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region including the  DYRK1A  gene and excluding  RUNX1 . 

These patients present with a recognizable phenotype

specific for this 21q22.1–q22.2 locus. We searched the litera-

ture for patients with overlapping deletions including the 

 DYRK1A  gene, in order to define other genes responsible for 

this presentation.  Copyright © 2010 S. Karger AG, Basel 

 Chromosome 21 has been the subject of extensive 
studies. Trisomy 21 causing Down syndrome [DS, OMIM 
#190685] is one of the few trisomy syndromes compatible 
with life and is common with an incidence of about 1 in 
800 live births. However, (partial) monosomy 21 is much 
rarer and few patients have been reported in literature 
[Holbek et al., 1974; Fryns et al., 1977; Matsui et al., 1978; 
Yamamoto et al., 1979; Pellissier et al., 1987; Korenberg et 
al., 1991; Krasikov et al., 1992; Chettouh et al., 1995; Huret 
et al., 1995; Theodoropoulos et al., 1995; Bartsch et al., 
1997; Joosten et al., 1997; Matsumoto et al., 1997; Ehling 
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 Abstract 

 Partial monosomy 21 has been reported, but the pheno-

types described are variable with location and size of the 

deletion. We present 2 patients with a partially overlapping 

microdeletion of 21q22 and a striking phenotypic resem-

blance. They both presented with severe psychomotor de-

lay, behavioral problems, no speech, microcephaly, feeding 

problems with frequent regurgitation, idiopathic thrombo-

cytopenia, obesity, deep set eyes, down turned corners of 

the mouth, dysplastic ears, and small chin. Brain MRI showed 

cerebral atrophy mostly evident in frontal and temporal 

lobes, widened ventricles and thin corpus callosum in both 

cases, and in one patient evidence of a migration disorder. 

The first patient also presented with epilepsy and a ventricu-

lar septum defect. The second patient had a unilateral Peters 

anomaly. Microarray analysis showed a partially overlapping 

microdeletion spanning about 2.5 Mb in the 21q22.1–q22.2 
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et al., 2004; Mori et al., 2004; Yao et al., 2006; Tuschl et 
al., 2007; Beri-Dexheimer et al., 2008; Dobyns et al., 2008; 
Lyle et al., 2009; Miller et al., 2009; Fujita et al., 2010; 
Lindstrand et al., 2010]. The region of the monosomy and 
the phenotype of reported cases are variable. The 21q22 
region seems associated with the most severe phenotype 
exhibiting mental retardation and microcephaly [Yama-
moto et al., 1979]. Disruption of  DYRK1A  ( Drosophila 
minibrain  homologue gene, OMIM  * 600855) in this re-
gion has been associated with microcephaly, mental re-
tardation and dysmorphisms in 2 patients [Møller et al., 
2008]. Studying similar patients potentially reveals valu-
able information regarding the function of the chromo-
some 21 genes.

  We present 2 unrelated individuals with a partial 
monosomy 21 with strikingly similar facial features giv-
ing them a ‘moody’ appearance, similar brain imaging 
and a partially overlapping 21q22 microdeletion. This 
overlapping 2.5-Mb region contains amongst others the 
 DYRK1A  gene and covers the DS critical region [OMIM 
#190685]. Combining our data with previously published 
reports by others, we delineate a recognizable phenotype 
of chromosome 21q22.1–q22.2 microdeletion including 
the  DYRK1A  gene.

  Clinical Reports 

 Patient 1 
 Patient 1 was referred to our department at 18 months of age. 

Clinical data are summarized in  table 1 . He was born after an un-
eventful pregnancy at 38 weeks of gestation as the 10th child to 
non-consanguineous healthy Dutch parents. His birth weight was 
2,140 g (–2 SD) and head circumference 31 cm (–2.8 SD). The neo-
natal period was complicated by cardiac decompensation due to 
a persistent ductus arteriosus and a perimembranous ventricular 
septum defect (VSD). The duct closed spontaneously at cardio-
logic follow-up, the VSD was managed conservatively.

  Clinical genetic examination at the age of 18 months showed 
micro- and brachycephaly, square forehead, deep-set eyes with 
long eyelashes, small nose, large pupils, thin lips with down-
turned corners of the mouth, micrognathia, large, low-set ears, 
and weight and head circumference at –4 SD ( fig. 1 ).

  His developmental milestones were delayed. Severe feeding 
problems and gastro-esophageal reflux necessitated gastric tube 
feeding and Nissen fundoplication. He suffered from recurrent 
upper respiratory tract infections and had severe constipation. He 
developed epilepsy with tonic-clonic seizures requiring antiepi-
leptic drug (AED) therapy.

  At follow-up at the age of 7 years he was severely mentally re-
tarded and exhibited no speech. He had a flat forehead, broad 
eyebrows extending onto the eyelids, deep-set eyes with long eye-
lashes, large pupils, wide nasal ridge, large, low-set ears, full 
cheeks, dental caries, micrognathia, small hands and feet, a san-

dal gap between 1st and 2nd toes, joint hyperlaxity, pectus exca-
vatum, truncal obesity, and cryptorchidism ( fig. 1 ). His height was 
110 cm (–3 SD), weight 20 kg (+1 SD), and head circumference 45.5 
cm (–4 SD).

  Abdominal ultrasound and skeletal X-rays revealed no abnor-
malities. A post-operative (tonsillectomy) hemorrhage prompted 
studies of bleeding diathesis, this revealed low platelet counts 
ranging from 82–149  !  10 9 /l (normal range: 199–369  !  10 9 /l).

  Brain MRI performed at 1 year of age (fig. 3A, B) showed small 
frontal lobes, enlarged lateral and third ventricles with high signal 
of periventricular white matter on T2 weighted images, a thin 
corpus callosum and brain stem, and delayed myelination. At two 
years of age, brain MRI showed similar features, although my-
elination had progressed.

  He died at age 11 of a bronchopneumonia complicated by pul-
monary hemorrhage.

  Patient 2 
 Patient 2 was referred to our department of Clinical Genetics 

at the age of 8 months because of progressive microcephaly and 
dysmorphic features. She was born after an uneventful pregnancy 
at 42 weeks of gestation as the first child of non-consanguineous 
healthy Chinese parents. Her birth weight was 2,765 g (–2 SD), 
length 46 cm (–3 SD) and head circumference 31 cm (–3.5 SD). She 
had a systolic murmur due to a persistent ductus arteriosus. It 
closed spontaneously on follow-up. In infancy she suffered from 
episodic attacks of blue discoloration of the extremities. She has 
had two seizures suggestive of epilepsy and one EEG showed du-
bious epileptic activity, requiring AED therapy.

  On clinical examination dysmorphic features included square 
forehead with nevus flammeus, low-set and thick eyebrows, long 
eyelashes, peri-orbital fullness with deep set eyes, wide nasal 
ridge, anteverted nares, down-turned corners of the mouth, small 
chin, round ears with broad helices and a left-sided ear pit, in-
verted nipples, a closed sacral dimple, a congenital nevus on the 
back, a single palmar crease on the left hand, a contracture of the 
left thumb, deep set nails of the toes, and bilateral short proxi-
mally implanted first toes ( fig. 2 ).

  Her developmental milestones were delayed. She started walk-
ing independently at age 2. She suffered from feeding problems 
which required gastric tube feeding in infancy. During follow-up 
up to 7 years of age she exhibited severe mental retardation with 
absent speech, no eye contact, hyperactive behavior and poor in-
teraction with people. Teeth grinding was noted and diffuse den-
tal decay was striking. At that age, her height was 110 cm (–3 SD), 
weight 25 kg (2.5 SD), and head circumference 48 cm (–2 SD) .  She 
had severe constipation.

  Ophthalmic examination revealed bilateral hypermetropia, 
amblyopia of the right eye, and a unilateral corneal opacity area 
consistent with a Peters anomaly. Her platelet counts were below 
normal range on 2 separate occasions, 104 and 137  !  10 9 /l (nor-
mal range: 199–369  !  10 9 /l). Craniosynostosis was excluded with 
a skull X-ray. Congenital CMV-infection was excluded by PCR of 
neonatal screening blood spot. No skeletal abnormalities were de-
tected.

  Brain MRI performed at the age of 5 months and repeated 
MRI at the age of 15 months ( fig. 3 C, D) showed cerebral atrophy 
with deep sulci, mostly evident in frontal and temporal lobes, un-
derdeveloped frontal gyri, a thin corpus callosum with loss of 
periventricular white matter and widened lateral and third ven-
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tricles both at frontal and occipito-temporal areas, a thin brain 
stem, and no evidence for active demyelination.

  Recent brain MRI at the age of 8 years showed evidence of a 
periventricular nodular heterotopia located in the frontal horn of 
the right lateral ventricle. The inferior part of the right frontal 
cortex is abnormal and suggestive of polymicrogyria ( fig. 3 E, F).

  Cytogenetic and Microarray Results 

 Routine cytogenetic analysis of patients 1 and 2 re-
vealed a normal karyotype. DNA of the patients was hy-
bridized to Affymetrix 250K SNP arrays according to the 
Affymetrix standard protocol for the GeneChip Mapping 
250K  Nsp I arrays. Copy number analysis using the Copy 
Number    Analyzer    for   GeneChip   (CNAG)   v   3.0   [Nan-
nya et al., 2005] indicated in patient 1 a 4.1-Mb deletion 
(arr 21q22.13–q22.2 (37053718–41102161 [hg18])  ! 1, see 
 fig. 4 ). In patient 2, a 4.2-Mb deletion (arr 21q22.12q22.2 
(35337577–39585051 [hg18])  ! 1) was observed, ( fig. 4 ). In 
both cases parental DNA analysis by quantitative PCR 
showed a de novo origin of the deletion. The deletions 
were confirmed by fluorescent in situ hybridization 
(FISH) with chromosome 21 BAC clones (RP11–166F15 
absent, RP1–63H24 present). Analysis of the B allele ratio 
of the Affymetrix array in Nexus Copy Number software 
(Biodiscovery) revealed the possibility that in patient 1 
the deletion was present in mosaic form in leukocyte 
DNA. Additional FISH analysis confirmed the mosaic in 
cultured lymphocytes where 50% of the nuclei   showed 
the presence of 2 normal copies of chromosome 21. In 
order to define the deletion breakpoint in patient 2 more 
precisely, qPCR experiments were performed on patient 
DNA (primer sequences available on request). This re-

sulted in refinement of the borders, defining the deletion 
from basepair 35346296 to 39576472 (NCBI built 36.3), 
and, using extra- and intragenic probes,  RUNX1  was ex-
cluded from the proximal end of the deletion.

A B C

A B

DC

  Fig. 1.  Facial features of patient 1.  A  Age unknown. Note the full upper eyelids and cheeks, anteverted nares, 
down-turned corners of the mouth and large ears.  B ,  C  Age 7 years. Note thick eyebrows, full upper eyelids and 
cheeks, slightly anteverted nares, down-turned corners of the mouth, dental decay and large, low-set ears. 

  Fig. 2.  Facial features of patient 2.  A  Age 8 months. Note the full 
upper eyelids and cheeks, anteverted nares and down-turned cor-
ners of the mouth.  B  Severe dental decay and malshaped teeth.
 C ,  D  Age 7 years. Note thick eyebrows, Peters anomaly of the right 
eye, full upper eyelids and cheeks, anteverted nares and down-
turned corners of the mouth, malformed ears and moody expres-
sion. 
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  The deletion areas of the 2 patients partially overlap 
from base pair 37053718 to 39585051 spanning 2.5 Mb on 
chromosome 21q22.13–q22.2, encompassing 27 genes (15 
protein coding genes, 3 non-protein coding genes, 4 pseu-
dogenes and 5 hypothetical genes) according to the NCBI 
and Ensembl database annotation build 36.3 ( table  2 ). 
The  DYRK1A  gene, previously associated with neurode-
velopmental anomalies and microcephaly [Møller et al., 
2008], is included in the shared deletion area.

  Review of 21q22 Deletions Including  DYRK1A  

 Several features have been repeatedly described in 
partial monosomy 21 including intrauterine and postna-
tal growth retardation, down-slanting palpebral fissures, 
low-set ears, arthrogryposis-like signs, hypertonia, heart 
defect, and mental retardation [Chettouh et al., 1995]. In 
order to delineate a more specific phenotype relating to 
21q22 deletions we searched PubMed, Decipher and En-
sembl databases for patients with these deletions. Most of 
the patients reported in the literature have microscopic 
deletions with poorly defined breakpoints. We review 
only those where we can deduce overlap with the 
21q22.13–q22.2 critical region of our patients and where 
the phenotypic description is sufficient for comparison. 
These are summarized in  table 1 . The findings are fairly 
consistent regarding intra-uterine growth retardation 
(IUGR), microcephaly, mental retardation, seizures, cor-
pus callosum abnormalities and facial features (deep-set 
eyes, micrognathia, and dysplastic ears).

  Of note, also one patient described by Shinawi et al. 
[2008] and one by Yao et al. [2006] show the deletion in 
mosaic form.

  Discussion 

 The 2 patients presented in this study show a distinc-
tive phenotype that to our knowledge has not previously 
been recognized in patients with 21q22 deletions. They 
exhibit severe mental retardation with absence of speech, 
microcephaly, short stature, and distinct cerebral abnor-
malities. Their facial features with square forehead, full 
eyebrows and eyelids, deep-set eyes, broad nasal ridge, 
and down-turned corners of the mouth are strikingly 
alike and give them a ‘moody’ appearance. Brain MRI 
findings are quite similar in the patients, showing under-
development of frontal lobes with evidence of a migration 
disorder in patient 2, deep frontotemporal sulci, large lat-

eral and third ventricles, loss of periventricular white 
matter, callosal dysgenesis and thin brain stem. The low 
resolution MRI of patient 1 did not allow recognition of 
minor cortical malformations.

  Because of their resembling features, it is likely that 
genes in their common deleted area are causative of their 
phenotype.  DYRK1A  [OMIM 600855] maps to chromo-
some 21q22.13 and is included in the deleted area of both 
patients. With its location within the Down syndrome 

A B

C D

E F

  Fig. 3.  Brain T1 weighed MRI images.  A–  D  Note cerebral atrophy/
underdevelopment of frontal and temporal lobes, widened ven-
tricles including the 3rd ventricle, thin corpus callosum and brain 
stem.  A  Patient 1, midsaggital section.  B  Patient 1, transversal sec-
tion.  C  Patient 2, midsagittal section.  D  Patient 2, transversal sec-
tion.  E ,  F  Patient 2, note periventricular nodular heterotopia and 
area suspected of polymicrogyria in the right frontal lobe ( E ). Cor-
onal section ( F ). Magnification of  E , upper arrow points to hetero-
topia, lower arrow points to the area suspected of polymicrogyria. 
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Table 2.  Known genes in overlapping deletion area

Gene symbol Name OMIM

HLCS Holocarboxylase synthethase 609018
DSCR6 Down syndrome critical region gene 6 609892
PIGP Phosphatidylinositol glycan anchor biosynthesis, class P 605938
TTC3 Tetratricopeptide repeat domain 3 602259
DSCR9 Down syndrome critical region gene 9 –
DSCR3 Down syndrome critical region gene 3 605298
DYRK1A Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 600855
KCNJ6 Potassium channel, inwardly rectifying, subfamily J, member 6 600877
DSCR4 Down syndrome critical region gene 4 604829
DSCR8 Down syndrome critical region gene 8 –
DSCR10 Down syndrome critical region gene 10 –
KCNJ15 Potassium channel, inwardly rectifying, subfamily J, member 15 602106
ERG V-ets erythroblastosis virus E26 onco gene homolog 165080
C21orf24 Chromosome 21 open reading frame 24 611723
ETS2 V-ets erythroblastosis virus E26 onco gene homolog 2 164740
AP001042.1 FLJ45139 protein –
PSMG1 Proteasome assembly chaperone 1 (DSCR2) 605296
BRWD1 Bromodomain and WD repeat domain 1 –

  Fig. 4.  Array results. Under the schematic 
representation of chromosome 21 the ac-
tual results in the 21q22.11–q22.3 region of 
the two 250K SNP arrays are shown. In the 
bottom panel the overlapping segments 
and several genes in the area are depicted.                       
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critical region,  DYRK1A  has been suggested to play a cru-
cial role in brain alterations both in trisomy and mono-
somy 21 patients [Song et al., 1996]. Møller et al. [2008] 
reported 2 patients with a translocation truncating the 
 DYRK1A  gene. Both patients exhibited prenatal onset mi-
crocephaly, intrauterine growth retardation, feeding 
problems, developmental delay and seizures. In the first 
patient retardation was mild, and he had large, low-set 
ears, long philtrum, and micrognathia. On brain MRI 
hypogenesis of the corpus callosum was described with-
out other abnormalities. The second patient had severe 
mental retardation, absent speech, large ears, flat phil-
trum and a ventricular septum defect. Brain MRI showed 
enlarged ventricles. The  DYRK1A  gene is the human ho-
molog of the Drosophila  minibrain  gene [Tejedor et al., 
1995]. It is highly conserved in mammals. In mice,  Dyr-
k1a  haploinsuffiency leads to a reduced body size with a 
disproportionate brain reduction, and developmental de-
lay [Fotaki et al., 2002]. In particular, underdevelopment 
of the ventral mid- and hindbrain structures was present 
in  Dyrk1A  +/–  mice. The MRI findings of our patients with 
large third ventricle, thin corpus callosum and brain 
stem might relate to the  DYRK1A  haploinsufficiency.

  Besides  DYRK1A , there are 14 protein coding and 3 
non-protein coding genes annotated in the common de-
leted area, each of which might contribute to the pheno-
type. Six of these are Down-syndrome critical region 
(DSCR) genes of unknown function. Among the genes 
with known function,  TTC3 ,  KCNJ6  and  BRDW1  are also 
interesting candidates.

  The  TTC3  (tetratricopeptide repeat domain 3) gene is 
involved in neuronal cell differentiation and particularly 
in regulation of neurite extension [Berto et al., 2007], sug-
gesting that absence of  TTC3  could be related to in cogni-
tive problems and brain underdevelopment. The tetratri-
copeptide domain is also present in kinesins responsible 
for the organization of axonal microtubules and cytoskel-
eton dynamics and in  KIAA1279 , the gene mutated in 
Goldberg-Shprintzen syndrome [Brooks et al., 2005].

   KCNJ6  [OMIM 600877], also known as  GIRK2 , is 
 expressed in the brain and the pancreatic  � -cell. Homo-
zygous  Girk2  missense mutation in  weaver  mice causes 
severe cerebellar ataxia and altered behavioral pattern 
[Patil et al., 1995; Pravetoni and Wickman, 2008]. Hetero-
zygous  weaver  mice have a decreased number of surviv-
ing granule cells and suffer sporadically from tonic-clon-
ic seizures [Patil et al., 1995]. Also, homozygous  weaver 
 mice have decreased levels of circulating IGF1 and re-
sponded to GH-treatment [Yao et al., 2007]. The postna-
tal growth retardation in our patients might be partially 

explained by a deficient GH/IGF1 axis, as seen in mutant 
 weaver  mice.

  Mutations in the  RUNX1  gene [OMIM 151385] cause 
familial platelet disorder with propensity to acute my-
eloid leukemia [FPD/AML; OMIM 601399]. Shinawi et al. 
[2008] reviewed platelet pool storage disease caused by 
 RUNX1  haploinsufficiency and described multiple prob-
lems of microdeletions at 21q22 ascribed to  RUNX1  and 
 DYRK1A . Surprisingly, both our patients were diagnosed 
with low platelet counts, although  RUNX1  is not deleted. 
Possibly, regulatory elements of  RUNX1  are affected by 
the deletion or other genes in the critical area are involved 
in platelet disorders. In mice, regulatory elements have 
been identified distant (300 kb) from  Runx1  [Soler et al., 
2010].

  Periventricular nodular heterotopia (PNH) are a new 
finding in 21q22 deletion. PNH is considered a malfor-
mation of cortical development. Of note, other cortical 
malformations, that is polymicrogyria [Yao et al., 2006; 
Beri-Dexheimer et al., 2008; Dobyns et al., 2008] and lis-
sencephaly [Miller et al., 2009], have been associated with 
21q deletions. Yao et al. [2006] propose that an 8.4-Mb 
region on 21q22.11–q22.3 is associated with cortical dys-
plasia. However, the large size of this area and lack of 
breakpoint details make the comparison of these patients 
with ours incomplete.

  Our findings suggest that a minimum 2.5-Mb mi-
crodeletion at chromosome 21q22.13–q22.2 including 
 DYRK1A  and excluding  RUNX1  is responsible for a char-
acteristic syndrome with recognizable facial features, se-
vere developmental delay, brain abnormalities, IUGR, 
and eye and platelet abnormalities. Our observation re-
duces the chromosomal area to which these abnormali-
ties have been previously ascribed, and should encourage 
high resolution array analysis in patients with a similar 
phenotype. It could be worthwhile searching for muta-
tions in  DYRK1A  in patients with a similar phenotype in 
whom microdeletions have been excluded.
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