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1.0 Introduction 

 

For many years, there has been a considerable interest among travel behaviour researchers in 

understanding inertia (see Gärling & Axhausen (2003) for a relatively recent overview). As a 

result, many studies have illuminated the role of inertia in the context of route-choices (for 

example Srinivasan & Mahmassani, 2000) and especially mode-choices (for example Gardner, 

2009). This amount of effort put into understanding traveller inertia reflects transportation policy-

makers’ ambitions to change travel behaviour away from established patterns with an aim to 

increase the efficiency and sustainability of transport network usage (Commission of the 

European Communities, 2007); such behavioural adaptation is by definition difficult to achieve 

when travellers are inert (Chorus et al., 2006a). Predominantly, transportation researchers frame 

inertia as resulting from the wish to save cognitive resources: considering alternative travel 

options, and exploring and testing new ones consumes time, effort and attention. Since these are 

scarce resources (Simon, 1978), most inertia-models postulate that it is a good decision-strategy 

to stick with an alternative that one knows to perform reasonably well, whereas one could also try 

to find the best performing option for each new trip.  

 In this paper we show that the emergence and growth of inertia can be explained without 

making these assumptions of effort-accuracy trade-offs. We show that even travellers that do 

consider alternative travel options for each trip exhibit inertia, as long as i) they dislike risk1 and 

ii) part of the quality of travel alternatives is only revealed upon usage. The intuition behind this 

result can be put as follows: travelers learn about a travel mode’s quality by observing the 

                                                 
1 In this paper, we use the terms ‘risk’ and ‘uncertainty’ interchangeably. As highlighted in the scope-demarcation, 

we do assume that individuals hold subjective probabilities to the quality of travel alternatives. 
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performance of a chosen alternative. Given risk aversion this implies that repeatedly choosing the 

same alternative from an initial set of equally risky alternatives is a rewarding strategy.  

The paper’s scope is determined as follows: first, in line with most inertia-related research 

and policy-making, we focus on a travel mode choice between a car and a train option. However, 

obtained results are informative for other, multinomial, contexts as well – for example involving 

travellers’ departure time- and route-choices. Second, we assume that travellers hold subjective 

probabilities with respect to the performance, or quality, of an alternative. Quality is conceived as 

a composite function of tastes, and of different quality-aspects, some of which are ‘tangible’ (for 

example travel times, costs) whereas others are less tangible (for example scenery, feeling 

(un)safe in a train at night). By making observations, the traveller gets an increasingly good idea 

of how much he likes an alternative. Specifically, we consider the situation where a traveller 

faces a trip towards a new destination for the first time, so that uncertainty about the quality of 

travel alternatives is due to a lack of experience with the alternatives, rather than being due to 

day-to-day variability. Third, we formally derive this learning-based cognitive lock-in effect 

within the context of Bayesian, myopic Expected Utility maximization-based travel-choices, 

although we discuss why the lock-in effect is likely to also apply to other styles of decision-

making and learning (as long as decision-makers are risk averse and learn from their 

observations). 

Section 2 provides a brief review of models used for modelling traveller learning and 

decision making under uncertainty, and provides a rationale for our framework. Section 3 shows 

how inertia emerges when travellers dislike risk. Section 4 extends this model to incorporate 

(myopic) forward-looking behaviour, and in section 5, we discuss how the presence of 

multimodal travel information impacts inertia strength. Section 6 presents conclusions. 
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2.0  A brief review of research into traveller behaviour under uncertainty, and a rationale 

for our framework 

 

2.1 Learning models for travel behaviour research 

When going through the literature on (models of) traveller learning of the quality of different 

alternatives, it appears that the large majority of modelling approaches can be labelled as either 

Bayesian belief updating models, non-Bayesian belief updating models, or reinforcement 

learning models (or hybrid versions of two of the above).  

The Bayesian approach, after a slow start in the 1990s, has gained much popularity in the 

last decade (for example Kaysi, 1991; Sun et al., 2005, Chorus et al., 2009). Although especially 

outside the domain of mainstream microeconomics the use of the Bayesian approach as a 

descriptive model of learning is fiercely debated, many recent studies suggest that while Bayesian 

belief updating may not be an accurate model of actual learning processes, the outcomes of these 

processes (such as choices) are often fairly well in line with Bayesian predictions (see Xu and 

Tenenbaum (2007) for a recent contribution to this line of literature.  

Of all non-Bayesian belief updating models, the concept of weighted average learning has 

probably been the commonly most used approach to model travellers’ learning behaviour. 

However it seems as though this approach has lost some of its popularity lately (for example, 

Horowitz, 1984; Ben-Akiva et al., 1991). This type of models generally assume that a traveller’s 

perception of an uncertain variable (like travel time) is composed out of a series of previous 

observations and information uptakes, each of which is associated with a weight which depends 

on the salience of the observation in addition to a range of other potential determinants and can 

(in theory at least) be estimated. 
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Reinforcement learning is intrinsically different from the two types of belief updating 

introduced above, because there is no explicit link with (the updating of) beliefs. In reinforcement 

learning studies, learning implies that a decision-maker remembers whether or not a chosen 

alternative performed well, and that alternatives with a strong performance on day t are (more 

likely to be) chosen on day t+1. As such, models of reinforcement learning in a sense ‘skip’ the 

updating of perceptions of attributes and operate at the level of preferences directly. Recently, 

there has been a growing interest in modelling traveller behaviour using reinforcement learning-

notions (for example, Arentze & Timmermans, 2003; Ziegelmeyer et al., 2008), although the 

approach has received less attention than (non-)Bayesian models of belief updating.2  

 

2.2 Models for travel choice under uncertainty with forward looking behaviour 

It appears that the default option for modelling travellers’ choices under uncertainty is to build on 

Expected Utility-maximization premises (for example Noland & Small, 1995; de Palma & 

Picard, 2005). It goes without saying that the usefulness of the EU-maximization approach as a 

descriptive choice-model has been fiercely debated outside the transportation domain (see 

Starmer (2000) for an excellent review of this debate). In travel behaviour research, this debate 

has recently resulted in one alternative choice-perspective gaining ground rapidly: that of 

Prospect Theory (PT, Kahneman & Tversky, 1979 – see Avineri & Prashker (2003) and 

Schwanen & Ettema (2009) for recent application in the travel choice domain). Whereas some of 

these empirical studies find evidence for non-EU maximization behaviour, others don’t. It seems 

                                                 
2 Although it has been shown (Arentze & Timmermans, 2003) that travel choice inertia emergence can be effectively 

modeled using reinforcement learning, the model’s premises do not allow for modeling the interplay between 

learning and risk aversion that we wish to highlight here. As a result, the reinforcement learning approach is not 

considered an appropriate learning model given the scope of this paper. 
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that at this point, the evidence of applicability of EU and PT for analyzing travel choices does not 

yet allow for drawing of general conclusions. In that sense, there is little difference between the 

status quo in the travel behaviour research domain and the often varying and inconclusive 

evidence in other branches of the social sciences (for example, Harrison & Rutström, 2009). 

Compared to the heated debate in the travel choice behaviour domain about the usefulness 

of EU- and PT-models of choice under uncertainty, much less attention has been devoted to the 

usefulness of different ways to model travellers’ forward-looking behaviour. Studies that aim to 

model forward looking travellers generally have done so using a myopic approach, which 

assumes that travellers only consider the value of acquiring information or making observations 

with respect to the forthcoming choice situation, instead of looking further ahead (for example, 

de Palma & Picard, 2006; Chorus et al., 2006b). In other branches of the social sciences, 

empirical applications of myopic models (for example, Gabaix et al., 2006) as well as of non-

myopic models (Erdem et al. (2005)) are available. 

  

2.3 Selecting a modelling framework, and general applicability of results 

At this point it is clear that no matter the (combination of) models selected for our formal 

analyses, there is contrasting empirical evidence within the domain of travel behaviour research. 

Given this situation of empirical ambiguity, we choose to select our modelling approach based on 

predominantly pragmatic reasons. Firstly, we choose to model learning behaviour by means of 

Bayesian updating-models. The pragmatic advantage of the Bayesian approach over weighted 

average learning lies in the former perspective’s formal tractability: the Bayesian approach relies 

on one central equation to simultaneously update means and variances, and consumes no 

additional parameters which need to be fixed at some arbitrary value. Second, we model choice 

by means of a mean-variance linearization of Expected Utility in light of its compatibility with 
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the Bayesian approach – the latter is used to update means and variances of risky variables, which 

may then directly enter the linearized Expected Utility-function to describe subsequent choice 

behaviour. For modelling forward-looking behaviour, we adopt a myopic perspective to remain 

in line with previous work in travel choice research and to keep the tractability of our model and 

its derivations at a reasonable level.3  

 At this point it is worth stressing that, although the formal analyses presented in the 

remainder of this paper are performed within the context of the selected modeling approach, our 

main finding (if travelers dislike risk, and part of the quality of travel alternatives is only revealed 

upon usage, inertia emerges due to a learning-based lock-in effect) generalizes over this modeling 

context. Although space limitations do not allow us to provide formal proofs for multiple models, 

we discuss in detail the intuition behind each of the formal results obtained for our model. These 

interpretations of results help establish credibility to our claim of obtaining results that are more 

general than the adopted modeling perspective only. We consider formal derivation of our results 

in the context of competing models of learning and choice as a fruitful avenue for further 

research. 

 

3.0 Inertia among Bayesian, Expected Utility-maximizing travellers 

 

3.1  A model of Bayesian, Expected Utility-maximizing travel mode-choice behaviour 

Consider a traveller that has changed jobs and faces a choice between two travel modes – car and 

train – for his daily commute towards his new work location. The quality x of each mode – being 

                                                 
3 Note that there is recent empirical evidence for the combination of linearized myopic EU-maximization behavior in 

the travel choice domain (Chorus et al., 2010). 
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a function of tastes and attributes that are relevant to the traveller – is anticipated by the traveller 

as a risky variable given the absence of experience with both modes in the context of the changed 

commute destination. Assume that car and train quality are both anticipated in terms of a normal 

distribution whose mean ( x̂ ) and variance (VAR ) represent expected quality and quality 

uncertainty, respectively: ( )t

car
f x = ( )ˆ ,t t

car car
N x VAR , ( )t

train
f x = ( )ˆ ,t t

train train
N x VAR , where t 

denotes trip number (or day number, when we assume that each day a trip is made). Note that 

although many other distributions may be used here, the normal distribution is convenient when 

specifying a Bayesian learning process. We assume that the traveller evaluates travel modes 

based on a mean-variance linearization4 of Expected Utility (EU). In the context of non-forward-

looking behaviour, EU is equated with instantaneous Expected Utility ( EU% : with the term 

instantaneous, we mean to reflect that the utility of a particular travel mode is only based on its 

anticipated performance during the current trip): 

 

ˆt t t

car x car VAR car
EU x VARβ β= ⋅ − ⋅% , ˆt t t

train x train VAR train
EU x VARβ β= ⋅ − ⋅%     (1) 

 

Here, 
x

β  and 
VAR

β  are nonnegative, the latter reflecting the level of risk aversion. To account for 

slight day-to-day contextual differences in the traveller’s choice situation (on a particular day, the 

traveller may for example be carrying luggage which may affect perceived quality of different 

travel modes) iid error terms t

car
ε  and t

train
ε  are added to the modes’ utility, which are drawn from 

                                                 
4 Note that in the context of normally distributed quality-levels, and assuming that the function mapping quality to 

utility is exponential (implying Constant Absolute Risk Aversion), Expected Utility is in fact given by a mean-

variance formulation (de Palma and Picard, 2006). 
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an Extreme Value Type I distribution with variance 2 6π  (implying that the scale of the utility is 

normalized to one). This specification results in the standard binary logit formulation of 

probabilities ( )tP y car=  and ( )tP y train= , where ty  denotes the option chosen during trip t.  

Upon choosing one of the travel modes (for example the car mode) and executing the trip, 

the traveller makes an observation ( t

car
x
(

) of the mode’s quality. The traveller knows that this 

observation will help him provide a more accurate assessment of the mode’s quality. However, 

the traveller also believes that he is unable to make a perfectly reliable assessment of an 

alternative’s quality by making only one observation (remember that quality is defined as a 

function of the traveller’s tastes and a number of tangible and less tangible quality-aspects). 

Formally, assume that a quality observation is a noisy signal of actual quality 
car

x  in the sense 

that ( )t

car car
f x x

(
= ( ),

car obs
N x VAR . That is, the traveller believes that, if the actual quality-level 

equals 
car

x , observed quality during trip t is normally distributed with mean equalling 
car

x  (in 

other words: he believes observations provide unbiased measurements of actual quality), and 

variance equalling 
obs

VAR . The magnitude of 
obs

VAR  reflects the extent to which the traveller 

believes that an observation of quality during the execution of an alternative is an unreliable 

measurement of actual quality. In other words: higher levels of 
obs

VAR  reflect that the traveller 

distrusts his own observations and believes that it takes time to ‘get to know’ the alternative and 

appreciate its quality. We assume that 
obs

VAR  does not differ between the car and the train mode, 

hence the absence of a mode-specific superscript.  

Given these assumptions, the travellers updated perception of quality of the car mode, 

after having made trip t using the car mode and having observed a quality level t

car
x
(

, denoted 
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( )1t t

car car
f x x

+ (
, is given by applying Bayes’ Theorem (for example Edwards et al., 1963):  

( ) ( )1 1 1ˆ ,t t t t

car car car car
f x x N x VAR+ + +=

(
, where: 

 

( ) ( )
( ) ( )

1 1

1

1 1

ˆ
ˆ

t t t

car car obs cart

car
t

car obs

VAR x VAR x
x

VAR VAR

− −

+

− −

⋅ + ⋅
=

+

(

 and 1
t

t car obs
car t

car obs

VAR VAR
VAR

VAR VAR

+ ⋅
=

+
  (2) 

 

In words: updated quality perceptions are a weighted average of prior beliefs and observed 

quality. Weights reflect perceived reliability of prior beliefs and observations, respectively: when 

the traveller distrusts (trusts) his own observations, updated perceptions of quality are relatively 

close to initially anticipated quality (observed quality). 

 

3.2 Inertia: underlying behavioural mechanisms 

Before analyzing the behavioural mechanisms underlying inertia among rational travellers, it is of 

much importance to clearly define what we mean by the term itself. Although it is tempting to 

define inertia in terms of a decision-maker repeatedly choosing the same alternative, the reason 

for this repetition may in fact be that the anticipated (expected) quality of an alternative is much 

higher than that of its competitors. As a result, defining inertia in terms of repetition alone is not 

very meaningful. Intuitively, we want to define inertia in a way that acknowledges that the mere 

action of choosing a particular alternative makes it more probable that the alternative is chosen 

again on the next day. In the context of the model presented above we can formalize this intuition 

as follows: a traveller exhibits inertia when the probability of choosing car over train during day 

t+1 is higher than the same probability during day t, under the condition that a) car is chosen 
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during trip t and b) the level of car quality that was observed during the trip matches the expected 

level of quality. Inertia strength is defined in terms of the difference between these two choice 

probabilities. In notation (in the remainder of this paper, unless stated otherwise, we consider car-

inertia): 

 

Definition 1a: A traveller exhibits inertia when ( )1 ˆ,t t t t

car car
P y car y car x x

+ = = =
(

 > ( )tP y car=  

or, in expected utility terms, when ( )1 ˆ,t t t t

car car car
EU y car x x

+ = =
(

 – ( )1 ˆ,t t t t

train car car
EU y car x x

+ = =
(

 > 

t t

car train
EU EU −  . 

 

Definition 1b: Inertia strength equals ( )1 ˆ,t t t t

car car
P y car y car x x

+ = = =
(

– ( )tP y car= . 

Alternatively, inertia strength, defined in terms of expected utilities, equals: 

( ) ( )1 1ˆ ˆ, ,t t t t t t t t

car car car train car carEU y car x x EU y car x x
+ + = = − = =

 
( (

 – t t

car train
EU EU −  . 

 

Note that by providing these definitions we contribute to the literature on traveller inertia, where 

inertia is mostly defined rather loosely in terms of repetitive behaviour, or lack of willingness to 

switch to alternative routes and modes. Having defined inertia (strength), we can now explore 

when, to what extent and why the rational traveller presented in section 2.1 exhibits inertia. We 

do so by deriving two results. 
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Result 1: Under the condition that 
VAR

β , t

car
VAR  and 

obs
VAR  are all strictly positive, the rational 

traveller presented in section 2.1 exhibits inertia. Inertia strength – defined in terms of expected 

utilities – equals ( ) ( )
2

t t

VAR car car obs
VAR VAR VARβ ⋅ + . 

 

The intuition behind the first part of this result is as follows: the rational traveller learns about 

risky quality by observing the quality of a chosen travel mode. Given risk aversion this implies 

that choosing a travel mode, and observing that quality is as expected, leads to less quality 

uncertainty (and: higher utility) during the next trip: inertia arises as a cognitive lock-in effect. 

The intuition behind the second part of result 1 is as follows: it is obvious that a higher degree of 

risk aversion (
VAR

β ) and increased uncertainty ( t

car
VAR ) will both lead to more pronounced lock-

in effect. The effect of observation unreliability (
obs

VAR ) on inertia strength can be explained as 

follows: remember that the key driver of inertia among rational travellers is the opportunity to 

learn from observations (in combination with risk aversion). Now, higher values of 
obs

VAR  imply 

that observed quality during trip t is perceived by the traveller as a relatively unreliable signal of 

actual quality, which in turn implies that less weight is attached to these observations in the 

traveller’s Bayesian learning process. As a result, to the extent that the traveller perceives 

observations to be unreliable signals, there is little opportunity for learning and the cognitive 

lock-in effect causing inertia is suppressed. 

 

Result 2: Under the condition a) that 
VAR

β , t

car
VAR  and 

obs
VAR  are all strictly positive, and b) that 

the observed level of quality is ∆ units lower than expected, a choice for the car mode during day 
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t implies an increased choice probability for the car mode during day t+1 as long as 

x
VAR t

car
VAR

β
β

⋅ ∆
> .  

 

The intuition behind this result is as follows: even when quality is lower than expected, the fact 

that quality uncertainty is reduced by learning from observations may imply a net gain in utility. 

Higher levels of initial uncertainty and of risk aversion imply higher gains. However, when the 

disappointment in terms of quality – or the traveller’s marginal valuation of quality – are too 

large, the net gain becomes a net loss and the probability that the traveller chooses the car-mode 

is lower during trip t+1 than it was during trip t.  

 

4.0  Inertia among forward-looking travellers 

 

4.1 A model of (myopic) forward-looking travel mode-choice behaviour 

Until now, we have assumed that the expected utility (EU) associated with choosing a travel 

mode-alternative is a function of anticipated mean and variance during the current trip t alone 

(hence: instantaneous Expected Utility). We now present a formulation of forward-looking travel 

choice-behaviour that acknowledges that (the traveller anticipates that) choosing a particular 

mode during the current trip has consequences (because of anticipated learning dynamics) for the 

anticipated instantaneous Expected Utility that may be derived from the next trip. In short: we 

assume that a traveller, when planning trip t, knows that the observation of the chosen mode’s 

quality during that trip may help him derive more utility from his mode choice during trip t+1. 

The myopically forward-looking traveller maximizes (linearized) Expected Utility, where a travel 

mode’s Expected Utility is the sum of the instantaneous Expected Utility defined in (1), and the 
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product of a forward-looking parameter γ  and the anticipated instantaneous Expected Utility 

associated with the next trip (which in turn is conditional on having chosen the considered travel 

mode during the current trip): 

 

( )

( )

1

1

t t t t

car car

t t t t

train train

EU EU EU y car

EU EU EU y train

γ

γ

+

+

= + ⋅ =

= + ⋅ =

% %

% %

         (3) 

 

When γ  approaches zero, the traveller is only concerned with the current trip, and (3) reduces to 

(1). When γ  approaches one, the traveller is concerned with making a good choice during the 

next trip as much as he is concerned with the current trip’s utility. The anticipated instantaneous 

Expected Utility associated with the next trip, conditional on having chosen a particular travel 

mode during the current trip, is denoted as: 

 

( ) ( ){ } ( )

( ) ( ){ } ( )

1 1

1 1

max ,

max ,

t t t t t t t

car car train car car

t
car

t t t t t t t

car train train train train

t
train

EU y car EU x EU f x dx

x

EU y train EU EU x f x dx

x

+ +

+ +

 = = ⋅
 

 = = ⋅
 

∫

∫

( ( (% % %

(

( ( (% % %

(

  (4) 

 

Here, ( )1 1 1ˆt t t t

car car x car VAR car
EU x x VARβ β+ + += ⋅ − ⋅

(%  and ( )1 1 1ˆt t t t

train train x train VAR train
EU x x VARβ β+ + += ⋅ − ⋅

(% , where 

updated perceptions of quality (uncertainty) are as defined in (2). In words, the traveller knows 

that when choosing a travel mode (for example the car mode) during trip t, he will make a noisy 

observation of its quality t

car
x
(

 – of course, he does not know what quality level he will observe, 
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hence the integration over ( )t

car
f x

(
. He also knows that he will use this noisy observation to 

update his beliefs about car quality, and that he will base his choice between the car and train 

mode during the next trip on these updated beliefs. The traveller’s beliefs regarding what level of 

quality he will observe during trip t equal his initial beliefs about car quality, that is: 

( ) ( )t t

car car
f x f x=

(
.  

Finally, note that the right-hand-side of (4) implies that it is assumed that a travel mode’s 

anticipated instantaneous Expected Utility during trip t+1, conditional on choosing the other 

mode during day t, equals the instantaneous Expected Utility during trip t. This assumption 

follows from the notion that travellers are assumed to only learn about a mode’s quality by means 

of direct observation5. Choice probabilities are given by using the binary logit model presented in 

section 2.1. Upon choosing one of the travel modes, a noisy observation is made of the quality of 

the chosen mode, leading to updated beliefs regarding the chosen mode’s quality. 

 

4.2 Inertia among myopically forward-looking travellers (simulation) 

Because the integrals over ( )t

car
f x

(
 and ( )t

train
f x

(
 do not have a closed form solution we discuss 

inertia among forward-looking travellers by means of a numerical simulation. Importantly, 

because shown numerical simulation outcomes partly depend on arbitrarily chosen values for 

relevant variables, we will be as careful and conservative as possible when interpreting obtained 

simulation results. Assume the following settings: ˆ ˆ 0t t

car train
x x= = , that is: expected quality of 

both the car and the train mode, as anticipated when planning trip t, equals zero. Furthermore, 

                                                 
5 The next section shows how this assumption may be relaxed to acknowledge the role of secondary learning from 

travel information. 
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5t t

car train
VAR VAR= = , implying that during trip t, both car and train quality are anticipated to fall, 

with a probability of 67 per cent (95 per cent), within the interval [-5,5] ( [-10,10] ). Quality is 

evaluated in terms of one util per unit (
x

β =1). Finally, 
obs

VAR = 2.5. Given these settings, the 

following result is obtained (note that a series of sensitivity analyses show that the result is robust 

with respect to varying one or more of the above parameter settings): 

 

Result 3a: For small magnitudes of 
VAR

β , higher values of γ  (that is, values close to 1) imply 

lower levels of inertia strength, potentially leading to negative inertia.  

 

Result 3b: For higher values of 
VAR

β , inertia strength increases, and the effect of γ  on inertia 

vanishes. 

 

Figure 1 illustrates these results (
VAR

β  is varied from 0 to 1 (this latter extreme being the value of 

x
β ), while simultaneously γ  is also varied from 0 to 1). The dependent variable, inertia strength, 

is measured (in line with definition 1) in terms of the probability that car is chosen during trip 

t+1, given a choice for the car during trip t and an associated observation of car quality that 

exactly matches expectations, minus the probability of choosing the car during trip t (which 

equals 50 per cent). Integration over the density functions that represent what observations the 

traveller expects to make when choosing a particular mode is performed by means of Monte 

Carlo simulation (100 pseudo-random draws are made from each density function – sensitivity 

analysis showed that this number is sufficiently high). Software package GAUSS 7.0 is used for 

performing the simulation. 
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It is immediately seen that, as stated in result 3, the negative effect of γ  on inertia 

strength only becomes noticeable when the degree of risk aversion approaches zero. For these 

low levels of risk aversion, positive values of γ  may lead to negative levels of inertia strength (a 

choice for the car mode during trip t leads to a reduction in probability of choosing the car mode 

again during the next trip). However, when risk aversion grows, the negative effect of γ  on 

inertia strength rapidly decreases.  

The intuition behind these results is as follows: in the absence of (substantial levels of) 

risk aversion, the traveller is predominantly concerned with choosing the mode with highest 

expected quality. Given the Bayesian learning process defined in section 2.1, the observation of 

car quality during trip t results in an improved estimate of expected car quality (although 

expected quality itself is unchanged, given that ˆt t

car car
x x=
(

). As a result, when planning trip t+1, 

the traveller is still indifferent between the two modes in terms of expected quality, but he does 

face a choice between on the one hand a further decrease in car quality uncertainty (implied by a 

choice for the car mode), and on the other hand a decrease in train quality uncertainty (implied by 

a choice for the train mode). Intuition, as well as Bayes’ Theorem, state that the latter decrease in 

uncertainty will be larger than the former, because a second observation of an uncertain 

phenomenon provides less information than the first observation. As a result, when planning trip 

t+1, a traveller that has chosen the car mode during trip t knows that he should choose the train 

mode during trip t+1 if he wants to be as sure as possible that he will make the right choice, in 

terms of maximizing expected quality, during trip t+2.  

In the presence of substantial levels of risk aversion, the argumentation changes. First, as 

was shown in section 2, higher levels of risk aversion lead to higher levels of inertia strength due 

to the learning-based cognitive lock-in effect. Second, the intuition behind the result that when 
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risk aversion is non-negligible the effect of γ  on inertia strength rapidly approaches zero, is as 

follows: a risk averse traveller, having chosen a particular travel mode during trip t, has 

developed a preference for this mode as a result of the learning-based cognitive lock-in effect. 

When planning trip t+1, the traveller anticipates (to the extent that he is forward-looking) that a 

choice for the other mode will bring the uncertainty level of that mode to the same level as that of 

the mode chosen during trip t. However, he also knows that he is able to further decrease the 

uncertainty associated with the mode chosen during trip t, by again choosing this mode during 

trip t+1. To the extent that risk aversion is present, this additional decrease in uncertainty 

counterbalances the potential gains in terms of getting a better estimate of expected quality, 

resulting from choosing a different mode during trip t+1. As a result, in the presence of risk 

aversion, increasingly forward looking behaviour does not lead to lower inertia strength. 

 

5.0 Inertia in the presence of multimodal travel information 

 

Until here, we have assumed that travel choices are made in the absence of information. Clearly, 

broadening this assumption towards acknowledging the presence of information would lead to a 

better correspondence with most actual choice situations faced by travellers nowadays. In this 

section, we study how the presence of pre-trip personalized multimodal information about travel 

mode-quality impacts inertia emergence. 

 

5.1 A model of travel choice behaviour in the presence of multimodal travel information 

Assume, without loss of generality, that pre-trip information becomes available (or: noticed by 

the traveller) after the traveller has made the first trip t towards his new working location. 
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Assume that he has chosen to use the car mode for this first trip. When planning trip t+1,  the 

traveller receives multimodal quality information in the form of messages 1t

car
x

+  and 1t

train
x

+ . As a 

result, his beliefs concerning the quality of both the car and the train mode (the former of these 

already updated once as a result of observed car quality during trip t) are updated.  

Assume that the traveller believes that the information provider is unable to faultlessly 

assess quality (for example because the information provider is only partially able to correctly 

assess the traveller’s tastes). Specifically, we postulate that ( )1t

car car
f x x

+ = ( ),
car I

N x VAR  and 

that ( )1t

train train
f x x

+ = ( ),
train I

N x VAR , 
I

VAR  being a measure of anticipated information 

unreliability. This formulation implies that information is perceived to be unbiased (that is: the 

expected quality message equals expected quality) and that perceived information reliability does 

not vary across modes6. As a result, reception of information leads to the following updates in 

quality anticipations: ( ) ( )1 1 1 1ˆ, ,t t t t t

car car car car car
f x x x N x VAR+ + + +=

(
 and ( )1t t

train train
f x x

+  = 

( )1 1ˆ ,t t

train train
N x VAR+ + , where: 

 

                                                 
6 There is some indirect evidence supporting this latter assumption: a web survey held by the first author among 488 

travelers (Chorus et al., 2007 – results discussed in this footnote are not published), who were asked to identify 

themselves as either car-drivers or Public Transport users, shows that perceptions of travel information reliability did 

not differ much between the two groups, and that travelers’ perception of information reliability concerning the other 

than their usual mode of transport did not differ a lot among the two groups as well.  
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 11 1 1 1
1 1

1 1 11

1 1 1

1 1

1 1

ˆ
ˆ  and 

ˆ
ˆ  and 

t t t t
car car I cart t car I

car car t
t

car I
car I

t t t t
train train I traint t train

train train
t

train I

VAR x VAR x VAR VAR
x VAR

VAR VARVAR VAR
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x VAR

VAR VAR

− −
+ + + +

+ +

− − ++

− −
+

+ +

− −

⋅ + ⋅ ⋅
= =

++

⋅ + ⋅ ⋅
= =

+

I

t

train I

R

VAR VAR+

  (5) 

 

Here, 1ˆt

car
x

+  and 1t

car
VAR

+  are as defined in (2). Note the difference in superscripts between the car 

and train-mode: for the car-mode, the updated quality perceptions are a combination of the 

received message and perceived quality after having chosen the car mode during trip t (which 

itself is a combination of initial anticipations and observed quality). For the train mode, the 

updated quality perception is simply a combination of the received message and initial quality 

anticipations.  

 For a non-forward looking traveller, the story ends here. However, to the extent that the 

traveller is concerned – when planning trip t – with the instantaneous utility to be derived from 

trip t+1, the presence of information has a second order effect: the traveller, when planning trip t, 

anticipates that he will receive travel information again before trip t+1 and that this information 

will lead him to once again update his perceptions before planning trip t+1. Of course, he does 

not know beforehand what messages he will receive. However, he does know that there is a 

formal relationship between on the one hand the probability of receiving particular messages 1t

car
x

+  

and 1t

train
x

+  when planning trip t+1 and on the other hand his anticipation of car and train quality 

after having made trip t, in combination with his anticipation of information reliability. As a 

result of this relationship, the traveller’s anticipations of what message he might receive when 

planning trip t+1 differ between the two modes, since his anticipation of messages is conditional 
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on the anticipated observation to be made during trip t. In notation, the traveller knows that, 

should he for example choose the car mode during trip t and make an observation t

car
x
(

, his 

anticipations of what messages 1t

car
x

+  and 1t

train
x

+  he will receive when planning trip t+1 are:  

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1

1

1 1 

t t t t t t t

car car car car car car car

t
x
car

t t t t t t

train car train train train train

t
x
train

f x x f x x f x x dx

f x x f x x f x dx

+ + + + +

+

+ +

 = ⋅
 

 = ⋅
 

∫

∫

( (

(

     (6) 

 

Here, ( )1t t

car car
f x x

+ (
 is as presented in (2). Furthermore, in line with the argument presented right 

before equation (5), ( )1 1t t

car car
f x x

+ +  = ( )1,t

car I
N x VAR

+  and ( )1t t

train train
f x x

+  = ( ),t

train I
N x VAR . 

Finally, note that ( )1t t

car train
f x x

+ (
 and ( )1t t

train train
f x x

+ (
 are derived in the same fashion as ( )1t t

car car
f x x

+ (
 

and ( )1t t

train car
f x x

+ (
.  

Given these anticipated probabilities of receiving particular messages, we can derive the 

forward-looking traveller’s anticipation of instantaneous Expected Utility associated trip t+1, 

conditional on having made a particular observation during trip t: 

 

( )
( )

( )
( ) ( )

( )
( )

1 1

1 1 1 1 1

1 1
1 1

1 1

1

1

, ,
max

,
max

t t t

car car car
t t t t t t t t

car car car train car car train
t t

t t
train traincar train

t t
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t t
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t t
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EU x f x x f x x dx dx
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+

+ +
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(7) 

 

Conditional instantaneous Expected Utilities are derived by applying the updating rule given in 

(5) and entering updated perceptions in (1). Substituting (7) in (4) and subsequently substituting 

(4) and (1) in (3) gives the Expected Utilities for the two modes. Based on these Expected 

Utilities, choice probabilities are derived using the binary logit model presented in section 2.1. 

Upon choosing one of the travel modes, based on these anticipations of quality observations 

during trip t and resulting messages to be received when planning tip t+1, a noisy observation is 

made of the quality of the chosen mode, leading to updated beliefs regarding the chosen mode’s 

quality.  

 

5.2 Inertia in the presence of multimodal travel information (simulation) 

Because the derivation of choice probabilities among forward-looking travellers in the presence 

of information involves the evaluation of several integrals without a closed form solution, we 

study inertia by mans of numerical simulation. Assume the following settings: like in section 3.2, 

ˆ ˆ 0t t

car train
x x= = ,  5t t

car train
VAR VAR= = , 

obs
VAR = 2.5 and 

x
β =1. Risk aversion parameter 

VAR
β  = 

0.25. Given these settings, the following results are obtained (note that a series of sensitivity 

analyses show that these results are robust7 with respect to varying one or more of the above 

parameter settings): 

 

                                                 
7 An exception is the level of risk aversion: as was established in result 3b, high levels of risk aversion imply that the 

effect of γ  becomes negligible, irrespective of the value of 
I

VAR . 
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Result 4a: Inertia strength is an increasing function of information unreliability (
I

VAR ). For 

large magnitudes of 
I

VAR , higher values of γ  imply lower levels of inertia strength.  

 

Result 4b: For small values of 
I

VAR  (implying reliable information), the effect of γ  on inertia 

strength vanishes. 

 

Figure 2 illustrates this result. 
I

VAR  is varied from 0 to 5 (this latter extreme being the value of 

t

car
VAR  and t

train
VAR  which implies that the information is anticipated to be equally unreliable as 

the traveller’s own initial knowledge. Simultaneously, γ  is varied from 0 to 1. The dependent 

variable, inertia strength, is measured (in line with definition 1) in terms of the probability that 

car is chosen during trip t+1 (given a choice for the car mode during trip t and an associated 

observation of car quality that exactly matches a priori expectations) minus the probability of 

choosing the car during trip t (which equals 50 per cent). Integration over the density functions 

that represent what observations the traveller expects to make when choosing a particular mode is 

performed by means of Monte Carlo simulation (100 pseudo-random draws for each density). 

Messages are also simulated by making 100 pseudo-random draws from the pdfs presented in (6). 

Crucially, to reflect that the traveller anticipates that received messages are conditional on his 

(potentially updated) perceptions of quality after having made a trip (see (6)), messages are 

conditioned on anticipated quality levels. That is, for each possible quality level drawn, 100 

messages are drawn, which results in 10,000 messages being drawn in total. Sensitivity analyses 

showed that these numbers were sufficiently high. Figure 2 shows simulated levels of inertia 

strength (note that the scale of the Z-axis differs from that in Figure 1). 
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The positive effect of information unreliability on inertia strength is clearly visible. The 

intuition behind this result is straightforward: as discussed in section 2.2, inertia arises from a 

lock-in effect based on travellers’ ability to learn from observing a chosen mode’s quality level. 

However, these observations becomes less important when information becomes more and more 

reliable, and as a result the cognitive lock-in effect causing inertia becomes less pronounced. 

Take the extreme situation where a traveller believes that he will receive fully reliable 

information at the start of each trip: in that case, paying attention to quality levels observed 

during trips made is of no use as it does not add to the learning process. As a result, the cognitive 

lock-in effect based on learning from observations vanishes. 

When information is unreliable, the negative effect of γ  on inertia strength is clearly 

visible as well. This effect is in line with result 3a as illustrated in Figure 1 (note that to the extent 

that information is anticipated to be unreliable, the ‘with information’ case becomes equivalent to 

the ‘without information’ case): forward-looking travellers are relatively prone to explore new 

alternatives, because they know that observing their quality levels helps them achieve higher 

levels of expected quality in future choices. To the extent that information is anticipated to be 

reliable, the effect of γ  on inertia strength rapidly diminishes because reliable information not 

only diminishes the usefulness of observing quality during the current trip, but also the usefulness 

of anticipated observations during the next trip (the traveller knows that information will also be 

available during the next trip). 

 

6.0 Conclusions and discussion 
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This paper shows how travellers that are faced with a series of risky choices become 

behaviourally inert due to a combination of risk aversion and learning. We first present a model 

of risky travel mode choice and show that if travellers dislike risk, and part of the quality of travel 

alternatives is only revealed upon usage, inertia emerges due to a learning-based lock-in effect. 

We go on to show how the interplay between forward-looking behaviour and risk aversion 

determines the level of inertia among forward-looking travellers. In addition, we show how the 

costless provision of multimodal travel information may slow down inertia emergence, but only 

to the extent that the information is considered reliable.  

The main message this paper tries to convey is that the usually invoked postulates of 

effort-accuracy trade-offs (sticking to a good enough alternative that has been chosen before 

arises from the wish to save effort, time and attention) are not necessary to explain inertia in a 

travel mode choice context. We show that inertia emerges rapidly and forcefully among travellers 

that consider all alternatives available in their choice set. Of course, there is no reason to 

conclude from the analysis presented here that inertia has little to do with effort-accuracy trade-

offs – on the contrary: we acknowledge the intuitive notion of inertia arising from travellers’ wish 

to economize on cognitive resources. In fact, we believe that actual patterns of traveller inertia 

are the result of an interplay between such trade-offs and the learning-based lock-in effects 

described in this paper. 

 From a theoretical perspective, we believe that a particularly fruitful direction for further 

research would be to incorporate strategic behaviour. As recent experimental studies point out, 

car-drivers are likely to consider (anticipated) choices made by other travellers when choosing 

which route to take (Ziegelmeyer et al., 2008). Intuitively, one would expect that there is a link 

between such strategic behaviour and inertia emergence, although further research is needed to 

gain detailed insights into this relation. Notwithstanding that the presented model leaves room for 
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theoretical model extensions like the one discussed directly above, we consider empirical testing 

to be the paramount direction for further research.  

To conclude, we believe that the results and overall conclusion we present here have an 

important practical implication: they suggest that inertia might be even more difficult to ‘break’ 

then we thought. Whereas transport policy-makers often assume that helping make travellers 

consider all available alternatives (for example by providing travel information; see Chorus et al. 

(2006a) for an overview of such attempts) will reduce inertia, our results suggest that such an 

approach will not be very helpful. On the other hand, our analyses do highlight the potential of 

other measures, such as the promotion of alternative (sustainable) travel modes when travellers 

are forced to abandon their usual mode. Our results suggest that travellers may be quite good in 

quickly learning ‘good’ habits. 
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Figure 1: Inertia among forward looking travellers 
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Figure 2: Inertia in the presence of multimodal travel information 
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