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ABSTRACT
Background Leigh syndrome is an early onset,
progressive, neurodegenerative disorder with
developmental and motor skills regression. Characteristic
magnetic resonance imaging abnormalities consist of
focal bilateral lesions in the basal ganglia and/or the
brainstem. The main cause is a deficiency in oxidative
phosphorylation due to mutations in an mtDNA or
nuclear oxidative phosphorylation gene.
Methods and results A consanguineous Moroccan
family with Leigh syndrome comprise 11 children, three
of which are affected. Marker analysis revealed
a homozygous region of 11.5 Mb on chromosome 20,
containing 111 genes. Eight possible mitochondrial
candidate genes were sequenced. Patients were
homozygous for an unclassified variant (p.P193L) in the
cardiolipin synthase gene (CRLS1). As this variant was
present in 20% of a Moroccan control population and
enzyme activity was only reduced to 50%, this could not
explain the rare clinical phenotype in our family. Patients
were also homozygous for an amino acid substitution
(p.L159F) in C20orf7, a new complex I assembly factor.
Parents were heterozygous and unaffected sibs
heterozygous or homozygous wild type. The mutation
affects the predicted S-adenosylmethionine (SAM)
dependent methyltransferase domain of C20orf7, possibly
involved in methylation of NDUFB3 during the assembly
process. Blue native gel electrophoresis showed an
altered complex I assembly with only 30e40% of mature
complex I present in patients and 70e90% in carriers.
Conclusions A new cause of Leigh syndrome can be
a defect in early complex I assembly due to C20orf7
mutations.

INTRODUCTION
Leigh syndrome (MIM 256000) is an early onset,
progressive, neurodegenerative disorder with a cha-
racteristic neuropathology consisting of focal,
bilateral lesions in one or more areas of the central
nervous system, including basal ganglia, thalamus,
cerebellum, brainstem and spinal cord. The lesions
are areas of demyelination, gliosis, necrosis, spon-
giosis, or capillary proliferation. Clinical symptoms
depend onwhich areas of the central nervous system
are affected. The most common underlying cause is
a defect in oxidative phosphorylation (OXPHOS).1

Leigh syndrome can be associated with a deficiency
of any of the mitochondrial respiratory chain
complexes.2 The disorder is genetically heteroge-
neous and can be caused by mutations in the
mtDNA and a variety of nuclear genes of the
OXPHOS and pyruvate dehydrogenase system.

In structural complex I genes, mutations have
been found in the mtDNA ND1,3 ND2,4 ND3,5

ND5,6 and ND67 genes and in the nuclear
NDUFV1,8 NDUFS1,9 NDUFS3,10 NDUFS4,11

NDUFS7,12 NDUFS8,13 NDUFA1114 and NDUFA215

genes. In addition, mutations have been reported in
the genes for the flavoprotein subunit A of complex
II (SDHA16) and for the complex III assembly factor
BCS1L.17 Mutations in complex IV genes include
mtDNA encoded MTCO318 and nuclear encoded
COX10,19 COX15,20 SCO2,21 and SURF1,22 which
are involved in complex IV assembly. Several
mutations were detected in the mtDNA encoded
ATPase 6 (complex V).23 Additional mtDNA muta-
tions have been described for the tRNA genes for
valine,24 lysine,25 tryptophan26 and leucine.27

Leigh syndrome may also be caused by muta-
tions in components of the pyruvate dehydroge-
nase complex (PDHA1 pyruvate dehydrogenase,
a1-subunit and DLD, dihydrolipoamide dehydroge-
nase)28 29 and in the gene encoding the leucine-rich
PPR motif containing protein (LRPPRC).30 Due to
this extreme genetic heterogeneity, in many cases it
is difficult to establish a genetic diagnosis in Leigh
syndrome, especially if no additional clinical or
biochemical data are available to pinpoint specific
candidate genes. In order to identify the genetic
cause in a consanguineous Moroccan family we
performed homozygosity mapping and positional
candidate gene analysis. A pathogenic amino acid
substitution was identified in a new complex I
assembly factor C20orf731 which caused Leigh
syndrome with a diminished complex I activity,
making defective complex I assembly an important
pathogenic cause of Leigh syndrome.

SUBJECTS AND METHODS
Subjects
In a consanguineous family from Morocco with 11
children, three boys presented with Leigh syndrome
(figure 1), two of whomwere clinically investigated.
The third affected sib succumbed for unknown
reason at the age of 36 years in Morocco. The
disease course is comparable in the two living
patients (age 29 and 23 years). At the age of 3 they
presented with a progressive spasticity with
involvement of arms and legs. At the age of 5 they
developed a diminished facial expression. Computed
tomography (CT) scanning of the brain of patient
IV7 at the age of 5 years showed hypodensity and
slight atrophy of the caudate nuclei and the
putamen (figure 2a). There is a widening of the
frontal horns of the cerebral ventricles. One year
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later an extrapyramidal movement disorder with dystonic
posturing of the right foot was noted. In the years following, the
dystonia evolved in a more choreadystonic movement disorder. A
delay in mental development became apparent. The dystonia
hampered swallowing, necessitating nasal tube feeding. No signs
of sensory nerve conduction loss were observed. At the age of
18 years both patients were moderately retarded with an IQ of
about 50, had a remarkable good temper, and were severely
handicapped by the dysarthria, the dystonic posturing, and the
spastic tetraplegia. Their length was just below the third centile,
but this was not different from the unaffected sibs and parents.

In both patients the electroencephalogram (EEG) was normal.
Pattern visual evoked responses demonstrated normal responses
with N135 at 141 ms. Cranial magnetic resonance imaging
(MRI) of patient IV11 at the age of 23 years showed a small
residual nucleus caudatus and lesions in the basal ganglia
consisting of prolongation of both T1 and T2 weighted signals in
the caudate nucleus, putamen, the substantia nigra and a discrete
abnormality in the peri-aquaductal grey area, and also discrete
bifrontal global atrophy (figure 2b). After reaching puberty, the
progression of the disease seemed to stop or slowed down.
Orthopaedic interventions were necessary, because of complica-
tions of the movement disorders such as development of an
equinovarus contracture in both feet and the development of a
c-shaped scoliosis. Oral daily drug treatment consisted of carnitine
330 mg, riboflavin 30 mg, biotin 10 mg, and thiamine 100 mg.
Parents and the other children are in good health and further
family history is unremarkable. Informed consent was provided
by the family for scientific investigations and publication.

Metabolic and enzymatic measurements
Routinemetabolicworkupwas performed on the blood, urine and
cerebrospinal fluid of the patients to rule out other inborn errors of
metabolism including blood glucose, lactate, amino acids, acid/
base status, ammonia, creatine kinase, carnitine, acylcarnitines,
very long chain fatty acids, uric acid, B12, folate, cholesterol,
isoelectric focusing of transferrin (for CDG, congenital disorders
of glycosylation), biotinidase, lysosomal enzymes, purine and
pyrimidine values; urine amino acids, organic acids, oligosaccha-
rides, and mucopolysaccharide screening; cerebrospinal fluid
(CSF) glucose, lactate, amino acids, and neurotransmitter
measurements. A needle muscle biopsy from vastus lateralis
muscle was performed at 22 and 29 years of age in patients IV11
and IV7, respectively. Complex I activity was determined in

duplicate in these biopsy specimens and in peripheral blood
lymphocytes (PBMCs) of patients IV7 and IV11 and their
unaffected brother IV10. Assays to determine complex I and
citrate synthase activities and protein content of the mitochon-
drial fractions were performed as described before.32e35

Fibroblasts were grown in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco by Invitrogen, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco), 50 mg/
ml of uridine (Acros Organics Geel, Belgium) and 50 units/ml
penicillin and 50 mg/ml streptomycin (BioWhittaker, Walkers-
ville, MD, USA). To isolate mitochondria, cells were resuspended
in isolation buffer containing 0.25 M sucrose, 10 mM Tris-HCl
pH 7.5, and 1 mM EDTA and homogenised on ice (10 strokes at
1500 rpm). Homogenates were centrifuged at 1600 g at 48C for
10 min to remove cell debris and nuclei. Subsequently, mito-
chondria were pelleted from the supernatant at 10 000 g at 48C
for 10 min. Cardiolipin synthase (CLS) activity was determined
in mitochondrial membranes after swelling the isolated orga-
nelles twice in 10 mM Bis-Tris propane-HCl buffer pH 7.4 and
sedimenting mitochondrial membranes, which were finally
resuspended in this Bis-Tris propane-HCl buffer containing 50%
glycerol to a protein concentration of about 1 mg protein/ml.
Mitochondrial protein, 1e6 mg, was used for CLS assays in a total
volume of 50 ml, as described before36 except that the reaction
mixtures were incubated at 378C for 1 h.

Figure 1 Pedigree of a consanguineous Moroccan family with three
patients with Leigh syndrome. Black symbols indicate affected, white
symbols unaffected subjects. The genotypes for the c.477A/C mutation
in exon 5 of the C20orf7 gene are indicated below the tested individuals.
The proband is indicated by an arrow.

Figure 2 Computed tomography (CT) and magnetic resonance imaging
(MRI) of patients IV7 and IV11. respectively. (A) CT scan of patients IV7
brain at the age of 5 years. The CT scan shows a hypodensity and slight
atrophy of the caudate nuclei and the putamen (arrows) and a widening of
the frontal horns of the cerebral ventricles. (B-1) Cranial MRI of patient
IV11 at the age of 23 years. Prolongation of T2 weighted signals in the
residual part of the nucleus caudatus and putamen and (B-2) at the level
of the midbrain of the substantia nigra (arrow).
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Homozygosity mapping
Homozygosity mapping was performed, using the Affymetrix
GeneChip Human Mapping 10K 2.0 Array (Santa Clara, CA,
USA) for a whole genome analysis. Samples were processed and
labelled according to the instructions of the manufacturer,
hybridised in a GeneChip hybridisation oven followed by wash
and stain with the GeneChip Fluidics Station 450, and scanning
with the GeneChip Scanner 3000 (Affymetrix). Genotypes were
generated by the GeneChip DNA analysis software (GDAS). The
Copy Number Analysis Tool (CNAT, Affymetrix) was used to
detect homozygosity regions in patient samples. Candidate
regions were defined as homozygosity regions present in the
patient samples but not in other family samples. Parametric lod
scores were calculated using the Merlin package (version 1.1.2)37

with a recessive disease model.

Mutation analysis
The mtDNA was screened for deletions by long range poly-
merase chain reaction (PCR) and heteroplasmic point mutations
by denaturing high performance liquid chromatography
(DHPLC) analysis as described before.38 The exons and flanking
introns of the human CRLS1 and C20orf7 genes were amplified
with specific intronic primers (supplementary data table 1).

PCR was performed with 50 ng DNA using Taq-polymerase
and buffer (Invitrogen, Carlsbad, CA, USA) with a final
concentration of 1.5 mMMgCl2. Cycle conditions were: 948C for
5 min, followed by 33 cycles of 948C for 1 min, 548C for 1 min,
and 728C for 1.5 min with a final elongation step of 728C for
7 min. PCR products were directly sequenced with the PRISM
Ready Reaction Sequencing Kit (Applied Biosystems, Foster City,
CA, USA) on an ABI3100 automatic sequencer (Applied Biosys-
tems).

Mutation specific restriction digestion
A mutation specific restriction digestion assay was developed for
the c.477A/C substitution in the C20orf7 gene. A total of 10 ml
PCR product of exon 5 was digested for 1 h at 378C with NheI
and MseI, followed by a heat inactivation for 20 min at 658C.
MseI does not cleave if the mutation is present. Nhe1 was added
to eliminate a constant band of 127 bp, which would otherwise
trouble the interpretation. After digestion, the samples were
resolved on a 3% agarose gel presenting a fragment of 109 bp for
wild type samples compared to a 130 bp fragment for the
mutant.

Blue native-polyacrylamide gel electrophoresis (BN-PAGE)
Mitochondria were isolated from PBMCs33 34 and incubated for
10 min on ice in lysis buffer (50 mM NaCl, 5 mM aminocaproic
acid, 50 mM imidazole, pH 7.0) containing 1% Triton X-100 and
supplemented with complete protease inhibitors (Roche Diag-
nostics GmbH, Mannheim, Germany), 1 mM 4-(2-aminoethyl)-
benzenesulphonyl-fluoride hydrochloride (Roche) and 2 mM
diisopropyl fluorophosphate (Fluka Chemica, Sigma-Aldrich,
St. Louis, MO, USA). Next, 2.5 mg of PBMC mitochondrial
protein was processed for one dimensional BN-PAGE as previ-
ously described39 using NativePAGE 3e12% gels (Invitrogen,
Breda, The Netherlands) and Western transferred on PVDF
membrane. Immunoreactive proteins were detected by mouse
monoclonal antibodies against complex I subunits ND1 (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), NDUFA9 and
complex II subunit 70 kDa Fp (MitoSciences, Eugene, OR, USA).
Proteins were visualised using biotinylated secondary antibodies
against mouse IgG (Amersham Biosciences, Little Chalfont,

Bucks, UK), streptavidin-biotinylated horseradish peroxidase
complex (Amersham) and SuperSignal West Femto (Pierce
Biotechnology, Rockford, IL, USA). The molecular weights of the
protein bands were estimated by a NativeMark Unstained
Protein Standard (Invitrogen). Images were acquired using
a calibrated densitometer (GS-800; Bio-Rad, Bio-Rad Laborato-
ries, Hercules, CA, USA) and quantified using PDQuest Advanced
software package (version 8.0.1 build 055; Bio-Rad).

RESULTS
Metabolic and enzymological studies of two sibs with Leigh
syndrome
Routine metabolic workup in urine and blood plasma of patients
IV7 and IV11 only revealed a slight increase in blood alanine
values without a raise in blood or urine lactic acid. Glucose
tolerance test was normal. Also the methionine, vitamin B12,
folic acid, purines and pyrimidines, and S-adenosylmethionine
(SAM) concentrationswere in the normal range (86e128 nmol/l).
Cerebrospinal fluid examination at the age of 5 years of patient
IV7 showed an increased lactic acid of 5 mmol/l (controls<2.0
mmol/l). Complex I activity, normalised by citrate synthase
activity, was in muscle and PBMCs of patient IV7 respectively
36% and 6% of the controls and in patient IV11 respectively 48%
and 33%. Activities of other OXPHOS complexes were only
available for patient IV11 and were 105%, 123% and 87% of the
control values for complex II, III and IV, respectively. Morpho-
logical studies show an increase in average fibre diameter.
Staining for succinate tetrazolium reductase and NADH tetra-
zolium reductase showed increased subsarcolemmal activities.
Staining for cytochrome c oxidase demonstrated some COX
negative fibres.

Homozygosity mapping in the Leigh syndrome family
Molecular genetic analysis was initially directed at the
mtDNA. First, the entire mtDNA of the muscle sample of
patient IV7 was tested for deletions by long range PCR, but no
mtDNA deletion was observed (data not shown). Next, the
mtDNA was screened by DHPLC analysis,38 but no hetero-
plasmic point mutations were detected, making the involvement
of a nuclear gene likely. Both parents, two affected (IV7 an IV11)
and four unaffected sibs (IV1, IV5, IV6 and IV10) were tested
with the Human Mapping 10K GeneChips. CNAT analysis
revealed a large homozygosity region of 11.5 Mb on chromosome
20 (from 2.4 Mb to 13.9 Mb, supplementary data table 2),
yielding a parametric LOD score of 2.3. This region contained
a total of 111 genes. The selection of genes with a putative
mitochondrial function was based on the MitoP2 database
(http://www.mitop.de:8080/mitop2/) and the list of Calvo
et al,40 which is based on a variety of criteria, including mito-
chondrial import sequence and co-expression with known
mitochondrial genes. A total of eight candidate genesdIDH3B
(isocitrate dehydrogenase 3 [NAD+] b-subunit), MRPS26
(mitochondrial ribosomal protein S26), PANK2 (pantothenate
kinase 2), CRLS1 (cardiolipin synthase 1), CDS2 (CDP-diacyl-
glycerol synthase (phosphatidate cytidylyltransferase) 2), HAO1
(hydroxyacid oxidase (glycolate oxidase) 1), PAK7 (p21
(CDKN1A)-activated kinase 7), and C20orf7dwere selected for
mutation analysis.

Mutation detection in eight candidate genes
Exons and flanking intron sequences of the eight candidate genes
were analysed by conventional sequence analysis. Only two
potentially pathogenic variants were found in the CRLS1 and
C20orf7 gene, while in the other six genes no pathogenic
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mutations were identified. Patient IV11 was homozygous for
a c.592C/T mutation in exon 4 of the CRLS1 gene, changing
proline at position 193 into leucine. Patient IV7 was homozygous
mutant as well, both parents and two sibs were heterozygous,
and one sib was wild type. The mutation was neither reported
before nor present in any of the single nucleotide polymorphism
(SNP) databases (NCBI SNP, Genome Variation Server and
MutationDiscovery.com). Analysis of a Moroccan and Dutch
control population (resp. 92 and 294 alleles) using sequence
analysis revealed an allele frequency of, respectively, 20% and
10%, which was unexpected given the absence of the variant in
the SNP databases. CLS activity was reduced to 50e56% in
fibroblasts of patients compared to unrelated wild-type control
fibroblasts. Based on the high frequency of the (heterozygous)
mutation in the controls and the residual activity of CLS of about
50%, we concluded that this mutation could not by itself explain
the rare clinical features in this family.

A second homozygous mutation was identified in the C20orf7
gene. Both patients (IV7 and IV11) were homozygous for an
A-to-C transversion at nucleotide 477 in exon 5 of isoform 1
(NM_024120.3), whereas both parents and two other sibs were
heterozygous and one sib was wild type (figures 1 and 3a). Two
isoforms of C20orf7 are currently known, consisting of, respec-
tively, 345 amino acids (isoform 1 (NM_024120.3), containing
exons 1e11), and 317 amino acids (isoform 2 (NM_001039375.1),
containing exons 1e4 and 6e11). The mutation is present in
isoform 1 only. Themutation changed a leucine at position 159 to
phenylalanine in the highly conserved (from man to Drosophila)
S-adenosylmethionine (SAM) dependent methyltransferase
domain of the protein (figure 3b). Analysis with the program
SOPM41 shows that the secondary structure is likely to change
due to breakage of an a helix in the mutant protein (data not
shown). SOPM uses sequence information and similarities to
predict secondary protein structures. The mutation was not
present in 110 Moroccan and 312 Dutch alleles, supporting
a pathogenic role for the mutation.

p.L159F substitution in C20orf7 disturbs complex I assembly
Recently, Sugiana et al31 reported that C20orf7 resides within the
mitochondrial matrix with a function in the assembly or stability
of an early complex I assembly intermediate that contains among
others ND1. Therefore we tested if the p.L159F substitution
affected complex I assembly. BN-PAGE (Blue-Native poly-
acrylamide gel electrophoresis) was performed in PBMCs of
patients IV7 and IV11 (homozygous mutant), heterozygous
carriers III1, III2 and IV6 and the homozygous wild type sib IV10
with antibodies against ND1 and NDUFA9 to detect the mature
880 kDa complex I. BN-PAGE showed a decrease of mature
complex I in patient samples IV7 and IV11 to 30e40% of the
control values. In carriers (III1, III2 and IV6) this was 70e90% of
the normal amount of complex I (figure 4A, B).

DISCUSSION
Leigh syndrome is a progressive neurodegenerative disorder,
which can be caused by mutations in the mtDNA and a variety
of known and still unknown nuclear genes. Due to this genetic
heterogeneity it is often difficult to establish a genetic diagnosis
and characterise the pathological process involved. This study
reports an early complex I assembly defect due to a missense
mutation in the new complex I assembly factor C20orf7 as the
pathological cause. The c20orf7 mutation affects the highly
conserved S-adenosylmethionine (SAM) dependent methyl-
transferase domain, which may be involved in methylation of

NDUFB3 as a critical step in early complex I assembly as
postulated by Sugiana et al.31 The patients do not display the full
picture of Leigh syndrome and clinically the phenotype has
overlap with infantile bilateral striatal necrosis (IBSN, MIM
271930), but the involvement of structures in the brain stem
make it more compatible to Leigh syndrome. Defects in complex
I assembly/stability leading to enzymatic deficiency have been
reported before in Leigh syndrome due to mutations in structural
or accessory subunits.42 To our knowledge this is, next to
c8orf38,31 the second defect in a genuine complex I assembly
factor in Leigh syndrome, which adds defective complex I
assembly as an important pathological concept to the growing
list of pathogenic causes of Leigh syndrome.
When these studies were in progress, a family with a lethal

neonatal form of complex I deficiency with a mutation in the
C20orf7 gene was reported.31 Patients were homozygous for
a missense mutation in exon 7 of the C20orf7 gene
(NM_024120.3), leading to a substitution of leucine 229 to
proline, which is present in both isoforms. Patients’ fibroblasts
almost completely lacked the mature complex I holo-enzyme.
ND1 or an intermediate complex containing ND1 was not
present, suggesting an early assembly defect. In concordance
with their observation, a decrease of mature complex I relative to
complex II down to 30e40% compared to normal is observed in
our patients’ PMBCs as determined by BN-PAGE.
The clinical manifestation of the p.L159F mutation in this

family is less severe than the neonatal lethal p.L229P mutation,
and also the complex I deficiency and assembly defect are less
pronounced. Either the mutation or the affected domain of

Figure 3 Mutation analysis in the C20orf7 gene reveals a c.477A/C
mutation changing leucine at position 159 to phenylalanine. (A) Sequence
analysis of exon 5 of the C20orf7 gene. (B) Conservation of leucine 159
from man to Drosophila (ClustalW).
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C20orf7 is less essential for proper assembly or the defect may be
partially rescued in our patients by its absence in isoform 2. As
no difference was observed in the relative expression of the two
isoforms in different tissues, including brain, liver, heart, skeletal
muscle, kidney, adipose tissue, thyroid, blood and endothelium
(data not shown), it is unlikely that tissue specific expression of
the two isoforms can explain the variation in clinical expression.
It remains unclear whether the second isoform leads to a protein
with the same function as isoform 1. Further studies are required
to resolve the exact pathological or rescue process occurring.

Patients were not only homozygous for the mutation in
C20orf7, but also for a common variant in the CRLS1 gene. As 1%
of the Dutch and 4% of the Moroccan population is predicted to
be homozygous for this mutation, this would imply a disease
frequency of 1e4 in 100, if the CRLS1 variant would be the
genetic cause. This is not the case. However, the reduction of CLS
activity, which is unlikely to cause clinical symptoms by itself,
may contribute to the disease phenotype in case the OXPHOS is
already affected by another defect, like in this family. So, C20orf7
mutations are a new cause of Leigh syndrome due to an early
complex I assembly defect. Disease manifestations are mutation
specific and may be modified by additional mutations in other
genes, like CRLS1.
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