
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2011

A scientific workflow framework for scientific data
querying and processing
Xubo Fei
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Fei, Xubo, "A scientific workflow framework for scientific data querying and processing" (2011). Wayne State University Dissertations.
Paper 347.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Wayne State University

https://core.ac.uk/display/56678347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/347?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages

A SCIENTIFIC WORKFLOW FRAMEWORK
FOR

SCIENTIFIC DATA QUERYING AND PROCESSING

by

XUBO FEI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

c©COPYRIGHT BY

XUBO FEI

2011

All Rights Reserved

DEDICATION

To my parents with love

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Shiyong Lu, for helping me fin-

ish my thesis. In my time under his advisorship, I have learned skills that I had struggled with

all my life: how to write and present clearly; how to conquer large and complex problems;

and how to formalize a mathematical model. He often challenged me for creative ideas and

gave me a lot of insightful comments and unending encouragement. Dr. Lu’s supervision in

my study and research shifted my fundamental perspective from viewing computer science as

a useful tool to viewing it as a world of precise logic, subtle complexity, and artistic design.

Many thanks to Dr. Jeffrey Ram from the Physiology department. I collaborated with Dr.

Ram on the TangoInSilico project for about 2 years. We worked closely and held a regular

meeting every week. I am always impressed by his profound knowledge, great intelligence

and passion for research. I really enjoy our discussions and have learned a lot of biology

knowledge and scientific methodologies during our collaboration.

I am very grateful to Dr. Shiyong Lu, Dr. Farshad Fotouhi, Dr. Jeffrey Ram, and Dr.

Chandan Reddy, for serving on my dissertation committee and providing profuse encourage-

ment and productive advice on my dissertation.

I would also thank every member of the Scientific Workflow Research Laboratory, Dr. Yi

Lu, Dr. Mustafa Atay, Dr. Jamal Ali Alhiyafi, Dr. Seunghan Chang, Dr. Artem Chebotko,

Dr. Cui Lin, Chunhyeok Lim, Dong Ruan, and Sha Liu, for their sincere friendship and great

help.

Finally, I would like to thank my parents, Honglie Fei and Jianli Xu, for their love, sup-

port, and encouragement throughout my whole life.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

CHAPTER 1 Introduction . 1

1.1 Scientific Workflows and Scientific Workflow Management Systems 2

1.2 Scientific Data Management . 4

1.3 Research Challenges . 5

1.4 Contributions . 7

1.5 Roadmap . 8

CHAPTER 2 Related Work . 10

2.1 Workflow Modeling . 10

2.1.1 Business workflow modeling . 11

2.1.2 Scientific workflow modeling . 15

2.2 Scientific Workflow Data Models . 20

2.3 Scientific Workflow Management Systems 22

2.4 Chapter Summary . 24
iv

CHAPTER 3 A Scientific Workflow Composition Model 26

3.1 Key Requirements for a Scientific Workflow Composition Model 26

3.2 Scientific Workflow Model . 31

3.3 Scientific Workflow Constructs and Composition 33

3.3.1 The Map Construct . 35

3.3.2 The Reduce Construct . 36

3.3.3 The Tree Construct . 37

3.3.4 The Conditional Construct . 43

3.3.5 The Loop Construct . 44

3.3.6 The Curry Construct . 46

3.4 Workflow Composition . 51

3.5 A Dataflow Based Approach for Exception Handling 53

3.5.1 Exception Handling . 54

3.5.2 The Exception Construct . 54

3.6 Case Studies . 55

3.6.1 Workflow for Freebase Processing 56

3.6.2 Workflows for Matrix Summation 57

3.7 Chapter Summary . 57

CHAPTER 4 Collectional Data Model . 59

4.1 An Motivating Example of Biological Simulation 59

4.2 The Collectional Data Model . 60

4.3 Collectional Scientific Workflow Composition 71

v

4.4 Chapter Summary . 74

CHAPTER 5 VIEW: A Prototypical Scientific Workflow Management System . . . 75

5.1 VIEW Architecture . 75

5.2 Workflow Engine . 78

5.3 Data Product Manager . 85

5.3.1 Architecture of the Data Product Manager 85

5.3.2 Interface of the Data Product Manager 88

5.4 Data Type System in VIEW . 89

5.5 Scientific Workflow approach for Collectional Data Querying 92

5.6 Chapter Summary . 95

CHAPTER 6 Conclusions and Future Work . 96

Appendix A Scientific Workflow Language (SWL) 99

Appendix B Data Product Language (DPDL) . 111

Appendix C WDSL Specification for Workflow Engine Web Services 116

Appendix D WDSL Specification for Data Product Manager Web Services 128

Bibliography . 137

Abstract . 152

Autobiographical Statement . 154

vi

LIST OF TABLES

Table 5.1: Scalar data type mappings among VIEW, MySQL, and XML. 90

vii

LIST OF FIGURES

Figure 1.1: A Reference Architecture for SWFMSs. 3

Figure 3.1: (a) Correct data dependencies under the single-assignment property; (b)

incorrect data dependencies due to violation of the single-assignment

property. 29

Figure 3.2: (a) Traditional scientific workflow model; (b) our proposed scientific work-

flow model. 31

Figure 3.3: (a) a graph-based workflow; (b) a unary-construct-based workflow. 32

Figure 3.4: Six unary workflow constructs. 34

Figure 3.5: Workflow W2 created by applying the Map construct on W1. 35

Figure 3.6: Workflow W3 created by applying the Reduce construct on an Add Work-

flow. 37

Figure 3.7: Workflow W4 created by applying the Tree construct on an Add Workflow. . . . 38

Figure 3.8: (a) W5 created by applying the Conditional construct on the Projection work-

flow with a predicate p = (PI(1) < PI(2)); (b) W6 created by applying

the Conditional construct on the Projection workflow with an opposite predicate

p = (PI(1) >= PI(2)). 40

Figure 3.9: Workflow W7 created by applying the Loop construct on an Add Workflow. . . . 45

Figure 3.10: Workflow W8 created by applying the Curry construct on an Add Workflow. . . 47

viii

Figure 3.11: (a) unary-construct-based workflow W9 created by the composition of two Map

constructs on the Add workflow; (b) Unary-construct-based workflow W10 cre-

ated by the composition of two Reduce constructs on the Add workflow; (c)

unary-construct-based workflow W11 created by the composition of the Map

construct and the Reduce construct on the Add workflow; (d) unary-construct-

based workflow W12 created by applying the composition of the Map construct

and the Tree construct on the Add workflow; (e) unary-construct-based work-

flow W15 created by applying the Loop construct on a graph-based workflow;

and, (f) graph-based workflow W17 created by applying the G2W construct on

a workflow graph. 51

Figure 3.12: Workflow exception handling. 54

Figure 3.13: Workflow exception propagation. 55

Figure 3.14: The exception construct. 55

Figure 3.15: Workflow W18 created by applying the Exception construct on a Divide workflow. 56

Figure 3.16: Freebase Processing Workflow. 56

Figure 3.17: Performance comparison of two workflows for matrix summation. 57

Figure 4.1: The Parameters collection. 62

Figure 4.2: Two collections that union-compatible : (a) collection M1 ; and (b) col-

lection M2 . 63

Figure 4.3: The results of (a) M1 ∪c M2; and (b) M1 −c M2. 63

Figure 4.4: The results of the selection and projection operations (a) σc
Model=′m2′ANDExperiment=′1′

(Parameters); and (b) πc
Experiment (Parameters). 66

Figure 4.5: The result of the composition of the Cartesian product and the renaming

operations ρc
M1.Model/Model (ρ

c
M1.Result/Result (M1))×c ρc

M2.Model/Model (ρ
c
M2.Result/Result

(M2)). 68
ix

Figure 4.6: The ParallelSimulation workflow. 72

Figure 4.7: The ParallelAggregation workflow. 73

Figure 4.8: An example of the parallel Reduce construct. 73

Figure 4.9: The Query workflow. 74

Figure 5.1: Overall architecture of the VIEW system [85]. 76

Figure 5.2: A typical scientific workflow execution diagram. 77

Figure 5.3: (a) A SWL specification example of the workflowInterface def-

inition of a unary-construct-based workflow. (b) a SWL specification

example of the workflowBody for graph-based workflow (b-4), prim-

itive workflow (b-1), and unary-construct-based workflow (b-2); (b-3) a

SWL specification example of the workflowBody definition for unary-

construct-based workflow with a composition of the Map construct and

the Reduce construct; (b-5) a SWL specification example of the exception

handling. 78

Figure 5.4: Relational database schema for our scientific workflow composition model. 80

Figure 5.5: An example specification of a primitive workflow. 83

Figure 5.6: Architecture of the data product manager. 84

Figure 5.7: Example of the Compress operator: (a) the original relation Parameters; (b) The

result collection RParameters from the operation %(%(Parameters)). 86

Figure 5.8: Example of the XML description of a collectional data product. 88

Figure 5.9: Example of a query workflow. 94

x

1

CHAPTER 1

INTRODUCTION

In recent decades, computational technologies have played an essential role in modern sci-

entific research. While the couple between scientist and computer makes significant progress,

it also creates new challenges. On the one hand, scientists increasingly rely on informa-

tion and computation technologies to enable and accelerate scientific discoveries. High-

performance computing such as supercomputers, clusters and grids have been popularized

in many scientific laboratories [9] [10] [31]. On the other hand, computer simulation has

become a popular tool for scientists from many disciplines to explore domains that are inac-

cessible or extremely expensive for real experiments such as the exploring evolution of the

universe [112] [28], predicting global climate change [40] [2], and numerous “in silico” sim-

ulation of biological processes [109] [54]. Moreover, scientific instruments, computations

and computer simulations are creating vast data stores. Researchers in many areas of science,

especially in astrophysics, physics, climatology and biology, are now facing tremendous in-

creases in data volumes, which have exceeds our capacity to store and analyze the data.

Scientists demand better frameworks to support the new generation scientific research

cycle from data capture, data curation to data analysis and data visualization [67]. The in-

creasingly availability of massive volumes of scientific data and corresponding analysis tools

requires an integrated system to manage the data, the applications that analyze the data, as

well as the whole scientific discovery process. A recent science article, titled “Beyond the

Data Deluge” [25], concluded that, “In the future, the rapidity with which any given discipline

advances is likely to depend on how well the community acquires the necessary expertise in

database, workflow management, visualization, and cloud computing technologies.”

2

1.1 Scientific Workflows and Scientific Workflow Management Systems

Workflow in general refers to the “automation of a business process, in whole or part, during

which documents, information or tasks are passed from one participant to another for action,

according to a set of procedural rules” [68]. The workflow concept evolved from the notion

of process in manufacturing and the office and have been developed in the business world,

as so called business workflow, to providing computerized facilitation and automation of

business processes, including the assessment, analysis, modeling, definition and subsequent

operational implementation of the core business processes of an organization.

As the computational “e-science” component of scientific research becomes more and

more extensive and complex, a systematic architecture to manage various computational

processes and large amount of data becomes more and more important [116]. Workflow

concepts have recently been applied to organize scientific computations, so called scientific

workflows. A scientific workflow is a formal specification of a scientific process, which rep-

resents, streamlines, and automates the analytical and computational steps that a scientist

needs to go through from dataset selection and integration, computation and analysis, to fi-

nal data product presentation and visualization. Scientific workflows share many features of

business workflows, but also go beyond them. One of the main differences between scientific

workflows and business workflows is that scientific workflows are more concerned with the

throughput of data through various stages of programs and applications while the business

workflows focus on correct, timely and secure execution of business logic. Therefore, scien-

tific workflows are usually data-driven in that the tasks are orchestrated mostly by dataflows

rather than traditional control flows. In a scientific workflow, each task has several input and

output ports. The input ports receive tokens from a predecessor component(such as a task

or workflow input); the outputs ports send tokens to successor components(such as a task or

workflow output). In data flow perspective, Receipt of all the input data tokens will trigger the

task. When the task is complete, it will then generates data tokens and send them to related

output ports. Another difference is that scientific workflows are usually dynamic with highly

3

Figure 1.1: A Reference Architecture for SWFMSs.

user interactions while business workflows are static. Complex scientific experiments often

involve many parameters which will be changed frequently by the domain scientists in order

to refine the model. And moreover, the workflow itself is usually changed very often during

the exploratory research. Therefore scientists require higher level tools with friendly working

environment, which enables them to plug together problem solving components to prove a

scientific hypothesis. Business workflow tools look more like traditional programming lan-

guages, and are at the wrong level of abstraction for scientists to take advantage of. Instead,

scientific workflow systems are trying to provide an environment to aid the scientific discov-

ery process through the combination of scientific data management, analysis, simulation and

provenance.

A scientific workflow management system (SWFMS) is a system that supports the spec-

ification, modification, execution, failure handling, and monitoring of a scientific workflow

using the workflow logic to control the order of executing workflow tasks. SWFMS has be-

come a fundamental instrument for current and future scientific research and collaboration,

which provides rich support for scientists to describe experiments, analyze data, share de-

scriptions and results with colleagues, as well as automate the recording of vast amounts of

4

data products and provenance information. While a business workflow management systems

(BWFMSs) focus on the management, coordination, and verification of business processes,

SWFMSs focus on supporting data intensive and computation intensive scientific research

projects. Figure 1.1 illustrate a reference architecture for SWFMSs proposed in [85].

1.2 Scientific Data Management

Scientific data management is one of the greatest challenges in the coming data intensive

science paradigm, not only in terms of the volume, but also in terms of the heterogeneity

and distributive organization. While the relational data model [37] and SQL have become

standards in the commercial world, none of the existing data model alone has critical mass

in the scientific community and different data models and representations exist even in the

same domain. Although much science data is in the form of numeric arrays and tables,

relational databases are not well accepted by scientists because the relational model lacks of

some common scientific data types and SQL cannot support complex scientific computations.

Several simple and convenient data models have emerged to represent arrays, tables and

relationships among them, such as HDF [5], NetCDF [8] and FITS [4]. A standardization

is yet to be proposed.

Recently, the coming data deluge generated by scientific instruments and simulations

poses new requirements for scientific data management. Data volumes are doubling every

year and many nowadays datasets can easily reach terabyte or even pegabyte level. New

techniques are needed to analyze and organize the data. Moreover, the increasingly used

distributed high performance computing such as Grid computing and Cloud computing often

involve distributed and hierarchically organized data sets. However, current data model in

Grid computing and Cloud computing are mainly file oriented and loosely organized. The

current data management in such systems often relies on hard coded programs or even re-

quires manual operations from the users.

5

1.3 Research Challenges

Scientific workflows are proving to be the preferred vehicle for computational knowledge ex-

traction at a large scale. However, the research on scientific workflows is still in its infancy.

This dissertation explores formal methodologies to modeling scientific workflows. Specifi-

cally, the goal of this dissertation is to address the following challenges.

How to define a dataflow-based scientific workflow composition model to support

scientific workflow compositions. Scientific workflows have become a new paradigm for

scientists to integrate, structure, and orchestrate heterogeneous and distributed services and

applications into scientific processes to enable and accelerate many scientific discoveries.

In contrast to business workflows, which focus on the modeling of controlflow oriented

business processes, scientific workflows aim to model often large-scale data-intensive and

computation-intensive scientific processes. This poses new exciting challenges for the man-

agement of scientific workflows [85].

We argue that there is a great need to design and implement a dataflow-based scien-

tific workflow composition model. First, as more and more scientific research projects use

scientific workflow as an enabling technology to automate and speed up the scientific dis-

covery process, productive workflow composition that promotes workflow sharing and reuse

becomes increasingly important. Second, while the goal of business workflows is to reduce

human resources (and other costs) and increase revenue, the goal of scientific workflows is to

reduce both human and computation costs and accelerate the speed of turning large amounts

of bits and bytes into knowledge and discovery. As a result, while business workflows are typ-

ically controlflow oriented, scientific workflows tend to be dataflow oriented. Therefore, in-

stead of using an existing business workflow language (such as BPEL [23] and YAWL [118]),

it is highly desirable to have a dataflow-based scientific workflow language to support the

specification and execution of complex data-driven scientific workflows. Finally, although

several dataflow-based scientific workflow languages have been implemented [89], [97], [56],

6

none of them provides the dataflow constructs (e.g., Map and Reduce) that are fully compo-

sitional one with another.

How to define a formal scientific data model with well-defined operators. In con-

trast to business data, which is usually relational and stored in databases, scientific data is

often hierarchically organized and collection oriented. We argue that a scientific workflow

data model should meet the following requirements. First, a scientific workflow data model

should be collection oriented. Scientists often work with collection oriented datasets, such as

arrays, lists, tables, or file collections, which are generated from various instruments or simu-

lations [62]. Therefore, it is important that a scientific workflow data model can support such

collection-oriented data structures. Moreover, a collection-oriented data model enables data

parallelism in scientific workflows, such that multiple runs of the same workflow can be per-

formed in parallel over collections of data. Second, a scientific workflow data model should

support nested data structures. On one hand, scientific data is often hierarchically organized.

For example, physiologists often classify their clinical data by different patients and dates,

forming a hierarchical cluster of data. On the other hand, in scientific workflows, workflow

tasks often produce lists of data products, and the execution of a workflow composed from

such tasks can create increasingly nested data collections [91]. Finally, a scientific work-

flow data model should provide well-defined operators and their arbitrary compositions to

manipulate and query scientific data collections. Such operators can become the basis for a

higher-level declarative workflow language and provide a mathematical foundation for query

and workflow optimization. Although several collection oriented data structures have been

proposed for SWFMSs [117] [91] [132] [32], a formal data model with a set of well-defined

operators is still missing.

How to design and implement a scientific workflow management system to integrate

proposed techniques.

A scientific workflow management system aims to provide a framework to support the

whole cycle of scientific research. To realize and implement proposed techniques into an

7

integrated SWFMS remains a big challenge. First, while advanced computer science tech-

niques enabled and accelerated many scientific discoveries, they also bring burden to domain

scientist who are forced to learn computer science technologies. SWFMSs are designed to

provide a higher level programming abstraction and rid scientists of complicated technical

details,so that they can concentrate on the research problem. Therefore, SWFMSs should

provide a simple and friendly user interface and detailed techniques should be hidden inside

the backstage. Second, modern SWFMSs often consist of several subsystems either loosely

coupled or tightly coupled, and each implements some partial functionalities. Therefore, it

is very important to maintain the consistency between subsystems, such as data typing, and

system status. Finally, the coordination and communication between subsystems need to be

clearly identified, including the functional interface, state transition, and the data and message

interchange protocols.

1.4 Contributions

Contributions of this dissertation are as follows:

• A Dataflow-based Scientific Workflow Composition Model. We identified seven key

requirements for a scientific workflow composition model based on a comprehensive

literature review and our experience in developing the VIEW system. based on those re-

quirements, we proposed a dataflow based scientific workflow composition model con-

sisting of: i) a dataflow-based scientific workflow model that separates the declaration

of the workflow interface from the definition of its functional body; ii) a set of dataflow

constructs, including Map, Reduce, Tree, Loop, Conditional, and Curry, which are fully

compositional one with another; iii) a dataflow based exception handling approach to

support hierarchical exception propagation and user-defined exception handling. Our

workflow composition framework is unique in that workflows are the only operands

for composition; in this way, our approach elegantly solves the two-world problem in

8

existing composition frameworks, in which composition needs to deal with both the

world of tasks and the world of workflows.

• A Collectional Data Model. We formalized a collection-oriented data model, called

collectional data model, to model hierarchical collection-oriented scientific data. The

new collectional model naturally extends the relational model to support hierarchical

scientific data. We also proposed a set of well-defined operators to manipulate and

query such data including union and set difference, selection, projection, Cartesian

product and renaming. The proposed collectional operators can be composed arbitrar-

ily to form more complex operations and the result will always be a collection.

• An Integrated Scientific Workflow Management System. We designed and imple-

mented a prototypical scientific workflow management system, call VIEW. The VIEW sys-

tem comprises six loosely coupled subsystems implementing our proposed techniques:

a workbench to visually design and compose workflows and visualize data products, a

workflow engine realizing our proposed model to execute workflows, a task manager

to manage and execute heterogeneous tasks, a data product manager to store and man-

age scientific data products based on the collectional data model, a workflow monitor

to display system status and track exceptions, and a provenance manager to store and

query workflow provenance.

1.5 Roadmap

The remaining chapters of the dissertation are organized as follows. Chapter 2 reviews related

research that covers the state of the art technologies of scientific workflow modeling, scien-

tific data modeling, and scientific workflow systems. Chapter 3 proposes a new dataflow-

based scientific workflow model and a set of workflow constructs to enable arbitrary hier-

archical workflow compositions. Chapter 4 formalizes a collectional data model to support

hierarchical collection-oriented scientific data, and a set of operators to manipulate and query

9

such data. Chapter 5 presents the detailed design and implementation of the VIEW system,

which integrate all the proposed techniques. Finally, Chapter 6 concludes the dissertation and

outlines some future research work.

10

CHAPTER 2

RELATED WORK

Scientific workflow has become an increasingly popular paradigm for scientific data query-

ing and processing. As a multi-disciplinary research area, scientific workflows involve tech-

nologies from various domains. This chapter presents existing workflow and data manage-

ment technologies that are pertinent to this thesis. Section 2.1 provides an overview of busi-

ness workflow and scientific workflow research with a focus on models and languages. Sec-

tion 2.2 discusses existing scientific data models. Section 2.3 further surveys existing scien-

tific workflow management systems. Finally, Section 2.4 summaries this chapter.

2.1 Workflow Modeling

Workflow technology has been successfully used in business and scientific applications for

many years and numerous competing proposals have been proposed to model workflow pro-

cesses from opposing companies. There are two main architectural approaches to imple-

menting workflow: service orchestration and service choreography [24]. Service orches-

tration means an executable business process that may interact with both internal and ex-

ternal services (e.g. Web services). Services interact with each other by explicitly defined

controlflow or dataflow. Orchestrations can span multiple applications and/or organizations

while a central process acts as a controller to the involved services and the services themselves

have no knowledge of their involvement in a higher level application. BPEL [23] [12] and

YAWL [118] are two representative business workflow languages that are widely adopted by

the community for defining processes that can be executed on an orchestration engine. Most

current scientific workflow languages including MoML [89], Xsculf [15], and our to be pro-

posed language SWL are also based on a service orchestration model. Service choreography

11

focuses more on a collaboration between a collection of services in nature. Choreography

describes interactions from a global perspective, meaning that all participating services are

treated equally as a peer-to-peer fashion. Each party involved in the process describes only

the part they play in the interaction and no process acts as a controller. All involved services

are aware of their partners and when to invoke operations. WS-CDL [75] is a representative

business workflow language in this area.

2.1.1 Business workflow modeling

Workflow technology was first adopted in the business community and has been developed for

many years. The main purpose of business workflow is the automation of processing steps

(activities) in order to accomplish some business process [14]. Below, we will introduce

several representative business workflow languages.

Business Process Execution Language for Web services (or BPEL4WS) [23] [12] [76]

has gained broad acceptance in industry and research. It is an XML-based language as the

formal specification of business processes and business interaction protocols. BPEL4WS ex-

tends the Web services interaction model [124] and enables both, the composition of Web

services and rendering the composition itself as Web services [96]. BPEL provides control

constructs including < sequence >, < flow >, < switch >, < pick > and < while >.

BPEL also provides control links, together with the associated notions of join condition and

transition condition, to support the definition of task precedence, synchronization and con-

ditional dependencies [100]. BPEL has been supported by a significant number of business

workflow tools, and has also been used to structure some simple scientific workflows [19].

However, while most modern scientific workflows are data driven, BPEL does not support ex-

plicit data flow. Data in BPEL is stored in shared variables that can be accessed by activities

(e.g. < assign > activity). Moreover, it has been noted that standard BPEL fails to support

human tasks, that is, tasks that are allocated to human actors and that require these actors

to complete actions, possibly involving a physical performance. Although some extensions

12

to BPEL are developed such as BPEL4People [77] to support human interactions, they are

designed mainly to model business activities rather than scientific experiments.

Yet Another Workflow Language(YAWL) [118] is a formal language which was originally

proposed to support most of the workflow patterns [17]. Those patterns characterize the

desirable properties of workflow languages from the controlflow perspective. The YAWL

language is based on high-level Petri nets [119] and extends it with three main constructs,

or-join, cancellation sets, and multi-instance activities, to express multi-instance activities.

YAWL also introduces some other constructs, such as simple choice (xor-split), simple merge

(xor-join), and multiple choice (or-split), to support workflow patterns that are not easily

represented using Petri nets. YAWL is recently extended, so called newYAWL [105], offering

to provide holistic support for the controlflow, data and resource perspectives, and to cover

many new patterns which YAWL is unable to provide direct support for, including the partial

join, transient and persistent triggers, iteration and recursion.

The XML Process Definition Language (XPDL) [16] is a format standardized by the Work-

flow Management Coalition (WfMC) to interchange the process design, both the graphics

and the semantics of a workflow business process between different workflow products like

modeling tools and workflow engines. XPDL defines an XML schema for specifying the

declarative part of workflow. In XPDL, the Process Definition entity provides contextual

information that applies to other entities within the process. It consists of one or more activ-

ities, each comprising a logical, self-contained unit of work to be performed by either some

resource or computer application. An activity may be a subflow containing the execution of

a process definition that is separately specified, or a block activity that executes an activity

set, or map of activities and transitions. Activities are related to one another via flow con-

trol conditions. Each individual transition has three elementary properties, the from-activity,

the to-activity and the condition under which the transition is made. XPDL also contains ele-

ments to hold graphical information such as the X and Y position of the activity nodes as well

as the coordinates of points along the lines that link those nodes. This distinguishes XPDL

13

from BPEL as the latter one does not contain elements to represent the graphical aspects of a

process diagram.

WS-Choreography Definition Language (WS-CDL) [75] is an XML-based language that

describes peer-to-peer collaborative and complementary behavior of multiple participants.

The major difference between WS-CDL and BPEL is that the former provides a definition

of the information formats being exchanged by ALL participants, while the later provides

the information formats exchanged by one participant. Thus WS-CDL provides the global

message exchange between participants without a specific point of view.

Many other business workflow languages are proposed. Huang et al. proposed a policy

language [71] in support of the project-oriented workflow. In their model, a project can be

divided into many functional modules defined in a sub process definition, either composite

activities or atomic actives, and composite activities can be divided further. Stefansen et al.

proposed a SMAll Workflow Language Based on CCS (SMAWL) [114], which aims to reduce

the amount of user-specified internal synchronization while can still provide elegant con-

structs for the workflow patterns [17]. Gregory et al. proposed Workflow Prolog [63], which

leverages the properties of Prolog such as its familiarity and efficiency, and allows workflow

systems to be implemented in a novel declarative style. Han et al. proposed an Ubiqui-

tous Workflow Description Language (uWDL) [64], to support adaptive services and specify

context information on the transition constraints. Charfi et al. introduces a new unit, called

aspect, to modularize crosscutting concerns in complex systems and proposed an aspect-

oriented workflow language, called AO4BPEL [33]. Handl proposed HotFLow [65] for the

B2B Electronic commerce project MALL2000, which is a visual language for controlling the

dynamic workflow of negotiating and contracting. Wirtz introduced the Object Coordination

Nets (OCoN) [127] approach which carries the benefits of visual software engineering tech-

niques to the workflow area. Wong et al. proposed a process-algebraic approach [128] to

model workflows as CSP processes and support various controlflow patterns. Ontology [120]

techniques are also introduced to model workflows. OWL-S [90] provides Split+Join for

14

the parallel execution of semantic Web services while the Web Service Modeling Ontology

(WSMO) [103] also supports parallel workflows through a set of controlflow-based transition

rules which are executed in parallel.

All the above business workflow models and languages are driven by controlflows be-

cause business workflows are driven by business rules and it is important to maintain the

state of a business process and to provide controlflow constructs to formulate state-based

business rules. Although some constructs, such as ForEach, If, While in BPEL 2.0 [12];

MultipleInstance, Structured Loop, Multiple Choice and Parallel Split in YAWL [118], have

been proposed for business workflows to support iteration and concurrency, they cannot be

directly applied to a dataflow-based scientific workflow composition framework due to the

fundamental differences between controlflow and dataflow. For example, in contrast to our

to be proposed Map construct, which returns a list of results, the ForEach construct returns

nothing (since it is a controlflow construct). Considering the dataflow-oriented nature, the

Map construct is more natural for scientific workflows as the results can be directly fed to the

input of subsequent workflows or tasks.

Recently, data-centric approaches have received much recognition to model medium or

large sized business workflows. IBM introduced an artifact-centric approach [57] [47], which

focuses on recording “business artifacts” including business objects, their life cycles, and

provenance information. E-BioFlow [123], a workflow system built on top on YAWL [118],

provides three perspectives (controlflow, dataflow, and resource) to support workflow design.

The information of the three perspectives will all be translated to controlflows during runtime.

However, in essence, these approaches are still controlflow based rather than dataflow based.

15

2.1.2 Scientific workflow modeling

Scientific workflow shares many similarities with business workflow, but also go beyond

it [44]. There are significant discussions about the similiarities and differences between sci-

entific workflows and business workflows [115] [121] [19] [111]. First of all, scientific work-

flows are more concerned with the throughput of data through various stages of programs and

applications while the business workflows focus on correct, timely and secure execution of

business logic. Therefore, scientific workflows are usually data-driven in that the tasks are

orchestrated mostly by dataflows rather than traditional controlflows. In a scientific work-

flow, each task has several input and output ports. The input ports receive tokens from a

predecessor component (such as a task or workflow input); the outputs ports send tokens to

successor components (such as a task or workflow output). In dataflow perspective, Receipt

of all the input data tokens will trigger the task. When the task is complete, it will then gen-

erates data tokens and send them to related output ports. Second, scientific workflows are

usually dynamic with intensive user interactions while business workflows are static. Com-

plex scientific experiments often involve many parameters which will be changed frequently

by the domain scientists in order to refine the model. And more over, the workflow itself is

usually changed very often during the exploratory research. Scientists require higher level

tools with friendly visual working environment, which enables them to plug together prob-

lem solving components to prove a scientific hypothesis. Finally, while business workflows

are mainly dealing with Web services coordinated via simple messages, scientific workflows

often involve heterogeneous and distributed computation resources in order to process huge

and complex scientific data.

As scientific workflows are more dataflow driven, we briefly review the literature of

dataflow languages [73]. The name dataflow comes from the conceptual notion that a pro-

gram is a directed graph and that data flows along its arcs between instructions (components).

Many developments have taken place within dataflow programming languages in the past

decade. The Textual Data-Flow Language (TDFL) [125] is one of the first purpose-built

16

dataflow languages. It was designed to be compiled into a dataflow graph with data streams

in a relatively straightforward way. TDFL consists of a series of concepts including modules,

analogous to procedures in other languages. Each module is made up of a series of state-

ments such as assignments, conditional statements, or a call to another module. Iteration was

not provided directly. LAU [58] is a single assignment language which includes conditional

branching and loops that were compatible with this rule. It was one of the few dataflow lan-

guages that provided explicit parallelism. Cantata [102] is a coarse-grained visual dataflow

language in which nodes contain entire functions (similarly in workflows), rather than just a

primitive operation. Each input is designated a name by the programmer, who also specifies

either a loop variable and bounds, or a WHILE-condition, using the names. Much features

and principles in dataflow research has been inherited in scientific workflows. As a matter of

fact, most scientific workflow models are typically dataflow based. However, scientific work-

flows are specifically designed to facilitate scientists for scientific data processing, therefore,

they are usually more course-grained and also provide support for modern super computing

techniques.

Many modern scientific workflows originate from Grid applications. Grid workflows have

been proposed to enhance cyberinfrastructure for a wide range of scientific domains. Grid

computing satisfies high-performance requirement of the complex scientific applications and

enables resource sharing between collaborating organizations. Grid workflows provide an

integrated and user friendly environment for domain scientists to utilize the advantages of

grid computing. Pegasus [45] aims to take advantage of Grids for parallel processing at

the task level and its workflow language DAX [3] can describe controlflow-based sequen-

tial and parallel workflows. The DAX language use the notion of < job > to denote a

task and use < child > to define the control-flow dependencies between jobs. DAX does

not explicitly support dataflow. Instead, data is transferred as parameters or files. The

Swift [132] system defines the proprietary Virtual Data Language (VDL) [55]. VDL uses

17

a C-like syntax to represent XML Schema types and procedures. It enables the program-

mers to describe the types of both datasets (including file system data) and workflow com-

ponents. It also supports the invocation of remote procedure calls to perform computations

on those data objects and provides an implicitly parallel, functional programming model

based on dataflow concepts. ASKALON [49] proposed an Abstract Grid Workflow Language

(AGWL) [50] [51]. AGWL is an XML-based language designed specifically for describing

Grid applications at a high level abstraction, called activities, without dealing with imple-

mentation details. AGWL includes the most essential workflow constructs including activ-

ities, sequence of activities, sub-activities, controlflow mechanisms, dataflow mechanisms,

data repositories, and some grid workflow constructs such as parallel activities, parallel loops

with pre- and post-conditions, synchronization mechanism, and event based selection of ac-

tivities. There are many other proposals include JXPL [72] for the GridNexus [29] system,

DPML for the DiscoveryNet system [41], GWorkflowDL [22] based on High-Level Petri Nets,

GPEL [121] [122] and GSWEL [129] extended from BPEL4WS, SWFL [69] and MPFL [70]

extended from WSFL [80] (an XML language developed by IBM for the description of Web

Services compositions as part of a business process definition). [78] [130] survey and the

Grid programming environments and representative Grid workflow systems.

While grid workflows provide a high level abstraction on top of the distributed Grid re-

sources, they are limited for Grid applications and lack the ability to manage scientific data,

and to utilize heterogeneous resources. Recently, several general scientific workflow models

and systems are developed. Below, we review several most representative proposals.

Kepler [89] inherits the actor-oriented modeling design [26] from the Ptolemy II sys-

tem [30]. Actor-oriented modeling clearly separates two modeling concerns: component

communication (dataflow) and overall workflow coordination (orchestration).A scientific work-

flow is modeled as a composition of independent components, called actors. Actors are re-

usable independent blocks of computation. They consume data from a set of input ports and

write data to a set of output ports. The interaction between the actors is defined by a Model of

18

Computation (MoC) [60]. The MoC specifies the communication semantics among ports and

the flow of control and data among actors. Directors are responsible for implementing partic-

ular MoCs, and thus define the orchestration semantics for workflows. A variety of models of

computation are supported in Kepler, including: Process Networks (PN) for pipelined current

execution, Dataflow (DDF and SDF) for dataflow based execution, Continuous Time (CT) for

time based execution, and Finite State Machines (FSM) and Modal Models for state based

execution. Kepler also inherits Ptolemy’s own Modeling Markup Language (MoML) [79].

Taverna [97] implements its own XML Simple Conceptual Unified Flow Language (Xs-

cufl) [15]. A Taverna workflow consists of a collection of processors with both data and

control links among them. A control link establishes a control dependency indicates that a

processor can only begin its execution after some other processor has successfully completed

its execution. Taverna [97] provides implicit iteration by allowing a user to specify the it-

eration strategy of each processor (Taverna’s term of workflow task). Taverna can simulate

control links using data links [117], and If-Else behavior can be supported by using control

links and two distinguished processor called “Fail-if-false” and “Fail-if-true”. Recently, a

successor of Taverna has been developed, called Taverna 2 [94]. Taverna 2 implements a

new model [113], which improves the original model in two main ways: (i) support for data

streaming, through pipelined execution of workflows; and (ii) support for extensibility of the

set of workflow operators by wrapping each processor P with a stack of execution layers such

as Loop for iterative execution, Branch for conditional execution, and Bounce, Failover, and

Retry for exception handling.

Vistrail [32] features an action-based mechanism to automatically capture workflow evo-

lution provenance - all the trial-and-error steps follow to construct a set of data products. In

Vistrail, a workflow is represented by a sequence of actions, so called a vistrail. A vistrail is

essentially a tree in which each node corresponds to a version of a workflow, and the lines

between the parent nodes and their children represent the actions applied to parent nodes to

19

obtain the child nodes. In this case, it allows scientists to explore visualizations by returning

to and modifying previous versions of a workflow.

Triana [35] provides a clear separation between the abstract workflow model and the

concrete task model. A component in Triana is the unit of execution, Components are Java

classes with an identifying name, input and output ports, a number of optional name/value

parameters, and a single process method. Components can also be written in other languages

with appropriate wrapping code. Each component has a definition encoded in XML with a

similar format to WSDL [11], which specifies the name, input and output specifications and

parameters. Triana uses both dataflow and controlflow for component execution but does not

provide any explicit control constructs. Instead, Loops and conditional branching in Triana

are handled by specific components, i.e. a specific loop component that controls repeated

execution over a sub-workflow and a logical component that controls workflow branching.

None of the existing scientific workflow models provides the constructs that are com-

posable and can be applied on arbitrary workflows. For example, Kepler [89] provides an

IteratorOverArray actor (Kepler’s term of workflow task) to support iterated execution. How-

ever, this actor does not directly support parallel execution of its contained actor. A recently

proposed scientific workflow language, Martlet [61], provides the map and fold constructs

to support MapReduce-style workflows. However, because it is controlflow-based, the con-

structs introduced in Martlet are inapplicable to dataflow-based scientific workflows in which

input ports and output ports are well-defined. Moreover, the composability of Martlet is very

limited as Martlet constructs cannot be applied in a nested way. Similarly, MOTEUR [59]

supports both the parallel processing of independent data with a single service on different

computing resources (called “data parallelism”) and parallel execution of different services

with different datasets (called “services parallelism”). However, arbitrary composition of

constructs is still not supported.

20

2.2 Scientific Workflow Data Models

Business workflows are mainly dealing with two data models: the relational data model [37] [39]

and the XML data model [13]. Business data, such as financial records, medical records, per-

sonal information and manufacturing and logistical data, are usually relational and stored in

relational databases. A relation is defined as a set of tuples that have the same attributes. A

tuple usually represents an object and information about that object. A relation is usually

described as a table, which is organized into rows and columns. All the data referenced by an

attribute are in the same domain and conform to the same constraints. The relational model

offers an abstracted view of data. It basically abstracts the physical structure of data storage,

from the logical structure of data, and provides a set of algebraic to query and manipulate re-

lations. It also offers a declarative interface (relational calculus) for the specification of data

manipulation, which is proved to be equivalent relational algebra with [38]. The relational

model is realized in a Structured Query Language (SQL) [7] and implemented in a variety

of relational database management systems including Oracle, MySQL, and MS SQL Server.

Business workflows are also standardized with the XML data model to transfer data between

businesses processes. XML(eXtensible Markup Language) is a markup language for docu-

ment containing structured information. Documents refer not only to traditional documents,

but also XML data formats such as e-commerce transactions, objects, and thousands of other

kinds of structured information. Since XML data is self-describing, XML is considered a

means to represent semi-structured data. The basic construct of an XML document is the el-

ement. Elements can contain subelements. The content of an element is delimited by special

markups known as start tag and end tag. The start tag is the name of the element in angle

brackets; the end tag adds an extra slash character before the name. XML is a semi-structured

model and provides a flexible format for data exchange between different types of databases.

However, in XML, queries cannot be made as efficiently as in a more constrained structure.

As scientific workflow becomes an active research area, there is a growing interest in the

development of a data model for scientific workflow management systems. Kepler [91] [48]

21

proposes a collection-oriented model in which a collection is a named set of heterogeneous

data which can contain sub-collections to formalize a nested collection. Our collectional data

model is different from Kepler’s nested data collection model. On one hand, a collection

in Kepler is an XML-like semistructured data structure, consisting of labeled data items,

metadata items, and nested collections with possible different types and nesting levels, while

our collection is structured, consisting of data items of the same type, or consisting of nested

collections with the same schema and nesting levels. On the other hand, we have defined

several collectional operators that generalize their relational counterparts, no such operators

have been defined in the Kepler’s nested data collection model. Taverna [117] adopts a list

based data model, in which string is the only atomic data type and the nested list is the only

data construct. Taverna provides implicit iteration to support parallel processing of a list of

data products and allows a user to specify the iteration strategy on the processor to combine

multiple lists with cross product or dot product. Swift [132] supports atomic data types such

as integer and string, as well as a “mapped type”, which maps data directly to files on disks.

Swift also supports the Array structure and user-defined structures, which are similar to those

used in conventional programming languages. Pegasus [45] supports File as the only data

type and data operations rely on user defined tasks. VisTrails [56] supports common atomic

data types including File and provides List and Tuple data structures. GridDB [87] introduces

the relational model into Grid workflows by using a Set construct to cast atomic data into

relations. The relational operators can then be introduced into workflows as primitive tasks.

However, GridDB does not support hierarchical data collection.

Google MapReduce [42] adopts a simple data model which is a collection of key-value

pairs. However, this model does not support nested collections. Pig Latin [99] proposes a

nested data model in which tuples are basic building blocks. Pig Latin provides the Bag

structure to construct collections of tuples and the Map structure to construct collections of

key-value pairs where the values can be of any data types. The schemas of Bag and Map

are loose in that data items within one collection can be of different types. Pig Latin does

22

not provide operators except for basic storage and retrieval. DryadLINQ [131] adopts the

LINQ data model consisting of strongly-typed collections of .NET objects. LINQ supports

data collections including the dictionary data structure which contains key-value pairs and

provides SQL-like operators. However, nested dictionary structure is not supported so far.

2.3 Scientific Workflow Management Systems

Business workflow management systems (BWFMSs) originate from office automation sys-

tems about four decades ago, and grow fast during the last two decades in industry. Many

business workflow management systems have been developed to orchestrate and coordinate

business processes. For example, the YAWL system [118] [105] is developed on a service-

oriented architecture and consists of four YAWL services: YAWL worklist handler to assign

work to users of the system so that users can accept work items and signal their completion ;

YAWL web services broker to discover services, YAWL interoperability broker interconnect

different workflow engines, and custom YAWL services connects the engine with an entity in

the environment of the system. Some other systems include [66] [107] [21] [93] [81] [92].

Scientific workflow managements systems (SWFMSs) emerge in recent years in order to

provide an integrated platform for facilitate scientists to design workflow, monitor workflow

execution, visualize data product, and query provenance. Comparing to BWFMSs, research

and development of SWFMSs are still in their infancy. Until recently, a reference architec-

ture [85] was proposed, which clearly defined the responsibility of a SWFMS, and clarified

functionalities. Most SWFMSs haven been mentioned in Section 2.1 from the aspect of mod-

eling and language, in section we will review their system design and implementation.

Kepler [89] inherited the Ptolemy II system [30], which is to tightly coupled system in-

clude a user interface to design workflows and an engine to execute workflows. Kepler’s

strength include its mature library of actors, which are mainly local application for biology,

ecology, geology, astrophysics and chemistry, and its suite of directors that provide flexi-

ble control strategies for the composition of actors. The Kepler system also implements a

23

novel hybrid type system for modeling scientific data that separates structural data types and

semantic data types [26]. The well defined data type systems can facilitate the design and

implementation of workflows by constraining the possible values and interpretations of data

in a scientific workflow.

Taverna [97] [98] focuses particularly on orchestration of applications and services in the

bioinformatics domain. Taverna is designed in a three- tiered model for describing resources

and their interoperation at different levels of abstraction: An abstract layer to present the

workflow from a user view, hiding the complexity of the service interactionsa Freefluo enactor

manages different services in the low level with an extensible processor plug-in architecture;

and an execution layer in between to interpret internal object model that handles controlflows

such as implicit iteration and fault recovery on behalf of the user.

Triana [35] was originally developed as a data analysis problem-solving environment for

gravitational wave detection project. The system is designed in an two layer architecture:

first, users are allowed to use compose workflows graphically by dragging programming

components called units or tools onto a workspace. Components are connected by data and

control links. Triana workflows will be recorded and sent to the Grid Application Prototype

Interface (GAP Interface) that can execute any sub-workflow and communicate with other

Triana services they are connected to. GAP provides a subset of the functionality of the GAT

(Grid Application toolkit, created by GridLab [20]). The GAP is used to interface with Triana

services and provides us with the middleware independent view of the underlying services

and interactions across the Grid.Three bindings to GAP are currently supported in Triana:

Web services, P2PS(a lightweight P2P middleware capable of advertisement, discovery and

virtual communication within ad-hoc P2P networks), and Jxta (a set of protocols for P2P

discovery and communication within P2P networks).

Pegasus [45] is a framework which maps scientific workflows onto distributed resources

such as a Grid. Abstract workflows designed by a domain scientist are independent of any re-

sources they will be executed on. By doing this, Pegasus leverages abstraction for workflow

24

description to obtain ease of use, scalability, and portability. Pegasus provides a compiler

to map from high-level descriptions to executable workflows and it then use Artificial In-

telligence planning techniques to find a mapping of the tasks to the available resources for

execution at runtime. The execution of tasks are handled by the Condor system, which is an

open source high-throughput computing software framework for coarse-grained distributed

parallelization of computationally intensive tasks in Grid.

ASKALON [49] is designed in a similar architecture to Pegasus. ASKALON as allows

the user to compose the Grid workflow by using a graphical user interface or writing an

AGWL program directly. It then uses a transformation system to compile AGWL into a con-

crete representation through mapping abstract activities into specific Activity Deployments

deployed in the Grid. Finally A concrete representation is interpreted by the underlying

workflow runtime environment of ASKALON to construct and execute the Grid workflow

application on a Grid infrastructure.

VisTrail [32] is the first system to provide support for tracking workflow evolution by

maintaining detailed provenance of the exploration processłboth within and across different

versions of a dataflow [56]. Users create and edit dataflows using the VisTrail Builder user

interface. The dataflow specifications are saved in the VisTrail Repository and users can

interact with saved dataflows by invoking them through the VisTrail Server or by importing

them into the Visualization Spreadsheet, which stores all dataflow instances. The VisTrail

Cache Manager keeps track of operations that are invoked and their respective parameters.

Therefore, only new combinations of operations and parameters need to be executed.

2.4 Chapter Summary

This chapter has presented background information that is relevant to the rest of this the-

sis. This chapter was composed of three main sections. The first section introduced the

background of business workflow modeling, the state-of-the-art scientific workflow model-

ing research, and discussed their differences. The second section continued with a review

25

of recent trends in scientific data management. The third section of this chapter presented

several representative existing scientific workflow management systems.

26

CHAPTER 3

A SCIENTIFIC WORKFLOW COMPOSITION MODEL

Scientific workflows are designed to integrate and structure various local and remote het-

erogeneous data and service resources to perform in silico experiments to produce significant

scientific discoveries. Although several scientific workflow management systems (SWFMSs)

have been developed, a formal scientific workflow composition model in which workflow

constructs are fully compositional one with another is still missing. In this chapter, we pro-

pose a new scientific workflow composition model. We first discuss key requirements for

a scientific workflow composition model in Section 3.1. We then propose a new scientific

workflow model in Section 3.2, with a set of workflow constructs in Section 3.3, including

Map, Reduce, Tree, Loop, Conditional, and Curry, which are fully compositional one with

another. Section 3.5 introduce a dataflow based exception handling approach. We also present

two case studies in Section 3.6 to validate our proposed techniques. Section 3.7 concludes

this chapter.

3.1 Key Requirements for a Scientific Workflow Composition Model

Based on a comprehensive study of the workflow literature and our own experience from the

development of the VIEW system [85], we identify the following seven key requirements for

a scientific workflow composition model.

R1: Programming-in-the-large. The concepts of “programming-in-the-large” and “programming-

in-the-small” were first introduced by Frank DeRemer and Hans Kron in 1976 [46]. While

programming-in-the-large focuses on high-level abstractions of modules and the modeling

of their interactions and coordination, programming-in-the-small focuses on low-level pro-

grammatic implementation of modules and functionalities. Given the high-level orchestration

27

and integration nature of scientific workflow composition, a scientific workflow composition

model should fall in the programming-in-the-large paradigm.

R2: Dataflow programming model. While in the imperative (controlflow-based) program-

ming model, the order of program execution is explicitly specified by controlflow constructs,

such as sequential, conditional, and loop, in the dataflow-based programming model, the

availability of input data for a module initiates the execution of the module and the move-

ment of data through modules determines the execution order of the whole program. Since

most scientific workflows aim at data processing and scientific analysis problems, scientific

workflow composition model should be dataflow-based. Although from a user’s perspec-

tive, constructs such as Loop and If-Else are important, we show later in this section that

their dataflow-based counterparts are possible. Moreover, a dataflow-based workflow model

features implicit parallelism: workflow modules run in parallel by default unless there is an

explicit specification that one module needs an input data that is to be produced as the output

of another module. Since the dataflow-based programming model [74] eliminates the shared

memory assumption and the need of program counter and control sequencer, a dataflow-based

scientific workflow composition model will be able to more easily leverage the parallelism en-

abled by today’s variety of parallel and distributed computing infrastructures (Grids, Clouds,

multicore, and multiprocessor systems).

R3: Composable dataflow constructs. Current dataflow based workflow languages are

usually very simple, and contain only basic data links between components. In order to ad-

dress the requirements of the more and more complex e-science applications, some languages

borrowed several common controlflow constructs from business workflow languages. How-

ever the semantics is thus obscured and becomes difficult to formalize because of the combi-

nation of controlflow and dataflow. Therefore we argue that composable dataflow constructs

are essential for a scientific workflow composition model. In contrast with controlflow con-

structs, which are used to control and coordinate processes, dataflow constructs are featured

with efficient and systematic data processing including: data parallelism and aggregation;

28

recursive data processing with finite or infinite loops; data-dependent conditional branch-

ing. Dataflow constructs should also be composable. The ability to combine basic constructs

and build more complicated ones will greatly improve the expressive power of the scientific

workflow composition model.

R4: Workflow encapsulation and hierarchical composition. A scientific workflow com-

position model should facilitate encapsulation and support hierarchical workflow composi-

tion. On one hand, one of the most import features of scientific workflows is to allow the

reuse and sharing of scientific processes by workflow encapsulation [27] [110]. A scientific

workflow model should provide input/ouput interface and implementation details. Such well

encapsulated modules represent a separation of concerns and improve maintainability. On

the other hand, a scientific workflow model should support hierarchical composition so that

the users are able to compose workflows using existing scientific workflows and break down

large-scale scientific workflow into smaller ones. This ability greatly improves the power of

modeling of complex scientific processes and encourages scientific collaborations [88].

R5: Single-assignment property. To ease provenance tracking and workflow scheduling, a

scientific workflow composition model should have the single-assignment property, in which

data products are treated as immutable artifacts; they can be created and transported, but never

updated. First, scientific discovery produced from scientific workflows must be reproducible,

requiring the acyclicity of provenance graphs and the immutability of data products [95]. The

violation of this property might lead to incorrect data dependencies and thus compromise re-

producibility. Figure 1 illustrates an example of provenance for a workflow consisting of

three tasks: T1 takes input of d1 and produces d2; T2 consumes d2 and generate d3; T3 con-

sumes d3 and generates d′1 to replace d1. If the single-assignment property is respected, then

d′1 will be a different data product, and we can derive the acyclic dependency graph shown

in Figure 3.1(a): d′1 depends on d3; d3 depend on d2, and d2 depends on d1. However, if

the single-assignment property is not enforced, then d′1 and d1 will be treated as the same

data product and will be represented by one single node, resulting in a cyclic provenance

29

d1 TR1:T1 d2 d3 d1'TR2:T2 TR3:T3

i1 o1 i2 o2 i3 o3

(a)

o3

d1 TR1:T1 d2 d3TR2:T2 TR3:T3

i1 o1 i2 o2 i3

(b)

Figure 3.1: (a) Correct data dependencies under the single-assignment property; (b) incorrect
data dependencies due to violation of the single-assignment property.

graph shown in Figure 3.1(b). Based on transitivity, one can infer that d2 depends on d3,

a false data dependency relationship. Second, the single-assignment property can eliminate

the interference caused by parallel access (read and write) of data products, which can result

in inconsistent and undesirable intermediate or final results that would not be obtainable if

workflow tasks are run in a serial fashion. Third, the single-assignment property can greatly

facilitate the realization of massive parallelism: multiple workflow tasks can be started as

long as their input data products become available; the single-assignment property ensures

the well-defined availability time of each data product; data products can be transported to

their consumers directly and removed after consumption without first being stored and then

retrieved. As a result, the single-assignment property is assumed by many functional pro-

gram languages and dataflow programming languages [74] [126]. Finally, unlike the trans-

action data in business workflows which need to be updated and changed frequently, most

scientific datasets are accessed in a read-only manner and updates to datasets are usually

not required [34]. Therefore, single-assignment will unlikely have negative impact on the

computation and processing of scientific datasets.

R6: Physical and logical data models. Scientific applications usually involve heteroge-

neous and distributed data [62]. Data management is thus becoming one of the key challenges

of SWFMSs [43]. We argue that scientific workflow composition model should provide both

a physical data model and a logical data model, as well as the mapping between them. First,

30

a physical data model is important for the management of distributed data storage (such as

local files, databases, and remote files) and heterogeneous physical representations (such as

different formats representing the same data). Second, the logical data model provides data

typing and data structures. In order to maintain the integrity and consistency of the scientific

workflow composition model, a formal data typing system is required to detect “type errors”.

Furthermore, data structures with well-defined operators/constructs are also essential for stor-

ing and organizing collection of data tokens. Third, the separation of two data models allows

the workflow users operate only on the logical data model and can be freed from physical data

management [55]. As a result, changing of the underlying physical data model will breaking

the scientific workflow model. Finally, an explicit and standard data mapping layer with pre-

cise metadata and explicit data access is necessary to guarantee the efficient and consistent

mapping between the physical data model and the logical data model.

R7: Task level and workflow level exception handling. Exceptions in scientific workflows

may happen in both the task layer and the workflow layer. A scientific workflow composition

model should be able to capture and handle exceptions in both layers. First, while business

workflows usually consists of Web services and exception handling in business workflows

focuses on service exceptions such as service failure or deadline expiry [18], [106], [36], sci-

entific workflows may involve heterogeneous tasks (e.g., local executables, grid applications,

cloud services) and exception handling in scientific workflows is thus required to be able

to detect and integrate heterogeneous exceptions generated by those tasks. Second, because

scientific workflows are usually hierarchial and even distributed, exception handling in scien-

tific workflows should also be hierarchical and exception propagation should be supported.

Third, exceptions in scientific workflows are sometimes very important for scientists to de-

tect hidden problems, improve scientific models and even achieve new scientific discoveries.

Therefore, despite traditional failure handling techniques, a scientific workflow composition

model should allow the users to introduce new exceptions and provide user-defined handlers.

31

3.2 Scientific Workflow Model

In current scientific workflow models, the workflow is defined as a composition of tasks

which are either primitive or composite. Those kind of models therefore need to deal with

both the world of tasks and the world of workflows. As a result, existing models cannot

efficiently support workflow compositions. As shown in Figure 3.1(a), in order to create a

three-level hierarchical workflow Wb using existing workflow Wc, first we need to map Wc to

a composite task Tb and then use Tb to compose Wb. Similar mappings will also be needed in

order to compose Wa using Wb. Those mappings between workflows and composite tasks are

mathematically inelegant and lack mathematical properties to reason about workflow com-

positions. Inspired by functional programming, we propose a new dataflow-based scientific

workflow model with a strong functional flavor. As shown in Figure 3.1(b), workflows are the

only operands for composition and the two-world problem is thus avoided. In our proposed

scientific workflow model, the declaration of the workflow interface is separated from the

definition of its functional body. Such a separation provides an abstraction mechanism that

makes it possible to introduce dataflow constructs that are fully composable one with another.

Specifically, our proposed scientific workflow model consists of the following two layers:

Ta o1i1 Wb o1i1

 Wa

Wc o1i1

 Wb

The world of workfows The world of tasks The world of workfows

ik
i1 o1Wa

ik
i1 o1Wc

Tb o1i1ik
i1 o1Wb

(a) (b)

Figure 3.2: (a) Traditional scientific workflow model; (b) our proposed scientific workflow
model.

32

o1

o2

W
i1

i2

Wa Wb Wc

Graph-based Workflow Body

G2W
Construct

Unary-construct-based Workflow Body

i1

W
i1

Wa
i2

o1

i2

o1

Unary
Construct (e.g.Map)

(a) (b)

Figure 3.3: (a) a graph-based workflow; (b) a unary-construct-based workflow.

• The logical layer contains the workflow interface that models the input ports and output

ports of a workflow. The details of the workflow body definition is transparent to this

layer.

• The physical layer contains the workflow body that models the physical implementation

of the workflow. Depending on different implementations, a workflow can be either

primitive or composite. Primitive workflows are the building blocks of our model with

predefined implementations while composite workflows are composed from existing

workflows by dataflow constructs.

Our proposed scientific workflow model, is extensible in the sense that future dataflow

constructs can be easily introduced into the model without affecting the compositionality of

existing dataflow constructs. Below, we provide a brief overview of three kinds of workflows;

but note that such differentiation is made only at the physical layer, not at the logical layer,

thus, workflows are uniform objects in our model and they can be composed with each other

using various dataflow constructs.

Primitive workflows. A set of primitive workflows serve as the basic building blocks

of a scientific workflow composition framework. These primitive workflows are the abstrac-

tions of heterogeneous and distributed services and applications (tasks) that are dynamically

mapped to resources at runtime. A more detailed description of this abstraction and mapping

33

technique can be found in Chapter 5. Our proposed workflow composition framework, how-

ever, is orthogonal to how each primitive workflow is built and mapped to resources during

execution.

Graph-based workflows. A set of workflows can be connected to each other via their

ports through data channels to form a workflow graph G. During workflow execution, these

workflows communicate with each other by passing data through data channels. As shown in

Figure 3.3(a), the G2W construct is then applied to workflow graph G to construct a graph-

based workflow. G2W essentially performs the mapping between the input/output ports of a

workflow and the input/output ports of the workflows in its constituent workflow graph, and

thus exposes some of the input/output ports of the workflows in G as the input/output ports

of the target workflow.

Unary-construct-based workflows. A unary construct U can be seen as a mapping

from workflows to workflows. Therefore, given a workflow W , U(W) is another workflow

whose behavior depends on both W and U . Unary constructs are very useful to enhance

the capability of an existing workflow without coding effort and to promote the reuse of

existing workflows in various contexts. For example, our to-be-proposed Map construct can

be used to transform a workflow that can only process a single data product to one that can

perform the parallel processing of a list of data products. As shown in Figure 3.3(b), a unary-

construct essentially performs the mapping between the input/output ports of a workflow and

the input/output ports of its constituent workflow, and carries out the semantics that is defined

for the unary construct during runtime (e.g., the map port of the Map construct).

3.3 Scientific Workflow Constructs and Composition

A unary construct can be applied on a many-inputport-one-outputport workflow. As shown

in Figure 3.4, six common unary constructs are currently supported by our model: Map,

Reduce, Tree, Conditional, Loop, and Curry. More specifically, to apply a unary construct

S on Wa, we define a new unary-construct-based workflow Wb = S(Wa). Wb has exactly

34

ik
Wa

i1 o
in
ik

o

Wb

i1

in

ik

M
M (Wa)ik

Wa

i1 o

in

ik
Wa

i1 o

in
ir

ik Wa

i1

o

in

ir
o

Wb

i1

in

ir

ibib ib

R

R (Wa)ib,ir

(a) Map. (b) Reduce.

Wa

i1 o

in
ir

ik Wa

i1

o

in

ir
o

Wb

i1

in

it
il il

T (Wa)il,ir

T

ik
Wa

i1 o
in
ic

o

Wb

i1

in

ic
p

C
Cp(i)(Wa)c

Wa

i1 o

in

ic

(c) Tree. (d) Conditional.

Wa

i1 o

in

il ik
Wa

i1
o

in

il
o

Wb

i1

in

il p

L
L (Wa)il,p(o)

ik
Wa

i1 o
in
iu

o

Wb

i1

in

U
U (Wa)iu,p

Wa

i1 o

in

iu p

(e) Loop. (f) Curry.

Figure 3.4: Six unary workflow constructs.

the same number of input/output ports as Wa. Moreover, there is an isomorphic mapping

between the input/output ports of Wa and Wb. Each corresponding pair of ports have the

same type, i.e., dom(Wa.ij) = dom(Wb.ij) (j = 1, ..., n), and dom(Wa.o) = dom(Wb.o),

except for the designated ports specified by the constructs.

Although the unary constructs can only be applied to workflows with single output, it

is not a limitation. The application of the construct on general workflows can be simulated

by the assistance of some primitive workflows for list operations such as Merge and Split

(illustrated by a later example).

In contrast to the original MapReduce model [42], which supports only task-level Map

jobs (tasks), our Map and Reduce constructs can be applied to arbitrary scientific workflows;

moreover, the original MapReduce model can only process key/value pairs, while our model

can process data products of various types. Therefore, our model promotes the power of

MapReduce from the task level to the workflow level and enables Map and Reduce fully

composable with themselves and with other dataflow constructs in both flat and hierarchical

manners.

35

3.3.1 The Map Construct

The Map construct enables the parallel processing of a list of data products based on a work-

flow that can only process a single data product. As illustrated in Figure 3.4(a), given a

workflow Wa([i1, . . . , in], o) with n input ports, i1, i2,. . ., and in, and one output port o, to

apply the Map construct on Wa, one of the input ports of Wa, ik ∈ [i1, . . . , in], is designated

as the map port which takes a list of data products that need to be processed in parallel. If

Wa.ik has type T1, then Wb.ik has type List of T1; if Wa.o has type T2, then Wb.o has type

List of T2. The semantics of the Map construct Mik(Wa([i1, . . . , in], o)) can be formulated

by the following equation:

Wb.o = Wb(i1, . . . , [ik1 , ik2 , . . . , ikm], . . . , in)

= [Wa(i1, . . . , ik1 , . . . , in), . . . ,

Wa(i1, . . . , ikm , . . . , in)]

(3.1)

Our Map construct does not require key-value pairs as in the traditional MapReduce

model. Instead, our Map construct takes a list of data products as input and the index of

a data product within a list can be considered as a default “key”. Our Map construct is

order-preserving in the sense that each output data product has the same index as that of the

corresponding input data product.

For example, Figure 3.5 illustrates a workflow W2 that multiplies each pair of numbers

in the input list. Given workflow W1 which takes a pair of numbers as input and outputs

their product, W2 is created from W1 by applying the Map construct with the input port i1

[4,7]

[3,6]

2[1,2]

18

28
ik

W1 o1

[[1,2],[3,6],[4,7]]

i1
o1

W2

i1
M

ik W1i1
o1

ik W1i1 o1

ik W1i1 o1

Figure 3.5: Workflow W2 created by applying the Map construct on W1.

36

designated as the map port. Given an input list [[1, 2], [3, 6], [4, 7]], the output of W2 is:

W2.o = W2([[1, 2], [3, 6], [4, 7]])

= [W1([1, 2]),W1([3, 6]),W1([4, 7])]

= [2, 18, 28]

3.3.2 The Reduce Construct

The Reduce construct enables the aggregation of a list of data products to a single data prod-

uct based on a workflow that aggregates only two of input data products. As illustrated in

Figure 3.4(b), to apply the Reduce construct on a workflow Wa([i1, . . . , in], o), an input port,

ir ∈ [i1, . . . , in] is designated as the reduce port, which takes input from the list of data prod-

ucts that need to be aggregated, another input port, ib ∈ [i1, . . . , in] is designated as the base

port, which takes input either from an initial base data product or from the intermediate ag-

gregation data product that is produced as the output of the previous iteration of aggregation.

If Wa.ir has type T1, then Wb.ir has type List of T1. Moreover, since port ir may take input

from the previous output, it is required that dom(Wa.o) ⊆ dom(Wa.ib). The semantics of the

Reduce construct Rib,ir(Wa([i1, . . . , in], o)) can be formulated by the following equation:

Wb.o = Wb(i1, . . . , ib, . . . , [ir1 , ir2 , . . . , irm], . . . , in)

= om

where o1 = Wa(i1, . . . , ib, . . . , ir1 , . . . , in)

o2 = Wa(i1, . . . , o1, . . . , ir2 , . . . , in)

. . .

om = Wa(i1, . . . , om−1, . . . , irm , . . . , in)

(3.2)

For example, Figure 3.6 illustrates a workflow W3 which calculates the sum of all the

numbers in the input list. W3 is created from a predefined workflow Add by applying the

37

ik
Addi1 o1

i2

0 o1

W3

[3,5,9]

i1

i2

R

9

5

Addi1 o10
3

8

17

Addi1 o1
3

Add
o1

i2
i1
i2

i2

Figure 3.6: Workflow W3 created by applying the Reduce construct on an Add Workflow.

Reduce construct with input ports i1 and i2 designated as the base port and the reduce port

respectively. A default value 0 is set on the port i1 as the base value. Given an input list

[3, 5, 9], the output of W3 is:

o1 = Add(0, 3) = 3

o2 = Add(3, 5) = 8

o3 = Add(8, 9) = 17

and W3.o = W3(0, [3, 5, 9])

= o3 = 17

3.3.3 The Tree Construct

The Tree construct enables parallel aggregation of a list of data products. In contrast to the

Reduce construct which performs a sequential aggregation, the Tree construct aggregate the

list pairwisely as a binary tree until one single aggregated product is generated.

As illustrated in Figure 3.4(c), to apply the Tree construct on a workflow Wa([i1, i2, . . . ,

in], o), two input ports, il, ir ∈ [i1, i2, . . . , in] are designated as the left tree port and the

right tree port. The resulting unary-construct-based workflow will have a corresponding tree

port which takes inputs of a list of data products that need to be aggregated. If Wa.il and

Wa.ir have type T1, then Wb.it has type List of T1. The semantics of the Tree construct

38

Til,ir(Wa([i1, i2, . . . , in], o)) can be formulated by the following recursive equation:

Wb.o = Wb(i1, . . . , [ir1 , . . . , irm], . . . , in)

if m = 1,

Wb.o = ir1

if m > 1,

Wb.o = Wa(i1, . . . ,

Wb(i1, . . . , [ir1 , . . . , irdm/2e], . . . , in),

Wb(i1, . . . , [irdm/2e+1
, . . . , irm], . . . , in),

. . . , in)

(3.3)

For example, Figure 3.7 illustrates a workflow W4 which calculates the sum of the input

list. W4 is created from a primitive workflow Add by applying the Tree construct with input

ports i1 and i2 designated as the left tree port and the right tree port respectively. Given an

input list [0, 3, 5, 9], the output of W3 is:

W4.o = W4([0, 3, 5, 9])

= Add(Add(0, 3), Add(5, 9)) = 17

The application of the Tree construct will change the aggregation order and the result

might be different with sequential aggregation (such as Reduce). However, below we will

ik
Addi1 o1

o1

W4

[0,3,5,9]
i1

i2

9

3
Addi1 o10

3
17Addi1 o1

i2

i2

Addi1 o15
i2 14

T

Figure 3.7: Workflow W4 created by applying the Tree construct on an Add Workflow.

39

show that if the base workflow satisfies some property, the result of tree aggregation will be

equivalent with sequential aggregation.

Definition 3.3.1 (A) workflow Wa([i1, . . . , il, . . . , ir, . . . , in], o) is associative with ports il, ir

if and only if it satisfies the associativity law:

Wa(p1, . . . , Wa(p1, . . . , d1, . . . , d2, . . . , pn−2), . . . , d3, . . . , pn−2)

= Wa(p1, . . . , d1, . . . , Wa(p1, . . . , d2, . . . , d3, . . . , pn−2), . . . , pn−2)

for all inputs d1, d2, d3 and p1, . . . , pn−2

(3.4)

♦

Typically, we define that a binary workflow Wa([il, ir], o) is associative if and only if it

satisfies the associativity law:

Wa(Wa(d1, d2), d3) = Wa(d1,Wa(d2, d3))

for all inputs d1, d2, d3

(3.5)

Below we will show that if the base workflow is associative with the left tree port and the

right tree port, given any list of inputs, the result of the Tree construct based workflow will

be the same as sequential aggregation using the base workflow. We will start the proof from

the binary workflows.

Theorem 3.3.2 Given a binary workflow Wa([i1, i2], o) that is associative, for any input list

[d1, . . . , d2n] (n > 1), which can be constructed into a perfect binary tree with depth of n, the

unary-construct-based workflow Wb = Ti1,i2(Wa) satisfies the following equation:

Wb([d1, . . . , d2n]) = Wa(. . .Wa(Wa(d1, d2), d3) . . . , d2n) (3.6)

Proof: [Proof of the Main Theorem] Basis: Show that the statement holds for n = 1. Obvi-

ously, we have Wb([d1, d2]) = Wa([d1, d2]), so the statement holds.

40

Projection o1ikProjection

i1 o1

i2

o1

W5

2

i1[2,3]

2 i2

[2,3]
3

pi1

i2

p=(PI(1) < PI(2))

p=true
FailC

Projection o1ikProjection

i1 o1

i2

o1

W6

2

i1[2,3]

2 i2

pi1

i2

p=(PI(1) >= PI(2))

p=false

C

(a) (b)

Figure 3.8: (a) W5 created by applying the Conditional construct on the Projection workflow with
a predicate p = (PI(1) < PI(2)); (b) W6 created by applying the Conditional construct on the
Projection workflow with an opposite predicate p = (PI(1) >= PI(2)).

Inductive step: Show that if the statement holds for n=k, then the statement also holds

for n=k+1. This can be done as follows. Assume the equation holds for n=k, that is:

Wb([d1, . . . , d2k]) = Wa(. . .Wa(Wa(d1, d2), d3) . . . , d2k)

and also we can have

Wb([d2k+1, . . . , d2k+1])

= Wa(. . .Wa(Wa(d2k+1, d2k+2), d2k+3) . . . , d2k+1)

Then for n=k+1,

41

Wb([d1, . . . , d2k+1])

= Wb(Wb([d1, . . . , d2k]),Wb([d2k+1, . . . , d2k+1)])

= Wa(Wa(. . . Wa(Wa(d1, d2), d3), . . . , d2k),

Wa(. . . Wa(Wa(d2k+1, d2k+2), d2k+3), . . . , d2k+1))

= Wa(Wa(Wa(. . .Wa(Wa(d1, d2), d3), . . . , d2k),

Wa(. . . Wa(Wa(d2k+1, d2k+2), d2k+3), . . . , d2k+1−1)),

d2k+1)

...

= Wa(. . . Wa(Wa(d1, d2), d3) . . . , d2k+1)

2

Corollary 3.3.3 Given a binary workflow Wa([i1, i2], o) that is associative, the unary-construct-

based workflow Wb = Ti1,i2(Wa) satisfies the following equation for any input list [d1, . . . , dn]:

Wb([d1, . . . , dn]) = Wa(. . .Wa(Wa(d1, d2), d3) . . . , dn) (3.7)

Proof: Given Wa([i1, i2], o) that is associative, we create another workflow Wc([i1, i2], o)

defined as:

Wc(d1, d2) = did(d1 = did, d2 = did)

or d2(d1 = did, d2 6= did)

or d1(d1 6= did, d2 = did)

or Wa(d1, d2)(d1 6= did, d2 6= did)

(3.8)

42

where did is a reserved identity data product of Wc(d1, d2) that will not be used in any other

normal user inputs. We can simply prove that Wc is also associative by enumerating all the

possibilities (due to the page limit, the proof is skipped).

Obviously, we can replace Wa with Wc without affecting the results for any inputs,

then for any input lists [d1, . . . , dn] (di 6= did), the unary-construct-based workflow Wd =

Ti1,i2(Wc) satisfies the following equation:

Wd([d1, . . . , dn]) = (Ti1,i2(Wc))([d1, . . . , dn])

= (Ti1,i2(Wa))([d1, . . . , dn])

= Wb([d1, . . . , dn])

(3.9)

For any input list [d1, . . . , dn] with length n, we will increase the length to 2k where

2k−1 < n ≤ 2k and fill with identity data products did. By definition we can derive that

Wd([d1, . . . , dn, did, . . . , did]) = Wd([d1, . . . , dn]) (3.10)

By theorem 3.3.2, we have:

Wd([d1, . . . , dn, did, . . . , did])

= Wc(. . .Wc(Wc(d1, d2), d3) . . . , did)

= Wa(. . .Wa(Wa(d1, d2), d3) . . . , dn)

(3.11)

From equation 3.10 and 3.11, we have

Wd([d1, . . . , dn]) = Wa(. . . Wa(Wa(d1, d2), d3) . . . , dn) (3.12)

43

From equation 3.9 and 3.12, we can conclude equation 3.7.

2

Corollary 3.3.3 can be extended to multi-port workflows that are associative with two

ports since inputs of other ports can be considered as arguments. We will show the proof in

the later section with the help of the to-be-proposed Curry construct.

3.3.4 The Conditional Construct

The Conditional construct enables the conditional execution of a workflow based on a condi-

tion on one of the inputs.

As illustrated in Figure 3.4(d), to apply the Conditional construct on a workflow Wa([i1, . . . , in], o),

one of the input ports of Wa, ic ∈ [i1, . . . , in], is designated as the conditional port, on which

a logical test will be calculated based on the input data product. A predicate p will be pro-

vided by the user as a parameter to evaluate the output of the conditional port and Wa can

be executed only if p evaluates to be true. p can be modified by the user dynamically and

the workflow behavior will thus be changed accordingly. The semantics of the Conditional

construct Cp(ic)(Wa([i1, . . . , in], o)) can be formulated by the following equation:

Wb.o = Wb(i1, . . . , ic, . . . , in)

= p(ic)?Wa(i1, . . . , ic, . . . , in) : Fail

(3.13)

Here the p?A:B notation means exactly if p then return A else return B.

For example, given a pair of numbers, W5 shown in Figure 8(a) outputs the second number

if it is greater than the first number; otherwise fail. Similarly, W6 shown in Figure 8(b) outputs

the second number if it is not greater than the first number; otherwise fail. Both W5 and W6

are created from the Projection workflow by applying the Conditional construct with input

port i1 designated as the conditional port. Because of the predicates on W5 and W6 are

opposite, given the same inputs, only one of the workflows can be executed and the other one

44

will fail. For instance, given an input pair [2, 3] for the conditional port and a number 2 which

is used to specify the number in the pair to be projected, the outputs of W5 and W6 are:

W5.o = W5([2, 3], 2)

= (2 < 3)?Projection([2, 3], 2) : Fail

= Projection([2, 3], 2) = 3

W6.o = W6([2, 3], 2)

= (2 >= 3)?Projection([2, 3], 2) : Fail = Fail

(3.14)

Traditional if-then-else statement and multiple-branch conditional statement can be sup-

ported by applying the Conditional construct on different branches of workflows.

3.3.5 The Loop Construct

The Loop construct enables cyclic executions of a workflow based on a predicate over the

output of the workflow. The output of the workflow will be repetitively returned (fed back)

to a specified input port until the predicate evaluates to true.

As illustrated in Figure 3.4(e), to apply the Loop construct on a workflow Wa([i1, . . . ,

in], o), one of the input ports of Wa, il ∈ [i1, . . . , in], is designated as the loop port, which

takes input either from the initial input data product at the first iteration or the feedback

from the output of the previous iteration. A user-input predicate p is set on the output port

o such that if p evaluates to false, the output will be fed back to the loop port. There-

fore, it is required that dom(Wa.o) ⊆ dom(Wa.il). The semantics of the Loop construct

45

Lil,p(o)(Wa([i1, . . . , in], o)) can be formulated by the following recursive equation:

Wb.o = Wb(i1, . . . , il, . . . , in)

= om

where o1 = Wa(i1, . . . , il, . . . , in) (p(o1) = false)

o2 = Wa(i1, . . . , o1, . . . , in) (p(o2) = false)

. . .

om = Wa(i1, . . . , om−1, . . . , in)

(p(om) = true)

(3.15)

As an example, the workflow W7 shown in Figure 3.9 repeatedly increase the base value

by 1 until it is greater than 100. W7 is created from a predefined workflow Add by applying

the Loop construct with input ports i1 designated as the loop port. Given input list [0, 1], the

Projection o1

ik Add

i1 o1

i2

o1

1

i1

1 i2

101
p

i1

i2

p=(PI(1) >100)

p=true

L

0

0

Projection o1i1
1 i2

...
Projection

1 i2

1

2

p=false

p=false

W7

Figure 3.9: Workflow W7 created by applying the Loop construct on an Add Workflow.

46

output of W7 is:

o1 = Add(0, 1) = 1 (o1 ≯ 100)

o2 = Add(1, 1) = 2 (o2 ≯ 100)

. . .

o101 = Add(100, 1) = 101 (o101 > 100)

and W7.o = W7(0, 1)

= o101 = 101

.

3.3.6 The Curry Construct

The Curry construct allows users to fix one of the input ports with a specified argument and

thus reduce the number of input ports. By applying multiple Curry constructs, a workflow

that takes multiple arguments can be translated into a chain of workflows each with a single

argument.

As illustrated in Figure 3.4(f), to apply the Curry construct on a workflow Wa([i1, . . . ,

in], o), one of the input ports of Wa, iu ∈ [i1, . . . , in] is assigned with an argument. Therefore,

the resulted workflow Wb will only have n− 1 input ports and there are one to one mappings

from those ports to the input ports of Wa.

The semantics of the Curry construct Uiu,p(Wa([i1, . . . , iu, . . . , in], o)) can be formulated

by the following equation:

Wb.o = Wb(d1, . . . , dn−1)

= Wa(d1, . . . , p, . . . , dn−1)

(3.16)

47

As an example, the workflow W8 shown in Figure 3.10 implements the Increment operator

by applying The Curry construct on the Addition workflow. W8 contains only one input port

and will automatically increment the input integer by 1.

ik
Addi1 o1i1

o1

W8

4
i2

1
ik

Addi1 o1i2

1

4
5

U

Figure 3.10: Workflow W8 created by applying the Curry construct on an Add Workflow.

Theorem 3.3.4 The Curry construct satisfies commutativity:

Uiu1 ,p1(Uiu2 ,p2(Wa([i1, . . . , in], o)))

=Uiu2 ,p2(Uiu1 ,p1(Wa([i1, . . . , in], o)))

(iu1 , iu2 ∈ [i1, . . . , in], iu1 6= iu2)

(3.17)

Proof: Let Wb = Uiu2 ,p2(Wa) and Wc = Uiu1 ,p1(Wb)

Then according to equation 3.16, for any given inputs i1, . . . , in ,we have

Wc.o = Wb(i1, . . . , p2, . . . , in)

=Wa(i1, . . . , p1, . . . , p2, . . . , in)

(3.18)

Similarly, let Wd = Uiu1 ,p1(Wa) and We = Uiu2 ,p2(Wd), we can get

We.o = Wd(i1, . . . , p1, . . . , in)

=Wa(i1, . . . , p1, . . . , p2, . . . , in)

(3.19)

From equation 3.18 and 3.19, for any given inputs i1, . . . , in, we can conclude equa-

tion 3.17.

48

2

Theorem 3.3.5 The Curry construct is commutative with all unary constructs:

Uiu,p(Mim(Wa([i1, . . . , in], o)))

=Mim(Uiu,p(Wa([i1, . . . , in], o)))

(iu, im ∈ [i1, . . . , in], iu 6= im)

(3.20)

Uiu,p(Rib,ir(Wa([i1, . . . , in], o)))

=Rib,ir(Uiu,p(Wa([i1, . . . , in], o)))

(iu, ib, ir ∈ [i1, . . . , in], iu 6= ib, iu 6= ir)

(3.21)

Uiu,p(Til,ir(Wa([i1, . . . , in], o)))

=Til,ir(Uiu,p(Wa([i1, . . . , in], o)))

(iu, il, ir ∈ [i1, . . . , in], iu 6= il, iu 6= ir)

(3.22)

Uiu,p(Cp(ic)(Wa([i1, . . . , in], o)))

=Cp(ic)(Uiu,p(Wa([i1, . . . , in], o)))

(iu, ic ∈ [i1, . . . , in], iu 6= ic)

(3.23)

Uiu,p(Lil,p(o)(Wa([i1, . . . , in], o)))

=Lil,p(o)(Uiu,p(Wa([i1, . . . , in], o)))

(iu, il ∈ [i1, . . . , in], iu 6= il)

(3.24)

Due to the page limit, we will skip those proofs which will be similar to the one for

Theorem 3.3.4. Theorem 3.3.4 and Theorem 3.3.5 are important foundations that allow users

to set parameters to arbitrary Curry based workflows and the parameters can be correctly

passed to the enclosed base workflow. Below we will prove that Corollary 3.3.3 can be

extended to workflows with multiple input ports.

49

Theorem 3.3.6 Given a workflow Wa([il, . . . , il, . . . , ir, . . . , in], o) that is associative with

port il and ir, the unary-construct-based workflow Wb = Til,ir(Wa) satisfies the following

equation for any inputs p1, . . . , [d1, . . . , dm], . . . , pn :

Wb(p1, . . . , [d1, . . . , dm], . . . , pn)

=Wa(p1, . . .

Wa(p1, . . . ,Wa(p1, . . . , d1, . . . , d2, . . . , pn), . . . , d3, . . . , pn)

. . . , dn, . . . , pn)

(3.25)

Proof: We first apply multiple Curry constructs on Wa and each will assign an parameter to

one of the input ports except il and ir. Wa can therefore be translated to a chain of workflows

as following:

Wa1 = Ui1,p1(Wa)

Wa2 = Ui2,p2(Wa1)

. . .

Wan−2 = Uin,pn(Wan−3) = Uin,pn(. . . Ui1,p1(Wa) . . .)

(3.26)

By doing this, we can obtain a binary workflow Wan−2([il, ir], o) that is associative. Then

according to Corollary 3.3.3, the Tree based workflow Wb′ = Til,ir(Wan−2) satisfies the fol-

lowing equation for any input list [d1, . . . , dn]:

Wb′([d1, . . . , dm]) =

Wan−2(. . . Wan−2(Wan−2(d1, d2), d3) . . . , dm)

(3.27)

50

According to equation 3.22, we can derive

Wb′ = Til,ir(Wan−2)

= Uin,pn(Til,ir(Wan−3))

. . .

= Uin,pn(. . . Ui1,p1(Til,ir(Wa)) . . .)

= Uin,pn(. . . Ui1,p1(Wb) . . .)

(3.28)

Therefore by equation 3.28 and 3.16 we can get

Wb(p1, . . . , [d1, . . . , dm], . . . , pn) = Wb′([d1, . . . , dm]) (3.29)

From equation 3.27 and 3.29 we can get

Wb(p1, . . . , [d1, . . . , dm], . . . , pn) =

Wan−2(. . . Wan−2(Wan−2(d1, d2), d3) . . . , dm)

(3.30)

From equation 3.26 and 3.16, we can derive

Wan−2(. . . Wan−2(Wan−2(d1, d2), d3) . . . , dm)

=Wa(p1, . . .

Wa(p1, . . . ,Wa(p1, . . . , d1, . . . , d2, . . . , pn), . . . , d3, . . . , pn)

. . . , dn, . . . , pn)

(3.31)

From equation 3.30 and 3.31 we can conclude equation 3.25.

2

51

ikModulus ikMerge
i1 i1 o1Split i2 i2

W13

i1

o1 o1i1
o2

o1i1

L

W14o1i1

o1

W15

i1

M

Merge
o1

i1

i2

o1

i1

i2 W16

ik

o1i1i1

M

i21

o1

o1
ik

Addi1 o1
i2

i1

i2

RR

ik Add
i1 o1
i2

o1

i2

i1

G2W

G2W

(b) W10

(e) W14

(c) W11

(f) W17

Projection

0 0

o1

p=(PI(2)==0)

M R

ik Add
i1 o1
i2

o1

i2

i1

(d) W12

0

M T

U

ik Add
i1 o1
i2

o1

i2

i1

(a) W9

1

M M

Figure 3.11: (a) unary-construct-based workflow W9 created by the composition of two Map con-
structs on the Add workflow; (b) Unary-construct-based workflow W10 created by the composition of
two Reduce constructs on the Add workflow; (c) unary-construct-based workflow W11 created by the
composition of the Map construct and the Reduce construct on the Add workflow; (d) unary-construct-
based workflow W12 created by applying the composition of the Map construct and the Tree construct
on the Add workflow; (e) unary-construct-based workflow W15 created by applying the Loop con-
struct on a graph-based workflow; and, (f) graph-based workflow W17 created by applying the G2W
construct on a workflow graph.

3.4 Workflow Composition

Comparing with existing workflow composition models, our model has the following novel

characteristics:

1. Workflows are the only operands for workflow composition. All composite workflows

are created as the composition of existing workflows.

2. Every workflow can be directly used for workflow composition through workflow con-

structs and every composition results in a new workflow, either a graph-based workflow

or a unary-construct-based workflow.

3. Workflow constructs are fully composable and the set of workflows is closed under all

the workflow constructs.

52

These characteristics makes our framework unique in the ability to apply the proposed

workflow constructs and their compositions on arbitrary workflows, as illustrated by the fol-

lowing scenarios.

Unary workflow constructs can compose with each other arbitrarily. Given an ex-

isting unary-construct-based workflow Wb = S1(Wa) which is created by applying a unary

construct S1 on a workflow Wa, we can apply another unary construct S2 on Wb resulting

in Wc = S2(Wb) = S2(S1(Wa)). We define a composition of S1 and S2 as a new unary

construct to simplify this two-step composition. The semantics of this new unary construct is

given by the following formula:

(S2 ◦ S1)(Wa) = S2(S1(Wa)) (3.32)

For example, given a predefined workflow Add, applying different compositions of Map

and Reduce constructs will result in different workflows. W9 shown in Figure 3.11(a) is

created by applying the composition of two Map constructs. Given inputs of a base value

1 and a table of numbers (represented as a list of list), W9 will increase all the numbers in

the table by one and output the resulting table. W10 shown in Figure 3.11(b) is created by

applying the composition of two Reduce constructs. Given inputs of a base value 0 and a

table of numbers, W10 will output a sum of the whole table. W11 shown in Figure 3.11(c)

is created by applying the composition of Map and Reduce. Given inputs of a base value 0

and a m × n table of numbers, W11 will output a list of m numbers, each representing the

sum of the corresponding row in the table. The composition of unary constructs are arbitrary.

Any finite number of application of Map and Reduce constructs is allowed, which enables

the processing of data cubes in any dimensions. W12 shown in Figure 3.11(d) is created by

applying the composition of Map and Tree. Given the same inputs, W11 and W12 will have

the same output. However, W12 supports parallel aggregation using the Tree construct.

53

Unary workflow constructs can compose with other constructs arbitrarily and hier-

archically. In particular, our unary workflow constructs can be applied to a graph-based

workflow to form a unary-construct-based workflow; several unary-construct-based work-

flows can also be linked together by data channels to form a workflow graph G and then the

G2W construct can be applied to G to form a graph-based workflow.

As an example, W14 shown in Figure 3.11(e) implements the Euclidean algorithm to

calculate the greatest common divisor for a pair of integers. W14 is created by applying the

Loop construct on a graph-based workflow W13. Given a pair of integers [a, b] as input, W8

will output a pair of integers [b, a%b]. By the application of the Loop construct, W13 will

be executed repeatedly until the predicate p = (PI(2) == 0) evaluates to be true which

means the second number of the pair equals to 0. Finally, W14 will output a pair of integers

[gcd(a, b), 0], where gcd(a, b) is the greatest common divisor of the input pair. A unary-based

workflow W15 can then be created by applying the Map construct on W14. W15 takes a list

of pairs [[a1, b1], ..., [an, ...bn]] and outputs a list of pairs [[gcd(a1, b1), 0], ..., [gcd(an, bn), 0]].

Further, W17 shown in Figure 3.11(f) can process two lists in parallel and calculate the

greatest common divisor for each corresponding pair in two lists. Given two lists [a1, ..., an]

and [b1, ..., bn] as input, W17 will output a list [gcd(a1, b1), ..., gcd(an, bn)] containing the

greatest common divisors for each corresponding pair. W17 is created by applying the G2W

construct on a workflow graph which contains three workflows. The two input lists are

merged into one list of pairs [[a1, b1], ..., [an, ...bn]] by the Merge workflow and sent to W15.

W15 then outputs a list of pairs [[gcd(a1, b1), 0], ..., [gcd(an, bn), 0]] to W16 which is created by

applying the Map construct and Curry construct on a Projection workflow. W16 will project

the first element in each pair resulting in a list [gcd(a1, b1), ..., gcd(an, bn)].

3.5 A Dataflow Based Approach for Exception Handling

Much research has been carried out on issues of exception handling in workflow management

systems [18], [106], [36], [108], [12]. However, most of the existing approaches are rule or

54

event based. In this section, we propose a dataflow based approach for exception handling

which is compatible with our scientific workflow composition model.

3.5.1 Exception Handling

In our approach, an exception is represented as a special data product (called exception data

product) which contains exception information. As shown in Figure 3.12, each workflow

contains a default exception port as the output port specifically for exception data product.

exception port can be linked to exception handling workflows such as Stop, Pause or user

defined handlers.

Wa

i1 o1

in

EHa o1i1

on

Figure 3.12: Workflow exception handling.

As the basic building block, a primitive workflow is responsible to capture all the excep-

tions during the invocation of inside tasks, generate corresponding workflow exception data

products and output through the exception port. Workflow exceptions can also be propagated

hierarchically to higher level composite workflows following the workflow construction. As

shown in Figure 3.13, the exception ports of Wa or Wb are automatically mapped to the ex-

ception port of Wc. Therefore, whenever an exception data product e1 is generated by either

Wa or Wb, it will be passed to Wc, and Wc will generate a new exception data product e2

which contains e1 as well as the information of Wc.

3.5.2 The Exception Construct

The data exception construct enables the user to capture the data exception on one of the in-

put/output ports. As illustrated in Figure 3.14, to apply the Exception construct to a workflow

55

WaWa
o1i1

i1

G2W

o1

EHc o1i1

Wc

WaWb
o1i1

Figure 3.13: Workflow exception propagation.

Wa([i1, . . . , in], o), one of the input/output ports is designated as the exception test port, on

which a logical test will be calculated based on the input/output data product. A user-input

predicate p is set on the exception test port and a user-defined exception data product e needs

to be designated to the exception port. If p evaluates to be true, Wb will behave exactly as

Wa, otherwise Wb will output e from the exception port.

As an example shown in Figure 3.15, W18 detects the typical division by zero error and

outputs an exception data product.

3.6 Case Studies

The proposed techniques have been realized in an XML-based scientific workflow specifica-

tion language, called WSL [53], and implemented in a new version of the VIEW system [85].

The implementation details will be discussed in Chapter 5. However, we will present several

case studies in order to validate our techniques.

ik
Wa

i1 o
in
ik

o

Wb

i1

in

ik
p

E
Ep(i)(Wa)k

Wa

i1 o

in

ik

e

Figure 3.14: The exception construct.

56

Divide o1
ikDivide

i1 o1

i2

o1

W18

2
i1

0

2

i2p

i1

i2

p=(PI(1)<> 0)

p=false

E

0
ee

Figure 3.15: Workflow W18 created by applying the Exception construct on a Divide workflow.

3.6.1 Workflow for Freebase Processing

We implemented a Freebase Processing Workflow as shown in Figure 3.16 to validate the

ability of our model to leverage MapReduce tasks to the workflow level. We choose Amazon

Elastic MapReduce [1] for this case study. Amazon Elastic MapReduce is a Web service that

utilizes a hosted Hadoop framework running on the web-scale infrastructure. Amazon Elastic

MapReduce published three sample job flows [6] which are used to filter a set of Freebase

data and store it into Amazon SimpleDB data store. In our experiment, we created three

primitive workflows: WFreequentID, WDataStorage, and WNameStorage, and each is based

on one of the job flows. The WFreequentID workflow can iterate over each file of input to

look for the most popular Freebase IDs. The WDataStorage workflow stores the results of

the WFreequentID workflow into Amazon SimpleDB. The WNameStorage workflow reads

Freebase data and stores names and their IDs into Amazon SimpleDB. We then created a

graph-based Freebase Processing Workflow which is composed by those three workflows.

Our workflow technique automatically connects the execution of the three workflows via

Figure 3.16: Freebase Processing Workflow.

57

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

Matrix Dimension

E
x
e
c
u
t
i
o
n

T
i
m
e
(
s
)

Sequential Workflow

Optimized Workflow with Map and Reduce

100 200 900 1600 2500 3600 4900 6400 8100 10000
 Number of Task Runs

Figure 3.17: Performance comparison of two workflows for matrix summation.

explicit dataflows, and naturally enables concurrent execution of the WFreequentID workflow

and WNameStorage workflow as they do not have data dependencies.

3.6.2 Workflows for Matrix Summation

We designed two workflows for matrix summation in order to validate the performance of our

Map construct. The first workflow sequentially adds up all the elements in the matrix. The

second workflow takes advantage of the Map construct and calculates the summations for

each row in parallel, and then sums up the results using a Reduce-based addition workflow.

We add a delay of 10 ms for each addition task for better observation and run the two work-

flows on 10 matrixes with different sizes. Figure 3.17 compares the performance of the two

workflows. The efficiency of the first workflow is O(n2) while the efficiency of the second

workflow is O(n) (n represents the dimension of the matrix).

3.7 Chapter Summary

In this chapter, a dataflow-based scientific workflow composition model was proposed. Com-

paring with existing workflow composition models, our approach clearly separates tasks from

the workflow composition layer and thus elegantly solves the two-world problem in existing

58

composition frameworks. Based on such a novel model, our proposed operators are fully

composible one with another and can be applied on arbitrary workflows.

59

CHAPTER 4

COLLECTIONAL DATA MODEL

Modeling, organizing, and processing scientific data have become key challenges for sci-

entific workflow management systems (SWFMSs). While business data are usually rela-

tional, scientific data are typically hierarchical and collection-oriented. a motivating example

is introduced in Section 4.1 to illustrate this problem. In this chapter, we take a first step

toward formalizing a collectional data model for scientific data processing, which is defined

in Section 4.2. While the relational data model is based on the notion of relation, we intro-

duce the term collectional in our proposed collectional data model to emphasize that our data

model is built on the notion of collection. Section 4.3 briefly discusses the application of the

collectional model in scientific workflow compositions. Finally, Section 4.4 summarize this

chapter.

4.1 An Motivating Example of Biological Simulation

The marine worm Nereis succinea spawns during a coordinated “nuptial dance” timed by the

phases of the moon, initiated by the time of the day, and choreographed by the exchange of

chemical signals [101]. Females excrete a pheromone that can be attractants for the opposite

sex in many environments. We developed a biological simulation project, called TangoInSil-

ico [52], for testing the hypothesis that male responses to low concentrations of CSSG can

facilitate finding females.

The simulation model consists of more than twenty parameters, e.g., concentration of

pheromone, initial degree of the male worm. Scientists need to run the same Simulation

workflow thousands of times with different combinations of parameter sets in order to adjust

the parameters and test the hypothesis. One key challenge of this project is to systematically

60

manage the large set of parameters and results in order to facilitate scientists to do statistic

analysis and scientific queries. We adopted a list oriented approach in the previous scientific

workflow composition model [53]. Although the list structure supports the parallel processing

with our workflow constructs, it cannot effectively organize the hierarchical and table-like

parameter datasets, and limited querying and data manipulation power. In this chapter, we

propose a collectional data model and apply it to this project to organize the input parameter

data sets and output results, which will be shown in examples later in this chapter.

4.2 The Collectional Data Model

Following the terminology in the relational model [39], a datum is associated with a do-

main. For the purpose of this dissertation, we restrict the set of atomic domains: dom(D) =

String | Integer | Double | Boolean | File. Here we use the notation dom(D) to denote the

domain name of datum D. More atomic domains can be easily introduced for different ap-

plications.

We briefly review the relational model. A relation R is a pair < R, r > where R is a

schema of the relation and r is an instance of that schema. a relation instance is a table

with rows (called tuples) and named columns (called attributes). A relation schema can be

defined as an unordered tuple < c1 : d1, c2 : d2, ..., cn : dn > where c1, c2, ..., cn are column

names and d1, d2, ..., dn are domain names. The values that appear in the corresponding

columns must belong to the specified domains. As a special case, a constant data value can

be defined as a single-column-single-row relation.

Based on the relational model, we propose a collectional model with relations as building

blocks. First we introduce the central construct in our model, the collection.

Definition 4.2.1 (Collection) A collection C is a tuple < C, c > where C is a collection

schema and c is a collection instance of that schema. ♦

Definition 4.2.2 (Collection Schema) A collection schema is a pair < K, V > where

61

• K, the key, is a pair k : d where k is the key name and d is the domain name.

• V , the value, is either a relation schema or a collection schema.

♦

A collection is nested if V is a collection schema. Intuitively, a nested collection can be

considered as a tree-like structure in which all the leaves are relations and each level of the

collection is identified by a unique key.

Definition 4.2.3 (Height) The height of a collection schema C =

< K, V >, denoted by H(C), is defined as follows:

• If V is a relation schema, then H(C) = 1.

• Otherwise, H(C) = H(V) + 1.

♦

More generally, we use an expanded notation < k1 : d1, k2 : d2, ..., kn : dn, R > to

represent a collection schema where R is a relation schema. Without loss of generality, we

restrict that different keys within one collection must have distinct key names although they

can share the same domain. We define Ki(C) (i ∈ {1, ..., n}) as a function that returns ki.

Definition 4.2.4 (Collection Instance) A collection instance is a set of key-value pairs (pi, qi)(i ∈
{1, ...,m}) where m is the number of pairs in the set, called the cardinality of the collec-

tion instance, each qi is either a relation instance or a collection instance and dom(pi) =

String | Integer | Double | Boolean. ♦

Definition 4.2.5 A collection instance c conforms to the collection schema C < k : d, V >,

denoted by c |= C iff:

∀(pi, qi)(i ∈ {1, ..., m}) ∈ c, dom(pi) = d, pi |= V .

62

1

2

...

Experiment

1

2

...

Experiment

m1

m2

...

Model

Concentration Degree ...

7.0 15 ...

Concentration Degree ...

7.0 30 ...

Concentration Degree ...

7.1 15 ...

Concentration Degree ...

7.1 30 ...

Figure 4.1: The Parameters collection.

A collection C is valid iff the collection instance conforms to the collection schema.

As an example, Figure 4.1 illustrates an instance of the collection Parameters with the

collection schema < Model : String, Experiment : Integer, < Concentration : Double,

Degree : Integer >>. The schema states that the height of the Parameters collection is 2:

the first level contains a key named Model and belongs to domain String; the second level

contains a key named Experiment and belongs to domain Integer; and all the inner relation

instances satisfy the relation schema < Concentration : Double, Degree : Integer >.

The new collectional model naturally extends the relational model. We then extend the

relational operators to collectional operators of which collections are the only operands. Note

that a relation can be defined as a collection whose height and cardinality are equal to 1, and

all collectional operators will then be reduced to their relational counterparts. Below, we

first extend union and set difference, and then extend selection, projection, Cartesian product

and renaming.

Since collections are sets, the set operators are applicable to collections. However, sim-

ilarly to relational algebra, the union and the set difference operators cannot be applied on

arbitrary collections. We therefore limit the scope of the union and the set difference opera-

tors and apply them only on union-compatible collections, which are defined as follows:

63

m1

m2

Model
Result

26

Result

32

m2

m3

Model
Result

32

Result

31

Figure 4.2: Two collections that union-compatible : (a) collection M1 ; and (b) collection M2

.

Definition 4.2.6 Two collection schemas C1 =< k1 : d1, S1 > and C2 =< k2 : d2, S2 > are

equal, denoted C1 = C2 iff k1 = k2, d1 = d2, and S1 = S2.

Definition 4.2.7 Two collections C1 =< C1, c1 > and C2 =< C2, c2 > are union-compatible

iff C1 = C2.

As an example, Figure 4.2 illustrates two collections M1 and M2 that are union-compatible.

Union (∪c) Union is a binary operator that calculates the union of two collections. More

specifically, given two collections C1 =< C1, c1 > and C2 =< C2, c2 > as inputs, a union

operation is specified as C1 ∪c C2, resulting in a collection C′ =< C ′, c′ > where the schema

(a) (b)

m1

m2

Model

m1

m2

m3

Result
26Model

Result

32

Result

31

Result

26

Result

Figure 4.3: The results of (a) M1 ∪c M2; and (b) M1 −c M2.

64

C ′ = C1 = C2, and:

c′ = {(p, q1 ∪c q2) | (p, q1) ∈ c1 ∧ (p, q2) ∈ c2}

∪ {(p, q1) | (p, q1) ∈ c1 ∧ ¬∃q2 (p, q2) ∈ c2}

∪ {(p, q2) | (p, q2) ∈ c2 ∧ ¬∃q1 (p, q1) ∈ c1} if(H(C1) > 1)

{(p, q1 ∪ q2) | (p, q1) ∈ c1 ∧ (p, q2) ∈ c2}

∪ {(p, q1) | (p, q1) ∈ c1 ∧ ¬∃q2 (p, q2) ∈ c2}

∪ {(p, q2) | (p, q2) ∈ c2 ∧ ¬∃q1 (p, q1) ∈ c1} if(H(C1) = 1)

(4.1)

The union operator satisfies both commutativity and associativity:

C1 ∪c C2 = C2 ∪c C1 (4.2)

(C1 ∪c C2) ∪c C3 = C1 ∪c (C2 ∪c C3) (4.3)

Figure 4.3(a) illustrates the union of M1 and M2 which contains all the results of both

collections with duplications eliminated.

Set difference (−c) Set difference is a binary operator that calculates the difference of two

collections. More specifically, given two collections C1 =< C1, c1 > and C2 =< C2, c2 >

as inputs, a set difference operation is specified as C1 −c C2 resulting in a collection C′ =<

C ′, c′ > where the schema C ′ = C1 = C2, and:

c′ = {(p, q1) | (p, q1) ∈ c1 ∧ ¬∃q2 (p, q2) ∈ c2}

∪ {(p, q1 −c q2) | (p, q1) ∈ c1 ∧ (p, q2) ∈ c2}if(H(C1) > 1)

{(p, q1) | (p, q1) ∈ c1 ∧ ¬∃q2 (p, q2) ∈ c2}

∪ {(p, q1 − q2) | (p, q1) ∈ c1 ∧ (p, q2) ∈ c2} if(H(C1) = 1)

(4.4)

65

Figure 4.3(b) illustrates the difference of M1 and M2 which returns the items that belong

to M1 but not to M2.

Selection (σc) Selection is a unary operator that selects the elements which satisfy the

selection condition. More specifically, given a collection C =< C, c > as input where the

schema C =< k1 : d1, k2 : d2, ..., kn : dn, R >, a selection operation is specified as σc
ϕ(C)

where ϕ is the selection condition represented as a propositional formula that consists of

atoms and logical operators ∧ (and), ∨ (or), and ¬ (negation).

An atom can be any one of the following:

• kθv where k ∈ k1, ...kn is a key name and v is a constant value belonging to the same

domain of key k.

• aθb where a and b are attribute names of R.

• aθv where a is an attribute name of R and v is a constant value belonging to the same

domain of attribute a.

where θ is a binary operator in the set <,≤, =, >,≥.

The schema of the resultant collection is equivalent to C, and we define the selection

operator at the instance level as follows:

σc
kθv(c) =

{(p, q) | (p, q) ∈ c ∧ pθv} if(K1(C) = k)

{(p, σc
kθv(q)) | (p, q) ∈ c} if(K1(C) 6= k)

(4.5)

σc
aθb(c) =

{(p, σc
aθb(q)) | (p, q) ∈ c} if(H(C) > 1)

{(p, σaθb(q)) | ((p, q) ∈ c)} if(H(C) = 1)

(4.6)

66

(a) (b)

m2

1

Model

Experiment
1

2

...

Experiment

Concentration Degree ...

7.1 15 ...

Concentration Degree ...

7.0 15 ...

7.1 15 ...

Concentration Degree ...

7.0 30 ...

7.1 30 ...

Figure 4.4: The results of the selection and projection operations (a)
σc

Model=′m2′ANDExperiment=′1′ (Parameters); and (b) πc
Experiment (Parameters).

σc
aθv(c) =

{(p, σc
aθv(q)) | (p, q) ∈ c} if(H(C) > 1)

{(p, σaθv(q)) | ((p, q) ∈ c)} if(H(C) = 1)

(4.7)

The selection operator satisfies the following properties:

σc
A(C) = σc

Aσc
A(C) (4.8)

σc
Aσc

B(C) = σc
Bσc

A(C) (4.9)

σc
A∧B(C) = σc

A(σc
B(C)) = σc

B(σc
A(C)) (4.10)

σc
A∨B(C) = σc

A(C) ∪ σc
B(C) (4.11)

Figure 4.4(a) illustrates a selection of the Parameters collection which selects the para-

meter set of the experiment ‘1’ under model ‘M1’.

Projection (πc) Projection is a unary operator that extracts sub-collections from the input

collection. More specifically, given a collection C =< C, c > as input where the schema C

is < k1 : d1, k2 : d2, ..., kn : dn, R >, a projection operation is specified as πc
ψ(C) in which ψ

is a sequence in the form of k, a1, ...an where:

67

• k ∈ k1, ...kn is a key name.

• a1, ...ar are a sequence (zero or more) of attribute names in the relation schema R.

The schema of the resultant collection is < ki : di, ki+1 : di+1, ..., kn : dn, πa1,...,ar(R) >

where ki = k and πa1,...,ar(R
′) removes all the attributes except a1, ...ar as defined in tradi-

tional relational algebra. By the definition, we can conclude:

Theorem 4.2.8 Given two collection schemas C1 and C2, if C1 = C2, then πc
ψ(C1) = πc

ψ(C2)

We then define the projection operator at the instance level as follows:

πc
k(c) = c if(K1(C) = k)

∪c
(p,q)∈c πc

k(q) if(K1(C) 6= k)

(4.12)

πc
a1,...,ar

(c) =

{(p, πc
a1,...,ar

(q)) | (p, q) ∈ c} if(H(C) > 1)

{(p, πa1,...,ar(q)) | (p, q) ∈ c} if(H(C) = 1)

(4.13)

πc
k,a1,...,ar

(c) = πc
k(π

c
a1,...,ar

(c)) = πc
a1,...,ar

(πc
k(c)) (4.14)

The projection operator satisfies the following properties:

πc
k2

(πc
k1

(C)) = πc
k2

(C)

where k1 = Ki(C), k2 = Kj(C), i <= j

(4.15)

πc
a1,...,an

(πc
b1,...,bm

(C)) = πc
a1,...,an

(C)

where {a1, ..., an} ⊆ {b1, ..., bm}
(4.16)

Figure 4.4(b) illustrates a projection of the Parameters collection in which the ‘Model’

key is deleted and the ‘Experiment’ key becomes the root level.

68

Cartesian product (×c) In order to define the Cartesian product between two collections,

we first define the Cartesian product between a relation and a collection. Given a relation

R =< R, r > and a collection C =< C, c > where C =< k1 : d1, k2 : d2, ..., kn : dn, Rc >,

the operation R ×rc C returns a collection Cr =< Cr, cr > where Cr =< k1 : d1, k2 :

d2, ..., kn : dn, R×Rc > and

cr ={(p, r ×rc q) | (p, q) ∈ cr} if(H(Cr) > 1)

{(p, r × q) | (p, q) ∈ cr} if(H(Cr) = 1)

(4.17)

Now we are able to define the Cartesian product between two collections. Given two

collections C1 =< C1, c1 > and C2 =< C2, c2 > as inputs, a Cartesian product operation

can be specified as C1 ×c C2 where C1 =< k1 : d1, k2 : d2, ..., kn : dn, R1 > and C1 =<

l1 : o1, l2 : o2, ..., lm : om, R2 >, resulting in a collection C′ =< C ′, c′ >. The resultant

schema C ′ =< k1 : d1, k2 : d2, ..., kn : dn, l1 : o1, l2 : o2, ..., lm : om, R1 × R2 > where

R1 ×R2 contains all the attributes of both R1 and R1 as defined in the relational algebra. By

the definition, we can conclude the following equation:

H(C ′) = H(C1) +H(C2) (4.18)

m1

m2

M1.model
m1

m2

M2.model

m1

m2

M2.model

M1.Result M2.Result

26 32

M1.Result M2.Result

26 31

M1.Result M2.Result

32 32

M1.Result M2.Result

32 31

Figure 4.5: The result of the composition of the Cartesian product and the renaming opera-
tions ρc

M1.Model/Model (ρc
M1.Result/Result (M1)) ×c ρc

M2.Model/Model (ρc
M2.Result/Result (M2)).

69

The resultant collection instance c′ is defined by the following equation:

c′ ={(p, q ×c c2) | (p, q) ∈ c1} if(H(C1) > 1)

{(p, q ×rc c2) | (p, q) ∈ c1} if(H(C1) = 1)

(4.19)

Our collectional model is an ordered model and our Cartesian product operator does not

satisfy commutativity. However, our Cartesian product satisfies associativity:

(C1 ×c C2)×c C3 = C1 ×c (C2 ×c C3) (4.20)

Similar to the relational model, naming conflicts can arise in some cases. For example,

given two collections M1 and M2 in Figure 4.2 which contain the same key names, the resul-

tant collection of operation M1 ×c M2 will have a naming problem as it contains duplicate

key names. To overcome this problem, we introduce the following renaming operator.

Renaming (ρc) Renaming is a unary operator that changes a key name or a column name.

More specifically, given a collection C =< C, c > as input where the schema C =< k1 :

d1, k2 : d2, ..., kn : dn, R >, a renaming operation is specified as ρc
a/b(C) where a and b are

attribute names or key names. The result of the renaming operation is a collection C′ =<

C ′, c > where C ′ is defined as follows:

• If b is a key name and b = ki(1 <= i <= n) then C ′ =< k1 : d1, k2 : d2, ..., a :

di, ..., kn : dn, R >.

• If b is an attribute names then C ′ =< k1 : d1, k2 : d2, ..., kn : dn, ρa/b(R) > where

ρa/b(R) replaces the attribute name b with a as defined in the relational algebra.

70

The renaming operator does not change the collection instance and c′ is equal to c. The

renaming operator satisfies the following properties:

ρc
a/b(ρ

c
b/c(C)) = ρc

a/c(C) (4.21)

ρc
a/b(ρ

c
c/d(C)) = ρc

c/d(ρ
c
a/b(C)) (4.22)

Figure 4.5 illustrates an example of the composition of the renaming and the Cartesian

product operators to calculate the Cartesian product of collections M1 and M2. By applying

the renaming operator the naming conflicts are resolved.

From the above definitions, we can conclude:

Theorem 4.2.9 The set of collections is closed under union, set difference, selection, projec-

tion, Cartesian product, and renaming.

The proposed collectional operators can be composed arbitrarily to form more complex

operations and the result will always be a collection. As an example, given a collection

M1 in Figure 4.2, a scientific query “select all the models whose results are better than the

result of model m1” can be expressed as πc
Model,Result(σ

c
Result>=M1.Result(ρ

c
M1.Result/Result(

ρc
M1.Model/Model(σ

c
Model=′m1′(M1)))×c M1)). A workflow representation of this query will be

shown in Section 3.

We also introduce two operations to modify a collection:

Collection Modification Operators:

• Insert(kv ,v)(C): adds a key-value pair to the collection, if there does not exist a pair

(kv, v
′) in the relation with the same key value. Otherwise an Union operation is in-

voked to union v and v′.

• Delete(kv)(C): removes a pair with a specified key from the collection, if it exists.

71

Our proposed collectional model is closely related to but differs from the nested relational

data model for databases [104]. First, a collection is a set of key-value pairs in which key

must be unique and value can be either a relation or another collection structure. The ordered

nature and simplicity of collection schema leads to a set of simpler but expressive collectional

operators that are amenable to efficient implementation. Second, our collectional model is

an ordered model, therefore, our definitions of selection, projection and Cartesian product

are dramatically different from their nested relational counterparts. Finally, while the nested

relational model is introduced for the storage and querying of structured data, our collectional

data model is designed beyond this usage; collections are first-class data objects that are

produced and passed from one workflow task to another for further complex computation

and analysis, which are not necessarily database operations.

4.3 Collectional Scientific Workflow Composition

We have previously proposed a dataflow-based scientific workflow composition model with

composable workflow constructs which are based on a list-oriented data model [53]. In this

section, we discuss the application of the collectional model in scientific workflow composi-

tion.

In VIEW, a scientific workflow consists of a workflow interface and a workflow body. The

workflow interface contains the logical workflow definition which is a tuple (wid, IP ,OP),

where wid is the unique identifier of the workflow, IP = {i1, i2, · · · , im} is the set of input

ports, and OP = {o1, o2, · · · , on} is the set of output ports. All the inputs and outputs of

workflows are required to be collections. The workflow body contains the physical imple-

mentation of the workflow.

In our workflow composition model, workflows are the only operands for workflow com-

position. Tasks such as Web services, Cloud services, local or remote executable programs,

are generalized by a task model [86] and constructed as primitive workflows. Since in prac-

tice, not all scientific data, especially raw data, will conform to the collectional data model,

72

result

2

result

4

ikSimulation
i1 o1i1 o1

M M

m1

m2

...

1

2

...

Model

Experiment

1

2

...

Experiment

Concentration Degree ...

7.0 15 ...

20

result

3

result

5

Concentration Degree ...

7.0 30 ...

Concentration Degree ...

7.1 15 ...

Concentration Degree ...

7.1 30 ...

m1

m2

...

1

2

...

Model

Experiment

1

2

...

Experiment

i2 i2

Figure 4.6: The ParallelSimulation workflow.

we propose a set of data transformers to convert source data, such as arrays, file collections,

and datasets in HDF [5] and NetCDF [8] formats, to collectional data, which can be queried

and manipulated by our collectional scientific workflows. For example, an array can be easily

transformed to a collection whose key belongs to the domain of natural numbers. Therefore,

although the inputs and outputs of tasks can be heterogeneous, they can be casted to collec-

tions which are the only data products for workflow processing.

We have proposed a set of workflow constructs, including Map, Reduce, Conditional, and

Loop, which are fully composable one with another. Based on the collectional model, we ex-

tended four unary workflow constructs to support the collectional model. Below, we illustrate

collectional workflow composition by three example workflows taken from the TangoInSilico

project.

Parallel processing. Given a Simulation workflow, which takes a relation of parameters

and an integer indicating the number of experiments as inputs (in this case, 20) and outputs

the number of successful matings, Figure 4.6 illustrates the ParallelSimulation workflow cre-

ated by applying the composition of two Map constructs on the Simulation workflow. The

ParallelSimulation workflow takes a collection of parameters as input, and executes the Sim-

ulation workflow for each set of parameters in parallel. The collectional model supports the

same nested parallelism as the list model. However, in contrast to the list model, which uses

73

Result

2

Result

4m1

m2

...

1

2

...

Model

Experiment

1

2

...

Experiment Result

3

Result

5

0

Result

26

Result

32

m1

m2

...

Model

ikAddition
i1 o1i1 o1

M R

i2i2

Figure 4.7: The ParallelAggregation workflow.

only integer indices, the collectional model uses explicit keys for indexing. This provides

a more meaningful hierarchical organization classified by Model and Experiment. Further-

more, the collectional model uses relations to represent table-like parameters. As a matter

of fact, the list model is a special case of the collectional model where the key values are

integers.

Parallel aggregation. Figure 4.7 illustrates the ParallelAggregation workflow created by

applying the composition of the Map and Reduce constructs on an Addition workflow. The

resultant workflow takes the output of the ParallelSimulation workflow, and aggregates the

results for each model. Because of the set-oriented nature of collectional model, the aggrega-

tion order is often not important. We propose a parallel version of the Reduce construct which

is implemented by tree-like parallel aggregations (a binary tree in this example is shown in

Figure 4.8.)

result

2

result

4

1

2

...

11

12

Experiment

result

1

result

0

result

6

result

1

result

26

.....

Figure 4.8: An example of the parallel Reduce construct.

74

o1 ikProjection
o1

i1

i2

ikSelection
o1i1

i2

"Model='m1'"
ikRenaming

i1

"M1.Model"
"Model"

ik
Cartesian
Product

i1
i2 ikSelection

i1

"Result>=M1.Result"

i2

o1

Result

26

Result

32

m1

m2

m3

m4

...

Model

"Model,Result"

o1
ikRenaming"M1.Result"

"Result"

i1

i2
i3

o1

i1

i3

i2
o1 o1Result

25

Result

31

Result

26

Result

32

m1

m2

m4

...

Model

Result

31

G2W

Figure 4.9: The Query workflow.

Collectional Query. Figure 4.9 illustrates the Query workflow that executes a scientific

query “select all the models whose results are better than the result of model m1” as intro-

duced in Section 2. The Query workflow is created by applying a G2W construct (a construct

to map a workflow graph to a workflow) on a workflow graph. The workflow graph consists

of several primitive workflows that implement collectional operators.

4.4 Chapter Summary

In this chapter, we formalized a collectional data model as the basis for a scientific work-

flow composition framework. Our method seamlessly leverages the advantages of the rela-

tional model and database techniques into scientific workflows. Moreover, our collectional

model extends the relational model to manage hierarchically structured collections of scien-

tific datasets.

75

CHAPTER 5

VIEW: A PROTOTYPICAL SCIENTIFIC WORKFLOW
MANAGEMENT SYSTEM

Having defined a scientific workflow composition model and a collectional data model,

this chapter presents the design and implementation of the proposed techniques in a new

version of the VIEW system [85]. The development of the VIEW system complies with the

principle of minimum complexity for users, but massive techniques in the backstage. The

increasing use of scientific workflow systems correlates with the simplicity of the workflow

paradigm that provides a clear and simple abstraction for manipulating and coordinating re-

sources. Scientific workflow techniques are proposed to facilitate scientists and allow them to

concentrate on their research at the problem domain level without requiring deep knowledge

of programming languages, operating systems, or hardware infrastructure. The remainder of

this chapter is structured as follows. Section 5.1 illustrates the service oriented architecture

of the VIEW system. Section 5.2 illustrates the implementation of the workflow engine. Sec-

tion 5.3 covers the implementation of the collectional data model in the data product manager

and Section 5.4 elaborates data typing in VIEW. Section 5.5 describes predefined data oper-

ators, in the form of primitive workflows, and presents an example of their composition to

query relations and collections. Section 5.6 summarizes this chapter.

5.1 VIEW Architecture

The VIEW system implements the service-oriented reference architecture proposed in [85].

Figure 5.1 presents the overall architecture of the VIEW system consisting of six autonomous,

reusable, and independent service components. Other than the workbench, each subsystem

is exposed with Web services and defines its functional interface in WSDL: IWE , IWM , ITM ,

76

Figure 5.1: Overall architecture of the VIEW system [85].

IPM , and IDPM , for the interface of the workflow engine, the workflow monitor, the task

manager, the provenance manager, and the data product Manager, respectively, which com-

prises the VIEW Kernel. The workbench subsystem is responsible for the design of scientific

workflows, the presentation of data product and data provenance information, as well as the

system status. Workbench consists of a workflow design panel and a system management

panel. The workflow design panel allows the users to drag and drop existing workflows and

compose them with workflow constructs to formalize new composite workflows. The work-

bench will automatically translate the graphical composition into a workflow definition file,

and then send it to the workflow engine to register the new workflow. The system man-

agement panel contains work spaces of workflow management, data product management,

provenance management and workflow runtime management. Each work space correlates to

a subsystem and VIEW allows users to dynamically select and configure the services of each

subsystems. The workflow management work space allows users to create workflows and to

browse, search, manage, execute, and reuse existing workflows. The data product manage-

ment work space allows users to create data products, and to browse, search, manage, and use

existing data products. The provenance management work space allows users to query and

77

Execute
Workflow

Workbench

DataProductManager

Workflow Engine

Task Manager

Retrieve
Workflow
Definition

Workflow
Databases

Intialize
Workflow
Instance

Execute
Workflow
Instance

Workflow
Result

Visualize
DataProduct

Retrive
DataProduct

DataProduct
Databases

Workflow
Design

Store
Workflow
Definition

Register
DataProduct

Workflow Mornitor
Update

Workflow Instance
Status

Provenance
Collector R

Workflow
Status

Databases

Provenance
Databases

Store
Provenance

Query
Provenance

VIsualize/Query
Provenance

Execute
Task

Instance

Store
Task

Definition

Task
Databases

Retrieve
Task

Definition

Provenance Manager

Intialize
Task

Instance

Provenance
Collector P

Figure 5.2: A typical scientific workflow execution diagram.

visualize the provenance information of previous workflow executions. Finally, the workflow

runtime management work space reports the statuses of current running workflows.

Figure 5.2 illustrates a diagram of typical scientific workflow execution. Firstly, scientists

design a graphical workflow composition in the workbench which will be recorded automat-

ically into a workflow definition file following the SWL language. The workflow definition

will then be sent to the workflow engine and stored in databases. After the workflow is regis-

tered, scientists are able to execute it providing a set of input data set. In VIEW, all scientific

data are managed by the data product manager and the workflow engine transfers only vir-

tual data products which are references. The workflow engine supports multi-users. For each

workflow execution request, workflow engine will initialize an instance of the workflow, bind

the input data to workflow input ports, and create a thread to execute this workflow instance.

The runtime information is monitored by the workflow monitor and a provenance file will be

generated based on the OPM model [95] [82] [83] and sent to the provenance manager after

each workflow execution. Workflows are executed according to their implementations: prim-

itive workflows will invoke the encapsulated task components by sending requests to the task

78

<workflowroot="true" name ="SumList">
 <workflowInterface>
 <workflowDescription>list Sum</workflowDescription>

 <inputPorts nunber="2">
 <inputPort id ="i1">

 <portName>baseValue</portName>
 <portType>Integer</portType>
</inputPort>
<inputPort id ="i2">
 <portName>InputList</portName>
 <portType>List</portType>
</inputPort>

 </inputPorts>
 <outputPorts nunber="1">

<outputPort id ="o1">
 <portName>Results</portName>
 <portType>Integer</portType>
</outputPort>

 </outputPorts>
 </workflowInterface>
 <workflowBody type="unary-construct based">
 ...
 </workflowBody>
</workflow>

 <workflowBody type="primitive">
 <taskComponent taskType="WindowsApplication">

 </taskComponent>
 <T2W>

 </T2W>
 </workflowBody>

 <workflowBody type="graph-based">
 <workflowGraph>
 <workflowInstances>
 <workflowInstance id="S-0" workflow="Split"/ >
 <workflowInstance id="A-0" workflow="Add"/ >
 </workflowInstances>
 <dataChannels>
 <dataChannel from ="S-0.o1" to ="A-0.i1"/>
 <dataChannel from ="S-0.o2" to ="A-0.i2"/>
 </dataChannels>
 </workflowGraph>
 <G2W>
 <inputMapping from="this.i1" to="S-0.i1"/>

 <outputMapping from="A-0.o1" to="this.o1"/>
 </G2W>
 </workflowBody>

 <workflowBody type="unary-construct based">
 <baseWorkflow>Addition</baseWorkflow>
 <unary-construct>
 <reduce basePort="i1" reducePort="i2"/>
 <mapmapPort="i2" />
 </unary-construct>
 </workflowBody>

 <workflowBody type="unary-construct-based">
 <baseWorkflow>Selection</baseWorkflow>
 <unary-construct>
 <mapmapPort="i1"/>
 </unary-construct>
 </workflowBody>

(a) Workflow Interface (b) Workflow Body

 (b-1)

 (b-2)

(b-3)

(b-4)

 <workflowBody type="unary-construct based">
 <baseWorkflow>Divide</baseWorkflow>
 <unary-construct>
 <exception exceptionPort="i2" predicate="PI(1)!=0"

exception="D_e0"/>
 </unary-construct>
 </workflowBody> (b-5)

Figure 5.3: (a) A SWL specification example of the workflowInterface definition of a
unary-construct-based workflow. (b) a SWL specification example of the workflowBody
for graph-based workflow (b-4), primitive workflow (b-1), and unary-construct-based work-
flow (b-2); (b-3) a SWL specification example of the workflowBody definition for unary-
construct-based workflow with a composition of the Map construct and the Reduce construct;
(b-5) a SWL specification example of the exception handling.

manager; composite workflows will decompose the workflow construction and recursively

invoke sub-workflows. After the workflow execution, workflow outputs will be returned to

the workbench which contains references of the final data products. Users can then retrieve

data products from the data product manager and visualize data products with built-in or

specified visualization tools. Moreover, users can also visualize and query provenance using

the OPQL language [84]. The architectural design of the workflow engine, the task manager,

and the data product manager will be elaborated in the following sections.

5.2 Workflow Engine

The workflow engine subsystem is at the heart of the whole system and is the subsystem

that provides management and execution environments for workflow runs. It realizes the

proposed workflow model of Chapter 3 into an XML-based scientific workflow specification

language (SWL). The XML schema of SWL is shown in Appendix A. A SWL specification

79

consists of a set of workflows including one root workflow as an entry point for the workflow

engine. As shown in Figure 5.3.(a), each workflow definition is clearly separated into the

logical layer and the physical layer: workflowInterface and workflowBody. The

WorkflowInterface element contains subelements inputPorts and outputPorts

to specify the input and output ports of the workflow. The workflowBody element defines

the functional body of the workflow which has three types: primitive, graph-based and unary-

construct-based.

Figure 5.3.(b-1) illustrates an example of primitive workflowBody which contains

subelements taskComponent and T2W, which defines the invocation methods of a task

component and input/output mappings. The details of the task definition will be described

later in this section.

Figure 5.3.(b-4) illustrates an example of graph-based workflowBody which contains

subelements workflowGraph and G2W. The workflowGraph element specifies a work-

flow graph consisting of a set of workflow instances (by the workflowInstances el-

ement) and a set of data channels (by the dataChannels element). The G2W element

defines the input/output mapping between the workflow graph and the workflow (by the

inputMapping and outputMapping elements).

Figure 5.3.(b-2) illustrates an example of unary-construct-based workflowBody which

contains subelements baseWorkflow and unary-construct. The baseWorkflow

element refers to the workflow to be constructed and the unary-construct element

contains either a unary construct (as shown in Figure 5.3.(b-1), the map element specifies

the Map construct) or a composition of unary constructs (as shown in Figure 5.3.(b-2), the

reduce and map elements specify a composition of Map and Reduce). SWL hides a default

mapping between the unary-construct-based workflow and its base workflow. The unary-

construct-based workflow will contain the same set of input/output ports as the base work-

flow; the designated ports are specified in the unary construct element (e.g., the mapport

80

Figure 5.4: Relational database schema for our scientific workflow composition model.

attribute in the map element) and the type of the designated ports might be changed implic-

itly according to the semantics of the construct. Figure 5.3.(b-5) illustrates an example of the

exception construct which specifies the port to detect, the predicate and the exception code.

SWL is also realized in a relational database schema as shown in Figure 5.4. The WORK-

FLOW table holds the general information including the workflow identifier, name and de-

scription. The INPUTPORTS and OUTPUTPORTS tables hold the information of the work-

flow interface and include a foreign key workflowID to relate ports to corresponding work-

flows. The detailed task component definition is stored in three tables including TASKOFWEB-

SERVICES, TASKOFAPPLICATION, and TASKOFGRIDJOB, which store the definition of

three different type of task components: Web Services, local or remote executables appli-

cations, and Grid jobs, respectively. The TASKINPUTMAPPING and TASKOUTPUTMAP-

PING tables stores the input/output mappings between the workflow and the task. The MAP,

REDUCE, TREE, CONDITIONAL, LOOP, and CURRY tables store the definitions of the

corresponding unary constructs. Because a unary construct defines a one-to-one mapping,

81

the input/output mappings are by default and abbreviated. The NODEWORKFLOW and

DATALINK tables define the workflows and data link constructs that constitute the work-

flow graphs. The GRAPHINPUTMAPPING and GRAPHOUTPUTMAPPING tables define

input/output mapping between the workflow graph and graph based workflow.

The workflow engine interface is defined in WSDL including five Web service operations:

• RegisterWorkflow registers a workflow with a workflow definition in SWL.

• GetWorkflow returns the definition of a workflow.

• DeleteWorkflow deletes a workflow.

• ExecuteWorkflow executes a workflow with given inputs.

• GetWorkflowList returns a list of existing workflow information for browsing.

The WDSL specification of the Workflow Engine is shown in Appendix C.

Upon a request of workflow execution, the workflow engine will first retrieve the work-

flow definition from the database and create a runtime workflow instance. A workflow in-

stance is a new copy of the workflow body biding with given workflow inputs, rather then

updating the original body. This is necessary because a workflow may be executed multiple

times with different inputs, and its definition serves as a “template”, from which an instance

is constructed each time it is executed. The template itself should not be changed during any

execution process. A workflow instance is executable if every input port is bound with a data

product.

A executable workflow instance can be executed according to its workflow body type:

Primitive workflow body. Primitive workflows are basic building block of workflow

composition. A primitive workflow encapsulates a mapping from a task component that can

be heterogeneous and distributed. While in our original design, the task manager implements

a task model [86], in which a task consists of a task template and a task component, resulting

82

in a tedious mapping from workflow to task template and then to task component; in the new

version of the VIEW system, we integrated task model into our workflow model by a direct

mapping from a primitive workflow to the corresponding task component. Furthermore, this

mapping can now be done by the system automatically. When registering a task, the user

specifies the target task component, invocation method, and the task inputs/outputs, and the

system will create a primitive workflow to encapsulate this task component and the mappings

between the workflow and the task component are automatically generated and stores in the

workflow specification. Figure 5.5 illustrates an example specification of a primitive work-

flow expanded from Figure 5.3.(b-3), which contains the mapping from a Windows applica-

tion. The taskType attribute defines the type of the task component. Current task manager

supports three types of task: “WebService”, “WindowsApplication”, and “GridJob”. The

task types are extensible in both the language and the system. The executable element and

the appName element specify the location and the name of the target Windows application.

The taskInvocation element specifies the task invocation method including the operatingSys-

tem element that specifies the operating system such as windows and unix; the invocation-

Mode element that specifies whether the task is local or remote; and the interactionMode that

specifies whether it is a user-interactive task or not. A user-interactive task can only been

invoked in the workbench side to interact with users directly. The T2W element defines the

mapping between the task component and the workflow (by the inputs and outputs elements).

The task manager will use those information to bind and transfer data from workflow to task

components.

When executing a primitive workflow, the workflow engine will extract the workflow

definition and send it to the task manager. The details of the execution of the heterogenous

task components can be found in [86]. The current task manager subsystem is responsible

only for the execution of task components. The task manager is separated from the workflow

engine in order to reduce the work load of the workflow engine so that it will not become a

bottleneck.

83

<workflowroot="true" name ="MeshHoleFill">
 <workflowInterface>
 <workflowDescription>Fill holes in the iso-surface.</workflowDescription>

 <inputPorts nunber="2">
 <inputPort id ="i1">

 <portName>isoSurfaceFile</portName>
 <portType>File</portType>
</inputPort>
<inputPort id ="i2">...</inputPort>

 <inputPort id ="i3">...</inputPort>
 </inputPorts>
 <outputPorts nunber="1">

<outputPort id ="o1">
 <portName>holesCoveredFile</portName>
 <portType>File</portType>
</outputPort>

 <outputPort id ="o2">...</outputPort>
 </outputPorts>

 </workflowInterface>
 <workflowBody type="primitive">
 <taskComponent taskType="WindowsApplication">
 <executable>file://localhost/OBJFILL.exe </executable>
 <appName>OBJFILL</appName>
 <taskInvocation>
 <operatingSystem>Windows</operatingSystem>
 <invocationMode>Local</invocationMode>
 <interactionMode>No</interactionMode>
 </taskInvocation>
 </taskComponent >
 <T2W>
 <inputs>
 <input id="i1" mode="File" name = "/OBJFILL.obj" type ="FILE(OBJ)" / >
 <input id="i2" mode="EnvironmentVariable" name ="inputEnv" type ="String" / >
 <input id="i3" mode="ConstantCLArg" name ="inputCLArg" type ="String" / >
 </inputs>
 <outputs>
 <output id="o1" mode="File" name ="Subjhfobj" type ="FILE(OBJ)" / >
 <output id="o2" mode="ExitReturnValue" name ="inputEnv" type ="Integer" / >
 </outputs>
 </T2W>
 <workflowBody>
</workflow>

Figure 5.5: An example specification of a primitive workflow.

Unary-construct-based workflow body. a unary-construct-based workflow contains one

of the Map, Reduce, Tree, Conditional, Loop, and Curry constructs, or a composition of those

constructs. The execution of a unary-construct-based workflow is based on the semantics

introduced in Chapter 3.

Graph-based Workflow body. Execute the workflow graph. A workflow graph is a tuple

(W,C) where W is a set of workflow instances and C is a set of data channels. VIEW applies

a dynamic and parallel scheduling algorithm. First, the workflow engine will bind input data

to the corresponding input ports of the specified workflow instances according to the graph

84

Data Product Manager

Data Access Layer

Data Mapping Layer

Data Storage Layer

Relational
Databases

Node
Database

Master

File
Repositories

Data Set 1

Main
Server

Node
Database

Node
Database

Relational
Databases

File
Repositories

Data Set 2

Figure 5.6: Architecture of the data product manager.

input mapping definition. The workflow engine will iterate over the set of workflow instances

and create a new thread for each executable workflow instance. Once a workflow instance

execution finishes successfully, the generated output data products will be bound to the cor-

responding output ports, and then sent to linked input ports of other workflow instances or

output mapping via data channels. Then workflow engine will then check whether those data

products makes other workflow instances executable, and if so, execute them. The execution

of a workflow graph finishes successfully if every output port is bound with a data prod-

uct, and the execution of a workflow graph aborts if either all workflow instances finished

and there is at least one output port is not bound with a data product, or there is no running

workflow instances and no executable workflow instances.

85

5.3 Data Product Manager

5.3.1 Architecture of the Data Product Manager

The data product manager subsystem is responsible for the storage and the management of

distributed collectional scientific data. Figure 5.6 illustrates the three-layer architecture of the

data product manager.

The first layer is the data access layer which provides the access interface. A main

server contains a root table which stores general information of all data products, e.g. name,

description, and their locations in slave databases. A master server maintains access methods

of all slave databases. Upon a request to retrieve a data product, the data product manager

will first search the root table to find the data product location in the slave server and then

retrieve it.

The second layer is the data mapping layer which provides a mapping from the logical

data model to the physical organization. This layer consists of a series of node databases.

While the collectional data model is logically hierarchically structured, the physical storage

can but not necessarily be hierarchically organized in the same way. Current VIEW system

supports two ways of storage. First, a collection can be stored in a table containing a set of

its key/value pairs, whose values are references to existing collections. Such implementation

follows its logical organizations. Second, a collection can be expanded and physically sep-

arated into two parts: the structural metadata and the relations. The structural metadata of a

collection is stored in one table including key values and access methods of the relations. The

relations are distributively stored in the third layer. Below we define two operators to enable

the second type of storage.

Compress(%): The Compress is a unary operator that reduces the number of keys of the

collection while increases the number of columns of inner relations accordingly. More specif-

ically, given a collection C =< C, c > as input with schema C =< k1 : d1, k2 : d2, ..., kn :

86

Model Experiment Concentration Degree ...

m1 1 7.0 15 ...

m1 2 7.0 30 ...

...

m2 1 7.1 15 ...

m2 2 7.1 30 ...

...

1

2

...

Experiment

1

2

...

Experiment

m1

m2

...

Model

Concentration Degree ...

7.0 15 ...

Concentration Degree ...

7.0 30 ...

Concentration Degree ...

7.1 15 ...

Concentration Degree ...

7.1 30 ...

(a) (b)

Figure 5.7: Example of the Compress operator: (a) the original relation Parameters; (b) The result
collection RParameters from the operation %(%(Parameters)).

dn, R >, a Compress operation can be specified as %(C). The result of the Compress opera-

tion can be either a collection or a relation depending on the height of the input collection,

more formally, the resultant schema is defined as follows:

• If H(C) > 1, then the Compress operation returns a collection C =< C ′, c > where

C ′ =< k1 : d1, k2 : d2, ..., kn−1 : dn−1, (kn : dn)×R >.

• If H(C) = 1, then the Compress operation returns a relation R =< R′, r > where

R′ = (k1 : d1)×R.

We then define the Compress at the instance level as follows:

%(c) = {(p, %(q)) : (p, q) ∈ C} if(H(C) > 1)

∪(p,q)∈c (p×rc q) if(H(C) = 1)
(5.1)

The Compress operator can be used to transform collections to relations. For example,

Figure 5.7 illustrates an example of the Compress operator, in which the relation RParameters

is obtained by the operation %(%(Parameters)).

Group By(τ): The Group By is a reverse operator of the Compress operator which takes

either a relation or a collection as input and returns a collection. On the one hand, given a

87

collection C =< C, c > as input with the schema C =< k1 : d1, k2 : d2, ..., kn : dn, R > and

R =< c1 : o1, c2 : o2, ...cm : om >, a Group By operation can be specified as τcl
(C) where

cl ∈ {c1, c2, ..., cm}. The result of the Group By operation is a collection C′ =< C ′, c′ >

where C ′ =< k1 : d1, k2 : d2, ..., kn : dn, cl : ol, πc1,...cl−1,cl+1,...cmR >, and

c′ =

{(p, τcl
(q)) : (p, q) ∈ c} if(H(C) > 1)

{(p, {(k, πc1,...cl−1,cl+1,...cm(σcl=k(q))) : k ∈ πcl
(q)}) :

(p, q) ∈ c} if(H(C) = 1)

(5.2)

On the other hand, given a relation R =< R, r > as input where the schema R =< c1 :

o1, c2 : o2, ...cm : om >, a Group By operation can be specified as τcl
(R) which transforms

the relation to a collection C′ =< C ′, c′ > where C ′ =< cl : ol, πc1,...cl−1,cl+1,...cmR >, and

c′ = {(k, σcr=k(πc1,...cr−1,cr+1,...cm(r))) : k ∈ πcr(r)} (5.3)

Given any collection C =< C, c >, the Compress operation and the Group By operation

are reversible:

τk(%(C)) = C where k = KH(C) (5.4)

As an example, the τCodition(τModel(RParameters)) operation will return the Parameters

collection.

The Compress and Group By operators provide foundations for the lossless mapping

between the collectional model and the relational model. Therefore, we are able to expand a

collection to a relation and store all the key values in one table.

Finally, the third layer is the data storage layer which includes distributed relational data.

Relational data are not necessarily stored in data product manager but can be distributed

remotely as long as it provide well defined accessing methods. Our relational model is relaxed

88

<dataProduct name ="Parameters">
 <description>A collection of parameters.</description>
 <data>
 <collection>
 <collectionalSchema>
 <keyname="Experiment" type="Integer"/>
 </collectionalSchema>

 <collectionalInstance count=count>
 <pair>
 <key>1 </key>
 <relation>
 <relationalSchema>
 <column name="speed" type="Decimal"/>
 <column name="angle" type="Integer"/>
 </relationalSchema>
 <relationalInstance>

 <row>
 <speed>50</speed>
 <angle>0</angle>
 </row>
 ...
 <relationalInstance>
 </relation>
 </pair>
 ...
 </collectionallnstance>
 <collection>
 </data>
</dataProduct>

Figure 5.8: Example of the XML description of a collectional data product.

to support files which are widely used in many scientific applications and Grids, In addition

to the traditional BLOB type, our system defines a FILE type containing a reference to a

local/remote file. Therefore, large files do not need to be physically stored into databases.

5.3.2 Interface of the Data Product Manager

We also propose an XML-based data product specification language (DPL) to enable the

transfer of collectional data products. The XML schema of DPL is shown in Appendix B.

Figure 5.8 shows an example of the DPL description of a collectional data product. The

collecition element stores the collectional data including the collectional schema and the

instance of that schema. The collectionalSchema element specifies all enclosed key names

and types. The collectionalInstance tag contains the key-value pairs. This example illustrates

a collection with Height of 1 and the values are relations. The relation element also includes

89

the relational schema and the instance. The relational schema elements defines column names

and column types while the relationalInstance contains a set of rows.

The data product manager provides the following three Web service operations?:

• RegisterDataProduct registers a data product with a data product definition.

• GetDataProduct returns a data product.

• DeleteDataProduct deletes a data product.

• GetDataProductList returns a list of existing data product information for browsing.

The WDSL specification of the Data Product Manager is shown in Appendix D.

5.4 Data Type System in VIEW

While the task manager separates the physical execution of heterogeneous task resources

from logical workflow composition and orchestration, the data product manager separates

the physical data management and transfer from the logical dataflow transition. Such separa-

tion not only conceals the implementation details but also reduces unnecessary physical data

movements.

Following the definitions in the second chapter, each scientific workflow is associated

with a set of input ports I and a set of output ports O. Each port p is associated with a data

domain specifying the type of data product that the port can accept. VIEW is a dataflow-

based scientific workflow management system and data movement in VIEW are modeled as

dataflows. A dataflow transition represents a transfer of dataflow from an output port to an

input port via a data channel. A data channel is a tuple (o, i) where o is an output port and i

is an input port.

The VIEW system conforms to the collectional data model. Each data product is a collec-

tion and the data type is determined by its schema. First, a set of scalar domains are defined.

Table 5.1 summarizes scalar data domain types in view, as well as their mappings to MySQL,

90

Table 5.1: Scalar data type mappings among VIEW, MySQL, and XML.

VIEW DataType MYSQL DataType XML DataType
STRING VARCHAR string

INTEGER INTEGER int
LONG BIGINT long

DECIMAL DECIMAL decimal
FLOAT FLOAT float

DOUBLE DOUBLE double
BOOLEAN BOOLEAN Boolean
DATETIME DATETIME dateTime

BLOB LONGBLOB base64Binary
FILE - -

and XML data types. Other databases including Oracle, Microsoft SQL Server, and Firebird

are also supported in VIEW.

In order to reduce trivial data conversions while guaranteeing a strict data typing. we

define the following rules to facilitate safe and automatic transformation.

Definition 5.4.1 A scalar data type t1 is superior to a scalar data type t2, denoted as t1 Â t2,

iff they satisfy one of the following conditions:

• t1 = t2

• t1 = STRING and t2 is any atomic data type.

• t1 = LONG and t2 = INTEGER.

• t1 = DECIMAL and t2 ∈ INTEGER, LONG,FLOAT, DOUBLE.

• t1 = DOUBLE and t2 ∈ INTEGER, LONG, FLOAT .

• t1 = FLOAT and t2 ∈ INTEGER, LONG.

Then we define the type comparison between two general collection schemas.

91

Definition 5.4.2 A relation schema R1 =< c11 : d11, ..., c1n : d1n > is superior to a relation

schema R2 =< c21 : d21, ..., c2n : d2n >, denoted as R1 Â R2, iff c11 = c21, ..., c1n = c2n,

and d11 Â d21, ..., d1n Â d2n.

Definition 5.4.3 A collection schema C1 =< k1 : d1, S1 > is superior to a collection schema

C2 =< k2 : d2, S2 >, denoted as C1 Â C2, iff k1 = k2, d1 Â d2, and S1 Â S2.

While the data product manager encapsulated the collectional data model, in the work-

flow engine, a collection is treated as an atom including an identifier and a type which is its

collectional schema. A List data construct is then introduced to facilitate the Map, Reduce,

and Tree constructs. More formally, in the workflow engine, a data product d is either an

atom, a list < d1, ...dn > whose elements di are data products, or ε, an empty data product.

Definition 5.4.4 (Data Product Type) We define the type of a data product d, denoted as

T(d), as follows:

• T(d) = C, if d is an atom representing a collection C(C, c) and C is collectional

schema.

• T(d) = L, if d is an List and L is a primitive list type (VIEW allows heterogeneous

lists).

• T(d) = ε, if d is an ε.

♦

The list type is only introduced in the workflow engine mainly to support the Map, Re-

duce and Tree construct, and the only primitive workflow that accept lists are two built-in

workflows Merge and Split introduced in Chapter 3. The list type is not exposed to applica-

tion tasks. Instead, they can use collections which do not allow heterogeneous values but are

better organized and provide a rich set of operators.

92

When registering a workflow, the workflow engine will validate each data link in graph-

based workflows by checking types of the linked ports, denoted as T(p) where p is a port.

Definition 5.4.5 A data channel (o, i) is valid iff T(i) Â T(o).

Current data type system focuses only on data modeling. However, it is extensible for

semantic type check if a domain ontology is well defined. We are also investigating the

possibility of modifying our workflow constructs and integrating the workflow model and the

collectional data model, which will be discussed in the future works.

5.5 Scientific Workflow approach for Collectional Data Querying

Scientific workflow technologies enable visual composition of queries instead of traditional

query languages such as SQL. The VIEW system provides a set of built-in primitive work-

flows as follows:

Arithmetic Operators:

• Addition: takes inputs of two numeric types, returns their sum.

• Substraction: takes inputs of two numeric types, returns their difference.

• Multiplication: takes inputs of two numeric types, returns their product.

• Division: takes inputs of two numeric types, returns their quotient.

Boolean Operators:

• Add: takes inputs of two boolean types, returns their conjunction.

• Or: takes inputs of two boolean types, returns their disjunction.

• Not: takes input of a boolean type, returns its negation.

Collectional Operators:

93

– Selection: takes input of a collection and select condition, returns the selected

collection.

– Projection: takes input of a collection and project keys and columns, returns the

projected collection.

– Union: takes input of two collections, return their union.

– Difference: takes input of two collections, return their difference.

– Cartesian Product: takes input of two collections, return their Cartesian product.

– Rename: takes input of a collection, the column/key to be renamed, and the new

name, returns the renamed collection.

– Natural Join: takes input of two collections, return their nature join.

– Join: takes input of two collections, and join condition, return their join.

– Outer joins (Left Join, Right Join, Full Join): takes input of two collections, and

join condition, return their out joins.

– Group By: takes input of a collection and the column to be grouped, returns the

result collection whose height increased.

– Compress: takes input of a collection and the key to be compress, returns the

result collection whose height decreased.

– Order By: takes input of a collection and the column/key to be ordered, returns

an ordered collection.

– Aggregation Operators(e.g. Sum, Avg, Max, Min, Count): takes input of a col-

lection, and the key/column to be aggregated, returns aggregated result.

List Operators:

• Merge: takes any number of inputs of any types, returns a list of those inputs, ordered

by the port id.

94

Figure 5.9: Example of a query workflow.

• Split: takes input of a list, split it and returns each internal data product to a port one

by one.

Those operators can be composed into scientific workflows to implement arbitrary queries.

As an example, given a table Reference < Student, Company, GradT ime >, which

stores graduated students’ current company and their graduation years, a query “Find the

total number of students offered in each company and each graduation year; Sort the result in

descending-GradTime and ascending-Company order.” can be implemented in the following

the SQL query:

SELECT Company, GradTime, COUNT(DISTINCT Student) AS NumberOfJob

95

FROM Reference

GROUP BY Company, GradTime

ORDER BY GradTime DESC, Company ASC;

While the GROUP BY statement is introduced in SQL to in conjunction with the aggre-

gate functions to group the result-set by one or more columns, itself is not semantic complete

because the result of the GROUP BY statement is a set of tables (actually a collection) which

can not be modeled in the relational model. However, it is elegantly supported in our collec-

tional model and any collectional operators including the aggregate operators can be applied

on its result. Figure 5.9 illustrates a query workflow which is equivalent to the above query.

By applying the Group By operator twice, we get a collection with two keys: Company and

GradTime. The following Count operator counts the number of students in each company

and each graduation year.

5.6 Chapter Summary

This chapter illustrated the architectural design of the VIEW system and the detailed imple-

mentation of the workflow engine, and the data product manager. The VIEW system pro-

vides an integrated platform with a simple and user-friendly interface for domain scientists

to perform in silico scientific experiments and systematic scientific data analysis. Besides

the case studies presented in previous chapters, we also show in this chapter the ability of

the VIEW system to support relational and collectional queries with our data model and well

defined operators.

96

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We are in the beginning of a era of “e-science”. Advances in computational technology

are transforming discovery and research in nearly all scientific fields. In the meantime, the

coupling between scientists and computer technology also created an explosion in computa-

tion and data volume, and leads to increased user needs and expectations for new tools. These

trends give rise to many new problems and opportunities in various domains, e.g. more scal-

able method for data management, more efficient algorithms for data analysis, more advanced

technology for visualization, and more importantly, a more powerful and mature platform to

integrate those multi-disciplinary techniques. This thesis uses the scientific workflow ap-

proach to address such need.

In this thesis, we first proposed a new dataflow-based scientific workflow composition

model. My contributions include: 1.) seven key requirements for a scientific workflow com-

position model based on a comprehensive literature review and our experience in developing

the VIEW system; 2.) a new scientific workflow model which separates the declaration of the

workflow interface from the definition of its functional body; 3.) a set of workflow constructs,

including Map, Reduce, Tree, Loop, Conditional, and Curry, which are fully compositional

one with another; and 4.) a dataflow based exception handling approach to support hierarchi-

cal exception propagation and user-defined exception handling.

In order to support hierarchical collection-oriented scientific data, we proposed a collec-

tional model including a collection structure to model hierarchical collection-oriented scien-

tific data, and and a set of operators to manipulate and query such data. To our best knowl-

edge, this is the first algebraic approach to modeling collection-oriented scientific data.

97

We realized proposed techniques in the VIEW system. The VIEW system is designed

and implemented using service oriented architecture following the reference architecture of

SWFMSs. VIEW comprises six loosely coupled subsystems: a workbench to visually design

workflows, a workflow engine to manage and execute workflows, a task manager to exe-

cute tasks, a workflow monitor to display system status and track exceptions, a provenance

manager to store and query workflow provenance, and a data product manager to store and

manage data products. Each system implements its own model independently of the other

systems. This thesis presented the design and the implementation of the workflow engine,

the task manager, and the data product manager, as well as the coordination and integration

of these subsstems.

In the future, scientific workflow will become one of the key techniques to organize large-

scale scientific projects which are becoming more and more computation intensive and data

intensive. My future work focus typically on the following topics:

Formalization of the scientific workflow algebra and the collectional algebra Al-

though we have formally defined a scientific workflow composition model and a collectional

data model, there is still much work to be done in order to formalize the scientific workflow

algebra and the collectional algebra. We plan to summarize the properties of operators and

research the completeness of our proposed models. We also plan to compare our models to

other related workflow and data models and explore the possibility of the commutation or

even integration between different systems.

Collaborative scientific workflow composition Collaborative scientific workflow com-

position has recently been proposed to support collaborative scientific research projects,

which require intensive collaboration among scientists with diverse expertise. A collabo-

rative scientific workflow management system allows participating scientists to design and

compose common scientific workflows concurrently. This poses challenges to the architec-

tural design, and the consistency of the scientific workflow management systems. In order to

98

solve those challenges, we plan to borrow the locking and transaction processing techniques

from Database and apply them to support collaborative scientific workflows.

99

APPENDIX A

Scientific Workflow Language (SWL)

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”

attributeFormDefault=”unqualified”>

<xsd:element name=”workflowSpec”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”workflow” type=”WorkflowXMLElementType” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:complexType name=”WorkflowXMLElementType”>

<xsd:sequence>

<xsd:element name=”workflowInterface”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”workflowDescription” type=”xsd:string” minOccurs=”0”/>

<xsd:element name=”inputPorts”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”inputPort” type=”PortXMLElementType” maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”nunber” type=”xsd:int”/>

100

</xsd:complexType>

</xsd:element>

<xsd:element name=”outputPorts”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”outputPort” type=”PortXMLElementType” maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”nunber” type=”xsd:int”/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”workflowBody”>

<xsd:complexType>

<xsd:choice>

<xsd:sequence>

<xsd:element name=”baseWorkflow” type=”xsd:string”/>

<xsd:element name=”unary-construct”>

<xsd:complexType>

<xsd:sequence>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>

<xsd:element name=”map” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:attribute name=”mapPort” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

101

<xsd:element name=”reduce” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:attribute name=”basePort” type=”xsd:string”/>

<xsd:attribute name=”reducePort” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

<xsd:element name=”tree” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:attribute name=”leftPort” type=”xsd:string”/>

<xsd:attribute name=”rightPort” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

<xsd:element name=”loop” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:attribute name=”loopPort” type=”xsd:string”/>

<xsd:attribute name=”predicate” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

<xsd:element name=”conditional” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:attribute name=”conditionalPort” type=”xsd:string”/>

<xsd:attribute name=”predicate” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

<xsd:element name=”curry” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:sequence>

102

<xsd:element name=”inputMapping” type=”WorkflowPortMappingXMLElementType” minOc-

curs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”assign” type=”WorkflowPortMappingXMLElementType” minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”outputMapping” type=”WorkflowPortMappingXMLElementType” minOc-

curs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”curryPort” type=”xsd:string”/>

<xsd:attribute name=”parameter” type=”xsd:string”/>

<xsd:attribute name=”parameterType” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name=”taskComponent”>

<xsd:complexType>

<xsd:sequence>

<xsd:choice>

<xsd:sequence>

<xsd:element name=”wsdlURI” type=”xsd:string”/>

<xsd:element name=”serviceName” type=”xsd:string”/>

<xsd:element name=”operationName” type=”xsd:string”/>

</xsd:sequence>

103

<xsd:sequence>

<xsd:element name=”directory” type=”xsd:string”/>

<xsd:element name=”appName” type=”xsd:string”/>

</xsd:sequence>

<xsd:sequence>

<xsd:element name=”executable” type=”xsd:string”/>

<xsd:element name=”appName” type=”xsd:string”/>

</xsd:sequence>

</xsd:choice>

<xsd:element name=”taskInvocation”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”operatingSystem”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”Windows”/>

<xsd:enumeration value=”Unix”/>

<xsd:enumeration value=”Linux”/>

<xsd:enumeration value=”Mac”/>

<xsd:enumeration value=”Unknown”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”invocationMode”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”Local”/>

104

<xsd:enumeration value=”Remote”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”interactionMode”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”Yes”/>

<xsd:enumeration value=”No”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”invocationAuthentication” minOccurs=”0”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”hostName” type=”xsd:string”/>

<xsd:element name=”userName” type=”xsd:string”/>

<xsd:element name=”password” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”taskType”>

<xsd:simpleType>

105

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”WIndowsApplication”/>

<xsd:enumeration value=”WebService”/>

<xsd:enumeration value=”GridJob”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

<xsd:element name=”T2W”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”inputs”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”input” type=”TaskPortMappingXMLElementType” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”outputs”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”output” type=”TaskPortMappingXMLElementType” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

106

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name=”workflowGraph”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”workflowInstances”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”workflowInstance” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”workflow” type=”xsd:string”/>

</xsd:sequence>

<xsd:attribute name=”id” type=”xsd:string”/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”dataChannels”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”dataChannel” type=”DataChannelXMLElementType” minOccurs=”0”

maxOccurs=”unbounded”/>

</xsd:sequence>

107

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”G2W”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”inputMapping” type=”WorkflowPortMappingXMLElementType” minOc-

curs=”0” maxOccurs=”unbounded”/>

<xsd:element name=”outputMapping” type=”WorkflowPortMappingXMLElementType” minOc-

curs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:element name=”builtin” type=”xsd:string”/>

</xsd:sequence>

</xsd:choice>

<xsd:attribute name=”mode”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”unary-construct-based”/>

<xsd:enumeration value=”primitive”/>

<xsd:enumeration value=”graph-based”/>

<xsd:enumeration value=”builtin”/>

108

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”name” type=”xsd:string”/>

<xsd:attribute name=”root” type=”xsd:boolean”/>

</xsd:complexType>

<xsd:complexType name=”PortXMLElementType”>

<xsd:sequence>

<xsd:element name=”portID” type=”xsd:string”/>

<xsd:element name=”portName” type=”xsd:string”/>

<xsd:element name=”portType”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”String”/>

<xsd:enumeration value=”List”/>

<xsd:enumeration value=”Date”/>

<xsd:enumeration value=”Integer”/>

<xsd:enumeration value=”Double”/>

<xsd:enumeration value=”Decimal”/>

<xsd:enumeration value=”Boolean”/>

<xsd:enumeration value=”Uri”/>

<xsd:enumeration value=”File”/>

<xsd:enumeration value=”RelationBase”/>

<xsd:enumeration value=”CollectionBase”/>

109

<xsd:enumeration value=”Object”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”portParameter” type=”xsd:string” minOccurs=”0”/>

<xsd:element name=”portDescription” type=”DescriptionXMLElementType” minOccurs=”0”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”TaskPortMappingXMLElementType”>

<xsd:attribute name=”id” type=”xsd:string” use=”required”/>

<xsd:attribute name=”mode” type=”xsd:string” use=”required”/>

<xsd:attribute name=”name” type=”xsd:string” use=”required”/>

<xsd:attribute name=”type” type=”xsd:string” use=”required”/>

</xsd:complexType>

<xsd:complexType name=”DataChannelXMLElementType”>

<xsd:attribute name=”type”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”OneToOneDataChannel”/>

<xsd:enumeration value=”OneToManylDataChannel”/>

<xsd:enumeration value=”ManyToOnetDataChannel”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name=”from” type=”xsd:string”/>

<xsd:attribute name=”to” type=”xsd:string”/>

</xsd:complexType>

110

<xsd:complexType name=”WorkflowPortMappingXMLElementType”>

<xsd:attribute name=”from” type=”xsd:string”/>

<xsd:attribute name=”to” type=”xsd:string”/>

</xsd:complexType>

<xsd:simpleType name=”DescriptionXMLElementType”>

<xsd:restriction base=”xsd:string”/>

</xsd:simpleType>

</xsd:schema>

111

APPENDIX B

Data Product Language (DPL)

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema” elementFormDefault=”qualified”

attributeFormDefault=”unqualified” version=”1.0.0”>

<xsd:element name=”dataProduct” type=”DataProductXMLElementType”/>

<xsd:complexType name=”DataProductXMLElementType”>

<xsd:sequence>

<xsd:element name=”description” type=”xsd:string”/>

<xsd:element name=”type”>

<xsd:simpleType>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”ScalarValue”/>

<xsd:enumeration value=”File”/>

<xsd:enumeration value=”List”/>

<xsd:enumeration value=”Relation”/>

<xsd:enumeration value=”Collection”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name=”data” type=”DataXMLElementType”/>

</xsd:sequence>

<xsd:attribute name=”name”/>

</xsd:complexType>

112

<xsd:complexType name=”DataXMLElementType”>

<xsd:choice>

<xsd:element name=”scalarValue” type=”ScalarValueXMLElementType”/>

<xsd:element name=”blob” type=”xsd:base64Binary”/>

<xsd:element name=”list” type=”ListXMLElementType”/>

<xsd:element name=”relation” type=”RelationXMLElementType”/>

<xsd:element name=”collection” type=”CollectionXMLElementType”/>

</xsd:choice>

</xsd:complexType>

<xsd:complexType name=”ScalarValueXMLElementType”>

<xsd:sequence>

<xsd:element name=”scalarType” type=”ScalarDataTypeEnumeration”/>

<xsd:element name=”value” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=”ScalarDataTypeEnumeration”>

<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”String”/>

<xsd:enumeration value=”Date”/>

<xsd:enumeration value=”Integer”/>

<xsd:enumeration value=”Long”/>

<xsd:enumeration value=”Double”/>

<xsd:enumeration value=”Decimal”/>

<xsd:enumeration value=”Boolean”/>

<xsd:enumeration value=”Uri”/>

<xsd:enumeration value=”Blob”/>

</xsd:restriction>

113

</xsd:simpleType>

<xsd:complexType name=”ListXMLElementType”>

<xsd:sequence minOccurs=”0” maxOccurs=”unbounded”>

<xsd:element name=”dataProduct” type=”DataProductXMLElementType”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”RelationXMLElementType”>

<xsd:sequence>

<xsd:element name=”schema”>

<xsd:complexType>

<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”column” type=”DataColumnXMLElementType”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”instance”>

<xsd:complexType>

<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”row” type=”DataRowXMLElementType”/>

</xsd:sequence>

<xsd:attribute name=”count” type=”xsd:integer”/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”DataColumnXMLElementType”>

<xsd:sequence>

114

<xsd:element name=”columnName” type=”xsd:string”/>

<xsd:element name=”columnType” type=”ScalarDataTypeEnumeration”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”DataRowXMLElementType”>

<xsd:sequence>

<xsd:element name=”dataElement” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”CollectionXMLElementType”>

<xsd:sequence>

<xsd:element name=”schema”>

<xsd:complexType>

<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”key” type=”KeyXMLElementType”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”nodeSchema”>

<xsd:complexType>

<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”column” type=”DataColumnXMLElementType”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”instance”>

<xsd:complexType>

115

<xsd:sequence maxOccurs=”unbounded”>

<xsd:element name=”pair” type=”PairXMLElementType”/>

</xsd:sequence>

<xsd:attribute name=”count” type=”xsd:integer”/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”KeyXMLElementType”>

<xsd:sequence>

<xsd:element name=”keyName” type=”xsd:string”/>

<xsd:element name=”keyType” type=”ScalarDataTypeEnumeration”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”PairXMLElementType”>

<xsd:sequence>

<xsd:element name=”key” type=”xsd:string”/>

<xsd:choice>

<xsd:element name=”relation” type=”RelationXMLElementType”/>

<xsd:element name=”collection” type=”CollectionXMLElementType”/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

116

APPENDIX C

WDSL Specification for Workflow Engine Web Services

<?xml version=”1.0” encoding=”utf-8”?>

<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:tns=”http://dmsg2.cs.wayne.edu/view”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

targetNamespace=”http://dmsg2.cs.wayne.edu/view”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:types>

<s:schema elementFormDefault=”qualified” targetNamespace=”http://dmsg2.cs.wayne.edu/view”>

<s:element name=”GetWorkflowList”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”type” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”GetWorkflowListResponse”>

<s:complexType>

117

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”GetWorkflowListResult”

type=”tns:ArrayOfWorkflowInfo” />

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name=”ArrayOfWorkflowInfo”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”unbounded” name=”WorkflowInfo” nillable=”true”

type=”tns:WorkflowInfo” />

</s:sequence>

</s:complexType>

<s:complexType name=”WorkflowInfo”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowID” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowName” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowDescription” type=”s:string”

/>

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowType” type=”s:string” />

</s:sequence>

</s:complexType>

<s:element name=”GetWorkflow”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowID” type=”s:string” />

</s:sequence>

</s:complexType>

118

</s:element>

<s:element name=”GetWorkflowResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”GetWorkflowResult” type=”s:base64Binary”

/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”RegisterWorkflow”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowSpecification” type=”s:base64Binary”

/>

<s:element minOccurs=”0” maxOccurs=”1” name=”visualizationFile” type=”s:base64Binary”

/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”RegisterWorkflowResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” name=”RegisterWorkflowResult” type=”s:int”

/>

</s:sequence>

</s:complexType>

</s:element>

119

<s:element name=”DeleteWorkflow”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”workflowID” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”DeleteWorkflowResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” name=”DeleteWorkflowResult” type=”s:int” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”ExecuteWorkflow”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”1” maxOccurs=”1” name=”workflowID” type=”s:int” />

<s:element minOccurs=”0” maxOccurs=”1” name=”inputData”

type=”tns:ArrayOfDataflowTransformation” />

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name=”ArrayOfDataflowTransformation”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”unbounded” name=”DataflowTransformation” nil-

lable=”true” type=”tns:DataflowTransformation” />

120

</s:sequence>

</s:complexType>

<s:complexType name=”DataflowTransformation”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”portID” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”dataType” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”dataID” type=”s:string” />

</s:sequence>

</s:complexType>

<s:element name=”ExecuteWorkflowResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”ExecuteWorkflowResult”

type=”tns:ArrayOfDataflowTransformation” />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

<wsdl:message name=”GetWorkflowListSoapIn”>

<wsdl:part name=”parameters” element=”tns:GetWorkflowList” />

</wsdl:message>

<wsdl:message name=”GetWorkflowListSoapOut”>

<wsdl:part name=”parameters” element=”tns:GetWorkflowListResponse” />

</wsdl:message>

<wsdl:message name=”GetWorkflowSoapIn”>

<wsdl:part name=”parameters” element=”tns:GetWorkflow” />

121

</wsdl:message>

<wsdl:message name=”GetWorkflowSoapOut”>

<wsdl:part name=”parameters” element=”tns:GetWorkflowResponse” />

</wsdl:message>

<wsdl:message name=”RegisterWorkflowSoapIn”>

<wsdl:part name=”parameters” element=”tns:RegisterWorkflow” />

</wsdl:message>

<wsdl:message name=”RegisterWorkflowSoapOut”>

<wsdl:part name=”parameters” element=”tns:RegisterWorkflowResponse” />

</wsdl:message>

<wsdl:message name=”DeleteWorkflowSoapIn”>

<wsdl:part name=”parameters” element=”tns:DeleteWorkflow” />

</wsdl:message>

<wsdl:message name=”DeleteWorkflowSoapOut”>

<wsdl:part name=”parameters” element=”tns:DeleteWorkflowResponse” />

</wsdl:message>

<wsdl:message name=”ExecuteWorkflowSoapIn”>

<wsdl:part name=”parameters” element=”tns:ExecuteWorkflow” />

</wsdl:message>

<wsdl:message name=”ExecuteWorkflowSoapOut”>

<wsdl:part name=”parameters” element=”tns:ExecuteWorkflowResponse” />

</wsdl:message>

<wsdl:portType name=”WorkflowEngineSoap”>

<wsdl:operation name=”GetWorkflowList”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Get information of a category of workflows by workflow type:

”GraphBased”,”TaskBased”,”UConstructBased”, </wsdl:documentation>

122

<wsdl:input message=”tns:GetWorkflowListSoapIn” />

<wsdl:output message=”tns:GetWorkflowListSoapOut” />

</wsdl:operation>

<wsdl:operation name=”GetWorkflow”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Get workflow specification by workflow id</wsdl:documentation>

<wsdl:input message=”tns:GetWorkflowSoapIn” />

<wsdl:output message=”tns:GetWorkflowSoapOut” />

</wsdl:operation>

<wsdl:operation name=”RegisterWorkflow”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Register workflow with workflow definition file in SWL and workflow visualizationFile if

necessary for workbench</wsdl:documentation>

<wsdl:input message=”tns:RegisterWorkflowSoapIn” />

<wsdl:output message=”tns:RegisterWorkflowSoapOut” />

</wsdl:operation>

<wsdl:operation name=”DeleteWorkflow”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Delete a workflow by workflow id</wsdl:documentation>

<wsdl:input message=”tns:DeleteWorkflowSoapIn” />

<wsdl:output message=”tns:DeleteWorkflowSoapOut” />

</wsdl:operation>

<wsdl:operation name=”ExecuteWorkflow”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Run a Workflow with inputData</wsdl:documentation>

<wsdl:input message=”tns:ExecuteWorkflowSoapIn” />

<wsdl:output message=”tns:ExecuteWorkflowSoapOut” />

123

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=”WorkflowEngineSoap” type=”tns:WorkflowEngineSoap”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”GetWorkflowList”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetWorkflowList” style=”document”

/>

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”GetWorkflow”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetWorkflow” style=”document”

/>

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”RegisterWorkflow”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/RegisterWorkflow” style=”document”

/>

124

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”DeleteWorkflow”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/DeleteWorkflow” style=”document”

/>

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”ExecuteWorkflow”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/ExecuteWorkflow” style=”document”

/>

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

125

</wsdl:binding>

<wsdl:binding name=”WorkflowEngineSoap12” type=”tns:WorkflowEngineSoap”>

<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”GetWorkflowList”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetWorkflowList” style=”document”

/>

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”GetWorkflow”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetWorkflow” style=”document”

/>

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”RegisterWorkflow”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/RegisterWorkflow” style=”document”

/>

<wsdl:input>

126

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”DeleteWorkflow”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/DeleteWorkflow” style=”document”

/>

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”ExecuteWorkflow”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/ExecuteWorkflow” style=”document”

/>

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

127

<wsdl:service name=”WorkflowEngine”>

<wsdl:port name=”WorkflowEngineSoap” binding=”tns:WorkflowEngineSoap”>

<soap:address location=”http://localhost:5977/WorkflowEngine.asmx” />

</wsdl:port>

<wsdl:port name=”WorkflowEngineSoap12” binding=”tns:WorkflowEngineSoap12”>

<soap12:address location=”http://localhost:5977/WorkflowEngine.asmx” />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

128

APPENDIX D

WDSL Specification for Data Product Manager Web Services

<?xml version=”1.0” encoding=”utf-8”?>

<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”

xmlns:tns=”http://dmsg2.cs.wayne.edu/view”

xmlns:s=”http://www.w3.org/2001/XMLSchema”

xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”

targetNamespace=”http://dmsg2.cs.wayne.edu/view”

xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:types>

<s:schema elementFormDefault=”qualified” targetNamespace=”http://dmsg2.cs.wayne.edu/view”>

<s:element name=”GetDataProductInfoList”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”dataProductType” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”GetDataProductInfoListResponse”>

<s:complexType>

129

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”GetDataProductInfoListResult”

type=”tns:ArrayOfDataProductInfo” />

</s:sequence>

</s:complexType>

</s:element>

<s:complexType name=”ArrayOfDataProductInfo”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”unbounded” name=”DataProductInfo”

type=”tns:DataProductInfo” />

</s:sequence>

</s:complexType>

<s:complexType name=”DataProductInfo”>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”dataID” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”dataName” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”dataDescription” type=”s:string” />

<s:element minOccurs=”0” maxOccurs=”1” name=”dataType” type=”s:string” />

</s:sequence>

</s:complexType>

<s:element name=”DeleteDataProduct”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”dataID” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

130

<s:element name=”DeleteDataProductResponse”>

<s:complexType />

</s:element>

<s:element name=”RegisterDataProduct”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”dataProductDescription” type=”s:base64Binary”

/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”RegisterDataProductResponse”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”RegisterDataProductResult” type=”s:string”

/>

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”GetDataProduct”>

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”dataID” type=”s:string” />

</s:sequence>

</s:complexType>

</s:element>

<s:element name=”GetDataProductResponse”>

131

<s:complexType>

<s:sequence>

<s:element minOccurs=”0” maxOccurs=”1” name=”GetDataProductResult” type=”s:base64Binary”

/>

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

<wsdl:message name=”GetDataProductInfoListSoapIn”>

<wsdl:part name=”parameters” element=”tns:GetDataProductInfoList” />

</wsdl:message>

<wsdl:message name=”GetDataProductInfoListSoapOut”>

<wsdl:part name=”parameters” element=”tns:GetDataProductInfoListResponse” />

</wsdl:message>

<wsdl:message name=”DeleteDataProductSoapIn”>

<wsdl:part name=”parameters” element=”tns:DeleteDataProduct” />

</wsdl:message>

<wsdl:message name=”DeleteDataProductSoapOut”>

<wsdl:part name=”parameters” element=”tns:DeleteDataProductResponse” />

</wsdl:message>

<wsdl:message name=”RegisterDataProductSoapIn”>

<wsdl:part name=”parameters” element=”tns:RegisterDataProduct” />

</wsdl:message>

<wsdl:message name=”RegisterDataProductSoapOut”>

<wsdl:part name=”parameters” element=”tns:RegisterDataProductResponse” />

</wsdl:message>

132

<wsdl:message name=”GetDataProductSoapIn”>

<wsdl:part name=”parameters” element=”tns:GetDataProduct” />

</wsdl:message>

<wsdl:message name=”GetDataProductSoapOut”>

<wsdl:part name=”parameters” element=”tns:GetDataProductResponse” />

</wsdl:message>

<wsdl:portType name=”DataProductManagementSoap”>

<wsdl:operation name=”GetDataProductList”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Return Data Product List By Data Product Type: Relation, Collection, List</wsdl:documentation>

<wsdl:input name=”GetDataProductInfoList” message=”tns:GetDataProductInfoListSoapIn”

/>

<wsdl:output name=”GetDataProductInfoList” message=”tns:GetDataProductInfoListSoapOut”

/>

</wsdl:operation>

<wsdl:operation name=”DeleteDataProduct”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

DELETE A Data Product By Data ID.</wsdl:documentation>

<wsdl:input message=”tns:DeleteDataProductSoapIn” />

<wsdl:output message=”tns:DeleteDataProductSoapOut” />

</wsdl:operation>

<wsdl:operation name=”RegisterDataProduct”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Register A Data Product by Data Product Description File .</wsdl:documentation>

<wsdl:input message=”tns:RegisterDataProductSoapIn” />

<wsdl:output message=”tns:RegisterDataProductSoapOut” />

</wsdl:operation>

133

<wsdl:operation name=”GetDataProductDescription”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

Get A Data Product Description File By Data ID.</wsdl:documentation>

<wsdl:input name=”GetDataProduct” message=”tns:GetDataProductSoapIn” />

<wsdl:output name=”GetDataProduct” message=”tns:GetDataProductSoapOut” />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name=”DataProductManagementSoap” type=”tns:DataProductManagementSoap”>

<soap:binding transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”GetDataProductList”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetDataProductInfoList”

style=”document” />

<wsdl:input name=”GetDataProductInfoList”>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output name=”GetDataProductInfoList”>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”DeleteDataProduct”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/DeleteDataProduct”

style=”document” />

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

134

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”RegisterDataProduct”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/RegisterDataProduct”

style=”document” />

<wsdl:input>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”GetDataProductDescription”>

<soap:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetDataProduct”

style=”document” />

<wsdl:input name=”GetDataProduct”>

<soap:body use=”literal” />

</wsdl:input>

<wsdl:output name=”GetDataProduct”>

<soap:body use=”literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name=”DataProductManagementSoap12” type=”tns:DataProductManagementSoap”>

<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=”GetDataProductList”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetDataProductInfoList”

135

style=”document” />

<wsdl:input name=”GetDataProductInfoList”>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output name=”GetDataProductInfoList”>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”DeleteDataProduct”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/DeleteDataProduct”

style=”document” />

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name=”RegisterDataProduct”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/RegisterDataProduct”

style=”document” />

<wsdl:input>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output>

<soap12:body use=”literal” />

</wsdl:output>

136

</wsdl:operation>

<wsdl:operation name=”GetDataProductDescription”>

<soap12:operation soapAction=”http://dmsg2.cs.wayne.edu/view/GetDataProduct”

style=”document” />

<wsdl:input name=”GetDataProduct”>

<soap12:body use=”literal” />

</wsdl:input>

<wsdl:output name=”GetDataProduct”>

<soap12:body use=”literal” />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name=”DataProductManagement”>

<wsdl:port name=”DataProductManagementSoap” binding=”tns:DataProductManagementSoap”>

<soap:address location=”http://localhost:6077/DataProductManagement.asmx” />

</wsdl:port>

<wsdl:port name=”DataProductManagementSoap12” binding=”tns:DataProductManagementSoap12”>

<soap12:address location=”http://localhost:6077/DataProductManagement.asmx” />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

137

BIBLIOGRAPHY

[1] Amazon Elastic MapReduce. http://aws.amazon.com/

elasticmapreduce/.

[2] Climate simulation at sandia national laboratories. http://www.cs.sandia.

gov/capabilities/ClimateSimulation.

[3] DAX schema. http://pegasus.isi.edu/docs/schemas/dax-2.0/

dax-2.0.html.

[4] FITS. http://fits.gsfc.nasa.gov/.

[5] HDF5. http://hdf.ncsa.uiuc.edu/HDF5/.

[6] Introduction to Amazon Elastic MapReduce. http://awsmedia.s3.

amazonaws.com/pdf/introduction-to-amazon-elastic-mapreduce.

pdf.

[7] ISO/IEC 9075-1:2008 Framework (SQL/Framework). http://www.iso.

org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?

csnumber=45498.

[8] NetCDF. http://www.unidata.ucar.edu/software/netcdf/.

[9] The supercomputing science consortium. http://www.sc-2.psc.edu/.

[10] Top 500 list of world’s supercomputers. http://www.top500.org/.

[11] W3C Web Services Description Language (WSDL) 1.1. http://www.w3.org/

TR/wsdl.

138

[12] Web services business process execution language version 2.0. http://www.

oasis-open.org/committees/wsbpel/.

[13] XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition). http://www.

w3.org/TR/xpath-datamodel/.

[14] Workflow management coalition. terminology and glossary. Technical report, Work-

flow Management Coalition, Brussels, 1996. http://www.aiim.org/wfmc/.

[15] Xscufl language reference, 2004. http://www.ebi.ac.uk/˜tmo/mygrid/

XScuflSpecification.html.

[16] Process definition interface – XML process definition language, (WFMCTC-1025).

Technical report, Workflow Management Coalition, 2005.

[17] W. Aalst, A. van der, B. Hofstede, and A. Kiepuszewski. Advanced workflow patterns.

In O. Etzion en P. Scheuermann, editor, International Conference on Cooperative In-

formation Systems, volume 1901, pages 18–29, 2000.

[18] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst. Facilitating flexibil-

ity and dynamic exception handling in workflows through worklets. In International

Conference on Advanced Information Systems Engineering, pages 45–50, 2005.

[19] A. Akram, D. Meredith, and R. Allan. Evaluation of BPEL to scientific workflows. In

IEEE International Symposium on Cluster Computing and the Grid, volume 1, pages

269 – 274, 2006.

[20] G. Allen, K. Davis, K. Dolkas, N. Doulamis, T. Goodale, T. Kielmann, A. Merzky,

J. Nabrzyski, J. Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. En-

abling applications on the Grid: A GridLab overview. International Journal of High

Performance Computing Applications: Special issue on Grid Computing: Infrastruc-

ture and Applications, 17:449–466, 2003.

139

[21] G. Alonso, B. Reinwald, and C. Mohan. WIDE - a distributed architecture for work-

flow management. In International Workshop on Research Issues in Data Engineering,

pages 76 – 79, 1997.

[22] M. Alt, A. Hoheisel, H. Pohl, and S. Gorlatch. A Grid workflow language using

high-level Petri Nets. In International Conference on Parallel Processing and Applied

Mathematics, pages 715–722, 2005.

[23] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process

execution language for Web services, version 1.1. 2003.

[24] A. Barker and J. Hemert. Scientific workflow: A survey and research directions. In

The Third Grid Applications and Middleware Workshop, 2007.

[25] G. Bell, T. Hey, and A. Szalay. Beyond the data deluge. Science, 323(5919):1297–

1298, 2009.

[26] S. Bowers and B. Ludäscher. Actor-oriented design of scientific workflows. In Inter-

national Conference on Conceptual Modeling, pages 369–384, 2005.

[27] S. Bowers, B. Ludäscher, A. Ngu, and T. Critchlow. Enabling scientific workflow reuse

through structured composition of dataflow and control-flow. International Conference

on Data Engineering Workshops, 0:70–80, 2006.

[28] M. Boylan-Kolchin. Resolving cosmic structure formation with the Millennium-II

simulation. Monthly Notices of the Royal Astronomical Society, 398(3):1150–1160,

2009.

[29] J. Brown, C. Ferner, T. Hudson, A. Stapleton, R. Vettera, T. Carland, A. Martin, J. Mar-

tin, A. Rawls, W. Shipman, and M. Wood. GridNexus: A Grid services scientific

workflow system. International Journal of Computer Information Science, 6(2):72–

82, 2005.

140

[30] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for simulating

and prototyping heterogeneous systems. International Journal in Computer Simula-

tion, 4:155–182, 1994.

[31] L. Cabellos, I. Plasencia, E. Fernández-del Castillo, M. Owsiak, B. Palak, and

Plóciennik M. Scientific workflow orchestration interoperating HTC and HPC re-

sources. Computer Physics Communications, 182(4):890–897, 2011.

[32] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. VisTrails:

visualization meets data management. In ACM SIGMOD International Conference on

Management of Data, pages 745–747, 2006.

[33] A. Charfi and M. Mezini. Aspect-oriented workflow languages. OnTheMove Federated

Conferences, 1:183–200, 2006.

[34] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe. Wide area data

replication for scientific collaborations. In IEEE/ACM International Workshop on Grid

Computing, pages 1–8, 2005.

[35] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor,

and I. Wang. Programming scientific and distributed workflow with Triana services.

Concurrent Computing : Practice and Experience (Special Issue: Workflow in Grid

Systems), 18(10):1021–1037, 2006.

[36] H. Claus and A. Gustavo. Exception handling in workflow management systems. IEEE

Transactions on Software Engineering, 26(10):943–958, 2000.

[37] E. F. Codd. A relational model of data for large shared data banks. Communications

of the ACM, 13(6):377–387, 1970.

[38] E. F. Codd. Relational completeness of data base sublanguages. In Database Systems,

pages 65–98, 1972.

141

[39] E. F. Codd. Extending the database relational model to capture more meaning. ACM

Transactions on Database Systems, 4(4):397–434, 1979.

[40] P. Cox, R. Betts, C. Jones, S. Spall, and I. Totterdall. Acceleration of global warming

due to carbon-cycle feedbacks in a coupled climate model. Nature, 408:184–187,

2000.

[41] V. Curcin, M. Ghanem, Y. Guo, M. Kohler, A. Rowe, J. Syed, and Wendel P. Discovery

Net: Towards a Grid of knowledge discovery. In ACM International Conference on

Knowledge Discovery and Data Mining., pages 23–26, 2002.

[42] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.

In USENIX Symposium on Operating Systems, pages 137–150, 2004.

[43] E. Deelman and A. Chervenak. Data management challenges of data-intensive scien-

tific workflows. In IEEE/ACM International Symposium on Cluster, Cloud, and Grid

Computing, pages 687–692, 2008.

[44] E. Deelman and Y. Gil. Workshop on the challenges of scientific workflows. Technical

report, Information Sciences Institute, University of Southern California, 2006.

[45] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,

B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz. Pegasus: a framework for map-

ping complex scientific workflows onto distributed systems. Scientific Programming

Journal, 13(3):219–237, 2005.

[46] F. DeRemer and H. Kron. Programming-in-the-Large versus Programming-in-the-

Small. In Fachtagung über Programmiersprachen, pages 80–89.

[47] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-centric

business processes. In International Conference on Database Theory, pages 252–267,

2009.

142

[48] L. Dou, D. Zinn, T. McPhillips, S. Köhler, S. Riddle, S. Bowers, and B. Ludäscher.

Scientific workflow design 2.0: Demonstrating streaming data collections in Kepler.

In IEEE International Conference on Data Engineering, pages 1296–1299, 2011.

[49] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,

J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and M. Wieczorek. ASKALON: A

development and grid computing environment for scientific workflows. Workflows for

eScience, Scientific Workflows for Grids.

[50] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications with

AGWL: an abstract grid workflow language. IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing, pages 676–685, 2005.

[51] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications with

AGWL: an abstract grid workflow language. IEEE International Symposium on Clus-

ter Computing and the Grid, 2:676–685, 2005.

[52] X. Fei, S. Lu, T. Breithaupt, J. Hardege, and J. Ram. Modeling matefinding behavior

of the swarming polychaete, Nereis Succinea, with TangoInSilico, a scientific work-

flow based simulation system for sexual searching. Invertebrate Reproduction and

Development, 52(1-2):69–80, 2008.

[53] X. Fei, S. Lu, and C. Lin. A MapReduce-enabled scientific workflow composition

framework. In IEEE International Conference on Web Services, pages 663–670, 2009.

[54] Ludwig Institute for Cancer Research. New computational tool for can-

cer treatment. http://www.sciencedaily.com/releases/2010/01/

100129151756.htm.

[55] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: a virtual data system for

representing, querying, and automating data derivation. In Scientific and Statistical

Database Management Conference, pages 37–46, 2002.

143

[56] J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo. Managing

rapidly-evolving scientific workflows. In International Provenance and Annotation

Workshop, pages 10–18, 2006.

[57] C. Fritz, R. Hull, and J. Su. Automatic construction of simple artifact-based business

processes. In International Conference on Database Theory, pages 225–238, 2009.

[58] O. Gelly. LAU software system: A high-level data-driven language for parallel pro-

cessing. In International Conference on Parallel Processing, page 255, 1976.

[59] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and efficient work-

flow deployment of data-intensive applications on Grids with MOTEUR. International

Journal of High Performance Computing Applications, 22(3):347–360, 2008.

[60] A. Goderis, C. Brooks, I. Altintas, E. Lee, and G. Carol. Composing different models

of computation in Kepler and Ptolemy II. In International Conference on Computa-

tional Science, pages 182–190, 2007.

[61] D. Goodman. Introduction and evaluation of Martlet: a scientific workflow language

for abstracted parallelisation. In WWW, pages 983–992, 2007.

[62] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D. DeWitt, and G. Heber. Scientific

data management in the coming decade. ACM SIGMOD Record, 34(4):34–41, 2005.

[63] S. Gregory and M. Paschali. A Prolog-based language for workflow programming.

COORDINATION, pages 56–75, 2007.

[64] J. Han, Y. Cho, and J. Choi. A workflow language based on structural context model for

ubiquitous computing. IEEE International Conference on Embedded and Ubiquitous

Computing, pages 879–889, 2005.

[65] D. Handl. HotFlow - a visual language for workflow applications in e-commerce.

Visual Languages, pages 185–186, 1999.

144

[66] P. Heinl and H. Schuster. Towards a highly scalable architecture of workflow manage-

ment systems. In International Conference on Database and Expert System Applica-

tions, 1996.

[67] T. Hey, S. Tansley, and K. Tolle. The Fourth Paradigm: Data-Intensive Scientific

Discovery. Microsoft Research, 2009.

[68] D. Hollingsworth. The workflow reference model. The Workflow Management Coali-

tion, 1994.

[69] Y. Huang and Q. Huang. Extensions to Web service techniques for integrating Jini into

a service-oriented architecture for the grid. In International Conference on Computa-

tional Science, pages 254–263, 2003.

[70] Y. Huang and Q. Huang. WS-based workflow description language for message pass-

ing. In IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,

pages 558–565, 2005.

[71] Y. Huang and Shan M. Policies in a resource manager of workflow systems: Mod-

eling, enforcement and management. Technical Report HPL-98-156, HP Software

Technology Laboratory, 1998.

[72] C. Hunt, C. Ferner, and J. Brown. JXPL: an XML-based scripting language for work-

flow execution in a grid environment. In IEEE SoutheastCon, pages 345–350, 2005.

[73] W. Johnston, Hanna J., and R. Millar. Advances in dataflow programming languages.

ACM Comput. Surv., 36(1):1–34, 2004.

[74] W. Johnston, Hanna J., and R. Millar. Advances in dataflow programming languages.

ACM Computing Surveys, 36(1):1–34, 2004.

[75] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, C. Barreto, and

G. Brown. Web services choreography description language version 1.0. 2005.

145

[76] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, C. von Riegen,

P. Schmidt, and I. Trickovic. WS-BPEL Extension for Sub-processes - BPEL-SPE.

Joint white paper, IBM and SAP, 2005.

[77] M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen, and Schmidt P. Trick-

ovic I. von Riegen, C. WS-BPEL Extension for People C BPEL4People. Joint white

paper, IBM and SAP, 2005.

[78] C. Lee, S. Matsuoka, D. Talia, A. Sussmann, M. Uller, G. Allen, and J. Saltz. A Grid

programming primer. Technical report, Global Grid Forum, 2001.

[79] E. Lee and S. Neuendorffer. MoML a modeling markup language in XML version 0.4.

Technical report, University of California at Berkeley, March 2000.

[80] F. Leymann. Web services flow language (WSFL 1.0). Technical report, IBM Software

Group, 2001.

[81] F. Leymann and W. Altenhuber. Managing business processes as an information re-

source. IBM Systems Journal, 33(2):36–47, 1994.

[82] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Prospective and retrospective prove-

nance collection in scientific workflow environments. In International Conference on

Services Computing, pages 449–456, 2010.

[83] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. OPQL: A first OPM-Level query lan-

guage for scientific workflow provenance. In International Conference on Services

Computing, pages 136–143, 2011.

[84] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi. Storing, reasoning, and querying OPM-

Compliant scientific workflow provenance using relational databases. Future Genera-

tion Computer Systems, 27(6):781–789, 2011.

146

[85] C. Lin, S. Lu, X. Fei, A. Chebotko, Z. Lai, D. Pai, F. Fotouhi, and J. Hua. A reference

architecture for scientific workflow management systems and the VIEW SOA solution.

IEEE Transactions on Services Computing, 2(1):79–92, 2009.

[86] C. Lin, S. Lu, X. Fei, D. Pai, and J. Hua. A task abstraction and mapping approach to

the shimming problem in scientific workflows. In IEEE International Conference on

Services Computing, pages 284–291, 2009.

[87] D. Liu and M. Franklin. GridDB: a data-centric overlay for scientific grids. In In-

ternational Conference on Very large data bases, pages 600–611. VLDB Endowment,

2004.

[88] S. Lu and J. Zhang. Collaborative scientific workflows. In IEEE International Confer-

ence on Web Services, pages 527–534, 2009.

[89] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,

and Y. Zhao. Scientific workflow management and the Kepler system. Concurrent

Computing : Practice and Experience, 18(10):1039–1065, 2006.

[90] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and

K. Sycara. OWL-S: Semantic markup for Web services. Retrieved from

http://www.w3.org/Submission/OWL-S/.

[91] T. McPhillips, S. Bowers, and B. Ludäscher. Collection-oriented scientific workflows

for integrating and analyzing biological data. In International Workshop on Data In-

tegration in the Life Sciences, volume 4075 of LNCS, pages 248–263, 2006.

[92] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh. Webwork: METEOR2’s

web-based workflow management system. Journal of Intelligent Information Systems,

10(2):185–215, 1998.

147

[93] J. Miller, A. Sheth, K. Kochut, and X. Wang. CORBA-based runtime architectures for

workflow management systems. Journal of database management, special issue on

multidatabases, 7(1):16–27, 1996.

[94] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams,

T. Oinn, and C. Goble. Taverna reloaded. In International conference on scientific and

statistical database management, pages 471–481, 2010.

[95] L. Moreau, J. Freire, J. Futrelle, R. Mcgrath, J. Myers, and P. Paulson. The open

provenance model: An overview. pages 323–326. 2008.

[96] J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann. BPELlight. In BPM,

pages 214–229, 2007.

[97] T. Oinn, M. J. Addis, J. Ferris, D. Marvin, M. Senger, T. Carver, M. Greenwood,

K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and

enactment of bioinformatics workows. Bioinformatics, 20(17):3045–3054, 2004.

[98] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble,

A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens,

A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow environment for

the life sciences. Concurrency and Computation: Practice and Experience, 18:1067–

1100, 2006.

[99] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: a not-so-

foreign language for data processing. In ACM SIGMOD International Conference on

Management of Data, pages 1099–1110, 2008.

[100] C. Ouyang, E. Verbeek, A. van der, S. Breutel, M. Dumas, and A. ter Hofstede. Formal

semantics and analysis of control flow in WS-BPEL. Science of Computer Program-

ming, 67(2-3):162–198, 2007.

148

[101] J. Ram, C. Mller, M. Beckmann, and J. Hardege. The spawning pheromone cysteine-

glutathione disulfide (‘Nereithione’) arouses a momponent nuptial behaviour and elec-

trophysiological activity in Nereis Succinea males. Federation of American Societies

for Experimental Biology, 13:945–952, 1999.

[102] J. Rasure and C. Williams. An integrated data flow visual language and software

development environment. Journal of Visual Languages and Computing, 2:217–246,

1991.

[103] D. Roman, H. Lausen, U. Keller, U. Oren, C. Bussler, M. Kifer, and

D. Fensel. Web service modeling ontology (WSMO). Retrieved from

http://www.wsmo.org/2004/d2/v1.0/.

[104] M. Roth, H. Korth, and A. Silberschatz. Extended algebra and calculus for nested

relational databases. ACM Transactions on Database Systems, 13(4):389–417, 1988.

[105] N. Russell and A. ter Hofstede. newYAWL: Towards workflow 2.0. Special issue of

LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC) II on

Concurrency in Process-Aware Information Systems, 5460:79–97, 2009.

[106] N. Russell, W. van der Aalst, and A. ter Hofstede. Workflow exception patterns. In

International Conference on Advanced Information Systems Engineering, pages 288–

302, 2006.

[107] H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A general framework for the exe-

cution of heterogeneous programs in workflow management systems. In International

Conference on Cooperative Information Systems, pages 104 – 113, 1996.

[108] D. Shukla and B. Schmidt. Essential Windows Workflow Foundation. Addison-Wesley

Pearson Education, 2007.

[109] H. Sieburg. Physiological studies in silico. Studies in the Sciences of Complexity,

12:321–342, 1990.

149

[110] Y. Simmhan, B. Plale, and D. Gannon. Karma2: Provenance management for data-

driven workflows. International Journal of Web Services Research, 5(2):1–22, 2008.

[111] M. Sonntag, D. Karastoyanova, and E. Deelman. BPEL4Pegasus: Combining busi-

ness and scientific workflows. In International Conference of Distributed Computing

Systems, pages 728–729, 2010.

[112] V. Springel. Simulations of the formation, evolution, and clustering of galaxies and

quasars. Nature, 435(7042):629–636, 2005.

[113] J. Sroka, J. Hidders, P. Missier, and C. Goble. A formal semantics for the Taverna 2

workflow model. Journal of Computer and System Sciences, 76:490–508, 2010.

[114] C. Stefansen. SMAWL: A small workflow language based on CCS. Center for Ad-

vancement of Informal Science Education, 2005.

[115] W. Tan, P. Missier, I. Foster, R. Madduri, D. Roure, and C. Goble. A comparison of

using Taverna and BPEL in building scientific workflows: the case of caGrid. Concur-

rency and Computation: Practice and Experience, 22(9):1098–1117, 2010.

[116] I. Taylor, E. Deelman, D. Gannon, and M. Shields. Workflows for e-science. Springer,

2007.

[117] D. Turi, P. Missier, C. Goble, D. Roure, and T. Oinn. Taverna workflows: Syntax

and semantics. In IEEE International Conference on e-Science and Grid Computing,

pages 441–448, 2007.

[118] W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.

Information Systems, 30(4):245–275, 2005.

[119] W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and

Systems. MIT press, 2002.

150

[120] W3C. OWL Web Ontology Language Reference. W3C Recommendation, 10 February

2004. M. Dean and G. Schreiber (Eds.). Available from http://www.w3.org/

TR/2004/REC-owl-ref-20040210/.

[121] Y. Wang and J. Huai. Comparative analysis of BPEL4WS and a Grid workflow lan-

guage called GPEL. In International Conference on Services Computing, pages 253–

254, 2005.

[122] Y. Wang and J. Huai. A new Grid workflow description language. In International

Conference on Services Computing, pages 257–260, 2005.

[123] I. Wassink, H. Rauwerda, P. van der Vet, T. Breit, and A. Nijholt. E-BioFlow: Different

perspectives on scientific workflows. In BIRD, pages 243–257, 2008.

[124] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. Ferguson. Web Ser-

vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WSBPEL, WS-

Reliable Messaging and More. Prentice-Hall, Upper Saddle River, New Jersey, 2005.

[125] K. Weng. Stream oriented computation in recursive data-flow schemas. Technical

report, Masters Thesis,Laboratory for Computer Science, Massachusetts Institute if

Technology, 1975.

[126] P. Whiting and R. Pascoe. A history of data-flow languages. IEEE Annals of the

History of Computing, 16(4):38–59, 1994.

[127] G. Wirtz. Using a visual software engineering language for specifying and analyzing

workflows. Visual Languages, pages 97–98, 2000.

[128] P. Wong and J. Gibbons. A process-algebraic approach to workflow specification and

refinement. In Software Composition, pages 51–65, 2007.

[129] Y. Yang, S. Tang, W. Zhang, and L. Fang. A workflow language for grid services in

OGSI-based grids. In Grid and Cooperative Computing, pages 65–72, 2004.

151

[130] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.

ACM SIGMOD Record, 34(3):44–49, 2005.

[131] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda, and J. Currey.

DryadLINQ: A system for general-purpose distributed data-parallel computing using a

high-level language. In USENIX Symposium on Operating Systems, pages 1–14, 2008.

[132] Y. Zhao, J. Dobson, I. Foster, L. Moreau, and M. Wilde. A notation and system for

expressing and executing cleanly typed workflows on messy scientific data. SIGMOD

Record, 34(3):37–43, 2005.

152

ABSTRACT

A SCIENTIFIC WORKFLOW FRAMEWORK
FOR

SCIENTIFIC DATA QUERYING AND PROCESSING

by

XUBO FEI

December 2011

Advisor: Dr. Shiyong Lu

Major: Computer Science

Degree: Doctor of Philosophy

We are at the beginning of the new era of “e-science”. Researchers in many areas of

science, especially in astrophysics, physics, climatology and biology, are now facing tremen-

dous increases in data volumes, as well as corresponding data analysis tools. These increased

data and tools demand a better framework to manage the new generation scientific research

cycle from data capture, data curation to data analysis, data query and data visualization.

Scientific workflows are proving to be one of the key technologies for scientists to formalize

and structure complex scientific processes to enable and accelerate many significant scien-

tific discoveries. Although several scientific workflow management systems (SWFMSs) are

developed, a formal scientific workflow composition framework, in which workflows and

constructs can be composed arbitrarily to process and query collectional scientific data sets,

is still to be proposed.

In this thesis, I make several contributions towards formalizing a scientific workflow com-

position framework. First, We proposed a dataflow-based scientific workflow composition

model including a scientific workflow model that separates the declaration of the workflow

interface from the definition of its functional body; and a set of workflow constructs, includ-

ing Map, Reduce, Tree, Loop, Conditional, and Curry, which are fully compositional one

153

with another. Our workflow composition framework is unique in that workflows are the only

operands for composition; in this way, our approach elegantly solves the two-world prob-

lem in existing composition frameworks, in which composition needs to deal with both the

world of tasks and the world of workflows. Second, We formalized a collection-oriented

data model, called collectional data model, to model hierarchical collection-oriented scien-

tific data, and a set of well-defined operators to manipulate and query such data. To our best

knowledge, this is the first algebraic approach to modeling collection-oriented scientific data.

Finally, we developed a prototype scientific workflow management system, called VIEW.

The VIEW system implemented the above techniques in its subsystems and integrated them

within a service-oriented architecture.

154

AUTOBIOGRAPHICAL STATEMENT

Xubo Fei

Xubo Fei is currently working toward the PhD degree in the Department of Computer Sci-

ence, Wayne State University. He is currently a member of the Scientific Workflow Research

Laboratory (the SWR Lab). His current research interests include scientific workflows, sci-

entific data management and their applications in bioinformatics and biology simulation. His

research has resulted in several refereed several papers in refereed international journals and

conferences.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2011

	A scientific workflow framework for scientific data querying and processing
	Xubo Fei
	Recommended Citation

