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ARTICLE INFO ABSTRACT

Background: Smaller kidneys with reduced number of nephrons in early life lead to impaired kidney function
and risk for hypertension and chronic kidney disease. These associations might be partly explained by com-
mon genetic variation.

Aims: To assess the associations between common genetic variants, which have recently shown to be associ-
ated with blood pressure or kidney function, with fetal kidney volume.

Study design: A prospective population based cohort study in Rotterdam, The Netherlands.

Subjects: 855 children, followed from early fetal life onwards (born 2003-2005).

Predictor: Common genetic variants previously associated with blood pressure or kidney function.

Outcome measures: Combined third trimester fetal kidney volume.

Results: After taking into account multiple testing, only rs12940887 (near ZNF652) was significantly associat-
ed with fetal kidney volume (f3: 0.88 (95% CI: 0.40; 1.37) cm? per minor allele, P-value<0.001), but the effect
showed the opposite direction as expected. The remaining common genetic variants were not associated
with fetal kidney volume. We also did not find associations of genetic variants previously shown to affect
newborn kidney volume, with third trimester fetal kidney volume.

Conclusions: Our results suggest that common genetic variants, associated with kidney function or disease
and blood pressure, do not affect the third trimester fetal kidney volume. Further studies are needed to elu-
cidate the mechanisms underlying the associations between small kidney size and increased risks of hyper-
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tension and impaired kidney function in adulthood.
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1. Introduction

Many studies have shown associations of low birth weight with
cardiovascular disease and chronic renal failure [1,2]. Low birth
weight is also associated with impaired renal growth, raised blood
pressure and impaired kidney function in later life [1-3]. The hyper-
filtration hypothesis suggests that smaller kidneys with lower num-
bers of nephrons lead to hyperfiltration in the remnant nephrons,
eventually resulting in glomerular sclerosis [4,5]. This may predispose
the individual to renal damage and development of higher blood
pressure, impaired kidney function and end stage kidney disease in
adulthood [4]. A previous study showed associations of kidney size
and low nephron number with hypertension [6]. Nephron number
has been shown to vary widely between individuals, ranging from
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250,000 to 2,000,000 nephrons per kidney [7,8]. A strong relationship
between newborn kidney volume and nephron number was shown in
fifteen infants who died before three months of age, in whom an ul-
trasound was performed in the first two days of life [9]. Several
other post-mortem studies in humans, who died in the perinatal pe-
riod, showed consistent associations between renal size and glomer-
ular number [8,10]. Therefore, kidney volume seems to be a valid
marker for nephron number. Kidney growth and development is
complex and influenced by many genetic and environmental factors
[11,12]. Multiple genes are involved in kidney development, e.g. in
regulating the branching process of the ureteric bud. Mutations in
these genes are known to cause agenesis or dysgenesis of the kidney
[11]. It seems likely that also common genetic variants account for
part of the normal variation in nephron endowment. Thus far, only
a few genetic variants have been shown to affect kidney volume
[9,13,14]. It might be that common genetic variants, previously asso-
ciated with blood pressure or kidney function, are also associated
with kidney volume. These common genetic variants are identified
in genome wide association studies conducted in thousands of
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individuals and explain ~1-2% of the variation in these phenotypes
[15-21].

We hypothesized that common genetic variants underlie part of
the associations of smaller kidney size in early life, as marker for a
lower nephron number, with higher blood pressure and impaired
kidney function in later life. Therefore we assessed in a population-
based cohort study among 855 subjects, the associations of 58
common genetic variants, previously shown to be related to blood
pressure or kidney function in adult life, with fetal kidney volume.
We expected that a blood pressure increasing allele or kidney func-
tion decreasing risk allele would be associated with a smaller kidney
volume in early life. Also, we attempted to replicate the associations
of four common genetic variants and one haplotype with fetal kidney
volume [9,13,14].

2. Patients and methods
2.1. Design

This study was embedded in the Generation R Study, a population-
based prospective cohort study from fetal life until young adulthood
in Rotterdam, The Netherlands [22,23]. Detailed assessments of fetal
and postnatal growth and development have been conducted in a
randomly selected subgroup of Dutch children and their parents.
Mothers, who were already participating during pregnancy, were
asked to participate in additional detailed renal and cardiovascular
measurements. These women were all enrolled before a gestational
age of 24 weeks. In total 80% of the approached mothers were willing
to participate in these additional studies. Fetal kidney ultrasounds
were performed in the third trimester of pregnancy (median age:
30.4 weeks of gestation (90% range 28.8-32.1 weeks)). In total 1232
women were enrolled in the subgroup cohort. Twin pregnancies
(n=15) and pregnancies leading to perinatal death (n=2) were ex-
cluded from the analysis, leading to 1215 singleton live births. No
renal or ureterovesical anomalies other then mild pyelectasis over
10 mm (n=3) were present in our study. Kidney ultrasounds were
successfully performed in 95% (n=1158) of these subjects. DNA
was available in 855 (74%) of these subjects. The study was approved
by the Medical Ethics Committee of the Erasmus MC, Rotterdam.
Written informed consent was obtained from all participants [22,23].

2.2. Genotyping

Cord blood for DNA isolation was available in 74% of all live-born
participating children. Sex-mismatch rate between genome based
sex and midwife-record based sex was low (<0.5%), indicating that
possible contamination of maternal DNA was extremely low. Missing
cord blood samples were mainly due to logistical constraints at the
delivery. Individual genotype data were extracted from the genome-
wide [llumina 610 Quad Array. If SNPs were not directly genotyped,
we used MACH (version 1.0.15) software to impute genotypes using
the HapMap II CEU (release 22) as reference set.

2.3. Selection of common genetic variants

The PubMed database was searched with ‘genome wide associa-
tion study’, combined with ‘blood pressure’ or ‘kidney function’ as
search criteria. We selected genome wide association studies, since
these provide robust evidence of association, conducted in samples
of European ancestry. Seven genome wide association studies were
found; four on blood pressure and hypertension, three on kidney
function and kidney disease [15-21]. If identical study populations
were used in subsequent genome wide association studies, we select-
ed common genetic variants from the genome wide association study
with the largest sample size. Furthermore, we selected SNPs to assess
in our study if the P-value of the association was <5.0x 1078, If SNPs

were in high linkage disequilibrium (R? HapMap CEU >0.5) with each
other, we selected the SNP with the strongest association reported,
unless these SNPs were associated with different phenotypes. In
total, 30 SNPs related to blood pressure and 28 SNPs related to kidney
function or disease, were selected for this study. Next, the PubMed
database was searched with ‘common variant’ and ‘kidney size’ or
‘kidney volume’ as search criteria, to identify the studies which
assessed associations between common genetic variants and kidney
size or volume. We identified four studies investigating genes in the
branching pathway; the PAX-gene, the RET-gene, the ALDH1A2-
gene and the GDNF-gene. We selected SNPs in our study if the
P-value of the association in previous studies was <0.05 [9,13,14,24].

2.4. Kidney measurements

Fetal left and right kidneys were measured in the third trimester of
pregnancy with an ATL-Philips HDI 5000 instrument (Seattle, WA, USA)
equipped with a 2.0-5.0 MHz curved array transducer. In a sagittal
plane the maximum longitudinal kidney length was measured, with the
calipers placed on the outer edges of the caudal and cranial sides.
Antero-posterior (kidney width) and transverse (kidney depth) diame-
ters were measured perpendicular to each other, from the one outer
edge to the other, in an axial plane. Values of maximum bipolar kidney
length, width and depth were obtained from both the left and right
kidneys. Kidney width and depth were measured at the level of the kid-
ney hilum. Fetal kidney volume was calculated, using the equation of an
ellipsoid: volume (cm?)=(0.523 xlength (mm)xwidth (mm)x depth
(mm))/1000. Left and right kidney volumes were added for the com-
bined kidney volume (cm?®) [25,26]. Fetal growth characteristics (head
circumference (HC), abdomen circumference (AC) and femur length
were measured at the same visit, and fetal weight was estimated [27].
Two well-trained, experienced sonographers performed all measure-
ments. Quality checks were frequently carried out and feedback was pro-
vided to minimize interoperator differences. Fetal growth measurements
were shown to be measured reliably. The intra- and interobserver inter-
class correlation coefficients were all higher than 0.98, indicating good re-
producibility [28]. The estimated fetal weight (EFW) is calculated by the
formula: EFW (grams)=10%(1.326 —0.00326+AC*FL+ 0.0107+HC+
0.0438+AC+0.158+FL) [29].

2.5. Statistical methods

Associations of common genetic variants and fetal kidney volume
were assessed using linear regression, assuming an additive model.
The model was adjusted for sex, gestational age at measurement
and estimated fetal weight. We adjusted for these variables because
of their relation with kidney volume [30]. The results did not differ
materially between analyses with and without adjustment. In order
to assess the combined effects of the common genetic variants, we
calculated a risk allele score, by summing the risk alleles (common
genetic variants previously associated with higher adult blood pres-
sure or impaired kidney function) per individual, and analyzed the as-
sociation of the number of risk alleles with fetal kidney volume. To
take into account multiple testing, we applied a Bonferroni correction
and considered a P-value lower than 8.6x 104 (0.05/58) as statisti-
cally significant. Controlling for the false discovery rate, a less conser-
vative approach [31,32], did not change the results materially. All
statistical analyses were performed using the Statistical Package for
the Social Science version 17.0.2 for Windows (SPSS Inc, Chicago, IL,
USA).

3. Results

Table 1 presents the maternal and fetal subject characteristics, in-
cluding all measured kidney characteristics. The combined kidney



Table 1
Population characteristics.

Maternal characteristics (n =855)

Age 31.9 ( 21.9-39.4)
Height 171.1 ( 6.4)
Weight 714 (12.8)

Body mass index
Parity (%)>1

Fetal characteristics (n =855)

23.4 (18.9-34.6)
406

Sex (males %) 53.3

Gestational age at measurement 30.4 (28.5-32.7)
Estimated fetal weight (g) 1639 (268)
Right kidney structures

Length (mm) 39.0 (32.1-46.0)
Width (mm) 23.0 (18.0-29.7)
Depth (mm) 22.0 (17.0-28.0)
Volume (cm?) 10.3 (5.8-17.9)

Left kidney structures

Length (mm) 39.0 (32.7-47.0)
Width (mm) 22.0 (17.0-28.0)
Depth (mm) 21.0 (16.9-26.9)
Volume (cm?) 9.6 (5.4-16.1)
Combined kidney volume (cm?) 20.6 (5.6)
Kidney volume/EFW (cm?®/kg) 12.7 (3.1)

Values are means (sd) or medians (95% range).
Estimated fetal weight is the estimated weight at measurement.

volume, as well as the relative kidney volume was higher in boys than
in girls (P<0.01).

Table 2 gives the associations of the selected common genetic var-
iants, known to be associated with blood pressure or kidney function,
with fetal kidney volume. Out of 30 genetic variants known to be as-
sociated with blood pressure, only rs12940887 (near ZNF652) was
significantly associated with fetal kidney volume ((3: 0.88 (95% CI:
0.40; 1.37) cm?® per minor allele, P<0.001), but the effect of this var-
iant did not show the expected direction. Overall, eighteen common
variants (60%) previously associated with blood pressure, showed
the expected direction of the association with fetal kidney volume,
but these associations were not significant. Of the common variants
known to be associated with kidney function or kidney disease, four
(rs11959928 (in DAB2), rs10109414 (in STC1), rs12460876 (in
SLC7A9) and rs4805834 (near SLC7A9)) out of 28 variants (14.3%)
showed evidence of association with fetal kidney volume (P<0.05),
though they did not reach the significance threshold after adjustment
for multiple testing. The expected direction of the associations was
found in two (rs11959928 and 4805834) of these common variants.
Overall, thirteen (46.4%) common genetic variants showed the
expected direction of the association with fetal kidney volume. A
risk allele score summing all risk alleles of the common genetic vari-
ants associated with adult blood pressure and kidney function, was
not associated with fetal kidney volume (f -0.04 (95% CI: -0.11 ,
0.03) cm? per risk allele, P=0.25).

We did not find evidence of associations between common genetic
variants in PAX2 (rs4244341 and rs11592735), RET (rs1800860) and
ALDH1A2 (rs7169289) and fetal kidney volume (Table 3). The previous-
ly described AAA-haplotype in PAX2 (rs11190688, rs11190702 and
11599825) [13] was not significantly associated with fetal kidney
volume.

4. Discussion

Results from this population-based prospective cohort study sug-
gest that common genetic variants, which have previously shown to
be associated with blood pressure or kidney function [15-20], not ex-
plain the associations of smaller kidneys with higher blood pressure
and impaired kidney function in later life. Also, previously found as-
sociations of common genetic variants involved in the branching
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pathway with neonatal kidney size [9,13,14], were not confirmed in
this study.

Previous studies showed the association of low birth weight with
smaller kidneys and a lower number of nephrons [7,8,10]. Smaller
kidneys, with a reduced nephron number, may lead to hyperfiltration
in the remaining nephrons, resulting in glomerular sclerosis. Subse-
quently this may predispose an individual to the development of
higher blood pressure, impaired kidney function and chronic kidney
disease [4,10,33-35]. Postmortem studies in humans showed that a
lower nephron number is associated with low birth weight and hy-
pertension [6,36]. A recent study showed an association between
newborn kidney volume and nephron number in fifteen infants,
who died before three months of age, in whom an ultrasound was
performed in the first two days of life. There was a strong relationship
between kidney mass and nephron number [9]. This association is
supported by study by Hinchliffe et al. demonstrating a strong corre-
lation between renal volume and glomerular number up to 40 weeks
of gestation, in eleven spontaneously aborted fetuses [37]. Several
other post-mortem studies in humans, who died in the perinatal pe-
riod, showed consistent associations between renal size and glomer-
ular number [8,10]. Low birth weight has also been shown to be
associated with low nephron number [8,10,33,36]. Ultrasound studies
in fetuses and children have shown that low birth weight is associat-
ed with smaller kidney size [35,38-40]. Previously we have shown
that kidney characteristics track from third trimester of pregnancy
to the postnatal age of two years [30]. Therefore, fetal kidney volume
also seems to be a good surrogate for nephron number. However, dif-
ferences in fetal kidney volume might be smaller and therefore more
difficult to detect. This could have affected the power of our study to
establish associations.

The nephron number varies widely between individuals ranging
from 250,000 to 2,000,000 nephrons per kidney [7,8]. The fetal kidney
develops forms two components, the metanephric mesenchyme and
the Wolffian duct. The ureteric bud forms as an outgrowth of the
Wolffian duct and reciprocal induction between the metanephric
mesenchyme and the ureteric bud results in branching of the ureteric
bud. Through various complicated processes, metanephric tubules
and glomerular components are formed. Kidney and nephron growth
and development are influenced by genetic and various environmen-
tal factors [11,12,41-44]. Many molecular mechanisms are required
for different aspects of nephrogenesis, such as the ureteric bud out-
growth and branching [11,12]. Ureteric branching is a very important
part of nephrogenesis and thought to be a major determinant of
nephron endowment [11,12]. Several genes, such as PAX2, RET and
GDNF, have been suggested to be involved in these steps in nephro-
genesis. Mutations in these genes seem to cause kidney agenesis or
dysgenesis and fewer nephrons in animals and humans [11,45]. Ad-
verse fetal environmental exposures could also affect kidney develop-
ment, although information on specific adverse fetal exposures
affecting kidney development is limited. It has been shown that con-
tinued smoking during pregnancy of more than ten cigarettes per day
is associated with smaller kidneys in fetal life [41] and higher blood
pressure in childhood [46]. Also, other environmental exposures,
such as nutrition, folic acid supplementation, and placental dysfunc-
tion might affect kidney development. Several animal studies have
shown that low maternal protein intake and vitamin A deficiency
during pregnancy lead to smaller kidneys and increased blood pres-
sure in the offspring [42-44].

It seems likely that genetic factors partly explain variation of
nephron number, and thus kidney size, in the general population
[11]. There have been no heritability studies performed on kidney
volume in healthy populations, but a study in families with polycystic
kidney disease showed that kidney volume has a heritability of 0.42
[47]. The association between smaller kidneys and higher blood pres-
sure, impaired kidney function and kidney disease in adulthood,
might be partly explained by common genetic variation, resulting in
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Table 2

Common genetic variants known to be associated with blood pressure or kidney function and their association with fetal kidney volume.
SNP Chr.  Position Minor  Minor allele  Gene Previously reported effect Effect estimate for fetal ~ P-value  Direction as

allele  frequency (in/near) on blood pressure kidney volume (cm?) expected

Blood pressure
2932538 1 113018066 A 0.26 MOV10 SBP |; DBP [[21] —0.38 (—0.89; 0.13) 0.15 No
rs17367504 1 11785365 G 0.15 MTHFR-NPPB SBP |; DBP |; hypertension |[21]  0.12 (—0.52; 0.76) 0.71 Yes
1513082711 3 27512913 C 0.23 SLC4A7 DBP 1[21] —0.52 (—1.08; 0.04) 0.07 Yes
13774372 3 41852418 C 0.15 ULK4 DBP 1 [21] —0.17 (—0.84; 0.50) 0.63 Yes
5419076 3 170583580 T 0.47 MECOM SBP 1; DBP 1[21] —0.35(—0.82; 0.11) 0.14 Yes
rs1458038 4 81383747 A 0.30 FGF5 SBP 1 ; DBP 1 [21] 0.43 (—0.07; 0.93) 0.09 No
rs13107325 4 103407732 T 0.05 SLC39A8 SBP |; DBP |[21] 0.79 (—0.47; 2.04) 0.22 Yes
rs13139571 4 156864963 A 0.22 GUCY1A3-GUCY1B3  DBP |[21] 0.36 (—0.28; 0.94) 0.22 Yes
rs1173771 5 32850785 A 0.41 NPR3-C50rf23 SBP |; DBP |; hypertension |[21] ~ —0.19 (—0.66; 0.27) 0.41 No
rs11953630 5 157777980 T 0.37 EBF1 SBP |; DBP |[21] 0.30 (—0.20; 0.79) 0.24 Yes
rs1799945 6 26199158 G 0.14 HFE SBP 1; DBP 1; hypertension 1[21] ~ —0.14 ( —0.80; 0.53) 0.69 Yes
rs805303 6 31724345 A 0.38 BAT2-BAT5 SBP |; DBP |; hypertension | [21]  0.10 (—0.38; 0.59) 0.68 Yes
rs4373814 10 18459978 C 0.42 CACNB2 (5') SBP 1; DBP 1; hypertension 1[21] ~ 0.00 (—0.47; 0.47) 1.00 -
rs1813353 10 18747454 C 0.31 CACNB2 (3') SBP |; DBP |; hypertension |[21] —0.59 (—1.11; —0.07) 0.03 No
rs4590817 10 63137559 C 0.15 C100rf107 SBP |; DBP |; hypertension |[21] ~ 0.20 (—0.45; 0.84) 0.55 Yes
1$932764 10 95885930 G 0.44 PLCE1 SBP 1; hypertension 1[21] —0.35(—0.82; 0.12) 0.15 Yes
rs11191548 10 104836168 C 0.08 CYP17A1-NT5C2 SBP |; DBP |[21] 0.47 (—0.44; 1.39) 0.31 Yes
rs381815 11 16858844 T 0.24 PLEKHA7 SBP 1; DBP 1 [21] —0.34 (—0.88; 0.20) 0.22 Yes
rs7129220 11 10307114 A 0.09 ADM SBP 1; DBP 1[21] —0.59 (—1.39; 0.20) 0.14 Yes
rs633185 11 100098748 G 0.28 FLJ32810-TMEM133  SBP |; DBP |; hypertension |[21] =~ —0.03 (—0.52; 0.47) 0.99 No
rs3184504 12 110368991 T 0.47 SH2B3 SBP 1; DBP 1 [17,21] —0.19 (—0.66; 0.29) 0.44 Yes
rs10850411 12 113872179 C 0.31 TBX5-TBX3 SBP |; DBP [[21] —0.10 (—0.59; 0.39) 0.68 No
rs17249754 12 88584717 A 0.16 ATP2B1 SBP |; DBP |; hypertension |[21] ~ —0.64 (—1.28; 0.00) 0.05 No
rs1378942 15 72864420 C 0.35 CYP1A1-ULK3 SBP 1; DBP 1 [21] 0.15 (—0.34; 0.64) 0.54 No
12521501 15 89238392 T 0.31 FURIN-FES SBP 1; DBP 1[21] —0.44 (—0.94; 0.05) 0.08 Yes
rs13333226 16 20273155 G 0.18 UMOD Hypertension |[15] —0.03 (—0.66; 0.59) 0.92 No
rs17608766 17 42368270 C 0.15 GOSR2 SBP 1[21] —0.20 (—0.84; 0.45) 0.55 Yes
rs12940887 17 44757806 T 0.38 ZNF652 SBP 1; DBP 1 [21] 0.88 (0.40; 1.37) 0.00035 No
rs1327235 20 10917030 G 0.46 JAG1 DBP 1 [21] 0.13 (—0.34; 0.60) 0.58 No
rs6015450 20 57184512 G 0.12 GNAS-EDN3 SBP 1; DBP 1; hypertension 1[21] —0.51 (—1.18; 0.17) 0.14 Yes
Kidney function
15267734 1 149218101 C 0.21 ANXA9 eGFRcrea 1[19] 0.29 (—0.29; 0.86) 0.33 Yes
s7422339 2 211248752 A 0.32 CPS1 eGFRcrea | [19] 0.41 (—0.08; 0.90) 0.10 No
151260326 2 27584444 T 0.39 GCKR eGFRcrea 1 [19] 0.17 (—0.31; 0.64) 0.50 Yes
rs13538 2 73721836 G 0.21 NAT8-ALMS1 eGFRcrea 1 [19] 0.17 (—0.41; 0.75) 0.56 Yes
rs10206899 2 73754408 C 0.21 NAT8-ALMS1 serum creat 1 [16] 0.22 (—0.36; 0.80) 0.46 No
1s347685 3 143289827 C 0.28 TFDP2 eGFRcrea 1 [19] 0.01 (—0.53; 0.53) 0.99 Yes
rs17319721 4 77587871 A 0.45 SHROOM3 eGFRcrea | [19] 0.11 (—0.37; 0.58) 0.66 No
rs6420094 5 176750242 G 0.31 SLC34A1 eGFRcrea | [19] —0.48 (—0.97; 0.01) 0.06 Yes
rs11959928 5 39432889 A 0.44 DAB2 eGFRcrea | [19] —0.50 (—0.97; —0.04) 0.03 Yes
12279463 6 160588379 G 0.12 SLC22A2 eGFRcrea | [19] 0.17 (—0.56; 0.91) 0.64 No
rs3127573 6 160601383 G 0.12 SLC22A2 serum creat 1[16] 0.06 (—0.66; 0.79) 0.87 No
rs881858 6 43914587 G 0.29 CVEGFA eGFRcrea 1 [19] 0.03 (—0.48; 0.54) 0.90 Yes
rs7805747 7 151038734 A 0.26 PRKAG2 eGFRcrea | [19] 0.05 (—0.47; 0.57) 0.85 No
rs6465825 7 77254375 C 0.39 TMEM60 eGFRcrea | [19] —0.16 (—0.63; 0.31) 0.50 Yes
rs10109414 8 23807096 T 0.42 STC1 eGFRcrea| [19] —0.65 (—1.11; —0.18)  0.007 No
rs4744712 9 70624527 A 0.41 PIP5K1B-FAM122A eGFRcrea | [19] —0.12 (—0.60; 0.37) 0.64 Yes
rs10774021 12 219559 C 0.35 SLC6A13 eGFRcrea 1 [19] —0.27 (—0.77; 0.22) 0.28 No
1s653178 12 110492139 C 0.47 ATXN2 eGFRcys 1 [19] —0.18 (—0.65; 0.30) 047 Yes
15626277 13 71245697 C 0.41 DACH1 eGFRcrea 1 [19] —0.03 (—0.50; 0.43) 0.89 No
12453533 15 43428517 A 0.38 GATM, SPATA5L1 eGFRcrea |[19] 0.14 (—0.35; 0.64) 0.57 Yes
15491567 15 51733885 C 0.24 WDR72 eGFRcrea 1 [19] —0.15 (—0.70; 0.41) 0.61 No
rs1394125 15 73946038 A 0.35 UBE2Q2-FBX022 eGFRcrea | [19] 0.16 (—0.32; 0.65) 0.51 No
rs12917707 16 20275191 T 0.18 UMOD eGFRcrea 1; CKD | [19] —0.05 (—0.69; 0.59) 0.88 No
rs9895661 17 56811371 C 0.19 TBX2-BCAS3 eGFRcrea | [19] —0.37 (—1.01; 0.26) 0.25 Yes
rs8068318 17 56838548 C 0.28 TBX2-BCAS3 Serum creat 1 [16] 0.17 (—0.37; 0.70) 0.54 No
rs12460876 19 38048731 C 0.37 SLC7A9 eGFRcrea 1 [19] —059 (—1.07; —0.12)  0.02 No
rs4805834 19 38145499 T 0.14 SLC7A9 Serum creat 1 [16] —099 (—1.68; —0.31) 0.004 Yes
rs911119 20 23560737 C 0.21 CST3-CST4, CST9 eGFRcys1[19] 0.38 (—0.21; 0.97) 0.21 No

Effect estimates are regression coefficients (95% CI) and reflect the difference in kidney volume per minor allele. All regression models were adjusted for fetal sex, gestational age at

measurement and estimated fetal weight. We assumed an additive model.
Chr, chromosome; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Expected direction: We expected that a blood pressure increasing risk allele or a risk allele, known to be associated with impaired kidney function is associated with decreased

kidney volume.

lower nephron endowment in individuals. In our study, we only
found rs12946454, near ZNF652, to be significantly associated with a
larger kidney volume. ZNF652 has been implicated in tumor genesis
[48]. Another gene in this region, PHB, is shown to be involved in an-
giogenesis [49]. It might be that this variant influences angiogenesis
which may subsequently lead to a larger kidney volume. Further

research is needed to identify underlying mechanisms and to evalu-
ate whether carrying kidney volume increasing alleles of this variant
also leads to better kidney function and lower blood pressure.

We did not observe any associations in the expected direction of
previously identified common variants affecting blood pressure and
kidney function in adulthood [15-21], with fetal kidney volume. We
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Table 3
Common genetic variants and their association with fetal kidney volume.

SNP Chr. Position Minor allele Minor allele Gene Previously reported Effect estimate for fetal P-value Direction as
frequency effect on kidney volume kidney volume (cm?) expected

rs11190688 10 102514460 Haplotype: AAA PAX2 111] 0.19 (—0.52; 0.89) 0.60 No
rs11190702 102532515

rs11599825 102510165

154244341 10 102498567 T 0.22 PAX2 111] —0.37 (—0.94; 0.20) 0.21 Yes
rs11592735 10 102518253 A 0.04 PAX2 L11] —0.43 (—1.73; 0.87) 0.52 Yes
rs1800860 10 42926693 A 0.30 RET 1[9] 0.31 (—0.21; 0.82) 0.25 No
157169289 15 56030975 G 0.17 ALDH1A2 112] 0.30 (—0.38; 0.98) 0.39 Yes

Effect estimates are regression coefficients (95% CI) and reflect the difference in kidney volume per minor allele. All regression models were adjusted for fetal sex, gestational age at

measurement and estimated fetal weight. We assumed an additive model.
Chr, chromosome.

Expected direction: We expected that the common genetic variants, known to be associated with kidney volume, showed the same direction as described before in literature.

expected that a blood pressure increasing allele or a kidney function
decreasing allele would be associated with a smaller kidney volume
in fetal life. This suggests that these variants do not underlie the asso-
ciation between smaller kidneys and increased blood pressure and
impaired kidney function in later life. It might be that we cannot iden-
tify associations, because of the small differences in kidney size in
fetal life. It also could indicate that there might be other genes under-
lying this association. Combining the information of all common ge-
netic variants, by calculating a risk allele count, also did not show
evidence for association of these variants with fetal kidney volume.
Genome wide association studies including much larger sample
sizes than published so far, might result in common genetic variants
that do affect kidney volume. These studies might be powerful
enough to detect small differences in blood pressure or kidney func-
tion possibly caused by slightly smaller or larger kidneys and could
provide evidence for a genetic basis of the hyperfiltration hypothesis.

Other interesting genes could be genes involved in the kidney
branching morphogenesis. Mutations in genes such as PAX2 and RET
lead to hypoplasia or agenesis of the kidney [9,11,13]. Both PAX2
and RET play a role in the outgrowth of the ureteric bud and are main-
ly involved in first phase kidney development [11].To determine
whether common genetic variants in these genes also reduce kidney
volume, several studies were conducted in a Canadian newborn pop-
ulation [9,13,14]. Variants in PAX2, RET and ALDH1A2 have been
shown to affect kidney volume [9,13,14]. Subjects carrying a specific
PAX2-haplotype or the adverse allele of rs1800860 in the RET gene
had a 10% smaller kidney volume than subjects not carrying these
variants [9,13]. Also rs4244341 and rs11592735 in the PAX2 gene
were associated with a smaller kidney volume [13]. Homozygosity
for the minor allele of rs7169289 in ALDH1A2 was associated with a
22% larger newborn kidney volume [14].

In our study, we did not find any association of these variants with
fetal kidney volume. The absolute effects on fetal kidney volume
might be smaller and more difficult to establish, as compared to a
newborn population. This study (n=_855) includes a larger number
of subjects, as compared to the previous studies [9,13,14]. However,
it could also be that these variants exert their effect later in pregnan-
cy. Also, the variants in PAX2, RET and ALDH1A2 have not been associ-
ated with increased blood pressure or impaired kidney function in
adulthood as far as we know. These findings do not support the hy-
pothesis that genetic factors partly underlie the association between
smaller kidneys and increased blood pressure or impaired kidney
function.

The lack of evidence for a genetic basis of the hyperfiltration hy-
pothesis could indicate that an adverse fetal environment, such as
fetal nicotine exposure, is more important than genetic factors in
explaining this hypothesis. It seems likely that genetic factors only
cause small differences in kidney volume, which could be difficult to
detect and might be of little clinical interest, but combined could
add to the hyperfiltration hypothesis. Further research is necessary
to identify specific adverse fetal exposures and genetic factors that

underlie the association of kidney volume with blood pressure and
kidney function.

5. Conclusion

Our results suggest that common genetic variants, previously as-
sociated with adult blood pressure and kidney function, do not un-
derlie the associations of smaller kidneys with a reduced nephron
endowment in early life with higher blood pressure or impaired kid-
ney function in later life.
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