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Abstract
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effect, density-dependent dispersal, time delay, advection, spatial and temporal heterogeneity, and anomalous
and stratifi ed diffusion are reviewed. Two- and three-population competitive reaction-diffusion systems of
Lotka-Volterra type are also reviewed, as are dynamic approaches to carrying capacity that incorporate
predator-prey instabilities, ecosystem engineering, and gene-culture coevolution.
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Human Dispersals: Mathematical Models and the 
Archaeological Record

James Steele1

Abstract The theoretical literature on human population dispersal processes 

at the large time and space scale is reviewed, including references to and dis-

cussions of relevant empirical data. The basic Fisher-KPP reaction-diffusion 

system is summarized for the single population situation, and developments 

relating to the Allee effect, density-dependent dispersal, time delay, advec-

tion, spatial and temporal heterogeneity, and anomalous and stratifi ed diffu-

sion are reviewed. Two- and three-population competitive reaction-diffusion 

systems of Lotka-Volterra type are also reviewed, as are dynamic approaches 

to carrying capacity that incorporate predator-prey instabilities, ecosystem 

engineering, and gene-culture coevolution. 

Dispersal Models and Case Studies: Fisher-Skellam-KPP

In this paper I review mathematical models of population dispersals and con-

sider some archaeological applications. The focus is on deterministic approaches 

using differential equations. These have the virtue of enabling a good understand-

ing of the behavior of a model system and are reasonable approximations for 

large-population situations. In such cases, systematic empirical deviations from 

the expectations of the modeled system can be taken as indicating the need for an 

additional parameter or for some alternative treatment of an existing parameter. 

Note, however, that where the process being studied involves only small numbers 

of individuals, it may be more diffi cult to distinguish such situations from ones in 

which the observed deviations are merely the result of chance effects of sampling 

from among the possible individual trajectories.

Understanding large-scale human dispersals requires us to model two com-

ponents: a population growth process and a spatial spreading process (when more 

than one population is involved, we must also consider the nature of the interac-

tion). In population ecology the standard model of the nonlinear dynamics of 

1AHRC Centre for the Evolution of Cultural Diversity, Institute of Archaeology, University College London, 

31–34 Gordon Square, London WC1H 0PY, United Kingdom.
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such processes is the reaction-diffusion system defi ned by R. A. Fisher (1937) 

and applied to population expansion by J. G. Skellam (1951); the system was 

also investigated simultaneously to Fisher’s paper by Kolmogorov, Petrovsky, and 

Piskunov (1937), with somewhat greater mathematical detail. Thus in ecology the 

usual references are to the Fisher equation or the Fisher-Skellam model, whereas 

in mathematics the usual reference is to Fisher-KPP or KPP-Fisher or simply 

the KPP equation. In the present paper, I use the term Fisher-Skellam. The basic 

system is

(1)

where n(r, t) denotes the population density at time t and at position r  (x, y). 

This system has two components: a nonlinear population growth (or reaction) 

term and a linear population dispersal (or diffusion) term. f(n, , K) is the pop-

ulation growth function, which in the Fisher-KPP equation follows the logistic 

growth law proposed by Verhulst (1838) and widely used in theoretical population 

biology (Murray 1993). This function describes a self-limiting density-dependent 

population increase and is given by

(2)

where  is the intrinsic maximum population growth rate and K is the carrying 

capacity, which is related to local environmental factors. D is a diffusion con-

stant that specifi es the mean spatial dispersal rate of individuals between birth and 

reproduction, and  is the Laplacian operator that redistributes the population 

from regions of higher density into those of lower density (for simplicity I use the 

Laplacian operator in the equations in this paper; however, many recent investi-

gators use an integral formulation that allows variably shaped dispersal kernels). 

In general, individuals move from their birthplace a distance  during their gen-

eration time . The square of this distance is, in general, proportional to the time 

available (this is a standard random walk result); the constant of proportionality 

is the diffusion constant D 2/2d, where d is the number of dimensions in the 

system being modeled, typically 1 or 2 (Einstein 1905). The width of the wave 

front region, over which the population changes from a high to a low density, can 

be shown to depend on D and  and to have an intrinsic spatial scale ~ (D/)1/2. 

The speed v at which this wave front travels is also related to D and , tending 

asymptotically to approach v 2(D)1/2 (Fisher 1937; Kolmogorov et al. 1937).

Prehistoric and Historical Human Population Dispersals

It is no trivial matter to resolve the detailed demographic processes involved 

in prehistoric dispersals. Much effort has been expended on estimating speeds of 

spatial population expansion, because the relation between the speed v and the 

product D implies that speed is determined by population growth and diffusion 
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rates. Archaeologists have found that radiocarbon dating can be used to obtain suf-

fi ciently precise estimates of the age of cultural events at different spatial locations 

for this purpose, although there are many subsidiary methodological and sampling 

issues that need to be addressed before the results can bear close examination. 

With the advancement of radiocarbon measurement and calibration techniques, 

we are seeing the application of accurate and precise dating to increasingly remote 

episodes of human dispersal during and subsequent to the last ice age.

For hunter-gatherer dispersals, early applications of the Fisher-Skellam 

model to Paleolithic dispersal problems include the studies of Young and Bet-

tinger (1995) and Steele et al. (1996, 1998), none of which focus specifi cally 

on front speeds (partly because of limits on the accuracy and precision of avail-

able archaeological dates). Studies focused on front propagation speed include 

Mellars’s (2006) attempts to estimate the speed of spread of anatomically modern 

humans into Europe before the last glacial maximum; Housley et al.’s (1997) and 

Fort et al.’s (2004) studies of the rate of subsequent late glacial recolonization of 

northern Europe as the ice receded; and Hamilton and Buchanan’s (2007) study 

of the diffusion of Clovis spear point technology in late glacial North America. 

For agricultural dispersals several studies have been conducted on the chronology 

of the European Neolithic transition, and a more limited number of studies have 

been made on the Lapita period colonization of Polynesia; a more recent event 

studied from a Fisher-Skellam perspective but using historical records as a source 

of empirical control is the European colonization of the American West.

Mellars’s (2006) study illustrates the potential and pitfalls of using radio-

carbon dates to estimate dispersal velocities. Mellars collated radiocarbon dates 

from sites in Europe and the Near East associated with stone tool technology of 

Emiran, Ahmarian, Bacho-Kirian, Bohunician, Proto-Aurignacian, and Aurigna-

cian technologies, all of which are believed to be the products of anatomically 

modern humans. He took the oldest dates from each region, on the assumption 

that these samples were, by virtue of their greater age, the least likely to have been 

contaminated by more recent carbon, and calibrated them using a mean best- fi tted 

line for a comparison curve that summarizes a number of data sets extending 

beyond the range of the IntCal04 calibration curve (for which the upper bound 

is 26,000 cal. BP). Mellars then commented that the obtained results indicated 

a signifi cantly faster rate of spread of anatomically modern humans into Europe 

than that previously estimated. Specifi cally, he suggested that the dispersal of ana-

tomically modern humans from southeast Europe into central and western Europe 

now seems to have taken 5,000 calibrated years (rather than 7,000 uncalibrated 

radiocarbon years) and that this implies a spread speed of 0.4 km/yr rather than 

0.3 km/yr (this velocity calculation is inexact; the distances from Mellars’s only 

plotted southeast European site with a date, Bacho-Kiro in Bulgaria, to the most 

distant dated sites in Spain and France are of the order of 2,500 km, which implies 

a mean spreading velocity of 0.5 km/yr).

Mellars’s calibration arguments were the object of justifi ed criticism by 

Turney et al. (2006), but the greater signifi cance of his results for the demographic 
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models considered here is their confi rmation of a rather slow asymptotic front 

speed for anatomically modern humans advancing into Europe. In terms of the 

Fisher-Skellam model, we might therefore ask whether there is need for an ad-

ditional term in the model—either an expansion of the system as a Lotka-Volterra 

two-species competition model that takes account of Neanderthal presence in the 

region, or a temporal heterogeneity in the environmental parameters affecting the 

migration of the anatomically modern human population front.

Some light has been shed on this problem through a series of studies of 

the radiocarbon record of hunter-gatherer recolonization of northern Europe as 

the ice receded after the last glacial maximum (which was of course by anatomi-

cally modern humans, the Neanderthals having by then become extinct). Fort et 

al. (2004) fi tted a slightly modifi ed version of the Fisher-Skellam model to this 

spread episode, as documented archaeologically by a series of radiocarbon dates 

obtained by Housley et al. (1997). Fort et al. (2004) estimated D and  from 

modern ethnographic cases and obtained a maximum rate of increase  in the 

range 0.017–0.027 per year, or 1.7–2.7%, and a mean dispersal rate D of 1,400–

3,900 km2/generation (with mean generation time estimated as 27 years) based 

on observations of marriage distances among Aka and Bofi -Aka African pygmies 

(Hewlett et al. 1986). From these estimates they predict an asymptotic popula-

tion front speed of between 0.7 and 1.4 km/yr, which is consistent with the range 

estimated from the archaeological data by linear regression (0.4–1.1 km/yr). They 

therefore concluded that no additional term (such as temporal heterogeneity in 

the environmental parameters affecting the migration of the recolonization front) 

was needed to explain the spread rates observed. If these arguments are correct, 

then they also indicate the potential scale of any retardation of the front speed for 

anatomically modern humans in Mellars’s (2006) study for which an additional 

term might be necessary.

However, the territory sizes (which give a length scale to the distribution 

of marriage distances) of high-latitude Ice Age hunter-gatherers should probably 

be estimated from an Inuit ethnographic analogy: High-latitude hunters typically 

have much larger territories than equatorial foragers (e.g., Binford 2001; Kelly 

1995), which has implications for the expected recolonization rate if there really 

was no delay induced by the deglaciation process. A further note of caution is that 

the empirical front speed estimates of Fort et al. (2004) are based on the mean val-

ues of a small sample of uncalibrated radiocarbon dates, whereas Mellars’s esti-

mates were based on his own attempt at calibration; indeed, Mellars’s (2006) main 

claim of a faster than expected spreading rate is based on a comparison of the 

dispersal chronologies obtained with and without calibration. There is therefore 

scope for further useful work on resolving front speeds from a purely archaeologi-

cal science perspective (see Steele 2009).

A recent study by Hamilton and Buchanan (2007), much along the lines of 

Fort et al.’s (2004) analysis, addresses the dated Clovis sites of late glacial North 

America. Waters and Stafford (2007) had suggested that there was no discernible 

spatial gradient in the ages of reliably dated early Paleo-Indian sites in the Western 
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Hemisphere, but Hamilton and Buchanan (having supplemented Waters and Staf-

ford’s Paleo-Indian data set with a small number of additional sites taken from the 

literature) found a statistically signifi cant trend for the North American Clovis cul-

ture sites to become younger with distance from a postulated origin at the southern 

end of the ice-free corridor. Their regression analysis indicated a front speed in the 

range 5–8 km/yr, which is much faster than that expected from the demographic 

parameters of Fort et al.’s (2004) hunter-gatherer model. Hamilton and Buchanan 

explain this as an effect of selective dispersal by Clovis hunters along favorable 

habitat corridors. Whether or not they are right about the Clovis spread dynamic 

(see Steele 2009), it is clear from our own work that humans reached southern 

South America much earlier than can be explained by a front traveling at that speed 

and originating in Alberta at about 13,380 cal. BP [95% CI: 12,900–13,870 cal. 

BP, as estimated by Hamilton and Buchanan (2007); see Steele and Politis (2009)]. 

Once again there is scope for archaeological science to contribute further empirical 

observations before the demographic questions can be satisfactorily resolved.

For the spread of farming, the classic study is the work of Ammerman 

and Cavalli-Sforza (1984); their study introduced the Fisher-Skellam system to 

archaeologists, who typically now refer to this variant as the wave-of-advance 

model. Ammerman and Cavalli-Sforza fi tted a linear regression curve to dates and 

distances from Jericho, fi nding a mean rate of spread of about 1 km/yr and fi nd-

ing this to be consistent with the spreading speed predicted for a Fisher-Skellam 

system with ethnographically derived values for the demographic terms.

More recently, the radiocarbon record has been revisited by Gkiasta et al. 

(2003) and Pinhasi et al. (2005). Gkiasta et al. (2003) fi tted a linear regression 

curve to dates from a set of 510 archaeological sites in Neolithic Europe and ex-

plored other line-fi tting and visualization techniques. Pinhasi et al. (2005) fi tted 

a linear regression curve to dates from a set of 735 archaeological sites in Europe 

and the Near East using various origins and two possible distance measures and 

found an average rate of spread for the Neolithic transition in the range of 0.6–

1.3 km/yr. Pinhasi et al. (2005) found that this spread rate was consistent with pre-

dictions from a slightly modifi ed Fisher-Skellam model of demic diffusion, taking 

anthropological estimates of 2.9–3.5% annually for  and a mean dispersal rate 

D  1,400–3,900 km2/generation, with 29–35 years for the generation time . 
They noted that although these archaeological data might in principle be consis-

tent with a wave of adoption-diffusion of an economic innovation without popula-

tion turnover, the interpretation of the process as a demographic expansion was 

supported by the fact that to their knowledge, no cultural diffusion model to date 

has been able to derive a speed compatible with the observed range for this case 

study (0.6–1.3 km/yr).

Fort (2004) has also attempted to fi t the Fisher-Skellam model to the colo-

nization of Austronesia by using a regression analysis of dates and distances from 

Mussau. He found from the oldest site in his data set that the Lapita phase spread 

with a velocity of at least 8 km/yr. Fort suggests that for this episode a maximum 

growth rate   0.032  0.003 per year, a generation time   25  5 years, and 
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a mean dispersal rate D of 3.6  103 to 3.0  105 km2/generation (the higher rate 

refl ecting the greater distances of transfers between islands) would yield spread-

ing rates in the observed range, but he also acknowledges the limited resolution of 

the existing archaeological chronology.

Finally, Campos et al. (2006) attempted to model the westward expansion 

of European American settlers during the period 1790–1910, for which an average 

front speed of 13.5  0.8 km/yr was estimated from a historical atlas. With   

0.031 per year, a generation time   25 years, and a mean individual dispersal dis-

tance in the east-west axis of   810  93 km (based on a sample of historical re-

cords), the Fisher-Skellam system predicts a one-dimensional front speed of about 

40 km/yr, which is more than twice the observed rate. Campos et al. (2006) there-

fore introduced an additional argument about the spatial delay introduced when 

dispersal is along fractal river networks, with side branches being the equivalent 

of wrong turns; the mathematical arguments and the use of historical demographic 

records are creative and interesting, and this case study would repay further work 

with closer attention being given to the empirical dispersal distance distributions 

and population front characteristics. A subsequent model of the same process (col-

onization of the United States in the 19th century) by Fort and Pujol (2007) argues 

that the spread rate might be more simply explained by anisotropic diffusion (i.e., 

a higher probability to back-migrate eastward rather than westward), without any 

need to assume that any properties of fractal networks apply to this process.

Further Considerations in Modeling Dispersal Processes

Having considered the basic Fisher-Skellam system and some applications 

to the study of human dispersals, I now turn to some further modeling consider-

ations. It is worth emphasizing that in considering alternative treatments of basic 

parameters in the Fisher-Skellam system, my intention is not to open up a large 

menu of options that can be selected to optimize the fi t of the model to an empirical 

data set based on no other considerations. This would introduce many additional 

degrees of freedom into the model, thereby reducing its ability to generate useful 

explanations. However, if the assumptions of the basic Fisher-Skellam system can 

be seen to be at odds with observed behavior of the system being modeled or to be 

in some important way unphysical, then it is useful to explore the effects of alter-

native and more realistic treatments of these elements of the model system to see 

whether or not the discrepancy matters (e.g., for the prediction of front speeds). 

If one can estimate the relevant parameters independently, then there is no loss of 

explanatory power but there is a gain in realism from incorporating one’s fi ndings 

into the modeled system. Hastings et al. (2005) give a useful brief overview.

Allee Effect.  At low densities, local populations are at greater risk of extinc-

tion because of sampling and group size effects on fertility and survivorship (im-

balanced sex ratios, asynchronous reproductive timing among potential mates, 

inbreeding depression, reduced effi ciency in cooperative foraging and in predator 
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avoidance, etc.). W. C. Allee (1938) focused attention on situations in which pop-

ulation density has a positive effect on some fi tness-related characteristic. Where 

that characteristic is a demographic one, namely, the rate of reproductive increase, 

then the effect may be strong (or critical) (meaning that below a certain den-

sity threshold the population experiences negative growth) or weak (noncritical) 

(meaning that the rate of growth below that threshold is depressed but remains 

positive). For invading species, local populations at the front are susceptible to 

Allee effects of this kind. Taylor and Hastings (2005) give an excellent review.

For primates (including humans), social structure has a major infl uence on the 

existence and strength of the Allee effect at low population densities. If the popula-

tion is subdivided into autonomous foraging groups and if those groups are of uni-

form size, then the risks are much greater than if group sizes vary with a substantial 

fraction of the whole population concentrated in the largest groups (Dobson and 

Lyles 1989). This is because with variable group sizes and a small number of large 

groups, the average number of potential partners available to each reproductively 

fertile individual is much greater than in a uniform distribution (for a constant total 

population size). Human hunter-gatherers in seasonal environments are generally 

thought to solve these kinds of problems in part by varying their group sizes over 

time, with periodic seasonal aggregation into large groups (e.g., Kelly 1995).

In the Fisher-Skellam system, a strong or critical Allee effect can be repre-

sented by an additional term A:

(3)

where population size n is normalized to the interval 0  u  1, 0  A  1, and k 

is a normalized growth rate constant [if maximum per capita growth rate is 1, then 

k  4/(1  A)2] (Lewis and Kareiva 1993). In this system, where population size 

is below a critical fraction A of the carrying capacity, a strong Allee effect applies 

and local population growth is negative.

Lewis and Kareiva (1993) showed that the consequence of this for front 

speed is to decelerate the front proportional to the magnitude of the threshold A: 

v(2Dk)1/2 
(
1/2 A

)
. For a successful invasion with positive front speed, it fol-

lows that A must be less than 0.5. With A  0.3, the front is decelerated to less 

than half of the speed expected from the basic Fisher-Skellam system. Lewis and 

Kareiva (1993) also commented that habitat geometry plays a role in determining 

invasion success; a front that extends on a fi nger of colonized habitat surrounded 

by uncolonized area will be more susceptible to extinction as a result of Allee ef-

fects than the converse situation, because of the imbalance between the sizes of 

the source and adjacent sink locations, which are the recipients of local density-

dependent diffusion.

Density-Dependent Dispersal.  As previously noted by Steele et al. (1998), 

the assumption of symmetry in the distribution of dispersal distances in two di-

mensions can also be called into question. Symmetry is a feature of the logistic 
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model of density-dependent growth such that as a population approaches carrying 

capacity, there is a linear decline in the net rate of increase. Consequently, if we 

assume a colonizing population of fi tness maximizers seeking to maximize their 

individual reproductive rate, then we will predict that people will disperse prefer-

entially into those areas of adjacent habitat in which human occupancy is furthest 

from carrying capacity.

However, positive density-dependent dispersal may not in itself imply ac-

celerated rates of range expansion. Newman (1980) [for more recent consider-

ations of this topic, see also Petrovskii and Li (2003) and Lutscher (2008)] found 

that when the diffusion coeffi cient has the density-dependent form D(n/K)b, the 

velocity of range expansion can be expressed in the form u(2D)1/2, with u a func-

tion of b. When b  0, u  21/2, consistent with the standard Fisher-Skellam model 

solution. When b  0 and people move further as the population approaches car-

rying capacity, then it seems that u  (b  1)1. It follows that if b  1, then 

individual dispersal distances when n  K (and dispersal distance is assumed to 

be greatest due to crowding) must be at least three times the value taken for mean 

lifetime dispersal distance in the standard model in order for range expansion to 

be faster and not slower than in the standard model.

By contrast, when b  0 (such that dispersal distances are greatest at low 

densities, as a result of, for instance, mate searching), Newman (1980) found that 

u assumes any value. We might then expect that density-dependent dispersal will 

accelerate range expansion when it is negatively density dependent and driven 

by mate searching and when  is low, such that at a given location, n is slow to 

approach K. This theoretically possible dynamic was explored mathematically by 

King and McCabe (2003). Behaviorally, however, the underlying process here is 

conspecifi c mate attraction, the importance of which for demographic survival has 

been emphasized in animal ecology (Wells et al. 1998). Because the greatest den-

sity of potential mates will be found behind the front, negative density-dependent 

dispersal driven by mate search would be expected to lead to anisotropic dispersal 

with a bias against the direction of migration of the expanding front, which would 

have a decelerating effect.

Time Delay.  The basic Fisher-Skellam system assumes continuous random 

movement and a constant likelihood of reproduction by individuals in a popula-

tion, but empirical estimates of human dispersal distances are usually obtained 

from marriage transfers, which represent one-off movements at or shortly before 

the time of fi rst reproduction. Ecologists have considered the effects of age- and 

sex-structured dispersal on front speeds (e.g., Van den Bosch et al. 1990, 1992), 

but Fort and colleagues (e.g., Fort and Mendez 1999, 2002; Ortega-Cejas et al. 

2004) have considered in greatest detail the implications for Fisher-Skellam sys-

tems of a time delay between birth and dispersal. They showed that a time- delayed 

reaction-diffusion system that is otherwise of Fisher-Skellam type leads to a front 

speed that is lower than the classical Fisher-Skellam result and that the effect is 

related to the size of the delay: v 2D1/21 2, with  representing the 
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delay time between birth and dispersal (estimated as the generation time, to a fi rst 

approximation). For the demographic values typically used for human dispersals, 

 ~ 0.03(25) implies that front speed in the time-delayed model will be approxi-

mately 0.73v, where v is the speed estimated from the classical Fisher-Skellam 

relation v  2(D)1/2. The front speeds estimated by Fort and co-workers and by 

Hamilton and Buchanan (2007) and discussed in a previous section, were de-

rived using this formula for time-delayed dispersal. It would seem to be a sensible 

correction to apply when estimating front speeds for agricultural dispersals; the 

relevance for highly mobile hunter-gatherer populations is perhaps less obvious 

(cf. Surovell 2000).

Spatial and Temporal Heterogeneity.  A number of investigators have con-

sidered the effects of environmental heterogeneity on dispersal dynamics, both 

in space and over time. This is the situation in which parameters of the Fisher-

 Skellam model (D, , K) vary with location and/or with time as a result of external 

factors. Such variation in space and time is intuitively more realistic as an approx-

imation of the geographic conditions that affected dispersing human populations, 

given that humans are generalists in overall distribution but are specialized in their 

local adaptations. The problem with incorporating heterogeneity into a model is 

that it improves the realism of the representation of a given situation but at the 

expense of generality: What works in describing observed dynamics of one highly 

parameterized case may not apply to another case that is parameterized differently 

(Hastings 2005). However, some work has been done on generalizable aspects of 

environmental heterogeneity.

Shigesada et al. (1986, 1987) have shown that a front traveling through 

randomly distributed (isotropic) patches of favorable and unfavorable habitat, 

each with its own values for D and , will propagate with locally varying rates 

but nonetheless at an overall mean speed v  2(D)1/2, with D estimated as the 

harmonic mean and  as the arithmetic mean of the values over the space being 

invaded. Kinezaki et al. (2003) considered the same problem in a somewhat more 

complex two-dimensional space, and Kinezaki et al. (2006) considered front speed 

dynamics in sinusoidally varying environments. Neubert et al. (2000) meanwhile 

considered the complementary case in which there is periodic or random environ-

mentally driven variation in the values of D and  over time, as might also occur 

as a result of predator-prey interaction instabilities.

In archaeology, Young and Bettinger (1995) modeled the fi rst global disper-

sals of anatomically modern human hunter-gatherers using two sets of values for 

D and , one for low and one for higher latitude environments. Steele et al. (1996) 

demonstrated the consequences for front contours in two dimensions when the 

front propagates at varying speeds at the ecoregion scale, and Steele et al. (1998) 

considered the consequences of spatial and temporal heterogeneity in K at the same 

scale in a highly parameterized model of the fi rst peopling of North America. In 

their 1998 paper, Steele and co-workers found that the archaeological response 

variable was not fi rst arrival time but the cumulative occupancy signature when 
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the archaeological signal is the time-averaged density of discarded artifacts. Hazel-

wood and Steele (2004) considered this more generally, showing that where an 

invading population travels up a gradient of carrying capacity, the initial density 

gradient in cumulative occupancy will point to the origin of the dispersal but that 

subsequently this will be washed out by the effect of the greater carrying capacity 

at locations distal to the entry point. Spatial heterogeneity is also a feature of recent 

models of the European Neolithic transition by Davison et al. (2006) and Ackland 

et al. (2007).

Advection.  The basic Fisher-Skellam system assumes that dispersal is iso-

tropic; that is, movement is equally likely in all directions and serves to redis-

tribute population to achieve uniform densities, regardless of local variation in 

the concentrations of resources. In many biological systems at a range of scales, 

movement is anisotropic at the population level and there is preferential migra-

tion up resource concentration gradients. Incorporation of this leads to a reaction-

 advection-diffusion system with (if we take the concentration gradient to be in 

units of K, the spatially varying carrying capacity) an additional term (K)K:

(4)

where K denotes the concentration gradient and (K) is a sensitization param-

eter that denotes the magnitude of the response to that gradient (Hazelwood et al. 

2008). This system is not immediately susceptible to a general analytical solution 

for front speeds in different directions relative to the concentration gradient. How-

ever, one can readily observe that this system has two spatial components, namely, 

conventional diffusion plus the advection term (purely advective spread would 

have the disadvantageous consequence of confi ning the population on a local con-

centration peak). In the reaction-advection-diffusion system, the advection com-

ponent will accelerate spread up gradients of concentration and retard invasion 

of less attractive regions; as a rough rule of thumb, the advection component will 

be the predominant infl uence on the spread dynamic where concentration gradi-

ents are steep enough to double on the diffusion length scale  (Hazelwood et al. 

2008). Advection was considered a component by Cohen (1992) in a model of 

front dynamics for the European Neolithic transition and by Davison et al. (2006) 

in a model with localized advective spread toward the Danube River corridor.

Anomalous and Stratifi ed Diffusion.  The standard treatment of diffusion in 

the Fisher-Skellam system uses the value of the average (root mean square) dis-

persal distance of individuals in a population. This single value permits a good 

approximation of the effects on front width and propagation speed of a random 

distribution of dispersal distances where that distribution is approximately Gauss-

ian in shape. This restriction is appropriate for a conventional random walk pro-

cess if all individuals are broadly comparable in their dispersal characteristics. 

However, in many empirical instances of both animal and human movement, it 
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seems that the distribution of individual displacements may be more leptokurtic 

than in a Gaussian distribution (with higher frequencies of both short-distance and 

long-distance movements). The implications of such fat-tailed distributions have 

received particular attention, where the probability that any individual’s straight-

line dispersal distance is of length L in a given time interval decays slower than 

exponentially with increasing L. In such cases, the average (root mean square) 

distance is no longer adequate to approximate the effects on the front dynamics of 

the full dispersal distribution (or kernel).

The effect of fat-tailed kernels (e.g., power-law kernels) on Fisher-Skellam 

dynamics is to accelerate front speeds, and there may no longer be any stabiliza-

tion at an asymptotic front speed—in the continuum limit, the front will accelerate 

indefi nitely (e.g., Kot et al. 1996). In reality, however, the probability of individu-

als moving exceptionally long distances is low, even for the power-law distribu-

tion, and a cutoff is necessary for the modeled reaction term to ensure that no 

growth occurs where n(x, t) is of subinteger value; the effect of this is to stabilize 

the front at a constant asymptotic speed that scales with the carrying capacity of 

the locally interacting population but that is still likely to be fast (Brockmann and 

Hufnagel 2007; cf. Clark et al. 2001).

Stochastic factors are likely to be infl uential in the evolution of a front 

driven by dispersal behavior of this kind, and the consequence may be a chaotic-

seeming series of outbreaks of secondary dispersal foci ahead of the main front. 

This process is obviously antagonistic to the Allee effect, and the interaction of 

the two processes might well cancel out most of the effect of leptokurtic move-

ment distributions on front speeds for species with small carrying capacities and 

low reproductive rates.

Finally, Shigesada et al. (1995) considered the related situation in which dis-

persal is strongly bimodal, with most dispersers moving short distances (neigh-

borhood diffusion, producing a constant front speed) but with a small number of 

dispersers successfully relocating over long distances. They showed that the long-

distance dispersal by a small group causes the effective radius of the total population 

range to expand at an accelerating rate, although the geometry of the range bound-

ary will be more complex with multiple secondary foci ahead of the main front. The 

implications of fat-tailed distributions for human population expansions have been 

considered (albeit only briefl y and qualitatively) by Brown et al. (2007) for early 

Paleo-Indians and by Lilley (2008) for the Lapita phenomenon in the Pacifi c.

Two- and Three-Population Models

Having now considered the basic Fisher-Skellam system for a single popu-

lation undergoing an episode of expansion, I now consider the more complex 

case in which the invading population comes into contact with (and perhaps into 

competition with) a second preexisting population that already occupies the in-

vaded region. I deal here with only n population extensions of the Fisher-Skellam 

reaction -diffusion system; for other approaches as applied to human prehistory, 
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see Ray and Excoffi er (2009) (this issue) and Currat and Excoffi er (2004). The 

basic equations here are for a Lotka-Volterra competition system:

(5a)

(5b)

where the subscript denotes one or the other of the two populations and ci is a com-

petition coeffi cient that represents the infl uence of its competitor on the growth of 

each population i. The outcomes of this competition are determined by the carry-

ing capacities and competition terms (Neuhauser 2001): The coexistence condition 

occurs when c1  K1/K2 and c2  K2/K1, and the competitive exclusion condition 

occurs when cj  Kj/Ki and ci  Ki/Kj (with population j going extinct). If both 

c1  K1/K2 and c2  K2/K1, then eventually one population will go extinct, but 

which one depends on the initial densities.

Addition of an isotropic diffusion term (e.g., Okubo et al. 1989) produces 

the reaction-diffusion system

(6a)

(6b)

This system has been used in archaeology by Young and Bettinger (1992) to model 

competition between populations speaking Numic and pre-Numic languages in 

the American Great Basin in the second millennium AD.

A similar system has been studied for the European Neolithic transition by 

Fort et al. (2008), but with the sign of the interaction term changed for one of the 

populations (so that the interaction takes the form of one-way conversion rather 

than mutual competition-interference):

(7a)

(7b)

where population 1 represents the Neolithic farmers and population 2 represents 

the Mesolithic hunter-gatherers. The interaction term Γ now represents a switch-

ing term, so that the loss to the Mesolithic population is balanced by a symmetric 

gain to the Neolithic population. Fort et al. (2008) analyzed the determinants of 

front speed for the spread of the Neolithic population in this system [with time 

delay, not shown in Eqs. (7)] and also determined the coexistence time for the two 

populations. Fort (personal communication, 2009) reports that this system pro-
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duces a stable long-term coexistence condition if the fertility of hunter-gatherers 

is suffi cient to compensate for the loss from switching to farming, which is fairly 

intuitive. This system has been considered in detail in a slightly different context 

by Kandler and Steele (2008), who also showed, however, that enforcing a single 

carrying capacity for both populations will inevitably lead to the extinction of the 

population that is the net source of switchers.

An interesting three-population dynamic is considered by Aoki et al. (1996) 

for the system

(8a)

(8b)

(8c)

where the populations of descendants of initial farmers, converted farmers, and 

hunter-gatherers are denoted by the subscripts F, C, and H, respectively. This sys-

tem enables the composition of the expanding farming population to be monitored 

in terms of the two original source populations, which is of value for genetic 

arguments. Once again, a coexistence condition exists if the fertility of hunter-

 gatherers is suffi cient to compensate for the loss from switching to farming. When 

the conversion rate is suffi cient to drive the hunter-gatherer population to extinc-

tion, the fi nal farming population will be composed mainly or entirely of the 

descendants of converted hunter-gatherers if the combined rates of infl ux and sub-

sequent reproduction of switchers exceed the maximum intrinsic rate of increase 

of descendants of the initial farming population. Any frequency clines observed 

are due to diffusive mixing of the two farmer populations after the passage of 

the front. However, the fi nal farming population will be composed mainly of the 

descendants of the initial farming population if the reverse situation applies. Note, 

however, that this system retains the assumption of separate and stable carrying 

capacities for the two economic strategies, with no competitive reduction of the 

resource base of hunter-gatherers as a result of the growth of the farming popula-

tion. In addition, the assumptions of the three-population model break down if 

the mechanism of conversion is intermarriage, because the rates of increase of 

the descendants of initial farmers and converted hunter-gatherers would then be 

undifferentiated.

A model in which recruitment of converted hunter-gatherers is sex biased 

(e.g., fertile females only) would be interesting, with consideration of both the 

implications for the mtDNA and Y-chromosomal composition of the fi nal farming 

population and the effects of sex- and age-structured conversion rates on extinc-

tion times for the hunter-gatherer population. This would correspond to a staged 

population-interaction wave-of-advance model, as outlined by Renfrew (2001), 
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and a fi rst modeling attempt using a reaction-diffusion framework can be found in 

Steele and Kandler (2010).

Finally, Ackland et al. (2007) considered a version of the Aoki et al. (1996) 

three-population model in which farmers can also switch between membership 

of the two cultural populations nF and nC according to a local majority rule (the 

local minority being the net source of switchers). The purpose of this is to model 

the fates in the farming population of cultural traditions that are adaptively neutral 

with respect to the economic strategy itself (e.g., the languages spoken), one set 

being derived from the initial farmers and the other from the original hunting and 

gathering culture of the converted farmers; the shift dynamic involves a simple 

positive frequency-dependent bias. The key alteration to the three-population 

model [Eqs. (8)] is the introduction of a cultural shift parameter  (denoting the 

strength of the majority bias) into the equations governing the evolution of the 

size of the two farming (sub)populations:

(9a)

(9b)

The main result would seem to be that a parameterization of the Aoki et al. (1996) 

model leading to a cline of decreasing frequencies of initial farmers’ genes in 

the fi nal farming population with distance from the origin of the dispersal will, 

in the Ackland et al. (2007) model, also give rise to an abrupt cultural transition 

between areas characterized by “neutral” cultural traditions of the initial farmers 

and by those of the converted hunter-gatherers, with the boundary occurring near 

the point at which the genes of the converted hunter-gatherers start to make up 

the majority of the genes in the fi nal farming population. An additional feature 

of the Ackland et al. (2007) model, not shown in Eqs. (9), is that local diffusion 

rates are supplemented by an advective term that responds to local gradients in 

carrying capacity.

Dynamic Carrying Capacity and Its Consequences

Predator-Prey Interactions and Population Instability.  The systems dis-

cussed in previous sections have all assumed a stable value for the local popula-

tion carrying capacity K, representing the density at which births are balanced by 

deaths and at which the local population is no longer growing. For human groups 

(typically subsisting at the uppermost trophic level in a culturally engineered eco-

system), this is equivalent to assuming that during the early settlement phase any 

effects of periodic predator-prey oscillations are of suffi ciently low amplitude to 

allow their effects to be assimilated by taking K as an average value (and by as-

suming that there were no irreversible prey population crashes). In most models of 

initial human hunter-gatherer or agricultural dispersals, demographic parameters 
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such as K, D, and  are also usually estimated by using a modern ethnographic 

analogy as though the cumulative ratcheting of cultural knowledge responsible 

for the modern systems can be ignored—or assumed to have occurred instanta-

neously on the time scale of the modeled processes. Each of these assumptions is 

useful as a fi rst approximation, but they are all also surely rather naïve. Elsewhere 

we have considered in a qualitative way some aspects of the ratcheting of cultural 

knowledge that is required to enable local adaptations by pioneer human popula-

tions (Rockman and Steele 2003). In this section I consider briefl y some aspects 

of such processes as they affect the dynamics of model systems of the Fisher-

Skellam and similar types.

Numerous attempts have been made to model predator-prey interactions 

during the late Pleistocene human colonization of the Americas, with the particu-

lar objective of explaining the human contribution to megafaunal extinctions. A 

recent study by Alroy (2001) modeled Paleo-Indian dispersal in a spatially ex-

plicit Fisher-Skellam-type system using the same values for D and for  (and 

the same location for the invasion origin) as Steele et al. (1998) but with local 

population growth rates limited not by a fi xed K but by per capita hunting yields. 

These yields were based on a variable hunting effi ciency parameter, with local 

multispecies megafauna prey densities estimated independently from body mass 

and geographic range data for each species. Prey existed initially at carrying ca-

pacity and, once subject to hunting pressure, regenerated by logistic growth with 

the intrinsic maximum growth rates scaled inversely to adult body mass (again, 

based on empirical regularities in extant species). Prey population growth rates 

were also subject to variable levels of mutual interference competition. The main 

result was that human population growth and hunting activity almost always led 

to a major mass extinction of the prey species. For the human population the as-

sociated boom-and-bust cycle led (in the empirically best-fi tting scenario) to a 

halving of the density of the fi nal population compared with the maximum density 

achieved during the overhunting phase. From an archaeological viewpoint there is 

good evidence of a concentration of dated Clovis period events in a relatively short 

two- or three-century interval immediately before the onset of the Younger Dryas, 

followed by a remarkable dearth of dated events in subsequent centuries (Steele 

2009). This may well refl ect a human population crash, although the causes are 

less easily resolved empirically because the crash also coincides with a major 

rapid-onset episode of climatic deterioration.

Ecosystem Engineering.  Comparatively little work has been done on ecosys-

tem engineering effects, in which the activity of invading organisms causes lasting 

changes to the abiotic environment that then feed back to increase local values of 

demographic parameters such as K and  (Cuddington and Hastings 2004). An 

interesting step in this direction is a recent study by Fedotov et al. (2008), who 

introduced a system designed to model front propagation and (more importantly) 

the nonlinear dynamics of settlement formation and abandonment behind the 

front, evaluated against the empirical case of early agricultural settlements of the 
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Cucuteni-Triploye culture in the forest-steppe region of the East European Plain. 

This culture was perhaps the fi rst European culture to produce large-scale (even 

proto-urban) settlements.

Fedotov et al.’s (2008) system has two populations: sedentary farmers, 

whose population grows logistically and is limited by local per capita crop pro-

duction levels; and migrants, who are recruited from the farming population as 

local per capita crop productivity declines below a critical threshold and who 

migrate in jumps of intermediate length relative to the overall dimension of the 

domain. In turn, the migrants convert back to sedentary farming as local per capita 

crop productivity increases above that critical threshold. Thus the mechanism of 

diffusive spread of farming is by the transient conversion of farmers to migrants 

(semisedentary foragers), with farming being resumed once these migrants relo-

cate to a region with suffi ciently high potential per capita crop yields. The crucial 

variables in this system are those determining per capita crop productivity, which 

decreases as a function of population size and of time (because of cumulative 

soil degradation), and those determining the rate of movement by migrants. The 

main results are, fi rst, that the farming population front propagates at a rate pro-

portional to the migrants’ jump probability and to the rate of population-pres-

sure-induced soil degradation (which affects the rate of conversion of farmers to 

migrants). Second, in this system the population behind the front aggregates into 

clusters (because farmers are sedentary, experience local logistic growth, and do 

not jump-migrate until per capita crop yields have been depressed below a critical 

level), with the clusters or settlements separated by distances proportional to the 

migrants’ minimum jump length. Third, in this system the soil degradation term 

also produces a subsequent traveling wave of local population decline or extinc-

tion, which persists during the time required for the soil to regenerate by natural 

mechanisms. It is interesting in this context to note that a boom-and-bust cycle has 

recently been proposed for the Linear Pottery Culture (LBK) and the post-LBK 

settlement of central Europe, based on changing frequencies of radiocarbon dates, 

for which no obvious extrinsic cause (such as a climatic extreme event) has been 

adduced (Shennan and Edinborough 2007).

Gene-Culture Coevolution.  Finally, although it is not so directly relevant 

to population fronts, Aoki (1987) has considered the case of the coupled spatial 

spread of a culture trait and of a gene that increases the fi tness of individuals 

adopting that cultural trait (e.g., the coevolution in space of dairying practices and 

of the gene for adult lactase persistence). The system for modeling changing fre-

quencies of the cultural and genetic traits y and p, whose advantages may depend 

on whether or not both traits are present in the same individual, is

(10a)

(10b)
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where  and  are measures of the rate of cultural transmission of the new cultural 

trait as a function of its transmitter’s genotype and  and  are measures of the rate 

of genetic transmission of the new genetic trait as a function of its transmitter’s 

cultural state. This system models the rate of spread of an advantageous gene 

through an established population in the sense originally considered by Fisher 

(1937) but for the special situation in which the advantage depends on parallel 

changes in subsistence practices.

Conclusions

Reaction-diffusion models of Fisher-Skellam type are now well established 

in archaeology and continue to be used to estimate the demographic processes 

involved in major human dispersal episodes. Two- and three-population models 

are increasingly being used to explore interactions during major economic transi-

tions, and work is also under way on predator-prey interactions and population 

instabilities. The most obvious need is for a fuller exploration of cultural change 

processes when these are driven by underlying demographic factors. Ackland et 

al.’s (2007) work on cultural hitchhiking is one initial indicator of where this could 

go for neutral cultural traits, and Aoki’s (1987) model of gene-culture coevolu-

tion illustrates the situation in which genetic fi tness and cultural attributes are in 

some way functionally coupled. For language competition Kandler (2009) has 

explored the shift dynamic in considerable detail. Kandler and Steele (2009) have 

also extended Henrich’s (2001) consideration of innovation adoption dynamics by 

adding a diffusion term to his modifi ed-logistic reaction term, and we have also 

considered the implications of heterogeneity in adoption thresholds (somewhat 

analogous to susceptibility threshold heterogeneity in spatial epidemic models 

of disease spread); the result is a Fisher equation applied to the spread of an ad-

vantageous cultural innovation where the population of heterogeneous adopters 

is assumed to be at demographic equilibrium, but this last feature could easily be 

changed to create some kind of dynamic interaction.
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