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Abstract

Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages
and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found
in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin
internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this
phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that
myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and
inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor
signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an
increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory
mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor b. Our data show that myelin
modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion
progression in demyelinating diseases such as multiple sclerosis.
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Introduction

One of the pathological hallmarks of multiple sclerosis (MS) is

loss of the nerve-insulating myelin sheath, which contributes to the

myriad of symptoms observed in individuals with MS. Infiltrated

macrophages and resident microglia are considered to be the

primary effector cells in MS and its animal model, experimental

autoimmune encephalomyelitis (EAE) [1–3]. Together with

activated autoreactive lymphocytes they orchestrate the immuno-

pathological processes causing demyelination and concomitant

axonal degeneration [4–7]. In addition to the secretion of cytotoxic

cytokines or soluble toxic mediators [8–13], microglia and

infiltrated macrophages phagocytose and degrade myelin [14–

22]. Although presumably detrimental when considering degener-

ation of intact myelin, clearance of myelin debris has also been

reported to be a prerequisite for axonal remyelination [23–25].

Recently, macrophages, microglia and dendritic cells have been

described to adopt an altered phenotype following myelin

phagocytosis. Nonetheless, the effect myelin has on the inflam-

matory state of these cells remains controversial. Several studies

have reported, for instance, a neuroinflammatory phenotype of

macrophages and microglia after myelin internalization, charac-

terized by an increased production of pro-inflammatory and toxic

mediators [14–16,20]. In contrast, other studies describe that

monocyte-derived macrophages, peritoneal macrophages, microg-

lia and dendritic cells obtain anti-inflammatory characteristics

following internalization of myelin [17–19,22,26].

This study aims to determine the phenotype of myelin-

phagocytosing macrophages (mye-macrophages) in a pro-inflam-

matory environment, similar to which they are exposed to in the

parenchyme and perivascular spaces during active demyelination

in MS [27–29]. Microarray analysis discovered 676 differentially

regulated genes in mye-macrophages compared to control

macrophages, both treated with IFNc and IL-1b. Gene ontology

and pathway mapping tools demonstrated an overrepresentation

of genes in pathways involved in proliferation, chemotaxis,
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phagocytosis, inflammation, lipid metabolism and liver X receptor

(LXR) signaling. Quantitative PCR validated that several genes

involved in lipid metabolism and LXR signaling were differentially

regulated in mye-macrophages. These alterations in gene expres-

sion have functional consequences as mye-macrophages showed

an increased efflux of cholesterol. LXR activation has been

described to increase the expression of genes involved in lipid

metabolism and to suppress inflammation related genes in

macrophages. We show that myelin suppresses the macrophage-

mediated production of the pro-inflammatory mediator IL-6 by

activating the liver X receptor b-isoform. These results indicate

that myelin possesses functional ligands capable of activating

LXRs, hereby affecting the phenotype of macrophages.

Methods

Animals
Wistar rats were purchased from Harlan Netherlands B.V.

(Horst, The Netherlands). Wild-type, LXRa-KO, LXRb-KO and

LXRab-KO mice have been described previously [30]. Animals

were housed in the animal facility of the Biomedical Research

Institute of Hasselt University. Experiments were conducted in

accordance with institutional guidelines and were approved by the

ethical committee for animal experiments of Hasselt University.

Myelin Isolation
Myelin was purified from rat and mouse brain tissue by means

of density-gradient centrifugation, as described previously [31].

Myelin protein concentration was determined by using the BCA

protein assay kit (Thermo Fisher Scientific, Erembodegem,

Belgium). Endotoxin content was determined using the Chromo-

genic Limulus Amebocyte Lysate assay kit (Genscript Incorpera-

tion, Aachen, Germany). Isolated myelin contained a neglectable

amount of endotoxin (#1.861023 pg/mg myelin).

Cell Culture
Resident peritoneal macrophages were obtained by peritoneal

lavage using ice-cold PBS (Lonza, Vervier, Belgium) supplemented

with 5 mM EDTA (VWR, Leuven, Belgium). Peritoneal exudate

cells were cultured for 2 hours in RPMI 1640 medium (Invitrogen,

Merelbeke, Belgium). After a 2 hour incubation at 37uC with 5%

CO2, non-adherent cells were washed away. Remaining cells were

.95% macrophages [32].

For microarray analysis isolated macrophages were seeded in

flat-bottom 12-well plates (16106 cells/ml) in RPMI 1640 medium

supplemented with 50 U/ml streptomycin (Invitrogen), 50 U/ml

streptomycin (Invitrogen) and 10% FCS (Hyclone, Erembodegem,

Belgium), and treated with 100 mg/ml of isolated myelin (n = 5) or

left untreated (n = 5). Following a three day culture, myelin was

removed by washing twice with RPMI 1640 medium at 37uC.

Subsequently, cells were treated with 100 ng/ml IFNc and IL-1b
(Preprotech, London, UK) for 9 hours. For validation experiments

isolated macrophages were treated for 24 or 48 hours with

100 mg/ml of isolated myelin or 10 mM T0901317 (T09; Cayman

Chemicals, Huissen, The Netherlands).

RNA Isolation
Total RNA was prepared using the RNeasy mini kit (Qiagen,

Venlo, The Netherlands), according to the manufacturer’s

instructions. The RNA concentration and quality was determined

with a NanoDrop spectrophotometer (Isogen Life Science,

IJsselstein, The Netherlands).

Microarray Analysis
RNA was labeled and hybridized to Affymetrix rat 230–2.0

GeneChips (Affymetrix, UK) containing 31000 probe sets which

analyze the expression level of over 30000 transcripts and variants

from over 28000 well-substantiated rat genes. Hybridized chips

were stained, washed and scanned with GeneChip Scanner 3000.

All steps were carried out according to the standard Affymetrix

protocols.

Raw Affymetrix CEL files from five replicates for each

condition were collected. Bioconductor packages running under

the R platform were used to process raw data [33]. By using the

affy package [34], raw data were pre-processed to obtain RMA

expression values [35]. Variance-based non-specific filtering was

performed using the genefilter package to remove 50% of the

probe sets, corresponding to those exhibiting the smallest

variations in expression across the samples. Filtered genes that

are differentially expressed between the two conditions were

identified using unpaired two-sample T test. All data are MIAME

compliant and the raw data have been deposited in NCBI’s Gene

Expression Omnibus [36], accessible through GEO series

accession number GSE34811.

The Database for Annotation, Visualization and Integrated

Discovery (DAVID, http://david.abcc.ncifcrf.gov/) was used to

determine enriched molecular functions/biological processes (ease

score ,0.01) and KEGG-pathways (ease score ,0.1) in both the

up- and downregulated gene pool [37]. DAVID utilizes a modified

Fisher’s exact test to measure the gene enrichment in annotation

terms (EASE score). In parallel, gene-pools were analyzed through

the use of Ingenuity Pathway Analysis (IPA, IngenuityH Systems,

www.ingenuity.com). Overrepresented biological functions and

canonical pathways with a Fisher exact p-value of ,0.02 were

considered significant. Overlapping functional categories and

related genes in the output of both pathway analysis tools were

utilized for further functional characterization.

Quantitative PCR
RNA was converted to cDNA using the reverse transcription

system (Promega, Leuven, Belgium). In brief, RNA was supple-

mented with MgCl2 (25 mM), RTase buffer (106), DNTP mixture

(10 mM); RNasin (20–40 U/ml); AMV RTase (20 U/ml) Oligo(dt)

15 primer and nuclease free water. The reverse transcription

reaction was performed on 42uC for 60 minutes, 95uC for 5

minutes, using the iCYCLER (Biorad Benchmark). Quantitative

PCR was conducted on a 7500 fast detection system (Applied

biosystems, Gaasbeek, Belgium) using universal cycling conditions

(10 min 95uC, 40 cycles of 15 s at 95uC and 60 s at 60uC). The

PCR reaction consisted of fast SYBR green master mix (Applied

biosystems), 10 mM of forward and reverse primers, RNase free

water and 12.5 ng template cDNA in a total reaction volume of

10 ml. PCR products were loaded on 1.5% agarose gels to confirm

specificity of amplification and the absence of primer dimer

formation. Relative quantification of gene expression was accom-

plished by using the comparative Ct method. Data were

normalized to the most stable reference genes, as previously

described [38,39]. In our experimental setup, geNorm identified

PGK1 and 18S as the most stable combination of reference genes

with an identical M-value of 0.09 (data not shown). Additionally,

by analyzing the pairwise variation value, Vn/n+1, we demonstrat-

ed that in our data set two reference genes were sufficient for

normalization, since inclusion of an additional reference gene

increases the pairwise variation value (data not shown). Primers

were chosen according to literature or designed using Primer-

Express (http://www.ncbi.nlm.nih.gov/tools/primer-blast). De-

tails of primers used are shown in table S1.

LXR Activation in Myelin-Phagocytosing Macrophages
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Cholesterol Efflux Assay
Following isolation, macrophages were seeded in 24-well plates

and incubated for 48 hours with 0.5 mCi/ml 1,2- [3H] cholesterol

(GE Healthcare, UK). Next, cells were washed and treated with

myelin or left untreated. Following 24 hours incubation, cells were

washed with PBS, after which RPMI-1640 supplemented with

penicillin/streptomycin and 50 mg/ml HDL (VWR) was added for

6 hours. Cholesterol efflux was analyzed using a b-plate liquid

scintillation counter (Wallac, Turku, Finland). In addition,

cholesterol efflux was determined using the Amplex Red

Cholesterol Assay Kit (Invitrogen), according the manufacturer’s

instructions.

Nitrite Formation and IL-6 Production
Culture supernatants of rat or mouse macrophages treated for

24, 48 or 72 hours with 100 mg/ml myelin or 10 mM T09 were

collected after 18 hour stimulation with 100 ng/ml LPS (Sigma-

Aldrich, Bornem, Belgium) or 100 ng/ml IFNc/IL-1b (Prepro-

tech). Release of NO and IL-6 was determined using a griess

reagent system (Promega) and an IL-6 ELISA (R&D systems,

Abingdon, UK) respectively.

Statistical Analysis
Data were statistically analyzed using GraphPad Prism for

windows (version 4.03) and are reported as mean6SEM.

D’Agostino and Pearson omnibus normality test was used to test

normal distribution. An ANOVA or two-tailed unpaired student

T-test (with Welch’s correction if necessary) was used for normally

distributed data sets. The Kruskal-Wallis or Mann-Whitney

analysis was used for data sets which did not pass normality.

*P,0,05, **P,0,01 and ***P,0,001.

Results

Differentially Regulated Genes, Biological Processes and
Pathways in Mye-macrophages

The transcriptional events, associated with myelin phagocytosis

by macrophages in a pro-inflammatory environment, were

investigated using Affymetrix rat 230–2.0 GeneChips. Non-

phagocytosing macrophages stimulated with IFNc and IL-1b
were used as control cells. The expression levels of individual genes

were compared between groups using Bioconductor packages

running under the R platform (see methods for details).

Differentially expressed genes, their p-values and fold changes

are listed in table 1 (complete list in table S2). Employing the

cutoffs described in the methods section, the expression of 676

genes was altered, from which 280 genes were upregulated and

396 were downregulated.

To investigate the biological interactions of the genes identified

in our screen, differentially expressed genes were further analyzed

using pathway analysis software. IPA was used to determine

overrepresented biological functions and canonical pathways

within the up- and downregulated genes. Respectively 7 and 15

overrepresented canonical pathways were identified in the up- and

downregulated gene pool (table 2). Canonical pathways in the

upregulated gene pool included: aminosugar metabolism

(p = 0.0002, genes: GCK, HEXB, PDE7B, PDE7A, PDE8B and

TULP2), peroxisome proliferator-activated receptor (PPAR) sig-

naling (p = 0.004, genes: FOS, HSP90AB1, PDGFRB, RRAS2

and RXRa), complement system (p = 0.007, genes: C1QA, CFH

and C8A), LXR/retinoid X receptor (RXR) activation (p = 0.009,

genes: ABCG1, APOA1, RXRa and RXRc) and cyclic adenosine

monophosphate (cAMP) mediated signaling (p = 0.01, genes:

CHRM1, HTR6, PDE7B, PDE7A, PDE8B, PKIA and TULP2).

Overrepresented pathways in the downregulated gene pool

included: p53 signaling (p = 0.0009, genes: CCND2, CDKN1A,

HDAC1, HIPK2, MDM2, MED1 and PIK3C2A), mammalian

target of rapamycin (mTOR) signaling (p = 0.005, genes:

AKT1S1, EIF4A2, FNBP1, PDPK1, PIK3C2A, RPS6KA1,

RPS6KA5 and STK11), cell cycle checkpoint regulation

(p = 0.008, genes: CCNB1, CDKN1A, MDM2 and RPS6KA1),

ciliary neurotrophic factor (CNTF) signaling (p = 0.01, genes:

IL6ST, PIK3C2A, RPS6KA1 and RPS6KA5), ras homolog gene

family member A (RhoA) signaling (p = 0.01, genes: ARHGAP5,

GRLF1, MYLPF, PPP1R12A, RDX and ROCK2) and IL-8

signaling (p = 0.01, genes: ANGPT2, CCND2, FNBP1, GNAI2,

IRAK1, PAK2, PIK3C2A and ROCK2). In concordance, IPA

identified significantly overrepresented molecular and cellular

functions related to these canonical pathways (table 2).

For comparison, data were additionally analyzed with DAVID

(table S3). Like IPA, DAVID identified genes functionally

clustered in various categories of KEGG pathways, biological

processes and molecular functions. Using the cutoffs described in

the methods section, DAVID identified similar enriched pathways

and biological processes as IPA.

The 9-fold upregulation of myelin basic protein (MBP) was not

due to RNA contamination of myelin, since added myelin

contained a negligible amount of RNA (data not shown). Golli-

MBP immunoreactivity has been reported in microglia and central

nervous system (CNS) infiltrating macrophages in EAE affected

animals [40].

Quantitative PCR Validation of Differentially Expressed
Genes

The microarray data demonstrate that there is an overrepre-

sentation of genes in processes like lipid-metabolism, LXR/PPAR

signaling and cholesterol efflux in mye-macrophages. This suggests

that myelin activates LXRs and/or PPARs in macrophages,

hereby increasing the expression of response genes which are

involved in lipid metabolism and cholesterol efflux. To confirm the

capacity of myelin to act as an activator of LXR/PPAR signaling,

expression of several LXR/PPAR regulated and related genes, like

ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1),

RXRa/b/c and stearyl-CoA desaturase 1/2 (SCD1/SCD2), was

validated by means of qPCR (figure 1). All genes were found to be

regulated in a similar manner as in the microarray analysis.

Findings were confirmed by additional qPCR experiments using

independent samples (data not shown). These results demonstrate

that myelin-derived lipids induce the expression of LXR/PPAR

response genes.

Mye-macrophages have an Increased Capacity to
Dispose Intracellular Cholesterol

ATP-binding cassette transporter A1 and G1 (ABCA1/ABCG1)

are pivotal in facilitating reverse cholesterol transport. They

mediate the transfer of intracellular cholesterol and phospholipids

to lipid-poor apolipoproteins and mature high-density lipoprotein

(HDL) [41–45]. As mye-macrophages showed an increased

expression of both transporters, we determined whether mye-

macrophages are more potent in disposing intracellular cholesterol

than control macrophages. As expected, mye-macrophages display

an increased cholesterol efflux when HDL is used as an acceptor

(figure 2). Similar results were obtained when using the Amplex

Red Cholesterol Assay Kit, which measures both free cholesterol

and cholesterylesters (data not shown). Collectively, these results

show that the increased expression of genes involved in cholesterol

LXR Activation in Myelin-Phagocytosing Macrophages
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metabolism has functional consequences, as mye-macrophages

display an increased capacity to dispose intracellular cholesterol.
Myelin Alters the Macrophage Phenotype by Activating
the LXRb Isoform

In addition to modulating cholesterol metabolism, LXRs have

been described to negatively regulate macrophage inflammatory

gene expression [46–50]. Since myelin is a rich source of

cholesterol and cholesterol metabolites are natural ligands for

Table 1. Top 20 up- and downregulated genes in mye-macrophages.

Affy ID Gene name Gene symbol FC P value

Upregulated genes

1368810_a_at Myelin basic protein MBP 9.12 0.001

1367668_a_at Stearoyl-CoA desaturase (delta-9-desaturase) Scd 4.02 0.027

1373098_at Breast carcinoma amplified sequence 1 BCAS1 3.81 0.007

1368103_at ATP-binding cassette, sub-family G, member 1 ABCG1 2.40 0.045

1375077_at N/A N/A 1.77 0.009

1376652_at Complement component 1, q subcomponent C1qa 1.75 0.039

1382153_at C-type lectin, superfamily member 6 Clescf6 1.64 0.046

1398262_at Phosphoribosyl pyrophosphate synthetase 2 Prps2 1.63 0.004

1391665_at Fibroblast growth factor 7 Fgf7 1.53 0.009

1382431_at ATP-binding cassette, sub-family A, member 1 ABCA1 1.52 0.023

1384534_at GRAM domain containing 3 GRAMD3 1.48 0.038

1380245_at N/A N/A 1.45 0.024

1394673_at Similar to Myeloid cell surface antigen CD33 LOC687856 1.44 0.002

1370423_at Guanine nucleotide binding protein, alpha 15 GNA15 1.44 0.029

1373150_at Catechol-O-methyltransferase domain containing 1 COMTD1 1.44 0.036

1375932_at Phosphoribosyl pyrophosphate synthetase 2 Prps2 1.43 0.008

1372818_at Collectin sub-family member 12 Colec12 1.41 0.043

1376155_at Family with sequence similarity 151, member B FAM151B 1.41 0.032

1374746_at Ab1-152 LOC500877 1.41 0.008

1390987_at N/A N/A 1.40 0.021

Downregulated genes

1392838_at Similar to CG13957-PA RGD1309995 0.47 0.016

1369067_at Nuclear receptor subfamily 4, group A, member 3 Nr4a3 0.47 0.009

1398846_at Eukaryotic translation initiation factor 5 EIF5 0.47 0.033

1394935_at WAS protein family, member 2 Wasf2 0.48 0.019

1369481_at Tumor necrosis factor superfamily, member 4 TNFSF4 0.49 0.042

1396225_at Cytoplasmic polyadenylation binding protein 2 CPEB2 0.49 0.011

1376739_at DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 DDX24 0.51 0.008

1395154_at Zinc finger CCCH type containing 13 ZC3H13 0.52 0.019

1380144_at Mps One Binder kinase activator-like 1A/B (yeast) MOBKL1A/B 0.53 0.015

1395923_at Nipped-B homolog (Drosophila) Nipbl 0.53 0.013

1395697_at Enhancer of zeste homolog 2 (Drosophila) Ezh2 0.54 0.029

1377151_at N/A N/A 0.54 0.011

1381809_at Ankyrin repeat domain 11 Ankrd11 0.55 0.005

1387391_at Cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKN1A 0.55 0.038

1391701_at MYST histone acetyltransferase 3 MYST3 0.55 0.013

1375453_at Hypothetical protein LOC688211 LOC688211 0.56 0.006

1398217_at Zinc finger and BTB domain containing 41 Zbtb41 0.56 0.033

1380446_at Myeloid/lymphoid or mixed-lineage leukemia 10 Mllt10 0.56 0.005

1381993_at Chloride intracellular channel 2 CLIC2 0.57 0.026

1374594_at Similar to RIKEN cDNA 1600029D21 LOC363060 0.57 0.035

doi:10.1371/journal.pone.0044998.t001

LXR Activation in Myelin-Phagocytosing Macrophages

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e44998



LXRs, we evaluated whether myelin affects LXR response gene

expression and the secretion of pro-inflammatory mediators in a

similar manner as an LXR ligand. LXR response gene expression

was determined after treatment with myelin or a synthetic LXR

agonist (T0901317). We observed that myelin induced apolipo-

protein E (ApoE), ABCA1 and ABCG1 expression in macrophag-

es in a similar manner as T0901317 (figure 3a–c), suggesting that

myelin contains ligands capable of activating the LXR pathway.

To ascertain a myelin-mediated activation of LXRs, LXRa-,

LXRb- and LXRab-deficient mouse macrophages were treated

with myelin after which ABCA1 gene expression was determined.

Here we show that ABCA1 gene induction by myelin is reduced in

LXRb-deficient macrophages, while it is completely absent in

LXRab-KO macrophages. These results indicate that myelin

activates LXRs in macrophages.

To further elucidate the role of LXRs we determined the

influence of myelin and T0901317 on the secretion of inflamma-

tory mediators by macrophages. Both T0901317 and myelin

lowered the LPS or IFNc/IL-1b induced production of NO and

IL-6 to a similar extent (figure 4a–d). The reduction in NO and

IL-6 production was not due to a reduced viability of myelin- or

T0901317-treated macrophages (data not shown). To determine

the role of both the LXRa and LXRb isoform in the observed

effects, LXRa-, LXRb- and LXRab-deficient mouse macrophag-

es were used. We observed that lack of LXRb partially abolishes

the myelin induced suppression of IL-6 secretion, which was not

influenced by LXRa depletion (figure 4f). However, the reduction

of NO production by myelin was not significantly affected in both

LXRa-, LXRb- and LXRab macrophages (figure 4e), indicating

that besides LXRs other pathways are involved in the regulation of

the macrophage phenotype after myelin phagocytosis. Collective-

Table 2. Overrepresented canonical pathways and biological functions (IPA).

Downregulated gene pool Upregulated gene pool

Canonical pathways

p53 Signaling Aminosugars Metabolism

mTOR Signaling Thyroid Cancer Signaling

Growth Hormone Signaling PPAR Signaling

Cell Cycle: G2/M DNA Damage Regulation Relaxin Signaling

CNTF Signaling Complement System

Nur77 Signaling in T Lymphocytes LXR/RXR Activation

FLT3 Signaling in Hematopoietic Progenitor Cells cAMP-mediated Signaling

RhoA Signaling

Interleukin-8 Signaling

Regulation of eIF4 and p70S6K Signaling

ATM Signaling

Molecular and cellular functions

Cellular Development Carbohydrate Metabolism

Gene Expression Amino Acid Metabolism

Cell-To-Cell Signaling and Interaction Cellular Compromise

Cellular Growth and Proliferation Gene Expression

Cellular Function and Maintenance Nucleic Acid Metabolism

Protein Synthesis Small Molecule Biochemistry

Cell Morphology Cell Cycle

Cell Cycle Cell Signaling

Cellular Assembly and Organization Lipid Metabolism

DNA Replication, Recombination, and Repair Molecular Transport

Cellular Compromise Antigen Presentation

Amino Acid Metabolism Cell-To-Cell Signaling and Interaction

Post-Translational Modification Cellular Assembly and Organization

Small Molecule Biochemistry Cellular Growth and Proliferation

Cell Death DNA Replication, Recombination, and Repair

Antigen Presentation Cellular Development

Carbohydrate Metabolism Cellular Function and Maintenance

Lipid Metabolism Cell Morphology

Cell Signaling Cell Death

Nucleic Acid Metabolism

Cellular Movement

doi:10.1371/journal.pone.0044998.t002
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ly, these results indicate that myelin possesses functional ligands

capable of activating LXRb, hereby affecting the inflammatory

state of macrophages.

Discussion

To obtain insight into the influence of myelin internalization on

the functional phenotype of macrophages and the mechanisms

involved, the gene expression profile of mye-macrophages was

assessed. Microarray analysis revealed that the expression of 676

genes differed significantly. Gene ontology mapping and pathway

analysis identified several common enriched pathways related to

lipid metabolism, LXR/PPAR signaling and cholesterol efflux.

In addition to the upregulation of pathways related to lipid

metabolism, mye-macrophages showed an overrepresentation of

downregulated genes in pathways involved in proliferation, like

p53 signaling and cell cycle checkpoint regulation. The reduced

expression of p53 target genes, such as MDM2 and CDKN1A

(p21) [51–53], and HIPK2, a kinase important for p53-dependent

gene transcription [54,55], suggests that mye-macrophages have a

reduced transcriptional activity of p53. Moreover, as p21 regulates

cell cycle arrest, these results suggest that myelin has pro-

proliferative effects on macrophages.

Chemotaxis plays a pivotal role in the recruitment of monocytes

towards the CNS in MS and EAE. Moreover, the presence of

myelin-antigen containing phagocytes in CNS draining lymph

nodes in MS and EAE suggests that macrophages migrate to

lymph nodes after myelin internalization [56,57]. Microarray

analysis showed that mye-macrophages exhibit an overrepresen-

tation of downregulated genes in pathways like mTOR, IL-8 and

RhoA signaling, suggesting an altered motility of macrophages

after myelin ingestion [58–64]. These results are in line with a

recent report showing an aberrant motility of myelin-containing

macrophages [65].

In addition to controlling chemotaxis, mTOR and RhoA

signaling are reported to influence demyelination, by affecting

complement receptor-mediated phagocytosis [59,66]. Similarly,

the upregulated expression of C1q in mye-macrophages may

augment their phagocytic capacity [67,68]. These results indicate

that myelin uptake induces a positive feedback loop in macro-

phages, promoting myelin phagocytosis. Furthermore, alterations

in mTOR, complement and cAMP-mediated signaling have been

described to modulate the inflammatory properties of macrophag-

es [69–73]. The latter indicates a complex regulatory network

directing the specific phenotype of mye-macrophages.

Besides affecting cholesterol metabolism, the upregulated

expression of GCK and HEXB, genes involved in the aminosugar

metabolism pathway, indicates that sphingolipids and hexose

structures are also actively metabolized after myelin internalization

by macrophages [74,75]. This is in correspondence with related

differentially regulated (non-significant) pathways in the IPA

analysis, like sphingolipid (p = 0.52), galactose (p = 0.11), sucrose

Figure 1. Quantitative PCR validation. Comparison of fold changes between IFNc/IL1b-stimulated untreated (n = 5) and myelin treated
macrophages (n = 5). Relative quantification of gene expression (SCD1/2, ABCA1/G1 and RXRa/b/c) was accomplished by using the comparative Ct

method. Data were normalized to the most stable reference genes, determined by Genorm (18S and PGK1).
doi:10.1371/journal.pone.0044998.g001

Figure 2. Mye-macrophages have an increased capacity to
transfer intracellular cholesterol towards HDL. Macrophages
were loaded for 48 hours with 1,2- [3H] cholesterol after which cells
were treated with myelin for 24 hours or left untreated. HDL was used
as cholesterol acceptor. The relative cholesterol efflux is defined as the
amount of transported cholesterol in culture medium of mye-
macrophages divided by values in control macrophage cultures. Data
represent the mean of four independent experiments.
doi:10.1371/journal.pone.0044998.g002
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(p = 0.19), fructose and mannose (p = 0.15) metabolism. Interest-

ingly, sphingolipids are described to modulate inflammation and

the functional phenotype of macrophages [76,77], suggesting that

the phenotype of mye-macrophages may also be affected via this

pathway.

Intracellular lipid sensors like LXRs, which are activated by

cholesterol derivates, have recently been described as key

regulators of lipid metabolism and inflammation [78–80]. There

are two LXR isoforms termed a and b with considerable sequence

homology. Furthermore, they respond to the same endogenous

ligands and activate almost identical target genes. However, an

important distinction is their tissue distribution. LXRb is

ubiquitously expressed whereas LXRa is highly expressed in the

liver and at somewhat lower levels in the adrenal glands, intestine,

adipose tissue, macrophages, lung and kidney. Upon activation,

LXRs form heterodimers with RXRs and promote transcriptional

activation of response genes, like ABCA1, ABCG1 and SCD [81–

83]. Both microarray analysis and qPCR demonstrated an

increased expression of potential transcriptional partners of LXRs,

e.g. RXRa and RXRc. Additionally, ABCA1, ABCG1 and SCD2

were found to be upregulated in mye-macrophages. These results

suggest that myelin acts as an LXR-RXR heterodimer-selective

agonist.

ABCA1 and ABCG1 promote the efflux of cholesterol to

respectively APO-AI and HDL. By disposing cellular lipids they

prevent lipid accumulation and the concomitant induction of

apoptosis and inflammatory responses [84]. In this report we show

that mye-macrophages have an increased efflux of cholesterol to

HDL. These results demonstrate that the upregulation of genes

involved in cholesterol efflux is functional and suggest that mye-

macrophages protect themselves from the pro-apoptotic and pro-

inflammatory effects of intracellular lipid accumulation by

promoting cholesterol efflux.

As mentioned earlier, LXRs are cholesterol sensors controlling

intracellular and systemic cholesterol homeostasis [85,86]. How-

ever, apart from regulating cholesterol metabolism, they inhibit

inflammatory gene expression in macrophages [46–50]. As 25% of

the lipid content in myelin consists of cholesterol, it is likely that

myelin-rich macrophages and microglia in neurodegenerative,

demyelinating disorders like MS, display a phenotype which is in

part dictated by a myelin-mediated activation of LXRs [87]. In

this study we demonstrate that myelin contains ligands capable of

activating LXRb, hereby affecting the expression of LXR response

genes like ABCA1 and the secretion of inflammatory mediators

like IL-6. Interestingly, LXR activation has been demonstrated to

ameliorate EAE by modulating T cell polarization [88–90].

Moreover, an increased expression of LXRb in peripheral blood

mononuclear cells in MS patients was described to counteract T

cell proliferation [91]. Our finding that myelin activates LXRs

suggests an additional role of these receptors in naturally occurring

Figure 3. Myelin and T0901317 affect the expression of LXR response genes in a similar manner. (a–c) Comparison of fold changes of
LXR response genes between untreated (dotted line) and myelin- or T0901317-treated macrophages. Macrophages were treated for 24 and 48 hours
with 100 mg/ml myelin or 10 mM T0901317 after which expression of ApoE and ABCA1/G1 was determined. Relative quantification of gene expression
was accomplished by using the comparative Ct method. Data were normalized to the most stable reference genes, determined by Genorm (18S and
PGK-1). Data represent the mean of four independent experiments. (d) Comparison of fold changes of ABCA1 between untreated (dotted line) and
myelin treated wild-type, LXRa-, LXRb- and LXRab-deficient mouse macrophages. Macrophages were treated 48 hours with 100 mg/ml myelin. Data
were normalized to the most stable reference genes, determined by Genorm (CycA and HMBS). Data represent the mean of four independent
experiments. Mye; Myelin: T09; T0901317.
doi:10.1371/journal.pone.0044998.g003
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regulatory mechanisms in macrophages during demyelination.

Future studies should determine whether, besides LXR activation,

other pathways that modulate the phenotype of macrophages are

activated by lipids or proteins present in myelin.

To date, despite the abundance of lipids in myelin, most studies

have mainly focused on the role of myelin proteins in demyelin-

ating diseases. Our data indicate a role for myelin-derived lipids in

modulating the metabolic and inflammatory response in macro-

phages during demyelination. Although mye-macrophages have a

decreased secretion of NO and IL-6, the microarray did not point

towards a typical M2 phenotype. These results are in line with a

recent report showing that macrophages treated with oxidized

phospholipids, so called mox-macrophages, adopt a novel

phenotype that differs from conventional M1 and M2 phenotypes

[92]. Although both mye- and mox-macrophages induce pathways

involved in chemotaxis and phagocytosis, other characteristic

genes in mox-macrophages were not differentially expressed in

mye-macrophages. The latter indicates that mye-macrophages

obtain a specific phenotype, divergent from M1, M2 and mox-

macrophages. Future studies are required to elucidate the

importance of lipid metabolism in directing the macrophage

phenotype and function, and thereby the influence of lipids in MS

lesion pathology.
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