDBP1	-1.49	0.0000	0.63	0.0043	cyclin D-type binding-protein 1
CD55	4.89	0.0000	-1.66	0.0000	CD55 molecule, decay accelerating factor for
					complement (Cromer blood group)
CD99L2	-1.37	0.0000	0.68	0.0071	CD99 molecule-like 2
CDC25A	2.10	0.0000	-1.27	0.0001	cell division cycle 25 homolog A (S. pombe)
CDC6	1.26	0.0000	-0.74	0.0024	cell division cycle 6 homolog (S. cerevisiae)
CDCA5	1.87	0.0000	-0.85	0.0010	cell division cycle associated 5
CEP72	2.42	0.0000	-0.82	0.0007	centrosomal protein 72kDa
CHAF1B	1.73	0.0000	-0.64	0.0062	chromatin assembly factor 1, subunit B (p60)
CHEK1	1.91	0.0000	-0.66	0.0047	CHK1 checkpoint homolog (S. pombe)
CKS1B	0.99	0.0000	-0.91	0.0001	CDC28 protein kinase regulatory subunit 1B
CLEC2B	1.88	0.0000	-0.95	0.0058	C-type lectin domain family 2, member B
CNKSR3	-2.05	0.0000	1.09	0.0005	membrane associated guanylate kinase, WW and
					PDZ domain containing 1; CNKSR family member 3
COL13A1	3.41	0.0000	-2.38	0.0003	collagen, type XIII, alpha 1
COL16A1	-2.83	0.0000	0.96	0.0016	collagen, type XVI, alpha 1
COL1A2	-2.98	0.0000	1.53	0.0078	collagen, type I, alpha 2
CRISPLD2	-2.15	0.0000	1.50	0.0008	cysteine-rich secretory protein LCCL domain
					containing 2
CRYL1	-3.61	0.0000	0.95	0.0003	crystallin, lambda 1
CTPS	1.34	0.0000	-0.72	0.0009	CTP synthase
DAAM1	-1.31	0.0000	0.91	0.0066	dishevelled associated activator of morphogenesis 1
DDIT4	-1.69	0.0000	0.74	0.0062	DNA-damage-inducible transcript 4
DECR1	-1.53	0.0000	0.59	0.0077	2,4-dienoyl CoA reductase 1, mitochondrial
DLC1	-1.68	0.0000	1.00	0.0013	deleted in liver cancer 1
DNAJC15	-0.87	0.0000	0.59	0.0002	DnaJ (Hsp40) homolog, subfamily C, member 15
DNMBP	1.84	0.0000	-1.02	0.0000	dynamin binding protein
DSCC1	1.56	0.0000	-1.10	0.0022	defective in sister chromatid cohesion 1 homolog (S.
					cerevisiae)
DTL	1.21	0.0000	-0.72	0.0044	denticleless homolog (Drosophila)
DUSP16	-2.27	0.0000	0.78	0.0015	dual specificity phosphatase 16
E2F1	1.19	0.0000	-0.76	0.0018	E2F transcription factor 1

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
EDN1	3.83	0.0000	-1.52	0.0000	endothelin 1
EGFR	3.50	0.0000	-0.79	0.0029	epidermal growth factor receptor (erythroblastic
					leukemia viral (v-erb-b) oncogene homolog, avian)
EIF2C2	1.31	0.0000	-1.00	0.0000	eukaryotic translation initiation factor 2C, 2
EPC1	-1.88	0.0000	0.68	0.0079	enhancer of polycomb homolog 1 (Drosophila)
ERRFI1	1.86	0.0000	-1.16	0.0013	ERBB receptor feedback inhibitor 1
ESM1	4.30	0.0000	-3.91	0.0000	endothelial cell-specific molecule 1
ESX1	2.82	0.0000	-1.53	0.0002	ESX homeobox 1
ETV1	1.29	0.0000	-0.79	0.0010	ets variant 1
ETV4	2.52	0.0000	-2.09	0.0000	ets variant 4
EXO1	1.37	0.0000	-0.65	0.0065	exonuclease 1
FAM105A	3.18	0.0000	-0.61	0.0012	family with sequence similarity 105, member A
FAM63A	-2.85	0.0000	0.60	0.0099	family with sequence similarity 63, member A
FANCI	1.02	0.0000	-0.72	0.0016	Fanconi anemia, complementation group I
FGFR3	2.10	0.0000	-1.21	0.0024	fibroblast growth factor receptor 3
FOXA2	4.61	0.0000	-2.34	0.0000	forkhead box A2
FOXD1	3.89	0.0000	-0.92	0.0050	forkhead box D1
FOXF2	1.83	0.0000	-0.59	0.0031	forkhead box F2
FST	2.72	0.0000	-1.25	0.0021	follistatin
FTL	-2.10	0.0000	0.93	0.0035	similar to ferritin, light polypeptide; ferritin, light
					polypeptide
GABPB1	1.13	0.0000	-0.99	0.0000	GA binding protein transcription factor, beta subunit
					1
GBP1	-3.53	0.0000	0.84	0.0016	guanylate binding protein 1, interferon-inducible,
					67kDa
GLB1	-1.99	0.0000	0.60	0.0022	galactosidase, beta 1
GLS	-2.38	0.0000	0.83	0.0049	glutaminase
GPR56	-4.61	0.0000	1.04	0.0055	G protein-coupled receptor 56
GRN	-1.66	0.0000	0.76	0.0016	granulin
H6PD	-1.65	0.0000	0.87	0.0013	hexose-6-phosphate dehydrogenase (glucose
					1-dehydrogenase)
HAS2	5.15	0.0000	-2.97	0.0000	hyaluronan synthase 2
HBP1	-1.47	0.0000	0.84	0.0056	HMG-box transcription factor 1
HEATR5A	-3.07	0.0000	0.80	0.0009	HEAT repeat containing 5A
HGF	2.61	0.0000	-0.61	0.0063	hepatocyte growth factor (hepapoietin A; scatter
					factor)
HHIP	3.86	0.0000	-1.69	0.0000	hedgehog interacting protein

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
HMGA2	7.96	0.0000	-1.10	0.0030	high mobility group AT-hook 2
HSPE1	1.11	0.0000	-0.85	0.0002	heat shock 10kDa protein 1 (chaperonin 10)
IFIH1	-1.99	0.0000	1.17	0.0002	interferon induced with helicase C domain 1
IGBP1	-1.49	0.0000	0.73	0.0001	chromosome 14 open reading frame 19;
					immunoglobulin (CD79A) binding protein 1
IGF2BP3	4.64	0.0000	-0.90	0.0093	insulin-like growth factor 2 mRNA binding protein 3
IL8	3.68	0.0000	-4.89	0.0000	interleukin 8
INHBB	4.43	0.0000	-1.70	0.0006	inhibin, beta B
ITGAV	-2.13	0.0000	0.76	0.0085	integrin, alpha V (vitronectin receptor, alpha
					polypeptide, antigen CD51)
KCTD1	-1.48	0.0000	0.69	0.0055	potassium channel tetramerisation domain
					containing 1
KIAA0020	1.45	0.0000	-0.62	0.0013	KIAA0020
KLHL24	-1.40	0.0000	0.81	0.0000	kelch-like 24 (Drosophila)
LHPP	-3.11	0.0000	1.43	0.0000	phospholysine phosphohistidine inorganic
					pyrophosphate phosphatase
LIG1	1.39	0.0000	-0.73	0.0022	ligase I, DNA, ATP-dependent
LIMD2	2.24	0.0000	-0.60	0.0034	LIM domain containing 2
LMO4	-2.74	0.0000	0.72	0.0033	LIM domain only 4
LRRC8C	1.51	0.0000	-1.11	0.0000	leucine rich repeat containing 8 family, member C
LRRN1	-4.21	0.0000	1.76	0.0001	leucine rich repeat neuronal 1
LXN	-5.62	0.0000	1.78	0.0031	latexin
LYAR	1.25	0.0000	-0.89	0.0000	Ly1 antibody reactive homolog (mouse)
LYST	-3.86	0.0000	1.03	0.0082	lysosomal trafficking regulator
MAGED1	-0.87	0.0000	0.68	0.0001	melanoma antigen family D, 1
MAP3K5	2.81	0.0000	-0.86	0.0089	mitogen-activated protein kinase kinase kinase 5
MATN2	-2.69	0.0000	1.51	0.0041	matrilin 2
MCM10	1.43	0.0000	-0.96	0.0011	minichromosome maintenance complex component
					10
MMP9	2.76	0.0000	-0.76	0.0012	matrix metallopeptidase 9 (gelatinase B, 92kDa
					gelatinase, 92kDa type IV collagenase)
MOXD1	-5.46	0.0000	1.21	0.0018	monooxygenase, DBH-like 1
MTAP	1.31	0.0000	-0.70	0.0018	methylthioadenosine phosphorylase
MXD4	-1.06	0.0000	0.73	0.0027	MAX dimerization protein 4
MXRA8	-4.41	0.0000	1.58	0.0091	matrix-remodelling associated 8
MYO19	1.54	0.0000	-0.64	0.0043	myosin XIX
NAV2	-3.02	0.0000	1.33	0.0001	neuron navigator 2

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
NETO2	3.29	0.0000	-0.73	0.0028	neuropilin (NRP) and tolloid (TLL)-like 2
NHS	1.30	0.0000	-0.82	0.0008	Nance-Horan syndrome (congenital cataracts and
					dental anomalies)
NIPAL3	-1.20	0.0000	0.76	0.0019	NIPA-like domain containing 3
NOP16	1.16	0.0000	-0.69	0.0036	NOP16 nucleolar protein homolog (yeast)
NOP56	1.74	0.0000	-0.64	0.0020	NOP56 ribonucleoprotein homolog (yeast)
NOP58	1.27	0.0000	-0.61	0.0010	NOP58 ribonucleoprotein homolog (yeast)
NOTCH2	-1.00	0.0000	0.78	0.0002	Notch homolog 2 (Drosophila)
NQO1	-1.75	0.0000	1.16	0.0017	NAD(P)H dehydrogenase, quinone 1
NRP2	-2.88	0.0000	0.91	0.0000	neuropilin 2
NUDCD1	1.19	0.0000	-0.75	0.0000	NudC domain containing 1
NUP35	1.22	0.0000	-0.75	0.0002	nucleoporin 35kDa
ODZ3	-3.38	0.0000	0.76	0.0036	odz, odd Oz/ten-m homolog 3 (Drosophila)
OPTN	-3.02	0.0000	0.82	0.0001	optineurin
ORC1L	1.38	0.0000	-0.60	0.0034	origin recognition complex, subunit 1-like (yeast)
PAICS	1.52	0.0000	-0.66	0.0001	phosphoribosylaminoimidazole carboxylase,
					phosphoribosylaminoimidazole succinocarboxamide
					synthetase
PBXIP1	-1.10	0.0000	0.90	0.0000	pre-B-cell leukemia homeobox interacting protein 1
PIR	-1.62	0.0000	0.64	0.0099	pirin (iron-binding nuclear protein)
PNRC1	-1.90	0.0000	1.40	0.0000	proline-rich nuclear receptor coactivator 1
POLR3K	1.58	0.0000	-0.78	0.0001	polymerase (RNA) III (DNA directed) polypeptide K,
					12.3 kDa
PPAP2A	-3.06	0.0000	1.35	0.0000	phosphatidic acid phosphatase type 2A
PPIL5	1.09	0.0000	-0.78	0.0013	peptidylprolyl isomerase (cyclophilin)-like 5
PQLC3	-1.60	0.0000	0.68	0.0033	PQ loop repeat containing 3
PRELID2	0.88	0.0000	-0.66	0.0009	PRELI domain containing 2
PSMB8	-1.16	0.0000	0.60	0.0086	proteasome (prosome, macropain) subunit, beta
					type, 8 (large multifunctional peptidase 7)
PSMB9	-1.11	0.0000	0.72	0.0035	proteasome (prosome, macropain) subunit, beta
					type, 9 (large multifunctional peptidase 2)
PSMC3IP	1.37	0.0000	-0.75	0.0012	PSMC3 interacting protein
PTGER4	3.72	0.0000	-1.20	0.0004	prostaglandin E receptor 4 (subtype EP4)
РТХ3	2.98	0.0000	-2.03	0.0000	pentraxin-related gene, rapidly induced by IL-1 beta
RAD18	1.14	0.0000	-0.71	0.0022	RAD18 homolog (S. cerevisiae)
RAD54B	1.10	0.0000	-0.74	0.0092	RAD54 homolog B (S. cerevisiae)
RASGRF2	2.28	0.0000	-1.00	0.0010	Ras protein-specific guanine nucleotide-releasing

Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
					factor 2
RFWD3	1.29	0.0000	-0.97	0.0000	ring finger and WD repeat domain 3
RGNEF	2.18	0.0000	-1.28	0.0001	Rho-guanine nucleotide exchange factor
RGS17	2.54	0.0000	-1.37	0.0024	regulator of G-protein signaling 17
RGS5	3.62	0.0000	-1.14	0.0026	regulator of G-protein signaling 5
RIPK2	1.44	0.0000	-0.90	0.0000	receptor-interacting serine-threonine kinase 2
RNASEL	-1.54	0.0000	0.73	0.0023	ribonuclease L (2',5'-oligoisoadenylate
					synthetase-dependent)
RNF144B	-2.45	0.0000	0.91	0.0099	ring finger protein 144B
RPS6KA5	-2.12	0.0000	0.84	0.0008	ribosomal protein S6 kinase, 90kDa, polypeptide 5
RTP4	-1.83	0.0000	1.28	0.0009	receptor (chemosensory) transporter protein 4
S100A10	-1.73	0.0000	0.74	0.0091	S100 calcium binding protein A10
SAT2	-1.34	0.0000	0.70	0.0019	spermidine/spermine N1-acetyltransferase family
					member 2
SERF2	-1.11	0.0000	0.61	0.0085	chromosome 15 open reading frame 63; small
					EDRK-rich factor 2
SERPINB1	-3.48	0.0000	0.78	0.0054	serpin peptidase inhibitor, clade B (ovalbumin),
					member 1
SH3BP5	-3.80	0.0000	0.84	0.0011	SH3-domain binding protein 5 (BTK-associated)
SHISA3	3.99	0.0000	-1.62	0.0050	shisa homolog 3 (Xenopus laevis)
SIGLEC15	2.03	0.0000	-1.17	0.0013	sialic acid binding Ig-like lectin 15
SIN3B	1.20	0.0000	-0.74	0.0030	SIN3 homolog B, transcription regulator (yeast)
SLC16A4	-3.39	0.0000	1.11	0.0018	solute carrier family 16, member 4 (monocarboxylic
					acid transporter 5)
SLC17A5	-3.39	0.0000	0.69	0.0078	solute carrier family 17 (anion/sugar transporter),
					member 5
SLC19A1	1.46	0.0000	-0.72	0.0038	solute carrier family 19 (folate transporter), member
					1
SLCO4A1	3.66	0.0000	-1.34	0.0000	solute carrier organic anion transporter family,
					member 4A1
SMURF2	2.51	0.0000	-1.13	0.0013	SMAD specific E3 ubiquitin protein ligase 2
SOLH	1.08	0.0000	-1.04	0.0013	small optic lobes homolog (Drosophila)
SOX9	5.24	0.0000	-1.40	0.0003	SRY (sex determining region Y)-box 9
SPARC	-2.68	0.0000	1.05	0.0063	secreted protein, acidic, cysteine-rich (osteonectin)
SPIN4	1.43	0.0000	-0.78	0.0035	spindlin family, member 4
SPTLC3	-3.57	0.0000	1.48	0.0041	serine palmitoyltransferase, long chain base subunit
					3
Gene	ST88 vs HSC	ST88 vs HSC.	U0126 vs DMSO	U0126 vs DMSO	
----------	-------------	--------------	---------------	---------------	--
In DS-6	.logFC	adjPVal	.logFC	.adjPVal	Descriptions
STAMBPL1	2.33	0.0000	-0.98	0.0002	STAM binding protein-like 1
STAT6	-5.88	0.0000	0.71	0.0009	signal transducer and activator of transcription 6,
					interleukin-4 induced
STEAP1	2.23	0.0000	-0.94	0.0026	six transmembrane epithelial antigen of the prostate
					1
STX1A	2.12	0.0000	-1.05	0.0035	syntaxin 1A (brain)
SVEP1	1.64	0.0000	-0.78	0.0060	sushi, von Willebrand factor type A, EGF and
					pentraxin domain containing 1
TBC1D8B	-3.01	0.0000	0.99	0.0017	TBC1 domain family, member 8B (with GRAM
					domain)
TIPIN	1.36	0.0000	-0.90	0.0004	TIMELESS interacting protein
TLR4	4.44	0.0000	-1.44	0.0015	toll-like receptor 4
TMEM48	1.07	0.0000	-0.63	0.0017	transmembrane protein 48
TMEM59	-2.05	0.0000	0.68	0.0056	transmembrane protein 59
TNFRSF1	2.02	0.0000	-0.87	0.0035	tumor necrosis factor receptor superfamily, member
0A					10a
TNFRSF1	-1.40	0.0000	1.59	0.0001	tumor necrosis factor receptor superfamily, member
9					19
TP53INP2	-1.95	0.0000	0.93	0.0041	tumor protein p53 inducible nuclear protein 2
TRIM16L	-1.29	0.0000	1.28	0.0000	tripartite motif-containing 16-like
TRMT6	2.03	0.0000	-0.73	0.0021	tRNA methyltransferase 6 homolog (S. cerevisiae)
TRPA1	4.21	0.0000	-2.05	0.0000	transient receptor potential cation channel,
					subfamily A, member 1
TSPAN11	-2.44	0.0000	1.35	0.0036	tetraspanin 11
TSPAN31	-1.39	0.0000	0.61	0.0046	tetraspanin 31
UBE2C	1.60	0.0000	-1.03	0.0000	ubiquitin-conjugating enzyme E2C
UCK2	1.20	0.0000	-0.75	0.0002	uridine-cytidine kinase 2
UHRF1	2.05	0.0000	-0.81	0.0013	ubiquitin-like with PHD and ring finger domains 1
UST	-1.56	0.0000	0.65	0.0026	uronyl-2-sulfotransferase
VAV3	-1.11	0.0000	1.15	0.0000	vav 3 guanine nucleotide exchange factor
VEGFC	1.52	0.0000	-1.60	0.0000	vascular endothelial growth factor C
VKORC1L1	1.09	0.0000	-0.61	0.0001	vitamin K epoxide reductase complex, subunit 1-like
					1
VRK1	0.91	0.0000	-0.87	0.0000	vaccinia related kinase 1
WDHD1	1.36	0.0000	-0.67	0.0033	WD repeat and HMG-box DNA binding protein 1
WDR5	1.02	0.0000	-0.91	0.0000	WD repeat domain 5
ZFYVE26	-1.27	0.0000	0.74	0.0028	zinc finger, FYVE domain containing 26

Gene In DS-6	ST88 vs HSC .logFC	ST88 vs HSC. adjPVal	U0126 vs DMSO .logFC	U0126 vs DMSO .adjPVal	Descriptions
ZNF587	1.45	0.0000	-1.12	0.0000	zinc finger protein 587
ZNF695	1.46	0.0000	-0.63	0.0014	zinc finger protein 695

Suppl. Table 4: DS-7

DS-7, intersection of DS-2 (si*NRas* vs. SC) and DS-3(U0126 vs. DMSO), is hypothetically regulated by NRAS-MEK1/2 in ST88-14(*Nf1*^{-/-}) cells, with matching the pattern: 1) increase in si*NRas* versus scrambled control siRNA treated ST88-14 and in U0126 versus DMSO, or 2) decrease in si*NRas* versus scrambled control treated ST88-14

Gene	siNRas vs SC	siNRas vs SC88	U0126 vs DMSO	U0126 vs DMSO	
In DS-7	.logFC	.adjPVal	.logFC	.adjPVal	Descriptions
ANXA4	0.60	0.0020	1.24	0.0000	annexin A4
ARHGAP18	0.90	0.0014	0.67	0.0019	Rho GTPase activating protein 18
ATF3	1.04	0.0002	1.01	0.0026	activating transcription factor 3
BICD1	-0.79	0.0052	-0.94	0.0007	bicaudal D homolog 1 (Drosophila)
C21orf34	0.67	0.0090	1.34	0.0004	chromosome 21 open reading frame 34
C2orf15	1.01	0.0031	1.12	0.0014	chromosome 2 open reading frame 15
C9orf150	0.69	0.0036	1.05	0.0001	chromosome 9 open reading frame 150
CHST11	-1.15	0.0007	-1.00	0.0003	carbohydrate (chondroitin 4) sulfotransferase 11
KCTD9	-0.60	0.0077	-0.70	0.0004	similar to Potassium channel tetramerisation
					domain containing 9; potassium channel
					tetramerisation domain containing 9;
LOC100128822	0.74	0.0045	0.71	0.0018	hypothetical LOC100128822
MGC3771	0.69	0.0059	0.85	0.0001	hypothetical LOC81854
MORC4	-0.79	0.0043	-0.71	0.0025	MORC family CW-type zinc finger 4
NT5E	-1.55	0.0003	-1.26	0.0000	5'-nucleotidase, ecto (CD73)
PLAT	-0.98	0.0018	-0.73	0.0019	plasminogen activator, tissue
PTTG2	-0.68	0.0093	-0.66	0.0051	pituitary tumor-transforming 1; pituitary
					tumor-transforming 2
PVRL3	-0.76	0.0003	-0.99	0.0001	poliovirus receptor-related 3
SNHG8	0.96	0.0003	0.60	0.0019	small nucleolar RNA host gene 8 (non-protein
					coding)
SPIN4	-0.66	0.0041	-0.78	0.0035	spindlin family, member 4
TFB1M	-0.92	0.0004	-0.92	0.0005	transcription factor B1, mitochondrial
TUFT1	0.85	0.0003	1.04	0.0000	tuftelin 1

and in U0126 versus DMSO.

Suppl. Table 5: DS-8

DS-8, intersection of DS-4 (ST88 vs. HSC), DS-2 (si*NRas* vs. SC) and DS-3 (U0126 vs. DMSO), is hypothetically under the regulation of Neurofibromin-NRAS-MEK1/2 axis, with matching the pattern: 1) decrease in ST88-14 vs. HSC, increase in si*NRas* vs. scrambled control treated ST88-14, but decrease in U0126 vs. DMSO, or 2) increase in ST88-14 vs. HSC, decrease in si*NRas* vs. scrambled control treated ST88-14, but increase in U0126 vs. DMSO.

Cono				siNRas vs	U0126 vs	U0126 vs	
Gene				SC88	DMSO	DMSO	Descriptions
IN D3-0	.logrC	.aujr vai	ligru	.adjPVal	.logFC	.adjPVal	
ANXA4	-1.21	0.0000	0.60	0.0019	1.24	0.0000	annexin A4
C21orf34	-1.19	0.0001	0.67	0.0090	1.34	0.0004	chromosome 21 open reading frame 34
ATF3	-1.42	0.0000	1.04	0.0001	1.01	0.0026	activating transcription factor 3
CHEK1	1.91	0.0000	-0.58	0.0051	-0.66	0.0047	CHK1 checkpoint homolog (S. pombe)
SPIN4	1.43	0.0000	-0.66	0.0040	-0.78	0.0035	spindlin family, member 4

Suppl. Table 6: DS-9

DS-9 is obtained by removal of the overlapped gene with DS-2 (si*NRas* vs. SC) and with DS-3 (U0126 vs. DMSO). These genes are hypothetically Neurofibromin-related but

Gene	ST88 vs HSC	odiD\/e/	Description
In DS-9	.logFC		Description
A2M	-6.22	0.0000	alpha-2-macroglobulin
AARSD1	1.21	0.0000	alanyl-tRNA synthetase domain containing 1
AASDH	-1.51	0.0000	aminoadipate-semialdehyde dehydrogenase
AASDHPPT	1.25	0.0000	aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl
			transferase
AASS	-1.45	0.0000	aminoadipate-semialdehyde synthase
ΑΑΤΚ	-3.28	0.0000	apoptosis-associated tyrosine kinase
ABCA1	-1.74	0.0000	ATP-binding cassette, sub-family A (ABC1), member 1
ABCB7	-0.78	0.0000	ATP-binding cassette, sub-family B (MDR/TAP), member 7
ABHD12	-1.58	0.0000	abhydrolase domain containing 12
ABHD2	-1.32	0.0000	abhydrolase domain containing 2
ABHD6	-3.20	0.0000	abhydrolase domain containing 6
ABL2	-1.14	0.0000	v-abl Abelson murine leukemia viral oncogene homolog 2 (arg,
			Abelson-related gene)
ABLIM3	-3.31	0.0000	actin binding LIM protein family, member 3
ABR	-1.42	0.0000	active BCR-related gene
ACAA1	-1.58	0.0000	acetyl-Coenzyme A acyltransferase 1
ACADVL	-1.26	0.0000	acyl-Coenzyme A dehydrogenase, very long chain
ACBD5	-1.60	0.0000	acyl-Coenzyme A binding domain containing 5
ACCN2	1.72	0.0000	amiloride-sensitive cation channel 2, neuronal
ACER3	-2.13	0.0000	alkaline ceramidase 3
ACOT9	-1.17	0.0000	acyl-CoA thioesterase 9
ACSL1	-1.37	0.0000	acyl-CoA synthetase long-chain family member 1
ACSS2	1.47	0.0000	acyl-CoA synthetase short-chain family member 2
ACTC1	-2.95	0.0000	actin, alpha, cardiac muscle 1
ACTG2	-3.96	0.0000	actin, gamma 2, smooth muscle, enteric
ACTR10	-0.95	0.0000	actin-related protein 10 homolog (S. cerevisiae)
ACTR3B	1.23	0.0000	ARP3 actin-related protein 3 homolog B (yeast)
ACTR5	1.44	0.0000	ARP5 actin-related protein 5 homolog (yeast)
ACVR1B	-1.36	0.0000	activin A receptor, type IB

NRAS and MEK1/2 independent.

Gene	ST88 vs HSC	adiPVal	Description
In DS-9	.logFC		
ACVR2A	1.02	0.0000	activin A receptor, type IIA
ACYP2	-2.11	0.0000	acylphosphatase 2, muscle type
ADAM10	-2.86	0.0000	ADAM metallopeptidase domain 10
ADAM17	-1.66	0.0000	ADAM metallopeptidase domain 17
ADAM23	-2.34	0.0000	ADAM metallopeptidase domain 23
ADAMTS4	-5.04	0.0000	ADAM metallopeptidase with thrombospondin type 1 motif, 4
ADAMTS6	3.93	0.0000	ADAM metallopeptidase with thrombospondin type 1 motif, 6
ADAMTS9	-4.04	0.0000	ADAM metallopeptidase with thrombospondin type 1 motif, 9
ADAMTSL1	-3.03	0.0000	ADAMTS-like 1
ADCY1	3.11	0.0000	adenylate cyclase 1 (brain)
ADD1	-1.09	0.0000	adducin 1 (alpha)
ADD3	-2.73	0.0000	adducin 3 (gamma)
ADI1	-1.46	0.0000	acireductone dioxygenase 1
ADRB2	2.01	0.0000	adrenergic, beta-2-, receptor, surface
AFAP1L2	-5.13	0.0000	actin filament associated protein 1-like 2
AGA	-1.98	0.0000	aspartylglucosaminidase
AGFG1	-0.82	0.0000	ArfGAP with FG repeats 1
AGFG2	1.06	0.0000	ArfGAP with FG repeats 2
AGPAT9	-3.37	0.0000	1-acylglycerol-3-phosphate O-acyltransferase 9
AHCY	1.06	0.0000	adenosylhomocysteinase
AHI1	-0.93	0.0000	Abelson helper integration site 1
AHSA2	1.81	0.0000	AHA1, activator of heat shock 90kDa protein ATPase homolog 2 (yeast)
AIFM2	-2.78	0.0000	apoptosis-inducing factor, mitochondrion-associated, 2
AIG1	-1.17	0.0000	androgen-induced 1
AIMP2	0.65	0.0000	aminoacyl tRNA synthetase complex-interacting multifunctional protein 2;
			stromal antigen 3-like 3
AK2	2.15	0.0000	adenylate kinase 2
AK3L1	3.44	0.0000	adenylate kinase 3-like 2; adenylate kinase 3-like 1
AKAP1	1.48	0.0000	A kinase (PRKA) anchor protein 1
AKAP11	-1.37	0.0000	A kinase (PRKA) anchor protein 11
AKAP13	-2.01	0.0000	A kinase (PRKA) anchor protein 13
AKAP6	-1.76	0.0000	A kinase (PRKA) anchor protein 6
AKIRIN2	-1.14	0.0000	akirin 2
AKR1B1	-1.85	0.0000	aldo-keto reductase family 1, member B1 (aldose reductase)
AKR1B10	-2.78	0.0000	aldo-keto reductase family 1, member B10 (aldose reductase); aldo-keto
			reductase family 1, member B10-like
AKR1C1	-2.22	0.0000	aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1;

Gene	ST88 vs HSC	adiDVal	Description
In DS-9	.logFC	aujevai	Description
			20-alpha (3-alpha)-hydroxysteroid dehydrogenase)
ALDH1A1	-3.18	0.0000	aldehyde dehydrogenase 1 family, member A1
ALDH1A2	2.46	0.0000	aldehyde dehydrogenase 1 family, member A2
ALDH3A2	-1.57	0.0000	aldehyde dehydrogenase 3 family, member A2
ALDH3B1	-1.11	0.0000	aldehyde dehydrogenase 3 family, member B1
ALDH5A1	2.00	0.0000	aldehyde dehydrogenase 5 family, member A1
ALDOA	1.17	0.0000	aldolase A, fructose-bisphosphate
ALG9	-0.70	0.0000	asparagine-linked glycosylation 9, alpha-1,2-mannosyltransferase homolog
			(S. cerevisiae)
ALS2CR4	2.44	0.0000	amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 4
AMIGO2	5.18	0.0000	adhesion molecule with Ig-like domain 2
AMOTL1	-1.44	0.0000	angiomotin like 1
AMOTL2	2.42	0.0000	angiomotin like 2
AMZ2	1.23	0.0000	archaelysin family metallopeptidase 2
ANAPC1	0.80	0.0000	anaphase promoting complex subunit 1; similar to anaphase promoting
			complex subunit 1
ANG	-2.13	0.0000	angiogenin, ribonuclease, RNase A family, 5
ANK2	-2.71	0.0000	ankyrin 2, neuronal
ANK3	-2.19	0.0000	ankyrin 3, node of Ranvier (ankyrin G)
ANKFY1	-0.97	0.0000	ankyrin repeat and FYVE domain containing 1
ANKH	-1.23	0.0000	ankylosis, progressive homolog (mouse)
ANKRD10	-1.48	0.0000	ankyrin repeat domain 10
ANKRD12	-1.74	0.0000	ankyrin repeat domain 12
ANKRD17	-1.28	0.0000	ankyrin repeat domain 17
ANKRD18A	3.91	0.0000	ankyrin repeat domain 18A
ANKRD20A2	2.37	0.0000	hCG2042718; chromosome 21 open reading frame 81; ankyrin repeat
			domain 20 family, member A1; ankyrin repeat domain 20 family, member A3;
			ankyrin repeat domain 20 family, member A2
ANKRD28	-2.33	0.0000	ankyrin repeat domain 28
ANKRD35	-2.45	0.0000	ankyrin repeat domain 35
ANKRD42	-0.82	0.0000	ankyrin repeat domain 42
ANKRD44	-1.90	0.0000	ankyrin repeat domain 44
ANKRD50	-1.66	0.0000	ankyrin repeat domain 50
ANKRD6	-2.45	0.0000	ankyrin repeat domain 6
ANKRD7	1.82	0.0000	ankyrin repeat domain 7
ANKS1A	-0.86	0.0000	ankyrin repeat and sterile alpha motif domain containing 1A
ANO6	-2.22	0.0000	anoctamin 6

Gene	ST88 vs HSC		a
In DS-9	.logFC	adjPVal	Description
ANXA1	-1.38	0.0000	annexin A1
ANXA11	-1.43	0.0000	annexin A11
ANXA5	-1.65	0.0000	annexin A5
ANXA7	-1.31	0.0000	annexin A7
AP1G1	-0.77	0.0000	adaptor-related protein complex 1, gamma 1 subunit
AP3D1	-2.30	0.0000	adaptor-related protein complex 3, delta 1 subunit
AP4E1	-1.18	0.0000	adaptor-related protein complex 4, epsilon 1 subunit
APBA2	1.90	0.0000	amyloid beta (A4) precursor protein-binding, family A, member 2
APC2	2.04	0.0000	adenomatosis polyposis coli 2
APH1B	-1.51	0.0000	anterior pharynx defective 1 homolog B (C. elegans)
API5	-0.95	0.0000	API5-like 1; apoptosis inhibitor 5
AQP7	-2.25	0.0000	aquaporin 7
AQR	1.17	0.0000	aquarius homolog (mouse)
AR	2.70	0.0000	androgen receptor
ARF6	-1.10	0.0000	ADP-ribosylation factor 6
ARFIP1	-1.56	0.0000	ADP-ribosylation factor interacting protein 1
ARHGAP12	-1.90	0.0000	Rho GTPase activating protein 12
ARHGAP17	1.09	0.0000	Rho GTPase activating protein 17
ARHGAP19	-1.41	0.0000	Rho GTPase activating protein 19
ARHGAP21	-1.93	0.0000	Rho GTPase activating protein 21
ARHGAP26	-1.74	0.0000	Rho GTPase activating protein 26
ARHGAP28	3.65	0.0000	Rho GTPase activating protein 28
ARHGAP29	5.08	0.0000	Rho GTPase activating protein 29
ARHGAP5	-1.80	0.0000	Rho GTPase activating protein 5
ARHGDIA	-1.92	0.0000	Rho GDP dissociation inhibitor (GDI) alpha
ARHGDIB	2.43	0.0000	Rho GDP dissociation inhibitor (GDI) beta
ARHGEF12	-1.26	0.0000	Rho guanine nucleotide exchange factor (GEF) 12
ARHGEF19	1.26	0.0000	Rho guanine nucleotide exchange factor (GEF) 19
ARID3B	1.92	0.0000	AT rich interactive domain 3B (BRIGHT-like)
ARID4A	-1.07	0.0000	AT rich interactive domain 4A (RBP1-like)
ARIH2	-1.09	0.0000	ariadne homolog 2 (Drosophila)
ARL16	1.39	0.0000	ADP-ribosylation factor-like 16
ARL3	-1.47	0.0000	ADP-ribosylation factor-like 3
ARL4D	-0.99	0.0000	ADP-ribosylation factor-like 4D
ARL5A	-1.47	0.0000	ADP-ribosylation factor-like 5A
ARL8B	-1.65	0.0000	ADP-ribosylation factor-like 8B
ARMC8	0.79	0.0000	armadillo repeat containing 8

Gene	ST88 vs HSC	a di DV a l	Description
In DS-9	.logFC	adjeval	Description
ARMC9	-2.52	0.0000	armadillo repeat containing 9
ARNTL	-1.94	0.0000	aryl hydrocarbon receptor nuclear translocator-like
ARNTL2	1.73	0.0000	aryl hydrocarbon receptor nuclear translocator-like 2
ARPC1B	-2.26	0.0000	actin related protein 2/3 complex, subunit 1B, 41kDa; similar to Actin-related
			protein 2/3 complex subunit 1B (ARP2/3 complex 41 kDa subunit) (p41-ARC)
ARSA	-1.34	0.0000	arylsulfatase A
ARSE	-1.55	0.0000	arylsulfatase E (chondrodysplasia punctata 1)
ARSJ	3.09	0.0000	arylsulfatase family, member J
ASAH1	-3.01	0.0000	N-acylsphingosine amidohydrolase (acid ceramidase) 1
ASAM	2.18	0.0000	adipocyte-specific adhesion molecule
ASAP3	2.79	0.0000	ArfGAP with SH3 domain, ankyrin repeat and PH domain 3
ASB1	1.20	0.0000	ankyrin repeat and SOCS box-containing 1
ASH2L	-0.94	0.0000	ash2 (absent, small, or homeotic)-like (Drosophila)
ASL	-1.53	0.0000	argininosuccinate lyase
ASRGL1	1.86	0.0000	asparaginase like 1
ASTN1	2.71	0.0000	astrotactin 1
ASTN2	1.52	0.0000	astrotactin 2
ASXL1	0.83	0.0000	additional sex combs like 1 (Drosophila)
ATAD1	-0.79	0.0000	ATPase family, AAA domain containing 1
ATAD2	2.24	0.0000	ATPase family, AAA domain containing 2
ATF6B	-1.62	0.0000	activating transcription factor 6 beta
ATF7IP	-1.71	0.0000	activating transcription factor 7 interacting protein
ATG16L2	-1.94	0.0000	ATG16 autophagy related 16-like 2 (S. cerevisiae)
ATG3	-0.62	0.0000	ATG3 autophagy related 3 homolog (S. cerevisiae)
ATG7	-1.23	0.0000	ATG7 autophagy related 7 homolog (S. cerevisiae)
ATIC	1.53	0.0000	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP
			cyclohydrolase
ATOX1	-1.37	0.0000	ATX1 antioxidant protein 1 homolog (yeast)
ATP10A	2.43	0.0000	ATPase, class V, type 10A
ATP11C	1.56	0.0000	ATPase, class VI, type 11C
ATP1A1	-1.94	0.0000	ATPase, Na+/K+ transporting, alpha 1 polypeptide
ATP1A3	-1.81	0.0000	ATPase, Na+/K+ transporting, alpha 3 polypeptide
ATP1A4	-1.11	0.0000	ATPase, Na+/K+ transporting, alpha 4 polypeptide
ATP2A2	-1.32	0.0000	ATPase, Ca++ transporting, cardiac muscle, slow twitch 2
ATP6AP2	-1.83	0.0000	ATPase, H+ transporting, lysosomal accessory protein 2
ATP6V0A4	-1.98	0.0000	ATPase, H+ transporting, lysosomal V0 subunit a4
ATP6V0B	-1.58	0.0000	ATPase, H+ transporting, lysosomal 21kDa, V0 subunit b

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
ATP6V0C	-0.89	0.0000	ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c
ATP6V0D1	-1.61	0.0000	ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1
ATP6V0E1	-0.97	0.0000	ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e1
ATP6V1A	-2.07	0.0000	ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A
ATP6V1B2	-1.97	0.0000	ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2
ATP6V1C1	-0.98	0.0000	ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C1
ATP6V1E1	-1.64	0.0000	ATPase, H+ transporting, lysosomal 31kDa, V1 subunit E1
ATP6V1H	-1.65	0.0000	ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H
ATP8A1	-1.77	0.0000	ATPase, aminophospholipid transporter (APLT), class I, type 8A, member 1
ATP8B3	-2.96	0.0000	ATPase, class I, type 8B, member 3
ATP9A	5.12	0.0000	ATPase, class II, type 9A
ATR	0.66	0.0000	ataxia telangiectasia and Rad3 related; similar to ataxia telangiectasia and
			Rad3 related protein
ATXN2L	1.30	0.0000	ataxin 2-like
AVPI1	-3.00	0.0000	arginine vasopressin-induced 1
AZGP1	-3.74	0.0000	alpha-2-glycoprotein 1, zinc-binding pseudogene 1; alpha-2-glycoprotein 1,
			zinc-binding
AZI1	1.39	0.0000	5-azacytidine induced 1
B2M	-3.51	0.0000	beta-2-microglobulin
B3GALT4	-4.85	0.0000	UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 4
B4GALNT4	1.65	0.0000	beta-1,4-N-acetyl-galactosaminyl transferase 4
BACE1	-2.15	0.0000	beta-site APP-cleaving enzyme 1
BACE2	-3.41	0.0000	beta-site APP-cleaving enzyme 2
BACH1	1.33	0.0000	BTB and CNC homology 1, basic leucine zipper transcription factor 1
BAG2	1.82	0.0000	BCL2-associated athanogene 2
BAI1	2.83	0.0000	brain-specific angiogenesis inhibitor 1
BAIAP2L1	2.07	0.0000	BAI1-associated protein 2-like 1
BAIAP2L2	-1.96	0.0000	BAI1-associated protein 2-like 2
BASP1	4.16	0.0000	brain abundant, membrane attached signal protein 1
BATF3	1.91	0.0000	basic leucine zipper transcription factor, ATF-like 3
BAZ1B	1.15	0.0000	bromodomain adjacent to zinc finger domain, 1B
BBS2	1.04	0.0000	Bardet-Biedl syndrome 2
BBS7	-1.13	0.0000	Bardet-Biedl syndrome 7
BCAT1	4.11	0.0000	branched chain aminotransferase 1, cytosolic
BCL11B	2.20	0.0000	B-cell CLL/lymphoma 11B (zinc finger protein)
BCL2	-1.42	0.0000	B-cell CLL/lymphoma 2
BCL2L13	-1.20	0.0000	BCL2-like 13 (apoptosis facilitator)

Gene	ST88 vs HSC	adjPVal	Description
In DS-9	.logFC	•	·
BCL7C	1.11	0.0000	B-cell CLL/lymphoma 7C
BEND5	2.38	0.0000	BEN domain containing 5
BEST1	-2.55	0.0000	bestrophin 1
BET1	1.05	0.0000	hypothetical protein LOC100128542; blocked early in transport 1 homolog (S.
			cerevisiae)
BFSP1	3.82	0.0000	beaded filament structural protein 1, filensin
BHLHB9	-1.14	0.0000	basic helix-loop-helix domain containing, class B, 9
BHLHE40	-2.20	0.0000	basic helix-loop-helix family, member e40
BHLHE41	2.00	0.0000	basic helix-loop-helix family, member e41
BIN3	-1.31	0.0000	bridging integrator 3
BLMH	-0.91	0.0000	bleomycin hydrolase
BMP2	1.77	0.0000	bone morphogenetic protein 2
BMP2K	-1.70	0.0000	BMP2 inducible kinase
BMP4	3.53	0.0000	bone morphogenetic protein 4
BMP6	4.95	0.0000	bone morphogenetic protein 6
BMP7	4.88	0.0000	bone morphogenetic protein 7
BNC1	3.66	0.0000	basonuclin 1
BNC2	1.98	0.0000	basonuclin 2
BNIP3L	-1.50	0.0000	BCL2/adenovirus E1B 19kDa interacting protein 3-like
BOD1	0.95	0.0000	biorientation of chromosomes in cell division 1
BOLA2B	1.56	0.0000	bolA homolog 2 (E. coli); bolA homolog 2B (E. coli)
BOP1	2.31	0.0000	block of proliferation 1
BPGM	-1.45	0.0000	2,3-bisphosphoglycerate mutase
BRI3	-1.65	0.0000	brain protein I3; brain protein I3 pseudogene 1
BRIP1	1.90	0.0000	BRCA1 interacting protein C-terminal helicase 1
BSG	-0.94	0.0000	basigin (Ok blood group)
BST1	-3.39	0.0000	bone marrow stromal cell antigen 1
BTBD1	-0.81	0.0000	BTB (POZ) domain containing 1
BTBD3	-1.54	0.0000	BTB (POZ) domain containing 3
BTD	-3.25	0.0000	biotinidase
BTG1	-2.10	0.0000	B-cell translocation gene 1, anti-proliferative
BTN2A2	-1.76	0.0000	butyrophilin, subfamily 2, member A2
BVES	-2.29	0.0000	blood vessel epicardial substance
C10orf10	-2.29	0.0000	chromosome 10 open reading frame 10
C10orf11	-2.61	0.0000	chromosome 10 open reading frame 11
C10orf111	1.10	0.0000	chromosome 10 open reading frame 111
C10orf114	-2.44	0.0000	chromosome 10 open reading frame 114

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
C10orf116	-2.33	0.0000	chromosome 10 open reading frame 116
C10orf18	-1.87	0.0000	chromosome 10 open reading frame 18
C10orf2	0.88	0.0000	chromosome 10 open reading frame 2
C10orf32	-1.47	0.0000	chromosome 10 open reading frame 32
C10orf35	2.36	0.0000	chromosome 10 open reading frame 35
C11orf1	1.15	0.0000	chromosome 11 open reading frame 1
C11orf61	1.86	0.0000	chromosome 11 open reading frame 61
C11orf75	1.56	0.0000	hypothetical LOC728675; chromosome 11 open reading frame 75
C11orf9	1.79	0.0000	chromosome 11 open reading frame 9
C12orf26	-1.66	0.0000	chromosome 12 open reading frame 26
C12orf45	1.21	0.0000	chromosome 12 open reading frame 45
C12orf47	1.85	0.0000	chromosome 12 open reading frame 47
C12orf53	1.81	0.0000	chromosome 12 open reading frame 53
C12orf66	1.01	0.0000	chromosome 12 open reading frame 66
C13orf18	-1.80	0.0000	similar to protein phosphatase 1, regulatory subunit 2; protein phosphatase 1,
			regulatory (inhibitor) subunit 2 pseudogene 4; chromosome 13 open reading
			frame 18
C14orf128	-1.64	0.0000	chromosome 14 open reading frame 128
C14orf139	-2.15	0.0000	chromosome 14 open reading frame 139
C14orf147	-2.09	0.0000	chromosome 14 open reading frame 147
C14orf166	-1.18	0.0000	chromosome 14 open reading frame 166
C14orf4	-1.31	0.0000	chromosome 14 open reading frame 4
C14orf43	-1.30	0.0000	chromosome 14 open reading frame 43
C15orf41	2.07	0.0000	chromosome 15 open reading frame 41
C15orf48	-4.09	0.0000	chromosome 15 open reading frame 48
C16orf5	2.41	0.0000	chromosome 16 open reading frame 5
C16orf53	1.22	0.0000	chromosome 16 open reading frame 53
C16orf59	1.49	0.0000	chromosome 16 open reading frame 59
C16orf68	1.82	0.0000	chromosome 16 open reading frame 68
C16orf74	3.12	0.0000	chromosome 16 open reading frame 74
C16orf75	3.75	0.0000	chromosome 16 open reading frame 75
C16orf86	-1.88	0.0000	chromosome 16 open reading frame 86
C17orf37	-1.67	0.0000	chromosome 17 open reading frame 37
C17orf39	1.37	0.0000	chromosome 17 open reading frame 39
C17orf56	0.99	0.0000	chromosome 17 open reading frame 56
C17orf58	1.91	0.0000	chromosome 17 open reading frame 58
C17orf59	-1.39	0.0000	chromosome 17 open reading frame 59

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
C17orf67	1.96	0.0000	chromosome 17 open reading frame 67
C17orf72	2.47	0.0000	chromosome 17 open reading frame 72
C17orf75	0.95	0.0000	chromosome 17 open reading frame 75
C17orf79	-0.70	0.0000	chromosome 17 open reading frame 79
C17orf80	1.28	0.0000	chromosome 17 open reading frame 80
C17orf86	1.92	0.0000	chromosome 17 open reading frame 86
C17orf89	1.39	0.0000	chromosome 17 open reading frame 89
C18orf32	-1.34	0.0000	chromosome 18 open reading frame 32
C18orf56	1.65	0.0000	chromosome 18 open reading frame 56
C18orf8	-0.84	0.0000	chromosome 18 open reading frame 8
C19orf28	-4.54	0.0000	chromosome 19 open reading frame 28
C19orf56	-1.07	0.0000	chromosome 19 open reading frame 56
C19orf63	-2.17	0.0000	chromosome 19 open reading frame 63
C19orf66	-2.24	0.0000	chromosome 19 open reading frame 66
C1D	1.52	0.0000	C1D nuclear receptor co-repressor; similar to nuclear DNA-binding protein;
			similar to hCG1791993
C1GALT1C1	-1.43	0.0000	C1GALT1-specific chaperone 1
C1orf103	1.97	0.0000	chromosome 1 open reading frame 103
C1orf106	2.51	0.0000	chromosome 1 open reading frame 106
C1orf174	0.72	0.0000	chromosome 1 open reading frame 174
C1orf204	1.29	0.0000	chromosome 1 open reading frame 204; V-set and immunoglobulin domain
			containing 8
C1orf213	2.00	0.0000	chromosome 1 open reading frame 213
C1orf53	2.06	0.0000	chromosome 1 open reading frame 53
C1orf59	3.28	0.0000	chromosome 1 open reading frame 59
C1orf85	-2.03	0.0000	chromosome 1 open reading frame 85
C1orf88	-1.49	0.0000	chromosome 1 open reading frame 88
C1orf9	0.95	0.0000	chromosome 1 open reading frame 9
C1QBP	0.78	0.0000	complement component 1, q subcomponent binding protein
C20orf108	-1.09	0.0000	chromosome 20 open reading frame 108
C20orf11	1.59	0.0000	chromosome 20 open reading frame 11
C20orf111	1.13	0.0000	chromosome 20 open reading frame 111
C20orf199	2.04	0.0000	chromosome 20 open reading frame 199
C20orf20	1.57	0.0000	chromosome 20 open reading frame 20
C20orf24	0.97	0.0000	chromosome 20 open reading frame 24
C20orf27	1.24	0.0000	chromosome 20 open reading frame 27
C20orf3	-0.99	0.0000	chromosome 20 open reading frame 3

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
C21orf45	1.60	0.0000	chromosome 21 open reading frame 45
C21orf91	1.03	0.0000	chromosome 21 open reading frame 91
C22orf29	1.22	0.0000	chromosome 22 open reading frame 29
C22orf32	-1.32	0.0000	chromosome 22 open reading frame 32
C22orf9	-1.64	0.0000	chromosome 22 open reading frame 9
C2orf27A	-1.08	0.0000	hypothetical LOC642669; chromosome 2 open reading frame 27A;
			hypothetical LOC644525
C2orf34	-1.06	0.0000	chromosome 2 open reading frame 34
C2orf44	1.19	0.0000	chromosome 2 open reading frame 44
C2orf47	0.91	0.0000	chromosome 2 open reading frame 47
C2orf79	-0.92	0.0000	chromosome 2 open reading frame 79
C3AR1	-3.72	0.0000	complement component 3a receptor 1
C3orf10	-0.92	0.0000	chromosome 3 open reading frame 10
C3orf52	1.65	0.0000	chromosome 3 open reading frame 52
C3orf59	1.06	0.0000	chromosome 3 open reading frame 59
C4orf19	1.72	0.0000	chromosome 4 open reading frame 19
C4orf27	-1.27	0.0000	chromosome 4 open reading frame 27
C4orf32	1.63	0.0000	chromosome 4 open reading frame 32
C4orf33	-1.54	0.0000	chromosome 4 open reading frame 33
C4orf49	2.66	0.0000	chromosome 4 open reading frame 49
C5orf23	4.23	0.0000	chromosome 5 open reading frame 23
C5orf30	-1.31	0.0000	chromosome 5 open reading frame 30
C5orf32	-2.18	0.0000	chromosome 5 open reading frame 32
C5orf34	1.26	0.0000	chromosome 5 open reading frame 34
C6orf1	-2.11	0.0000	chromosome 6 open reading frame 1
C6orf106	-0.96	0.0000	chromosome 6 open reading frame 106
C6orf129	-1.11	0.0000	chromosome 6 open reading frame 129
C6orf134	-1.26	0.0000	chromosome 6 open reading frame 134
C6orf203	-1.14	0.0000	chromosome 6 open reading frame 203
C6orf204	-1.12	0.0000	chromosome 6 open reading frame 204
C6orf218	-2.19	0.0000	chromosome 6 open reading frame 218
C7orf13	1.23	0.0000	chromosome 7 open reading frame 13
C7orf29	-2.63	0.0000	chromosome 7 open reading frame 29
C7orf30	1.07	0.0000	chromosome 7 open reading frame 30
C7orf40	1.74	0.0000	chromosome 7 open reading frame 40
C7orf58	2.75	0.0000	chromosome 7 open reading frame 58
C7orf68	1.11	0.0000	chromosome 7 open reading frame 68

Gene	ST88 vs HSC	adjPVal	Description
CRorf33	1 73	0.0000	chromosome 8 open reading frame 33
C8orf4	-3.77	0.0000	chromosome 8 open reading frame 4
C8orf46	-1.50	0.0000	chromosome 8 open reading frame 46
C8orf58	1.08	0.0000	chromosome 8 open reading frame 58
C8orf76	0.96	0.0000	chromosome 8 open reading frame 76
C80REK29	1.53	0.0000	hypothetical LOC340393
C9orf109	2 31	0.0000	chromosome 9 open reading frame 109
C9orf116	1.37	0.0000	chromosome 9 open reading frame 105
C9orf123	1.04	0.0000	chromosome 9 open reading frame 123
Coorf80	1.04	0.0000	chromosome 9 open reading frame 80
Coorf86	2.24	0.0000	chromosome 9 open reading frame 86
C9orf91	1.36	0.0000	chromosome 9 open reading frame 90
C 413	1.16	0.0000	
CAB30	-1.10	0.0000	calcium hinding protein 30-like
CABLES1	2.58	0.0000	Cdk5 and Abl enzyme substrate 1
CABLEST	2.30	0.0000	
	1.79	0.0000	calcium channel voltage dependent. Titupe, alpha 1H subunit
CACNA2D4	-2.57	0.0000	calcium channel, voltage-dependent, alpha 2/delta subunit 4
CACNOS	-2.57	0.0000	calcium channel, voltage-dependent, apma subunit 4
CADRS2	2.03	0.0000	Cathedrandent secretion activator 2
CAL B1	2.24	0.0000	
	-3.99	0.0000	calcium homeostasis modulator 2
	1.66	0.0000	calmodulin-like 4
CALIL	-1.88	0.0000	calumenin
CAMK1D	2 57	0.0000	calcium/calmodulin-dependent protein kinase ID
CAMK2D	-0.92	0.0000	calcium/calmodulin-dependent protein kinase II delta
CAMK2G	1.40	0.0000	calcium/calmodulin-dependent protein kinase II gamma
CAMKV	1.31	0.0000	CaM kinase-like vesicle-associated
CAMTA1	-1.01	0.0000	calmodulin binding transcription activator 1
CANX	-1.39	0.0000	calnexin
CAP1	-2.47	0.0000	CAP, adenylate cyclase-associated protein 1 (yeast)
CAPN3	-2.95	0.0000	calpain 3, (p94)
CAPN5	-1.11	0.0000	calpain 5
CAPRIN2	-1.81	0.0000	caprin family member 2
CAPS	-2.29	0.0000	calcyphosine
CAPSL	0.97	0.0000	calcyphosine-like
CARD10	-1.81	0.0000	caspase recruitment domain family, member 10

Gene	ST88 vs HSC	adiPVal	Description
In DS-9	.logFC	aaji vai	Description
CARD6	-1.92	0.0000	caspase recruitment domain family, member 6
CARD8	-1.08	0.0000	caspase recruitment domain family, member 8
CARS2	-1.68	0.0000	cysteinyl-tRNA synthetase 2, mitochondrial (putative)
CASKIN1	1.38	0.0000	CASK interacting protein 1
CASP2	0.93	0.0000	caspase 2, apoptosis-related cysteine peptidase
CASP6	-1.27	0.0000	caspase 6, apoptosis-related cysteine peptidase
CASP9	-0.91	0.0000	caspase 9, apoptosis-related cysteine peptidase
CAT	-1.19	0.0000	catalase
CAV1	1.56	0.0000	caveolin 1, caveolae protein, 22kDa
CBLB	2.00	0.0000	Cas-Br-M (murine) ecotropic retroviral transforming sequence b
CBR1	-1.27	0.0000	carbonyl reductase 1
CBR4	-0.76	0.0000	carbonyl reductase 4
CBWD5	2.08	0.0000	COBW domain containing 5; similar to COBW domain containing 1; COBW
			domain containing 7; COBW domain containing 3
CCDC102A	2.12	0.0000	coiled-coil domain containing 102A
CCDC113	1.50	0.0000	coiled-coil domain containing 113
CCDC137	1.65	0.0000	coiled-coil domain containing 137
CCDC144NL	1.92	0.0000	coiled-coil domain containing 144 family, N-terminal like
CCDC22	-0.87	0.0000	coiled-coil domain containing 22
CCDC25	-0.85	0.0000	coiled-coil domain containing 25
CCDC3	3.72	0.0000	coiled-coil domain containing 3
CCDC53	-1.07	0.0000	coiled-coil domain containing 53
CCDC55	-1.19	0.0000	coiled-coil domain containing 55
CCDC59	-1.14	0.0000	coiled-coil domain containing 59
CCDC71	-2.64	0.0000	coiled-coil domain containing 71
CCDC80	-1.47	0.0000	coiled-coil domain containing 80
CCDC85C	4.43	0.0000	coiled-coil domain containing 85C
CCDC86	1.42	0.0000	coiled-coil domain containing 86
CCDC99	2.29	0.0000	coiled-coil domain containing 99
ССК	3.93	0.0000	cholecystokinin
CCNE1	1.61	0.0000	cyclin E1
CCNI	-1.24	0.0000	cyclin I
CCNO	1.98	0.0000	cyclin O
CCPG1	-2.04	0.0000	cell cycle progression 1
CCR1	-3.72	0.0000	chemokine (C-C motif) receptor 1
CCT6A	0.69	0.0000	chaperonin containing TCP1, subunit 6A (zeta 1)
CCT6P1	0.90	0.0000	chaperonin containing TCP1, subunit 6 (zeta) pseudogene 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
ССТ8	0.97	0.0000	similar to chaperonin containing TCP1, subunit 8 (theta); chaperonin
			containing TCP1, subunit 8 (theta)
CD109	-1.32	0.0000	CD109 molecule
CD14	-0.96	0.0000	CD14 molecule
CD164	-1.12	0.0000	CD164 molecule, sialomucin
CD1D	4.11	0.0000	CD1d molecule
CD24	7.05	0.0000	CD24 molecule; CD24 molecule-like 4
CD276	-1.88	0.0000	CD276 molecule
CD2BP2	1.60	0.0000	CD2 (cytoplasmic tail) binding protein 2
CD34	5.23	0.0000	CD34 molecule
CD3EAP	1.67	0.0000	CD3e molecule, epsilon associated protein
CD58	-3.02	0.0000	CD58 molecule
CD59	-1.82	0.0000	CD59 molecule, complement regulatory protein
CD63	-2.47	0.0000	CD63 molecule
CD68	-2.31	0.0000	CD68 molecule
CD70	3.40	0.0000	CD70 molecule
CD81	-1.97	0.0000	CD81 molecule
CD9	-3.05	0.0000	CD9 molecule
CD97	-3.82	0.0000	CD97 molecule
CD99	-1.94	0.0000	CD99 molecule
CDADC1	-2.06	0.0000	cytidine and dCMP deaminase domain containing 1
CDC14B	-1.28	0.0000	CDC14 cell division cycle 14 homolog B (S. cerevisiae)
CDC14C	-1.11	0.0000	CDC14 cell division cycle 14 homolog C (S. cerevisiae)
CDC42EP3	1.32	0.0000	CDC42 effector protein (Rho GTPase binding) 3
CDC42SE1	-1.28	0.0000	CDC42 small effector 1
CDCA7	2.85	0.0000	cell division cycle associated 7
CDCA7L	1.33	0.0000	cell division cycle associated 7-like
CDH13	3.83	0.0000	cadherin 13, H-cadherin (heart)
CDH15	-2.72	0.0000	cadherin 15, type 1, M-cadherin (myotubule)
CDK2AP1	-1.46	0.0000	cyclin-dependent kinase 2 associated protein 1
CDK7	0.95	0.0000	cyclin-dependent kinase 7
CDKL2	-2.00	0.0000	cyclin-dependent kinase-like 2 (CDC2-related kinase)
CDKN1B	-1.32	0.0000	cyclin-dependent kinase inhibitor 1B (p27, Kip1)
CDKN2A	-3.86	0.0000	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
CDKN2AIPNL	1.06	0.0000	CDKN2A interacting protein N-terminal like
CDKN2C	-2.84	0.0000	cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
CDS1	1.82	0.0000	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
CEACAM1	-5.76	0.0000	carcinoembryonic antigen-related cell adhesion molecule 1 (biliary
			glycoprotein)
CEBPA	1.65	0.0000	CCAAT/enhancer binding protein (C/EBP), alpha
CEBPG	1.27	0.0000	CCAAT/enhancer binding protein (C/EBP), gamma
CELSR2	-2.04	0.0000	cadherin, EGF LAG seven-pass G-type receptor 2 (flamingo homolog,
			Drosophila)
CENPH	1.42	0.0000	centromere protein H
CENPK	2.10	0.0000	centromere protein K
CENPV	3.80	0.0000	centromere protein V
CETN2	1.25	0.0000	centrin, EF-hand protein, 2
CETN3	1.10	0.0000	centrin, EF-hand protein, 3 (CDC31 homolog, yeast)
CFDP1	-0.89	0.0000	craniofacial development protein 1
CGREF1	2.57	0.0000	cell growth regulator with EF-hand domain 1
CHADL	-1.76	0.0000	chondroadherin-like
CHCHD5	-1.58	0.0000	coiled-coil-helix-coiled-coil-helix domain containing 5
CHFR	-1.49	0.0000	checkpoint with forkhead and ring finger domains
СНКВ	-1.54	0.0000	choline kinase beta; carnitine palmitoyltransferase 1B (muscle)
CHML	1.67	0.0000	choroideremia-like (Rab escort protein 2)
CHMP1B	-1.36	0.0000	chromatin modifying protein 1B
CHMP2A	-2.38	0.0000	chromatin modifying protein 2A
CHMP4A	-0.97	0.0000	chromatin modifying protein 4A
CHRAC1	1.35	0.0000	chromatin accessibility complex 1
CHRD	2.45	0.0000	chordin
CHRNA5	2.28	0.0000	cholinergic receptor, nicotinic, alpha 5
CHST3	-2.12	0.0000	carbohydrate (chondroitin 6) sulfotransferase 3
CHURC1	-2.19	0.0000	churchill domain containing 1
CIB1	-1.22	0.0000	calcium and integrin binding 1 (calmyrin)
CIITA	-2.98	0.0000	class II, major histocompatibility complex, transactivator
CITED4	2.86	0.0000	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal
			domain, 4
CKAP4	2.92	0.0000	cytoskeleton-associated protein 4
CLASP2	-1.67	0.0000	cytoplasmic linker associated protein 2
CLCF1	-1.80	0.0000	cardiotrophin-like cytokine factor 1
CLCN3	-2.35	0.0000	chloride channel 3
CLCN5	-2.08	0.0000	chloride channel 5
CLDN1	4.87	0.0000	claudin 1
CLDN11	2.48	0.0000	claudin 11

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
CLDN23	-1.64	0.0000	claudin 23
CLDND1	-1.04	0.0000	claudin domain containing 1
CLIC4	-1.82	0.0000	chloride intracellular channel 4
CLIP1	-1.01	0.0000	CAP-GLY domain containing linker protein 1
CLIP4	-2.00	0.0000	CAP-GLY domain containing linker protein family, member 4
CLMN	-3.09	0.0000	calmin (calponin-like, transmembrane)
CLN3	1.61	0.0000	ceroid-lipofuscinosis, neuronal 3
CLN5	-2.32	0.0000	ceroid-lipofuscinosis, neuronal 5
CLOCK	-1.30	0.0000	clock homolog (mouse)
CLP1	0.93	0.0000	CLP1, cleavage and polyadenylation factor I subunit, homolog (S. cerevisiae)
CLSTN1	-1.41	0.0000	calsyntenin 1
CLU	1.95	0.0000	clusterin
CMBL	2.72	0.0000	carboxymethylenebutenolidase homolog (Pseudomonas)
CMTM6	-1.03	0.0000	CKLF-like MARVEL transmembrane domain containing 6
CNN3	-1.89	0.0000	calponin 3, acidic
CNOT1	1.44	0.0000	CCR4-NOT transcription complex, subunit 1
CNP	-2.68	0.0000	2',3'-cyclic nucleotide 3' phosphodiesterase
CNPY2	-2.17	0.0000	canopy 2 homolog (zebrafish)
CNPY3	-1.12	0.0000	canopy 3 homolog (zebrafish)
CNRIP1	2.44	0.0000	cannabinoid receptor interacting protein 1
CNTNAP1	1.90	0.0000	contactin associated protein 1
CNTNAP3	6.08	0.0000	contactin associated protein-like 3; contactin associated protein-like 3B
СОСН	4.21	0.0000	coagulation factor C homolog, cochlin (Limulus polyphemus)
COL11A2	-4.08	0.0000	collagen, type XI, alpha 2
COL12A1	1.52	0.0000	collagen, type XII, alpha 1
COL14A1	-4.56	0.0000	collagen, type XIV, alpha 1
COL18A1	-2.58	0.0000	collagen, type XVIII, alpha 1
COL21A1	4.72	0.0000	collagen, type XXI, alpha 1
COL4A3BP	-3.42	0.0000	collagen, type IV, alpha 3 (Goodpasture antigen) binding protein
COL4A5	1.38	0.0000	collagen, type IV, alpha 5
COL4A6	1.51	0.0000	collagen, type IV, alpha 6
COL7A1	-3.26	0.0000	collagen, type VII, alpha 1
COL9A2	-3.59	0.0000	collagen, type IX, alpha 2
COL9A3	-2.95	0.0000	collagen, type IX, alpha 3
COMP	3.07	0.0000	cartilage oligomeric matrix protein
COPS6	0.93	0.0000	COP9 constitutive photomorphogenic homolog subunit 6 (Arabidopsis)
COQ9	0.99	0.0000	coenzyme Q9 homolog (S. cerevisiae)

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
COX17	-1.02	0.0000	COX17 cytochrome c oxidase assembly homolog (S. cerevisiae)
COX4I1	-1.28	0.0000	cytochrome c oxidase subunit IV isoform 1
COX7A2	-0.84	0.0000	cytochrome c oxidase subunit VIIa polypeptide 2 (liver)
CPA4	5.06	0.0000	carboxypeptidase A4
CPD	-1.54	0.0000	carboxypeptidase D
CPEB1	-2.35	0.0000	cytoplasmic polyadenylation element binding protein 1
СРМ	1.45	0.0000	carboxypeptidase M
CPNE3	-1.37	0.0000	copine III
CPNE5	-1.41	0.0000	copine V
CPT1C	-3.69	0.0000	carnitine palmitoyltransferase 1C
CPT2	-1.07	0.0000	carnitine palmitoyltransferase 2
CPVL	4.57	0.0000	carboxypeptidase, vitellogenic-like
CRABP2	2.62	0.0000	cellular retinoic acid binding protein 2
CRADD	-1.62	0.0000	CASP2 and RIPK1 domain containing adaptor with death domain
CRBN	-1.77	0.0000	cereblon
CREB3L2	-1.29	0.0000	cAMP responsive element binding protein 3-like 2
CREB3L4	1.60	0.0000	cAMP responsive element binding protein 3-like 4
CREBL2	-2.23	0.0000	cAMP responsive element binding protein-like 2
CREBZF	2.16	0.0000	CREB/ATF bZIP transcription factor
CRELD1	-1.49	0.0000	cysteine-rich with EGF-like domains 1
CREM	-1.29	0.0000	cAMP responsive element modulator
CRHBP	-1.78	0.0000	corticotropin releasing hormone binding protein
CRIM1	2.33	0.0000	cysteine rich transmembrane BMP regulator 1 (chordin-like)
CRIP1	-1.75	0.0000	cysteine-rich protein 1 (intestinal)
CRLF1	-4.05	0.0000	cytokine receptor-like factor 1
CRLS1	1.19	0.0000	cardiolipin synthase 1
CRMP1	3.09	0.0000	collapsin response mediator protein 1
CRNDE	3.53	0.0000	hCG1815491
CRNKL1	1.07	0.0000	crooked neck pre-mRNA splicing factor-like 1 (Drosophila)
CRY1	1.42	0.0000	cryptochrome 1 (photolyase-like)
CRYAB	-5.56	0.0000	crystallin, alpha B
CRYGS	-3.56	0.0000	crystallin, gamma S
CSDA	1.60	0.0000	cold shock domain protein A; cold shock domain protein A pseudogene 1
CSDE1	-1.00	0.0000	cold shock domain containing E1, RNA-binding
CSGALNACT2	-1.75	0.0000	chondroitin sulfate N-acetylgalactosaminyltransferase 2; novel protein similar
			to chondroitin sulfate GalNAcT-2 (GALNACT-2)
CSH1	-0.89	0.0000	chorionic somatomammotropin hormone 1 (placental lactogen)

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
CSNK1E	-1.53	0.0000	casein kinase 1, epsilon
CSNK2A2	1.08	0.0000	casein kinase 2, alpha prime polypeptide
CSRNP1	-0.80	0.0000	cysteine-serine-rich nuclear protein 1
CSRP1	-2.39	0.0000	cysteine and glycine-rich protein 1
CSRP2	-3.11	0.0000	cysteine and glycine-rich protein 2
СЅТВ	-1.16	0.0000	cystatin B (stefin B)
CSTF1	0.99	0.0000	cleavage stimulation factor, 3' pre-RNA, subunit 1, 50kDa
CSTF2T	-2.12	0.0000	cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kDa, tau variant
CTDSPL2	1.33	0.0000	CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase like 2
CTGF	3.10	0.0000	connective tissue growth factor
CTNNA1	-1.94	0.0000	catenin (cadherin-associated protein), alpha 1, 102kDa
CTNNAL1	-1.38	0.0000	catenin (cadherin-associated protein), alpha-like 1
CTNND1	-1.56	0.0000	catenin (cadherin-associated protein), delta 1
CTNND2	3.16	0.0000	catenin (cadherin-associated protein), delta 2 (neural plakophilin-related
			arm-repeat protein)
CTNS	-1.62	0.0000	cystinosis, nephropathic
CTPS2	-0.99	0.0000	CTP synthase II
CTSA	-1.19	0.0000	cathepsin A
CTSB	-1.83	0.0000	cathepsin B
CTSC	-2.40	0.0000	cathepsin C
CTSD	-2.70	0.0000	cathepsin D
СТЅН	1.68	0.0000	cathepsin H
CTSL2	2.03	0.0000	cathepsin L2
стѕо	-2.54	0.0000	cathepsin O
CTSZ	-3.74	0.0000	cathepsin Z
CTTNBP2NL	-0.90	0.0000	CTTNBP2 N-terminal like
CUTA	-1.25	0.0000	cutA divalent cation tolerance homolog (E. coli)
CXorf23	-1.83	0.0000	chromosome X open reading frame 23
CXorf26	-1.60	0.0000	chromosome X open reading frame 26
CXorf38	-1.13	0.0000	chromosome X open reading frame 38
CYB561D2	-1.49	0.0000	cytochrome b-561 domain containing 2
CYB5R3	-1.34	0.0000	cytochrome b5 reductase 3
CYBRD1	-1.17	0.0000	cytochrome b reductase 1
CYLD	-1.83	0.0000	cylindromatosis (turban tumor syndrome)
CYP24A1	3.22	0.0000	cytochrome P450, family 24, subfamily A, polypeptide 1
CYP27B1	2.39	0.0000	cytochrome P450, family 27, subfamily B, polypeptide 1

Gene	ST88 vs HSC	a di Di (a)	Densel (1)
In DS-9	.logFC	adjPVal	Description
CYP4V2	-3.21	0.0000	cytochrome P450, family 4, subfamily V, polypeptide 2
CYTSB	-2.14	0.0000	cytospin B
D4S234E	2.37	0.0000	DNA segment on chromosome 4 (unique) 234 expressed sequence
DAAM2	-2.13	0.0000	dishevelled associated activator of morphogenesis 2
DACH1	3.93	0.0000	dachshund homolog 1 (Drosophila)
DAD1	-0.96	0.0000	defender against cell death 1
DAG1	-2.92	0.0000	dystroglycan 1 (dystrophin-associated glycoprotein 1)
DAPK1	3.12	0.0000	death-associated protein kinase 1
DBI	-1.52	0.0000	diazepam binding inhibitor (GABA receptor modulator, acyl-Coenzyme A
			binding protein)
DBNDD1	-2.15	0.0000	dysbindin (dystrobrevin binding protein 1) domain containing 1
DBT	-1.24	0.0000	dihydrolipoamide branched chain transacylase E2
DCAF13	1.34	0.0000	WD repeats and SOF1 domain containing
DCPS	-1.22	0.0000	decapping enzyme, scavenger
DCTN6	-1.96	0.0000	dynactin 6
DCTPP1	2.12	0.0000	dCTP pyrophosphatase 1
DCUN1D1	0.67	0.0000	DCN1, defective in cullin neddylation 1, domain containing 1 (S. cerevisiae)
DDAH1	2.17	0.0000	dimethylarginine dimethylaminohydrolase 1
DDB2	1.40	0.0000	damage-specific DNA binding protein 2, 48kDa
DDR1	-2.96	0.0000	discoidin domain receptor tyrosine kinase 1
DDX10	1.07	0.0000	DEAD (Asp-Glu-Ala-Asp) box polypeptide 10
DDX17	-1.11	0.0000	DEAD (Asp-Glu-Ala-Asp) box polypeptide 17
DDX23	0.93	0.0000	DEAD (Asp-Glu-Ala-Asp) box polypeptide 23
DDX27	1.30	0.0000	DEAD (Asp-Glu-Ala-Asp) box polypeptide 27
DDX46	1.24	0.0000	DEAD (Asp-Glu-Ala-Asp) box polypeptide 46
DEFB109P1	-3.42	0.0000	defensin, beta 109, pseudogene 1; defensin, beta 109, pseudogene 1B
DEGS1	-1.65	0.0000	degenerative spermatocyte homolog 1, lipid desaturase (Drosophila)
DENND1A	1.01	0.0000	DENN/MADD domain containing 1A
DENND2A	3.05	0.0000	DENN/MADD domain containing 2A
DENND2D	2.22	0.0000	DENN/MADD domain containing 2D
DENND3	2.29	0.0000	DENN/MADD domain containing 3
DENND5A	-1.72	0.0000	DENN/MADD domain containing 5A
DEPDC4	1.33	0.0000	DEP domain containing 4
DERA	-1.49	0.0000	2-deoxyribose-5-phosphate aldolase homolog (C. elegans)
DEXI	1.32	0.0000	dexamethasone-induced transcript
DFFA	0.96	0.0000	DNA fragmentation factor, 45kDa, alpha polypeptide
DGAT2	2.09	0.0000	diacylglycerol O-acyltransferase homolog 2 (mouse)

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
DGCR2	-1.20	0.0000	DiGeorge syndrome critical region gene 2
DGKD	1.51	0.0000	diacylglycerol kinase, delta 130kDa
DGUOK	-0.78	0.0000	deoxyguanosine kinase
DHODH	1.35	0.0000	dihydroorotate dehydrogenase
DHRS1	-1.74	0.0000	dehydrogenase/reductase (SDR family) member 1
DHRS7	-1.27	0.0000	dehydrogenase/reductase (SDR family) member 7
DHRS7B	-0.95	0.0000	dehydrogenase/reductase (SDR family) member 7B
DHX35	1.33	0.0000	DEAH (Asp-Glu-Ala-His) box polypeptide 35
DHX58	-2.79	0.0000	DEXH (Asp-Glu-X-His) box polypeptide 58
DIABLO	0.80	0.0000	diablo homolog (Drosophila)
DIDO1	1.97	0.0000	death inducer-obliterator 1
DIP2B	-1.91	0.0000	DIP2 disco-interacting protein 2 homolog B (Drosophila)
DIP2C	-2.75	0.0000	DIP2 disco-interacting protein 2 homolog C (Drosophila)
DIS3	-1.18	0.0000	DIS3 mitotic control homolog (S. cerevisiae)
DKC1	1.84	0.0000	dyskeratosis congenita 1, dyskerin
DKK1	5.15	0.0000	dickkopf homolog 1 (Xenopus laevis)
DKK2	2.93	0.0000	dickkopf homolog 2 (Xenopus laevis)
DKK3	-3.36	0.0000	dickkopf homolog 3 (Xenopus laevis)
DLGAP4	-1.54	0.0000	discs, large (Drosophila) homolog-associated protein 4
DLL1	2.95	0.0000	delta-like 1 (Drosophila)
DLL3	2.93	0.0000	delta-like 3 (Drosophila)
DLX1	1.47	0.0000	distal-less homeobox 1
DLX4	3.16	0.0000	distal-less homeobox 4
DMKN	2.71	0.0000	dermokine
DMXL1	-1.86	0.0000	Dmx-like 1
DNAH14	0.87	0.0000	dynein, axonemal, heavy chain 14
DNAJA3	1.62	0.0000	DnaJ (Hsp40) homolog, subfamily A, member 3
DNAJB11	-0.67	0.0000	DnaJ (Hsp40) homolog, subfamily B, member 11
DNAJB12	-1.23	0.0000	DnaJ (Hsp40) homolog, subfamily B, member 12
DNAJC1	-1.80	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 1
DNAJC2	1.43	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 2
DNAJC21	0.92	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 21
DNAJC22	1.98	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 22
DNAJC3	-1.64	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 3
DNAJC6	-1.92	0.0000	DnaJ (Hsp40) homolog, subfamily C, member 6
DNALI1	-4.36	0.0000	dynein, axonemal, light intermediate chain 1
DOCK1	-1.36	0.0000	dedicator of cytokinesis 1

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
DOCK10	1.53	0.0000	dedicator of cytokinesis 10
DOCK3	1.56	0.0000	dedicator of cytokinesis 3
DOCK4	1.55	0.0000	dedicator of cytokinesis 4
DOCK7	-1.07	0.0000	dedicator of cytokinesis 7
DOCK8	2.07	0.0000	dedicator of cytokinesis 8
DOK1	-1.15	0.0000	docking protein 1-like protein; docking protein 1, 62kDa (downstream of
			tyrosine kinase 1)
DPF2	0.88	0.0000	D4, zinc and double PHD fingers family 2
DPF3	2.15	0.0000	D4, zinc and double PHD fingers, family 3
DPP8	-1.15	0.0000	dipeptidyl-peptidase 8
DPYSL2	1.42	0.0000	dihydropyrimidinase-like 2
DPYSL4	3.01	0.0000	dihydropyrimidinase-like 4
DRAM2	-1.32	0.0000	DNA-damage regulated autophagy modulator 2
DSN1	1.64	0.0000	DSN1, MIND kinetochore complex component, homolog (S. cerevisiae)
DST	-1.61	0.0000	dystonin
DSTN	1.11	0.0000	destrin (actin depolymerizing factor)
DTWD2	-1.53	0.0000	similar to DTW domain containing 2; DTW domain containing 2
DUS4L	1.84	0.0000	dihydrouridine synthase 4-like (S. cerevisiae)
DUSP1	2.55	0.0000	dual specificity phosphatase 1
DUSP10	-2.05	0.0000	dual specificity phosphatase 10
DUSP12	-1.21	0.0000	dual specificity phosphatase 12
DUSP5P	0.96	0.0000	dual specificity phosphatase 5 pseudogene
DUSP8	-1.74	0.0000	dual specificity phosphatase 8
DUXAP10	3.18	0.0000	double homeobox A pseudogene 10
DYNC1I1	-1.80	0.0000	dynein, cytoplasmic 1, intermediate chain 1
DYNC1I2	-0.85	0.0000	similar to dynein cytoplasmic 1 intermediate chain 2; dynein, cytoplasmic 1,
			intermediate chain 2
DYNC1LI2	-2.13	0.0000	dynein, cytoplasmic 1, light intermediate chain 2
E2F2	1.59	0.0000	E2F transcription factor 2
E2F6	1.15	0.0000	E2F transcription factor 6
E2F8	2.34	0.0000	E2F transcription factor 8
EBF4	1.50	0.0000	early B-cell factor 4
ECHDC1	-1.83	0.0000	enoyl Coenzyme A hydratase domain containing 1
ECHDC2	-4.02	0.0000	enoyl Coenzyme A hydratase domain containing 2
ECM1	-2.22	0.0000	extracellular matrix protein 1
EDEM1	-0.92	0.0000	ER degradation enhancer, mannosidase alpha-like 1
EDNRB	-7.37	0.0000	endothelin receptor type B

Gene	ST88 vs HSC	a di Di /a l	Description
In DS-9	.logFC	adjeval	Description
EEA1	-1.24	0.0000	early endosome antigen 1
EEF1A2	3.47	0.0000	eukaryotic translation elongation factor 1 alpha 2
EFEMP1	6.53	0.0000	EGF-containing fibulin-like extracellular matrix protein 1
EFHA1	-3.82	0.0000	EF-hand domain family, member A1
EFHD1	2.64	0.0000	EF-hand domain family, member D1
EFNA4	1.49	0.0000	ephrin-A4
EFNB2	2.03	0.0000	ephrin-B2
EGFL8	-3.50	0.0000	EGF-like-domain, multiple 8
EGLN3	3.28	0.0000	egl nine homolog 3 (C. elegans)
EGR3	-2.74	0.0000	early growth response 3
EHBP1	-3.61	0.0000	EH domain binding protein 1
EID2	1.22	0.0000	EP300 interacting inhibitor of differentiation 2
EID2B	1.09	0.0000	EP300 interacting inhibitor of differentiation 2B
EIF1	-1.27	0.0000	similar to eukaryotic translation initiation factor 1; eukaryotic translation
			initiation factor 1
EIF1AD	0.96	0.0000	eukaryotic translation initiation factor 1A domain containing
EIF2AK3	-1.67	0.0000	eukaryotic translation initiation factor 2-alpha kinase 3
EIF3C	1.24	0.0000	eukaryotic translation initiation factor 3, subunit C
EIF3F	-1.25	0.0000	eukaryotic translation initiation factor 3, subunit F; similar to hCG2040283
EIF4B	0.66	0.0000	similar to eukaryotic translation initiation factor 4H; eukaryotic translation
			initiation factor 4B
EIF4EBP1	1.33	0.0000	eukaryotic translation initiation factor 4E binding protein 1
ELF1	-2.09	0.0000	E74-like factor 1 (ets domain transcription factor)
ELFN2	3.40	0.0000	extracellular leucine-rich repeat and fibronectin type III domain containing 2
ELK3	1.40	0.0000	ELK3, ETS-domain protein (SRF accessory protein 2)
ELL2	2.06	0.0000	elongation factor, RNA polymerase II, 2
ELMO2	0.78	0.0000	engulfment and cell motility 2
ELMOD1	2.62	0.0000	ELMO/CED-12 domain containing 1
ELMOD2	-1.27	0.0000	ELMO/CED-12 domain containing 2
ELOVL7	2.85	0.0000	ELOVL family member 7, elongation of long chain fatty acids (yeast)
EME1	1.85	0.0000	essential meiotic endonuclease 1 homolog 1 (S. pombe)
EMG1	1.18	0.0000	EMG1 nucleolar protein homolog (S. cerevisiae)
EMILIN3	1.10	0.0000	elastin microfibril interfacer 3
EMP2	-2.50	0.0000	epithelial membrane protein 2
ENG	-0.85	0.0000	endoglin
ENO1	1.57	0.0000	enolase 1, (alpha)
ENOSF1	-3.42	0.0000	enolase superfamily member 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
ENOX2	-1.18	0.0000	ecto-NOX disulfide-thiol exchanger 2
EPB41L1	1.89	0.0000	erythrocyte membrane protein band 4.1-like 1
EPB41L2	-1.28	0.0000	erythrocyte membrane protein band 4.1-like 2
EPB41L3	-2.11	0.0000	erythrocyte membrane protein band 4.1-like 3
EPCAM	2.17	0.0000	epithelial cell adhesion molecule
EPHB2	3.26	0.0000	EPH receptor B2
EPHB4	1.27	0.0000	EPH receptor B4
EPHX4	1.95	0.0000	epoxide hydrolase 4
EPRS	-0.87	0.0000	glutamyl-prolyl-tRNA synthetase
ERBB2	-1.99	0.0000	v-erb-b2 erythroblastic leukemia viral oncogene homolog 2,
			neuro/glioblastoma derived oncogene homolog (avian)
ERBB3	-5.22	0.0000	v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)
ERC1	-3.07	0.0000	ELKS/RAB6-interacting/CAST family member 1
ERCC5	-0.99	0.0000	excision repair cross-complementing rodent repair deficiency,
			complementation group 5
EREG	-2.92	0.0000	epiregulin
ERLIN1	-0.83	0.0000	ER lipid raft associated 1
ESD	-1.28	0.0000	esterase D/formylglutathione hydrolase
ESPNL	1.39	0.0000	espin-like
ESYT2	-1.40	0.0000	family with sequence similarity 62 (C2 domain containing), member B
ETS2	1.79	0.0000	v-ets erythroblastosis virus E26 oncogene homolog 2 (avian)
EVC	-1.90	0.0000	Ellis van Creveld syndrome
EVI2A	-2.04	0.0000	ecotropic viral integration site 2A
EVL	2.31	0.0000	Enah/Vasp-like
EXOC1	-0.74	0.0000	exocyst complex component 1
EXOSC10	-1.61	0.0000	exosome component 10
EXOSC5	1.16	0.0000	exosome component 5
EXT1	2.26	0.0000	exostoses (multiple) 1
EXT2	-1.38	0.0000	exostoses (multiple) 2
EYA2	1.51	0.0000	eyes absent homolog 2 (Drosophila)
EZH2	1.83	0.0000	enhancer of zeste homolog 2 (Drosophila)
F2R	3.02	0.0000	coagulation factor II (thrombin) receptor
F2RL1	3.17	0.0000	coagulation factor II (thrombin) receptor-like 1
F2RL2	4.61	0.0000	coagulation factor II (thrombin) receptor-like 2
FABP7	-5.06	0.0000	fatty acid binding protein 7, brain
FADS2	-2.65	0.0000	fatty acid desaturase 2
FAF2	0.70	0.0000	Fas associated factor family member 2

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
FAM102A	-3.67	0.0000	family with sequence similarity 102, member A
FAM105B	0.84	0.0000	family with sequence similarity 105, member B
FAM108A1	-1.43	0.0000	family with sequence similarity 108, member A4; family with sequence
			similarity 108, member A5; family with sequence similarity 108, member A1
FAM109B	-0.86	0.0000	family with sequence similarity 109, member B
FAM116A	-1.35	0.0000	family with sequence similarity 116, member A
FAM117B	1.40	0.0000	family with sequence similarity 117, member B
FAM119B	0.76	0.0000	family with sequence similarity 119, member B
FAM127B	-1.35	0.0000	family with sequence similarity 127, member B
FAM134A	-1.58	0.0000	family with sequence similarity 134, member A
FAM155A	3.80	0.0000	family with sequence similarity 155, member A
FAM161A	1.77	0.0000	family with sequence similarity 161, member A
FAM169A	5.15	0.0000	family with sequence similarity 169, member A
FAM175A	-1.15	0.0000	family with sequence similarity 175, member A
FAM176A	2.79	0.0000	family with sequence similarity 176, member A
FAM177A1	-1.35	0.0000	family with sequence similarity 177, member A1
FAM181B	1.40	0.0000	family with sequence similarity 181, member B
FAM184A	2.03	0.0000	family with sequence similarity 184, member A
FAM188A	-1.58	0.0000	chromosome 10 open reading frame 97
FAM189A2	-2.12	0.0000	chromosome 9 open reading frame 61
FAM190B	-1.46	0.0000	KIAA1128
FAM19A5	-4.40	0.0000	family with sequence similarity 19 (chemokine (C-C motif)-like), member A5
FAM20C	-2.47	0.0000	family with sequence similarity 20, member C
FAM21A	-1.41	0.0000	family with sequence similarity 21, member B; family with sequence similarity
			21, member A
FAM21C	-1.68	0.0000	family with sequence similarity 21, member D; family with sequence similarity
			21, member C
FAM24B	1.92	0.0000	family with sequence similarity 24, member B
FAM27E1	1.46	0.0000	hypothetical LOC100287333
FAM3C	-1.67	0.0000	family with sequence similarity 3, member C
FAM41C	-1.15	0.0000	family with sequence similarity 41, member C
FAM46A	-2.84	0.0000	family with sequence similarity 46, member A
FAM47E	-1.92	0.0000	family with sequence similarity 47, member E
FAM50B	-3.20	0.0000	family with sequence similarity 50, member B
FAM59A	-3.20	0.0000	hypothetical protein LOC100130616; family with sequence similarity 59,
			member A
FAM60A	1.78	0.0000	similar to hCG2020539; family with sequence similarity 60, member A; similar

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
			to family with sequence similarity 60, member A
FAM63B	-1.69	0.0000	family with sequence similarity 63, member B
FAM69B	2.96	0.0000	family with sequence similarity 69, member B
FAM82B	-1.42	0.0000	family with sequence similarity 82, member B
FAM83D	2.29	0.0000	family with sequence similarity 83, member D
FAM84A	2.37	0.0000	hypothetical LOC653602; family with sequence similarity 84, member A
FAM86A	1.52	0.0000	family with sequence similarity 86, member B2; family with sequence
			similarity 86, member A; family with sequence similarity 86, member B1
FAM8A1	-0.72	0.0000	family with sequence similarity 8, member A1
FAM96B	-1.27	0.0000	family with sequence similarity 96, member B
FANCG	1.91	0.0000	Fanconi anemia, complementation group G
FANCL	1.40	0.0000	Fanconi anemia, complementation group L
FAR2	4.76	0.0000	fatty acyl CoA reductase 2
FARSB	-1.66	0.0000	phenylalanyl-tRNA synthetase, beta subunit
FAS	1.87	0.0000	Fas (TNF receptor superfamily, member 6)
FASTKD2	0.92	0.0000	FAST kinase domains 2
FASTKD3	1.80	0.0000	FAST kinase domains 3
FASTKD5	0.62	0.0000	FAST kinase domains 5
FBL	1.71	0.0000	fibrillarin
FBLN2	-2.41	0.0000	fibulin 2
FBN2	5.48	0.0000	fibrillin 2
FBXL15	-1.40	0.0000	F-box and leucine-rich repeat protein 15
FBXL16	5.56	0.0000	F-box and leucine-rich repeat protein 16
FBXL17	-1.63	0.0000	F-box and leucine-rich repeat protein 17
FBXL2	-1.22	0.0000	F-box and leucine-rich repeat protein 2
FBXL20	-1.05	0.0000	F-box and leucine-rich repeat protein 20
FBXL21	4.72	0.0000	F-box and leucine-rich repeat protein 21
FBXL3	-1.36	0.0000	F-box and leucine-rich repeat protein 3
FBXL4	-1.07	0.0000	F-box and leucine-rich repeat protein 4
FBXO25	-3.10	0.0000	F-box protein 25
FBXO30	-1.45	0.0000	F-box protein 30
FBXO32	-2.85	0.0000	F-box protein 32
FBXO33	-0.86	0.0000	F-box protein 33
FBXO38	-3.51	0.0000	F-box protein 38
FBX07	-2.21	0.0000	F-box protein 7
FBXO8	-1.51	0.0000	F-box protein 8
FCGR2A	-3.74	0.0000	Fc fragment of IgG, low affinity IIa, receptor (CD32)

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
FCGRT	3.54	0.0000	Fc fragment of IgG, receptor, transporter, alpha
FCHSD2	2.40	0.0000	FCH and double SH3 domains 2
FCRLA	-5.77	0.0000	Fc receptor-like A
FDXR	1.56	0.0000	ferredoxin reductase
FERMT1	3.58	0.0000	fermitin family homolog 1 (Drosophila)
FERMT2	-2.64	0.0000	fermitin family homolog 2 (Drosophila)
FGD6	2.07	0.0000	FYVE, RhoGEF and PH domain containing 6
FGF13	5.86	0.0000	fibroblast growth factor 13
FGF2	2.46	0.0000	fibroblast growth factor 2 (basic)
FGF5	-3.63	0.0000	fibroblast growth factor 5
FGF9	1.18	0.0000	fibroblast growth factor 9 (glia-activating factor)
FGFR1	2.46	0.0000	fibroblast growth factor receptor 1
FGFRL1	2.06	0.0000	fibroblast growth factor receptor-like 1
FHDC1	-4.79	0.0000	FH2 domain containing 1
FICD	-0.97	0.0000	FIC domain containing
FIG4	-1.09	0.0000	FIG4 homolog (S. cerevisiae)
FIGNL1	1.65	0.0000	fidgetin-like 1
FJX1	2.26	0.0000	four jointed box 1 (Drosophila)
FKBP1A	-2.04	0.0000	FK506 binding protein 1A, 12kDa
FKBP2	-1.61	0.0000	FK506 binding protein 2, 13kDa
FKBP4	0.86	0.0000	FK506 binding protein 4, 59kDa
FLAD1	1.02	0.0000	FAD1 flavin adenine dinucleotide synthetase homolog (S. cerevisiae)
FLJ22536	-2.91	0.0000	hypothetical locus LOC401237
FLJ30064	-2.42	0.0000	hypothetical protein LOC644975
FLJ32255	-1.70	0.0000	hypothetical protein LOC643977
FLJ35934	3.11	0.0000	FLJ35934 protein
FLJ39632	3.54	0.0000	hypothetical LOC642477; hypothetical LOC400879
FLJ40504	5.79	0.0000	hypothetical protein FLJ40504
FLOT1	-1.44	0.0000	flotillin 1
FMN1	-3.62	0.0000	formin 1
FMR1	1.07	0.0000	fragile X mental retardation 1
FN3KRP	0.97	0.0000	fructosamine 3 kinase related protein
FNBP1	1.16	0.0000	formin binding protein 1
FNIP2	-1.34	0.0000	folliculin interacting protein 2
FNTA	-1.11	0.0000	farnesyltransferase, CAAX box, alpha
FNTB	-2.63	0.0000	farnesyltransferase, CAAX box, beta
FOS	-2.59	0.0000	v-fos FBJ murine osteosarcoma viral oncogene homolog

Gene	ST88 vs HSC	adjPVal	Description
In DS-9	.logFC		
FOSL2	-1.45	0.0000	FOS-like antigen 2
FOXA1	4.68	0.0000	forkhead box A1
FOXD3	-0.74	0.0000	forkhead box D3
FOXD4	1.53	0.0000	forkhead box D4
FOXF1	4.67	0.0000	forkhead box F1
FOXG1	6.09	0.0000	forkhead box G1
FOXK2	1.61	0.0000	forkhead box K2
FOXL2	4.52	0.0000	forkhead box L2
FOXN2	-1.58	0.0000	forkhead box N2
FOXP1	2.41	0.0000	forkhead box P1
FRG1	-0.82	0.0000	FSHD region gene 1
FRMD5	-2.25	0.0000	FERM domain containing 5
FRMD6	-1.49	0.0000	FERM domain containing 6
FSTL1	3.40	0.0000	follistatin-like 1
FTH1	-1.97	0.0000	ferritin, heavy polypeptide 1; ferritin, heavy polypeptide-like 16; similar to
			ferritin, heavy polypeptide 1; ferritin, heavy polypeptide-like 3 pseudogene
FTHL17	-1.40	0.0000	ferritin, heavy polypeptide-like 17
FTSJ3	0.91	0.0000	FtsJ homolog 3 (E. coli)
FUCA2	-1.55	0.0000	fucosidase, alpha-L- 2, plasma
FUK	-1.50	0.0000	fucokinase
FUNDC1	-1.10	0.0000	FUN14 domain containing 1
FUT11	-1.40	0.0000	fucosyltransferase 11 (alpha (1,3) fucosyltransferase)
FXN	1.39	0.0000	frataxin
FXYD3	-3.74	0.0000	FXYD domain containing ion transport regulator 3
FXYD6	2.63	0.0000	FXYD domain containing ion transport regulator 6
FYCO1	-1.35	0.0000	FYVE and coiled-coil domain containing 1
FYN	-2.26	0.0000	FYN oncogene related to SRC, FGR, YES
FZD2	2.18	0.0000	frizzled homolog 2 (Drosophila)
FZD4	-1.88	0.0000	frizzled homolog 4 (Drosophila)
FZD7	1.66	0.0000	frizzled homolog 7 (Drosophila)
GAB1	-1.75	0.0000	GRB2-associated binding protein 1
GABARAP	-1.70	0.0000	GABA(A) receptor-associated protein
GABARAPL2	-1.52	0.0000	GABA(A) receptor-associated protein-like 2
GABPB2	-2.43	0.0000	GA binding protein transcription factor, beta subunit 2
GABRA2	-3.22	0.0000	gamma-aminobutyric acid (GABA) A receptor, alpha 2
GADD45A	2.50	0.0000	growth arrest and DNA-damage-inducible, alpha
GAL3ST1	-3.89	0.0000	galactose-3-O-sulfotransferase 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
GALE	1.40	0.0000	UDP-galactose-4-epimerase
GALK2	-1.64	0.0000	galactokinase 2
GALNT10	1.32	0.0000	UDP-N-acetyl-alpha-D-galactosamine:polypeptide
			N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
GALNT14	5.02	0.0000	UDP-N-acetyl-alpha-D-galactosamine:polypeptide
			N-acetylgalactosaminyltransferase 14 (GalNAc-T14)
GALNTL1	3.31	0.0000	UDP-N-acetyl-alpha-D-galactosamine:polypeptide
			N-acetylgalactosaminyltransferase-like 1
GAPVD1	-1.05	0.0000	GTPase activating protein and VPS9 domains 1
GART	1.68	0.0000	phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide
			synthetase, phosphoribosylaminoimidazole synthetase
GAS1	3.72	0.0000	growth arrest-specific 1
GAS2L1	-1.21	0.0000	growth arrest-specific 2 like 1
GAS2L3	-3.02	0.0000	growth arrest-specific 2 like 3
GAS5	1.64	0.0000	growth arrest-specific 5 (non-protein coding)
GAS8	-1.45	0.0000	growth arrest-specific 8
GATA4	2.15	0.0000	GATA binding protein 4
GATA6	4.28	0.0000	GATA binding protein 6
GATM	-3.56	0.0000	glycine amidinotransferase (L-arginine:glycine amidinotransferase)
GBA	-1.98	0.0000	glucosidase, beta; acid (includes glucosylceramidase)
GBE1	-1.74	0.0000	glucan (1,4-alpha-), branching enzyme 1
GBP2	-2.05	0.0000	guanylate binding protein 2, interferon-inducible
GCNT1	-2.34	0.0000	glucosaminyl (N-acetyl) transferase 1, core 2
			(beta-1,6-N-acetylglucosaminyltransferase)
GDE1	-1.85	0.0000	glycerophosphodiester phosphodiesterase 1
GFPT2	3.00	0.0000	glutamine-fructose-6-phosphate transaminase 2
GFRA1	-3.74	0.0000	GDNF family receptor alpha 1
GFRA3	-2.68	0.0000	GDNF family receptor alpha 3
GFRA4	-1.45	0.0000	GDNF family receptor alpha 4
GGH	-1.53	0.0000	gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)
GGNBP2	-0.87	0.0000	gametogenetin binding protein 2
GIYD1	1.26	0.0000	GIY-YIG domain containing 2; GIY-YIG domain containing 1
GJA3	-2.29	0.0000	gap junction protein, alpha 3, 46kDa
GJB1	-2.49	0.0000	gap junction protein, beta 1, 32kDa
GJC3	-2.18	0.0000	gap junction protein, gamma 3, 30.2kDa
GK	-1.83	0.0000	glycerol kinase 3 pseudogene; glycerol kinase
GKAP1	3.18	0.0000	G kinase anchoring protein 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
GLG1	-1.35	0.0000	golgi apparatus protein 1
GLIPR1	-1.94	0.0000	GLI pathogenesis-related 1
GLIS1	4.07	0.0000	GLIS family zinc finger 1
GLRX	1.38	0.0000	glutaredoxin (thioltransferase)
GLT8D1	-1.22	0.0000	glycosyltransferase 8 domain containing 1
GLTP	-2.24	0.0000	glycolipid transfer protein; glycolipid transfer protein pseudogene 1
GLYATL1	1.78	0.0000	glycine-N-acyltransferase-like 1
GM2A	-1.34	0.0000	GM2 ganglioside activator
GMFB	-1.94	0.0000	glia maturation factor, beta
GMPPB	-1.26	0.0000	GDP-mannose pyrophosphorylase B
GMPS	1.07	0.0000	guanine monphosphate synthetase
GNAL	2.73	0.0000	guanine nucleotide binding protein (G protein), alpha activating activity
			polypeptide, olfactory type
GNAS	1.11	0.0000	GNAS complex locus
GNG2	-2.90	0.0000	guanine nucleotide binding protein (G protein), gamma 2
GNG7	-2.52	0.0000	guanine nucleotide binding protein (G protein), gamma 7
GNPTAB	-1.70	0.0000	N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits
GNPTG	-2.07	0.0000	N-acetylglucosamine-1-phosphate transferase, gamma subunit
GOLGA7	-1.11	0.0000	golgi autoantigen, golgin subfamily a, 7
GOLGA8A	3.05	0.0000	golgi autoantigen, golgin subfamily a, 8B; golgi autoantigen, golgin subfamily a, 8A
GOLGA8E	2.63	0.0000	golgi autoantigen, golgin subfamily a, 8E
GOLGA8F	2.31	0.0000	golgi autoantigen, golgin subfamily a, 8D; golgi autoantigen, golgin subfamily
			a, 8C; similar to Golgin subfamily A member 8-like protein 1; golgi
			autoantigen, golgin subfamily a, 8F; golgi autoantigen, golgin subfamily a, 8G
GOSR2	1.06	0.0000	golgi SNAP receptor complex member 2
GOT2	1.39	0.0000	glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate
			aminotransferase 2)
GP9	-1.22	0.0000	glycoprotein IX (platelet)
GPAT2	3.61	0.0000	hypothetical protein LOC150763; similar to hCG1732629; similar to
			glycerol-3-phosphate acyltransferase, mitochondrial
GPC1	-2.72	0.0000	glypican 1
GPC4	4.52	0.0000	glypican 4
GPER	-4.15	0.0000	G protein-coupled estrogen receptor 1
GPM6B	-4.93	0.0000	glycoprotein M6B
GPN3	1.39	0.0000	GPN-loop GTPase 3
GPNMB	-6.49	0.0000	dvcoprotein (transmembrane) nmb

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
GPR126	-2.30	0.0000	G protein-coupled receptor 126
GPR137B	-3.58	0.0000	G protein-coupled receptor 137B
GPR155	-2.91	0.0000	G protein-coupled receptor 155
GPR158	-3.56	0.0000	G protein-coupled receptor 158
GPR19	1.59	0.0000	G protein-coupled receptor 19
GPRC5A	2.42	0.0000	G protein-coupled receptor, family C, group 5, member A
GPRC5B	1.58	0.0000	G protein-coupled receptor, family C, group 5, member B
GPRC5C	2.18	0.0000	G protein-coupled receptor, family C, group 5, member C
GPSM2	-1.57	0.0000	G-protein signaling modulator 2 (AGS3-like, C. elegans)
GPX1	-0.98	0.0000	glutathione peroxidase 1
GRAMD3	-1.62	0.0000	GRAM domain containing 3
GRASP	-2.40	0.0000	GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein
GSC	2.78	0.0000	goosecoid homeobox
GSN	-2.85	0.0000	gelsolin (amyloidosis, Finnish type)
GSTM4	-1.02	0.0000	glutathione S-transferase mu 4
GSTO1	-1.02	0.0000	glutathione S-transferase omega 1
GSTT2	-5.59	0.0000	glutathione S-transferase theta 2B (gene/pseudogene); glutathione
			S-transferase theta 2
GTDC1	-1.78	0.0000	glycosyltransferase-like domain containing 1
GTF2B	-0.76	0.0000	general transcription factor IIB
GTF2F2	-0.99	0.0000	general transcription factor IIF, polypeptide 2, 30kDa
GTPBP10	1.23	0.0000	GTP-binding protein 10 (putative)
GTPBP2	-0.83	0.0000	GTP binding protein 2
GTPBP3	1.25	0.0000	GTP binding protein 3 (mitochondrial)
GTPBP4	0.97	0.0000	GTP binding protein 4
GTPBP6	-1.03	0.0000	GTP binding protein 6 (putative)
GUSB	-1.19	0.0000	glucuronidase, beta
GYLTL1B	1.67	0.0000	glycosyltransferase-like 1B
H2AFJ	-1.69	0.0000	H2A histone family, member J
H2AFY	1.63	0.0000	H2A histone family, member Y
H2AFY2	3.73	0.0000	H2A histone family, member Y2
H3F3A	-1.14	0.0000	H3 histone, family 3B (H3.3B); H3 histone, family 3A pseudogene; H3
			histone, family 3A; similar to H3 histone, family 3B; similar to histone H3.3B
HACL1	-1.78	0.0000	2-hydroxyacyl-CoA lyase 1
HADHB	-0.97	0.0000	hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A
			thiolase/enoyl-Coenzyme A hydratase (trifunctional protein), beta subunit
HARBI1	-0.59	0.0000	harbinger transposase derived 1

Gene	ST88 vs HSC		-
In DS-9	.logFC	adjeval	Description
HAUS5	1.58	0.0000	HAUS augmin-like complex, subunit 5
HAUS6	1.49	0.0000	HAUS augmin-like complex, subunit 6
HAUS7	2.36	0.0000	three prime repair exonuclease 2; HAUS augmin-like complex, subunit 7
HBEGF	-1.29	0.0000	heparin-binding EGF-like growth factor
HBS1L	-1.30	0.0000	HBS1-like (S. cerevisiae)
HBXIP	-1.31	0.0000	hepatitis B virus x interacting protein
HCP5	-2.42	0.0000	HLA complex P5
HDGFRP3	1.46	0.0000	hepatoma-derived growth factor, related protein 3
HDHD2	-1.29	0.0000	haloacid dehalogenase-like hydrolase domain containing 2
HECTD1	-0.99	0.0000	HECT domain containing 1
HELQ	-1.23	0.0000	helicase, POLQ-like
HEPH	-3.35	0.0000	hephaestin
HERC5	3.25	0.0000	hect domain and RLD 5
HEXB	-2.04	0.0000	hexosaminidase B (beta polypeptide)
HFE	-1.22	0.0000	hemochromatosis
HIC1	1.34	0.0000	hypermethylated in cancer 1
HIF1A	1.29	0.0000	hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription
			factor)
HIP1R	1.63	0.0000	huntingtin interacting protein 1 related
HIPK2	1.79	0.0000	homeodomain interacting protein kinase 2; similar to homeodomain
			interacting protein kinase 2
HK1	-1.10	0.0000	hexokinase 1
HKDC1	-3.75	0.0000	hexokinase domain containing 1
HLA-A	-2.75	0.0000	major histocompatibility complex, class I, A
HLA-B	-2.50	0.0000	major histocompatibility complex, class I, C; major histocompatibility complex,
			class I, B
HLA-C	-4.21	0.0000	major histocompatibility complex, class I, C; major histocompatibility complex,
			class I, B
HLA-DMA	-5.07	0.0000	major histocompatibility complex, class II, DM alpha
HLA-DMB	-4.75	0.0000	major histocompatibility complex, class II, DM beta
HLA-DOA	-3.93	0.0000	major histocompatibility complex, class II, DO alpha
HLA-DPA1	-4.20	0.0000	major histocompatibility complex, class II, DP alpha 1
HLA-DPB1	-2.52	0.0000	major histocompatibility complex, class II, DP beta 1
HLA-DPB2	-2.77	0.0000	major histocompatibility complex, class II, DP beta 2 (pseudogene)
HLA-DRA	-4.97	0.0000	major histocompatibility complex, class II, DR alpha
HLA-DRB1	-3.30	0.0000	major histocompatibility complex, class II, DR beta 4; major histocompatibility
			complex, class II, DR beta 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
HLA-DRB3	-3.83	0.0000	major histocompatibility complex, class II, DR beta 3
HLA-DRB4	-3.96	0.0000	major histocompatibility complex, class II, DR beta 4; major histocompatibility
			complex, class II, DR beta 1
HLA-DRB5	-3.64	0.0000	major histocompatibility complex, class II, DR beta 5
HLA-E	-2.61	0.0000	major histocompatibility complex, class I, E
HLA-F	-2.54	0.0000	major histocompatibility complex, class I, F
HLA-G	-2.85	0.0000	major histocompatibility complex, class I, G
HLA-H	-3.02	0.0000	major histocompatibility complex, class I, H (pseudogene)
HLA-J	-2.57	0.0000	major histocompatibility complex, class I, J (pseudogene)
HLTF	1.52	0.0000	helicase-like transcription factor
HMBOX1	-1.76	0.0000	homeobox containing 1
HMG20B	-2.35	0.0000	high-mobility group 20B
HMGB2	1.33	0.0000	high-mobility group box 2
HMGN2	0.93	0.0000	hypothetical LOC729505; similar to hCG2040565; high-mobility group
			nucleosomal binding domain 2; similar to high-mobility group nucleosomal
			binding domain 2
HN1	2.08	0.0000	hematological and neurological expressed 1
HN1L	1.13	0.0000	hematological and neurological expressed 1-like
HNRNPA1L2	0.77	0.0000	heterogeneous nuclear ribonucleoprotein A1-like 2
HNRNPA3	1.56	0.0000	heterogeneous nuclear ribonucleoprotein A3
HNRNPH1	1.41	0.0000	heterogeneous nuclear ribonucleoprotein H1 (H)
HNRNPH2	-1.22	0.0000	ribosomal protein L36a pseudogene 51; ribosomal protein L36a pseudogene
			37; ribosomal protein L36a pseudogene 49; heterogeneous nuclear
			ribonucleoprotein H2 (H'); ribosomal protein L36a
HNRNPUL2	-1.98	0.0000	heterogeneous nuclear ribonucleoprotein U-like 2
HOOK3	-2.09	0.0000	hook homolog 3 (Drosophila)
НОРХ	4.46	0.0000	HOP homeobox
HOXA13	3.44	0.0000	homeobox A13
HOXA3	2.09	0.0000	homeobox A3
HOXA5	1.57	0.0000	homeobox A5
HOXA9	2.17	0.0000	homeobox A9
HOXB13	3.90	0.0000	homeobox B13
HOXB9	2.85	0.0000	homeobox B9
HOXC13	3.43	0.0000	homeobox C13
HOXD3	1.93	0.0000	homeobox D3
HPCAL1	-1.87	0.0000	hippocalcin-like 1
HPS1	-2.51	0.0000	Hermansky-Pudlak syndrome 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
HPS5	-1.01	0.0000	Hermansky-Pudlak syndrome 5
HR	-1.03	0.0000	hairless homolog (mouse)
HRASLS	3.06	0.0000	HRAS-like suppressor
HRASLS2	-1.78	0.0000	HRAS-like suppressor 2
HRH1	2.20	0.0000	histamine receptor H1
HS1BP3	-1.69	0.0000	HCLS1 binding protein 3
HS3ST3A1	3.05	0.0000	heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1
HS6ST2	5.95	0.0000	heparan sulfate 6-O-sulfotransferase 2
HSBP1	-1.76	0.0000	heat shock factor binding protein 1
HSD17B10	-0.84	0.0000	hydroxysteroid (17-beta) dehydrogenase 10
HSD17B11	-1.50	0.0000	hydroxysteroid (17-beta) dehydrogenase 11
HSD17B12	-1.68	0.0000	hydroxysteroid (17-beta) dehydrogenase 12
HSPA12A	-2.95	0.0000	heat shock 70kDa protein 12A
HSPA1L	1.44	0.0000	heat shock 70kDa protein 1-like
HSPA4L	1.69	0.0000	heat shock 70kDa protein 4-like
HSPA5	-1.57	0.0000	hypothetical gene supported by AF216292; NM_005347; heat shock 70kDa
			protein 5 (glucose-regulated protein, 78kDa)
HSPA6	-2.18	0.0000	heat shock 70kDa protein 7 (HSP70B); heat shock 70kDa protein 6
			(HSP70B')
HSPA9	0.73	0.0000	heat shock 70kDa protein 9 (mortalin)
HSPBAP1	0.77	0.0000	HSPB (heat shock 27kDa) associated protein 1
HSPC157	1.73	0.0000	hypothetical LOC29092
HSPC159	2.92	0.0000	galectin-related protein
HSPD1	1.56	0.0000	heat shock 60kDa protein 1 (chaperonin) pseudogene 5; heat shock 60kDa
			protein 1 (chaperonin) pseudogene 6; heat shock 60kDa protein 1
			(chaperonin) pseudogene 1; heat shock 60kDa protein 1 (chaperonin)
			pseudogene 4; heat shock 60kDa protein 1 (chaperonin)
HSPG2	-1.30	0.0000	heparan sulfate proteoglycan 2
HTATIP2	-2.29	0.0000	HIV-1 Tat interactive protein 2, 30kDa
HTR7	3.24	0.0000	5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled)
HTRA3	2.84	0.0000	HtrA serine peptidase 3
HUWE1	-1.97	0.0000	HECT, UBA and WWE domain containing 1
HYAL1	-3.11	0.0000	hyaluronoglucosaminidase 1
IBTK	-1.24	0.0000	inhibitor of Bruton agammaglobulinemia tyrosine kinase
ICAM1	-2.22	0.0000	intercellular adhesion molecule 1
IER5	1.63	0.0000	immediate early response 5
IFI27L2	-1.78	0.0000	interferon, alpha-inducible protein 27-like 2
Gene	ST88 vs HSC		
---------	-------------	---------	---
In DS-9	.logFC	adjPVal	Description
IFI30	-1.68	0.0000	interferon, gamma-inducible protein 30
IFI6	-1.33	0.0000	interferon, alpha-inducible protein 6
IFIT2	-1.96	0.0000	interferon-induced protein with tetratricopeptide repeats 2
IFIT3	-3.04	0.0000	interferon-induced protein with tetratricopeptide repeats 3
IFITM3	-1.37	0.0000	interferon induced transmembrane protein 3 (1-8U)
IFNE	2.18	0.0000	interferon, epsilon
IFRD1	1.49	0.0000	interferon-related developmental regulator 1
IFT88	-1.55	0.0000	intraflagellar transport 88 homolog (Chlamydomonas)
IGDCC4	4.12	0.0000	immunoglobulin superfamily, DCC subclass, member 4
IGF2	3.10	0.0000	insulin-like growth factor 2 (somatomedin A); insulin; INS-IGF2 readthrough
			transcript
IGF2BP1	5.22	0.0000	insulin-like growth factor 2 mRNA binding protein 1
IGFBP3	4.14	0.0000	insulin-like growth factor binding protein 3
IGFBP5	-3.53	0.0000	insulin-like growth factor binding protein 5
IGFBPL1	4.59	0.0000	insulin-like growth factor binding protein-like 1
IGHD	-1.87	0.0000	immunoglobulin heavy constant delta
IGSF11	-3.13	0.0000	immunoglobulin superfamily, member 11
IGSF9	2.61	0.0000	immunoglobulin superfamily, member 9
ІКВКВ	-1.28	0.0000	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta
IKZF4	-1.48	0.0000	IKAROS family zinc finger 4 (Eos)
IL12A	1.47	0.0000	interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte
			maturation factor 1, p35)
IL13RA1	-2.08	0.0000	interleukin 13 receptor, alpha 1
IL17RD	2.42	0.0000	interleukin 17 receptor D
IL1RAP	-1.53	0.0000	interleukin 1 receptor accessory protein
IL28RA	3.76	0.0000	interleukin 28 receptor, alpha (interferon, lambda receptor)
IL6	-3.63	0.0000	interleukin 6 (interferon, beta 2)
IL7	2.85	0.0000	interleukin 7
ILK	-1.67	0.0000	integrin-linked kinase
IMP4	1.19	0.0000	IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)
IMPAD1	-1.80	0.0000	inositol monophosphatase domain containing 1
INPP4B	-1.61	0.0000	inositol polyphosphate-4-phosphatase, type II, 105kDa
INPP5F	-3.31	0.0000	inositol polyphosphate-5-phosphatase F
INPP5K	-2.11	0.0000	inositol polyphosphate-5-phosphatase K
INTS2	1.24	0.0000	integrator complex subunit 2
IP6K2	1.47	0.0000	inositol hexakisphosphate kinase 2
IQCA1	2.58	0.0000	IQ motif containing with AAA domain 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
IQCC	1.23	0.0000	IQ motif containing C
IQSEC1	-1.18	0.0000	IQ motif and Sec7 domain 1
IRAK1	1.65	0.0000	interleukin-1 receptor-associated kinase 1
IRF9	-1.35	0.0000	interferon regulatory factor 9
IRS1	2.66	0.0000	insulin receptor substrate 1
IRS2	-1.73	0.0000	insulin receptor substrate 2
IRX3	4.04	0.0000	iroquois homeobox 3
IRX4	3.66	0.0000	iroquois homeobox 4
IRX5	3.39	0.0000	iroquois homeobox 5
ISG20	-2.09	0.0000	interferon stimulated exonuclease gene 20kDa
ISOC1	1.46	0.0000	isochorismatase domain containing 1
ITFG1	-1.62	0.0000	integrin alpha FG-GAP repeat containing 1
ITGB1	-1.65	0.0000	integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
ITGB2	1.91	0.0000	integrin, beta 2 (complement component 3 receptor 3 and 4 subunit)
ITGB3	-3.39	0.0000	integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61)
ITGB3BP	1.32	0.0000	integrin beta 3 binding protein (beta3-endonexin)
ITGB8	-5.83	0.0000	integrin, beta 8
ITIH5	-4.30	0.0000	inter-alpha (globulin) inhibitor H5
ITPK1	-3.05	0.0000	inositol 1,3,4-triphosphate 5/6 kinase
ІТРКВ	-1.91	0.0000	inositol 1,4,5-trisphosphate 3-kinase B
ITPR1	-2.01	0.0000	inositol 1,4,5-triphosphate receptor, type 1
ITPR3	-3.03	0.0000	inositol 1,4,5-triphosphate receptor, type 3
JAGN1	-0.91	0.0000	jagunal homolog 1 (Drosophila)
JAKMIP2	-1.15	0.0000	Janus kinase and microtubule interacting protein 2
JAM2	3.39	0.0000	junctional adhesion molecule 2
JARID2	-2.12	0.0000	jumonji, AT rich interactive domain 2
JMJD7	-1.02	0.0000	JMJD7-PLA2G4B readthrough transcript; phospholipase A2, group IVB
			(cytosolic); jumonji domain containing 7
JMJD8	-1.62	0.0000	jumonji domain containing 8
JUN	-1.66	0.0000	jun oncogene
JUNB	-1.93	0.0000	jun B proto-oncogene
KALRN	2.73	0.0000	kalirin, RhoGEF kinase
KAT2A	1.78	0.0000	K(lysine) acetyltransferase 2A
KAT2B	-4.03	0.0000	K(lysine) acetyltransferase 2B
KATNAL1	-1.55	0.0000	katanin p60 subunit A-like 1
KBTBD10	-1.63	0.0000	kelch repeat and BTB (POZ) domain containing 10

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
KBTBD11	3.09	0.0000	kelch repeat and BTB (POZ) domain containing 11
KCNAB1	-2.99	0.0000	potassium voltage-gated channel, shaker-related subfamily, beta member 1
KCNG1	2.14	0.0000	potassium voltage-gated channel, subfamily G, member 1
KCNG3	2.42	0.0000	potassium voltage-gated channel, subfamily G, member 3
KCNIP3	3.25	0.0000	Kv channel interacting protein 3, calsenilin
KCNK1	4.40	0.0000	potassium channel, subfamily K, member 1
KCNMA1	3.05	0.0000	potassium large conductance calcium-activated channel, subfamily M, alpha
KCNN2	3.08	0.0000	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2
KCNN4	-3.91	0.0000	potassium intermediate/small conductance calcium-activated channel,
			subfamily N, member 4
KCNQ2	5.20	0.0000	potassium voltage-gated channel, KQT-like subfamily, member 2
KCNS3	-3.37	0.0000	potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3
KCTD11	-0.69	0.0000	potassium channel tetramerisation domain containing 11
KCTD12	-3.15	0.0000	potassium channel tetramerisation domain containing 12
KCTD20	-2.30	0.0000	potassium channel tetramerisation domain containing 20
KCTD3	-1.20	0.0000	potassium channel tetramerisation domain containing 3
KDELR3	-1.36	0.0000	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 3
KDM4D	2.01	0.0000	lysine (K)-specific demethylase 4D
KDSR	-1.62	0.0000	3-ketodihydrosphingosine reductase
KHDRBS1	0.79	0.0000	KH domain containing, RNA binding, signal transduction associated 1
KIAA0101	1.98	0.0000	KIAA0101
KIAA0174	-0.78	0.0000	similar to CG10103; KIAA0174
KIAA0232	-1.02	0.0000	KIAA0232
KIAA0247	-1.11	0.0000	KIAA0247
KIAA0391	-1.10	0.0000	KIAA0391
KIAA0494	-1.21	0.0000	KIAA0494
KIAA0513	-2.16	0.0000	KIAA0513
KIAA0802	1.87	0.0000	KIAA0802
KIAA1012	-1.29	0.0000	KIAA1012
KIAA1033	-2.01	0.0000	KIAA1033
KIAA1147	1.36	0.0000	KIAA1147
KIAA1199	3.09	0.0000	KIAA1199
KIAA1244	-1.15	0.0000	KIAA1244
KIAA1274	3.02	0.0000	KIAA1274
KIAA1279	-1.12	0.0000	KIAA1279

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
KIAA1430	-0.93	0.0000	KIAA1430
KIAA1468	-0.97	0.0000	KIAA1468
KIAA1539	-0.95	0.0000	KIAA1539
KIAA1549	2.08	0.0000	KIAA1549
KIAA1598	-3.53	0.0000	KIAA1598
KIAA1731	1.07	0.0000	KIAA1731
KIAA1804	2.76	0.0000	mixed lineage kinase 4
KIAA1826	1.06	0.0000	KIAA1826
KIAA1841	-1.22	0.0000	KIAA1841
KIAA1919	-1.05	0.0000	KIAA1919
KIF13A	-2.11	0.0000	kinesin family member 13A
KIF13B	-4.42	0.0000	kinesin family member 13B
KIF16B	-1.76	0.0000	kinesin family member 16B
KIF1B	-1.05	0.0000	kinesin family member 1B
KIF26A	2.84	0.0000	kinesin family member 26A
KIF2A	1.18	0.0000	kinesin heavy chain member 2A
KIF5B	-1.47	0.0000	kinesin family member 5B
KIF5C	4.32	0.0000	kinesin family member 5C
KIFAP3	-1.59	0.0000	kinesin-associated protein 3
КІТ	4.20	0.0000	similar to Mast/stem cell growth factor receptor precursor (SCFR)
			(Proto-oncogene tyrosine-protein kinase Kit) (c-kit) (CD117 antigen); v-kit
			Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
KITLG	2.03	0.0000	KIT ligand
KLC1	1.51	0.0000	kinesin light chain 1
KLF13	-1.22	0.0000	Kruppel-like factor 13
KLF5	1.77	0.0000	Kruppel-like factor 5 (intestinal)
KLF6	-1.74	0.0000	Kruppel-like factor 6
KLF9	-3.42	0.0000	Kruppel-like factor 9
KLHL12	0.70	0.0000	kelch-like 12 (Drosophila)
KLHL22	-0.90	0.0000	kelch-like 22 (Drosophila)
KLHL23	4.04	0.0000	kelch-like 23 (Drosophila)
KLHL35	2.12	0.0000	kelch-like 35 (Drosophila)
KLHL5	1.77	0.0000	kelch-like 5 (Drosophila)
KNTC1	1.38	0.0000	kinetochore associated 1
KPNA5	-1.26	0.0000	karyopherin alpha 5 (importin alpha 6)
KRAS	-1.07	0.0000	v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
KRCC1	-1.22	0.0000	lysine-rich coiled-coil 1

Gene	ST88 vs HSC	a di Di Val	Description
In DS-9	.logFC	adjeval	Description
KRT10	-1.04	0.0000	keratin 10
KRT18	5.60	0.0000	keratin 18; keratin 18 pseudogene 26; keratin 18 pseudogene 19
KRT8	2.29	0.0000	keratin 8 pseudogene 9; similar to keratin 8; keratin 8
KRT80	1.53	0.0000	keratin 80
KRTAP6-3	-3.03	0.0000	keratin associated protein 6-3
KYNU	-1.85	0.0000	kynureninase (L-kynurenine hydrolase)
LAGE3	1.13	0.0000	L antigen family, member 3
LAMA1	4.20	0.0000	laminin, alpha 1
LAMA2	-2.22	0.0000	laminin, alpha 2
LAMA4	-2.55	0.0000	laminin, alpha 4
LAMB2	-2.20	0.0000	laminin, beta 2 (laminin S)
LAMC1	-2.20	0.0000	laminin, gamma 1 (formerly LAMB2)
LAMC3	2.01	0.0000	laminin, gamma 3
LAMP1	-2.00	0.0000	lysosomal-associated membrane protein 1
LAMP2	-4.26	0.0000	lysosomal-associated membrane protein 2
LAMP3	2.31	0.0000	lysosomal-associated membrane protein 3
LANCL3	1.28	0.0000	LanC lantibiotic synthetase component C-like 3 (bacterial)
LAPTM4B	1.05	0.0000	lysosomal protein transmembrane 4 beta
LARGE	-3.08	0.0000	like-glycosyltransferase
LARP7	-1.23	0.0000	La ribonucleoprotein domain family, member 7
LARS	0.87	0.0000	leucyl-tRNA synthetase
LAT	2.47	0.0000	linker for activation of T cells
LATS2	-1.41	0.0000	LATS, large tumor suppressor, homolog 2 (Drosophila)
LCP1	-2.04	0.0000	lymphocyte cytosolic protein 1 (L-plastin)
LDLRAP1	-1.65	0.0000	low density lipoprotein receptor adaptor protein 1
LEF1	-2.50	0.0000	lymphoid enhancer-binding factor 1
LEPREL1	3.95	0.0000	leprecan-like 1
LEPROT	-1.20	0.0000	leptin receptor overlapping transcript
LGALS1	-2.54	0.0000	lectin, galactoside-binding, soluble, 1
LGALS3	-4.61	0.0000	lectin, galactoside-binding, soluble, 3
LGALS8	-0.95	0.0000	lectin, galactoside-binding, soluble, 8
LHX2	5.37	0.0000	LIM homeobox 2
LIFR	1.92	0.0000	leukemia inhibitory factor receptor alpha
LIG4	-1.64	0.0000	ligase IV, DNA, ATP-dependent
LIMK2	-1.69	0.0000	LIM domain kinase 2
LIN52	1.25	0.0000	lin-52 homolog (C. elegans)
LIPA	-1.67	0.0000	lipase A, lysosomal acid, cholesterol esterase

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
LIPG	2.99	0.0000	lipase, endothelial
LMAN1	-1.27	0.0000	lectin, mannose-binding, 1
LMBRD1	-3.30	0.0000	LMBR1 domain containing 1
LMO2	2.63	0.0000	LIM domain only 2 (rhombotin-like 1)
LNX1	1.98	0.0000	ligand of numb-protein X 1
LOC100126784	-2.40	0.0000	hypothetical LOC100126784
LOC100127980	1.69	0.0000	hypothetical protein LOC100127980
LOC100128164	2.83	0.0000	four and a half LIM domains 1 pseudogene
LOC100129113	-1.56	0.0000	hypothetical protein LOC100129113
LOC100130175	-1.00	0.0000	hypothetical protein LOC100130175
LOC100130890	-1.23	0.0000	similar to hCG2030844
LOC100132244	-2.19	0.0000	hypothetical protein LOC100132244
LOC100190939	-1.41	0.0000	hypothetical LOC100190939
LOC100271840	4.22	0.0000	hypothetical LOC100271840
LOC100288144	2.08	0.0000	hypothetical protein LOC100288144
LOC145783	-0.85	0.0000	hypothetical LOC145783
LOC149501	2.22	0.0000	keratin 8 pseudogene 9; similar to keratin 8; keratin 8
LOC151009	1.63	0.0000	hypothetical LOC151009
LOC254057	2.14	0.0000	hypothetical protein LOC254057
LOC257396	2.00	0.0000	hypothetical protein LOC257396
LOC283658	2.32	0.0000	hypothetical protein LOC283658
LOC284542	-2.10	0.0000	hypothetical protein LOC284542
LOC375010	2.61	0.0000	ankyrin repeat domain 20 family, member A pseudogene
LOC388152	0.81	0.0000	hypothetical LOC388152
LOC388796	1.43	0.0000	hypothetical LOC388796
LOC389634	-1.36	0.0000	hypothetical LOC389634
LOC389641	0.89	0.0000	hypothetical gene supported by AK124295
LOC390414	0.92	0.0000	hypothetical LOC390414
LOC392288	-1.96	0.0000	similar to microtubule-associated proteins 1A/1B light chain 3
LOC399959	2.96	0.0000	hypothetical LOC399959
LOC400236	1.50	0.0000	hypothetical LOC400236
LOC401022	2.24	0.0000	hypothetical LOC401022
LOC407835	-1.24	0.0000	mitogen-activated protein kinase kinase 2 pseudogene; mitogen-activated
			protein kinase kinase 2
LOC439949	3.31	0.0000	hypothetical protein LOC439949
LOC440104	-1.51	0.0000	hypothetical LOC440104
LOC442249	6.06	0.0000	similar to keratin 18

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
LOC442421	-0.91	0.0000	hypothetical LOC442421
LOC550643	-1.01	0.0000	hypothetical LOC550643
LOC554202	1.58	0.0000	hypothetical LOC554202
LOC572558	2.60	0.0000	hypothetical locus LOC572558
LOC644563	-0.86	0.0000	similar to general transcription factor IIIC, polypeptide 6, alpha 35kDa
LOC645249	3.32	0.0000	hypothetical protein LOC645249
LOC653071	-1.59	0.0000	similar to CG32820-PA, isoform A
LOC654433	-3.32	0.0000	hypothetical LOC654433
LOC728142	-1.81	0.0000	hypothetical LOC728142
LOC728705	1.19	0.0000	hypothetical protein LOC728705
LOC729082	-1.66	0.0000	hypothetical protein LOC729082
LOC729683	2.19	0.0000	hypothetical protein LOC729683
LOC730091	1.80	0.0000	hypothetical protein LOC730091
LOC730144	-1.01	0.0000	similar to eukaryotic translation initiation factor 1; eukaryotic translation
			initiation factor 1
LOC80154	2.26	0.0000	hypothetical LOC80154
LOH12CR1	-2.05	0.0000	loss of heterozygosity, 12, chromosomal region 1
LONRF2	3.63	0.0000	LON peptidase N-terminal domain and ring finger 2
LOXL3	-3.39	0.0000	lysyl oxidase-like 3
LPCAT4	1.12	0.0000	lysophosphatidylcholine acyltransferase 4
LPGAT1	-1.72	0.0000	lysophosphatidylglycerol acyltransferase 1
LPHN3	1.61	0.0000	latrophilin 3
LPIN1	-1.43	0.0000	lipin 1
LPL	3.31	0.0000	lipoprotein lipase
LPP	-1.87	0.0000	LIM domain containing preferred translocation partner in lipoma
LRAT	-4.14	0.0000	lecithin retinol acyltransferase (phosphatidylcholineretinol
			O-acyltransferase)
LRIG1	-1.83	0.0000	leucine-rich repeats and immunoglobulin-like domains 1
LRP1	-1.16	0.0000	low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)
LRP10	-2.49	0.0000	low density lipoprotein receptor-related protein 10
LRP4	3.33	0.0000	low density lipoprotein receptor-related protein 4
LRP5	2.08	0.0000	low density lipoprotein receptor-related protein 5
LRP6	-1.06	0.0000	low density lipoprotein receptor-related protein 6
LRP8	-1.38	0.0000	low density lipoprotein receptor-related protein 8, apolipoprotein e receptor
LRPPRC	1.06	0.0000	leucine-rich PPR-motif containing
LRRC1	1.93	0.0000	leucine rich repeat containing 1
LRRC15	-4.36	0.0000	leucine rich repeat containing 15

Gene	ST88 vs HSC	adjPVal	Description
In DS-9	.logFC	Ē	
LRRC17	4.59	0.0000	leucine rich repeat containing 17
LRRC4	-1.71	0.0000	leucine rich repeat containing 4
LRRC42	0.93	0.0000	leucine rich repeat containing 42
LRRC47	1.21	0.0000	leucine rich repeat containing 47
LRRC8D	-0.75	0.0000	leucine rich repeat containing 8 family, member D
LRRFIP1	2.78	0.0000	leucine rich repeat (in FLII) interacting protein 1
LRRK1	-2.25	0.0000	leucine-rich repeat kinase 1
LRRN3	2.90	0.0000	leucine rich repeat neuronal 3
LSM14A	1.27	0.0000	LSM14A, SCD6 homolog A (S. cerevisiae)
LSM14B	0.96	0.0000	LSM14B, SCD6 homolog B (S. cerevisiae)
LSM5	0.91	0.0000	LSM5 homolog, U6 small nuclear RNA associated (S. cerevisiae)
LTBR	-1.66	0.0000	lymphotoxin beta receptor (TNFR superfamily, member 3)
LUC7L	0.96	0.0000	LUC7-like (S. cerevisiae)
LUC7L3	1.91	0.0000	cisplatin resistance-associated overexpressed protein
LY6K	6.39	0.0000	lymphocyte antigen 6 complex, locus K
LYN	1.34	0.0000	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
LYPD6	2.03	0.0000	LY6/PLAUR domain containing 6
LYPD6B	3.50	0.0000	LY6/PLAUR domain containing 6B
LYRM2	-1.56	0.0000	LYR motif containing 2
LYRM5	-2.03	0.0000	LYR motif containing 5
LYZ	-2.85	0.0000	lysozyme (renal amyloidosis)
LZTFL1	-1.03	0.0000	leucine zipper transcription factor-like 1
MAD2L1BP	-1.06	0.0000	MAD2L1 binding protein
MAF	-5.89	0.0000	v-maf musculoaponeurotic fibrosarcoma oncogene homolog (avian)
MAGEA1	2.09	0.0000	melanoma antigen family A, 1 (directs expression of antigen MZ2-E)
MAGEA6	1.32	0.0000	melanoma antigen family A, 6
MAGOHB	1.08	0.0000	mago-nashi homolog B (Drosophila)
MAGT1	-1.96	0.0000	magnesium transporter 1
MAL	-3.77	0.0000	mal, T-cell differentiation protein
MALT1	1.65	0.0000	mucosa associated lymphoid tissue lymphoma translocation gene 1
MAN1A2	-1.08	0.0000	mannosidase, alpha, class 1A, member 2
MAN2A2	-2.46	0.0000	mannosidase, alpha, class 2A, member 2
MAN2B1	-1.62	0.0000	mannosidase, alpha, class 2B, member 1
MANEA	-2.17	0.0000	mannosidase, endo-alpha
MANEAL	3.43	0.0000	mannosidase, endo-alpha-like
MANF	-1.05	0.0000	mesencephalic astrocyte-derived neurotrophic factor
MAP1LC3B	-2.14	0.0000	microtubule-associated protein 1 light chain 3 beta

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
MAP2K2	-1.06	0.0000	mitogen-activated protein kinase kinase 2 pseudogene; mitogen-activated
			protein kinase kinase 2
MAP3K14	2.23	0.0000	mitogen-activated protein kinase kinase kinase 14
MAP3K6	-1.69	0.0000	mitogen-activated protein kinase kinase kinase 6
MAP3K9	1.74	0.0000	mitogen-activated protein kinase kinase kinase 9
MAP4	-2.44	0.0000	microtubule-associated protein 4
MAPK1	-1.50	0.0000	mitogen-activated protein kinase 1
MAPK14	-1.07	0.0000	mitogen-activated protein kinase 14
MAPKAPK2	-1.04	0.0000	mitogen-activated protein kinase-activated protein kinase 2
MAPKAPK5	0.80	0.0000	mitogen-activated protein kinase-activated protein kinase 5
MAPRE2	-1.82	0.0000	microtubule-associated protein, RP/EB family, member 2
MAPRE3	-0.95	0.0000	microtubule-associated protein, RP/EB family, member 3
MARCH2	-0.94	0.0000	membrane-associated ring finger (C3HC4) 2
MAX	-1.17	0.0000	MYC associated factor X
MBD4	0.85	0.0000	methyl-CpG binding domain protein 4
MBOAT1	-2.17	0.0000	membrane bound O-acyltransferase domain containing 1
MBP	-4.50	0.0000	myelin basic protein
MC1R	-2.89	0.0000	tubulin, beta 3; melanocortin 1 receptor (alpha melanocyte stimulating
			hormone receptor)
MCAM	-2.10	0.0000	melanoma cell adhesion molecule
MCM2	1.03	0.0000	minichromosome maintenance complex component 2
MCM6	1.32	0.0000	minichromosome maintenance complex component 6
MCM9	-1.17	0.0000	minichromosome maintenance complex component 9
MDC1	0.86	0.0000	mediator of DNA-damage checkpoint 1
MDFI	0.93	0.0000	MyoD family inhibitor
MDGA1	-2.26	0.0000	MAM domain containing glycosylphosphatidylinositol anchor 1
MDK	3.33	0.0000	midkine (neurite growth-promoting factor 2)
MDM4	-1.42	0.0000	Mdm4 p53 binding protein homolog (mouse)
ME2	-3.21	0.0000	malic enzyme 2, NAD(+)-dependent, mitochondrial
MED1	-0.65	0.0000	mediator complex subunit 1
MED10	0.70	0.0000	mediator complex subunit 10
MED11	-1.14	0.0000	mediator complex subunit 11
MED14	-1.01	0.0000	mediator complex subunit 14
MED28	1.16	0.0000	mediator complex subunit 28
MEF2C	-3.56	0.0000	myocyte enhancer factor 2C
MEG3	-1.03	0.0000	maternally expressed 3 (non-protein coding)
MEGF10	3.80	0.0000	multiple EGF-like-domains 10

Gene	ST88 vs HSC	a di Di (a l	Description
In DS-9	.logFC	adjeval	Description
MEGF6	2.20	0.0000	multiple EGF-like-domains 6
MEIS2	4.49	0.0000	Meis homeobox 2
MEST	6.80	0.0000	mesoderm specific transcript homolog (mouse)
METTL2B	0.82	0.0000	methyltransferase like 2B
МЕХЗА	2.83	0.0000	mex-3 homolog A (C. elegans)
MFI2	-0.93	0.0000	antigen p97 (melanoma associated) identified by monoclonal antibodies
			133.2 and 96.5
MFSD1	-1.60	0.0000	major facilitator superfamily domain containing 1
MFSD10	-0.88	0.0000	major facilitator superfamily domain containing 10
MFSD6	-2.45	0.0000	major facilitator superfamily domain containing 6
MFSD8	-1.42	0.0000	major facilitator superfamily domain containing 8
MGAT5B	4.42	0.0000	mannosyl (alpha-1,6-)-glycoprotein
			beta-1,6-N-acetyl-glucosaminyltransferase, isozyme B
MGC16025	-2.05	0.0000	hypothetical LOC85009
MGC16275	-1.08	0.0000	hypothetical protein MGC16275
MGC27345	1.53	0.0000	hypothetical protein MGC27345
MGC42105	-3.86	0.0000	serine/threonine-protein kinase NIM1
MIA	-6.47	0.0000	melanoma inhibitory activity
MICA	-1.16	0.0000	MHC class I polypeptide-related sequence A
MICAL3	-0.84	0.0000	microtubule associated monoxygenase, calponin and LIM domain containing
			3
MICALL2	-1.76	0.0000	MICAL-like 2
MICB	1.53	0.0000	MHC class I polypeptide-related sequence B
MID1IP1	-0.91	0.0000	MID1 interacting protein 1 (gastrulation specific G12 homolog (zebrafish))
MIOS	1.13	0.0000	missing oocyte, meiosis regulator, homolog (Drosophila)
MIR17HG	2.00	0.0000	microRNA host gene 1 (non-protein coding)
MKNK2	-1.53	0.0000	MAP kinase interacting serine/threonine kinase 2
MKRN1	-1.17	0.0000	makorin ring finger protein pseudogene 6; makorin ring finger protein 1
MKS1	1.15	0.0000	Meckel syndrome, type 1
MLF1	1.48	0.0000	myeloid leukemia factor 1
MLL3	-1.14	0.0000	myeloid/lymphoid or mixed-lineage leukemia 3
MLL4	1.46	0.0000	myeloid/lymphoid or mixed-lineage leukemia 4
MLLT10	-1.07	0.0000	myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila);
			translocated to, 10
MLPH	4.41	0.0000	melanophilin
MLXIP	-0.96	0.0000	MLX interacting protein
MLYCD	-1.14	0.0000	malonyl-CoA decarboxylase

Gene	ST88 vs HSC	adjPVal	Description
IN DS-9	logru		
MMAA	-1.40	0.0000	methylmalonic aciduria (cobalamin deficiency) cbIA type
MMGT1	-1.19	0.0000	membrane magnesium transporter 1
MMP1	6.74	0.0000	matrix metallopeptidase 1 (interstitial collagenase)
MMP14	-2.60	0.0000	matrix metallopeptidase 14 (membrane-inserted)
MMP15	-2.85	0.0000	matrix metallopeptidase 15 (membrane-inserted)
MMP17	-2.35	0.0000	matrix metallopeptidase 17 (membrane-inserted)
MMP19	-4.71	0.0000	matrix metallopeptidase 19
MMP28	-1.80	0.0000	matrix metallopeptidase 28
MMS19	-0.62	0.0000	MMS19 nucleotide excision repair homolog (S. cerevisiae)
MNAT1	0.93	0.0000	menage a trois homolog 1, cyclin H assembly factor (Xenopus laevis)
MNX1	3.35	0.0000	motor neuron and pancreas homeobox 1
MON1A	-1.21	0.0000	MON1 homolog A (yeast)
MON1B	-0.98	0.0000	MON1 homolog B (yeast)
MORF4L1	-1.21	0.0000	mortality factor 4; mortality factor 4 like 1
MOSPD2	-1.87	0.0000	motile sperm domain containing 2
MPP3	2.61	0.0000	membrane protein, palmitoylated 3 (MAGUK p55 subfamily member 3)
MPP4	2.85	0.0000	membrane protein, palmitoylated 4 (MAGUK p55 subfamily member 4)
MPP6	1.12	0.0000	membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)
MPZL1	0.99	0.0000	myelin protein zero-like 1
MRAS	-1.78	0.0000	muscle RAS oncogene homolog
MRPL21	1.15	0.0000	mitochondrial ribosomal protein L21
MRPL3	0.97	0.0000	mitochondrial ribosomal protein L3
MRPL32	0.98	0.0000	mitochondrial ribosomal protein L32
MRPL36	0.85	0.0000	mitochondrial ribosomal protein L36
MRPL39	1.11	0.0000	mitochondrial ribosomal protein L39
MRPL42P5	-1.50	0.0000	mitochondrial ribosomal protein L42 pseudogene 5
MRPL43	-0.88	0.0000	mitochondrial ribosomal protein L43
MRPL54	-1.32	0.0000	mitochondrial ribosomal protein L54
MRPS27	0.75	0.0000	mitochondrial ribosomal protein S27
MRRF	0.77	0.0000	mitochondrial ribosome recycling factor
MSH2	1.10	0.0000	mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
MSH3	0.97	0.0000	mutS homolog 3 (E. coli)
MSH6	1.08	0.0000	mutS homolog 6 (E. coli)
MSL1	-0.99	0.0000	male-specific lethal 1 homolog (Drosophila)
MSL3L2	1.48	0.0000	male-specific lethal 3-like 2 (Drosophila)
MSN	-1.22	0.0000	moesin
MSRA	-2.22	0.0000	methionine sulfoxide reductase A

Gene	ST88 vs HSC	adjPVal	Description
MCV2		0.0000	-
MSX2	2.99	0.0000	mish homeobox 2
MISA2P1	1.96	0.0000	msh homeobox 2 pseudogene 1
MTIA	-1.76	0.0000	metallothionein 1A
MITE	-2.40	0.0000	netaliotnionein TE (gene/pseudogene); metaliotnionein TE; metaliotnionein T
MTAE	4.05	0.0000	pseudogene 3, metallotnionein 13 (pseudogene)
MITE	-4.95	0.0000	
MTG	-1.75	0.0000	
MTH	-1.57	0.0000	
MITTL	-1.45	0.0000	metallothionein TE (gene/pseudogene); metallothionein TE; metallothionein T
	4.00	0.0000	pseudogene 3; metallotnionein 1J (pseudogene)
MIIX	-1.80	0.0000	
MIBP	1.55	0.0000	Mam2, transformed 313 cell double minute 2, p53 binding protein (mouse)
MTOUR	4.64	0.0000	binding protein, 104kDa
MTCH2	-1.61	0.0000	mitochondrial carrier nomolog 2 (C. elegans)
MIERFD1	1.30	0.0000	
MIF1	-1.27	0.0000	metal-regulatory transcription factor 1
MIHEDIL	1.40	0.0000	metnylenetetranydrorolate denydrogenase (NADP+ dependent) 1-like
MITE3	-1.40	0.0000	mitochondrial translational initiation factor 3
MIMR1	1.65	0.0000	
MIMR14	-1.28	0.0000	myotubuların related protein 14
MTMR4	1.14	0.0000	
M1551	3.42	0.0000	metastasis suppressor 1
MUM1	1.40	0.0000	melanoma associated antigen (mutated) 1
MUT	-1.55	0.0000	methylmalonyl Coenzyme A mutase
MVP	-1.65	0.0000	major vault protein
MXI1	-1.48	0.0000	MAX Interactor 1
MYB	2.12	0.0000	v-myb myeloblastosis viral oncogene homolog (avian)
MYBBP1A	0.96	0.0000	MYB binding protein (P160) 1a
MYBL2	1.91	0.0000	v-myb myeloblastosis viral oncogene homolog (avian)-like 2
МҮСВР	1.58	0.0000	c-myc binding protein
MYD88	-1.60	0.0000	myeloid differentiation primary response gene (88)
MYL12A	-1.21	0.0000	myosin, light chain 12A, regulatory, non-sarcomeric
MYL12B	-0.86	0.0000	myosin, light chain 12B, regulatory
MYL6	-1.65	0.0000	myosin, light chain 6, alkali, smooth muscle and non-muscle
MYL9	-4.56	0.0000	myosin, light chain 9, regulatory
MYO1B	1.77	0.0000	myosin IB
MYO1E	-2.44	0.0000	myosin IE

Gene	ST88 vs HSC		Providelar.
In DS-9	.logFC	adjPVal	Description
MYO5A	-1.83	0.0000	myosin VA (heavy chain 12, myoxin)
MYO5B	4.07	0.0000	similar to acetyl-Coenzyme A acyltransferase 2 (mitochondrial
			3-oxoacyl-Coenzyme A thiolase); similar to KIAA1119 protein; myosin VB
MYO5C	2.39	0.0000	myosin VC
MYO6	1.48	0.0000	myosin VI
MYO9A	-1.14	0.0000	myosin IXA
MYRIP	2.75	0.0000	myosin VIIA and Rab interacting protein
MYST1	1.45	0.0000	MYST histone acetyltransferase 1
N4BP2L2	-2.21	0.0000	NEDD4 binding protein 2-like 2
NAAA	-1.86	0.0000	N-acylethanolamine acid amidase
NAB1	2.09	0.0000	NGFI-A binding protein 1 (EGR1 binding protein 1)
NACC2	-2.28	0.0000	NACC family member 2, BEN and BTB (POZ) domain containing
NASP	1.41	0.0000	nuclear autoantigenic sperm protein (histone-binding)
NAT8L	2.33	0.0000	N-acetyltransferase 8-like (GCN5-related, putative)
NAT9	1.33	0.0000	N-acetyltransferase 9 (GCN5-related, putative)
NAV1	-1.83	0.0000	neuron navigator 1
NAV3	-3.05	0.0000	neuron navigator 3; similar to neuron navigator 3
NCBP1	0.82	0.0000	nuclear cap binding protein subunit 1, 80kDa
NCL	0.79	0.0000	nucleolin
NCRNA00189	1.81	0.0000	chromosome 21 open reading frame 109
NCSTN	-1.36	0.0000	nicastrin
NDNL2	1.01	0.0000	necdin-like 2
NDP	-2.51	0.0000	Norrie disease (pseudoglioma)
NDUFA1	-1.10	0.0000	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 1, 7.5kDa
NDUFA7	-1.21	0.0000	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 7, 14.5kDa
NDUFAF3	-1.21	0.0000	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 3
NDUFB9	1.12	0.0000	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa
NDUFC1	-0.85	0.0000	NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa
NDUFV2	-0.90	0.0000	NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa
NEFH	5.45	0.0000	neurofilament, heavy polypeptide
NEK1	-2.11	0.0000	NIMA (never in mitosis gene a)-related kinase 1
NEK11	0.67	0.0000	NIMA (never in mitosis gene a)- related kinase 11
NELL2	2.95	0.0000	NEL-like 2 (chicken)
NET1	1.25	0.0000	neuroepithelial cell transforming 1
NEU1	-1.96	0.0000	sialidase 1 (lysosomal sialidase)
NEXN	2.15	0.0000	nexilin (F actin binding protein)
NF1	-2.25	0.0000	neurofibromin 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
NFATC1	3.72	0.0000	nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1
NFE2L2	-1.55	0.0000	nuclear factor (erythroid-derived 2)-like 2
NFIB	3.85	0.0000	nuclear factor I/B
NFIC	-1.84	0.0000	nuclear factor I/C (CCAAT-binding transcription factor)
NFIL3	-2.64	0.0000	nuclear factor, interleukin 3 regulated
NFKBIA	-2.07	0.0000	nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,
			alpha
NFKBIL2	1.16	0.0000	nuclear factor of kappa light polypeptide gene enhancer in B-cells
NFS1	1.57	0.0000	NFS1 nitrogen fixation 1 homolog (S. cerevisiae)
NFYB	1.17	0.0000	nuclear transcription factor Y, beta
NGFR	-3.64	0.0000	nerve growth factor receptor (TNFR superfamily, member 16)
NGFRAP1	-1.79	0.0000	nerve growth factor receptor (TNFRSF16) associated protein 1
NHLRC2	-1.08	0.0000	NHL repeat containing 2
NICN1	-1.76	0.0000	nicolin 1
NIN	1.57	0.0000	ninein (GSK3B interacting protein)
NKAIN1	2.44	0.0000	Na+/K+ transporting ATPase interacting 1
NKD2	2.22	0.0000	naked cuticle homolog 2 (Drosophila)
NKX2-1	1.67	0.0000	NK2 homeobox 1
NKX2-5	2.40	0.0000	NK2 transcription factor related, locus 5 (Drosophila)
NKX3-2	2.04	0.0000	NK3 homeobox 2
NLRP3	1.96	0.0000	NLR family, pyrin domain containing 3
NLRX1	-3.06	0.0000	NLR family member X1
NME1	1.00	0.0000	non-metastatic cells 1, protein (NM23A) expressed in; NME1-NME2
			readthrough transcript; non-metastatic cells 2, protein (NM23B) expressed in
NME2	0.90	0.0000	non-metastatic cells 1, protein (NM23A) expressed in; NME1-NME2
			readthrough transcript; non-metastatic cells 2, protein (NM23B) expressed in
NME2P1	1.14	0.0000	non-metastatic cells 2, protein (NM23B) expressed in, pseudogene 1
NME3	-1.97	0.0000	non-metastatic cells 3, protein expressed in
NMT2	1.65	0.0000	N-myristoyltransferase 2
NMU	2.64	0.0000	neuromedin U
NOC2L	1.30	0.0000	nucleolar complex associated 2 homolog (S. cerevisiae)
NOC3L	0.98	0.0000	nucleolar complex associated 3 homolog (S. cerevisiae)
NOL10	1.02	0.0000	nucleolar protein 10
NOL11	1.50	0.0000	nucleolar protein 11
NOL9	1.50	0.0000	nucleolar protein 9
NOM1	0.96	0.0000	nucleolar protein with MIF4G domain 1

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
NONO	-0.79	0.0000	non-POU domain containing, octamer-binding
NOP2	1.03	0.0000	NOP2 nucleolar protein homolog (yeast)
NOTCH1	-0.96	0.0000	Notch homolog 1, translocation-associated (Drosophila)
NOV	-1.53	0.0000	nephroblastoma overexpressed gene
NPAS3	1.88	0.0000	neuronal PAS domain protein 3
NPC1	-1.28	0.0000	Niemann-Pick disease, type C1
NPC2	-1.44	0.0000	Niemann-Pick disease, type C2
NPL	-3.15	0.0000	N-acetylneuraminate pyruvate lyase (dihydrodipicolinate synthase)
NPM1	1.23	0.0000	nucleophosmin 1 (nucleolar phosphoprotein B23, numatrin) pseudogene 21;
			hypothetical LOC100131044; similar to nucleophosmin 1; nucleophosmin
			(nucleolar phosphoprotein B23, numatrin)
NPPB	4.02	0.0000	natriuretic peptide precursor B
NPR3	1.48	0.0000	natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide
			receptor C)
NPTX1	4.14	0.0000	neuronal pentraxin I
NQO2	-1.31	0.0000	NAD(P)H dehydrogenase, quinone 2
NR0B1	3.23	0.0000	nuclear receptor subfamily 0, group B, member 1
NR4A1	-3.89	0.0000	nuclear receptor subfamily 4, group A, member 1
NR4A2	-2.74	0.0000	nuclear receptor subfamily 4, group A, member 2
NRBF2	-1.36	0.0000	nuclear receptor binding factor 2
NRBP2	-1.24	0.0000	nuclear receptor binding protein 2
NRCAM	-3.02	0.0000	neuronal cell adhesion molecule
NRG1	2.69	0.0000	neuregulin 1
NRN1	-3.44	0.0000	neuritin 1
NRP1	1.71	0.0000	neuropilin 1
NSF	1.46	0.0000	N-ethylmaleimide-sensitive factor
NSUN2	0.97	0.0000	NOL1/NOP2/Sun domain family, member 2
NTN4	3.07	0.0000	netrin 4
NTNG1	-3.38	0.0000	netrin G1
NUAK2	1.93	0.0000	NUAK family, SNF1-like kinase, 2
NUCB2	-2.34	0.0000	nucleobindin 2
NUDT10	2.28	0.0000	nudix (nucleoside diphosphate linked moiety X)-type motif 10
NUDT21	2.14	0.0000	nudix (nucleoside diphosphate linked moiety X)-type motif 21
NUDT3	-1.84	0.0000	nudix (nucleoside diphosphate linked moiety X)-type motif 3
NUDT4	-1.91	0.0000	nudix (nucleoside diphosphate linked moiety X)-type motif 4; nudix
			(nucleoside diphosphate linked moiety X)-type motif 4 pseudogene 1
NUDT9	-1.30	0.0000	nudix (nucleoside diphosphate linked moiety X)-type motif 9

Gene In DS-9	ST88 vs HSC	adjPVal	Description
NUP107	7 1.43	0.0000	nucleoporin 107kDa
NUP15	5 1.28	0.0000	nucleoporin 155kDa
NUP20	5 1.26	0.0000	nucleoporin 205kDa
NUP85	1.22	0.0000	nucleoporin 85kDa
NXT1	1.54	0.0000	NTF2-like export factor 1
OAF	-3.04	0.0000	OAF homolog (Drosophila)
OAT	-2.17	0.0000	ornithine aminotransferase (gyrate atrophy)
OAZ1	-1.74	0.0000	ornithine decarboxylase antizyme 1
OBFC2/	A 1.65	0.0000	oligonucleotide/oligosaccharide-binding fold containing 2A
OCA2	4.12	0.0000	oculocutaneous albinism II
OCIAD	2 -6.62	0.0000	OCIA domain containing 2
ODC1	1.75	0.0000	ornithine decarboxylase 1
ODZ4	2.00	0.0000	odz, odd Oz/ten-m homolog 4 (Drosophila)
OGDHL	2.71	0.0000	oxoglutarate dehydrogenase-like
OGFOD	1 0.83	0.0000	2-oxoglutarate and iron-dependent oxygenase domain containing 1
OLA1	1.79	0.0000	Obg-like ATPase 1
OLFML2	A -3.60	0.0000	olfactomedin-like 2A
OLFML2	B -2.40	0.0000	olfactomedin-like 2B
OLFML	3 -2.58	0.0000	olfactomedin-like 3
OLIG1	3.87	0.0000	oligodendrocyte transcription factor 1
OPA1	0.85	0.0000	optic atrophy 1 (autosomal dominant)
OPHN1	-2.19	0.0000	oligophrenin 1
OPLAH	-2.44	0.0000	5-oxoprolinase (ATP-hydrolysing)
OPN3	-1.85	0.0000	opsin 3
OR7E5	-0.71	0.0000	olfactory receptor, family 7, subfamily E, member 5 pseudogene
ORC5L	. 0.88	0.0000	origin recognition complex, subunit 5-like (yeast)
ORMDL	2 -1.07	0.0000	ORM1-like 2 (S. cerevisiae)
OSBPL	B -2.21	0.0000	oxysterol binding protein-like 8
OSGIN	2 -0.75	0.0000	oxidative stress induced growth inhibitor family member 2
OSR2	2.69	0.0000	odd-skipped related 2 (Drosophila)
OSTF1	-1.31	0.0000	osteoclast stimulating factor 1
OSTM1	-3.31	0.0000	osteopetrosis associated transmembrane protein 1
OTUD1	-1.05	0.0000	OTU domain containing 1
OTUD7	B -1.18	0.0000	OTU domain containing 7B
OVOS2	-5.37	0.0000	ovostatin; ovostatin 2
OXSR1	-1.17	0.0000	oxidative-stress responsive 1
P2RX7	-2.68	0.0000	purinergic receptor P2X, ligand-gated ion channel, 7

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
P4HA2	-2.02	0.0000	prolyl 4-hydroxylase, alpha polypeptide II
PAAF1	1.05	0.0000	proteasomal ATPase-associated factor 1
PABPC1	1.06	0.0000	poly(A) binding protein, cytoplasmic pseudogene 5; poly(A) binding protein,
			cytoplasmic 1
PABPC3	0.96	0.0000	poly(A) binding protein, cytoplasmic 3
PABPC4L	3.37	0.0000	poly(A) binding protein, cytoplasmic 4-like
PAFAH1B3	0.91	0.0000	platelet-activating factor acetylhydrolase, isoform Ib, subunit 3 (29kDa)
PAIP1	4.05	0.0000	poly(A) binding protein interacting protein 1; similar to poly(A) binding protein
			interacting protein 1
PALM	1.57	0.0000	paralemmin
PANK2	0.61	0.0000	pantothenate kinase 2
PAPOLG	1.12	0.0000	poly(A) polymerase gamma
PAQR6	-1.84	0.0000	progestin and adipoQ receptor family member VI
PAQR8	-2.48	0.0000	progestin and adipoQ receptor family member VIII
PAQR9	3.26	0.0000	progestin and adipoQ receptor family member IX
PARD6B	1.35	0.0000	par-6 partitioning defective 6 homolog beta (C. elegans)
PARP2	1.13	0.0000	poly (ADP-ribose) polymerase 2
PARP4	-1.03	0.0000	poly (ADP-ribose) polymerase family, member 4
PARVA	-0.77	0.0000	parvin, alpha
PASK	1.18	0.0000	PAS domain containing serine/threonine kinase
PAX3	-1.32	0.0000	paired box 3
PAX8	-2.03	0.0000	paired box 8
PBRM1	-1.20	0.0000	polybromo 1
PC	-2.05	0.0000	pyruvate carboxylase
PCBD2	0.95	0.0000	pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of
			hepatocyte nuclear factor 1 alpha (TCF1) 2
PCBP1	-0.95	0.0000	poly(rC) binding protein 1
PCBP4	-2.20	0.0000	poly(rC) binding protein 4
PCCA	-0.94	0.0000	propionyl Coenzyme A carboxylase, alpha polypeptide
PCDH9	-2.42	0.0000	protocadherin 9
PCDHB12	2.01	0.0000	protocadherin beta 12
PCDHB5	3.26	0.0000	protocadherin beta 5
PCDHB7	2.65	0.0000	protocadherin beta 7
PCDHB9	2.16	0.0000	protocadherin beta 10; protocadherin beta 9
PCDHGA2	-1.14	0.0000	protocadherin gamma subfamily A, 2
PCMT1	-2.32	0.0000	protein-L-isoaspartate (D-aspartate) O-methyltransferase
PCMTD1	-1.14	0.0000	protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
	-	-	1
PCNA	1.48	0.0000	proliferating cell nuclear antigen
PCOLCE	2.48	0.0000	procollagen C-endopeptidase enhancer
PCOLCE2	2.96	0.0000	procollagen C-endopeptidase enhancer 2
PCSK1	7.06	0.0000	proprotein convertase subtilisin/kexin type 1
PCSK1N	1.20	0.0000	proprotein convertase subtilisin/kexin type 1 inhibitor
PCSK6	1.46	0.0000	proprotein convertase subtilisin/kexin type 6
PCYT1A	-0.89	0.0000	phosphate cytidylyltransferase 1, choline, alpha
PDCD2L	2.33	0.0000	programmed cell death 2-like
PDCD6IP	-1.07	0.0000	programmed cell death 6 interacting protein
PDE4DIP	-1.89	0.0000	hypothetical protein LOC100134230; similar to KIAA0454 protein; similar to
			phosphodiesterase 4D interacting protein isoform 2; phosphodiesterase 4D
			interacting protein
PDE7A	1.57	0.0000	phosphodiesterase 7A
PDE8B	3.08	0.0000	phosphodiesterase 8B
PDE9A	3.35	0.0000	phosphodiesterase 9A
PDGFD	2.69	0.0000	platelet derived growth factor D
PDGFRA	3.55	0.0000	platelet-derived growth factor receptor, alpha polypeptide
PDGFRL	3.07	0.0000	platelet-derived growth factor receptor-like
PDHB	-1.48	0.0000	pyruvate dehydrogenase (lipoamide) beta
PDK3	-0.84	0.0000	pyruvate dehydrogenase kinase, isozyme 3
PDLIM4	-1.51	0.0000	PDZ and LIM domain 4
PDPN	-4.51	0.0000	podoplanin
PDZRN3	-2.03	0.0000	PDZ domain containing ring finger 3
PEA15	-1.18	0.0000	phosphoprotein enriched in astrocytes 15
PEBP1	-2.57	0.0000	phosphatidylethanolamine binding protein 1
PEG10	2.33	0.0000	paternally expressed 10
PEPD	-1.94	0.0000	peptidase D
PER2	2.54	0.0000	period homolog 2 (Drosophila)
PEX13	1.46	0.0000	peroxisomal biogenesis factor 13
PEX14	-1.13	0.0000	peroxisomal biogenesis factor 14
PFDN4	1.24	0.0000	prefoldin subunit 4
PFKFB4	-3.35	0.0000	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4
PGBD1	-1.06	0.0000	piggyBac transposable element derived 1
PGM3	-2.47	0.0000	phosphoglucomutase 3
PGPEP1	-0.84	0.0000	pyroglutamyl-peptidase I
PHB	0.72	0.0000	prohibitin

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
PHF11	-4.82	0.0000	PHD finger protein 11
PHF14	1.01	0.0000	PHD finger protein 14
PHF15	-1.21	0.0000	PHD finger protein 15
PHF16	0.99	0.0000	PHD finger protein 16
PHF17	-1.34	0.0000	PHD finger protein 17
PHF20L1	1.70	0.0000	PHD finger protein 20-like 1
PHF21B	2.07	0.0000	PHD finger protein 21B
PHKA1	1.51	0.0000	phosphorylase kinase, alpha 1 pseudogene 1; phosphorylase kinase, alpha 1 (muscle)
PHTF1	-0.80	0.0000	putative homeodomain transcription factor 1
PHTF2	0.77	0.0000	putative homeodomain transcription factor 2
PHYHIPL	2.11	0.0000	phytanoyl-CoA 2-hydroxylase interacting protein-like
PI4K2A	-0.89	0.0000	phosphatidylinositol 4-kinase type 2 alpha
PID1	3.38	0.0000	phosphotyrosine interaction domain containing 1
PIGB	-1.46	0.0000	phosphatidylinositol glycan anchor biosynthesis, class B
PIGK	-1.12	0.0000	phosphatidylinositol glycan anchor biosynthesis, class K
PIGN	-1.32	0.0000	phosphatidylinositol glycan anchor biosynthesis, class N
PIK3C3	-1.09	0.0000	phosphoinositide-3-kinase, class 3
PIK3R1	-2.12	0.0000	phosphoinositide-3-kinase, regulatory subunit 1 (alpha)
PIM1	2.57	0.0000	pim-1 oncogene
PIP4K2A	-0.71	0.0000	phosphatidylinositol-5-phosphate 4-kinase, type II, alpha
PITPNA	-1.93	0.0000	phosphatidylinositol transfer protein, alpha
PITPNC1	-2.00	0.0000	phosphatidylinositol transfer protein, cytoplasmic 1
PITX2	4.75	0.0000	paired-like homeodomain 2
PJA1	-1.25	0.0000	praja ring finger 1
PKIG	1.00	0.0000	protein kinase (cAMP-dependent, catalytic) inhibitor gamma
PKNOX2	-4.62	0.0000	PBX/knotted 1 homeobox 2
PLA2G16	-2.92	0.0000	phospholipase A2, group XVI
PLA2G4C	-2.10	0.0000	phospholipase A2, group IVC (cytosolic, calcium-independent)
PLA2G7	3.00	0.0000	phospholipase A2, group VII (platelet-activating factor acetylhydrolase,
			plasma)
PLAGL1	-2.59	0.0000	pleiomorphic adenoma gene-like 1
PLAGL2	2.10	0.0000	pleiomorphic adenoma gene-like 2; similar to pleiomorphic adenoma
		_	gene-like 2
PLAU	4.02	0.0000	plasminogen activator, urokinase
PLBD2	-1.37	0.0000	phospholipase B domain containing 2
PLCB4	3.32	0.0000	phospholipase C, beta 4

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
PLCE1	-1.52	0.0000	phospholipase C, epsilon 1
PLCG1	1.75	0.0000	phospholipase C, gamma 1
PLCH2	1.61	0.0000	phospholipase C, eta 2
PLCL2	1.29	0.0000	phospholipase C-like 2
PLD6	1.85	0.0000	phospholipase D family, member 6
PLEK2	-2.44	0.0000	pleckstrin 2
PLEKHA1	-2.05	0.0000	pleckstrin homology domain containing, family A (phosphoinositide binding
			specific) member 1
PLEKHA4	-4.16	0.0000	pleckstrin homology domain containing, family A (phosphoinositide binding
			specific) member 4
PLEKHA5	-1.27	0.0000	pleckstrin homology domain containing, family A member 5
PLEKHB2	-1.72	0.0000	pleckstrin homology domain containing, family B (evectins) member 2
PLEKHF1	-1.60	0.0000	pleckstrin homology domain containing, family F (with FYVE domain) member 1
PLEKHG3	1.25	0.0000	pleckstrin homology domain containing, family G (with RhoGef domain)
			member 3
PLEKHH2	3.51	0.0000	pleckstrin homology domain containing, family H (with MyTH4 domain) member 2
PLEKHM1	-1.13	0.0000	pleckstrin homology domain containing, family M (with RUN domain) member
			1
PLEKHM3	-1.13	0.0000	pleckstrin homology domain containing, family M, member 3
PLEKHO1	-1.46	0.0000	pleckstrin homology domain containing, family O member 1
PLIN3	-1.23	0.0000	mannose-6-phosphate receptor binding protein 1
PLOD1	-1.82	0.0000	procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1
PLOD3	-1.63	0.0000	procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3
PLP1	-6.68	0.0000	proteolipid protein 1
PLP2	-2.02	0.0000	proteolipid protein 2 (colonic epithelium-enriched)
PLSCR3	-1.26	0.0000	phospholipid scramblase 3
PLXNA2	2.29	0.0000	plexin A2
PLXNA4	-1.42	0.0000	plexin A4
PLXNB3	-2.08	0.0000	plexin B3
PLXND1	-2.22	0.0000	plexin D1
PM20D2	2.18	0.0000	peptidase M20 domain containing 2
PMAIP1	4.29	0.0000	phorbol-12-myristate-13-acetate-induced protein 1
PMEPA1	-2.20	0.0000	prostate transmembrane protein, androgen induced 1
PMP22	-5.20	0.0000	peripheral myelin protein 22
PMS2L2	1.22	0.0000	postmeiotic segregation increased 2-like 5; postmeiotic segregation

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description
			increased 2-like 5-like: similar to postmeiotic segregation increased 2-like 2:
			postmeiotic segregation increased 2-like 2 pseudogene
PMS2L3	1.03	0.0000	postmeiotic segregation increased 2-like 3; zinc finger protein 12
PMS2L5	0.91	0.0000	postmeiotic segregation increased 2-like 5; postmeiotic segregation
			increased 2-like 5-like; similar to postmeiotic segregation increased 2-like 2;
			postmeiotic segregation increased 2-like 2 pseudogene
PNMA1	-1.01	0.0000	paraneoplastic antigen MA1
PNMA2	4.01	0.0000	paraneoplastic antigen MA2
PNMA3	2.35	0.0000	paraneoplastic antigen MA3
PNMA5	1.62	0.0000	paraneoplastic antigen like 5
PNPLA3	-2.25	0.0000	patatin-like phospholipase domain containing 3
PNPLA4	-2.19	0.0000	patatin-like phospholipase domain containing 4
PNPLA6	-1.94	0.0000	patatin-like phospholipase domain containing 6
PNPO	1.13	0.0000	pyridoxamine 5'-phosphate oxidase
PNPT1	1.01	0.0000	polyribonucleotide nucleotidyltransferase 1
PODXL	1.92	0.0000	podocalyxin-like
POLD3	1.05	0.0000	polymerase (DNA-directed), delta 3, accessory subunit
POLD4	-1.36	0.0000	polymerase (DNA-directed), delta 4
POLG2	1.67	0.0000	polymerase (DNA directed), gamma 2, accessory subunit
POLK	-1.77	0.0000	polymerase (DNA directed) kappa
POLR2C	0.91	0.0000	polymerase (RNA) II (DNA directed) polypeptide C, 33kDa
POLR2I	1.38	0.0000	polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa
POMZP3	-0.77	0.0000	POM (POM121 homolog, rat) and ZP3 fusion
PON2	-1.54	0.0000	paraoxonase 2
PON3	-2.09	0.0000	paraoxonase 3
POPDC3	-2.40	0.0000	popeye domain containing 3
POU4F1	4.62	0.0000	POU class 4 homeobox 1
PPAPDC3	-2.59	0.0000	phosphatidic acid phosphatase type 2 domain containing 3
PPARA	-2.62	0.0000	peroxisome proliferator-activated receptor alpha
PPARG	3.18	0.0000	peroxisome proliferator-activated receptor gamma
PPARGC1A	2.96	0.0000	peroxisome proliferator-activated receptor gamma, coactivator 1 alpha
PPFIA1	-1.25	0.0000	protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF),
			interacting protein (liprin), alpha 1
PPIB	-2.42	0.0000	peptidylprolyl isomerase B (cyclophilin B)
PPIL1	1.00	0.0000	peptidylprolyl isomerase (cyclophilin)-like 1
PPM1E	3.18	0.0000	protein phosphatase 1E (PP2C domain containing)
PPP1R12A	-1.70	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 12A

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
PPP1R12B	-1.53	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 12B
PPP1R13B	2.12	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 13B
PPP1R14C	1.78	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 14C
PPP1R1C	-2.17	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 1C
PPP1R3D	-1.06	0.0000	protein phosphatase 1, regulatory (inhibitor) subunit 3D
PPP2CB	-1.49	0.0000	protein phosphatase 2 (formerly 2A), catalytic subunit, beta isoform
PPP2R2A	-1.29	0.0000	protein phosphatase 2 (formerly 2A), regulatory subunit B, alpha isoform
PPP2R2D	-0.95	0.0000	protein phosphatase 2, regulatory subunit B, delta isoform
PPP2R3A	-1.77	0.0000	protein phosphatase 2 (formerly 2A), regulatory subunit B", alpha
PPP2R5A	-1.51	0.0000	protein phosphatase 2, regulatory subunit B', alpha isoform
PPP3CB	-1.71	0.0000	protein phosphatase 3 (formerly 2B), catalytic subunit, beta isoform
PPP4R2	-1.31	0.0000	protein phosphatase 4, regulatory subunit 2
PPRC1	0.93	0.0000	peroxisome proliferator-activated receptor gamma, coactivator-related 1
PPT2	-2.88	0.0000	palmitoyl-protein thioesterase 2
PRAME	3.29	0.0000	preferentially expressed antigen in melanoma
PRDM11	1.52	0.0000	PR domain containing 11
PRDX2	-1.87	0.0000	peroxiredoxin 2
PREP	-1.77	0.0000	prolyl endopeptidase
PRIM1	2.07	0.0000	primase, DNA, polypeptide 1 (49kDa)
PRIM2	0.83	0.0000	primase, DNA, polypeptide 2 (58kDa)
PRKCD	-1.49	0.0000	protein kinase C, delta
PRKCDBP	-3.28	0.0000	protein kinase C, delta binding protein
PRKCH	3.85	0.0000	protein kinase C, eta
PRKCZ	1.62	0.0000	protein kinase C, zeta
PRKRA	-1.19	0.0000	protein kinase, interferon-inducible double stranded RNA dependent activator
PRKRIP1	0.90	0.0000	PRKR interacting protein 1 (IL11 inducible)
PRMT2	-1.37	0.0000	protein arginine methyltransferase 2
PRMT5	1.02	0.0000	protein arginine methyltransferase 5
PRMT6	-1.24	0.0000	protein arginine methyltransferase 6
PROCR	1.94	0.0000	protein C receptor, endothelial (ERT-PCR)
PROS1	-3.58	0.0000	protein S (alpha)
PRPF3	0.92	0.0000	PRP3 pre-mRNA processing factor 3 homolog (S. cerevisiae)
PRR3	1.35	0.0000	proline rich 3
PRR5	1.37	0.0000	Rho GTPase activating protein 8; proline rich 5 (renal); PRR5-ARHGAP8
			fusion
PRR5L	2.15	0.0000	proline rich 5 like
PRR7	-1.01	0.0000	proline rich 7 (synaptic)

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
PRRG4	-1.67	0.0000	proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
PRRT1	-1.61	0.0000	proline-rich transmembrane protein 1
PRRX1	1.79	0.0000	paired related homeobox 1
PRRX2	4.07	0.0000	paired related homeobox 2
PRSS12	-2.39	0.0000	protease, serine, 12 (neurotrypsin, motopsin)
PRUNE2	-3.93	0.0000	prune homolog 2 (Drosophila)
PSAP	-2.22	0.0000	prosaposin
PSCA	1.54	0.0000	prostate stem cell antigen
PSD3	-2.85	0.0000	pleckstrin and Sec7 domain containing 3
PSIP1	1.74	0.0000	PC4 and SFRS1 interacting protein 1
PSMD12	0.88	0.0000	proteasome (prosome, macropain) 26S subunit, non-ATPase, 12
PSMD9	-0.80	0.0000	proteasome (prosome, macropain) 26S subunit, non-ATPase, 9
PSME1	-0.98	0.0000	proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)
PSME3	1.04	0.0000	proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki)
PSMF1	1.19	0.0000	proteasome (prosome, macropain) inhibitor subunit 1 (PI31)
PSMG2	-0.99	0.0000	proteasome (prosome, macropain) assembly chaperone 2
PSTPIP2	1.93	0.0000	proline-serine-threonine phosphatase interacting protein 2
PTCD1	1.11	0.0000	pentatricopeptide repeat domain 1
PTEN	-2.15	0.0000	phosphatase and tensin homolog; phosphatase and tensin homolog
			pseudogene 1
PTGR1	-1.60	0.0000	prostaglandin reductase 1
PTGS2	3.24	0.0000	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and
			cyclooxygenase)
PTK2	1.34	0.0000	PTK2 protein tyrosine kinase 2
PTP4A1	-0.92	0.0000	protein tyrosine phosphatase type IVA, member 1
PTP4A3	1.37	0.0000	protein tyrosine phosphatase type IVA, member 3
PTPLB	-2.75	0.0000	protein tyrosine phosphatase-like (proline instead of catalytic arginine),
			member b
PTPMT1	-1.08	0.0000	protein tyrosine phosphatase, mitochondrial 1
PTPRE	-4.25	0.0000	protein tyrosine phosphatase, receptor type, E
PTPRG	1.62	0.0000	protein tyrosine phosphatase, receptor type, G
PTPRS	-1.79	0.0000	protein tyrosine phosphatase, receptor type, S
PURB	-0.97	0.0000	purine-rich element binding protein B
PUS1	0.98	0.0000	pseudouridylate synthase 1
PUS7	1.34	0.0000	pseudouridylate synthase 7 homolog (S. cerevisiae)
PXMP2	2.14	0.0000	hypothetical LOC100129532; peroxisomal membrane protein 2, 22kDa
PYCR1	2.26	0.0000	pyrroline-5-carboxylate reductase 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
PYCRL	1.66	0.0000	pyrroline-5-carboxylate reductase-like
PYGL	-1.11	0.0000	phosphorylase, glycogen, liver
PYROXD1	-1.66	0.0000	pyridine nucleotide-disulphide oxidoreductase domain 1
PZP	-3.05	0.0000	pregnancy-zone protein
QDPR	-1.41	0.0000	quinoid dihydropteridine reductase
QPCT	-2.91	0.0000	glutaminyl-peptide cyclotransferase
QRSL1	-1.53	0.0000	glutaminyl-tRNA synthase (glutamine-hydrolyzing)-like 1
QSER1	-0.79	0.0000	glutamine and serine rich 1
RAB11FIP4	2.54	0.0000	RAB11 family interacting protein 4 (class II)
RAB14	-1.05	0.0000	RAB14, member RAS oncogene family
RAB18	-1.67	0.0000	RAB18, member RAS oncogene family
RAB2A	-1.29	0.0000	RAB2A, member RAS oncogene family
RAB31	-2.37	0.0000	RAB31, member RAS oncogene family
RAB33A	-3.44	0.0000	RAB33A, member RAS oncogene family
RAB36	-1.45	0.0000	RAB36, member RAS oncogene family
RAB39B	2.56	0.0000	RAB39B, member RAS oncogene family
RAB3D	2.14	0.0000	RAB3D, member RAS oncogene family
RAB5A	-2.49	0.0000	RAB5A, member RAS oncogene family
RAB6A	-1.21	0.0000	RAB6C, member RAS oncogene family; RAB6A, member RAS oncogene
			family; hypothetical LOC100130819; RAB6C-like
RAB6B	1.93	0.0000	RAB6B, member RAS oncogene family
RAB6C	-1.27	0.0000	RAB6C, member RAS oncogene family; RAB6A, member RAS oncogene
			family; hypothetical LOC100130819; RAB6C-like
RAB7B	-4.02	0.0000	RAB7B, member RAS oncogene family
RAB9A	-2.35	0.0000	RAB9A, member RAS oncogene family
RAB9B	-1.07	0.0000	RAB9B, member RAS oncogene family
RAB9P1	-2.30	0.0000	RAB9, member RAS oncogene family, pseudogene 1
RABEP1	-1.93	0.0000	rabaptin, RAB GTPase binding effector protein 1
RABEPK	0.87	0.0000	Rab9 effector protein with kelch motifs
RAD50	1.17	0.0000	RAD50 homolog (S. cerevisiae)
RAD51C	1.68	0.0000	RAD51 homolog C (S. cerevisiae)
RAD51L3	-0.88	0.0000	RAD51-like 3 (S. cerevisiae)
RAE1	1.44	0.0000	RAE1 RNA export 1 homolog (S. pombe)
RAI14	1.80	0.0000	retinoic acid induced 14
RANBP1	0.77	0.0000	similar to RAN binding protein 1; RAN binding protein 1
RANBP17	2.11	0.0000	RAN binding protein 17
RANBP9	-1.34	0.0000	RAN binding protein 9

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
RAP1A	-2.32	0.0000	RAP1A, member of RAS oncogene family
RAP1GDS1	-2.33	0.0000	RAP1, GTP-GDP dissociation stimulator 1
RAPH1	-1.34	0.0000	Ras association (RalGDS/AF-6) and pleckstrin homology domains 1
RASA4	1.85	0.0000	RAS p21 protein activator 4; RAS p21 protein activator 4 pseudogene
RASD1	-3.53	0.0000	RAS, dexamethasone-induced 1
RASD2	-1.03	0.0000	RASD family, member 2
RASL10A	2.48	0.0000	RAS-like, family 10, member A
RASL10B	1.37	0.0000	RAS-like, family 10, member B
RASSF2	3.78	0.0000	Ras association (RalGDS/AF-6) domain family member 2
RASSF4	-2.92	0.0000	Ras association (RalGDS/AF-6) domain family member 4
RASSF5	2.34	0.0000	Ras association (RalGDS/AF-6) domain family member 5
RAVER2	1.71	0.0000	ribonucleoprotein, PTB-binding 2
RB1	-1.73	0.0000	retinoblastoma 1
RBBP7	-1.04	0.0000	retinoblastoma binding protein 7
RBBP9	1.09	0.0000	retinoblastoma binding protein 9
RBM12	1.46	0.0000	RNA binding motif protein 12; copine I
RBM47	-1.79	0.0000	RNA binding motif protein 47
RBMS1	-0.94	0.0000	RNA binding motif, single stranded interacting protein 1
RBPMS2	4.89	0.0000	RNA binding protein with multiple splicing 2
RBX1	-0.60	0.0000	ring-box 1
RCAN1	-3.18	0.0000	regulator of calcineurin 1
RCAN2	3.41	0.0000	regulator of calcineurin 2
RCC2	1.13	0.0000	regulator of chromosome condensation 2
RCL1	2.04	0.0000	RNA terminal phosphate cyclase-like 1
RDH11	-1.14	0.0000	retinol dehydrogenase 11 (all-trans/9-cis/11-cis)
RDX	-2.29	0.0000	radixin
REC8	-2.64	0.0000	REC8 homolog (yeast)
REEP1	2.74	0.0000	receptor accessory protein 1
REEP3	-1.33	0.0000	receptor accessory protein 3
REEP5	-1.02	0.0000	receptor accessory protein 5
RELL1	1.56	0.0000	RELT-like 1
RELN	2.56	0.0000	reelin
RFC2	1.11	0.0000	replication factor C (activator 1) 2, 40kDa
RFC4	1.42	0.0000	replication factor C (activator 1) 4, 37kDa
RFESD	1.55	0.0000	Rieske (Fe-S) domain containing
RFX5	-0.98	0.0000	regulatory factor X, 5 (influences HLA class II expression)
RGS2	3.89	0.0000	regulator of G-protein signaling 2, 24kDa

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
RGS9BP	1.26	0.0000	regulator of G protein signaling 9 binding protein
RHOA	-2.23	0.0000	ras homolog gene family, member A
RHOB	-1.71	0.0000	ras homolog gene family, member B
RHOJ	-1.92	0.0000	ras homolog gene family, member J
RHOQ	-2.74	0.0000	ras homolog gene family, member Q; similar to small GTP binding protein TC10
RILP	-1.24	0.0000	Rab interacting lysosomal protein
RILPL1	-1.09	0.0000	Rab interacting lysosomal protein-like 1
RIMBP3	1.25	0.0000	RIMS binding protein 3B; RIMS binding protein 3C; RIMS binding protein 3
RIMKLA	3.61	0.0000	ribosomal modification protein rimK-like family member A
RIMS3	2.03	0.0000	regulating synaptic membrane exocytosis 3
RINT1	1.03	0.0000	RAD50 interactor 1
RIOK2	1.09	0.0000	RIO kinase 2 (yeast)
RIPK1	-0.90	0.0000	receptor (TNFRSF)-interacting serine-threonine kinase 1
RIT1	-1.22	0.0000	Ras-like without CAAX 1
RLN2	2.63	0.0000	relaxin 2
RMI1	1.50	0.0000	RMI1, RecQ mediated genome instability 1, homolog (S. cerevisiae)
RNASE1	-4.16	0.0000	ribonuclease, RNase A family, 1 (pancreatic)
RNASEK	-2.16	0.0000	ribonuclease, RNase K
RNASEN	1.18	0.0000	ribonuclease type III, nuclear
RNF114	1.62	0.0000	ring finger protein 114
RNF128	-5.93	0.0000	ring finger protein 128
RNF13	-1.78	0.0000	ring finger protein 13
RNF141	-0.89	0.0000	ring finger protein 141
RNF149	0.82	0.0000	ring finger protein 149
RNF175	2.91	0.0000	ring finger protein 175
RNF2	1.06	0.0000	ring finger protein 2
RNF217	-1.49	0.0000	ring finger protein 217
RNF44	1.32	0.0000	ring finger protein 44
RNF5	-1.45	0.0000	ring finger protein 5; ring finger protein 5 pseudogene 1
ROPN1	-4.34	0.0000	ropporin, rhophilin associated protein 1
ROPN1B	-4.86	0.0000	ropporin, rhophilin associated protein 1B
ROPN1L	1.51	0.0000	ropporin 1-like
RPA2	1.23	0.0000	replication protein A2, 32kDa
RPA3	1.33	0.0000	replication protein A3, 14kDa
RPAP3	1.19	0.0000	RNA polymerase II associated protein 3
RPIA	1.43	0.0000	ribose 5-phosphate isomerase A

Gene	ST88 vs HSC		2
In DS-9	.logFC	adjeval	Description
RPL10	0.70	0.0000	ribosomal protein L10; ribosomal protein L10 pseudogene 15; ribosomal
			protein L10 pseudogene 6; ribosomal protein L10 pseudogene 16; ribosomal
			protein L10 pseudogene 9
RPL13	-1.02	0.0000	ribosomal protein L13 pseudogene 12; ribosomal protein L13
RPL13P5	-1.28	0.0000	ribosomal protein L13 pseudogene 5
RPL23	-0.80	0.0000	ribosomal protein L23 pseudogene 6; ribosomal protein L23
RPL23AP82	-1.58	0.0000	ribosomal protein L23a pseudogene 25; ribosomal protein L23a pseudogene 82
RPL28	-1.01	0.0000	ribosomal protein L28
RPL37	1.09	0.0000	ribosomal protein L37
RPL8	0.94	0.0000	ribosomal protein L8; ribosomal protein L8 pseudogene 2
RPN1	-0.92	0.0000	ribophorin I
RPP38	-0.68	0.0000	ribonuclease P/MRP 38kDa subunit
RPRD1A	-1.11	0.0000	regulation of nuclear pre-mRNA domain containing 1A
RPRD1B	1.76	0.0000	regulation of nuclear pre-mRNA domain containing 1B
RPS21	1.47	0.0000	ribosomal protein S21
RPS28	-1.41	0.0000	ribosomal protein S28 pseudogene 6; ribosomal protein S28 pseudogene 9;
			ribosomal protein S28
RPS2P32	1.04	0.0000	ribosomal protein S2 pseudogene 32
RPS6KA1	-1.48	0.0000	ribosomal protein S6 kinase, 90kDa, polypeptide 1
RPS6KA3	-2.11	0.0000	ribosomal protein S6 kinase, 90kDa, polypeptide 3
RPS6KB1	1.40	0.0000	ribosomal protein S6 kinase, 70kDa, polypeptide 1
RPS6KC1	-1.27	0.0000	ribosomal protein S6 kinase, 52kDa, polypeptide 1
RRAGA	-0.90	0.0000	Ras-related GTP binding A
RRAGB	-1.37	0.0000	Ras-related GTP binding B
RRAGC	-2.20	0.0000	Ras-related GTP binding C
RRAS	-1.06	0.0000	related RAS viral (r-ras) oncogene homolog
RRP15	0.82	0.0000	ribosomal RNA processing 15 homolog (S. cerevisiae)
RRP1B	1.47	0.0000	ribosomal RNA processing 1 homolog B (S. cerevisiae)
RSBN1L	0.98	0.0000	round spermatid basic protein 1-like
RSL1D1	1.61	0.0000	ribosomal L1 domain containing 1
RSPH9	-1.37	0.0000	radial spoke head 9 homolog (Chlamydomonas)
RSRC1	1.05	0.0000	arginine/serine-rich coiled-coil 1
RSU1	-1.76	0.0000	Ras suppressor protein 1
RTKN	-1.74	0.0000	rhotekin
RTN4R	2.77	0.0000	reticulon 4 receptor
RUNX1	-2.49	0.0000	runt-related transcription factor 1

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
RUNX3	4.03	0.0000	runt-related transcription factor 3
RYBP	-1.24	0.0000	RING1 and YY1 binding protein
S100A11	-1.75	0.0000	S100 calcium binding protein A11; S100 calcium binding protein A11
			pseudogene
S100A16	-1.23	0.0000	S100 calcium binding protein A16
S100A2	1.65	0.0000	S100 calcium binding protein A2
S100A6	-2.02	0.0000	S100 calcium binding protein A6
S100B	-8.24	0.0000	S100 calcium binding protein B
S100PBP	0.92	0.0000	S100P binding protein
SAE1	0.85	0.0000	SUMO1 activating enzyme subunit 1
SALL1	3.65	0.0000	sal-like 1 (Drosophila)
SAMD13	2.10	0.0000	sterile alpha motif domain containing 13
SAMD8	-1.01	0.0000	sterile alpha motif domain containing 8
SAMD9	-1.56	0.0000	sterile alpha motif domain containing 9
SAMHD1	-1.33	0.0000	SAM domain and HD domain 1
SAP30	-0.94	0.0000	Sin3A-associated protein, 30kDa
SASH1	-3.74	0.0000	SAM and SH3 domain containing 1
SATB1	-2.57	0.0000	SATB homeobox 1
SCAND3	2.42	0.0000	SCAN domain containing 3
SCARA3	2.40	0.0000	scavenger receptor class A, member 3
SCARB2	-3.92	0.0000	scavenger receptor class B, member 2
SCCPDH	-1.72	0.0000	saccharopine dehydrogenase (putative)
SCD5	2.13	0.0000	stearoyl-CoA desaturase 5
SCG2	1.82	0.0000	secretogranin II (chromogranin C)
SCG5	-3.21	0.0000	secretogranin V (7B2 protein)
SCHIP1	-0.83	0.0000	schwannomin interacting protein 1
SCN4B	2.88	0.0000	sodium channel, voltage-gated, type IV, beta
SCPEP1	-0.65	0.0000	serine carboxypeptidase 1
SDC1	1.43	0.0000	syndecan 1
SDC3	-1.46	0.0000	syndecan 3
SDCCAG3	0.91	0.0000	serologically defined colon cancer antigen 3; similar to Serologically defined
			colon cancer antigen 3
SDF2	-1.23	0.0000	stromal cell-derived factor 2
SDF2L1	-1.33	0.0000	stromal cell-derived factor 2-like 1
SDF4	-0.94	0.0000	stromal cell derived factor 4
SDHAF1	1.32	0.0000	succinate dehydrogenase complex assembly factor 1
SDSL	1.42	0.0000	serine dehydratase-like

Gene	ST88 vs HSC	ed:D\/el	Description
In DS-9	.logFC	adjeval	Description
SEC14L1	0.78	0.0000	SEC14-like 1 (S. cerevisiae); SEC14-like 1 pseudogene
SEC14L2	-1.37	0.0000	SEC14-like 2 (S. cerevisiae)
SEC31A	2.07	0.0000	SEC31 homolog A (S. cerevisiae)
SECISBP2L	-3.00	0.0000	SECIS binding protein 2-like
SEL1L	-2.18	0.0000	sel-1 suppressor of lin-12-like (C. elegans)
SELENBP1	-2.60	0.0000	selenium binding protein 1
SELK	-1.42	0.0000	selenoprotein K; similar to HSPC297
SELM	-1.88	0.0000	selenoprotein M
SELPLG	-1.22	0.0000	selectin P ligand
SELS	-1.81	0.0000	selenoprotein S
SEMA3A	3.46	0.0000	sema domain, immunoglobulin domain (Ig), short basic domain, secreted,
SEMA3B	-4.88	0.0000	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B
SEMA3D	4.95	0.0000	sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D
SEMA4F	-0.90	0.0000	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4F
SEMA6A	-2.80	0.0000	sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6A
SENP1	1.27	0.0000	SUMO1/sentrin specific peptidase 1
SEP15	-0.97	0.0000	15 kDa selenoprotein
SEPHS2	1.30	0.0000	selenophosphate synthetase 2
SEPP1	-4.55	0.0000	selenoprotein P, plasma, 1
SEPT11	1.02	0.0000	septin 11
SEPT5	1.56	0.0000	septin 5
SEPW1	-1.68	0.0000	selenoprotein W, 1
SERF1B	1.09	0.0000	small EDRK-rich factor 1A (telomeric); small EDRK-rich factor 1B (centromeric)
SERINC1	-1.85	0.0000	serine incorporator 1
SERPINE2	-2.10	0.0000	serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2
SERTAD4	3.93	0.0000	SERTA domain containing 4
SESN1	1.10	0.0000	sestrin 1
SETD7	-1.09	0.0000	SET domain containing (lysine methyltransferase) 7
SETDB2	-1.21	0.0000	SET domain, bifurcated 2
SF3A3	0.73	0.0000	splicing factor 3a, subunit 3, 60kDa

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
SFRP1	-1.59	0.0000	secreted frizzled-related protein 1
SFRS1	1.40	0.0000	splicing factor, arginine/serine-rich 1
SFRS2B	-1.33	0.0000	splicing factor, arginine/serine-rich 2B
SFT2D1	-1.34	0.0000	SFT2 domain containing 1
SFT2D2	-1.60	0.0000	SFT2 domain containing 2
SFXN1	0.81	0.0000	sideroflexin 1
SFXN2	1.60	0.0000	sideroflexin 2
SFXN4	1.53	0.0000	sideroflexin 4
SGCB	-2.65	0.0000	sarcoglycan, beta (43kDa dystrophin-associated glycoprotein)
SGCE	-1.31	0.0000	sarcoglycan, epsilon
SGSM3	-1.62	0.0000	small G protein signaling modulator 3
SH2D5	3.01	0.0000	SH2 domain containing 5
SH3BGRL2	2.20	0.0000	SH3 domain binding glutamic acid-rich protein like 2
SH3BGRL3	-1.13	0.0000	SH3 domain binding glutamic acid-rich protein like 3
SH3GL1	-2.46	0.0000	SH3-domain GRB2-like 1
SH3GL3	2.15	0.0000	SH3-domain GRB2-like 3
SH3GLB1	-1.83	0.0000	SH3-domain GRB2-like endophilin B1
SH3KBP1	-1.95	0.0000	SH3-domain kinase binding protein 1
SH3PXD2A	-4.90	0.0000	SH3 and PX domains 2A
SHC1	1.50	0.0000	SHC (Src homology 2 domain containing) transforming protein 1
SHC4	-3.12	0.0000	SHC (Src homology 2 domain containing) family, member 4
SHISA2	2.53	0.0000	shisa homolog 2 (Xenopus laevis)
SHISA4	-1.74	0.0000	shisa homolog 4 (Xenopus laevis)
SHROOM1	1.48	0.0000	shroom family member 1
SHROOM3	3.79	0.0000	shroom family member 3
SIDT2	-1.99	0.0000	SID1 transmembrane family, member 2
SIGIRR	-1.69	0.0000	single immunoglobulin and toll-interleukin 1 receptor (TIR) domain
SIGMAR1	0.85	0.0000	sigma non-opioid intracellular receptor 1
SIP1	1.22	0.0000	survival of motor neuron protein interacting protein 1
SIRPA	3.27	0.0000	signal-regulatory protein alpha
SIRT2	-1.79	0.0000	sirtuin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae)
SIX1	2.09	0.0000	SIX homeobox 1
SIX4	4.16	0.0000	SIX homeobox 4
SKIV2L2	0.78	0.0000	superkiller viralicidic activity 2-like 2 (S. cerevisiae)
SKP2	1.77	0.0000	S-phase kinase-associated protein 2 (p45)
SLC12A4	-1.46	0.0000	solute carrier family 12 (potassium/chloride transporters), member 4
SLC12A7	4.24	0.0000	solute carrier family 12 (potassium/chloride transporters), member 7

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
SLC15A3	-3.99	0.0000	solute carrier family 15, member 3
SLC15A4	-1.93	0.0000	solute carrier family 15, member 4
SLC16A9	4.12	0.0000	solute carrier family 16, member 9 (monocarboxylic acid transporter 9)
SLC19A2	-2.08	0.0000	solute carrier family 19 (thiamine transporter), member 2
SLC1A1	3.76	0.0000	solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter,
			system Xag), member 1
SLC1A4	-1.75	0.0000	solute carrier family 1 (glutamate/neutral amino acid transporter), member 4
SLC1A5	1.15	0.0000	solute carrier family 1 (neutral amino acid transporter), member 5
SLC20A2	-1.54	0.0000	solute carrier family 20 (phosphate transporter), member 2
SLC22A17	-0.79	0.0000	solute carrier family 22, member 17
SLC22A18	-1.98	0.0000	solute carrier family 22, member 18
SLC23A2	-1.12	0.0000	solute carrier family 23 (nucleobase transporters), member 2
SLC25A12	1.27	0.0000	solute carrier family 25 (mitochondrial carrier, Aralar), member 12
SLC25A20	-3.61	0.0000	solute carrier family 25 (carnitine/acylcarnitine translocase), member 20
SLC25A36	0.81	0.0000	solute carrier family 25, member 36
SLC26A10	1.75	0.0000	RhoA/RAC/CDC42 exchange factor; solute carrier family 26, member 10
SLC26A11	1.14	0.0000	solute carrier family 26, member 11
SLC27A2	2.20	0.0000	solute carrier family 27 (fatty acid transporter), member 2
SLC27A4	-1.89	0.0000	solute carrier family 27 (fatty acid transporter), member 4
SLC29A1	1.26	0.0000	solute carrier family 29 (nucleoside transporters), member 1
SLC2A4RG	1.95	0.0000	SLC2A4 regulator
SLC30A4	-0.91	0.0000	solute carrier family 30 (zinc transporter), member 4
SLC35A1	-1.27	0.0000	solute carrier family 35 (CMP-sialic acid transporter), member A1
SLC35A2	-1.56	0.0000	solute carrier family 35 (UDP-galactose transporter), member A2
SLC35B2	-1.67	0.0000	solute carrier family 35, member B2
SLC35F2	3.34	0.0000	solute carrier family 35, member F2
SLC35F3	2.43	0.0000	solute carrier family 35, member F3
SLC37A2	-2.28	0.0000	solute carrier family 37 (glycerol-3-phosphate transporter), member 2
SLC38A1	5.52	0.0000	solute carrier family 38, member 1
SLC39A4	-2.42	0.0000	solute carrier family 39 (zinc transporter), member 4
SLC39A7	-0.91	0.0000	solute carrier family 39 (zinc transporter), member 7
SLC39A8	1.83	0.0000	solute carrier family 39 (zinc transporter), member 8
SLC41A2	-1.40	0.0000	solute carrier family 41, member 2
SLC45A4	1.71	0.0000	solute carrier family 45, member 4
SLC48A1	1.52	0.0000	solute carrier family 48 (heme transporter), member 1
SLC4A4	3.20	0.0000	solute carrier family 4, sodium bicarbonate cotransporter, member 4
SLC5A6	1.27	0.0000	solute carrier family 5 (sodium-dependent vitamin transporter), member 6

Gene	ST88 vs HSC	ed:D\/el	Description
In DS-9	.logFC	adjeval	Description
SLC6A19	-1.20	0.0000	solute carrier family 6 (neutral amino acid transporter), member 19
SLC7A8	-2.09	0.0000	solute carrier family 7 (cationic amino acid transporter, y+ system), member 8
SLC8A1	3.09	0.0000	solute carrier family 8 (sodium/calcium exchanger), member 1
SLC9A7	-1.52	0.0000	solute carrier family 9 (sodium/hydrogen exchanger), member 7
SLITRK4	5.03	0.0000	SLIT and NTRK-like family, member 4
SLK	-0.92	0.0000	STE20-like kinase (yeast)
SMAD2	-1.15	0.0000	SMAD family member 2
SMARCA5	-0.95	0.0000	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5
SMN1	0.88	0.0000	survival of motor neuron 1, telomeric; survival of motor neuron 2, centromeric
SMO	2.03	0.0000	smoothened homolog (Drosophila)
SMPD1	-2.20	0.0000	sphingomyelin phosphodiesterase 1, acid lysosomal
SMPD4	0.77	0.0000	sphingomyelin phosphodiesterase 4, neutral membrane (neutral sphingomyelinase-3)
SMYD3	-1.53	0.0000	SET and MYND domain containing 3
SNAPC1	1.50	0.0000	small nuclear RNA activating complex, polypeptide 1, 43kDa
SNHG1	1.88	0.0000	small nucleolar RNA host gene 1 (non-protein coding)
SNHG10	1.25	0.0000	small Cajal body-specific RNA 13; small nucleolar RNA host gene 10
			(non-protein coding)
SNHG11	1.51	0.0000	small nucleolar RNA host gene 11 (non-protein coding)
SNHG12	1.40	0.0000	small nucleolar RNA host gene 12 (non-protein coding)
SNHG3-RCC1	1.47	0.0000	regulator of chromosome condensation 1; SNHG3-RCC1 readthrough transcript
SNORD22	1.99	0.0000	small nucleolar RNA, C/D box 22
SNRNP25	1.63	0.0000	small nuclear ribonucleoprotein 25kDa (U11/U12)
SNRNP35	-0.96	0.0000	ATP-binding cassette, sub-family B (MDR/TAP), member 5; small nuclear
			ribonucleoprotein 35kDa (U11/U12)
SNRPE	0.92	0.0000	small nuclear ribonucleoprotein polypeptide E-like 1; small nuclear
			ribonucleoprotein polypeptide E; similar to hCG23490
SNRPF	1.22	0.0000	small nuclear ribonucleoprotein polypeptide F
SNTB2	-1.57	0.0000	syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic
			component 2)
SNX10	3.22	0.0000	sorting nexin 10
SNX12	-1.21	0.0000	sorting nexin 12
SNX14	-1.45	0.0000	sorting nexin 14
SNX18	-2.12	0.0000	sorting nexin 18
SNX25	-0.75	0.0000	sorting nexin 25

Gene	ST88 vs HSC	adiPVal	Description
In DS-9	.logFC	uuji vui	Zoonpiion
SNX27	-1.61	0.0000	sorting nexin family member 27
SNX3	-1.56	0.0000	sorting nexin 3
SNX5	1.32	0.0000	sorting nexin 5
SOCS3	2.04	0.0000	suppressor of cytokine signaling 3
SOCS6	-1.32	0.0000	suppressor of cytokine signaling 6
SON	0.85	0.0000	SON DNA binding protein
SORL1	4.13	0.0000	sortilin-related receptor, L(DLR class) A repeats-containing
SORT1	-2.31	0.0000	sortilin 1
SOX10	-3.28	0.0000	SRY (sex determining region Y)-box 10
SOX2OT	-4.10	0.0000	SOX2 overlapping transcript (non-protein coding)
SOX3	3.62	0.0000	SRY (sex determining region Y)-box 3
SOX4	-3.14	0.0000	SRY (sex determining region Y)-box 4
SOX8	-2.68	0.0000	SRY (sex determining region Y)-box 8
SPATA13	-1.70	0.0000	spermatogenesis associated 13
SPATA6	-1.72	0.0000	spermatogenesis associated 6
SPATS2	1.37	0.0000	spermatogenesis associated, serine-rich 2
SPCS3	-1.32	0.0000	signal peptidase complex subunit 3 homolog (S. cerevisiae)
SPEG	2.70	0.0000	SPEG complex locus
SPHK1	-2.52	0.0000	sphingosine kinase 1
SPOCK1	2.63	0.0000	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1
SPON1	4.86	0.0000	spondin 1, extracellular matrix protein
SPON2	-2.61	0.0000	spondin 2, extracellular matrix protein
SPP1	-4.13	0.0000	secreted phosphoprotein 1
SPPL2A	-2.36	0.0000	signal peptide peptidase-like 2A
SPRY1	2.25	0.0000	sprouty homolog 1, antagonist of FGF signaling (Drosophila)
SPTBN1	-3.36	0.0000	spectrin, beta, non-erythrocytic 1
SQRDL	-3.30	0.0000	sulfide quinone reductase-like (yeast)
SR140	1.44	0.0000	U2-associated SR140 protein
SRBD1	-1.07	0.0000	S1 RNA binding domain 1
SRF	-0.72	0.0000	serum response factor (c-fos serum response element-binding transcription
			factor)
SRGAP1	2.02	0.0000	SLIT-ROBO Rho GTPase activating protein 1
SRGAP2P1	-3.16	0.0000	SLIT-ROBO Rho GTPase activating protein 2 pseudogene 1
SRI	-1.82	0.0000	sorcin
SRPK1	0.94	0.0000	SFRS protein kinase 1
SRPX	-2.59	0.0000	sushi-repeat-containing protein, X-linked
SRPX2	-1.92	0.0000	sushi-repeat-containing protein, X-linked 2

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
SRR	-1.43	0.0000	serine racemase
SS18L1	1.01	0.0000	synovial sarcoma translocation gene on chromosome 18-like 1
SSBP4	1.53	0.0000	single stranded DNA binding protein 4
SSH3	-2.36	0.0000	slingshot homolog 3 (Drosophila)
SSR1	-1.19	0.0000	signal sequence receptor, alpha
SSR2	-1.23	0.0000	signal sequence receptor, beta (translocon-associated protein beta)
SSR3	1.30	0.0000	signal sequence receptor, gamma (translocon-associated protein gamma)
SSTR1	5.24	0.0000	somatostatin receptor 1
SSTR2	2.02	0.0000	somatostatin receptor 2
ST3GAL2	-1.19	0.0000	ST3 beta-galactoside alpha-2,3-sialyltransferase 2
ST3GAL3	-1.05	0.0000	ST3 beta-galactoside alpha-2,3-sialyltransferase 3
ST3GAL4	-2.25	0.0000	ST3 beta-galactoside alpha-2,3-sialyltransferase 4
ST3GAL5	2.28	0.0000	ST3 beta-galactoside alpha-2,3-sialyltransferase 5
ST5	-1.51	0.0000	suppression of tumorigenicity 5
ST6GAL1	-2.74	0.0000	ST6 beta-galactosamide alpha-2,6-sialyltranferase 1
ST6GALNAC2	-4.10	0.0000	ST6
			(alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide
			alpha-2,6-sialyltransferase 2
ST8SIA5	-1.80	0.0000	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5
STAC	3.37	0.0000	SH3 and cysteine rich domain
STAG3L4	1.39	0.0000	stromal antigen 3-like 4
STAM	-1.08	0.0000	signal transducing adaptor molecule (SH3 domain and ITAM motif) 1
STAMBP	-1.51	0.0000	STAM binding protein
STARD13	-1.57	0.0000	StAR-related lipid transfer (START) domain containing 13
STARD3	-1.49	0.0000	StAR-related lipid transfer (START) domain containing 3
STARD8	-1.81	0.0000	StAR-related lipid transfer (START) domain containing 8
STAT5B	1.52	0.0000	signal transducer and activator of transcription 5B
STAU1	1.17	0.0000	staufen, RNA binding protein, homolog 1 (Drosophila)
STBD1	-2.50	0.0000	starch binding domain 1
STEAP2	1.82	0.0000	six transmembrane epithelial antigen of the prostate 2
STK10	-1.24	0.0000	serine/threonine kinase 10
STK11IP	-1.39	0.0000	serine/threonine kinase 11 interacting protein
STK17B	1.52	0.0000	serine/threonine kinase 17b
STK39	1.32	0.0000	serine threonine kinase 39 (STE20/SPS1 homolog, yeast)
STK40	-1.20	0.0000	serine/threonine kinase 40
STMN2	2.45	0.0000	stathmin-like 2
STMN3	2.57	0.0000	stathmin-like 3

Gene	ST88 vs HSC		
In DS-9	.logFC	adjPVal	Description
STOM	1.26	0.0000	stomatin
STOX2	-2.50	0.0000	storkhead box 2
STRA13	1.65	0.0000	stimulated by retinoic acid 13 homolog (mouse)
STRAP	-1.58	0.0000	serine/threonine kinase receptor associated protein
STRBP	2.00	0.0000	spermatid perinuclear RNA binding protein
STX12	-1.13	0.0000	syntaxin 12
STX2	-1.91	0.0000	syntaxin 2
STX7	-1.62	0.0000	syntaxin 7
STXBP3	-1.50	0.0000	syntaxin binding protein 3
STXBP5	-1.91	0.0000	syntaxin binding protein 5 (tomosyn)
STXBP6	1.82	0.0000	syntaxin binding protein 6 (amisyn)
STYK1	1.60	0.0000	serine/threonine/tyrosine kinase 1
SUB1	0.71	0.0000	SUB1 homolog (S. cerevisiae)
SULF2	4.83	0.0000	sulfatase 2
SUSD1	-1.53	0.0000	sushi domain containing 1
SUZ12	-4.20	0.0000	suppressor of zeste 12 homolog (Drosophila)
SVIL	-2.73	0.0000	supervillin
SYCP1	1.58	0.0000	synaptonemal complex protein 1
SYCP2	2.88	0.0000	synaptonemal complex protein 2
SYNJ2	2.75	0.0000	synaptojanin 2
SYNM	-1.34	0.0000	synemin, intermediate filament protein
SYNRG	-0.83	0.0000	AP1 gamma subunit binding protein 1
SYT11	-1.21	0.0000	synaptotagmin XI
SYT12	1.10	0.0000	synaptotagmin XII
SYT13	4.33	0.0000	synaptotagmin XIII
SYTL5	2.13	0.0000	synaptotagmin-like 5
TACC1	-2.20	0.0000	transforming, acidic coiled-coil containing protein 1
TAF12	0.72	0.0000	TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated
			factor, 20kDa
TAF1A	1.68	0.0000	TATA box binding protein (TBP)-associated factor, RNA polymerase I, A,
			48kDa
TAF4	1.88	0.0000	TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor,
			135kDa
TAF7	1.01	0.0000	TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor,
			55kDa
TAF7L	2.83	0.0000	TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated
			factor, 50kDa

Gene	ST88 vs HSC	adjPVal	Description	
TAF8	-1 20	0.0000	TAE8 RNA polymerase II TATA box binding protein (TBP)-associated factor	
	1.20	0.0000	43kDa	
TAGLN3	2.68	0.0000	transgelin 3	
TAL1	3.33	0.0000	T-cell acute lymphocytic leukemia 1	
TALDO1	-2.15	0.0000	transaldolase 1	
TAOK2	1.10	0.0000	TAO kinase 2	
TAOK3	-1.95	0.0000	TAO kinase 3	
TAP1	-2.29	0.0000	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	
ТАРВР	-1.67	0.0000	TAP binding protein (tapasin)	
TARBP1	1.06	0.0000	TAR (HIV-1) RNA binding protein 1	
TARDBP	1.60	0.0000	TAR DNA binding protein	
TARSL2	-3.24	0.0000	threonyl-tRNA synthetase-like 2	
TATDN1	1.36	0.0000	TatD DNase domain containing 1	
TBC1D10A	-1.87	0.0000	TBC1 domain family, member 10A	
TBC1D23	-0.88	0.0000	TBC1 domain family, member 23	
TBC1D24	1.41	0.0000	TBC1 domain family, member 24	
TBC1D4	1.49	0.0000	TBC1 domain family, member 4	
TBC1D7	-1.43	0.0000	TBC1 domain family, member 7	
TBC1D9B	-1.17	0.0000	TBC1 domain family, member 9B (with GRAM domain)	
TBL1Y	-1.06	0.0000	transducin (beta)-like 1Y-linked	
TBL2	1.00	0.0000	transducin (beta)-like 2	
TBRG4	1.29	0.0000	transforming growth factor beta regulator 4	
TBX1	6.46	0.0000	T-box 1	
TBX2	-2.80	0.0000	T-box 2	
TBX3	2.47	0.0000	T-box 3	
TBXA2R	-3.09	0.0000	thromboxane A2 receptor	
TBXAS1	2.31	0.0000	thromboxane A synthase 1 (platelet)	
TCEA3	3.22	0.0000	transcription elongation factor A (SII), 3	
TCEAL3	-1.59	0.0000	transcription elongation factor A (SII)-like 3	
TCEAL4	-1.62	0.0000	transcription elongation factor A (SII)-like 4	
TCEAL5	-1.07	0.0000	transcription elongation factor A (SII)-like 5	
TCEAL6	-1.47	0.0000	transcription elongation factor A (SII)-like 6	
TCEAL8	-1.07	0.0000	transcription elongation factor A (SII)-like 8	
TCF15	4.86	0.0000	transcription factor 15 (basic helix-loop-helix)	
TCF25	-1.81	0.0000	transcription factor 25 (basic helix-loop-helix)	
TCF3	0.93	0.0000	transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)	
Gene	ST88 vs HSC			
----------	-------------	---------	---	--
In DS-9	.logFC	adjPVal	Description	
TCFL5	1.39	0.0000	transcription factor-like 5 (basic helix-loop-helix)	
TCIRG1	-3.37	0.0000	T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3	
TCOF1	1.27	0.0000	Treacher Collins-Franceschetti syndrome 1	
ТСТА	-1.19	0.0000	T-cell leukemia translocation altered gene	
TCTN3	-0.93	0.0000	tectonic family member 3	
TDRD3	-0.81	0.0000	tudor domain containing 3	
TET3	-1.05	0.0000	tet oncogene family member 3	
TEX10	0.92	0.0000	testis expressed 10	
TEX15	1.61	0.0000	testis expressed 15	
TEX2	-1.70	0.0000	testis expressed 2	
TFAP2A	-2.48	0.0000	transcription factor AP-2 alpha (activating enhancer binding protein 2 alpha)	
TFAP2B	-3.25	0.0000	transcription factor AP-2 beta (activating enhancer binding protein 2 beta)	
TFPI	2.71	0.0000	tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)	
TGFA	-4.50	0.0000	transforming growth factor, alpha	
TGFB1	1.69	0.0000	transforming growth factor, beta 1	
TGFBR2	-2.27	0.0000	transforming growth factor, beta receptor II (70/80kDa)	
TGIF1	-1.29	0.0000	TGFB-induced factor homeobox 1	
TGIF2	1.23	0.0000	TGFB-induced factor homeobox 2	
TGOLN2	-1.56	0.0000	trans-golgi network protein 2	
THAP10	1.11	0.0000	THAP domain containing 10	
THBS2	-3.69	0.0000	thrombospondin 2	
THBS4	4.42	0.0000	thrombospondin 4	
THOC3	1.24	0.0000	similar to THO complex 3; THO complex 3	
THOC4	1.91	0.0000	THO complex 4	
THSD1	1.46	0.0000	thrombospondin, type I, domain containing 1	
THSD4	2.69	0.0000	thrombospondin, type I, domain containing 4	
THUMPD2	0.94	0.0000	THUMP domain containing 2	
THUMPD3	-4.50	0.0000	THUMP domain containing 3	
THY1	2.31	0.0000	Thy-1 cell surface antigen	
TIGD1	1.50	0.0000	tigger transposable element derived 1	
TIGD3	1.44	0.0000	tigger transposable element derived 3	
TIGD7	1.68	0.0000	tigger transposable element derived 7	
TIMELESS	1.56	0.0000	timeless homolog (Drosophila)	
TIMM10	1.22	0.0000	translocase of inner mitochondrial membrane 10 homolog (yeast)	
TIMM50	1.30	0.0000	translocase of inner mitochondrial membrane 50 homolog (S. cerevisiae)	
TIMP1	-2.06	0.0000	TIMP metallopeptidase inhibitor 1	

Gene	ST88 vs HSC	adiD\/al	Description	
In DS-9	.logFC	aujevai	Description	
TIMP3	-6.00	0.0000	TIMP metallopeptidase inhibitor 3	
TINF2	-0.98	0.0000	TERF1 (TRF1)-interacting nuclear factor 2	
TIPRL	-0.98	0.0000	TIP41, TOR signaling pathway regulator-like (S. cerevisiae)	
TJP2	1.67	0.0000	tight junction protein 2 (zona occludens 2)	
TK1	1.91	0.0000	thymidine kinase 1, soluble	
TKTL1	-3.10	0.0000	transketolase-like 1	
TLE4	2.73	0.0000	transducin-like enhancer of split 4 (E(sp1) homolog, Drosophila)	
TLR1	-4.61	0.0000	toll-like receptor 1	
TLR6	-2.67	0.0000	toll-like receptor 6	
TM4SF1	2.04	0.0000	transmembrane 4 L six family member 1	
TM9SF2	-1.00	0.0000	transmembrane 9 superfamily member 2	
TM9SF3	-0.92	0.0000	transmembrane 9 superfamily member 3	
TMBIM1	-2.18	0.0000	transmembrane BAX inhibitor motif containing 1	
TMBIM6	-1.63	0.0000	transmembrane BAX inhibitor motif containing 6	
TMC7	-3.31	0.0000	transmembrane channel-like 7	
TMCO6	1.09	0.0000	transmembrane and coiled-coil domains 6	
TMED10	-1.94	0.0000	transmembrane emp24-like trafficking protein 10 (yeast)	
TMED10P	-1.90	0.0000	transmembrane emp24-like trafficking protein 10 (yeast) pseudogene	
TMED5	-1.96	0.0000	transmembrane emp24 protein transport domain containing 5	
TMEFF2	3.88	0.0000	transmembrane protein with EGF-like and two follistatin-like domains 2	
TMEM100	-1.80	0.0000	transmembrane protein 100	
TMEM102	-1.90	0.0000	transmembrane protein 102	
TMEM107	-1.56	0.0000	transmembrane protein 107	
TMEM108	2.67	0.0000	transmembrane protein 108	
TMEM111	-0.99	0.0000	transmembrane protein 111	
TMEM116	0.96	0.0000	transmembrane protein 116	
TMEM127	-1.11	0.0000	transmembrane protein 127	
TMEM140	-1.86	0.0000	transmembrane protein 140	
TMEM154	2.58	0.0000	transmembrane protein 154	
TMEM158	2.02	0.0000	transmembrane protein 158	
TMEM169	-2.86	0.0000	transmembrane protein 169	
TMEM173	1.51	0.0000	transmembrane protein 173	
TMEM178	2.18	0.0000	transmembrane protein 178	
TMEM184B	-1.65	0.0000	transmembrane protein 184B	
TMEM184C	-1.84	0.0000	transmembrane protein 184C	
TMEM186	1.61	0.0000	transmembrane protein 186	
TMEM2	-1.84	0.0000	transmembrane protein 2	

Gene In DS-9	ST88 vs HSC .logFC	adjPVal	Description	
TMEM200A	4.53	0.0000	transmembrane protein 200A	
TMEM208	-1.46	0.0000	transmembrane protein 208	
TMEM209	1.46	0.0000	transmembrane protein 209	
TMEM216	1.30	0.0000	transmembrane protein 216	
TMEM220	-2.14	0.0000	transmembrane protein 220	
TMEM35	2.08	0.0000	transmembrane protein 35	
TMEM47	-2.71	0.0000	transmembrane protein 47	
TMEM50A	-1.08	0.0000	transmembrane protein 50A	
TMEM51	3.49	0.0000	transmembrane protein 51	
TMEM62	-1.18	0.0000	transmembrane protein 62	
TMEM71	-3.43	0.0000	transmembrane protein 71	
TMEM87A	-2.15	0.0000	transmembrane protein 87A	
TMEM87B	-1.12	0.0000	transmembrane protein 87B	
TMEM8B	-1.10	0.0000	transmembrane protein 8B	
TMEM97	1.10	0.0000	transmembrane protein 97	
TMEM9B	-1.92	0.0000	TMEM9 domain family, member B	
TMOD1	4.18	0.0000	tropomodulin 1	
TMOD2	-3.58	0.0000	tropomodulin 2 (neuronal)	
TMPRSS5	-3.57	0.0000	transmembrane protease, serine 5	
TMTC1	5.43	0.0000	transmembrane and tetratricopeptide repeat containing 1	
TMTC2	-5.28	0.0000	transmembrane and tetratricopeptide repeat containing 2	
ТМХЗ	-1.21	0.0000	thioredoxin-related transmembrane protein 3	
TNC	-2.50	0.0000	tenascin C	
TNFAIP1	-1.46	0.0000	tumor necrosis factor, alpha-induced protein 1 (endothelial)	
TNFAIP2	2.32	0.0000	tumor necrosis factor, alpha-induced protein 2	
TNFAIP6	-4.40	0.0000	tumor necrosis factor, alpha-induced protein 6	
TNFRSF11B	4.49	0.0000	tumor necrosis factor receptor superfamily, member 11b	
TNFRSF14	-3.05	0.0000	tumor necrosis factor receptor superfamily, member 14 (herpesvirus entry	
			mediator)	
TNFRSF25	2.79	0.0000	tumor necrosis factor receptor superfamily, member 25	
TNFSF12	-3.04	0.0000	TNFSF12-TNFSF13 readthrough transcript; tumor necrosis factor (ligand)	
			superfamily, member 12; tumor necrosis factor (ligand) superfamily, member	
			13	
TNRC6B	-1.50	0.0000	trinucleotide repeat containing 6B	
TNS3	-1.80	0.0000	tensin 3	
TOLLIP	-1.93	0.0000	toll interacting protein	
TOMM5	1.04	0.0000	translocase of outer mitochondrial membrane 5 homolog (yeast)	

Gene	ST88 vs HSC	adiD\/al	Description	
In DS-9	.logFC	adjeval	Description	
TOP1P2	1.51	0.0000	topoisomerase (DNA) I pseudogene 2	
TOX2	1.78	0.0000	TOX high mobility group box family member 2	
TP53RK	0.78	0.0000	TP53 regulating kinase	
TPBG	2.37	0.0000	trophoblast glycoprotein	
TPD52L2	1.26	0.0000	tumor protein D52-like 2	
TPM4	-1.72	0.0000	tropomyosin 4	
ТРМТ	-1.37	0.0000	thiopurine S-methyltransferase	
TPT1	-1.48	0.0000	similar to tumor protein, translationally-controlled 1; tumor protein,	
			translationally-controlled 1	
TRADD	-1.44	0.0000	TNFRSF1A-associated via death domain	
TRAF1	-3.33	0.0000	TNF receptor-associated factor 1	
TRAF3IP3	1.02	0.0000	TRAF3 interacting protein 3	
TRAK1	-1.03	0.0000	trafficking protein, kinesin binding 1	
TRAM1	-1.10	0.0000	translocation associated membrane protein 1	
TRAM2	-0.93	0.0000	translocation associated membrane protein 2	
TRAP1	1.84	0.0000	TNF receptor-associated protein 1	
TRAPPC2P1	-0.90	0.0000	trafficking protein particle complex 2; trafficking protein particle complex 2	
			pseudogene 1	
TRIB1	2.72	0.0000	tribbles homolog 1 (Drosophila)	
TRIM2	-3.64	0.0000	tripartite motif-containing 2	
TRIM6	1.58	0.0000	TRIM6-TRIM34 readthrough transcript; tripartite motif-containing 6; tripartite	
			motif-containing 34	
TRIM63	-1.73	0.0000	tripartite motif-containing 63	
TRIO	-1.15	0.0000	triple functional domain (PTPRF interacting)	
TRIT1	0.95	0.0000	tRNA isopentenyltransferase 1	
TRMT12	0.97	0.0000	tRNA methyltransferase 12 homolog (S. cerevisiae)	
TRPC3	2.17	0.0000	transient receptor potential cation channel, subfamily C, member 3	
TRPM7	-1.85	0.0000	transient receptor potential cation channel, subfamily M, member 7	
TRPV2	-1.37	0.0000	transient receptor potential cation channel, subfamily V, member 2	
TRUB2	-1.74	0.0000	TruB pseudouridine (psi) synthase homolog 2 (E. coli)	
TSEN54	1.48	0.0000	tRNA splicing endonuclease 54 homolog (S. cerevisiae)	
TSGA14	3.41	0.0000	testis specific, 14	
TSHZ3	1.74	0.0000	teashirt zinc finger homeobox 3	
TSKU	1.67	0.0000	tsukushin	
TSPAN8	3.61	0.0000	tetraspanin 8	
TSPYL1	-1.41	0.0000	TSPY-like 1	
TTC19	-1.51	0.0000	tetratricopeptide repeat domain 19	

Gene	ST88 vs HSC			
In DS-9	.logFC	adjPVal	Description	
TTC39C	-1.17	0.0000	tetratricopeptide repeat domain 39C	
ттсэс	0.89	0.0000	tetratricopeptide repeat domain 9C	
TTLL7	-2.16	0.0000	tubulin tyrosine ligase-like family, member 7	
TTPAL	1.52	0.0000	tocopherol (alpha) transfer protein-like	
TUBD1	1.49	0.0000	tubulin, delta 1	
TUBGCP4	0.86	0.0000	tubulin, gamma complex associated protein 4	
TULP3	-1.24	0.0000	tubby like protein 3	
TWIST2	2.45	0.0000	twist homolog 2 (Drosophila)	
TWSG1	-1.79	0.0000	twisted gastrulation homolog 1 (Drosophila)	
TXNDC15	-1.16	0.0000	thioredoxin domain containing 15	
TXNDC16	-0.99	0.0000	thioredoxin domain containing 16	
TXNL1	-0.64	0.0000	thioredoxin-like 1	
TXNL4B	-1.11	0.0000	thioredoxin-like 4B	
TYMS	1.56	0.0000	thymidylate synthetase	
UAP1L1	-1.66	0.0000	UDP-N-acteylglucosamine pyrophosphorylase 1-like 1	
UBA1	-1.13	0.0000	ubiquitin-like modifier activating enzyme 1	
UBA2	2.01	0.0000	ubiquitin-like modifier activating enzyme 2	
UBA5	0.74	0.0000	ubiquitin-like modifier activating enzyme 5	
UBA7	-1.21	0.0000	ubiquitin-like modifier activating enzyme 7	
UBC	-1.49	0.0000	ubiquitin C	
UBE2A	-1.44	0.0000	ubiquitin-conjugating enzyme E2A (RAD6 homolog)	
UBE2J1	-1.14	0.0000	ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, yeast)	
UBL3	-2.82	0.0000	ubiquitin-like 3	
UBL5	-0.82	0.0000	ubiquitin-like 5	
UBXN8	-1.33	0.0000	UBX domain protein 8	
UFC1	-0.93	0.0000	ubiquitin-fold modifier conjugating enzyme 1	
UGGT2	-1.33	0.0000	UDP-glucose ceramide glucosyltransferase-like 2	
UGT8	-1.85	0.0000	UDP glycosyltransferase 8	
UHRF1BP1L	-1.41	0.0000	UHRF1 binding protein 1-like	
UMPS	1.07	0.0000	uridine monophosphate synthetase	
UNC13B	-0.79	0.0000	unc-13 homolog B (C. elegans)	
UPF1	1.14	0.0000	UPF1 regulator of nonsense transcripts homolog (yeast)	
UPF3B	0.89	0.0000	UPF3 regulator of nonsense transcripts homolog B (yeast)	
UPRT	-1.25	0.0000	uracil phosphoribosyltransferase (FUR1) homolog (S. cerevisiae)	
URB2	1.69	0.0000	URB2 ribosome biogenesis 2 homolog (S. cerevisiae)	
USO1	-1.07	0.0000	USO1 homolog, vesicle docking protein (yeast)	
USP10	-1.78	0.0000	ubiquitin specific peptidase 10	

Gene	ST88 vs HSC			
In DS-9	.logFC	adjPVal	Description	
USP3	1.41	0.0000	ubiquitin specific peptidase 3	
USP53	-2.01	0.0000	ubiquitin specific peptidase 53	
USP54	-1.53	0.0000	ubiquitin specific peptidase 54	
USP7	1.37	0.0000	ubiquitin specific peptidase 7 (herpes virus-associated)	
USP9X	-1.89	0.0000	ubiquitin specific peptidase 9, X-linked	
UTP15	1.22	0.0000	UTP15, U3 small nucleolar ribonucleoprotein, homolog (S. cerevisiae)	
UTP3	-0.92	0.0000	UTP3, small subunit (SSU) processome component, homolog (S. cerevisiae)	
UTRN	-2.67	0.0000	utrophin	
UXS1	-1.16	0.0000	UDP-glucuronate decarboxylase 1	
UXT	-1.23	0.0000	ubiquitously-expressed transcript	
VAMP5	-2.58	0.0000	vesicle-associated membrane protein 5 (myobrevin)	
VAT1	-1.33	0.0000	vesicle amine transport protein 1 homolog (T. californica)	
VAT1L	3.44	0.0000	vesicle amine transport protein 1 homolog (T. californica)-like	
VGLL4	-1.74	0.0000	vestigial like 4 (Drosophila)	
VHL	-1.27	0.0000	von Hippel-Lindau tumor suppressor	
VIM	-1.85	0.0000	vimentin	
VKORC1	-1.05	0.0000	vitamin K epoxide reductase complex, subunit 1	
VMA21	-1.21	0.0000	VMA21 vacuolar H+-ATPase homolog (S. cerevisiae)	
VMAC	-1.27	0.0000	vimentin-type intermediate filament associated coiled-coil protein	
VOPP1	1.89	0.0000	similar to EGFR-coamplified and overexpressed protein; EGFR-coamplified	
			and overexpressed protein	
VPS13C	-1.35	0.0000	vacuolar protein sorting 13 homolog C (S. cerevisiae)	
VPS24	-1.07	0.0000	vacuolar protein sorting 24 homolog (S. cerevisiae); ring finger protein 103	
VPS26A	-1.18	0.0000	vacuolar protein sorting 26 homolog A (S. pombe)	
VPS35	-1.11	0.0000	hypothetical protein LOC100133770; vacuolar protein sorting 35 homolog (S.	
			cerevisiae)	
VPS36	-1.13	0.0000	vacuolar protein sorting 36 homolog (S. cerevisiae)	
VPS37B	-0.99	0.0000	vacuolar protein sorting 37 homolog B (S. cerevisiae)	
VSNL1	3.11	0.0000	visinin-like 1	
VWA1	-3.59	0.0000	von Willebrand factor A domain containing 1	
VWF	-1.06	0.0000	von Willebrand factor	
WARS	-1.30	0.0000	tryptophanyl-tRNA synthetase	
WASF1	1.17	0.0000	WAS protein family, member 1	
WASF3	0.97	0.0000	WAS protein family, member 3	
WBP5	-2.66	0.0000	WW domain binding protein 5	
WDFY3	-1.48	0.0000	WD repeat and FYVE domain containing 3	
WDR1	-0.88	0.0000	WD repeat domain 1	

Gene	ST88 vs HSC		• • • •			
In DS-9	.logFC	adjPVal	Description			
WDR19	-1.96	0.0000	WD repeat domain 19			
WDR4	2.05	0.0000	WD repeat domain 4			
WDR43	1.59	0.0000	WD repeat domain 43			
WDR44	-1.18	0.0000	WD repeat domain 44			
WDR45	-1.58	0.0000	WD repeat domain 45			
WDR67	1.23	0.0000	WD repeat domain 67			
WDR7	-1.65	0.0000	WD repeat domain 7			
WDR72	-2.33	0.0000	WD repeat domain 72			
WDR74	1.16	0.0000	WD repeat domain 74			
WDR75	1.25	0.0000	WD repeat domain 75			
WDR81	-1.43	0.0000	WD repeat domain 81			
WDR90	1.75	0.0000	WD repeat domain 90			
WDYHV1	1.37	0.0000	WDYHV motif containing 1			
WIPF1	-1.78	0.0000	WAS/WASL interacting protein family, member 1			
WIPF2	-1.45	0.0000	WAS/WASL interacting protein family, member 2			
WNK4	2.31	0.0000	WNK lysine deficient protein kinase 4			
WNT10B	1.21	0.0000	wingless-type MMTV integration site family, member 10B			
WNT3	2.37	0.0000	wingless-type MMTV integration site family, member 3			
WNT5A	3.62	0.0000	wingless-type MMTV integration site family, member 5A			
WSB2	-1.92	0.0000	WD repeat and SOCS box-containing 2			
WT1	1.43	0.0000	Wilms tumor 1			
WWC1	2.52	0.0000	WW and C2 domain containing 1			
WWC3	-1.63	0.0000	WWC family member 3			
wwox	-1.50	0.0000	WW domain containing oxidoreductase			
YBX2	3.61	0.0000	Y box binding protein 2			
YEATS2	1.02	0.0000	YEATS domain containing 2			
YIPF6	-1.39	0.0000	Yip1 domain family, member 6			
YTHDF1	1.26	0.0000	YTH domain family, member 1			
YTHDF2	-0.86	0.0000	YTH domain family, member 2			
ZADH2	-1.08	0.0000	zinc binding alcohol dehydrogenase domain containing 2			
ZAK	1.97	0.0000	sterile alpha motif and leucine zipper containing kinase AZK			
ZBTB20	-1.86	0.0000	zinc finger and BTB domain containing 20			
ZBTB24	-1.13	0.0000	zinc finger and BTB domain containing 24			
ZBTB38	-2.32	0.0000	zinc finger and BTB domain containing 38			
ZBTB4	-1.58	0.0000	zinc finger and BTB domain containing 4			
ZBTB44	-2.00	0.0000	zinc finger and BTB domain containing 44			
ZBTB46	1.67	0.0000	zinc finger and BTB domain containing 46			

Gene	ST88 vs HSC	adjPVal	Description	
In DS-9	.logFC	-		
ZBTB7A	-2.04	0.0000	zinc finger and BTB domain containing 7A	
ZC3H8	1.56	0.0000	zinc finger CCCH-type containing 8	
ZC3HAV1L	2.35	0.0000	zinc finger CCCH-type, antiviral 1-like	
ZCCHC17	-1.16	0.0000	zinc finger, CCHC domain containing 17	
ZCCHC3	1.98	0.0000	zinc finger, CCHC domain containing 3	
ZDHHC17	-1.51	0.0000	zinc finger, DHHC-type containing 17	
ZDHHC20	-0.90	0.0000	zinc finger, DHHC-type containing 20	
ZDHHC23	2.08	0.0000	zinc finger, DHHC-type containing 23	
ZDHHC7	-1.77	0.0000	zinc finger, DHHC-type containing 7	
ZEB2	-2.89	0.0000	zinc finger E-box binding homeobox 2	
ZFP2	-1.42	0.0000	zinc finger protein 2 homolog (mouse)	
ZFP41	1.18	0.0000	zinc finger protein 41 homolog (mouse)	
ZFP62	0.93	0.0000	zinc finger protein 62 homolog (mouse)	
ZFP64	3.17	0.0000	zinc finger protein 64 homolog (mouse)	
ZFYVE16	-1.26	0.0000	zinc finger, FYVE domain containing 16	
ZFYVE27	-1.54	0.0000	zinc finger, FYVE domain containing 27	
ZIC5	4.15	0.0000	Zic family member 5 (odd-paired homolog, Drosophila)	
ZMAT2	0.97	0.0000	zinc finger, matrin type 2	
ZMAT4	2.01	0.0000	zinc finger, matrin type 4	
ZMIZ1	-2.46	0.0000	zinc finger, MIZ-type containing 1	
ZNF101	0.99	0.0000	zinc finger protein 101	
ZNF107	2.08	0.0000	zinc finger protein 107	
ZNF121	-1.49	0.0000	zinc finger protein 121	
ZNF138	2.71	0.0000	zinc finger protein 138	
ZNF146	1.99	0.0000	zinc finger protein 146	
ZNF181	1.18	0.0000	zinc finger protein 181	
ZNF185	2.51	0.0000	zinc finger protein 185 (LIM domain)	
ZNF195	1.42	0.0000	zinc finger protein 195	
ZNF202	1.52	0.0000	zinc finger protein 202	
ZNF211	-0.74	0.0000	zinc finger protein 211	
ZNF217	1.97	0.0000	zinc finger protein 217	
ZNF226	-1.92	0.0000	zinc finger protein 226	
ZNF236	-1.48	0.0000	zinc finger protein 236	
ZNF24	-2.32	0.0000	zinc finger protein 24	
ZNF25	-0.91	0.0000	zinc finger protein 25	
ZNF250	1.61	0.0000	zinc finger protein 250	
ZNF251	1.23	0.0000	zinc finger protein 251	

Gene	ST88 vs HSC					
In DS-9	.logFC	adjPVal	Description			
ZNF26	1.24	0.0000	zinc finger protein 26			
ZNF266	-1.00	0.0000	zinc finger protein 266			
ZNF273	1.96	0.0000	zinc finger protein 273			
ZNF280C	1.36	0.0000	zinc finger protein 280C			
ZNF280D	-1.78	0.0000	zinc finger protein 280D			
ZNF30	1.68	0.0000	zinc finger protein 30			
ZNF302	1.58	0.0000	zinc finger protein 302			
ZNF334	2.16	0.0000	zinc finger protein 334			
ZNF337	1.37	0.0000	zinc finger protein 337			
ZNF34	0.64	0.0000	zinc finger protein 34			
ZNF343	0.85	0.0000	zinc finger protein 343			
ZNF382	1.56	0.0000	zinc finger protein 382			
ZNF433	-1.25	0.0000	zinc finger protein 433			
ZNF436	0.96	0.0000	zinc finger protein 436			
ZNF44	-1.31	0.0000	zinc finger protein 44			
ZNF440	-1.60	0.0000	zinc finger protein 440			
ZNF461	1.61	0.0000	zinc finger protein 461			
ZNF462	-1.04	0.0000	zinc finger protein 462			
ZNF48	1.91	0.0000	zinc finger protein 48			
ZNF490	-0.91	0.0000	zinc finger protein 490			
ZNF507	1.05	0.0000	zinc finger protein 507			
ZNF512B	1.36	0.0000	zinc finger protein 512B			
ZNF513	-1.43	0.0000	zinc finger protein 513			
ZNF521	4.27	0.0000	zinc finger protein 521			
ZNF524	-1.59	0.0000	zinc finger protein 524			
ZNF529	2.66	0.0000	zinc finger protein 529			
ZNF561	-0.92	0.0000	zinc finger protein 561; zinc finger protein 812			
ZNF562	-1.07	0.0000	zinc finger protein 562			
ZNF563	-1.39	0.0000	zinc finger protein 563			
ZNF565	1.16	0.0000	zinc finger protein 565			
ZNF567	2.14	0.0000	zinc finger protein 567			
ZNF598	0.96	0.0000	zinc finger protein 598			
ZNF599	1.26	0.0000	zinc finger protein 599			
ZNF618	4.20	0.0000	zinc finger protein 618			
ZNF623	0.82	0.0000	zinc finger protein 623			
ZNF643	1.55	0.0000	zinc finger protein 643			
ZNF644	-1.61	0.0000	zinc finger protein 644			

Gene	ST88 vs HSC		Provide the	
In DS-9	.logFC	adjeval	Description	
ZNF646	1.20	0.0000	zinc finger protein 646	
ZNF658B	1.26	0.0000	zinc finger protein 658 pseudogene; zinc finger protein 658B	
ZNF670	1.38	0.0000	zinc finger protein 670	
ZNF671	-2.53	0.0000	zinc finger protein 671	
ZNF678	1.32	0.0000	zinc finger protein 678	
ZNF681	2.57	0.0000	zinc finger protein 681	
ZNF689	1.59	0.0000	zinc finger protein 689	
ZNF69	-1.43	0.0000	zinc finger protein 69	
ZNF696	1.27	0.0000	zinc finger protein 696	
ZNF7	1.18	0.0000	zinc finger protein 7	
ZNF706	-1.36	0.0000	zinc finger protein 706	
ZNF764	0.99	0.0000	zinc finger protein 764	
ZNF783	1.53	0.0000	zinc finger family member 783	
ZNF791	-1.20	0.0000	zinc finger protein 791	
ZNF850P	1.27	0.0000	zinc finger protein 850 pseudogene	
ZNF853	2.51	0.0000	zinc finger protein 853	
ZNF92	1.30	0.0000	zinc finger protein 92	
ZNRD1	0.92	0.0000	zinc ribbon domain containing 1	
ZRANB3	0.78	0.0000	zinc finger, RAN-binding domain containing 3	
ZSCAN18	-4.17	0.0000	zinc finger and SCAN domain containing 18	
ZSCAN21	0.71	0.0000	zinc finger and SCAN domain containing 21	
ZSWIM5	2.78	0.0000	zinc finger, SWIM-type containing 5	

Suppl. Table 7: DS-10

DS-10, intersection of DS-9 and DS-1(siNf1VsSC), is hypothetically under the regulation of neurofibromin but independent from NRAS and MEK1/2, with matching the patterns: 1) increase in DS-9 and in DS-1, or 2) decreased in DS-9 and in DS-1

Gene	siNf1 vs Ctrl	Adj	ST88 vs HSC	Adj	Descriptions
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
ABCC4	0.74	0.0091	0.90	0.0000	ATP-binding cassette, sub-family C (CFTR/MRP),
					member 4
ACP1	0.67	0.0001	0.69	0.0000	acid phosphatase 1, soluble
ACTG2	-1.79	0.0008	-3.96	0.0000	actin, gamma 2, smooth muscle, enteric
ADAL	0.69	0.0029	0.99	0.0000	adenosine deaminase-like
ADAM10	-0.73	0.0046	-2.86	0.0000	ADAM metallopeptidase domain 10
ADAM17	-0.99	0.0000	-1.66	0.0000	ADAM metallopeptidase domain 17
ADRB2	0.63	0.0051	2.01	0.0000	adrenergic, beta-2-, receptor, surface
AIP	-0.71	0.0079	-0.74	0.0005	aryl hydrocarbon receptor interacting protein
AKR1B10	-0.81	0.0057	-2.78	0.0000	aldo-keto reductase family 1, member B10 (aldose
					reductase); aldo-keto reductase family 1, member
					B10-like
ALS2	0.60	0.0087	0.76	0.0000	amyotrophic lateral sclerosis 2 (juvenile)
ANKHD1	0.65	0.0096	1.01	0.0000	ankyrin repeat and KH domain containing 1;
					ANKHD1-EIF4EBP3 readthrough transcript; eukaryotic
					translation initiation factor 4E binding protein 3
ASB1	0.59	0.0028	1.20	0.0000	ankyrin repeat and SOCS box-containing 1
ATAD2	0.99	0.0057	2.24	0.0000	ATPase family, AAA domain containing 2
B3GALT4	-0.96	0.0042	-4.85	0.0000	UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase,
					polypeptide 4
BACE1	-0.99	0.0009	-2.15	0.0000	beta-site APP-cleaving enzyme 1
BAT5	-0.74	0.0018	-0.93	0.0000	HLA-B associated transcript 5
BBS7	-0.64	0.0001	-1.13	0.0000	Bardet-Biedl syndrome 7
BDH2	-1.30	0.0000	-0.82	0.0001	3-hydroxybutyrate dehydrogenase, type 2
BMP2	1.25	0.0006	1.77	0.0000	bone morphogenetic protein 2
C10orf114	-1.83	0.0000	-2.44	0.0000	chromosome 10 open reading frame 114
C15orf38	-0.72	0.0007	-0.71	0.0000	chromosome 15 open reading frame 38
C17orf58	0.59	0.0075	1.91	0.0000	chromosome 17 open reading frame 58
C1orf103	1.01	0.0025	1.97	0.0000	chromosome 1 open reading frame 103

Gene	si <i>Nf1</i> vs Ctrl	Adj	ST88 vs HSC	Adj	
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
C1orf27	0.68	0.0067	0.93	0.0000	chromosome 1 open reading frame 27
C22orf9	-0.82	0.0054	-1.64	0.0000	chromosome 22 open reading frame 9
C6orf105	1.79	0.0042	2.02	0.0001	chromosome 6 open reading frame 105
C6orf125	-0.60	0.0047	-0.85	0.0000	chromosome 6 open reading frame 125
C8orf46	-0.98	0.0002	-1.50	0.0000	chromosome 8 open reading frame 46
CALHM2	-1.31	0.0033	-3.99	0.0000	calcium homeostasis modulator 2
CAMK2N1	1.08	0.0025	1.07	0.0003	calcium/calmodulin-dependent protein kinase II inhibitor
CARD6	-0.79	0.0007	-1.92	0.0000	caspase recruitment domain family, member 6
CCDC80	-0.70	0.0031	-1.47	0.0000	coiled-coil domain containing 80
CCL2	-2.48	0.0007	-2.09	0.0004	chemokine (C-C motif) ligand 2
CCNL1	0.71	0.0075	0.93	0.0000	cyclin L1
CD151	-1.00	0.0022	-0.93	0.0005	CD151 molecule (Raph blood group)
CDK2AP1	-0.84	0.0001	-1.46	0.0000	cyclin-dependent kinase 2 associated protein 1
CDK2AP2	-0.85	0.0011	-0.94	0.0000	cyclin-dependent kinase 2 associated protein 2
CDKN2A	-0.66	0.0031	-3.86	0.0000	cyclin-dependent kinase inhibitor 2A (melanoma, p16,
					inhibits CDK4)
CFI	-3.13	0.0000	-1.82	0.0000	complement factor I
CNOT6	0.59	0.0049	0.63	0.0003	CCR4-NOT transcription complex, subunit 6
CNP	-0.65	0.0024	-2.68	0.0000	2',3'-cyclic nucleotide 3' phosphodiesterase
COL4A2	-0.67	0.0084	-0.73	0.0005	collagen, type IV, alpha 2
CREBZF	0.70	0.0037	2.16	0.0000	CREB/ATF bZIP transcription factor
CRNDE	0.79	0.0019	3.53	0.0000	hCG1815491
CXXC5	-1.59	0.0060	-1.12	0.0004	CXXC finger 5
CYBRD1	-1.73	0.0007	-1.17	0.0000	cytochrome b reductase 1
DCP2	1.55	0.0000	1.09	0.0000	DCP2 decapping enzyme homolog (S. cerevisiae)
DCPS	-0.67	0.0038	-1.22	0.0000	decapping enzyme, scavenger
DDR1	-1.12	0.0000	-2.96	0.0000	discoidin domain receptor tyrosine kinase 1
DIDO1	0.59	0.0060	1.97	0.0000	death inducer-obliterator 1
DNAJB12	-0.75	0.0058	-1.23	0.0000	DnaJ (Hsp40) homolog, subfamily B, member 12
DOCK4	1.49	0.0000	1.55	0.0000	dedicator of cytokinesis 4
DOK1	-0.66	0.0061	-1.15	0.0000	docking protein 1-like protein; docking protein 1, 62kDa
					(downstream of tyrosine kinase 1)
DUT	0.60	0.0044	0.80	0.0000	deoxyuridine triphosphatase
EHD2	-1.04	0.0057	-1.63	0.0000	EH-domain containing 2
ELMOD2	-1.09	0.0000	-1.27	0.0000	ELMO/CED-12 domain containing 2
EXT2	-0.85	0.0030	-1.38	0.0000	exostoses (multiple) 2
FADS2	-1.95	0.0000	-2.65	0.0000	fatty acid desaturase 2

1//

Gene	si <i>Nf1</i> vs Ctrl	Adj	ST88 vs HSC	Adj	
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
FAM116A	-1.13	0.0001	-1.35	0.0000	family with sequence similarity 116, member A
FAM20C	-0.78	0.0019	-2.47	0.0000	family with sequence similarity 20, member C
FAM45A	-0.70	0.0055	-0.72	0.0001	family with sequence similarity 45, member A
FEM1B	-0.63	0.0075	-0.89	0.0000	fem-1 homolog b (C. elegans)
FGD6	1.14	0.0000	2.07	0.0000	FYVE, RhoGEF and PH domain containing 6
FKBP1B	-1.14	0.0000	-0.87	0.0000	FK506 binding protein 1B, 12.6 kDa
FLJ10357	-1.17	0.0000	-0.81	0.0001	hypothetical protein FLJ10357
FLJ39632	1.24	0.0046	3.54	0.0000	hypothetical LOC642477; hypothetical LOC400879
FLJ40330	0.78	0.0009	0.85	0.0000	hypothetical LOC645784
FNTB	-0.73	0.0062	-2.63	0.0000	farnesyltransferase, CAAX box, beta
FZD4	-0.86	0.0006	-1.88	0.0000	frizzled homolog 4 (Drosophila)
GALC	-0.98	0.0001	-1.02	0.0000	galactosylceramidase
GALNT10	0.95	0.0029	1.32	0.0000	UDP-N-acetyl-alpha-D-galactosamine:polypeptide
					N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
GAS5	0.86	0.0002	1.64	0.0000	growth arrest-specific 5 (non-protein coding)
GBP2	-1.35	0.0001	-2.05	0.0000	guanylate binding protein 2, interferon-inducible
GCA	1.14	0.0084	1.37	0.0002	grancalcin, EF-hand calcium binding protein
GCH1	1.02	0.0028	1.41	0.0000	GTP cyclohydrolase 1
GFRA1	-1.57	0.0010	-3.74	0.0000	GDNF family receptor alpha 1
GOSR2	0.73	0.0047	1.06	0.0000	golgi SNAP receptor complex member 2
GSTT2	-0.82	0.0082	-5.59	0.0000	glutathione S-transferase theta 2B (gene/pseudogene);
					glutathione S-transferase theta 2
H3F3A	-1.41	0.0000	-1.14	0.0000	H3 histone, family 3B (H3.3B); H3 histone, family 3A
					pseudogene; H3 histone, family 3A; similar to H3
					histone, family 3B; similar to histone H3.3B
HEXIM1	-0.60	0.0065	-0.86	0.0000	hexamethylene bis-acetamide inducible 1
HIPK2	1.46	0.0001	1.79	0.0000	homeodomain interacting protein kinase 2; similar to
					homeodomain interacting protein kinase 2
HLA-DMA	-0.73	0.0023	-5.07	0.0000	major histocompatibility complex, class II, DM alpha
HSPA5	-0.77	0.0023	-1.57	0.0000	hypothetical gene supported by AF216292;
					NM_005347; heat shock 70kDa protein 5
					(glucose-regulated protein, 78kDa)
IFI16	-0.67	0.0042	-0.94	0.0000	interferon, gamma-inducible protein 16
IFRD1	0.80	0.0029	1.49	0.0000	interferon-related developmental regulator 1
IRF9	-0.95	0.0016	-1.35	0.0000	interferon regulatory factor 9
ITFG3	-0.74	0.0069	-0.95	0.0000	integrin alpha FG-GAP repeat containing 3
KCNN4	-1.08	0.0046	-3.91	0.0000	potassium intermediate/small conductance
					calcium-activated channel, subfamily N, member 4

Gene	siNf1 vs Ctrl	Adj	ST88 vs HSC	Adj	
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
KIAA1609	0.65	0.0071	0.78	0.0001	KIAA1609
KNTC1	0.69	0.0012	1.38	0.0000	kinetochore associated 1
KRCC1	-1.09	0.0000	-1.22	0.0000	lysine-rich coiled-coil 1
LAT2	1.92	0.0000	0.98	0.0001	linker for activation of T cells family, member 2
LDB2	0.87	0.0000	0.63	0.0000	LIM domain binding 2
LOC100132	1.50	0.0003	1.15	0.0004	hypothetical protein LOC100132790; hypothetical
790					LOC100132670; hypothetical LOC100132263
LOC399959	1.04	0.0053	2.96	0.0000	hypothetical LOC399959
LOC442421	-0.61	0.0016	-0.91	0.0000	hypothetical LOC442421
LOC550643	-0.84	0.0000	-1.01	0.0000	hypothetical LOC550643
LOC554202	0.59	0.0046	1.58	0.0000	hypothetical LOC554202
LRRC41	-0.72	0.0043	-0.75	0.0003	leucine rich repeat containing 41
LRRC8D	-0.59	0.0010	-0.75	0.0000	leucine rich repeat containing 8 family, member D
MAGED2	-0.68	0.0058	-1.27	0.0000	melanoma antigen family D, 2
MANF	-0.64	0.0012	-1.05	0.0000	mesencephalic astrocyte-derived neurotrophic factor
MAP4	-1.01	0.0009	-2.44	0.0000	microtubule-associated protein 4
MAPK14	-0.61	0.0021	-1.07	0.0000	mitogen-activated protein kinase 14
MARCKS	-1.15	0.0017	-1.13	0.0002	myristoylated alanine-rich protein kinase C substrate
MCAM	-0.69	0.0084	-2.10	0.0000	melanoma cell adhesion molecule
MCTP1	1.13	0.0002	1.06	0.0001	multiple C2 domains, transmembrane 1
MMP17	-0.89	0.0035	-2.35	0.0000	matrix metallopeptidase 17 (membrane-inserted)
MOCS1	-0.77	0.0012	-0.90	0.0000	molybdenum cofactor synthesis 1
MPP4	1.80	0.0002	2.85	0.0000	membrane protein, palmitoylated 4 (MAGUK p55 subfamily member 4)
MTHFD1L	0.61	0.0075	1.40	0.0000	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like
MXI1	-0.67	0.0024	-1.48	0.0000	MAX interactor 1
MYL9	-1.40	0.0002	-4.56	0.0000	myosin, light chain 9, regulatory
MYO5B	1.12	0.0000	4.07	0.0000	similar to acetyl-Coenzyme A acyltransferase 2
					(mitochondrial 3-oxoacyl-Coenzyme A thiolase); similar
					to KIAA1119 protein; myosin VB
NAB1	0.86	0.0000	2.09	0.0000	NGFI-A binding protein 1 (EGR1 binding protein 1)
NACC2	-0.98	0.0039	-2.28	0.0000	NACC family member 2, BEN and BTB (POZ) domain
					containing
NCSTN	-0.75	0.0014	-1.36	0.0000	nicastrin
NF1	-1.15	0.0006	-2.25	0.0000	neurofibromin 1
NGFRAP1	-0.77	0.0024	-1.79	0.0000	nerve growth factor receptor (TNFRSF16) associated
					protein 1

Gene	si <i>Nf1</i> vs Ctrl	Adi	ST88 vs HSC	Adi	
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
NIPSNAP3	-0.84	0.0007	-0.83	0.0000	nipsnap homolog 3A (C. elegans)
Α					II
NME3	-1.08	0.0028	-1.97	0.0000	non-metastatic cells 3, protein expressed in
NRIP3	1.29	0.0008	1.26	0.0001	nuclear receptor interacting protein 3
OLFML2A	-2.60	0.0010	-3.60	0.0000	olfactomedin-like 2A
OLFML2B	-1.37	0.0014	-2.40	0.0000	olfactomedin-like 2B
OPA1	0.61	0.0082	0.85	0.0000	optic atrophy 1 (autosomal dominant)
P4HB	-0.71	0.0091	-0.85	0.0002	prolyl 4-hydroxylase, beta polypeptide
PABPC1	0.61	0.0006	1.06	0.0000	poly(A) binding protein, cytoplasmic pseudogene 5;
					poly(A) binding protein, cytoplasmic 1
PABPC3	0.71	0.0007	0.96	0.0000	poly(A) binding protein, cytoplasmic 3
PARVA	-0.61	0.0092	-0.77	0.0000	parvin, alpha
PCDH7	-1.35	0.0018	-1.76	0.0000	protocadherin 7
PCMTD2	0.96	0.0001	1.60	0.0000	protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2
PDZRN3	-1.88	0.0000	-2.03	0.0000	PDZ domain containing ring finger 3
PGM1	-0.88	0.0000	-0.83	0.0000	phosphoglucomutase 1
PHTF2	0.67	0.0001	0.77	0.0000	putative homeodomain transcription factor 2
PLEKHB2	-0.68	0.0000	-1.72	0.0000	pleckstrin homology domain containing, family B
					(evectins) member 2
PLEKHO1	-0.89	0.0049	-1.46	0.0000	pleckstrin homology domain containing, family O
					member 1
PLSCR3	-0.62	0.0040	-1.26	0.0000	phospholipid scramblase 3
PLXND1	-1.44	0.0012	-2.22	0.0000	plexin D1
PMP22	-0.86	0.0077	-5.20	0.0000	peripheral myelin protein 22
PODXL	1.15	0.0006	1.92	0.0000	podocalyxin-like
POU4F1	0.93	0.0087	4.62	0.0000	POU class 4 homeobox 1
PPAPDC1A	-1.13	0.0028	-1.47	0.0000	phosphatidic acid phosphatase type 2 domain containing
					1A
PPAPDC3	-1.86	0.0000	-2.59	0.0000	phosphatidic acid phosphatase type 2 domain containing
					3
PPT1	-0.85	0.0016	-0.96	0.0000	palmitoyl-protein thioesterase 1
PPT2	-0.68	0.0085	-2.88	0.0000	palmitoyl-protein thioesterase 2
PRKCDBP	-1.27	0.0000	-3.28	0.0000	protein kinase C, delta binding protein
PRR7	-0.61	0.0059	-1.01	0.0000	proline rich 7 (synaptic)
PSAT1	0.84	0.0063	1.07	0.0001	chromosome 8 open reading frame 62; phosphoserine aminotransferase 1
PTPLA	-0.74	0.0011	-0.93	0.0000	protein tyrosine phosphatase-like (proline instead of

Gene	si <i>Nf1</i> vs Ctrl	Adj	ST88 vs HSC	Adj	Descriptions
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
	•	-			catalytic arginine), member A
PXN	0.70	0.0011	0.65	0.0000	paxillin
RABAC1	-0.65	0.0096	-1.01	0.0000	Rab acceptor 1 (prenylated)
RBBP4	0.66	0.0060	1.70	0.0000	hypothetical LOC642954; retinoblastoma binding
					protein 4
RDH11	-0.61	0.0004	-1.14	0.0000	retinol dehydrogenase 11 (all-trans/9-cis/11-cis)
RELL1	0.61	0.0046	1.56	0.0000	RELT-like 1
RHOJ	-1.09	0.0014	-1.92	0.0000	ras homolog gene family, member J
RNF32	0.63	0.0074	0.71	0.0003	ring finger protein 32
RUNX2	-2.45	0.0000	-1.99	0.0000	runt-related transcription factor 2
SCD	-1.81	0.0035	-2.33	0.0000	stearoyl-CoA desaturase (delta-9-desaturase)
SELM	-1.67	0.0000	-1.88	0.0000	selenoprotein M
SEP15	-0.61	0.0012	-0.97	0.0000	15 kDa selenoprotein
SERPINA5	-0.91	0.0018	-1.25	0.0000	serpin peptidase inhibitor, clade A (alpha-1
					antiproteinase, antitrypsin), member 5
SFRS1	0.64	0.0036	1.40	0.0000	splicing factor, arginine/serine-rich 1
SFRS12IP1	0.75	0.0094	1.02	0.0000	SFRS12-interacting protein 1; family with sequence
					similarity 159, member B
SHISA4	-0.70	0.0065	-1.74	0.0000	shisa homolog 4 (Xenopus laevis)
SIAE	-0.72	0.0025	-0.76	0.0000	sialic acid acetylesterase
SIDT2	-0.81	0.0069	-1.99	0.0000	SID1 transmembrane family, member 2
SLBP	0.63	0.0039	0.93	0.0000	stem-loop binding protein
SLC27A1	-0.93	0.0060	-0.99	0.0004	solute carrier family 27 (fatty acid transporter), member
					1
SLC35B2	-0.69	0.0036	-1.67	0.0000	solute carrier family 35, member B2
SLC38A1	1.02	0.0013	5.52	0.0000	solute carrier family 38, member 1
SLC38A10	-0.60	0.0080	-0.66	0.0004	solute carrier family 38, member 10
SOCS2	-1.00	0.0024	-1.25	0.0000	suppressor of cytokine signaling 2
SPATA2	0.65	0.0089	1.11	0.0000	spermatogenesis associated 2
SPG20	-1.43	0.0000	-0.87	0.0000	spastic paraplegia 20 (Troyer syndrome)
SREBF1	-1.46	0.0000	-1.48	0.0000	sterol regulatory element binding transcription factor 1
SRGAP1	0.96	0.0009	2.02	0.0000	SLIT-ROBO Rho GTPase activating protein 1
SRPX2	-1.00	0.0005	-1.92	0.0000	sushi-repeat-containing protein, X-linked 2
SSH3	-1.11	0.0007	-2.36	0.0000	slingshot homolog 3 (Drosophila)
SSR3	0.97	0.0000	1.30	0.0000	signal sequence receptor, gamma (translocon-associated
					protein gamma)
ST5	-0.95	0.0006	-1.51	0.0000	suppression of tumorigenicity 5

2.00

0.0000

spermatid perinuclear RNA binding protein

0.0000

0.74

STRBP

183

Gene	si <i>Nf1</i> vs Ctrl	Adj	ST88 vs HSC	Adj	
In DS-10	(DS-1)	PVal	(DS-4)	PVal	Descriptions
SUSD1	-0.88	0.0036	-1.53	0.0000	sushi domain containing 1
SYNM	-0.70	0.0093	-1.34	0.0000	synemin, intermediate filament protein
SYT11	-1.08	0.0000	-1.21	0.0000	synaptotagmin XI
TCEAL3	-0.66	0.0002	-1.59	0.0000	transcription elongation factor A (SII)-like 3
TCEAL5	-0.76	0.0002	-1.07	0.0000	transcription elongation factor A (SII)-like 5
TCEAL6	-0.69	0.0001	-1.47	0.0000	transcription elongation factor A (SII)-like 6
TCEAL8	-0.59	0.0025	-1.07	0.0000	transcription elongation factor A (SII)-like 8
TEX15	0.83	0.0035	1.61	0.0000	testis expressed 15
TK2	-0.90	0.0004	-0.98	0.0000	thymidine kinase 2, mitochondrial
TLR1	-0.75	0.0055	-4.61	0.0000	toll-like receptor 1
TMEM117	1.14	0.0004	1.12	0.0000	transmembrane protein 117
TMEM150A	-0.93	0.0019	-0.85	0.0005	transmembrane protein 150A
TMEM209	0.78	0.0042	1.46	0.0000	transmembrane protein 209
TMEM50A	-0.76	0.0007	-1.08	0.0000	transmembrane protein 50A
TNFAIP1	-0.69	0.0000	-1.46	0.0000	tumor necrosis factor, alpha-induced protein 1 (endothelial)
TNFAIP6	-1.92	0.0016	-4.40	0.0000	tumor necrosis factor, alpha-induced protein 6
TNFSF12	-1.09	0.0017	-3.04	0.0000	TNFSF12-TNFSF13 readthrough transcript; tumor
					necrosis factor (ligand) superfamily, member 12; tumor
					necrosis factor (ligand) superfamily, member 13
TNS3	-0.75	0.0076	-1.80	0.0000	tensin 3
TOLLIP	-0.64	0.0024	-1.93	0.0000	toll interacting protein
TOM1L2	-0.96	0.0018	-1.05	0.0000	target of myb1-like 2 (chicken)
TP53I3	-0.87	0.0014	-0.85	0.0001	tumor protein p53 inducible protein 3
TWSG1	-1.12	0.0008	-1.79	0.0000	twisted gastrulation homolog 1 (Drosophila)
UBE2B	-0.91	0.0036	-0.65	0.0003	ubiquitin-conjugating enzyme E2B (RAD6 homolog)
UROS	-0.69	0.0029	-0.75	0.0001	uroporphyrinogen III synthase
USP3	0.62	0.0089	1.41	0.0000	ubiquitin specific peptidase 3
VWA1	-1.57	0.0076	-3.59	0.0000	von Willebrand factor A domain containing 1
WWC3	-0.74	0.0014	-1.63	0.0000	WWC family member 3
ZBTB4	-0.73	0.0014	-1.58	0.0000	zinc finger and BTB domain containing 4
ZDHHC20	-0.60	0.0024	-0.90	0.0000	zinc finger, DHHC-type containing 20
ZEB2	-0.78	0.0079	-2.89	0.0000	zinc finger E-box binding homeobox 2
ZNF185	1.51	0.0001	2.51	0.0000	zinc finger protein 185 (LIM domain)
ZNF26	0.77	0.0001	1.24	0.0000	zinc finger protein 26
ZNF30	0.63	0.0036	1.68	0.0000	zinc finger protein 30
ZNF643	0.72	0.0001	1.55	0.0000	zinc finger protein 643

REFERENCES

- Arnold SF, Tims E, McGrath BE. 1999. Identification of bone morphogenetic proteins and their receptors in human breast cancer cell lines: importance of BMP2. Cytokine 11:1031-7.
- Bader JL. 1986. Neurofibromatosis and cancer. Annals of the New York Academy of Sciences 486:57-65.
- Banerjee S, Byrd JN, Gianino SM, Harpstrite SE, Rodriguez FJ, Tuskan RG, Reilly KM, Piwnica-Worms DR, Gutmann DH. 2010. The neurofibromatosis type 1 tumor suppressor controls cell growth by regulating signal transducer and activator of transcription-3 activity in vitro and in vivo. Cancer research 70:1356-66.
- Barkan B, Kloog Y, Ehrlich M. 2011. Phenotypic reversion of invasive neurofibromin-deficient schwannoma by FTS: Ras inhibition reduces BMP4/Erk/Smad signaling. Molecular cancer therapeutics 10:1317-26.
- Barkan B, Starinsky S, Friedman E, Stein R, Kloog Y. 2006. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. Clin Cancer Res 12:5533-42.
- Basso AD, Kirschmeier P, Bishop WR. 2006. Lipid posttranslational modifications. Farnesyl transferase inhibitors. Journal of lipid research 47:15-31.

- Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356:713-5.
- Bernards A, Snijders AJ, Hannigan GE, Murthy AE, Gusella JF. 1993. Mouse neurofibromatosis type 1 cDNA sequence reveals high degree of conservation of both coding and non-coding mRNA segments. Human molecular genetics 2:645-50.
- Bieniasz M, Oszajca K, Eusebio M, Kordiak J, Bartkowiak J, Szemraj J. 2009. The positive correlation between gene expression of the two angiogenic factors: VEGF and BMP-2 in lung cancer patients. Lung Cancer 66:319-26.
- Blatt J, Jaffe R, Deutsch M, Adkins JC. 1986. Neurofibromatosis and childhood tumors. Cancer 57:1225-9.
- Bollag G, McCormick F, Clark R. 1993. Characterization of full-length neurofibromin: tubulin inhibits Ras GAP activity. The EMBO journal 12:1923-7.
- Bottillo I, Ahlquist T, Brekke H, Danielsen SA, van den Berg E, Mertens F, Lothe RA, Dallapiccola B. 2009. Germline and somatic NF1 mutations in sporadic and NF1-associated malignant peripheral nerve sheath tumours. The Journal of pathology 217:693-701.
- Boyanapalli M, Lahoud OB, Messiaen L, Kim B, Anderle de Sylor MS, Duckett SJ, Somara S, Mikol DD. 2006. Neurofibromin binds to caveolin-1 and regulates ras,

FAK, and Akt. Biochemical and biophysical research communications 340:1200-8.

- Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes & development 8:1019-29.
- Carroll SL, Ratner N. 2008. How does the Schwann cell lineage form tumors in NF1? Glia 56:1590-605.
- Casanova M, Ferrari A, Spreafico F, Luksch R, Terenziani M, Cefalo G, Massimino M, Gandola L, Lombardi F, Fossati-Bellani F. 1999. Malignant peripheral nerve sheath tumors in children: a single-institution twenty-year experience. Journal of pediatric hematology/oncology 21:509-13.
- Castle B, Baser ME, Huson SM, Cooper DN, Upadhyaya M. 2003. Evaluation of genotype-phenotype correlations in neurofibromatosis type 1. Journal of medical genetics 40:e109.
- Castro MG, Rodriguez-Pascual F, Magan-Marchal N, Reguero JR, Alonso-Montes C, Moris C, Alvarez V, Lamas S, Coto E. 2007. Screening of the endothelin1 gene (EDN1) in a cohort of patients with essential left ventricular hypertrophy. Annals of human genetics 71:601-10.

- Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA. 2003. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 17:1263-93.
- Chen M, Lin YQ, Xie SL, Wang JF. 2010. Mitogen-activated protein kinase in endothelin-1-induced cardiac differentiation of mouse embryonic stem cells. Journal of cellular biochemistry 111:1619-28.
- Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, Bronson RT, Jacks T. 1999. Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172-6.
- Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A and others. 2005. Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. International journal of oncology 27:401-7.
- Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, Hollstein PE, MacCollin M, Cichowski K. 2006. A negative feedback signaling network underlies oncogene-induced senescence. Cancer cell 10:459-72.

- Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, Deng DY, Sachidanandan C, Bloch KD, Peterson RT. 2008. Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorganic & medicinal chemistry letters 18:4388-92.
- Czyzyk E, Jozwiak S, Roszkowski M, Schwartz RA. 2003. Optic pathway gliomas in children with and without neurofibromatosis 1. Journal of child neurology 18:471-8.
- D'Angelo I, Welti S, Bonneau F, Scheffzek K. 2006. A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO reports 7:174-9.
- D.Kaufmann. 2008. Neurofibromatoses: S.Karger AG.
- Dahlberg WK, Little JB, Fletcher JA, Suit HD, Okunieff P. 1993. Radiosensitivity in vitro of human soft tissue sarcoma cell lines and skin fibroblasts derived from the same patients. Int J Radiat Biol 63:191-8.
- Dasgupta B, Yi Y, Hegedus B, Weber JD, Gutmann DH. 2005. Cerebrospinal fluid proteomic analysis reveals dysregulation of methionine aminopeptidase-2 expression in human and mouse neurofibromatosis 1-associated glioma. Cancer research 65:9843-50.
- De Schepper S, Boucneau JM, Westbroek W, Mommaas M, Onderwater J, Messiaen L, Naeyaert JM, Lambert JL. 2006. Neurofibromatosis type 1 protein and amyloid

precursor protein interact in normal human melanocytes and colocalize with melanosomes. The Journal of investigative dermatology 126:653-9.

- Di Paolo G, De Camilli P. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651-7.
- Diwakar G, Zhang D, Jiang S, Hornyak TJ. 2008. Neurofibromin as a regulator of melanocyte development and differentiation. Journal of cell science 121:167-77.
- Doak SH, Jenkins SA, Hurle RA, Varma M, Hawizy A, Kynaston HG, Parry JM. 2007. Bone morphogenic factor gene dosage abnormalities in prostatic intraepithelial neoplasia and prostate cancer. Cancer genetics and cytogenetics 176:161-5.
- Duncan RS, Hwang SY, Koulen P. 2005. Effects of Vesl/Homer proteins on intracellular signaling. Experimental biology and medicine (Maywood, N.J 230:527-35.
- Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. 2002a. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311-4.
- Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. 2002b. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. Journal of medical genetics 39:311-4.
- Fieber LA, Gonzalez DM, Wallace MR, Muir D. 2003. Delayed rectifier K currents in NF1 Schwann cells. Pharmacological block inhibits proliferation. Neurobiol Dis 13:136-46.

- Friedman JM, Arbiser J, Epstein JA, Gutmann DH, Huot SJ, Lin AE, McManus B, Korf BR. 2002. Cardiovascular disease in neurofibromatosis 1: report of the NF1 Cardiovascular Task Force. Genetics in medicine : official journal of the American College of Medical Genetics 4:105-11.
- Fritz DT, Liu D, Xu J, Jiang S, Rogers MB. 2004. Conservation of Bmp2 post-transcriptional regulatory mechanisms. The Journal of biological chemistry 279:48950-8.
- Gasparini P, Grifa A, Origone P, Coviello D, Antonacci R, Rocchi M. 1993. Detection of a neurofibromatosis type I (NF1) homologous sequence by PCR: implications for the diagnosis and screening of genetic diseases. Molecular and cellular probes 7:415-8.
- Ghosh-Choudhury N, Ghosh-Choudhury G, Celeste A, Ghosh PM, Moyer M, Abboud SL,
 Kreisberg J. 2000. Bone morphogenetic protein-2 induces cyclin kinase inhibitor
 p21 and hypophosphorylation of retinoblastoma protein in estradiol-treated
 MCF-7 human breast cancer cells. Biochimica et biophysica acta 1497:186-96.
- Gordon KJ, Kirkbride KC, How T, Blobe GC. 2009. Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30:238-48.
- Guertin DA, Sabatini DM. 2005. An expanding role for mTOR in cancer. Trends in molecular medicine 11:353-61.

- Gutmann DH, Rasmussen SA, Wolkenstein P, MacCollin MM, Guha A, Inskip PD, North KN, Poyhonen M, Birch PH, Friedman JM. 2002. Gliomas presenting after age 10 in individuals with neurofibromatosis type 1 (NF1). Neurology 59:759-61.
- Hakimi MA, Speicher DW, Shiekhattar R. 2002. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. The Journal of biological chemistry 277:36909-12.
- Hatakeyama S, Ohara-Nemoto Y, Kyakumoto S, Satoh M. 1993. Expression of bone morphogenetic protein in human adenocarcinoma cell line. Biochemical and biophysical research communications 190:695-701.
- Hiatt KK, Ingram DA, Zhang Y, Bollag G, Clapp DW. 2001. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1-/- cells. The Journal of biological chemistry 276:7240-5.
- Ho IS, Hannan F, Guo HF, Hakker I, Zhong Y. 2007. Distinct functional domains of neurofibromatosis type 1 regulate immediate versus long-term memory formation. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:6852-7.
- Horan MP, Cooper DN, Upadhyaya M. 2000. Hypermethylation of the neurofibromatosis type 1 (NF1) gene promoter is not a common event in the inactivation of the NF1 gene in NF1-specific tumours. Human genetics 107:33-9.

- Horan MP, Osborn M, Cooper DN, Upadhyaya M. 2004. Functional analysis of polymorphic variation within the promoter and 5' untranslated region of the neurofibromatosis type 1 (NF1) gene. Am J Med Genet A 131:227-31.
- Hsueh YP, Roberts AM, Volta M, Sheng M, Roberts RG. 2001. Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci 21:3764-70.
- Hung TT, Wang H, Kingsley EA, Risbridger GP, Russell PJ. 2008. Molecular profiling of bladder cancer: involvement of the TGF-beta pathway in bladder cancer progression. Cancer letters 265:27-38.
- Huson SM, Harper PS, Compston DA. 1988. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain : a journal of neurology 111 (Pt 6):1355-81.
- Ismat FA, Xu J, Lu MM, Epstein JA. 2006. The neurofibromin GAP-related domain rescues endothelial but not neural crest development in Nf1 mice. The Journal of clinical investigation 116:2378-84.
- Izawa I, Tamaki N, Saya H. 1996. Phosphorylation of neurofibromatosis type 1 gene product (neurofibromin) by cAMP-dependent protein kinase. FEBS letters 382:53-9.

- Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. 1994. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature genetics 7:353-61.
- Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. 2005. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proceedings of the National Academy of Sciences of the United States of America 102:8573-8.
- Johansson G, Mahller YY, Collins MH, Kim MO, Nobukuni T, Perentesis J, Cripe TP, Lane HA, Kozma SC, Thomas G and others. 2008. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Molecular cancer therapeutics 7:1237-45.
- Johnson MR, DeClue JE, Felzmann S, Vass WC, Xu G, White R, Lowy DR. 1994. Neurofibromin can inhibit Ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Molecular and cellular biology 14:641-5.
- Kalamarides M, Acosta MT, Babovic-Vuksanovic D, Carpen O, Cichowski K, Evans DG,
 Giancotti F, Hanemann CO, Ingram D, Lloyd AC and others. 2012.
 Neurofibromatosis 2011: a report of the Children's Tumor Foundation annual meeting. Acta neuropathologica 123:369-80.
- Katz ME, McCormick F. 1997. Signal transduction from multiple Ras effectors. Current opinion in genetics & development 7:75-9.

- Kiyozuka Y, Nakagawa H, Senzaki H, Uemura Y, Adachi S, Teramoto Y, Matsuyama T, Bessho K, Tsubura A. 2001. Bone morphogenetic protein-2 and type IV collagen expression in psammoma body forming ovarian cancer. Anticancer research 21:1723-30.
- Kleeff J, Maruyama H, Ishiwata T, Sawhney H, Friess H, Buchler MW, Korc M. 1999.Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology 116:1202-16.
- Klose A, Ahmadian MR, Schuelke M, Scheffzek K, Hoffmeyer S, Gewies A, Schmitz F, Kaufmann D, Peters H, Wittinghofer A and others. 1998. Selective disactivation of neurofibromin GAP activity in neurofibromatosis type 1. Human molecular genetics 7:1261-8.
- Kraniak JM, Sun D, Mattingly RR, Reiners JJ, Jr., Tainsky MA. 2010. The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors. Molecular and cellular biochemistry 344:267-76.
- L.M.Messiaen KW. 2008. NF1 Muational Spectrum. Neurofibromatoses: Basel, Karger. p 63-77.
- Langenfeld EM, Calvano SE, Abou-Nukta F, Lowry SF, Amenta P, Langenfeld J. 2003. The mature bone morphogenetic protein-2 is aberrantly expressed in non-small cell lung carcinomas and stimulates tumor growth of A549 cells. Carcinogenesis 24:1445-54.

- Le LQ, Liu C, Shipman T, Chen Z, Suter U, Parada LF. 2011. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer research 71:4686-95.
- Le LQ, Shipman T, Burns DK, Parada LF. 2009. Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell stem cell 4:453-63.
- Le Page C, Ouellet V, Madore J, Ren F, Hudson TJ, Tonin PN, Provencher DM, Mes-Masson AM. 2006. Gene expression profiling of primary cultures of ovarian epithelial cells identifies novel molecular classifiers of ovarian cancer. British journal of cancer 94:436-45.
- Lee MJ, Stephenson DA. 2007. Recent developments in neurofibromatosis type 1. Current opinion in neurology 20:135-41.
- Lee PR, Cohen JE, Tendi EA, Farrer R, GH DEV, Becker KG, Fields RD. 2004. Transcriptional profiling in an MPNST-derived cell line and normal human Schwann cells. Neuron glia biology 1:135-147.
- Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM. 1997. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283-8.

- Levy P, Vidaud D, Leroy K, Laurendeau I, Wechsler J, Bolasco G, Parfait B, Wolkenstein P, Vidaud M, Bieche I. 2004. Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Molecular cancer 3:20.
- Li Y, Rao PK, Wen R, Song Y, Muir D, Wallace P, van Horne SJ, Tennekoon GI, Kadesch T. 2004. Notch and Schwann cell transformation. Oncogene 23:1146-52.
- Liang G, Bansal G, Xie Z, Druey KM. 2009. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling. The Journal of biological chemistry 284:21719-27.
- Liu C, Tian G, Tu Y, Fu J, Lan C, Wu N. 2009. Expression pattern and clinical prognostic relevance of bone morphogenetic protein-2 in human gliomas. Japanese journal of clinical oncology 39:625-31.
- Lopez G, Torres K, Liu J, Hernandez B, Young E, Belousov R, Bolshakov S, Lazar AJ, Slopis JM, McCutcheon IE and others. 2011. Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer research 71:185-96.
- LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. 2008. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 11:32-50.

- Luijten M, Fahsold R, Mischung C, Westerveld A, Nurnberg P, Hulsebos TJ. 2001. Limited contribution of interchromosomal gene conversion to NF1 gene mutation. Journal of medical genetics 38:481-5.
- Mangoura D, Sun Y, Li C, Singh D, Gutmann DH, Flores A, Ahmed M, Vallianatos G.
 2006. Phosphorylation of neurofibromin by PKC is a possible molecular switch in EGF receptor signaling in neural cells. Oncogene 25:735-45.
- Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM and others. 1990. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843-9.
- Massague J, Seoane J, Wotton D. 2005. Smad transcription factors. Genes & development 19:2783-810.
- Matsui I, Tanimura M, Kobayashi N, Sawada T, Nagahara N, Akatsuka J. 1993. Neurofibromatosis type 1 and childhood cancer. Cancer 72:2746-54.
- Mattingly RR, Kraniak JM, Dilworth JT, Mathieu P, Bealmear B, Nowak JE, Benjamins JA, Tainsky MA, Reiners JJ, Jr. 2006. The mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD184352 (CI-1040) selectively induces apoptosis in malignant schwannoma cell lines. The Journal of pharmacology and experimental therapeutics 316:456-65.
- Miller SJ, Jessen WJ, Mehta T, Hardiman A, Sites E, Kaiser S, Jegga AG, Li H, Upadhyaya M, Giovannini M and others. 2009. Integrative genomic analyses of

neurofibromatosis tumours identify SOX9 as a biomarker and survival gene. EMBO molecular medicine 1:236-48.

- Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG, Kaiser S, Aronow BJ, Frahm S, Kluwe L and others. 2006a. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 66:2584-91.
- Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG, Kaiser S, Aronow BJ, Frahm S, Kluwe L and others. 2006b. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer research 66:2584-91.
- Miyazaki Y, Oshima K, Fogo A, Ichikawa I. 2003. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney international 63:835-44.
- Morgan MA, Ganser A, Reuter CW. 2003. Therapeutic efficacy of prenylation inhibitors in the treatment of myeloid leukemia. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 17:1482-98.
- Park Y, Kim JW, Kim DS, Kim EB, Park SJ, Park JY, Choi WS, Song JG, Seo HY, Oh SC and others. 2008. The Bone Morphogenesis Protein-2 (BMP-2) is associated with progression to metastatic disease in gastric cancer. Cancer research and treatment : official journal of Korean Cancer Association 40:127-32.

- Perry A, Roth KA, Banerjee R, Fuller CE, Gutmann DH. 2001. NF1 deletions in S-100 protein-positive and negative cells of sporadic and neurofibromatosis 1 (NF1)-associated plexiform neurofibromas and malignant peripheral nerve sheath tumors. The American journal of pathology 159:57-61.
- Reynolds JE, Fletcher JA, Lytle CH, Nie L, Morton CC, Diehl SR. 1992. Molecular characterization of a 17q11.2 translocation in a malignant schwannoma cell line. Hum Genet 90:450-6.
- Riccardi V. 1992. Neurofibromatosis: Phenotype, Natural History, and Pathogenesis Baltimore: Johns Hopkins University.
- Rini BI. 2007. Sunitinib. Expert opinion on pharmacotherapy 8:2359-69.
- Roth TM, Ramamurthy P, Ebisu F, Lisak RP, Bealmear BM, Barald KF. 2007. A mouse embryonic stem cell model of Schwann cell differentiation for studies of the role of neurofibromatosis type 1 in Schwann cell development and tumor formation. Glia 55:1123-33.
- Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S, Parton RG, Henis YI, Kloog Y, Hancock JF. 2005. Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Molecular and cellular biology 25:6722-33.
- S. Welti IDA, K. Scheffzek. 2008. Structure and Function of Neurofibromin. In: Kaufmann D, editor. Neurofibromatoses: KARGER. p 114.

- Sha B, Phillips SE, Bankaitis VA, Luo M. 1998. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein. Nature 391:506-10.
- Shapira S, Barkan B, Friedman E, Kloog Y, Stein R. 2007. The tumor suppressor neurofibromin confers sensitivity to apoptosis by Ras-dependent and Ras-independent pathways. Cell death and differentiation 14:895-906.
- Singh A, Morris RJ. 2010. The Yin and Yang of bone morphogenetic proteins in cancer. Cytokine & growth factor reviews 21:299-313.
- Smyth GK, Michaud J, Scott HS. 2005. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067-75.
- Sorensen SA, Mulvihill JJ, Nielsen A. 1986. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. The New England journal of medicine 314:1010-5.
- Steib JP, Bouchaib J, Walter A, Schuller S, Charles YP. 2010. Could an osteoinductor result in degeneration of a neurofibroma in NF1? European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 19 Suppl 2:S220-5.
- Stow LR, Jacobs ME, Wingo CS, Cain BD. 2011. Endothelin-1 gene regulation. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25:16-28.

- Sun D, Tainsky MA, Haddad R. 2012. Oncogene Mutation Survey in MPNST Cell Lines Enhances the Dominant Role of Hyperactive Ras in NF1 Associated Pro-Survival and Malignancy. Translational oncogenomics 5:1-7.
- Sun J, Qian Y, Hamilton AD, Sebti SM. 1998. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16:1467-73.
- The I, Hannigan GE, Cowley GS, Reginald S, Zhong Y, Gusella JF, Hariharan IK, Bernards A. 1997. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276:791-4.
- Theos A, Korf BR. 2006. Pathophysiology of neurofibromatosis type 1. Annals of internal medicine 144:842-9.

Upadhyaya M CD. 1998. Neurofibromatosis Type 1: From Genotype to phenotype

- BIOS pulishers, Oxford.
- Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF. 1999. Mouse tumor model for neurofibromatosis type 1. Science 286:2176-9.
- Vogt J, Traynor R, Sapkota GP. 2011. The specificities of small molecule inhibitors of the TGFss and BMP pathways. Cellular signalling 23:1831-42.
- von Mehren M, Rankin C, Goldblum JR, Demetri GD, Bramwell V, Ryan CW, Borden E.
 2012. Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. Cancer 118:770-6.
- Wan X, Helman LJ. 2007. The biology behind mTOR inhibition in sarcoma. The oncologist 12:1007-18.
- Wanebo JE, Malik JM, VandenBerg SR, Wanebo HJ, Driesen N, Persing JA. 1993. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 28 cases. Cancer 71:1247-53.
- Watson GH. 1967. Pulmonary stenosis, cafe-au-lait spots, and dull intelligence. Archives of disease in childhood 42:303-7.
- Watson MA, Perry A, Tihan T, Prayson RA, Guha A, Bridge J, Ferner R, Gutmann DH. 2004. Gene expression profiling reveals unique molecular subtypes of Neurofibromatosis Type I-associated and sporadic malignant peripheral nerve sheath tumors. Brain Pathol 14:297-303.
- Wen XZ, Miyake S, Akiyama Y, Yuasa Y. 2004. BMP-2 modulates the proliferation and differentiation of normal and cancerous gastric cells. Biochemical and biophysical research communications 316:100-6.
- Werner T. 2007. Regulatory networks: linking microarray data to systems biology. Mechanisms of ageing and development 128:168-72.

- Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK. 1997. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. The Journal of biological chemistry 272:14459-64.
- Widemann BC, Salzer WL, Arceci RJ, Blaney SM, Fox E, End D, Gillespie A, Whitcomb P, Palumbo JS, Pitney A and others. 2006. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24:507-16.
- Williams LA, Bhargav D, Diwan AD. 2008. Unveiling the bmp13 enigma: redundant morphogen or crucial regulator? International journal of biological sciences 4:318-29.
- Wojtkowiak JW, Fouad F, LaLonde DT, Kleinman MD, Gibbs RA, Reiners JJ, Jr., Borch RF, Mattingly RR. 2008. Induction of apoptosis in neurofibromatosis type 1 malignant peripheral nerve sheath tumor cell lines by a combination of novel farnesyl transferase inhibitors and lovastatin. The Journal of pharmacology and experimental therapeutics 326:1-11.

- Wong WW, Hirose T, Scheithauer BW, Schild SE, Gunderson LL. 1998. Malignant peripheral nerve sheath tumor: analysis of treatment outcome. International journal of radiation oncology, biology, physics 42:351-60.
- Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R and others. 1990. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599-608.
- Yan N, Ricca C, Fletcher J, Glover T, Seizinger BR, Manne V. 1995. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer research 55:3569-75.
- Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y and others. 2008. Nf1-dependent tumors require a microenvironment containing Nf1+/-- and c-kit-dependent bone marrow. Cell 135:437-48.
- Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C and others. 2008. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nature medicine 14:1363-9.
- Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF. 2002. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920-2.
- Zou C, Smith KD, Liu J, Lahat G, Myers S, Wang WL, Zhang W, McCutcheon IE, Slopis JM, Lazar AJ and others. 2009a. Clinical, pathological, and molecular variables

predictive of malignant peripheral nerve sheath tumor outcome. Annals of surgery 249:1014-22.

Zou CY, Smith KD, Zhu QS, Liu J, McCutcheon IE, Slopis JM, Meric-Bernstam F, Peng Z, Bornmann WG, Mills GB and others. 2009b. Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor. Molecular cancer therapeutics 8:1157-68.

ABSTRACT

IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFICIENCY IN MALIGANT PERIPHERAL NERVE SHEATH TUMORS

by

DAOCHUN SUN

December 2012

Advisor: Michael A. Tainsky, Ph.D.

Major: Molecular Biology and Genetics

Degree: Doctor of Philosophy

Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of mutations in the neurofibromatosis type I gene (NfI) as well as sporadically. Plexiform neurofibromas in NF1 patients have a significant risk of developing into MPNSTs leading to increased morbidity and mortality from this syndrome. Surgery is the primary intervention but it is not always effective due to the tendency of MPNSTs to infiltrate the surrounding tissue or grow in an inoperable location. Neurofibromin, the protein coded by the NfI gene, functions as a GTPase activating protein (GAP) whose mutation leads to constitutive activation of RAS and mitogen-activated protein kinase (MAPK) signaling in NF1 patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success.

In this study, we modulated NRAS, MEK 1/2 and neurofibromin levels in MPNST cell lines and determined the global gene expression changes that were associated with each experimental condition. Gene expression changes due to neurofibromin deficiency but independent of NRAS and MEK1/2 regulation were characterized for the first time in MPNST cell lines and led me to focus on bone morphogenetic protein 2 (*Bmp2*) and its signaling pathway. The BMP2-SMAD1/5 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or shRNA to BMP2 decreased the motility and invasion of NF1-associated MPNST cells *in vitro* thus providing evidence of a critical function for BMP2 signaling in MPNST malignancy.

The stratification of gene changes according to pathway responses has provided a clarification of one mechanism within the complex effects of neurofibromin in MPNST pathology and some novel targets for future therapeutic intervention.

AUTOBIOGRAPHICAL STATEMENT

DAOCHUN SUN

EDUCATION

2006~2012	Ph.D.	Major: Molecular Biology & Genetics; Minor: Bioinformatics
		Wayne State University, School of Medicine, Detroit MI USA
2003~2006	M.S.	Biochemistry and Molecular Biology Beijing Institute of Radiation
		Medicine, P.R.China
1998~2002	B.S.	Biochemstry; Minor: Computer Science, Yantai University, P.R.China

PROFESSIONAL TRAINING

2006~2012	Graduate Research Assistant, Center for Molecular Medicine &
	Genetics, Advisor: Michael A. Tainsky
2003~2006	Graduate Student, Beijing Institute of Radiation Medicine,
	Advisor: Shengqi Wang

HONORS AND AWARDS

2011~2012	Graduate Student Fellowship, Center for Molecular Medicine & Genetics,	
	School of Medicine, Wayne State University	
2010	Travel Award for AACR meeting	
2007~2009	Vice-president of the Chinese Students and Scholars Association in Wayne	
	State University	
1998~2002	Scholarship for excellent academic achievement in Yantai University	

SELECTED PULICATIONS

- Daochun Sun, Ramsi Haddad, Michael Tainsky. Translational Oncogenomics 2012:5 1-7 Oncogene Mutation Survey in MPNST Cell Lines Enhances the Dominant Role of Hyperactive Ras in NF1 Associated Pro-Survival and Malignancy
- Kraniak JM, Sun D et al. *Mol Cell Biochem*. 2010 Nov; 344(1-2):267-76 The role of neurofibromin in N-Ras mediated AP-1 regulation in malignant peripheral nerve sheath tumors.
- Sun Y, Sun D, et al. *Lung Cancer*. 2007 Oct; 58(1):21-9. Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells.

209