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We  introduce  a heuristic  bias-adjustment  for  the  transaction  price-
based  realized  range  estimator  of  daily  volatility  in  the presence  of
bid–ask  bounce  and  non-trading.  The  adjustment  is  an extension
of  the  estimator  proposed  in  Christensen  et  al. (2009). We  relax  the
assumption  that  all  intraday  high  (low)  transaction  prices  are  at
the  ask  (bid)  quote.  Using  data-based  simulations  we  obtain  esti-
mates  of  the  probability  that  a given  intraday  range  is  (upward
or downward)  biased  or not,  which  we use  for a  more  refined
bias-adjustment  of the  realized  range  estimator.  Both  Monte  Carlo
simulations  and  an  empirical  application  involving  a liquid  and
a  relatively  illiquid  S&P500  constituent  demonstrate  that ex  post
measures  and  ex  ante  forecasts  based  on  the  heuristically  adjusted
realized  range  compare  favorably  to existing  bias-adjusted  (two
time  scales)  realized  range  and  (two  time  scales)  realized  variance
estimators.
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1. Introduction

Measuring and forecasting the volatility of asset returns plays a key role in various areas of finan-
cial economics, including portfolio management, risk management and the pricing of derivatives. The
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increasing availability of high-frequency asset price data has triggered a vast amount of academic stud-
ies proposing volatility estimators that exploit intraday prices to estimate and forecast daily volatility
measures. These so-called ‘realized measures’ have been shown to complement alternative traditional
methods, based on GARCH models and implied volatility, see Beckers, Clements, and White (2006),
Hansen, Huang, and Shek (2012), and Chuang, Huang, and Lin (in press), among many others.

The realized variance (RV) estimator sums squared non-overlapping intraday returns to estimate
the daily variance, see Andersen, Bollerslev, Diebold, and Labys (2001), among many others. In a fric-
tionless market with continuous trading, RV converges to the integrated variance (IV) as the sampling
frequency of the intraday returns increases. In practice, however, high-frequency asset prices are
contaminated with market microstructure noise. This causes potentially severe problems in terms
of consistent estimation of the daily IV by means of realized measures, see McAleer and Medeiros
(2008) for a review. For RV estimators based on intraday returns obtained from transaction prices the
dominant source of market microstructure noise is bid–ask bounce. Transactions take place at bid and
ask prices causing an upward bias in the RV estimator. The magnitude of the bias increases with the
sampling frequency.

A  pragmatic solution to circumvent the problems arising from bid–ask bounce is to sample returns
more sparsely by using longer intraday intervals; examples include the popular 5- and 30-minute fre-
quencies. While lowering the sampling frequency reduces the bias in RV estimators, it also increases
the variance. The use of sparse sampling frequencies aims to strike a balance between these two
aspects. More formal approaches to correct for the effects of bid–ask bounce and other types of
microstructure noise also exist. Among the most popular bias-correction methods is the two time
scales RV (TSRV) estimator of Zhang, Mykland, and Aït-Sahalia (2005). In this approach the microstruc-
ture noise component is consistently estimated using the highest sampling frequency available and
subtracted from a subsampled RV estimator that is estimated using a ‘sparse’ sampling frequency.

Martens and Van Dijk (2007) and Christensen and Podolskij (2007) propose the realized range
(RR) estimator as a more efficient measure of ex post volatility. The RR estimator replaces the squared
intraday returns in the RV estimator by squared intraday ranges. The results of Martens and Van Dijk
(2007) illustrate that in a frictionless market the RR estimator is indeed more efficient than the RV
estimator when comparing similar sampling frequencies. These results continue to hold in settings
where market microstructure noise, in particular bid–ask bounce, is present.

The use of intraday ranges for volatility measurement is, however, further complicated by a dif-
ferent source of market microstructure noise, namely infrequent trading. Trading does not occur
continuously, that is, in practice we observe transactions at irregularly spaced points in time, see e.g.,
Engle (2000) or Griffin and Oomen (2008). For the RV estimator, non-trading increases the variance
but does not cause a bias. In contrast, infrequent trading introduces a downward bias in RR estima-
tors as the observed intraday high and low prices are likely to be below and above their ‘true’ values,
respectively.1 Christensen and Podolskij (2007) propose an adjustment of the standard RR estimator
to account for the effects of non-trading.

Returning to the issue of bid–ask bounce, this causes an upward bias also in the RR estimator. The
observed intraday high and low prices are likely to relate to transactions at the ask and bid quotes,
respectively, such that the observed range is larger than its ‘true’ value by a magnitude that corresponds
with the bid–ask spread. Christensen, Podolskij, and Vetter (2009) propose a ‘two time scales’ RR
(TSRR) estimator that aims to correct this upward bias along the same lines as the TSRV estimator
of Zhang et al. (2005). Specifically, the two time scales RR is implemented by estimating the bid–ask
spread using the highest sampling frequency available and subtracting this quantity from each of the
intraday ranges. Note that this correction is based on the assumption that the observed high (low) price
in each intraday interval originates from a transaction taking place at the ask (bid) quote. While this
may be the most likely situation, in practice the high (low) price may  also be observed as a transaction
at the bid (ask) quote, such that an intraday range is not necessarily upward biased.

1 Note that a possible advantage of the ‘standard’ realized range estimator is that the positive bias due to bid–ask bounce and
the  downward bias due to non-trading offset each other to a certain extent.
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In this paper we extend the bias-adjustment for the realized range of Christensen et al. (2009) by
relaxing the assumption that all observed intraday ranges are upward biased. Intuitively, the likelihood
of an intraday range being upward biased decreases when the noise-to-volatility ratio becomes smaller
or when the trading intensity of the asset becomes lower. We  propose a heuristic adjustment of the
RR that utilizes simulation-based estimates of the probabilities of an intraday range being upward
biased, downward biased or unbiased. For the heuristic adjustment we  need three inputs that are
readily available from a sample path of tick data for a full trading day for which one wants to estimate
the daily volatility. These inputs are estimates of the following quantities: (i) the daily range, which
is unaffected by noise, (ii) the non-trading probability and (iii) the half-spread. Using these inputs
we simulate a geometric Brownian motion with a variance based on (i) and implement noise with
settings (ii) and (iii). For the simulated geometric Brownian motions we keep count of how many
intraday ranges are upward biased, unbiased or downward biased. By averaging over simulation runs
we estimate probabilities for the three cases that can be attached to the ranks of sorted intraday ranges.
We apply these probability ranks to the sorted vector of initial high-low ranges for which we  are now
able to indicate whether an intraday range is expected to be upward biased, unbiased or downward
biased.

We study the proposed heuristic bias-adjustment for the realized range estimator in a Monte Carlo
simulation setting with plausible levels of bid–ask bounce and non-trading. Using several different
stochastic volatility models as data generating process we find that the heuristically adjusted realized
range estimator TSRRh provides volatility estimates that compare favorably, in terms of statistical
efficiency, with the (TS)RV and (TS)RR estimators studied in Christensen et al. (2009) and the (TS)RV
estimators in Aït-Sahalia and Mancini (2008). In an empirical forecasting application for the relatively
liquid IBM stock and Zimmer Holdings (ZMH), a relatively illiquid constituent of the S&P500 belonging
to the health care sector, we also find encouraging results. For IBM the heuristically adjusted RR
volatility estimator provides more efficient one-step ahead forecasts. For ZMH  the TSRRh outperforms
(TS)RV and TSRR and competes with the RR estimator.

Our paper is related to several recent articles examining the relative performance of different real-
ized measures in terms of measuring and forecasting the daily integrated variance. Among the studies
that focus on out-of-sample predictive ability, Liu, Patton, and Sheppard (2012) recently consider the
model confidence set approach to test whether alternative volatility forecasts can beat RV forecasts
for a large set of 350 assets, selected from a range of different asset classes. They conclude that there
are better forecasts but that it is difficult to significantly improve upon the RV forecasts. Their study
includes the realized range implemented in the form proposed by Christensen and Podolskij (2007),
which takes non-trading into account but is not adjusted for other forms of microstructure noise.
They find that the realized range forecasts compare favorably, especially for interest rate futures.
Aït-Sahalia and Mancini (2008) put forward forecasting results for TSRV and RV measures in the
presence of jumps, noise correlated with the efficient price, autocorrelated noise, long-memory in
volatility and leverage effects in volatility. In addition they compare TSRV and RV forecasts for the rel-
atively liquid DJIA stocks. They find that TSRV forecasts are more efficient than RV forecasts. Andersen,
Bollerslev, and Meddahi (2011) evaluate out-of-sample volatility forecasts in a simulation setting that
uses stochastic volatility diffusions. The resulting efficient price processes are contaminated with
microstructure noise. Their analysis is extended in several dimensions such as an implementation
where the noise is serially correlated. They find that a combination of the TSRV and a RV estimator
constructed by weighting different sampling frequencies performs best. Ghysels and Sinko (2011)
evaluate volatility forecasts in the Mixed Data Sampling (MIDAS) framework and include results for
iid-distributed noise and dependent noise. Consistent with Aït-Sahalia and Mancini (2008) they find
that at high sampling frequencies TSRV forecasts achieve the highest efficiency. Christensen et al.
(2009) compare (TS)RV and (TS)RR estimators and find that in the presence of bid–ask bounce TSRR
and TSRV compete in terms of statistical efficiency and that TSRR is more efficient when more than
300 observations are available. In an empirical application Christensen et al. (2009) estimate the
volatility of two highly liquid IT stocks, Microsoft and INTEL, and find that (TS)RV estimators have
a smaller variance than RR. The TSRR they propose, however, has a smaller variance than the (TS)RV
estimators.
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The remainder of this paper is structured as follows. In Section 2 we  develop the heuristic bias-
adjustment for the RR estimator and discuss the (two time scales) realized volatility and (two time
scales) realized range estimators. The simulation results are discussed in Section 3. Empirical fore-
casting results are presented in Section 4. We  conclude in Section 5.

2. Volatility estimators, noise and bias-corrections

2.1. Volatility estimators

We  assume that the logarithmic asset price Pt follows a driftless diffusion

dPt = �tdWt, (1)

where � is a strictly positive stochastic volatility process and Wt is a Wiener process. The daily interval
is standardized to unity, such that the daily integrated variance (IV) is given by

IV t =
∫ t

t−1

�2
s ds. (2)

Let r�
t,j

= log Pt+j� − log Pt+(j−1)� denote the log-return over the j-th intra-day interval of length �

on day t, for a given interval length 0 < � < 1 such that we have J = 1/� intervals in a given day.2 The
realized variance estimator is calculated by summing squared intraday returns that are sampled from
non-overlapping intervals of length �,

RV�
t =

J∑
j=1

r2
t,j. (3)

The realized range replaces the squared returns in RV by squared intraday ranges,

RR�
t = 1

4 log 2

J∑
j=1

(log Ht,j − log Lt,j)
2, (4)

where Ht,j = sup
(j−1)�≤i≤j�

Pt+i and Lt,j = inf
(j−1)�≤i≤j�

Pt+i denote the high and low prices during the j-th

interval on day t. In a frictionless market environment with continuous trading, both RVt and RRt are
consistent estimates of the integrated variance IVt when the number of intraday intervals J→ ∞.  In the
constant volatility case �t = � the variance of RV is 2�4�2 and the variance of RR is approximately3

0.407�4�2, which renders the RR about 5 times more efficient.

2.2. Market microstructure noise

Market microstructure noise refers to imperfections in the trading process of financial assets caus-
ing observed prices to deviate from the underlying ‘true’ price process. Microstructure noise generally
implies that realized volatility and realized range measures are inconsistent estimators for the inte-
grated variance, with the impact becoming more pronounced as the sampling frequency increases.
We focus on bid–ask bounce and non-trading since these are the two  most relevant sources of noise
that affect range-based volatility estimates based on high-frequency intra-day transaction prices.

2 For convenience we assume that � is such that J is an integer.
3 The exact variance of the RR is ((9�(3))/((4 log 2)2) − 1)�4�2 where �(x) =

∑∞
m=1

1/mx is Riemann’s zeta function.
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2.2.1. Bid–ask bounce
Observed transactions take place at bid and ask quotes causing negative autocorrelation in high-

frequency returns as the observed price jumps transiently from ask to bid and vice versa, see e.g., Roll
(1984). Hence, at the micro level bid–ask bounce introduces volatility in the observed price process
that is unrelated to the volatility of the ‘true’ price process. For this reason bid–ask bounce causes an
upward bias in high-frequency volatility estimates.

A general representation of bid–ask bounce and the relationship between the ‘efficient’ price Pt

and the ‘noisy’ transaction price P∗
t is given by:

P∗
t = Pt + ωt, (5)

where bid–ask bounce is represented by ωt. In this paper we adopt the conventional assumption that
ωt follows an i.i.d. distribution with support on +ω and −ω, such that ω represents the half-spread.
Extensions to allow for a time-varying spread or for correlation of the noise with the true price are
interesting but are left for future research.

2.2.2. Infrequent trading
Strictly speaking, non-trading does not fall under the heading of microstructure noise as defined

above, in the sense that observed transaction prices are (or can be) equal to the efficient price. As the
price process is not observed continuously though, non-trading does affect the RR estimator. As the
observed high and low prices in a given intra-day interval are likely to be below and above their ‘true’
values, respectively, infrequent trading introduces a downward bias in the ‘standard’ RR estimator in
(4). Effectively, in the presence of non-trading the scaling parameter 4 log 2, which is the variance of
a continuously observed Brownian motion, is not appropriate. Following Christensen and Podolskij
(2007), we therefore use

RR�
t = 1

�m

J∑
j=1

(log Ht,j − log Lt,j)
2, (6)

where m is the number of observations in an intraday range. The appropriate scaling parameter
�m = E[ max

0≤s,t≤m
(Wt/m − Ws/m)2] is determined through simulating an infrequently observed Brown-

ian motion W and estimating the second moment of its range. Note that this adjustment destroys
the possibility that the upward bias due to bid–ask bounce and the downward bias due to infrequent
trading (partly) offset each other, necessitating a further adjustment of the RR in (6) to account for the
effects of microstructure noise.

2.3. Correcting for bid–ask bounce

Subsampling aims at improving the accuracy of realized measures by using multiple intraday sam-
ple paths through shifting the point at which a sample starts. Assuming one has access to 1-minute
price observations at 9:30, 9:31, 9:32, etc. the standard approach to estimate RV using, for exam-
ple, 5-minute returns is to use transaction prices at 9:30, 9:35, 9:40, etc. A way to exploit more of
the available data is to also use the alternative 5-minute price samples starting at 9:31, 9:32, 9:33
and 9:34. This provides five different samples giving rise to five different RV estimates, which can be
averaged such that more data is used. The number of subsamples one can compute depends on the
‘intended’ sampling frequency and on the highest sampling frequency available. Assuming that there
are S subsamples, the subsampled RVS estimator is defined as:

RV�,S
t = 1

S

S∑
s=1

RV�
t,s. (7)

The two time scales estimator introduced in Zhang et al. (2005) combines the subsampled RVS estima-
tor at a ‘sparse’ frequency, e.g., 5-minutes, with an ultra-high-frequency estimator that uses all of the
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N observed transaction-based intraday returns to estimate the noise component. At the ultra-high-
frequency RV is estimated using all of the N + 1 observed price ticks in a trading day and is denoted
RVN. This ‘all returns’ estimator produces a consistent estimate of the quantity 2NE(ω2) such that
E(ω2) = RVN/2N. Combining the sparsely subsampled RVS estimator and the ‘all returns’ estimate to
remove the noise results in a consistent estimator of the integrated variance, the two-time-scales
realized variance (TSRV) estimator:

TSRV�
t = RV�,S

t − J

N
RVN, (8)

where J = (J − S + 1)/S.  A small sample adjustment is applied to adjust for the fact that the number of
returns in each of the sub-grids may  not be equal:

TSRV�,adj
t =

(
1 − J

N

)−1

TSRV�
t . (9)

For sufficiently large samples the correction term converges to unity. The TSRV estimator uses all
available intraday price observations to estimate the noise component. For the RV subsampler at
sparse frequencies, however, TSRV does not necessarily use all of the available data. Range-based
volatility estimators by construction use all of the available data to calculate the highs and lows in an
interval, and hence, make more efficient use of the high-frequency data to estimate volatility.

Similar to the TSRV estimator, Christensen et al. (2009) propose the use of a bias-correction for the
realized range estimator based on two time scales. The bias-correction is derived under the assumption
that the noise is represented by bid–ask bounce4, i.e., an iid-noise distribution centered around zero
with support on only two  points, see also (5). The highest frequency time scale is used to estimate
the impact of bid–ask bounce. Specifically, a consistent estimate of the half-spread is obtained using

ω̂ =
√

RVN/2N. This quantity is then used to filter out the bid–ask spread ω in each interval of the
sparsely sampled realized range estimator:

TSRR�
t = 1

�̃m

J∑
j=1

(log Ht,j − log Lt,j − � ω̂)2, (10)

where Christensen et al. (2009) use � = 2, which is based on the implicit assumption that Ht,j

is always at the ask-quote and Lt,j is always at the bid-quote. The scaling parameter �̃m =
E[ max

s:ωs/m=−ω,t:ωt/m=ω
(Wt/m − Ws/m)2] is determined through estimating the variance of the range of

a discretely observed Brownian motion that is contaminated with noise.
The TSRR proposed in Christensen et al. (2009) takes into account that observed prices are contam-

inated by bid–ask bounce and that prices are observed infrequently. The latter is done through the
multiplicative scaling parameters �m and �̃m, which take on different values for RR and TSRR due to
microstructure noise. Underlying the additive part of the bid–ask correction with � = 2 is the implicit
assumption that the high is always an ask price and the low is always a bid price, as discussed before.
In the presence of plausible levels of bid–ask bounce and non-trading, however, the probabilities of
an intraday range being unbiased or downward biased are non-zero. The assumption of all intraday
ranges being upward biased only holds when an asset trades very frequently throughout the day and
a sufficiently large number of transactions is recorded in each of the intraday sampling intervals. In
addition, the noise-to-volatility ratio should be sufficiently large. For illiquid assets such as stocks that
are traded infrequently this assumption may  not hold. This can be exemplified by considering an arti-
ficial price path where in some specific intraday interval the high and low are equal, i.e., this interval
should not contribute to the daily volatility. For the RV and RR estimators this is the case, as both the

4 It is hard, if not impossible, to derive a bias-adjustment for the RR estimator under noise distributions with unlimited
support. Christensen et al. (2009) provide extensions to other microstructure noise distributions with bounded support such
as  a uniform noise distribution and rounding errors. The focus in their study, however, is also mainly on bid–ask bounce.
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intraday return and range are zero for this interval. This specific interval will, however, introduce an
upward bias in TSRR of 4 ω̂2/�̃m. This upward bias for a specific interval also occurs when the high and
low are non-equal but both were recorded at the bid quote (ask quote). For these reasons we  relax
the assumption that the observed high (low) price always originates from a transaction executed at
the ask (bid) quote. Specifically, we use simulation-based estimates of the probabilities that a specific
intraday range is unbiased or even downward biased. The underlying idea is that if one would sort
all the observed intraday highs (lows), then the highest high (lowest low) is more likely to be at the
ask-quote (bid-quote) than is the case for the lowest (highest) observed high (low).

In more detail, we propose the following bias adjustment procedure that is based on simulation
and sorting. Given a trading day of tick data that is contaminated by noise and infrequent trading:

1. Estimate the non-trading probability using the number of observed transactions on day t.
2. Use Parkinson’s (1980) daily high-low range estimator to obtain an initial estimate of the volatility

for day t.5

3. Estimate the magnitude of the effects of bid–ask bounce, i.e., the half-spread ω̂ =
√

E(ω2) =√
RVN/2N.

4. Simulate intraday sample-paths based on a geometric Brownian motion with inputs being the
estimated non-trading probability, the initial volatility estimate and the estimated bid–ask spread.

5. Using the simulated sample paths, estimate the probability of observing (a) no bias, (b) upward bias
and (c) downward bias in the intraday range.6

6. Sort the empirical intraday high-low’s. Based on the estimated probabilities from the previous step,
calculate how many of the intraday ranges are expected to be (a) unbiased, (b) upward biased or
(c) downward biased. Use equation (11) and apply (a) � j = 0, (b) � j = 2 and (c) � j = −2 to adjust for
(b) upward bias and (c) downward bias.

Hence, our estimator has the same form as the estimator proposed in Christensen and Podolskij
(2007) with the difference being that we do not use � = 2 to correct each of the intra-day ranges. Instead
we propose to use

TSRRh�
t = 1

�̃

J∑
j=1

(log Ht,j − log Lt,j − �jω̂)2, (11)

where we use � j = 2 if the j-th intraday range is expected to be biased upward (b). Assuming that the
J intraday ranges are sorted in a descending manner and the estimated probability of intraday ranges
being biased upward is q, then the first Jq intraday ranges are expected to be biased upward. Similarly,
assuming that the probability of an intraday being unbiased is estimated to be v, we  use � j = 0 (a) for
the subsequent Jv intraday ranges and for the remaining7 J(1 − q − v) intraday ranges � j = −2 (c) is
used.8

5 It is important that this estimator is (almost) not affected by microstructure nois. Here we  use the daily range, alternatively
one  can use another (almost) bias-free measure, e.g., the TSRV or the daily squared return.

6 Case (a) occurs when in an intra-day interval the observed high and low are both executed at a bid price (or both being an
ask),  (b) occurs when the observed high is an ask-price and the observed low is a bid-price and (c) occurs when the high is a
bid-price and the low is an ask price.

7 Assuming Jq and Jv are integer.
8 For the statistical properties of the TSRR(h) estimator we refer to Christensen et al. (2009) who obtain consistency using

double asymptotics for the number of intervals and the number of observations per interval. Asymptotically the TSRR and
TSRRh estimators share the same statistical properties when microstructure noise is represented by bid–ask bounce as in (5)
and the number of observations per interval diverges to infinity. The probability of observing upward bias in an intraday range
converges to 1. For the TSRRh estimator this results in � j = 2 for all j = 1, . . .,  J and therefore it becomes equivalent to the TSRR
estimator. The finite sample properties of these volatility estimators in the presence of non-trading and bid–ask bounce are
studied in the following section using several different stochastic volatility diffusions as data generating process.
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3. Monte Carlo simulation

In the following Monte Carlo simulation experiments we  compare ex post volatility estimates using
the (TS)RV and (TS)RR estimators with the newly proposed TSRRh estimator. The estimators are com-
pared in terms of bias, variance and efficiency (or mean squared error). We  simulate the integrated
variance using several stochastic volatility diffusions that were also used in Aït-Sahalia and Mancini
(2008), among others. Returns and integrated volatilities are simulated from a Heston Jump-Diffusion,
a Fractional Ornstein–Uhlenbeck process and a discrete-time log-volatility model. We simulate 1000
trading days of 6.5 hours, where 23,401 prices are simulated per day to match a time step of 1 second.
Subsequently non-trading is implemented by assuming a trade is observed with probability 0.10 such
that on average 2340 ‘clean’ prices are observed during the day. Microstructure noise is implemented
by contaminating the prices with a half-spread of ω = 0.025% on the asset price. Bid and ask prices are
assumed to occur equally likely. In all experiments we use 100 sub-sample grids to calculate TSRV.
For each daily TSRRh estimate 500 simulations are used to estimate the impact of bid–ask bounce for
rank-sorted intraday ranges in order to implement the proposed bias-adjustment as in (11).

3.1. Heston stochastic volatility jump-diffusion

The data generating process (DGP) for returns and volatility under the Heston (1993) stochastic
volatility jump-diffusion model is specified by

dPt =
(

	 − �2
t

2

)
dt + �tdW1,t,

d�2
t = −
(�2

t − ˛)dt + ��tdW2,t + Jtdqt,

with drift parameter 	 = 5%, a long term average volatility  ̨ = 3.5%, and mean reversion parameter

 = 5. The volatility of volatility parameter � = 0.5 facilitates leverage effects as the two Brownian
motions are negatively correlated with � = −0.5. The occurrence of jumps in the volatility process
has distribution qt ∼ Poi(�) and the jump magnitude follows an exponential distribution Jt ∼ Exp(�).
Following Aït-Sahalia and Mancini (2008) we set � = 1/2 and � = 0.0007. Empirical stylized facts are
taken into account by the inclusion of jumps in the volatility process and a leverage effect to allow for
the empirically plausible negative relation between returns and volatility shifts.

3.2. Fractional Ornstein–Uhlenbeck process

Following Aït-Sahalia and Mancini (2008) we  simulate IV using a fractional Brownian motion,

dPt =
(

	 − �2
t

2

)
dt + �tdWt,

d� = −
(�t − ˛)dt + �dWH,t,

where dWt is a Wiener process and dWH,t is a fractional Brownian motion with Hurst index H ∈ (0, 1).
A fractional Brownian motion is a continuous mean zero Gaussian process with stationary increments
and covariance E(WH,tWH,s) = (1/2)(s2H + t2H − |s − t|2H). The covariance structure illustrates that the
increments are positively correlated when (1/2) < H < 1 and exhibit long-memory, while for H = 1/2 the
increments are independent and correspond to a standard Brownian motion. To simulate the fractional
Brownian motion we use the Davies and Harte (1987) algorithm with Hurst index H = 0.7.

3.3. Discrete-time log-volatility model

In many applications the logarithm of volatility is used because the logarithm of (realized) volatility
is empirically found to be closer to a Gaussian distribution (see e.g., Fig. 1 in Andersen et al., 2001). The
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Fig. 1. The graphs show annualized daily volatility estimates for (a) IBM and (b) Zimmer Holdings over the sample period 1/1/2006–12/31/2008 using 5-minute sampling frequencies for
the  two time scales realized range TSRR in (10) and the heuristically adjusted two  time scales realized range TSRRh in (11).
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Table 1
Monte Carlo results.

DGP estimator Heston Jump Diffusion Fractional Browian Motion Discrete log-volatility

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

Sampling frequency: 5 min
RV 0.093 0.253 0.511 0.098 0.075 0.292 0.084 0.075 0.287
TSRV  −0.038 0.170 0.414 −0.023 0.047 0.219 −0.037 0.048 0.222
RR  0.374 0.071 0.460 0.395 0.022 0.422 0.380 0.022 0.408
TSRR  −0.263 0.108 0.421 −0.138 0.024 0.208 −0.151 0.024 0.217
TSRRh −0.239 0.109 0.407 −0.120 0.025 0.199 −0.134 0.025 0.208

Sampling frequency: 30 min
RV 0.011 1.430 1.196 0.017 0.400 0.632 0.000 0.413 0.642
TSRV  −0.202 0.875 0.957 −0.123 0.243 0.509 −0.139 0.249 0.518
RR 0.153 0.340 0.603 0.159 0.097 0.349 0.145 0.100 0.348
TSRR  −0.181 0.344 0.614 −0.100 0.091 0.318 −0.114 0.095 0.328
TSRRh  −0.181 0.343 0.613 −0.098 0.091 0.317 −0.113 0.095 0.327

Sampling frequency: 390 min
RV 0.038 18.666 4.321 0.009 5.362 2.316 0.006 5.494 2.344
TSRV  0.035 18.697 4.324 0.007 5.371 2.317 0.004 5.502 2.346
RR  0.054 3.887 1.972 0.043 1.123 1.061 0.037 1.146 1.071
TSRR  −0.086 3.714 1.929 −0.056 1.061 1.032 −0.062 1.083 1.043
TSRRh −0.097 3.662 1.916 −0.061 1.048 1.025 −0.068 1.070 1.037

Note: The table summarizes the Monte Carlo estimation results for (TS)RV, (TS)RR and TSRRh as ex post volatility estimators.
Volatility and returns are simulated from the Heston Jump-Diffusion, a fractional Brownian Motion and a discrete-time Log-
Volatility Model. The bias, variance and RMSE statistics are based on 1000 sample paths of trading days of 6.5 hours, where
23,401 prices are simulated per day to match a time step of 1 second. For each of the sample paths the calculation of the TSRRh
volatility estimator is based on 500 Monte Carlo simulations that are used for estimating the probabilities of observing bid–ask
noise in the intraday ranges. Non-trading and bid–ask bounce are implemented by setting the probability of observing a trade to
0.10  and using a half-spread of 0.025% on the asset price. Results are reported for sampling frequencies of 5, 30 and 390 minutes,
corresponding with the use of J = 78, 13 and 1 intra-day intervals in the realized volatility and realized range estimators.

discrete time model we use is the model employed in Andersen, Bollerslev, Diebold, and Labys (2003)
and Aït-Sahalia and Mancini (2008). The log daily integrated volatility lt follows an AR(5) process:

lt = 1
2

log(IV t) = �0 +
5∑

i=1

�ilt−id + et, (12)

where IVt is the daily integrated variance and et is white noise. Intraday efficient returns are obtained
using rt =

√
IV tzt with zt ∼ NID(0, 1). For the parameters we use those reported by Aït-Sahalia and

Mancini (2008), that is, �0 = −0.0161, �1 = 0.35, �2 = 0.25, �3 = 0.20, �4 = 0.10, �5 = 0.09 and �e = 0.02.

3.4. Monte Carlo results

Volatility estimation results using Monte Carlo simulations for the three stochastic volatility
models9 discussed above are summarized in Table 1. In all experiments we set the probability of
observing a trade equal to 0.10, which results in 2340 observations per day on average,10 and the half-
spread equal to 0.025% of the asset price. Results are reported for sampling frequencies of 5, 30 and

9 Results for a Brownian motion with constant volatility are similar in the sense that TSRRh improves upon (TS)RV because
of  having a smaller variance leading to a smaller RMSE. The TSRRh also improves upon (TS)RR because of a smaller bias that
comes at the cost of a modest increase in variance. This bias-variance trade-off results in TSRRh having a smaller RMSE than
(TS)RR  as well. Results are available upon request.

10 The trading probability is in line with the results presented in Table 1 in Hansen and Lunde (2006).
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390 minutes, corresponding with J = 78, 13 and 1 intraday intervals in the realized variance and realized
range estimators.11 In the discussion below we  mostly concentrate on the 5-minute frequency.

Under the Heston jump-diffusion the bias for the RV estimator (0.093) is somewhat
smaller than would be expected based on using a half-spread of 0.025% of the asset price
(0.0975 = 2 × 390/5 × 0.025 % 2).12 This is due to the quadratic variation being larger because of jumps in
the volatility process. Also note that the variance of all volatility estimators is considerably larger under
the Heston jump-diffusion DGP than under the fractional Brownian motion and discrete log-volatility
DGPs, which do not incorporate jumps. This is not surprising given that the volatility estimators
considered here are not designed to be jump-robust. In a frictionless setting, the RR estimator has
a substantially (namely five times) smaller variance than the (TS)RV estimators. Under the Heston
jump-diffusion DGP in the presence of bid–ask bounce, non-trading and jumps, we find that at the
5-minute sampling frequency the variance of RR (0.071) is still more than 3 times smaller than the
variance of RV (0.253) and less than half the variance of TSRV (0.170). In terms of RMSE the RR (0.460)
performs better than RV (0.511) but in turn it is outperformed by the TSRV (0.414) because the latter is
approximately unbiased (−0.038). The bias of the RR (0.374) estimator is substantially larger than the
bias in the RV estimator. Bias-correcting the realized range as proposed by Christensen et al. (2009)
successfully reduces the bias from 0.374 to −0.263 at the cost of an increase in variance from 0.071
for RR to 0.108 for TSRR. Despite the reduced bias, the TSRR (0.421) still does not improve upon TSRV
(0.414) in terms of RMSE. Taking into account that not all intraday ranges are upward biased and that
the largest intraday ranges in a day are more likely to be upward biased than the smallest intraday
ranges is exemplified by TSRRh (−0.239) having a smaller bias than TSRR (−0.263). As a result the
RMSE of TSRRh (0.407) is also smaller than the RMSE (0.414) of the unbiased TRSV estimator. At the
30-minute sampling frequency the impact of noise is substantially smaller as expected13 and for this
reason it is optimal to use the RR without bias-correction (although the bias-correction does not do
much harm in the sense that it leads to only a minor increase in RMSE).

Across DGPs we find that using 5-minute intervals to estimate daily volatility outperforms the lower
30-minute and daily sampling frequencies in terms of variance and statistical efficiency. Under the
fractional Brownian motion the TSRV estimator minimizes the bias (−0.023) at the 5-minute sampling
frequency as was the case under the Heston jump-diffusion. Again the RR estimator achieves a smaller
variance than (TS)RV. However, it is also the most biased estimator and for this reason the least efficient
with a RMSE of 0.422. The TSRV (−0.023) successfully reduces the bias of RV (0.098) and achieves an
RMSE of 0.219. Similarly the TSRR is very successful in reducing the bias of RR (0.395) to −0.138
and also has a smaller RMSE (0.208) than the (TS)RV estimators. By using the informational content
contained in the magnitude of the intraday ranges through implementing the TSRRh estimator the
bias is further reduced from −0.138 for TSRR down to −0.120 for TSRRh, which results in TSRRh having
the smallest RMSE (0.199).

For the discrete-time log-volatility process we  find similar results in the sense that at the 5-minute
sampling frequency the TSRV estimator minimizes the bias (−0.037) but has a variance (0.048) that is
inferior to that of the RR (0.022), TSRR (0.024) and TSRRh (0.025) estimators. The TSRRh (−0.134) is less
biased than the TSRR (−0.151) which in turn is less biased than RR (0.380). The result is that, similar
to the results under the Heston Jump-Diffusion and the fractional Brownian motion model, the TSRRh
at the 5-minute sampling frequency achieves the smallest RMSE in the discrete-time log-volatility
model.

4. Empirical application

We  compare the different realized variance and realized range based estimators in an empirical
application involving a relatively liquid and illiquid stock, namely IBM and Zimmer Holdings (ZMH).

11 Note that the frequency of 390 minutes actually boils down to daily sampling, such that the RV estimator reduces to the
squared daily return while the RR estimator is in fact the original Parkinson’s (1980) range estimator.

12 Errors are multiplied with 104 to improve readability.
13 For instance the expected RV bias is now only 0.01625.
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For both stocks we obtain intraday transaction prices and quotes from the TAQ database for the
period 1/1/2006–12/31/2008. The data are cleaned following the procedures documented in Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2009) with the exception that we do not use moving-average
rules to judge the adequacy of observed transactions.14 Using the cleaned data we estimate the bid–ask
spreads, following Roll (1984), to be 2.13 basis points (bps) for IBM and 4.93 bps for ZMH. The daily and
intra-daily variation in bid–ask spreads through our sample period is, however, quite substantial. This
particularly applies to the financial market turmoil in 2008. The trading probabilities are estimated to
be 0.084 for ZMH  and 0.201 for IBM on a 1-second time-grid.15

Fig. 1 plots annualized volatility estimates for IBM and ZMH. The sample period 2006–2008 is inter-
esting since it contains the relatively tranquil period before the 2008 crisis, the height of the financial
market turmoil in the second half of 2008 when stock market volatility peaked and the reversion
towards normal volatility levels at the end of 2008. Consistent with the simulation results, the two
time scales realized range and the heuristically adjusted two  time scales realized range render very
similar volatility dynamics. Since the heuristic adjustment does not always assume that an intraday
range is upward biased, the empirical volatility estimates are slightly higher than the two time scales
realized range volatility estimates. Note that these differences are more pronounced when volatility
is relatively high (2008) and the stock is relatively illiquid (ZMH), as expected based on the discussion
in Section 2.3 and the simulation results in Section 3.

We evaluate the out-of-sample forecasting performance of the heuristically bias-adjusted RR,
(‘TS)RV and (TS)RR estimators. We  adopt the commonly used 5-minute sampling frequency, moti-
vated by the Monte-Carlo results described in Section 3. For each realized measure we  use an AR(1)
model (with intercept) to construct one day ahead volatility forecasts. We  use a rolling window of one
year to estimate the AR(1) coefficients, such that out-of-sample forecasts can be considered for the
period 1/1/2007–12/31/2008. Note that we  focus on volatility forecasts in this empirical application,
in contrast to the volatility estimates in the Monte Carlo simulation. In Section 3 we illustrated that for
several stochastic volatility processes the TSRRh is a highly efficient volatility estimator in the pres-
ence of bid–ask bounce and non-trading. Since for empirical data the integrated variance is unknown
we compare the realized measures in terms of their out-of-sample forecast performance.

We use Mincer–Zarnowitz and encompassing regressions to evaluate the competing forecasts.
Following Aït-Sahalia and Mancini (2008) we use the two time scales realized variance TSRV as the ex
post volatility measure. Hence, the Mincer–Zarnowitz regressions are of the form

TSRVt =  ̨ + ˇxt|t−1 + εt, (13)

where xt|t−1 is the volatility forecast for day t conditional on the data available at day t − 1.16 In the
encompassing regressions the realizations are regressed on two  competing forecasts (being, e.g., the
realized range and realized volatility forecast),

TSRVt =  ̨ + ˇ1x1,t|t−1 + ˇ2x2,t|t−1 + εt. (14)

14 Transactions and quotes are cleaned as follows: 1: Delete observations not originating from the NYSE 2: Delete all implau-
sible data, e.g., negative quotes/prices those equal to 0, 0.01 or, e.g., 999.9., observations associated with a negative spread
(ask<bid), etc. 3: Delete observations with sale condition other than “E”/“F”. 4: Delete observations with time stamps outside
the  9:30–16:00 hours. 5: Delete all corrected observations (corr /=  0) 6: When multiple transaction prices have the same time
stamp use the median, do the same for bid-quotes and ask-quotes. 7: Delete transactions that traded more than a spread size
outside the bid–ask spread.

15 For IBM the number of observed transactions before data cleaning procedures is substantially larger with 29,923 observa-
tions  per day. We  follow the convention to limit ourselves to the 1-second time grid, as described in the footnote above, we  take
the  median of those transactions and this dramatically reduces the resulting number of transactions that are used to estimate
the  volatility.

16 The joint null hypothesis for x being unbiased and efficient is given by H0 :  ̨ = 0 and  ̌ = 1.
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Table 2
Mincer–Zarnowitz regressions.

RV TSRV RR TSRR TSRRh RV TSRV RR TSRR TSRRh

Panel A: IBM 5m Panel C: IBM 5m with outlier correction
˛  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
t(˛  = 0) 1.311 1.471 1.531 1.523 1.398 1.494 1.642 1.668 1.660 1.539
ˇ 1.231 1.222 1.010 1.196 0.914 1.164 1.147 0.946 1.123 0.858
t(ˇ = 1) 4.466 3.607 0.181 3.187 −1.651 3.097 2.146 −0.657 1.381 −1.851
R2 0.496 0.508 0.509 0.500 0.510 0.685 0.687 0.686 0.681 0.689

Panel B: ZMH  5m Panel D: ZMH 5m with outlier correction
˛  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
t(˛ = 0) −0.928 −0.879 −0.242 −1.022 −0.988 −1.076 −1.030 −0.372 −1.230 −1.150
ˇ  1.736 1.820 1.562 2.054 1.250 1.691 1.779 1.522 2.003 1.220
t(ˇ  = 1) 3.868 3.287 3.929 5.129 1.762 4.094 3.389 4.199 5.528 1.716
R2 0.331 0.328 0.335 0.328 0.333 0.433 0.432 0.437 0.430 0.436

Note: The table summarizes the results of Mincer–Zarnowitz forecast regressions with and without an outlier-correction applied
to  10/10/2008. The rows t(  ̨ = 0) and t(  ̌ = 1) show t-statistics for the null hypothesis H0 :  ̨ = 0 and H0 :  ̌ = 1, respectively. The
(TS)RV, (TS)RR and TSRRh forecasts are generated using 5-minute sampling frequencies and a AR(1) process that is dynamically
re-estimated using a moving window with length 250 days. The imperfect volatility proxy used is the TSRV at the 5-minute
sampling frequency.

The regression in (14) is a pair-wise forecast encompassing regression in the standard form.17 For
both regressions we report the coefficient estimates and their corresponding t-statistics based on
Newey–West heteroskedasticity and autocorrelation consistent (HAC) standard errors.

4.1. Empirical results

Table 2 summarizes the Mincer–Zarnowitz regression results for volatility forecasts based on the
(TS)RV, (TS)RR and TSRRh estimators. For both stocks we find that the differences in forecast accuracy
are small, which is due to the high correlation between all the volatility forecasts considered. For the
relatively liquid IBM stock, we find that the realized variance forecasts have a Mincer–Zarnowitz R2

of 49.6%. The two-time-scales realized volatility achieves an R2 of 50.8%. It slightly underperforms the
unadjusted realized range forecasts, which explain 50.9% of the variation in the ex post TSRV estimates.
This finding is quite remarkable, in the sense that the TSRV serves as proxy for the integrated variance
in the Mincer–Zarnowitz regressions. Forecasts based on the bias-adjusted realized range proposed by
Christensen et al. (2009) achieve an R2 of 50%, hence the bias-adjusted realized range performs slightly
worse compared to its unadjusted counterpart. Consistent with the volatility estimation results in the
Monte Carlo simulations, the empirical forecasts based on the heuristically adjusted realized range
outperform the forecasts based on other estimators as the TSRRh give an R2 of 51.0%.

For the relatively illiquid Zimmer Holdings (ZMH) stock, we find that the R2’s are substantially lower
than for IBM volatility forecasts. Interestingly, the advantage of bias-correction disappears almost
completely. This may  be due to the fact that most corrections, in contrast to TSRR(h), are derived under
continuous-time assumptions that do not hold for illiquid stocks. For example, the standard realized
volatility has a Mincer–Zarnowitz R2 of 33.1%, being somewhat higher than that of the TSRV (32.8%).
Again we expected the latter to actually have a small advantage since it is the ex post quantity used
to evaluate the forecasts. Unreported simulation results indicate that TSRV does not outperform the
standard RV estimator due to the noise estimate RVN/2N  being inaccurate when N is small in practice,
whereas in the theory outlined by Zhang et al. (2005) it is assumed that N→ ∞.  When N is large we
can assume that the volatility signal in RVN is dwarfed by the noise signal. It is easy to see, however,
that when N is small the volatility signal in RVN increases. For this reason it causes a downward bias

17 The null hypothesis of forecasts x1 encompassing forecasts x2 is given by H0 : ˇ1 = 1 ∧ ˇ2 = 0 and the alternative hypothesis
is  H1 : ˇ1 /=  1 ∨ ˇ2 /=  0. Similarly the competing non-nested null hypothesis of forecasts x2 encompassing forecasts x1 is given
by  H0 : ˇ2 = 1 ∧ ˇ1 = 0 and the alternative hypothesis is H1 : ˇ2 /= 1 ∨ ˇ1 /= 0.
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due to overcorrecting for noise.18 The (TS)RV and TSRR forecasts are outperformed by the unadjusted
realized range (R2 = 33.5 %) and the novel heuristic adjustment (R2 = 33.3%). The bid–ask adjustment of
Christensen et al. (2009) is at par with the two-time-scales estimator (32.8%). Hence, for the relatively
illiquid ZMH  stock we find that bias-adjustments do not pay-off in terms of forecasting performance.
In this case it is better to just use the RR volatility estimator without applying any bias-correction.

Table 3 summarizes the results for the forecast encompassing regressions in (14). Here we com-
pare directly with each other the AR(1) forecasts of the various volatility measures at the 5-minute
frequency. First consider the results for IBM shown in Panel A. We find that the forecasts obtained
from the TSRV estimator encompass those from the unadjusted RV estimator, as expected based
on the results in Aït-Sahalia and Mancini (2008). The coefficient on TSRV (1.570) is not significantly
different from one whereas the coefficient on RV (−0.357) is not significantly different from zero.
Similarly, the unadjusted RR estimator encompasses the standard RV with coefficients 1.090 and
−0.100, respectively, being very close to the values under the null hypothesis. Adding TSRV or RR
forecasts to unadjusted RV forecasts results in the same R2 of 50.9%. When we  add the forecasts
based on the TSRR estimator to RV forecasts we  find that a lower R2 at 50.1% and both coefficients are
statistically insignificant, indicating that neither of the forecasts encompasses the either. However,
adding the forecasts based on the heuristic bias-adjustment for realized range (TSRRh) to unadjusted
RV forecasts actually improves the R2 to 51.0% with its coefficient being 0.992 and the coefficient on
RV being −0.107, again very close to the values under the null hypothesis of encompassing.

In addition we report regression results for all other pairwise forecast combinations. For the various
combinations of TSRV, RR, TSRR(h), we find either statistically insignificant coefficients for both fore-
casts, or significant coefficients of similar magnitude but with opposite signs. In both situations, which
arise due to the strong correlation between the forecasts, we typically reject that either of the forecasts
encompasses the other. Across the 10 possible pairs of forecasts the best possible combination is that
of RR and TSRR forecasts with an R2 of 52.9%.

A similar analysis for the relatively illiquid stock (ZMH) in panel B illustrates that in contrast to
IBM now the RV forecasts encompass the TSRV forecasts. The RV forecasts also reduce the coeffi-
cient on TSRR (0.021) to almost zero. Hence, whereas the two  times scale bias-adjustment seems
to work well for the relatively liquid IBM stock, this is not the case for the illiquid ZMH  data.
We find similar results when we add the TSRV or TSRR to RR forecasts, that is, the unadjusted
RR forecasts are better than the TSRV and TSRR. In the direct competition between TSRV or TSRR
and TSRRh we find that TSRRh forecasts encompass TSRV forecasts with TSRRh having a statisti-
cally significant coefficient of 1.288 whereas the coefficient on TSRV is negative and insignificant.
Similar results are found after applying an outlier correction to October 10, 2008, see panel D.
For the out-of-sample period 2007–2008, the TSRRh forecasts are preferred over TSRR and TSRV
forecasts.

4.2. Outlier correction

During our out-of-sample period, which contains the height of the recent financial crisis and the
beginning of its aftermath, several trading days exhibited extremely high volatility and can be regarded
as outliers. It is interesting to analyze how an outlier correction would influence the results. There is
a vast literature on how to adjust for outliers, such as truncating values that are more than several
standard deviations away from the (local) average of the volatility process, incorporating dummy
variables, etc. Because there are several ways to go and we do not want to alter the empirical data too
much, we only incorporate a dummy  for October 10, 2008 in the Mincer–Zarnowitz and encompassing
regression. Most estimators take the most extreme value on this date; for example, the RV is more
than 8 standard deviations away from the unconditional average.

18 See e.g., also Zhang et al. (2005) or Aït-Sahalia and Mancini (2008) who report a very small negative bias in TSRV in a setting
where 23,401 transactions per day are observed, if we move to more realistic settings and the number of observations decreases,
this  negative bias becomes more pronounced. Of course, using a lower sampling frequency for TSRV could reduce the impact
of  non-trading.
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Table 3
Forecast encompassing regressions.

RV &TSRV RV &RR RV &TSRR RV &TSRRh TSRV &RR TSRV &TSRR TSRV &TSRRh RR &TSRR RR &TSRRh TSRR &TSRRh

Panel A: IBM 5m
ˇ1 −0.357 −0.100 0.349 −0.107 0.546 1.633 0.486 6.143 −0.588 −3.219
s.e.  0.422 0.746 0.948 0.738 0.912 1.551 0.854 1.256 2.262 1.380
ˇ2 1.570 1.090 0.861 0.992 0.562 −0.408 0.554 −6.139 1.446 3.346
s.e.  0.449 0.644 0.942 0.580 0.767 1.517 0.658 1.592 2.066 1.004
R2 0.509 0.509 0.501 0.510 0.510 0.509 0.511 0.529 0.510 0.521

Panel  B: ZMH 5m
ˇ1 1.652 0.254 1.719 0.522 −0.259 0.910 −0.056 5.556 1.078 −0.634
s.e.  1.058 0.777 0.857 0.839 0.918 0.763 0.767 0.745 1.018 1.510
ˇ2 0.090 1.336 0.021 0.878 1.780 1.035 1.288 −5.319 0.391 1.630
s.e.  1.071 0.576 0.875 0.576 0.734 0.766 0.546 0.977 0.873 0.968
R2 0.331 0.335 0.331 0.334 0.335 0.329 0.333 0.342 0.335 0.334

Panel  C: IBM 5m with outlier correction
ˇ1 0.387 0.500 0.908 0.371 0.652 1.449 0.453 4.370 −2.669 −2.780
s.e.  0.593 0.901 1.098 0.841 0.779 1.246 0.652 0.990 2.691 1.522
ˇ2 0.769 0.545 0.250 0.588 0.412 −0.300 0.522 −4.093 3.270 2.959
s.e.  0.620 0.780 1.106 0.667 0.690 1.261 0.536 1.250 2.406 1.091
R2 0.688 0.688 0.685 0.690 0.688 0.687 0.690 0.695 0.691 0.697

Panel  D: ZMH  5m with outlier correction
ˇ1 1.160 0.177 1.514 0.245 0.059 1.147 0.085 5.165 0.815 −0.815
s.e.  0.738 0.691 0.710 0.736 0.787 0.659 0.685 0.777 1.024 1.506
ˇ2 0.563 1.365 0.213 1.046 1.472 0.719 1.162 −4.850 0.570 1.709
s.e.  0.792 0.519 0.703 0.535 0.590 0.598 0.478 1.037 0.886 0.973
R2 0.434 0.437 0.433 0.437 0.437 0.432 0.436 0.443 0.437 0.437

Note: The table summarizes the results for the forecast encompassing regressions in (14). For the (TS)RV, (TS)RR and TSRRh volatility estimators based on the 5-minute frequency, forecasts
are  generated using an AR(1) model that is dynamically re-estimated using a moving window with length 250 days. These forecasts are compared pairwise by regressing the imperfect
volatility proxy TSRV sampled at the 5-minute frequency on the two  forecasts under consideration. The left upper segment labeled RV & TSRV, for example, shows the coefficients of the
RV  forecasts (ˇ1) and TSRV forecasts (ˇ2) with their respective (HAC) standard errors (s.e.), as well as the regression R2. Panels A and B show the results for IBM and ZMH, respectively. In
panels  C and D we  repeat the analysis with an outlier correction applied to 10/10/2008.



550 K. Bannouh et al. / North American Journal of Economics and Finance 26 (2013) 535– 551

The (unreported) Newey–West t-statistic for the dummy  variable is larger than 70 for all estima-
tors in the Mincer–Zarnowitz regressions. For IBM, the t-statistic is even equal to 145 when using
RV forecasts. Comparing panels A and B in Table 2 with panels C and D, we  observe a substantial
increase in the R2’s for both stocks by explicitly accounting for this outlier. For IBM, on average
the R2 goes up by 18.1% in absolute terms and 35.8% in relative terms; for ZMH  the correspond-
ing increases are 10.3% and 31.0%, respectively. Note that the ranking of the forecasts apparently is
not affected by the extreme observation on October 10, 2008. If we rank the forecasts based on the
Mincer–Zarnowitz regression R2, for IBM the TSRRh (R2 = 68.9 %) forecasts still slightly outperform
(TS)RV and (TS)RR forecasts. Similarly, for ZMH  we  again find that the unadjusted RR has the largest
R2 being 43.7% and if we insist on using a bias-adjusted estimator the TSRRh achieves the best result
with R2 = 43.6%.

For the encompassing regressions we find that for the IBM forecasts the TSRRh forecasts are not
rendered obsolete by any of the other forecasts. The ZMH  results illustrate that in the encompassing
regressions with outlier correction the TSRRh performs satisfactorily, as it outperforms the (TS)RV and
TSRR and it competes with the unadjusted realized range. Hence, including an outlier dummy  for the
most severe outlier in our sample does not alter the main conclusions.

5. Conclusion

We  have proposed a novel heuristic bias-correction for realized range-based volatility estimates.
For the heuristic adjustment we use three inputs that are easily and accurately estimated from high-
frequency data. The needed inputs are estimates of the following quantities: (i) the daily range that
is unaffected by noise, (ii) the non-trading probability and (iii) the half-spread. Using these inputs we
simulate a geometric Brownian motion with variance (i) and implement noise with settings (ii) and
(iii). For the simulated Brownian motions we keep count of how many intraday ranges are upward
biased (most likely), unbiased or downward biased (least likely). By averaging over simulation runs we
estimate probabilities for the three cases that can be attached to the ranks of sorted intraday ranges.
We apply these probability ranks to the sorted vector of initial high-low ranges for which we are now
able to indicate whether an intraday range is expected to be upward biased, unbiased or downward
biased.

Using three stochastic volatility models for the integrated volatility, which can include jumps,
leverage effects and dependence in the increments of a Brownian motion, we find that in the presence
of bid–ask bounce and non-trading, volatility estimates based on the new heuristically bias-adjusted
realized range estimator (TSRRh) are more efficient than estimates based on the realized variance,
realized range and their two time scales adjusted counterparts.

In an empirical setting we evaluated out-of-sample volatility forecasts using Mincer–Zarnowitz and
forecast encompassing regressions. For the relatively liquid IBM stock we find that the heuristically
bias-adjusted realized range estimator (TSRRh) compares favorably to forecasts based on the (TS)RV
and (TS)RR estimators. For the relatively illiquid Zimmer Holdings stock (ZMH), we  find that TSRRh
improves upon (TS)RV and TSRR forecasts and is on par with the RR estimator.

The presence of bid–ask bounce (among other microstructure frictions) leads to an upward bias in
the realized range volatility estimator. Assuming that each intraday range suffers from this upward
bias, as in the TSRR estimator of Christensen et al. (2009) is not appropriate, in particular for assets
that do not trade frequently or that have relatively small noise-to-volatility ratios. This implies an
‘overcorrection’ for microstructure noise frictions that can lead to underestimation of volatilities and
risk measures such as Value-at-Risk, which use volatility estimates as inputs. The heuristic adjustment
procedure proposed in this paper avoids this issue. Since the procedure is based on a more realistic
assessment of the bias in individual intraday ranges, it leads to a smaller bias-adjustment and therefore
higher volatility estimates.
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