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There are several measures that summarize the mortality experience of a population. Of these measures, life
expectancies are generally preferred based on their simpler interpretation and direct age standardization, which
makes them directly comparable between different populations. However, traditional life expectancy estimations
are highly inaccurate for smaller populations and consequently are seldom used in small-area applications. In
this paper, the authors compare the relative performance of traditional life expectancy estimation with a Bayesian
random-effects approach that uses correlations (i.e., borrows strength) between different age groups, geographic
areas, and sexes to improve the small-area life expectancy estimations. In the presented Monte Carlo simula-
tions, the Bayesian random-effects approach outperforms the traditional approach in terms of bias, root mean
square error, and coverage of the 95% confidence intervals. Moreover, the Bayesian random-effects approach
is found to be usable for populations as small as 2,000 person-years at risk, which is considerably smaller than
the minimum of 5,000 person-years at risk recommended for the traditional approach. As such, the proposed

Bayesian random-effects approach is well-suited for estimation of life expectancies in small areas.

Bayesian analysis; life expectancy; Monte Carlo method; small-area analysis

Abbreviations: MCMC, Markov chain Monte Carlo; RMSE, root mean square error; SMR, standardized mortality ratio.

Public health researchers are frequently required to
compare mortality in different geographic areas. The stan-
dardized mortality ratio (SMR), which measures the excess
or deficit of mortality compared with a chosen standard
population, is commonly used for this purpose. However,
inter-SMR comparisons are valid only if the areas com-
pared have identical population structures (1-3). Accord-
ingly, 2 or more areas can only be compared via their
SMRs if they have (at least) very similar population age
structures. This condition is often violated, particularly in
small-area studies, where local differences are not averaged
out as much as in larger geographic areas.

Life expectancies, in contrast, allow for comparisons
between geographic areas to be made without having to
assume a particular standard population. Even for areas
with very diverse population structures, life expectancies
are directly comparable, and, in contrast to SMRs,
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differences between areas are also more intuitive and
straightforward to interpret (3—5). As such, life expectan-
cies are preferable over SMRs as the outcome measure in
studies concerning geographic mortality differences.

One of the major problems with life expectancies,
however, is that the standard life-table method cannot be
used to calculate life expectancy estimates for populations
smaller than approximately 5,000 person-years at risk; below
this size, the bias in the estimates, as well as the size of the
accompanying standard errors, becomes too large for mean-
ingful analysis (6-8). In virtually all small-area applications,
a threshold of 5,000 person-years at risk implies that a sub-
stantial number of areas cannot be included in the analyses,
even after pooling several years of data. Consequently, life
expectancies are usually avoided in small-area analyses.

With a random-effects method, on the other hand, it
should be possible to calculate accurate life expectancies
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with sufficiently small standard errors for significantly
smaller populations at risk. This can be achieved using a
modeling approach that recognizes correlations (i.e.,
borrows strength) between different age groups, geographic
areas, and sexes to stabilize the life expectancy estimates.
These models are conveniently fitted using a Bayesian esti-
mation approach. A further advantage of a Bayesian estima-
tion approach is that it facilitates the calculation of standard
errors and confidence intervals without having to rely on
asymptotic normality assumptions that generally do not
hold in small-area applications. It thereby produces stan-
dard errors that remain accurate for much smaller popula-
tions (9, 10).

Thus far, however, there has been no clear evidence that
a Bayesian random-effects approach indeed results in more
accurate life expectancy estimates than the traditional
method. Neither is there an indication of a minimum re-
quired population size for estimating small-area life expec-
tancies using a Bayesian random-effects approach. Thus,
our aims in this study were to compare the relative efficien-
cy of both methods (in terms of accuracy of the estimates
and precision of the standard errors and confidence inter-
vals) and to provide evidence that a Bayesian random-
effects approach can indeed be used to calculate reliable
life expectancies for smaller populations than with the tra-
ditional approach.

MATERIALS AND METHODS
Benchmark data

In our analysis, we use Monte Carlo simulations to eval-
uate the performance of traditional and Bayesian life expec-
tancy calculations for (hypothetical) populations of varying
size. A total of 6 simulations are performed, for populations
of 500, 1,000, 2,000, 5,000, 10,000, and 25,000 person-
years at risk. Instead of creating fully synthetic benchmark
life-table data, with artificially imposed correlations
between the different age groups, geographic areas, and
sexes, the simulations are designed to mimic the exact male
and female population age structures, age-specific mortality
rates, and geographic locations of 33 European benchmark
countries. For these countries, complete life-table data for
the 2005-2006 period are obtained from either the Human
Mortality Database (11) or the Eurostat Populat database
(12). These data (based on millions of inhabitants) serve as
the input for the simulations, implying that the simulations
recreate Europe as if it were a city, with European countries
as its neighborhoods.

The 33 European benchmark countries have very differ-
ent life expectancies, ranging from close to 80 years in
Scandinavia and the Mediterranean to approximately 60
years in Russia and Ukraine (see Figure 1). These differ-
ences are substantial and may be larger than typically en-
countered in small-area applications (e.g., Congdon (10)
reports a range of 12 years between the highest and lowest
life expectancies in wards in eastern England). On the other
hand, these differences do allow for a meaningful compari-
son between the two methods without an inherent bias in

favor of the Bayesian random-effects approach due to the
inclusion of very similar areas in the simulations.

Creating the hypothetical small-area data sets

Each of the 6 simulations starts with the scaling down of
the European benchmark populations to the required popu-
lation size (i.e., 500, 1,000, 2,000, 5,000, 10,000, or
25,000 person-years at risk). This is programmed in
MATLAB (The MathWorks, Inc., Natick, Massachusetts)
and performed deterministically in order for the hypotheti-
cal small-area populations to mimic the exact age distribu-
tion of the benchmark countries. Subsequently, the
numbers of deaths are simulated randomly—10,000 times
per simulation—and independently for all age groups and
both sexes using draws from a Poisson distribution with
means set to the age- and sex-specific mortality rates of the
benchmark countries. After the input data are generated,
the data are automatically aggregated into abridged life
tables that are ready for life expectancy estimations. Based
on the recommendations of Toson and Baker (6) and
Eayres and Williams (7), standard 5-year abridged life
tables with >85 years as the final age interval are used
without any adjustment for age-specific death counts of
zero within the life table. This results in 10,000 life-table
data sets per simulation, each with a slight variation in the
number of deaths but with average life expectancies exactly
equal to those of the benchmark countries.

Life expectancy estimations

In the estimation phase, life expectancies and accompa-
nying standard errors are calculated for all 10,000 life-table
data sets per simulation using the traditional method (in
MATLAB) and the Bayesian random-effects method (in
OpenBUGS (http:/www.openbugs.info/)). Similar to Toson
and Baker (6), Eayres and Williams (7), and Williams et al.
(13), the simulations focus on male life expectancies only
(the difference in performance between the sexes is very
small), and, following the recommendations in the same
studies, all life expectancies are calculated using the
Chiang life-table approach (14). This holds for both the tra-
ditional method and the Bayesian method, but an issue that
pertains only to the traditional life-table calculations is the
occasional occurrence of zero deaths in the final age inter-
vals. Whereas the Bayesian random-effects approach does
not break down, the mortality rate of the final age interval
will be exactly zero for the traditional approach, resulting
in an infinite mean length of survival (1/mortality rate) and
consequently an infinite life expectancy. To avoid these
problems, zero death rates in the final age interval of the tra-
ditional life-table calculations are replaced by the average
observed sex-specific mortality rate of the final age groups.

Another computational problem that only concerns the
traditional method is the occasional occurrence of age-
specific mortality rates that are equal to or higher than 0.40.
In larger populations, such mortality rates generally do not
occur, but in smaller populations it occasionally happens
that a (nonfinal) age group has, for example, a population
of 5 and a number of deaths of 2. Here the Chiang formula
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Figure 1. Male life expectancy (in years) in the 33 European benchmark countries, 2005-2006.

for the conditional probability that persons who enter the
age interval will survive the age interval (P,) is zero, im-
plying that the life-table calculations no longer include sub-
sequent age groups and that the standard life expectancy
formulas break down. In these cases, the life expectancies
of subsequent age groups are set to zero to exclude them
from the life-table calculations.

Bayesian modeling approach

For the Bayesian method, a relatively basic model and a
more advanced model are evaluated in the simulations.
Both models pool strength over sexes, age groups, and geo-
graphic areas using a random-effects method that includes
multivariate (random) spatial effects that account for spatial
clustering in mortality rates and multivariate (random) age
effects that capture the usually high correlation between
mortality rates for successive ages. The second model is
more flexible than the first by allowing for age x area inter-
actions, which means that the second model relaxes the as-
sumption of a uniform age gradient per sex in the mortality
patterns of the simulated areas. The model specifications
are described in detail in the Appendix, and both models

Am J Epidemiol. 2012;176(10):929-937

are realistic examples of Bayesian life expectancy models.
These models can also be fitted using a frequentist estima-
tion approach. An advantage of the Bayesian estimation ap-
proach, however, is that it is easily extendible to more
complicated models and is more convenient for obtaining
reliable standard errors and confidence intervals, which are
directly available from the posterior life expectancy distri-
butions that are already estimated for the life expectancy
calculations.

The Bayesian models are fitted in OpenBUGS using iter-
ative Markov chain Monte Carlo (MCMC) sampling tech-
niques. The estimations for model 1 and model 2 both start
with 25,000 burn-in MCMC iterations to allow the chains
to converge, followed by 100,000 MCMC iterations with a
thinning interval of 10 to reliably approximate the posterior
life expectancy distributions. Note that we use relatively
good starting values and also use a very conservative burn-
in period in order to avoid having to inspect convergence
for all 120,000 Bayesian estimations. Instead, convergence
for the first 10 iterations of each simulation is evaluated
using the Gelman-Rubin criteria based on 2 parallel chains
(15). Convergence was always obtained within 15,000
MCMC iterations, and, for all other estimations, convergence
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Table 1. Mean Error (Bias), Standard Error, and Root Mean Square Error for Male Life Expectancies (in Years), by Methodological Approach

and Population Size?

Bias Standard Error Root Mean Square Error
Population Size
Traditional Bayesian 1 Bayesian 2 Traditional Bayesian 1 Bayesian 2 Traditional Bayesian 1 Bayesian 2

500 1.1 0.8 0.1 6.2 3.8 3.8 6.3 3.9 3.8

1,000 0.7 0.5 0.0 4.4 3.0 2.8 4.5 3.0 2.8
2,000 0.6 0.2 0.0 3.1 2.2 2.0 3.1 2.3 2.0
5,000 0.3 0.1 0.0 21 1.8 15 2.2 1.8 15
10,000 0.2 0.1 0.0 15 15 1.1 15 15 1.1
25,000 0.1 0.0 0.0 0.9 1.2 0.8 0.9 1.2 0.8

@ Results are based on 10,000 simulation iterations per population size.

was assumed after 25,000 MCMC iterations. The Bayesian
life expectancy estimations are distributed on the Dutch Life
Science Grid (16) to considerably reduce the required com-
putation time for the large number of regressions required
for the simulations.

Comparison between methods

After the life expectancy estimations are completed, the
point estimates and calculated standard errors of the tradi-
tional method and the means, standard deviations, and 95%
credibility intervals of the Bayesian posterior distributions
are aggregated and summarized in MATLAB. Together,
these estimates form distributions of life expectancies and
standard error estimates from which reliable inferences can
be made. The method that produces 1) the most accurate
life expectancies and 2) the most accurate estimated stan-
dard errors and confidence intervals is preferred.

Regarding the first criterion, the accuracy of the life ex-
pectancy estimates is characterized by two properties: 1) the
bias of the life expectancy estimates and 2) the standard
error of the life expectancy estimates. These measures
capture the systematic error and random sampling variabili-
ty of the estimates, respectively. The overall accuracy of the
life expectancy estimates is summarized by the root mean
square error (RMSE), a measure that combines the bias and
standard error of the estimates into a single composite
measure of absolute fit. Smaller values indicate a closer fit
to the benchmark life expectancies; accordingly, the
method with the smallest RMSE is preferred.

Regarding the second criterion, the accuracy of the re-
ported standard errors and confidence intervals is evaluated
by comparing the average estimated standard error with the
simulated random error and a tally of how often the bench-
mark life expectancies are located within the reported 95%
confidence intervals. The latter is referred to as the cover-
age of the 95% confidence intervals. The first criterion
gives an indication of whether the reported standard errors
reflect the true random sampling variability of the esti-
mates, while the second criterion also takes the systematic
error of the estimates into account and provides a more
direct indication of how reliable the reported 95% confi-
dence intervals actually are: Values below 95% indicate

that the confidence intervals are too optimistic, and values
greater than 95% indicate that they are too conservative.

Comparison in a real-life example

The methods are also compared in a real-life example.
Similarly to the simulations, standard 5-year abridged life
tables with >85 years as the final age group are used for
the life expectancy calculations. Unlike the simulations,
there is no benchmark that can be used to formally
compare the quality of the life expectancy estimates.
Instead, the real-life example is used to more tentatively
substantiate the simulation results. Firstly, the example
shows how both approaches handle real-life data and asso-
ciated problems that often occur in real-life analyses. Sec-
ondly, the sizes of the reported standard errors of both
approaches are compared, which should be in line with the
sizes of the reported standard errors in the simulations.
Thirdly, the relative size of the bias of both approaches is
investigated by examining the ratios of the estimated life
expectancies per neighborhood; these should concur with
the relative bias as reported in the simulations.

The selected geographic area for the example is the city
of Rotterdam, the second-largest city in the Netherlands,
with a population of approximately half a million people.
The required population and mortality data for Rotterdam
are obtained from Statistics Netherlands and cover the
2008-2009 period. Rotterdam has 89 neighborhoods, of
which several have little or no population (e.g., because
they contain a public hospital, a city park, an airport, a zoo,
or various industrial and harbor areas). Because it is not
permittted by Statistics Netherlands to export life tables for
populations smaller than 1,000 person-years at risk, 25
neighborhoods are excluded from the analysis. Together
the excluded neighborhoods comprise 1% of the total pop-
ulation of Rotterdam.

RESULTS
Accuracy of the life expectancy estimates

Table 1 shows the bias, standard error, and RMSE of the
traditional and Bayesian life expectancy calculations. As
can be seen, the life expectancy estimates of the traditional
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Table 2. Mean Estimated Standard Error and 95% Confidence Interval Coverage® for Male Life Expectancies (in
Years), by Methodological Approach and Population Size®

Estimated Standard Error
Population Size

Coverage of 95% Confidence Interval

Traditional Bayesian 1 Bayesian 2 Traditional Bayesian 1 Bayesian 2
500 5.0 4.3 3.4 86 95 89
1,000 4.0 3.2 2.5 90 94 92
2,000 2.7 2.2 1.9 91 93 94
5,000 1.9 1.7 1.5 92 91 95
10,000 1.4 1.3 1.2 93 89 96
25,000 0.9 0.9 0.8 94 84 96

& Coverage denotes the percentage of benchmark life expectancies contained in the estimated 95% confidence
intervals. Values below 95% indicate confidence intervals that are too optimistic, and values greater than 95%

indicate confidence intervals that are too conservative.

b Results are based on 10,000 simulation iterations per population size.

method are increasingly (upwards) biased for smaller popu-
lations. In contrast, the bias of Bayesian model 1 is consider-
ably lower and the bias of Bayesian model 2 is close to zero.

All methods have standard errors that decrease with
larger population sizes. The standard errors of the Bayesian
approach, however, are approximately 40% smaller than
those of the traditional approach for population sizes of
5,000 or less. For larger populations, Bayesian model 2 still
performs better than the traditional approach, but Bayesian
model 1 has a less flexible specification that becomes in-
creasingly restrictive when more data become available. As
a result, Bayesian model 1 performs even worse than the
traditional approach for population sizes of 25,000.

This is also reflected in the RMSE, which indicates that
Bayesian model 1 has a lower RMSE than the traditional ap-
proach for population sizes smaller than 10,000 person-years
at risk but a higher RMSE for population sizes of 25,000.
Bayesian model 2, on the other hand, has the lowest RMSE
regardless of population size and clearly performs best in
terms of the accuracy of the life expectancy estimations.
Compared with the traditional approach, it has an approxi-
mately 40% lower RMSE for populations below 5,000 and
still a 17% lower RMSE for populations as large as 25,000.

Accuracy of the estimated standard errors and 95%
confidence intervals

Table 2 shows the mean estimated standard errors and
the coverage of the 95% confidence intervals for the tradi-
tional and Bayesian approaches. The estimated standard
errors are highly correlated with the simulated standard
errors in Table 1, with a correlation coefficient of 0.98. The
traditional method, however, increasingly underpredicts the
true variability of the life expectancy estimates for smaller
populations. Bayesian model 1, on the other hand, overpre-
dicts the true variability for smaller populations and under-
predicts the true variability for larger populations, whereas
Bayesian model 2 performs best with modest (but increas-
ing) deviations for population sizes of 2,000 or less.

When one examines the coverage of the 95% confidence
intervals, the results in Table 2 indicate that the traditional
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approach performs increasingly worse for smaller popula-
tions, which reflects the bias in the estimates and the under-
prediction of the standard errors for smaller populations. In
contrast, Bayesian model 1 performs well for smaller popu-
lations (where the small amount of bias mitigates the effect
of the standard errors that are too large) but not for larger
populations, where the size of the true standard errors is
increasingly underpredicted. The more flexible Bayesian
model 2 again performs best: It has a coverage of 94% for
populations as small as 2,000 (note that the traditional ap-
proach requires populations of 25,000 to reach this level of
accuracy), has a coverage of 95% for populations of 5,000,
and even becomes somewhat conservative for populations
of 10,000 and 25,000.

Performance in a real-life example

Figure 2 and Figure 3 summarize the results for the
real-life example. Firstly, the ratios of estimated life expec-
tancies in the city of Rotterdam, as depicted in Figure 2,
substantiate the simulation results by showing that the
traditional approach is slightly upwards biased relative
to the Bayesian random-effects approach; this is indicated
by the negatively sloped log-linear regression curve. Sec-
ondly, the ratios of estimated standard errors as shown in
Figure 3 substantiate the simulation results by showing that
the Bayesian approach produces smaller standard errors
than the traditional approach, particularly for smaller
populations.

Figures 2 and 3 also depict several significant deviations
between the Bayesian and traditional approaches. These
occur in a limited number of situations, which involve
small populations with 1) zero populations at risk in the life
table, 2) zero deaths in the life table, 3) zero deaths in the
final age group, or 4) 1 or 2 deaths in the entire life table
but for very young persons. Here the traditional approach
has computational difficulties and generates extreme life
expectancies with unrealistically small standard errors (or
infinite life expectancies with infinite standard errors),
whereas the Bayesian random-effects approach simply
borrows more information and produces larger standard
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Figure 2. Ratios (traditional approach/Bayesian approach) of life expectancy (LE) among men (left) and women (right) for neighborhoods in
Rotterdam, the Netherlands, 2008—2009. The solid line represents the fitted log-linear regression curve.

errors. Overall, the results of the Bayesian random-effects
approach are more stable and seem more reliable for
smaller populations, in concurrence with the results of the
simulations.

Finally, when comparing the estimated standard errors in
the simulations (Table 2) with those in the real-life
example (Table 3), the standard errors of the Bayesian
random-effects approach are 10%—25% smaller than in the
simulations, whereas the standard errors of the traditional
approach are very similar in size. This is not entirely unex-
pected, since a random-effects approach performs better
when more and more similar areas are included in the esti-
mations, and the range of estimated life expectancies with
Bayesian model 2 is only 9.2 years (74.3—83.5) for males
and 8.2 years (78.5-86.7) for females, which is signifi-
cantly smaller than in the simulations.

DISCUSSION

The presented simulations indicate that the Bayesian
random-effects approach can improve significantly upon
the traditional life expectancy calculations, in terms of both
the RMSE and the accuracy of the standard errors and con-
fidence intervals. In particular, a Bayesian random-effects
model that allows for age x area interactions performs sig-
nificantly better than the traditional approach at all simulat-
ed population sizes (i.e., 500-25,000 person-years at risk).
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The simulation results also provide evidence that the
often recommended minimum population size of 5,000
person-years at risk for the traditional approach is rather op-
timistic and that substantially larger populations are advis-
able to obtain sufficiently accurate standard errors and
confidence intervals. As shown, the coverage of the confi-
dence intervals was only 92% for populations of 5,000 and
remained below 95% for populations as large as 25,000.
Based on observed deviations from normally distributed
standard errors, Scherbov and Ediev (8) arrived at similar
conclusions and recommended caution for population sizes
up to 50,000 person-years at risk. In contrast, a minimum
required sample size of 2,000 person-years at risk for the
Bayesian random-effects approach seems warranted. At this
point, Bayesian model 2 has a lower RMSE and consider-
ably more accurate standard errors than the traditional ap-
proach at its recommended minimum sample size of 5,000.

The simulations are even likely to provide a somewhat
conservative estimate of the relative performance of the
Bayesian random-effects approach vis-a-vis the traditional
approach. The first reason is that the implemented simula-
tion approach does not introduce random variation in the
age distributions of the hypothetical small areas when
scaling down the benchmark populations. This is similar to
previous simulation studies and is the correct method for
validating the accuracy of the reported standard errors; yet
it also avoids computational problems with the traditional
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Figure 3. Ratios (traditional approach/Bayesian approach) of the estimated standard error (SE) of life expectancy among men (left) and
women (right) for neighborhoods in Rotterdam, the Netherlands, 2008—-2009. The solid line represents the fitted log-linear regression curve.
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Table 3. Mean Estimated Standard Error for Life Expectancies (in Years) in Neighborhoods in Rotterdam, the Netherlands, by Methodological

Approach, 2008—2009

Men Women
Population Size Average SE No. of Average SE No. of
Traditional Bayesian 2 Observations Traditional Bayesian 2 Observations
1,000-1,999 4.3 1.9 5 3.5 1.7 5
2,000-4,999 2.2 1.1 11 2.4 1.2 11
5,000-9,999 1.5 1.0 25 1.6 1.1 25
10,000-24,999 1.2 0.8 23 1.2 0.9 21
>25,000 N/A N/A 0 0.8 0.6 2

Abbreviations: N/A, not applicable; SE, standard error.

approach because it precludes zero populations at risk in
the life tables. Whereas the Bayesian random-effects ap-
proach can adequately handle zero populations at risk in
the life tables, the traditional approach breaks down and re-
quires further aggregation or imputation of deaths to avoid
computational problems. In real-life applications, where
zero populations at risk frequently occur in small popula-
tions, the traditional approach is thus expected to perform
somewhat worse than the simulations suggest.

The second reason for a conservative estimate of the rel-
ative performance of the Bayesian random-effects approach
is that the simulations are based on benchmark countries
with substantial differences in population structures and life
expectancies. These differences are deliberately used to rep-
resent something of a “worst-case scenario” for the Bayes-
ian random-effects approach, which derives its strength
from similarities between the areas under analysis. Many
real-life small-area life expectancy estimations will involve
smaller differences between the areas and also include sub-
stantially more areas; in these cases, the Bayesian random-
effects method performs better than as suggested in the
simulations (whereas the performance of the traditional ap-
proach remains the same). This point is also illustrated in
the real-life example, where the Bayesian standard errors
are 10%—25% lower than as reported in the simulations.

Additionally, in a nonreported simulation (available from
the first author upon request) where all geographic autocorre-
lation is removed by randomly shuffling the location of the
benchmark countries in each individual regression while
leaving the geographic structure of Europe intact, the results
of the Bayesian random-effects approach remain unbiased
and the RMSE remains 15%—25% lower than that in the tra-
ditional approach. Admittedly, such a scenario is quite unre-
alistic, but it does substantiate the robustness of the
simulation results. Taking these considerations into account,
a minimum sample size of 2,000 person-years at risk for the
Bayesian random-effects approach seems prudent and is un-
likely to be an artifact of the specific simulation approach.

Moreover, several improvements to the modeling ap-
proach can be envisaged that can further increase the per-
formance of the Bayesian approach (in terms of bias and
RMSE) and simultaneously have interesting public health
applications. Firstly, due to computational constraints, the
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simulations in this paper do not incorporate more advanced
spatial specifications and/or selection of random-effects
models (10, 17). In real-life applications, where each model
needs to be fitted only once, more flexible Bayesian models
can be considered that are better suited to account for large
differences in life expectancy between included areas. The
estimation time for these models would increase from ap-
proximately 10—15 minutes for Bayesian model 2 to 20-30
minutes for more complicated models.

Secondly, it is also relatively straightforward to extend
the Bayesian random-effects approach with a time dimen-
sion. By pooling strength over an additional dimension (in
addition to sex, age group, and geographic area), the Bayes-
ian results would further improve, and such a model could
be especially useful for monitoring life expectancy in areas
over time—for example, to detect atypical time trends or to
evaluate the effect of interventions on the small-area level.

Thirdly, area-specific variables that are known to be corre-
lated with geographic differences in life expectancy (e.g., the
location of nursing homes and/or area deprivation scores)
could be included to further improve the Bayesian life expec-
tancy estimations. Such models are usually referred to as
mixed models, and they can improve upon the results of
purely random-effects models because the included predictors
already explain part of the observed mortality differences
between areas. Such an approach could, for example, be used
to provide an elegant correction for the impact of nursing
home deaths on small-area life expectancies (18).

Finally, public health researchers and health authorities
may also be interested in exploring the causes of variation
in estimated life expectancies. For this purpose, the Bayes-
ian random-effects approach can easily be extended to
analyze differences in estimated life expectancy in follow-
up regressions that directly take the precision of the life ex-
pectancy estimations as well as the spatial configuration of
areas into account.

In conclusion, the Bayesian random-effects approach is
versatile and well-suited for small-area life expectancy esti-
mations. It performs better than the traditional approach for
all simulated population sizes and allows for the estimation
of accurate life expectancies and accompanying confidence
intervals for populations as small as 2,000 person-years at
risk.
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APPENDIX
Model 1

Let Dg;, and Popy;, denote deaths and populations at risk,
classified by sex (s=1, 2), area (i=1, ..., 33), and age group
(x=1, ..., 19). Deaths are assumed to be Poisson-distributed:

Dy ~ Poisson(Pop;. X myi), (1)

with myg;, denoting mortality rates specified in the same di-
mensions. For larger populations, a binomial distribution
could also be specified; however, given our focus on small
populations with few observed deaths, the Poisson distribu-
tion is considered more appropriate. A standard log-link func-
tion is used, with the first model specified as

log(myix) = oty + By + Bogi- (2)

This initial model contains:

1. Overall sex-specific mortality-level parameters o,
which are assigned flat prior distributions from —oo to
oo with the OpenBUGS “dflat()” distribution.

2. Parameters B, that represent the age-sex mortality rates for
age group x and sex s; these are assigned a multivariate
conditional first-order random walk prior that takes correla-
tions between adjacent age groups and the correlation
between the mortality experience of males and females into
account.

3. Area effects B,,; that represent spatially correlated mor-
tality contrasts that are also allowed to be sex-differenti-
ated; these are assigned a multivariate conditional
autoregressive prior distribution that takes correlations
between adjacent areas and the correlation between male
and female mortality rates into account. Both ; and §,
are estimated in OpenBUGS using the “MV.CAR” dis-
tribution with Wishart priors assigned to the precision
matrices (both specified with 2 degrees of freedom and
a 2-by-2 identity matrix as the inverse scale matrix).
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Model 2

In model 1, the age effects B, are assumed to operate
independently of the area effects f,,; This assumption
results in a parsimonious model, but the actual mortality
pattern may not conform to the simplifying assumption of a
(sex-differentiated) uniform age gradient in all areas. Ac-
cordingly, model 2 allows for age x area interactions:

log(mb‘ix) = Q + Blsx + B2si X B3SX' (3)

The parameters o, By, and By, are given exactly the same
priors as in model 1, whereas the additional Bs, parameters
are assigned gamma(l,1) priors. Together, the parameter
combination [, X B3, provides a relatively parsimonious
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representation of age-sex-area mortality effects involving
104 parameters, thereby avoiding 1,254 (i.e., 2x33x19=
1,254) overall age-area interaction parameters Pg;,. In further
extensions, this full set of parameters could still be intro-
duced to correct for remaining discrepancies, but this would
come at the cost of model parsimony if not combined with
an automatic selection mechanism such as that described, for
example, by Congdon (10). Given the increase in computa-
tional time, these extensions are beyond the scope of the
simulations presented in this paper. Finally, note that the By,
and B,,; parameters are constrained to sum to zero and that
the Bs,, are constrained to sum to 1 for identification of the
parameters. The OpenBUGS code for models 1 and 2 is
available upon request.



