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Chapter 1 

1.1 Epidermal Growth Factor Receptor 

A. EGFR discovery and identification of EGFR family of proteins 

Discovery/Structure of EGFR 

 The epidermal growth factor receptor (EGFR) was discovered as a result of the finding 

that epidermal growth factor (EGF), a potent mitogen, showed specific, rapid, and reversible 

binding to the cell surface (Hollenberg and Cuatrecasas, 1973; O'Keefe et al., 1974; 

Carpenter et al., 1978; Das et al., 1978; Linsley et al., 1979).  Sequence and structural 

analysis showed that EGFR contains three primary domains: a 621 amino acid extracellular 

EGF binding domain, a 23 amino acid transmembrane domain, and a 542 amino acid 

cytoplasmic domain (Fig. 1.1).  The ligand binding domain of EGFR was further subdivided 

into four sub-domains, domains I, II, III and IV.  Domains I and III were shown to be directly 

involved in ligand binding to the receptor (Lax et al., 1989), while domain II was necessary 

for receptor dimerization, and domain IV was required for localization to membrane 

microdomains (Heldin, 1995; Garrett et al., 2002; Ogiso et al., 2002; Yamabhai and 

Anderson, 2002).  The transmembrane domain, along with an N-terminal signal sequence, 

were responsible for directing EGFR to the plasma membrane where it becomes a type I 

integral membrane protein (Ullrich and Schlessinger, 1990).  The cytoplasmic domain of 

EGFR has been demonstrated to contain a tyrosine kinase domain and c-terminal regulatory 

region that is autophosphorylated upon kinase activation (Buhrow et al., 1982; Cohen et al., 

1982a; Cohen et al., 1982b; Buhrow et al., 1983).  Specifically, EGFR autophosphorylation 

occurs on tyrosines 992, 1068, 1086, 1148, and 1173 (Downward et al., 1984a). 



Figure 1.1: EGFR structure, dimerization, and activation.  Before activation, EGFR exists as 

an inactive dimer in the membrane.  Upon ligand binding, a conformational change occurs in 

both the extracellular and intracellular domains leading to autophosphorylation of the receptor 

complex.
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 3 

  Phosphorylation of these residues results in the recruitment and activation of downstream 

signaling molecules that participate in cell growth, survival, migration, differentiation, and 

angiogenesis [reviewed in (Jorissen et al., 2003)]. 

EGFR tyrosine kinase family members  

Further analyses of the structural and functional qualities of EGFR revealed a common 

protein family.  The EGFR tyrosine kinase family consists of four members that include 

EGFR, HER2, HER3, and HER4. 

HER2 

 Coussens and colleagues discovered a receptor tyrosine kinase with high homology to 

EGFR, human EGFR-related 2 (HER2), while other laboratories identified the same protein 

in human mammary carcinoma cells, naming it ErbB2 (Coussens et al., 1985; King et al., 

1985).  HER2 is the most homologous to EGFR in the family, and is thought to be the major 

partner for heterodimerization (Tzahar et al., 1996; Graus-Porta et al., 1997).  HER2 contains 

82% structural homology with EGFR in the kinase domain, 33% in the c-terminus, and 44% 

in the extracellular domain (Earp et al., 1995).  HER2 has no known ligand, thus is thought to 

be activated following heterodimerization, however, when HER2 is over-expressed, it may 

form active homodimers (Tzahar et al., 1996). 

HER3   

HER3 was discovered through cDNA homology screenings of EGFR in 1989 (Kraus et 

al., 1989).  HER3 possesses a 59% structural similarity to EGFR within the kinase domain, 

24% in the c-terminus and 36% in the extracellular domain (Earp et al., 1995).  This receptor 
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lacks intracellular kinase activity, and therefore, becomes phosphorylated only when 

heterodimerized (Guy et al., 1994b; Kim et al., 1998).  Neuregulins, rather than the EGFR 

ligands described later, are the ligands for HER3 (Stove and Bracke, 2004).   

HER4  

The final EGFR family member, HER4 was also discovered through cDNA homology 

screening of EGFR (Plowman et al., 1993a).  HER4 presents a 79% structural similarity to 

EGFR in the kinase domain, 28% in the c-terminus, and 48% in the ligand-binding domain 

(Earp et al., 1995).  As with HER3, neuregulins are the primary ligands for HER4 (Stove and 

Bracke, 2004).  

B. Activation of EGFR 

i. EGFR Ligands 

EGFR has six known ligands that all posses an EGF-like domain that may be sufficient to 

confer binding specificity (Beerli and Hynes, 1996).  Ligands for EGFR include EGF, 

amphiregulin, transforming growth factor alpha, betacellulin, heparin-binding EGF-like 

growth factor, and epiregulin (Marquardt et al., 1984; Shoyab et al., 1989; Higashiyama et 

al., 1991; Shing et al., 1993; Toyoda et al., 1995).  These proteins differ in sequence identity 

(with ~25% homology between each other), as well as glycosylation, presence of heparin-

binding domains, and other biochemical properties (Harris et al., 2003).  Primarily, these 

proteins all have cysteine rich EGF modules.  The restrictive spacing of these residues and 

the splicing and functional placement of this module distinguishes these ligands from other 

EGF module-containing proteins (Groenen et al., 1994; Van Zoelen et al., 2000; van der 

Woning et al., 2006).  Despite diversity in primary sequences, the tertiary structures of EGFR 
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ligands are all similar.  Specifically, orientation of two beta sheet domains, a short omega 

loop, and a leucine at the fifth position past the sixth cysteine have been shown to be similar 

or identical in all EGFR binding ligands (Harvey et al., 1991; Matsunami et al., 1991; 

Hommel et al., 1992; Barbacci et al., 1995; Chau et al., 1996; Jacobsen et al., 1996; Louie et 

al., 1997; van de Poll et al., 1997; Ballinger et al., 1998).   

Ligand binding to the receptor results in an amplification of EGFR activation such that 

occupancy of 20% of receptors by ligand results in maximal cellular proliferation 

(Hollenberg and Cuatrecasas, 1973).  However, this amplification may be contingent on the 

differential binding affinities of the ligands for EGFR, as well as their ability to recycle the 

receptor or target the receptor for degradation due to the pH stability of the ligand-receptor 

complex (French et al., 1995; Olayioye et al., 2000).  Most EGFR ligands act in an autocrine 

or paracrine fashion (Olayioye et al., 2000).  Activation of EGFR ligands requires proteases 

which release the ligand from the cell surface and remove the regulatory domains (Lee et al., 

1985; Massague and Pandiella, 1993; Harris et al., 2003).  These ligands are summarized 

below and in Table 1.1. 

EGF 

Epidermal growth factor (EGF) was discovered as a peptide growth factor purified from 

mouse salivary glands by Cohen and colleagues.  EGF treatment in newborn mice led to 

early tooth eruption and eyelid opening (Cohen, 1962).  EGF is produced in a precursor form 

that needs to be proteolytically cleaved to be functional.  The active form of EGF is a 53 

amino acid peptide that binds specifically to EGFR (Salomon et al., 1995). 
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Ligand 

Size 

(processed 

amino 

acids) 

Homology 

to EGF 

(%) 

EGFR 

receptor 

affinity 

(nM) 

Other 

EGFR 

family 

member 

binding 

Overexpression Knockout References 

EGF 53 _ 1.9 - 
Hyperproliferation 

of skin cells 
No phenotype 

Salomon et al.,1995, 

Jones et al., 1999 

AREG 78-84 38 90 - 
Inflammatory skin 

lesions 

Decreased 

ductal 

development 

in the 

mammary 

gland 

Shoyab et al., 1989, 

Brown et al., 1998, 

Adam et al., 1995, 

Thompson et al., 1996, 

Neelam et al., 1998, 

Jones et al., 1999  

TGFalpha 50 30-40 9.2 - 

Hyperproliferation 

of liver, metaplasia 

of pancreas, breast 

carcinoma 

No phenotype 

Salomon et al., 1995, 

Salomon et al., 1990, 

Massague and 

Pandiella, 1993, Jones 

et al., 1999 

BTC 80 32 1.4 HER4 

Growth retardation 

and 

pulmonary/cardiac 

distress 

No phenotype 
Sasada et al., 1993, 

Shing et al., 1993, Jones 

et al., 1999 

HB-EGF 75 43 7.1 HER4 
Hyperplasia of skin 

and heart 

Lethal; 

cardiac 

abnormalities 

Higashiyama et al., 

1991, Schneider and 

Wolf, 2009, Jones et al., 

1999 

Epiregulin 46 37 2800 HER4 

Susceptibility to 

cancer causing 

intestinal damage 

No phenotype 

Toyoda et al., 1995, 

Shelly et al., 1998, 

Komurasaki et al., 2002, 

Jones et al., 1999 

 

Table 1.1: Structure, affinity, and function properties of EGFR ligands.  
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AREG 

Amphiregulin (AREG) was discovered as an EGFR ligand produced by MCF-7 breast 

adenocarcinoma cells.  It was named “amphi” due to an apparent, but yet to be validated, 

growth inhibitory effect in human neuroblastoma and adenocarcinoma cell lines, and a 

growth stimulatory effect in human fibroblast, cervical, ovarian, and other breast carcinoma 

cell lines (Shoyab et al., 1988).  AREG is also synthesized as a precursor protein that is 

cleaved from the membrane, to produce a 78-84 amino acid peptide that shares 38% 

homology with EGF (Shoyab et al., 1989; Brown et al., 1998a).  Like EGF, AREG binds 

specifically to EGFR.  The binding affinity for AREG to EGFR is less than EGF due 

potentially to a methionine substitution in a conserved region of the ligand (See Table 1.1) 

(Adam et al., 1995; Thompson et al., 1996; Neelam et al., 1998; Jones et al., 1999). 

TGFα 

Transforming growth factor alpha (TGFα) was discovered as a low molecular weight 

polypeptide able to induce transformation of normal rat kidney fibroblasts (de Larco and 

Todaro, 1978).  TGFα is a 50 amino acid peptide when fully processed with 30-40% 

sequence homology to EGF (Salomon et al., 1995).  This ligand binds specifically and with 

high affinity to EGFR (Table 1.1) (Salomon et al., 1990; Massague and Pandiella, 1993).  It 

is expressed during normal embryogenesis and in a number of adult tissues including 

regenerating populations of epithelial cells (Kudlow and Bjorge, 1990; Yasui et al., 1992).   

Betacellulin 

Betacellulin (BTC) was identified from conditioned media of pancreatic beta cell tumor 

lines, and binds to both EGFR and HER4 with high affinity (Table 1.1) (Sasada et al., 1993; 
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Jones et al., 1999).   BTC is an 80 amino acid peptide that shares 32% homology with EGF 

(Sasada et al., 1993; Shing et al., 1993).  BTC is also expressed in many mesenchymal and 

epithelial cell lines, particularly in the pancreas, liver, kidney, and small intestine, as well as 

the heart, lung, colon, testis, and ovary (Sasada et al., 1993; Seno et al., 1996; Dunbar et al., 

1999; Dunbar and Goddard, 2000). 

HB-EGF 

Heparin-binding epidermal growth factor (HB-EGF) was purified originally from 

conditioned medium of a human lymphoma cell line (Higashiyama et al., 1991).  HB-EGF is 

a 75 amino acid peptide that shares 43% homology with EGF.  HB-EGF binds to EGFR with 

high affinity (Table 1.1), and is also capable of binding HER4 and, potentially, N-arginine 

dibasic convertase (Higashiyama et al., 1991; Schneider and Wolf, 2009).  HB-EGF is highly 

controlled, both in timing and distribution, as it is induced within the uterine luminal 

epithelium at the site of blastocyst apposition approximately six hours before uterine 

implantation (Paria et al., 1999).  HB-EGF is the only EGFR ligand whose loss results in 

lethality due to defects in cardiac and lung function [reviewed in (Schneider and Wolf, 

2009)]. 

Epiregulin 

Epiregulin was purified from conditioned media of NIH 3T3/clone T7 cells in a 46 amino 

acid soluble form (Toyoda et al., 1995).  Epiregulin is 37% homologous to EGF (Toyoda et 

al., 1995).  Epiregulin is capable of binding to both EGFR and HER4, however, it may 

preferentially activate EGFR-containing heterodimers (Shelly et al., 1998).  This ligand is 

expressed primarily in placenta and peripheral blood leukocytes, and in cancers of the 



 9 

bladder, lung, kidney, pancreas, and colon (Toyoda et al., 1997; Zhu et al., 1999).  It is a 

stronger mitogenic signal as compared to EGF, although epiregulin has a far weaker binding 

affinity for EGFR (Table 1.1) (Toyoda et al., 1995; Jones et al., 1999; Komurasaki et al., 

2002).   

Mice with disruption in EGFR ligand expression have indentified functional redundancy 

between EGFR ligands, as well as specific contributions of individual ligands to EGFR-

mediated pathways (Luetteke et al., 1999).  Loss of EGF gene expression shows no true 

phenotype alone, however over expression results in hyperproliferation of epidermal basal 

layer cells (Schneider and Wolf, 2009).  Knockout mouse models have shown that AREG 

expression is related to ductal development (Luetteke et al., 1999).  Overexpression of AREG 

results in psoriasis-like inflammatory lesions (Schneider and Wolf, 2009).  Overexpression of 

TGFα results in hyperproliferation of the liver, metaplasia of the pancreas, and breast 

carcinoma, while, in contrast to AREG, knockout models showed no developmental 

phenotype in the mammary gland (Matsui et al., 1990; Sandgren et al., 1990; Sandgren et al., 

1995).    As with EGF, no phenotype is reported due to loss of BTC alone, however, 

overexpression results in growth retardation and an abnormally large heart and lungs which 

result in pulmonary and cardiac distress  (Schneider and Wolf, 2009).  Mice lacking the 

ability to shed HB-EGF develop severe heart abnormalities (similar to HB-EGF knockout) 

while mice expressing constitutively soluble HB-EGF suffer with hyperplasia of the skin and 

heart (Yamazaki et al., 2003).  Knockout of epiregulin results in no developmental 

abnormalities, however, epiregulin knockout mice are more susceptible to cancer-

predisposing intestinal damage (Lee et al., 2004).   
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ii. Homodimerization 

 In 1987, Yarden and Schlessinger described a reversible aggregation of EGFR upon EGF 

stimulation, suggesting that EGFR may dimerize (Yarden and Schlessinger, 1987).  Early 

evidence of this possible dimerization has been described by Zidovetzki and colleagues, and 

was hypothesized to have a role in EGFR function (Zidovetzki et al., 1981; Schreiber et al., 

1983).  Initial studies utilizing covalent cross-linking reagents have suggested that EGFR 

dimers are formed upon ligand-binding to the receptor (Cochet et al., 1988; Lax et al., 1989; 

Lax et al., 1991; Tanner and Kyte, 1999).  However, more recent technologies such as 

fluorescence resonance energy transfer (FRET), single-molecule imaging of EGFR, and 

biophysical studies, have implied the existence of pre-formed dimers of EGFR on cell 

membranes (Gadella and Jovin, 1995; Sako et al., 2000; Teramura et al., 2006; Clayton et al., 

2007).  Further studies have indicated that dimerization and activation of the receptor are 

independent events (Van de Vijver et al., 1991; Yu et al., 2002).  Unfortunately, limitations 

of crystallography techniques used to analyze the membrane bound EGFR have prevented 

the analyses of an intact EGFR molecule.  However, crystallography has demonstrated that 

asymmetric orientation of the intracellular domains of the receptor pair is required before 

activation of the dimer can occur (Groenen et al., 1997; Zhang et al., 2006).  In the active 

asymmetric dimer, the c-terminal lobe of one kinase domain and the n-terminal lobe of the 

second are in contact (Fig. 1.1) (Zhang et al., 2006).  The donor kinase then promotes activity 

of the acceptor kinase (Zhang et al., 2006).  In the absence of ligand, the dimer is non-

functional due to the extracellular domain having a compact structure where the domain II 

hairpin loop is buried (Burgess et al., 2003; Ferguson et al., 2003).  Upon ligand binding to 

domains I and III of the extracellular region of the receptor, activation occurs due to a change 
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in conformation of the receptor dimer complex that brings domain II from each receptor 

molecule in contact (Heldin, 1995; Garrett et al., 2002; Ogiso et al., 2002).  This is thought to 

bring the intracellular kinase domains in closer proximity to allow autophosphorylation to 

occur (Fig. 1.1) (Zhang et al., 2006). 

iii. Regulation of EGFR via internalization and degradation of the receptor 

 The earliest notion of EGFR internalization was proposed by Carpenter and Cohen in 

1976.  Their pulse chase experiments suggested that, after approximately 10 hours, EGF 

binding to membrane receptors decreased.  New synthesis of DNA and RNA were required 

for binding efficiency to be recovered (Carpenter and Cohen, 1976).  This ten hour time point 

correlates with the discovered half life of EGFR (Stoscheck and Carpenter, 1984).  Silver 

grains with electron microscopy, fluorescence, and affinity labeling were all employed to 

analyze the loss of EGFR described by Stoscheck and Carpenter.  These analyses uncovered 

concomitant loss of EGF-binding activity or fluorescence, and loss of EGF:EGFR complex 

or staining at the cell surface with appearance of defined degradation products or increased 

EGF fluorescence in lysosomal fractions (Das and Fox, 1978; Gorden et al., 1978; Haigler et 

al., 1978; Schlessinger et al., 1978).  Internalization of the ligand-receptor complex is 

mediated via coated pits and coated vesicles (Schlessinger, 1986; Carpenter, 1987).  This 

degradation is inhibited by lyosomal inhibitors, suggesting a role of lysosomes in the 

degradation of EGFR.  Also, inhibitors of vesicular trafficking impair EGF-induced 

degradation of EGFR, suggesting that EGFR is trafficked through vesicles into the lysosomes 

(Stoscheck and Carpenter, 1984).   
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While it was previously thought that EGFR is solely degraded, as no recycling of the 

receptor had been described (King et al., 1980; Krupp et al., 1982; Lyall et al., 1985), it was 

later determined by Beguinot and colleagues that the receptor has the capacity to recycle 

back to the membrane.  Essentially, internalization of the receptor does not automatically 

target the receptor for degradation.  An ubiquitin ligase, known as Cbl, is responsible for 

targeting EGFR for lysosomal degradation.  Recruitment of Cbl to the receptor in early 

endosomes promotes receptor ubiquitination and loss of Cbl results in receptors recycling to 

the plasma membrane (Levkowitz et al., 1998).  A specific EGFR tyrosine residue, 1045, is 

essential for Cbl-mediated EGFR degradation, and mutation of this site leads to extended 

EGFR signaling (Levkowitz et al., 1999). 

iv. EGFR family receptor associations 

 EGFR family members are capable of forming both homo and heterodimers.  EGF, HB-

EGF, and BTC are known to stimulate dimerization between EGFR and HER2 (Goldman et 

al., 1990; Wada et al., 1990; Graus-Porta et al., 1997).  HER2:EGFR heterodimers are more 

stable on the cell surface than other EGFR containing dimers.  They are also preferentially 

recycled rather than sent for degradation.  This is due to being less stable in the early 

endosomal environment, thus Cbl dissociates from the complex, allowing the receptors to 

recycle to the cell surface (Lenferink et al., 1998).  HER2 heterodimerization with EGFR 

also slows the rate of ligand dissociation from EGFR, prolonging and strengthening the 

activation of downstream signaling (Karunagaran et al., 1996).  Both EGF and neuregulins 

can stimulate dimerization between EGFR and HER3 (Graus-Porta et al., 1997; Pinkas-

Kramarski et al., 1998).  HER3 has been shown to effectively associate with the p85α subunit 

of phosphoinositide-3-kinase (PI3K) due to the presence of consensus motifs present in the 
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intracellular domain of the receptor (Fedi et al., 1994; Prigent and Gullick, 1994).  As such, 

EGFR heterodimerization with HER3 is thought to be a mechanism by which EGFR 

mediates PI3K activity (Soltoff et al., 1994).  HER2:HER3 heterodimers have also been 

described, and these form in the presence of neuregulins (Sliwkowski et al., 1994).  In 1996, 

Zhang and colleagues found that co-expression of EGFR and HER4 leads to phosphorylation 

of EGFR in response to heregulins, and phosphorylation of HER4 in response to EGF, 

suggesting that functional heterodimers form between these two proteins (Zhang et al., 

1996).  EGF has also been demonstrated to stimulate dimers of EGFR:HER4 in cell lines 

(Graus-Porta et al., 1997).  Functional dimers of HER4 and HER2 have been shown in 

artificial systems (Plowman et al., 1993b).  In contrast, co-expression of HER3 and HER4 

did not result in increased cellular foci in response to ligand stimulation, suggesting that 

these two proteins either do not functionally interact, or that their interaction does not result 

in increased cellular survival and proliferation (Zhang et al., 1996).  More recent evidence 

suggests a role in HER3:HER4 dimerization in the sustained activation of PI3K in colorectal 

carcinoma (Lee et al., 2009).  Together, these possible dimerization pairs can alter the 

properties of stability and functionality of the EGFR family of receptors, and as such, add 

important diversity to EGFR signaling (Riese et al., 1995; Riese et al., 1996).   

C. Interactions and Signaling  

 The EGFR family is a complex system involved in growth factor cellular signaling 

(Gullick, 2001).  Knockout studies determined that EGFR was important in normal growth 

and development of epithelial cells.  Specifically, knockout of EGFR resulted in embryonic 

lethality or failure of development of the epithelium of multiple organs including the skin, 

lungs, and gastrointestinal tract (Miettinen et al., 1995; Sibilia and Wagner, 1995; Threadgill 
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et al., 1995).  Indeed, the consequences of activation of EGFR are a number of second-

messenger cascades, which promote cell proliferation, angiogenesis, migration, 

differentiation, and survival (Fig 1.2) (Jorissen et al., 2003).  Phosphorylation of EGFR at the 

plasma membrane results in high-affinity binding sites for Src homology 2 (SH2) domain 

containing proteins (Pawson, 1995; Pawson, 1997).   

i. EGFR substrates 

Shc/Grb2 

 Shc interacts with EGFR via SH2 domains that bind to the phospho-tyrosine residues on 

EGFR (Lowenstein et al., 1992; Chardin et al., 1993; Gale et al., 1993; Li et al., 1993).  Shc 

is present in three isoforms, p52/46Shc and p66Shc, the first two of which are involved in 

EGF-induced mitogen activated protein kinase (MAPK) signaling (Migliaccio et al., 2006).  

Grb2 binds to receptor-bound Shc (via phosphorylation of residues on Shc/SH2 domain), or 

can bind directly to EGFR via tyrosines 1068 and 1086 (Batzer et al., 1994; Sasaoka et al., 

1994).  Grb2 also contains two SH3 domains, which allow for interactions with proline-rich 

sequences, including those of Son of sevenless (SOS) (Pawson, 1995).  The Grb2/Shc/EGFR 

interaction results in the recruitment of SOS to the plasma membrane.  SOS is a guanine 

nucleotide exchange factor which promotes the conversion of Ras-GDP to the active Ras-

GTP.  Ras then activates Raf, a serine-threonine protein kinase, which in turn phosphorylates 

and activates MEK1/2, which then activates ERK1/2 (MAPK) (Marshall, 1994; Pawson, 

1995; Marshall, 1996).  Shc null cells demonstrated that Shc is not required for Ras 

activation to occur, however, p52/46Shc amplifies the signal and enhances Ras activity (Lai 

and Pawson, 2000).  Induction of this pathway results in marked increases in cellular



Src

Y845

PLCγ p85
p110

Y891/920
Y992

Cbl

Y1045

Y1068

G
rb

2Y1148/1173

Shc

G
rb

2S
O

S

Ras

MAPK

Degradation

Proliferation

Survival

Akt

Migration

See figure 1.4

Figure 1.2: EGFR signaling pathways.  Phosphorylation of EGFR on tyrosine residues leads to 

recruitment of proteins involved in downstream signaling pathways.  Tyrosine 845 is involved in 

c-Src signaling.  Tyrosines 891 and 920 facilitate PI3K recruitment leading to Akt activation and 

cellular survival.  Tyrosine 992 is where PLCγ interacts leading to migration pathways.  

Tyrosine 1045 is responsible for c-Cbl binding, which leads to receptor degradation.  Tyrosine 

1068 recruits Grb2 directly, leading to cellular migration.  Finally, tyrosines 1148 and 1173 bind 

to Shc, which recruits other proteins leading to Ras activation and MAPK signaling which 

promote proliferation.
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proliferation [reviewed in (Zhang and Liu, 2002)].  Shc itself can also be detected complexed 

with other proteins including MEKK-1, linking to JNK pathway activation, as well as 

cadherins, which implies a role for this protein  in cell-cell adhesions (Xu et al., 1997b; 

Pomerance et al., 1998).  Grb2 also links EGFR to proteins such as Fak and dynamin which 

implicate a role for Grb2 in migration of cells (Schlaepfer et al., 1999).  Grb2 is also 

associated with differentiation, as Grb2 null mouse embryos contain defects in this process 

(Cheng et al., 1998).   

Signal transducers and activators of transcription (STAT) 

 Signal transducers and activators of transcription (STAT) proteins are transcription 

factors that, when activated by tyrosine phosphorylation, translocate to the nucleus [reviewed 

in (Jorissen et al., 2003)].  The STAT family of proteins consists of seven members (STAT1, 

STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6), of which, STAT1, STAT3, 

STAT5a, and STAT5b are known to play a role in cancer [reviewed in (Quesnelle et al., 

2007)].  Unlike in cytokine receptor activation of STATs, ligand-dependent phosphorylation 

of STATs by EGFR does not require Jak kinases (David et al., 1996; Leaman et al., 1996; 

Park et al., 1996).  EGFR has been noted to activate STAT1, STAT3, and STAT5 (Olayioye 

et al., 1999).  STATs may also be constitutively associated with EGFR, and their activation is 

strictly dependent on EGFR tyrosine kinase activity (David et al., 1996; Olayioye et al., 

1999; Xia et al., 2002).  Activation of STATs leads to increased transcription of proteins 

involved in mitogenesis, cell survival, and cell differentiation (Cressman et al., 1995; David 

et al., 1995; Eilers and Decker, 1995; Eilers et al., 1995; Demoulin et al., 1996; Kordula et 

al., 1996). 
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p85α 

  PI3Ks can be divided into subclasses, of which, class Ia is the only one activated by 

tyrosine kinase receptors (Jorissen et al., 2003).  The regulatory subunit of PI3K, p85α, binds 

to, and represses, the catalytic subunit of PI3K, p110α.  This complex is recruited to receptor 

tyrosine kinases by interaction between an SH2 domain of p85α and phospho-tyrosine 

residue of the receptor.  Binding of the SH2 domain of p85α to a phospho-tyrosine residue 

results in a conformational change in the p85α: p110α complex that de-represses the activity 

of p110α.  This de-repression allows p110α to catalyze the phosphorylation of the 3’ position 

of phosphatidylinositols [reviewed in (Vanhaesebroeck et al., 2010)].  p85α associates with 

EGFR either through ErbB3 heterodimerization (as HER3 is a major binding partner for 

p85α) or through c-Src phosphorylation of EGFR (Kim et al., 1994; Stover et al., 1995; Ram 

and Ethier, 1996).  Activation of PI3K in this manner leads to phosphorylation of Akt, and 

subsequent activation of cellular processes such as proliferation, survival, adhesion, and 

migration [reviewed in (Cantley, 2002)].  Akt activation also results in phosphorylation of 

Bad, a Bcl family member, that when phosphorylated cannot translocate to the mitochondria 

to inhibit the survival protein Bcl-Xl, such that, apoptosis does not occur (Zha et al., 1996; 

Datta et al., 1997).   

PLCγ 

 Phospholipase C gamma (PLCγ), is one of a family of enzymes that catalyze the 

hydrolysis of phosphatidylinositol bisphosphate (PIP2) to inositol trisphosphate and diacyl 

glycerol [reviewed in (Rhee et al., 1989)].  This family of enzymes has a common 

dependence on calcium, and substrate specificity for phosphoinositols.  PLCγ shares 
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structural homology with the Src family tyrosine kinases within the SH2 and SH3 domains 

(Pawson, 1988; Stahl et al., 1988; Suh et al., 1988).  Phosphorylated EGFR provides a 

docking site for PLCγ (Margolis et al., 1989) to induce EGFR-mediated cell motility but not 

EGF-induced mitogenesis (Chen et al., 1994a). 

Gab1 

 Gab1, or Grb2-associated protein 1, is a docking protein that binds to EGFR, is 

phosphorylated, and then acts as a docking center for protein complexes (Holgado-Madruga 

et al., 1996).  In particular, Gab1 contains three p85α PI3K binding sites (Holgado-Madruga 

et al., 1996), and association of p85α with Gab1 and subsequent activation of PI3K has been 

shown after ligand stimulation (Holgado-Madruga et al., 1997).  Rodrigues and colleagues 

have demonstrated that the PH domain of Gab1 is sufficient for binding of Gab1 to PIP3 and 

targeting of Gab1 to the plasma membrane.  They have also shown that Gab1 directly binds 

to EGFR and potentiates EGF-induced MAPK, JNK, and PI3K activity (Rodrigues et al., 

2000). 

Src Family kinases – see Section 1.2 

ii. EGFR localization 

 While EGFR signaling is well known to occur at the plasma membrane, signaling from 

EGFR also occurs at alternative localizations including the mitochondria, endosomes, and 

nucleus.  For example, EGFR is functionally active at the mitochondria, where 

phosphorylation of tyrosine 845 is required for association of EGFR with cytochrome c 

oxidase II.  This co-localization and co-association occurs after ligand-stimulation and re-

localization of EGFR to the mitochondria through clathrin mediated endocytosis (Boerner et 
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al., 2004; Demory et al., 2009). EGFR is also capable of signaling while within endosomes.  

A number of groups have shown that EGFR is autophosphorylated and catalytically active 

while in endosomes (Cohen and Fava, 1985; Kay et al., 1986; Kuruvilla et al., 2000).  Also, 

signaling molecules (specifically those that regulate Ras activity – including Grb2, SHC, and 

Cbl) are associated with EGFR localized within endosomes (Di Guglielmo et al., 1994; 

Fukazawa et al., 1996; Wang and Moran, 1996; Levkowitz et al., 1998; Clague and Urbe, 

2001).  Following these findings, Wang and colleagues were able to show that EGFR 

stimulates signal transduction pathways leading to cell survival from within endosomes 

(Wang et al., 2002; Sadowski et al., 2009).  Localization of EGFR to the nucleus has been 

shown in a number of cell types (Gusterson et al., 1985; Kamio et al., 1990; Lipponen and 

Eskelinen, 1994; Tervahauta et al., 1994; Zimmermann et al., 1995).  Specifically, Lin and 

colleagues have shown that EGFR rapidly translocates to the nucleus after ligand stimulation, 

where it acts as a transcription factor in a complex to activate gene transcription of cellular 

factors including cyclin D1 (Lin et al., 2001), thus promoting cell cycle progression.  These 

diverse localizations increase the complexity of EGFR signaling.  

D. EGFR in cancer 

 Purification and sequencing of EGFR revealed a close sequence similarity of this receptor 

to the previously characterized v-erb-B viral oncogene.  v-erb-B and EGFR are most similar 

in the transmembrane and cytoplasmic tyrosine kinase domains (Downward et al., 1984b),  

suggesting that the functional portion of EGFR may be implicated in the cancer phenotype 

(Downward et al., 1984b).  An oncogene is a gene, the product of which has the ability (via 

mutation, amplification, or overexpression) to promote transformation of normal cells.  
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EGFR can be labeled an oncogene as EGFR is over-expressed in many cancer types, and this 

overexpression has been shown to lead to increase tumorigenicity of cells (Velu et al., 1987).  

i. EGFR and hallmarks of cancer  

 The hallmarks of cancer, as described by Hanahan and Weinberg, include evading 

apoptosis, sustained angiogenesis, un-regulated cellular proliferation, and tissue invasion and 

metastasis (Hanahan and Weinberg, 2000).  EGFR has been shown to regulate each of these 

hallmarks.  Specifically, by increasing PI3K/Akt signaling, EGFR family receptors can 

modulate both the extrinsic and intrinsic apoptosis pathways.  Also, EGFR is known to 

constitutively activate Stat3 in head and neck cancer (Grandis et al., 1998), which may lead 

to sustained expression of the anti-apoptotic protein Bcl-Xl effectively allowing these cells to 

evade apoptosis (Grandis et al., 2000).  Angiogenesis, or neovascularization, is necessary to 

support growing tumors and supply the nutrients and oxygen the tumor needs for growth.  

Treatment of cells with small molecule kinase inhibitors of EGFR (which block kinase 

activity of the receptor) results in decreased vascular epithelial growth factor (VEGF) 

expression, which, in turn, decreases the ability of vascular epithelial cells to migrate towards 

tumor cells in vitro.  EGFR inhibition also leads to the death of tumor-associated vascular 

epithelial cells in orthotopic pancreatic tumor models (Bruns et al., 2000; Hirata et al., 2002).  

The ability to proliferate independently of normal growth inhibitory signals is also a trait of 

cancer cells.  EGFR activation can lead to and modulate cellular proliferation and neoplastic 

growth (Salomon et al., 1995).  Interestingly, studies have shown that inhibition of the EGFR 

family of proteins leads to proliferative block (Mendelsohn and Baselga, 2000)  Therefore, it 

can be suggested that EGFR is necessary for the limitless replicative potential of cancer cells.  

EGFR has been shown to influence the movement of a variety of cell types in a ligand-
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dependent fashion (Barrandon and Green, 1987; Chen et al., 1994b).  As mentioned earlier, 

PLCγ activation is necessary for EGFR mediated cell movement (Chen et al., 1994a).  EGFR 

has also been suggested to directly affect expression and function of integrins, which mediate 

cytoskeletal changes associated with focal adhesions and motility (Bellas et al., 1991).  

EGFR can also promote the metastatic phenotype of cancer cells [reviewed in (Khazaie et al., 

1993)].  

ii. EGFR in human cancers 

 Ullrich and colleagues showed the first evidence that EGFR itself may be closely related 

to tumor cell function, as they discovered that EGFR was amplified at the genetic level in 

A431 epidermoid carcinoma cells (Ullrich et al., 1984).  These data, along with the close 

structural relationship between EGFR and v-erb-B, suggested that EGFR may be important 

in the cancer phenotype.  Mouse models have demonstrated that overexpression of EGFR 

induces cellular transformation in the mammary gland (Brandt et al., 2000; Marozkina et al., 

2008b), ovary (Marozkina et al., 2008a), uterus (Marozkina et al., 2008a), bladder (Cheng et 

al., 2002), esophagus (Andl et al., 2003), and brain (Holland et al., 1998).  Indeed, as 

mentioned earlier, EGFR itself has been found to be over-expressed in nearly all tumors of 

epithelial origin (Earp et al., 1995)  Below is a concise review of EGFR in these tumor types. 

Gliomas 

 Over-expression of EGFR occurs in 40% of gliomas and correlates with amplification 

and mutation of the receptor (Libermann et al., 1985; Wong et al., 1987; Helseth et al., 1988; 

Yung et al., 1990; Ekstrand et al., 1991; Agosti et al., 1992; Chaffanet et al., 1992; Wikstrand 

et al., 1995).  EGFR expression is a negative prognostic marker in glioblastomas, and is 
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correlated with higher grade of tumor and reduced overall survival (Hurtt et al., 1992; 

Hiesiger et al., 1993).  While overexpression is one way EGFR is activated in gliomas, 

mutations of EGFR are also present.  The most common is a mutation that deletes part of the 

extracellular domain (vIII) and yields a constitutively active receptor (Wong et al., 1992; 

Moscatello et al., 1995).   

Prostate 

 EGFR over-expression occurs in approximately 18% of prostate cancers (Schlomm et al., 

2007).  This protein is amplified in 3-11% of prostate cancers (Edwards et al., 2003; 

Schlomm et al., 2007).  EGFR expression may serve as a prognostic marker for prostate 

cancers (Gorgoulis et al., 1992; Wong et al., 1992; Irish and Bernstein, 1993).  Di Lorenzo 

and colleagues investigated the relationship of EGFR expression with prostate cancer in 

human tumor tissue samples.  They found that EGFR expression was significantly correlated 

with higher Gleason scores and PSA levels, as well as disease relapse in patients (Di Lorenzo 

et al., 2002).  EGFR contributes to prostate cancer growth by activating the androgen 

receptor (AR) through phosphorylation, promoting further cellular growth of both androgen-

dependent and androgen-refractory prostate cancer cells without androgen stimulation 

(Bonaccorsi et al., 2004; Migliaccio et al., 2006; Bonaccorsi et al., 2007; Leotoing et al., 

2007).  In contrast to normal prostate, where androgens decrease EGFR expression, prostate 

cancer cell lines have increased EGFR expression induced by androgens leading to increased 

cellular proliferation (Liu et al., 1993b).  Hammarsten and colleagues have demonstrated that 

treatment of castrated animals with gefitinib (an inhibitor of EGFR) leads to prostate cancer 

cell growth inhibition (Hammarsten et al., 2007).   
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Pancreatic 

 EGFR overexpression occurs in ~30-50% of pancreatic carcinomas (Yamanaka et al., 

1990; Barton et al., 1991; Korc et al., 1992; Yamanaka et al., 1993).   Pancreatic cancer cell 

lines often contain overexpression of EGFR without gene amplification (Smith et al., 1987; 

Chen et al., 1990).  Treatment of cells with small molecule kinase inhibitors of EGFR results 

in decreased angiogenesis in orthotopic pancreatic tumor models (Bruns et al., 2000; Hirata 

et al., 2002). 

Lung 

 EGFR is over-expressed in 40-80% of primary non-small cell lung cancers (NSCLC); 

however, squamous cell carcinomas generally have higher levels of expression than other 

types of NSCLC (Berger et al., 1987b; Veale et al., 1987; Dazzi et al., 1989; Di Carlo et al., 

1993).  This high level of overexpression is due primarily to amplification of the gene 

encoding for EGFR (Suzuki et al., 2005).  EGFR expression has been shown as an important 

prognostic indicator for NSCLC, as stage III NSCLC was found to have higher levels of 

EGFR expression compared to stage I and II tumors (Veale et al., 1987).  Furthermore, 

overexpression of EGFR correlates with high levels of metastases, poor differentiation of the 

tumor, and elevated tumor proliferation rates (Pavelic et al., 1993).  As mentioned for 

gliomas, a mutation that deletes part of the extracellular domain (vIII) yields a constitutively 

active receptor, and has been found in NSCLC (Garcia de Palazzo et al., 1993).  Additional 

mutations in EGFR also occur in lung cancer.  Many of these, including the L858R mutation, 

result in sensitivity to EGFR inhibitors (Costa and Kobayashi, 2007).  This conferred 

sensitivity to EGFR inhibitors has led to FDA approval of the EGFR TKIs gefitinib and 
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erlotinib.  However, other mutations, such as the T790M mutation, result in acquired 

resistance to EGFR kinase inhibition (Kobayashi et al., 2005; Pao et al., 2005).  Thus, 

screening of patients for EGFR mutational status in lung cancer may allow further approval 

of EGFR-based therapies for the sub-populations of lung cancer patients who possess these 

mutations.    

Colon 

 Approximately 8% of all colorectal carcinomas over-express EGFR.  This overexpression 

is a result of genetic amplification in ~60% of cases (Ooi et al., 2004).  While no correlation 

has been observed between this expression and tumor grade, proliferative index, histological 

stage, or overall survival (Salomon et al., 1995), Mayer and colleagues have shown that 

patients whose tumors are over 50% positive for EGFR expression have worse prognosis 

compared to those with less than 50% of their tumor positive for EGFR (Mayer et al., 1993).  

Also, EGFR expression is elevated in more highly metastatic primary colon tumors than 

those with a less aggressive phenotype (Radinsky, 1993).  Cetuximab (Erbitux), an EGFR-

directed monoclonal antibody, is currently in clinical use in colorectal cancers.     

Ovarian 

 EGFR is over-expressed in 35-70% of primary ovarian carcinomas (Battaglia et al., 1989; 

Bauknecht et al., 1989a; Bauknecht et al., 1989b; Bauknecht et al., 1990; Johnson et al., 

1991; Morishige et al., 1991b; Berns et al., 1992; Henzen-Logmans et al., 1992; Owens et al., 

1992; Scambia et al., 1992; Bauknecht et al., 1993).  Such overexpression occurs without 

gene amplification (Zhang et al., 1989; Bauknecht et al., 1990; Berns et al., 1992; Kohler et 

al., 1992).  EGFR expression was found to be significantly associated with high risk of 
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ovarian carcinoma progression (Scambia et al., 1992).  As with gliomas and lung cancers, the 

vIII constitutively active mutant of EGFR is expressed in ovarian carcinomas (Wong et al., 

1992; Moscatello et al., 1995).  Proliferation of ovarian cancer cells can be significantly 

inhibited in vitro utilizing EGFR monoclonal antibodies or anti-TGFα antibodies (Morishige 

et al., 1991a; Morishige et al., 1991b; Stromberg et al., 1992).   

Liver 

 EGFR over-expression occurs in 30-60% of hepatocellular carcinomas, however little is 

known about the mechanism of this over-expression (Nonomura et al., 1988; Ito et al., 2001).  

Nevertheless, over-expression of EGFR in this cancer type correlates with high proliferation, 

advanced stage, and poor prognosis (Ito et al., 2001). Also, EGFR, as well as ErbB3, and the 

ligands HB-EGF, TGFα, BTC, and AREG are over-expressed in human hepatocellular 

carcinoma tissues (Ding et al., 2004; Avila et al., 2006; Breuhahn et al., 2006; Castillo et al., 

2006; Berasain et al., 2007).  Production of EGFR ligands has been suggested to influence 

the growth of premalignant liver epithelial cells (Drucker et al., 2006).  Activation of EGFR 

in a ligand-dependent manner in liver cancer cells has been demonstrated to potentiate the 

aggressive behavior of such cells (Lin et al., 2006).   

Bladder 

 EGFR expression is higher in malignant bladder as compared to normal bladder 

epithelium, yet EGFR is rarely genetically amplified (Neal et al., 1985; Berger et al., 1987a; 

Messing et al., 1987; Neal et al., 1989; Messing, 1990; Lonn et al., 1993).  EGFR expression 

in these tumors correlates with invasive potential, poor tumor differentiation, decreased 



 26 

survival, increased recurrence, and increased rate of progression in bladder cancers (Neal et 

al., 1985; Neal et al., 1989; Smith et al., 1989; Neal et al., 1990).   

Esophagus 

 Approximately 35% of primary esophageal tumors express EGFR (Iihara et al., 1993) 

and EGFR is genetically amplified in primary human esophageal carcinomas (Hollstein et al., 

1988; Lu et al., 1988).  Survival rate is significantly lower in patients with tumors that over- 

express EGFR as compared to patients with no EGFR overexpression (Iihara et al., 1993).  In 

these tumors, TGFα is also highly expressed, and this expression correlates with short 

doubling time of esophageal cancer cells (Kim et al., 1991; Thornley and Jones, 1992).   

Head & Neck 

 EGFR is over-expressed in oral squamous cell carcinomas (SCC) (Todd and Wong, 

1999), and this over-expression often times occurs without gene amplification [reviewed in 

(P et al., 2002)].  Ligand-independent activation of EGFR through E-cadherin and 

subsequent MAPK phosphorylation allows adhesion-mediated survival for this cancer type 

(Shen and Kramer, 2004).  EGFR is known to constitutively activate Stat3 in head and neck 

cancer (Grandis et al., 1998).  Ligand stimulation of EGFR was shown to stimulate 

anchorage-independent growth in oral SCC cell lines (Lee et al., 1990).  Resistance of oral 

SCCs to chemotherapy and radiotherapy can be pharmacologically reversed through the 

utilization of inhibitors of EGFR function (Bonner et al., 2002; Raben et al., 2002).    
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Gastric 

 Over-expression of EGFR has been noted in approximately 33% of advanced stage 

gastric carcinomas (compared to 3.8% in early stage or non-malignant samples) (Yasui et al., 

1988).  Such over-expression is rarely due to genetic amplification in this form of cancer 

(Kim et al., 2008).  EGFR expression has been suggested as a useful prognostic indicator for 

gastric cancer (Yasui et al., 1988; Lemoine et al., 1991).  EGFR expression occurs more 

frequently in well-differentiated advanced stage adenocarcinomas; however there is no 

apparent association of EGFR expression with tumor grade or size (Yasui et al., 1988; 

Lemoine et al., 1991). 

Breast – see Section 1.4 

E. Inhibiting EGFR activity  

i. Monoclonal Antibodies  

 In 1981, John Mendelsohn and colleagues initially hypothesized that blocking the binding 

site for EGFR ligands using a monoclonal antibody (mAbs) might be an effective treatment 

strategy for cancer [reviewed in (Mendelsohn and Baselga, 2000)].  In the years following 

that hypothesis, mAbs directed toward EGFR have been developed and applied in the clinic,  

leading to treatment regimens for cancer [reviewed in (Herbst et al., 2001)].  Specifically, 

mAb 225 (later derived into C225, a humanized murine chimeric version of the mAb) was 

isolated in 1983.  This antibody was later developed into a cancer therapeutic for head and 

neck cancer.  There are currently five EGFR targeting antibodies in development including 

Cetuximab (Erbitux), Matuzumab, Nimotuzumab (TheraCIM), Panitumumab (Vectivix), and 

Zalutumumab (Wheeler et al., 2010).  These inhibitors have been introduced in clinical trials 
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both as monotherapies and as combinatorial therapy with chemo- or radio-therapies in 

colorectal, head and neck, pancreatic, and lung cancers (Mendelsohn, 2004).  EGFR-directed 

mAbs compete with ligand binding and then down-regulate receptor expression, leading to 

inhibition of cell growth by arresting cells in G1 (Wu et al., 1996; Waksal, 1999).  While 

mAbs can directly stimulate immune response in patients, leading to complement-mediated 

cytotoxicity or antibody-dependent cell-mediated cytotoxicity (Harris and Mastrangelo, 

1989), at least in the case of cetuximab, the primary mechanism of action is related to the 

disruption of EGFR-mediated signaling (Mendelsohn, 1997).  It has been suggested that 

antibodies against HER2 require endocytic sorting and Cbl to exert their antitumor effects, 

however, it has yet to be shown if antibodies specific to EGFR act in the same manner 

(Klapper et al., 2000).  To date, two EGFR targeting monoclonal antibodies have been FDA 

approved for use in cancer patients.  Specifically, cetuximab (Erbitux) was approved for use 

in combination with irinotecan or alone if the patient cannot tolerate irinotecan in metastatic 

colorectal cancer in 2004, and for head and neck cancer in 2006.  Also, panitumumab 

(Vectibix) was approved for EGFR-expressing advanced colorectal cancer with disease 

progression on or following fluoropyrimidine-, oxaliplatin-, and irinotecan-containing 

chemotherapy regimens in 2006. 

ii. Small molecule tyrosine kinase inhibitors (TKIs)   

 TKIs target the intracellular ATP-binding pocket of the tyrosine kinase moiety of EGFR.  

In xenograft models and human tumor-derived cell lines, these inhibitors have shown dose 

dependent tumor growth inhibition alone, or in combination with drugs and/or radiation 

(Ciardiello, 2000).  Clinically, TKIs have demonstrated anti-tumor activity in head and neck 

cancer (Feng et al., 2007; Reuter et al., 2007) where approximately 10% respond to the 
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inhibitor, non-small cell lung cancer (Jubelirer et al., 2006), and glioblastomas (Mellinghoff 

et al., 2005) where again 10-20% of patients respond.  Glioblastoma patients that responded 

were vIII mutants.  Those that responded in non-small cell lung cancer have been 

demonstrated to possess the L858R EGFR mutation (Costa and Kobayashi, 2007).  

Currently, five EGFR tyrosine kinase inhibitors are in clinical trials including erlotinib 

(Tarceva), gefitinib (Iressa), vandetanib (Zactima), lapatinib (Tykerb), and pelitinib (Wheeler 

et al., 2010).  Gefitinib (Iressa), an EGFR specific TKI, was approved in 2004 for 

monotherapy treatment for advanced, chemotherapy-refractory non-small cell lung cancer 

based on an 11-18% response rate in two phase II clinical trials (Mendelsohn and Baselga, 

2000), but approval was later revoked do to failure to produce survival benefit alone or with 

chemotherapy in three phase III trials (Giaccone et al., 2004; Herbst et al., 2004; Thatcher et 

al., 2005).  Erlotinib (Tarceva) was approved for treatment of non-small cell lung cancer and 

pancreatic cancer, and recently has been approved for maintenance of locally advanced or 

metastatic NSCLC that is not progressing after four cycles of platinum based chemotherapy 

(2010).  Lapatinib, a dual EGFR/HER2 inhibitor, has also been recently approved, in 

combination with letrozole, in post menopausal women with hormone receptor positive 

metastatic breast cancers that over-express HER2 (2010).   

 Resistance to EGFR TKIs is a common occurrence in cancer.  Generally, resistance can 

occur by two mechanisms.  First, de novo or intrinsic resistance may occur.  This type of 

resistance is thought to be due to lack of tumor dependence upon EGFR (Baselga and 

Arteaga, 2005).  Also, EGFR-independent or constitutive activation of effectors downstream 

of EGFR could contribute to de novo resistance.  For example, failure to inhibit PI3K/Akt, by 

mutation or alternative activation, also prevents response to EGFR inhibitors (Bianco 2003, 



 30 

Cheng 1992, Cheng 1996, Forgacs 1998, Lu 1999, Hoilestelle 2007).  EGFR-independent 

activation of c-Src after interaction with other tyrosine kinases or integrins may lead to 

activation of signaling pathways downstream of EGFR [reviewed in (Bianco et al., 2007)].  

Activated Ras (and thereby persistent MAPK signaling) is associated with intrinsic resistance 

to both gefitinib and cetuximab in NSCLC (Janmaat et al., 2003), and resistance to gefitinib 

in breast cancer cells (Normanno et al., 2006).  In addition, glioblastomas containing the 

EGFRvIII mutation are relatively resistant to gefitinib due to persistent Akt phosphorylation 

after PTEN loss (Kuan et al., 2001).  Acquired resistance may also occur after initial 

response to EGFR inhibitors.  This may be due to alternative activation of proangiogenic 

pathways, as EGFR inhibition can lead to subsequent down-regulation of tumor-induced, 

VEGF-mediated angiogenesis (Ciardiello et al., 1996; Petit et al., 1997; Perrotte et al., 1999).  

It has been demonstrated that altered control of these angiogenic pathways can induce 

resistance to EGFR inhibitors in vivo (Viloria-Petit et al., 2001).  Also, activation of 

alternative tyrosine kinases (such as IGF-1R or c-Met), has also been shown as a potent 

mechanism of acquired resistance to EGFR blockade (Jones et al., 2004).  While alterations 

in EGFR protein such as the L858R mutation or deletion mutants may lead to sensitivity to 

EGFR inhibitors (Lynch et al., 2004; Paez et al., 2004), secondary mutations, including the 

T790M mutation, can occur and lead to acquired resistance to EGFR inhibitors (Kobayashi et 

al., 2005; Pao et al., 2005). 

 

 

 



 31 

1.2. Src Family Kinases (SFKs) 

A. Structure and Activation of SFKs 

 c-Src, the prototypical member of the Src family kinases, was discovered in 1976 as a 

mammalian homologue of the transforming agent in avian sarcoma virus, v-Src (Stehelin, 

1976; Stehelin et al., 1976).  This family of non-receptor tyrosine kinases contains nine 

members that differ based on tissue specific expression.  The first subfamily, Lck, Blk, Lyn, 

and Hck, are fairly restricted in their expression to hematopoietic cells.  The second 

subfamily, c-Src, Yes, Fyn, Yrk, and Fgr, are ubiquitously expressed (Bolen and Brugge, 

1997).  These proteins have structural homology consisting of an N- terminal sequence, 

unique domain, a SH3 domain, a SH2 domain, and a tyrosine kinase domain (Fig 1.3) 

[reviewed in (Tsygankov and Shore, 2004)].  Within the c-terminal tyrosine kinase domain 

are two phosphorylation sites that are critical to the function of the protein.  First, 

phosphorylation on tyrosine 527 negatively regulates SFK activity.  Phosphorylation of this 

site occurs via the Csk-family of protein tyrosine kinases (Okada et al., 1991; Bergman et al., 

1992; Sabe et al., 1992; Chow et al., 1993; Nada et al., 1993; Superti-Furga et al., 1993; 

Takeuchi et al., 1993; Thomas et al., 2006).  The SH2 domain of SFKs binds to tyrosine 527 

after phosphorylation on this site  (Roussel et al., 1991; Amrein et al., 1993; Liu et al., 1993a; 

Weijland et al., 1997), which induces the binding of the SH3 domain to the linker region 

between the SH2 and tyrosine kinase domains, prohibiting binding of ATP, effectively 

inactivating the protein (Fig. 1.3) (Sicheri et al., 1997; Williams et al., 1997; Xu et al., 1997a; 

Gonfloni et al., 1999; Schindler et al., 1999; Xu et al., 1999).  Dephosphorylation on tyrosine 

527 occurs by one of several protein tyrosine phosphatases including CD45, SHP-1, SHP-2,
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PTP-α, or PTP-λ (Mustelin et al., 1989; Mustelin and Altman, 1990; Mustelin et al., 1992; 

Shiroo et al., 1992; Zheng et al., 1992; Hurley et al., 1993; Sieh et al., 1993; Biffen et al., 

1994; Fang et al., 1994; Peng and Cartwright, 1995; Somani et al., 1997; Harder et al., 

1998a; Bjorge et al., 2000).  Second, phosphorylation of tyrosine 416, must occur for the 

protein to be active.  Phosphorylation on this site results in displacement from a pocket of 

hydrophobicity formed within the catalytic domain, resulting in the repositioning of the 

region and formation of a substrate binding pocket (Fig 1.3) (Yamaguchi and Hendrickson, 

1996; Sicheri et al., 1997; Williams et al., 1997; Xu et al., 1997a; Schindler et al., 1999; Xu 

et al., 1999).  Tyrosine 416 is phosphorylated by many proteins, including PDGFR, focal 

adhesion kinase (FAK), and EGFR (discussed later) (Kypta et al., 1990; Cobb et al., 1994; 

Schaller et al., 1994; Alonso et al., 1995; Eide et al., 1995; Alexandropoulos and Baltimore, 

1996; Moarefi et al., 1997; Chiang and Sefton, 2000).  Phosphorylation on tyrosine 416 is 

sufficient to activate c-Src, even when tyrosine phosphorylation of 527 is present (Sun et al., 

1998; Boerner et al., 2004).  Thus, dephosphorylation of tyrosine 416 is critical to the 

inactivation of SFKs.    PTP-α and PTP-λ are known to de-phosphorylate tyrosine 416 of c-

Src (Zheng et al., 1992; Fang et al., 1994). 

 SFKs are localized to the plasma membrane, perinuclear regions and endosomal 

membranes (Silverman et al., 1993; Ley et al., 1994; Resh, 1994).  As SFKs contain no 

transmembrane domain, membrane localization is due, in part, to myristoylation and 

palmitoylation on N-terminal fatty acid modification sites (Marchildon et al., 1984; Pellman 

et al., 1985; Peters et al., 1990; Paige et al., 1993; Shenoy-Scaria et al., 1993; Koegl et al., 

1994).  Localization may also be dependent on the specific protein interactions between 
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SFKs and cytoskeletal components, cytokines, and growth factor receptors including EGFR 

(Kaplan et al., 1992; Sandilands et al., 2004; Donepudi and Resh, 2008).   

 Like the EGFR ligands, SFKs have a high level of functional redundancy.  However, loss 

of c-Src results in the onset of osteoporosis due to defective osteoclast function (Soriano et 

al., 1991; Boyce et al., 1992).  Loss of Lck results in hematopoetic deficiencies (Molina et 

al., 1992; Molina et al., 1993; Wen et al., 1995) and severe nervous system defects are seen 

in models where Fyn is knocked out (Grant et al., 1992; Beggs et al., 1994; Miyakawa et al., 

1994; Umemori et al., 1994).  Yes, Hck, Fgr, and Blk have also been knocked out in mice, 

however, no distinct phenotypes are seen, suggesting, again, that a high degree of 

redundancy exists within the family [reviewed in (Lowell and Soriano, 1996)]. 

B. Function of c-Src  

For the purposes of this dissertation, we will focus the remainder of this section the 

prototypical membrane of the Src family, c-Src.  c-Src is involved in a  number of cellular 

processes including membrane trafficking, cellular motility and migration, cell cycle 

progression, apoptosis, and differentiation (Fig. 1.4).  First, c-Src has been shown to play a 

role in the regulation of membrane trafficking.  Specifically, c-Src phosphorylates ASAP1, 

an ADP-ribosylation factor GTPase-activating protein, and association of this protein with 

Arfs and PIP2 has been shown to be important in actin cyoskeletal remodeling (Brown et al., 

1998b; Randazzo et al., 2000).  Src also associates with synapsin I, dynamin, synaptophysin, 

snaptogyrin, and cellugyrin which are all involved in vesicle transport (Barnekow et al., 

1990; Onofri et al., 1997; Foster-Barber and Bishop, 1998; Janz and Sudhof, 1998).  Second, 

cellular motility is a process that has also shown a dependence on c-Src.  c-Src localizes to 



STAT

Integrins

Fak

Migration 

& 

Invasion

Proliferation Survival

Angiogenesis

Src

Ras

MAPK
Akt

p110
p85

RTK

Figure 1.4: c-Src signaling pathways.  c-Src is activated through interaction with 

transmembrane proteins including receptor tyrosine kinases (RTK).  Activation of c-Src 

mediates the Ras/MAPK pathway, leading to proliferation, PI3K/Akt pathway leading to 

survival, FAK signaling leading to migration and invastion, and STAT pathway leading to 

proliferation, survival, and angiogenesis.

35



 36 

focal adhesions, where it associates with FAK, a protein tyrosine kinase that is active 

following the engagement of integrins (Schaller et al., 1993; Cobb et al., 1994; Schaller et al., 

1994).  This co-association activates Src, which in turn phosphorylates FAK.  Subsequently, 

there is an accumulation of phosphorylated proteins critical to cell motility and migration 

including p130cas, paxillin, and PI3K (Hildebrand et al., 1993; Schaller et al., 1994; Chen et 

al., 1995; Polte and Hanks, 1995; Altun-Gultekin and Wagner, 1996; Burnham et al., 1996; 

Hall et al., 1996; Harte et al., 1996; Vuori et al., 1996; Yokote et al., 1996; Schlaepfer et al., 

1997; Schlaepfer and Hunter, 1997).  Third, c-Src has been shown to be involved in cell 

cycle progression.  Specifically, c-Src activates Shc and PI3K to modulate DNA synthesis 

and c-Src phosphorylates SAM68 to regulate mitosis (Augustine et al., 1991; Yamanashi et 

al., 1992; Pleiman et al., 1993; Taylor and Shalloway, 1993; Fumagalli et al., 1994; Ptasznik 

et al., 1995; Broome and Hunter, 1996; Luttrell et al., 1996; Pillay et al., 1996; Taylor and 

Shalloway, 1996).  Through these interactions, c-Src may also regulate apoptosis.  

Specifically, constitutive activation of c-Src leads to rescue of apoptosis induced by cytokine 

removal, irradiation, chemotherapeutics, or disruption of extracellular matrix interactions 

(Anderson et al., 1990; Frisch and Francis, 1994; Basu and Cline, 1995; Canman et al., 

1995).  Lastly, differentiation has also been described to involve c-Src.  Constitutive 

activation of c-Src is sufficient to block differentiation in myoblasts, retinoblasts, and 

chondroblasts, allowing a self renewal phenotype to persist (Muto et al., 1977; Yoshimura et 

al., 1981; Alema and Tato, 1987). 

C. The interaction between c-Src and EGFR  

c-Src interacts with a number of receptor tyrosine kinases including PDGFR, FGFR, 

CSF-1R, NGF-R, HGF-R, IGF-R, HER2, and EGFR (Luttrell et al., 1988; Kozma and 
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Weber, 1990; Kypta et al., 1990; Kremer et al., 1991; Courtneidge et al., 1993; Faletto et al., 

1993; Zhan et al., 1994; Muthuswamy and Muller, 1995).  Interaction between EGFR and c-

Src enhances many EGFR-dependent cellular functions including DNA synthesis, protein 

tyrosine phosphorylation, transformation of mouse fibroblasts and human mammary 

epithelial cell lines, and tumor formation in nude mice (Luttrell et al., 1988; Wilson et al., 

1989; Wilson and Parsons, 1990; Chang et al., 1995; Maa et al., 1995; Boerner et al., 2005; 

Dimri et al., 2007).  Activation of EGFR increases c-Src catalytic activity (Sato et al., 1995a; 

Sato et al., 1995b; Weernink and Rijksen, 1995).  c-Src, in turn, phosphorylates novel sites 

on EGFR, including tyrosine 1101, 891, 920, and 845 (Maa et al., 1995; Tice et al., 1999).  c-

Src-dependent phosphorylation on these sites promotes EGFR signaling.  Specifically, 

phosphorylation of tyrosine 845 has been shown to be critical to EGFR-induced mitogenesis 

(Biscardi et al., 1999a; Tice et al., 1999), while phosphorylation of tyrosines 891 and 920 

mediates the binding of PI3K to EGFR (Stover et al., 1995).  c-Src may also be important in 

EGFR crosstalk.  c-Src expression mediates crosstalk between estrogen receptor and EGFR 

(Castoria et al., 1999), as well as between EGFR and the HGF receptor, c-Met (Mueller et al., 

2008).  Thus, c-Src is an important regulator of EGFR signaling. 

D. c-Src in cancer 

 As c-Src was discovered due to its homology to viral v-Src, a potent oncogene, it was 

widely believed that c-Src would be involved in the cancer phenotype (Fung et al., 1983).  

Overexpression of c-Src alone is insufficient to transform mouse fibroblasts in culture, and 

cannot sustain tumor growth in vivo (Shalloway et al., 1984; Luttrell et al., 1988; Maa et al., 

1995).  However, other findings have suggested a role for c-Src in tumorigenesis.  c-Src is 

necessary for induction of mammary tumors produced by the polyoma middle T oncogene 
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(Guy et al., 1994a).  Also, expression levels of c-Src are elevated in lung, skin, colon, breast, 

cervical, parotid, esophageal, gastric, and brain cancers [reviewed in (Biscardi et al., 2000; 

Irby and Yeatman, 2000)].  While mutations of c-Src are rare in cancer, a mutant form of c-

Src that is truncated before the inhibitory phosphorylation site was identified in 1999 by Irby 

and colleagues in highly metastatic colon carcinoma (Irby et al., 1999).  

E. c-Src tyrosine kinase inhibition   

 Two classes of c-Src inhibitors have been identified and tested in clinical trials: those that 

alter the interactions of c-Src with other proteins (SH3 and SH2 inhibitors) and those that 

inhibit the intrinsic tyrosine kinase activity of Src itself [reviewed in (Sawyer et al., 2001)].  

The SH3 and SH2 inhibitors are small molecules that mimic the specific structure of SFK 

SH3 and SH2 domains thereby blocking association of substrates with c-Src.  The first active 

SH3 inhibitor of c-Src was reported in 1999 (Cussac et al., 1999), however, SH3 domains 

found in various proteins contain common protein sequences, thus specificity might be an 

issue.  The same is true for c-Src SH2 inhibitors, of which, only one has been shown 

effective in vivo [reviewed in (Sawyer et al., 2001)].  Small molecule c-Src tyrosine kinase 

inhibitors, such as PP1, PP2, SU6656, and dasatinib have also been developed [reviewed in 

(Sawyer et al., 2001)].  While PP1 and PP2 were found to inhibit Src family tyrosine kinase 

inhibitors effectively, they also showed efficacy for the PDGF receptor (Hanke et al., 1996).  

To overcome this, Blake and colleagues at SUGEN Inc., developed SU6656, which more 

selectively inhibited Src family tyrosine kinases (Blake et al., 2000).  These inhibitors have 

shown to be useful tools in the study of the effects of c-Src kinase in cell models.  Most 

clinically relevant, and important to this dissertation, is the small molecule c-Src tyrosine 

kinase inhibitor dasatinib.  Dasatinib, or BMS-354825, was originally described as an 
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inhibitor of the oncogenic tyrosine kinase Bcr-Abl (Lombardo et al., 2004).  Lombardo and 

colleagues suggested that dasatinib also could act as a potent inhibitor of SFKs.  The IC50s for 

dasatinib inhibition of SFKs were in the picomolar range, whereas the IC50 for Bcr-Abl was 

closer to 1 nanomolar.  Preclinically, dasatinib was found to have antitumor activity in mouse 

xenograft models of leukemia (Lombardo et al., 2004)  which led to the development of 

clinical trials and the  approval of dasatinib for the treatment of Bcr-Abl expressing acute 

lymphoblastic leukemia in 2006 (Brave et al., 2008).  Due to the elevated c-Src expression 

levels in many solid tumor types and preclinical evidence for an effect of c-Src TKIs on solid 

tumor growth, dasatinib has gone forward into clinical trials alone, and in combination with 

other therapeutics, in breast, skin, pancreatic, brain, colorectal, head and neck, ovarian, 

gastrointestinal, and prostate cancers (Laird et al., 2003; Kim et al., 2010).   

1.3. Lipid Rafts 

A. Discovery of lipid rafts 

 Early on, scientists held a two dimensional view of the lipid bilayer.  This view was that 

the plasma membrane was a "fluid mosaic" (Singer, 1972) containing "Icebergs in the sea" 

(i.e. proteins in a fluid surrounding of lipid).  This idea was further perpetuated by the finding 

that the membrane contained areas that were loosely packed and demonstrated rapid lateral 

diffusion (Lee, 1977).  However, in the early 1950s, flask-shaped invaginations in the plasma 

membrane were discovered by electron microscopy (Palade, 1953).  These invaginations 

were termed “little caves” or caveolae (Yamada, 1955) and were found to contain the protein 

caveolin (Glenney, 1992; Rothberg et al., 1992; Scherer et al., 1995; Tang et al., 1996).  The 

identification of caveolin-1 led to the development of biochemical techniques that resulted in 
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the isolation of low density detergent resistant microdomains (DRMs) (Brown and Rose, 

1992; Lisanti et al., 1995).  These DRMS are rich in flotillin protein (Smart et al., 1999) as 

well as glycosphingolipids, gangliosides (including GM-1), cholesterol, and other proteins; 

however, some DRMs lack caveolin and invagination structure (Mirre et al., 1996; Wu et al., 

1997).  Simons and Ilkonen coined the term “lipid raft” for the DRMs that do not contain 

caveolin protein (Simons and Ikonen, 1997).  These rafts range in size from 10 to 200 nm in 

diameter (Varma and Mayor, 1998; Sharma, 2004; Pike, 2006).  Because of their high lipid 

content, lipid rafts float to low densities during gradient centrifugation (Brown and Rose, 

1992).  However, localization within buoyant fractions after isolation does not constitute co-

association or co-localization specifically with plasma membrane lipid rafts as most isolation 

techniques also result in the isolation of caveolae, as well as lipid rafts from organelles 

[reviewed in (Simons and Ikonen, 1997)].  As recently as 2006, a consensus definition of 

what a lipid raft is was developed at the Keystone Symposium of Lipid Rafts and Cell 

Function, stating that “Lipid rafts are small (10-200nm) heterogeneous, highly dynamic, 

sterol- and sphingolipid-enriched domains that compartmentalize cellular processes.  Small 

rafts can sometimes be stabilized to form larger platforms through protein-protein and 

protein-lipid interactions” (Fig 1.5) (Pike, 2006).  Lipid rafts have been isolated from many 

cell types including epithelial cells, fibroblasts, hematopoietic cells, endothelial cells, 

adipocytes, muscle cells, neurons, and even yeast [reviewed in (Brown and London, 1997)].   

B. The controversy of lipid rafts 

 It was suggested originally by Simons and colleagues that the presence of 

glycosphingolipid rich lipid rafts may be an artificial finding.  Their hypothesis was that 

rather than the lipids interacting to form rafts in intact cells, the lipids may interact during the  
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extraction process (Simons and van Meer, 1988; Simons and Wandinger-Ness, 1990).  

Further indication that lipid rafts may not be present as structures within the plasma 

membrane is the finding that detergents themselves can cause redistribution of proteins on 

the cell surface.  For example, Triton X-100 extraction results in GPI-anchored proteins 

enriched in biochemically isolated DRMs, while other proteins, such as the transferrin 

receptor, are readily solubilized (Hooper and Turner, 1988; Hooper and Bashir, 1991; 

Sargiacomo et al., 1993; Mayor and Maxfield, 1995).  However, Mayor and Maxfield 

performed immunofluorescent staining and electron microscopy of GPI-anchored proteins in 

the absence and presence of detergent.  They found that treatment of cells with Triton X-100 

was sufficient to induce clustering of GPI-anchored proteins, suggesting that membrane 

domains enriched in GPI-anchored proteins are an artificial product of detergent treatment 

(Mayor and Maxfield, 1995).  However, in 1998, Schroeder and colleagues found that DRMs 

were not formed spontaneously during Triton X-100 treatment, as exogenously applied 

radiolabelled sphingomyelin (a main component of DRMs) is not incorporated into 

membranes previously identified as detergent soluble  (Schroeder et al., 1998).  In summary, 

detergent extraction did not spontaneously produce DRMs where there were none previously.  

A number of groups utilized single particle tracking of GM-1, chemical cross-linking of GM-

1 to other proteins, FRET between GM-1 and these proteins, and immunofluorescent 

microscopy, to show that lipid rafts exist in living cells (Sheets et al., 1997; Friedrichson and 

Kurzchalia, 1998; Harder et al., 1998b; Simson et al., 1998; Varma and Mayor, 1998).  More 

recently, non-detergent methods have addressed concerns over detergent "artifacts.”  These 

methods isolate lipid rafts from the cell by mechanical lysis in detergent free buffers 
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followed by ultracentrifugation.  These findings, along with the studies using microscopy 

techniques, support the presence of lipid rafts (Macdonald and Pike, 2005). 

C. Rafts in cellular functions  

Rafts are thought to first assemble within the golgi, where sphingolipids are synthesized (van 

Meer, 1989).  From there, these domains travel through vesicles to the plasma membrane and 

other cellular organelles.  At the membrane, lipid rafts participate in many cellular functions, 

including endocytosis and cellular signaling.   

 The endocytotic pathway has been proposed to involve lipid rafts.  Both clathrin 

dependent and independent mechanisms of endocytosis have been shown to involve lipid 

rafts (Puri et al., 1999) as evidenced by the fact that lipid rafts are themselves are found in 

early endosomes that are recycled back to the cell surface or Golgi apparatus (Puri et al., 

1999; Mukherjee and Maxfield, 2000).  Lipid rafts are also involved in the cellular 

internalization of toxins.  For example, cholera toxin, the infectious agent of vibrio cholerae, 

requires lipid rafts for entry into human cells (Orlandi and Fishman, 1998).  Specifically, 

GM-1, a lipid raft specific ganglioside, is the target binding partner for cholera toxin subunit 

B (Fig 1.5), and the cellular function of cholera toxin is solely triggered when GM-1 is 

present in lipid rafts (Wolf et al., 1998).   

 Lipid rafts contain high concentrations of signaling molecules (Chang et al., 1994; Lisanti 

et al., 1994; Hope and Pike, 1996; Wu et al., 1997).  Different classes of signaling proteins 

localize within lipid rafts including GPI-anchored proteins, transmembrane proteins, receptor 

tyrosine kinases, G-protein coupled receptors, and Src family kinases (Skibbens et al., 1989; 

Sargiacomo et al., 1993; Danielsen and van Deurs, 1995).  These rafts may facilitate 
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signaling through localizing components of a signaling pathway together or localizing 

distinct signaling pathways within the same raft to facilitate crosstalk.  Lipid rafts also 

negatively regulate signaling by sequestering molecules and preventing their association with 

molecules required to activate the proteins [reviewed in (Zajchowski and Robbins, 2002)].  

The B cell receptor (BCR) is an excellent example of the capability of lipid rafts to regulate 

the signaling abilities of proteins.  Specifically, in immature B cells, BCR does not 

translocate to lipid rafts after activation, and signaling pathways activated downstream lead 

to apoptosis rather than activation of the cell (Sproul et al., 2000).  However, in mature B-

cells, BCR rapidly translocates into lipid rafts, where it interacts with the Src family kinase 

member Lyn to promote signaling (Cheng et al., 1999; Petrie et al., 2000).  Interestingly, in 

mature B cells infected with Epstein-Barr virus, this movement into lipid rafts is impaired, 

preventing BCR signaling activation (Dykstra et al., 2001). 

D. The effect of lipid rafts on EGFR and c-Src signaling 

 Of the many proteins that are capable of localizing to lipid rafts, EGFR and c-Src are the 

most relevant to this dissertation.  EGFR has been demonstrated to localize within lipid rafts 

in a variety of human cancer cell lines (Ringerike et al., 2002; Sun et al., 2002; Abulrob et 

al., 2004; Macdonald and Pike, 2005; Oh et al., 2007; Schley et al., 2007), monkey kidney 

cells (Peres et al., 2003), vascular smooth muscle cells (Zuo et al., 2004), and Chinese 

hamster ovary cells (Macdonald and Pike, 2005).  The localization of EGFR to lipid rafts was 

difficult to detect initially, as the biochemical techniques used to isolate lipid rafts initially 

involved detergent extraction.  EGFR is lost from lipid raft fractions when Triton X-100 is 

the detergent used for biochemical fractionation (Pike and Casey, 1996; Gustavsson et al., 

1999).  When other, less stringent, detergents are utilized in lipid raft isolations, EGFR 
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remains associated with lipid rafts (Roepstorff et al., 2002).  The advent of detergent-free 

methodologies of biochemical raft isolation, as well as fluorescent and EM based techniques, 

have since confirmed the localization of EGFR to lipid rafts (Couet et al., 1997b; Waugh et 

al., 1999). Most recently, Hofman and colleagues utilized fluorescence resonance energy 

transfer (FRET) microscopy to show co-localization of EGFR with lipid raft specific 

gangliosides (Hofman et al., 2008).  Mineo and colleagues have demonstrated that 

approximately 60% of EGFR is contained within low density caveolae and non-caveolae raft 

fractions (lipid rafts) in human fibroblasts (Mineo et al., 1999).  Unlike localization to the 

nucleus (Kalderon et al., 1984; Lanford and Butel, 1984), mitochondria (Omura, 1998), 

endoplasmic reticulum (Munro and Pelham, 1987), peroxisome (Gould et al., 1989), or 

caveolae (Couet et al., 1997a), there is no conserved signaling motif present in all lipid raft 

localized proteins [reviewed in (Brown, 2006)].  However, Yamabhai and Anderson utilized 

deletion and chimera constructs to map the region of EGFR that is responsible for 

localization to lipid rafts.  Their results have suggested that the second cysteine-rich region of 

EGFR is responsible for localization of this protein to lipid rafts, however, the mechanisms 

by which this region promote such localization have yet to be determined (Yamabhai and 

Anderson, 2002).   

 There is evidence that lipid rafts play both negative and positive roles in EGFR signaling.  

First, lipid rafts are inhibitory to EGFR signaling functions in that lipid raft localization of 

EGFR inhibits EGF binding (Pike and Casey, 2002; Ringerike et al., 2002; Roepstorff et al., 

2002), decreases receptor autophosphorylation (Pike and Casey, 2002; Ringerike et al., 2002; 

Westover et al., 2003), and reduces the activation of PLCγ, Gab1 and Ras (Chen and Resh, 

2002).  Subsequently, activation of MAPK and p38 MAPK is abrogated (Liu et al., 1996; 
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Anderson, 1998; Furuchi and Anderson, 1998; Schley et al., 2007).  In contrast, increased 

EGFR signaling as a result of lipid raft localization of EGFR has also been demonstrated.  

Specifically, EGFR localization to lipid rafts recruits Shc and Grb2 after EGF binding (Biedi 

et al., 2003; Ridyard and Robbins, 2003; Yang et al., 2004), activates PI3Kinase activity 

(Pike and Casey, 1996; Pike and Miller, 1998), and mediates Akt signaling (Oh et al., 2007).  

For example, in Vero cells (non-transformed monkey kidney cells), using cholesterol 

depletion via methyl-beta cyclodextrin (MBCD), Peres and colleagues found that lipid rafts 

provide a platform to bring together EGFR, PI3K, and PIP2, creating an environment 

favorable for PI3K activation, and thereby leading to Akt activation (Peres et al., 2003).  

Thus, while lipid rafts inhibit EGFR signaling to the MAPK pathway, they also facilitate 

EGFR signaling via the PI3K/Akt pathway. 

 As mentioned earlier, Src family kinases contain lipid modifications on the N-terminus.  

In the case of Fyn and Yes, this is a double modification with both myristate and palmitate, 

whereas c-Src is singly modified with myristate (Paige et al., 1993; Koegl et al., 1994; 

Shenoy-Scaria et al., 1994; Robbins et al., 1995; Yurchak and Sefton, 1995).  Src family 

kinases are capable of localizing to lipid rafts (Liu et al., 1997; Furuchi and Anderson, 1998; 

Davy et al., 2000).  While other family members are likely to associate preferentially to lipid 

rafts through their double lipid modification, c-Src contains basic residues in the unique 

domain that, in combination with the single lipid modification on c-Src, promotes interaction 

with lipid rafts (Sigal et al., 1994).  In particular, c-Src has been shown to localize to lipid 

rafts in neuronal (Mukherjee et al., 2003; Kasai et al., 2005), hematopoietic (Stoddart et al., 

2002), and madin-darby canin kidney cells (Shenoy-Scaria et al., 1994), as well as skeletal 

myoblasts (Smythe et al., 2003), murine fibroblasts (Robbins et al., 1995), and cervical and 
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lung cancer cell lines (Shenoy-Scaria et al., 1994; Arcaro et al., 2007).  Lipid rafts also play a 

dual role in Src family kinase signaling.  While lipid rafts are important in mediation of the c-

Src dependent activation of PI3K/Akt signaling in human SCLC cell lines (Arcaro et al., 

2007) and in the co-localization FAK to promote early contact signaling in cells (Baillat et 

al., 2008), lipid rafts also provide a platform for Csk binding protien (Cbp) to bring Csk, an 

endogenous inhibitor of c-Src, in close proximity to its substrate to down regulate SFK 

activity (Torgersen et al., 2001). 

E. Lipid rafts in cancer 

 In the early 1900s, long before the discovery of lipid rafts, deposition of cholesterol was 

detected in various tumor types [reviewed in (Patra, 2008)].  It has been postulated that 

increased membrane cholesterol, and thereby lipid rafts, contributes to oncogenic pathways 

of cell signaling [reviewed in (Patra, 2008)].  Neuroblastoma and melanoma cell lines have 

specifically shown the presence of lipid rafts in cancer cells (Brown and London, 1997)).  

Levels of lipid rafts have also been shown to be elevated in prostate and breast cancer cell 

lines as compared to normal cell lines(Hazarika et al., 2004; Li et al., 2006).   

 There is evidence to suggest that lipid rafts may be essential in anti-cancer therapeutics.  

Lipid rafts cluster apoptosis-inducing death receptors for anti-cancer therapeutics (Sun, 

2005).  Specifically, lipid rafts mediate the response of colon adenocarcinoma cells to the 

chemotherapeutic cisplatin, as treatment of cells with the cholesterol-sequestering reagent 

nystatin prevents Fas clustering in these cells which is necessary for the induction of 

cisplatin-induced apoptosis (Lacour et al., 2004).  Also, edelfosine, an anti-leukemic drug, 

induces apoptosis quickly in leukemia cells where activation of Fas death receptor and 
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ligand-independent recruitment of Fas into lipid rafts occurs (Gajate et al., 2000; Gajate and 

Mollinedo, 2001; Gajate et al., 2004; Gajate and Mollinedo, 2007).  Other anti-tumor drugs, 

including resveratrol (Delmas et al., 2003), aplidin (Gajate and Mollinedo, 2005), perifosine 

(Gajate and Mollinedo, 2007), and anandamide (DeMorrow et al., 2007), work via a similar 

mechanism.  Lipid rafts also facilitate the entry of chemotherapeutics into cancer cells.  For 

example, the anti-cancer drug class of alkylphospholipids have toxic effects against many 

tumor types (Unger et al., 1989; Munder and Westphal, 1990; Mollinedo et al., 1997; Ruiter 

et al., 1999) and, in 2007, van der Luit and colleagues demonstrated that all 

alkyphospholipids utilize lipid rafts for entry into cancer cells, specifically lymphoma cells, 

where they induce apoptosis (van der Luit et al., 2007).   

 While lipid rafts may be useful in targeting cancer cells with anti-cancer therapeutics, 

they also play a role in oncogenesis.  First, proliferative signaling and migration are increased 

due to the presence of lipid rafts.  In cervical cells, the known oncogenic virus HPV-16 E5 is 

found at increased levels within lipid rafts, leading to enhanced activation of oncogenic 

signaling and proliferation (Suprynowicz et al., 2008).  In breast cancer, knockdown of lipid 

raft specific Src family kinases impairs cell adhesion and cell cycle progression (Hitosugi et 

al., 2007).  Also, in migrating cells, establishment of polarity between the front and rear of 

the cell is of vital importance for cellular motility.  Manes and colleagues have demonstrated 

that lipid rafts help to establish this polarity through re- localization of proteins including 

chemokine receptors, (Manes et al., 1999).  Lipid rafts also regulate survival in cancer cells.  

Li and colleagues found that breast and prostate cancers are more sensitive to apoptotic 

stimuli after cholesterol depletion, due, in part, to decreased lipid raft content and a decrease 
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in Akt activity following that depletion of lipid rafts (Li et al., 2006).  Thus, lipid rafts 

mediate an escape from apoptosis in cancer cells.   

F. Depletion of lipid rafts 

 Both lipid rafts and caveolae require cholesterol for structure (Rothberg et al., 1990), thus 

pharmacological depletion of cholesterol has become an important tool in the study of these 

domains.  Methods commonly used to alter cholesterol levels within cells include lipid-free 

lipoprotein-mediated cellular lipid efflux (which also removes phospholipids from the 

membrane) [reviewed in (Oram and Yokoyama, 1996)], cholesterol extraction (Ohtani et al., 

1989; Kilsdonk et al., 1995; Neufeld et al., 1996), and inhibition of cholesterol biosynthesis 

(Kandutsch and Chen, 1974; Endo et al., 1976a; Alberts et al., 1980; Berkhout et al., 1996; 

Brown et al., 1998a).  Of these methodologies, cholesterol extraction and inhibition of 

cholesterol biosynthesis are important to this dissertation. 

i.  Cyclodextrins   

 The main methodology to extract cholesterol from cellular membranes is the use of 

cyclodextrins.  The first reported isolation of a cyclodextrin substance was in 1891 when 

Villivers isolated a product from Bacillus amylobacter [reviewed in (Szejtli, 1998)].  There 

are three well known cyclodextrins, alpha, beta, and gamma, as well as several less 

characterized larger cyclodextrins, which are cyclic oligosaccharides that differ in the 

number of glucopyranose units (alpha with six, beta with seven, and gamma with eight) 

[reviewed in(Szejtli, 1998)].  Cyclodextrins have a barrel like structure with hydrophillic 

sites on the outside, and a hydrophobic core.  Water molecules present in the core of 

cyclodextrins create an energetically unfavorable environment, and thus a reactive complex.  
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Molecules that are less polar than water, such as cholesterol, will be readily substituted 

within the core of the cyclodextrin molecule [reviewed in (Szejtli, 1998)].  Cyclodextrins can 

be useful to aid in drug delivery through complex formation of a drug with the molecule, or 

in research as discussed below.  While toxicities of cyclodextrins were originally reported, 

further studies have not found in vivo toxicity in most models, however, beta cyclodextrin is 

relatively unused for in vivo applications due to its high affinity toward membrane lipid 

components which could result in hemolysis [reviewed in (Szejtli, 1998)].  However, this 

high affinity for membrane lipids can be exploited for research use in vitro.  For example, the 

methyl derivative of beta-cyclodextrin (MBCD) effectively removes cholesterol from the 

plasma membrane (Kilsdonk et al., 1995; Klein et al., 1995; Yancey et al., 1996; Furuchi and 

Anderson, 1998; Hao et al., 2001; Parpal et al., 2001; Kanzaki and Pessin, 2002) thereby 

reducing the main structural component of lipid rafts and caveolae. 

ii.  Statins   

 The inhibition of cholesterol biosynthesis with statin-type drugs is another effective 

means of reducing levels of lipid rafts in cells.  Statins were originally discovered for their 

function of reducing activity of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, 

which, in turn, abrogated cholesterol biosynthesis.  Therefore, Endo and colleagues spent two 

years and searched over 6,000 microbes for one that would inhibit this enzyme.  Penicillium 

citrinum produces an inhibitor to lipid synthesis that was a new compound, mevastatin (Endo 

et al., 1976b), which inhibited HMG CoA reductase at nanomolar concentrations (Endo et al., 

1976b).  In 1980, mevastatin was utilized in a Japanese clinical study in heterozygous 

patients with familial hypercholesterolemia.  In this study, the HMG CoA reductase inhibitor 

showed the largest reduction in plasma cholesterol of these patients ever seen (Yamamoto et 
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al., 1980).  In 1976, Merck & Co. isolated a molecule similar to mevastatin from Aspergillus 

terreus.  Lovastatin was more effective than mevastatin (Tobert et al., 1982), and was FDA 

approved in 1987 (Stossel, 2008).  However, the landmark discovery that cholesterol 

reduction via statins was associated with inhibition of cardiovascular events was not 

established until 1994 (Stossel, 2008).  This, is turn, lead to the development of other statin-

type drugs, many of which are approved and in clinical use.  Indeed, statins are one of the 

most widely prescribed drugs in America (Collisson et al., 2003) and are well tolerated in 

patients (Law et al., 2003). 

 Statins inhibit cholesterol biosynthesis by competitive inhibition of the committed step of 

isoprenoid and sterol synthesis (Fig 1.6) (Endo et al., 1976a; Corsini et al., 1995).  

Specifically, statins inhibit HMG-CoA reductase by binding to the active site, sterically 

hindering the binding of substrate to the enzyme (Istvan and Deisenhofer, 2001).  There are 

two groups of statins, including type I (lovastatin, pravastatin, simvastatin) which are all 

similar in structure to the originally isolated mevastatin, and type II (fluvastatin, cerivastatin, 

atorvastatin, and rosuvastatin) which are fully synthetic inhibitors (Istvan and Deisenhofer, 

2001).  These drugs can be ranked according to their hydrophobicity.  The most lipohilic 

statin is cerivastatin, followed by lovastatin, simvastatin, fluvastatin, atorvastatin, 

rosuvastatin, and finally pravastatin (McTaggart et al., 2001).  Only highly lipophilic statins 

are capable of permeating the cell membrane directly to affect cellular signaling (Katz, 

2005).  In addition to inhibiting the production of cholesterol, statins also promote the growth 

of new blood vessels (Kureishi et al., 2000), stimulate bone formation (Mundy et al., 1999), 

decrease oxidative modification of LDL, and have anti-inflammatory effects (Davignon and 

Laaksonen, 1999).  While there is evidence that statins may have clinical benefit in other  
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diseases including Alzheimer's, multiple sclerosis, bacteremia, and HIV (Vaughan, 2003; 

Almog et al., 2004; del Real et al., 2004; Vollmer et al., 2004), the information pertinent to 

this dissertation is the benefit of statins in cancer.  Interestingly, cancer cells, as compared to 

normal cells, generally express elevated levels of HMG-CoA reductase and low-density lipid 

receptor (LDL), making them more sensitive than normal cells to depletion of HMG-CoA 

reductase activity (He et al., 1997; Liao, 2002).   

 As a single agent, statins have shown anti-cancer effects in vitro.  Specifically, in 

preclinical models, statins have anti-cancer effects as single agents in breast (Campbell et al., 

2006; Kotamraju et al., 2007), melanoma (Depasquale and Wheatley, 2006; Glynn et al., 

2008), lung (Glynn et al., 2008), lymphoma (Cafforio et al., 2005), myeloma (van de Donk et 

al., 2003), brain (Jones et al., 1994; Girgert et al., 1999; Macaulay et al., 1999), prostate 

(Sivaprasad et al., 2006), renal (Woodard et al., 2008) and pediatric leukemia, 

rhabomyosarcoma  and medulloblastoma (Dimitroulakos et al., 2001).  However, the 

epidemiological data on the use of statins as a singular agent in cancer prevention are mixed 

(Olsen et al., 1999; Blais et al., 2000; Coogan et al., 2002; Kaye et al., 2002; Beck et al., 

2003; Cauley et al., 2003; Boudreau et al., 2004; Graaf et al., 2004; Katz, 2005).  These 

results are confounded by the lack of information on the type of statin used or by the 

reporting of the use of pravastatin, a hydrophilic statin that has no known anti-cancer activity 

in vitro (Campbell et al., 2006).  When the hydrophobicity of the statin drug is taken into 

account, there is a 47% reduction in the relative risk of colorectal cancer (Poynter et al., 

2005) and an 18% reduction in breast cancer incidence (Cauley et al., 2006).  Also, 

hydrophobic statins may act to prevent cancer recurrence.  For example, post-diagnosis statin 
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use is associated with decreased risk of both breast and prostate cancer recurrence (Kwan et 

al., 2008; Gutt et al., 2010; Hamilton et al., 2010).    

In combination therapy, there is more hope for statins as anti-cancer drugs.  In preclinical 

in vivo studies, lovastatin enhances the response to chemotherapy in a mouse model of 

melanoma (Feleszko et al., 1998; Feleszko et al., 2002).  Also, clinical studies have 

suggested that statin drugs may increase sensitivity to chemotherapy or radiotherapy at 

therapeutic doses in prostate, rectal, and hepatocellular carcinomas (Kawata et al., 2001; Katz 

et al., 2005).  Statins also improve the efficacy of small molecule tyrosine kinase inhibitors in 

glioblastoma cells (Cemeus et al., 2008).  In addition, Mantha and colleagues have shown 

that the effects of gefitinib, an EGFR TKI, can be potentiated by large doses of statins in 

head and neck squamous cell carcinoma, non-small cell lung carcinoma, and cervical 

carcinomas (Mantha et al., 2005).  However, the doses used in this study were far above 

selective concentrations for these inhibitors, and, as such, may be inhibiting a myriad of other 

proteins.   

 Statins are a widely used research tool for the reduction of lipid rafts.  As mentioned 

earlier, lipid rafts and caveolae depend on cholesterol for structure.  Thus, the inhibition of 

cholesterol biosynthesis by statins can reduce the amount of membrane cholesterol, thereby 

reducing lipid rafts (Endo et al., 1976a; Alberts et al., 1980).  However, statins are not 

necessarily specific for cholesterol.  As seen in figure 1.6, statins may also inhibit isoprenoid 

synthesis.  Thus, while statins may have a primary effect on cholesterol, they may also inhibit 

protein prenylation leading to other cellular effects.  Generally speaking cholesterol content 

is unaffected when statin treatment decreases protein prenylation (Ghittoni et al., 2005; 

Paintlia et al., 2008), and effects deemed to be related to protein prenylation are typically 
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seen after short duration (under 24 hour) statin treatment, whereas effects requiring longer 

treatment times are generally indicated as cholesterol based effects (deCathelineau and 

Bokoch, 2009).  Therefore, the use of drugs, such as NB-598, that inhibit downstream 

effectors in the cholesterol biosynthesis pathway (Fig. 1.6), should be utilized to tease out the 

effects of statins that are based on depletion of prenylation versus cholesterol (Horie et al., 

1990).  

1.4. Breast Cancer 

 Breast cancer is currently one of the leading causes of cancer death in American women 

[reviewed in (Maughan et al., 2010)].  Approximately one in eight women will be afflicted 

with breast cancer in her lifetime [reviewed in (Maughan et al., 2010)].  As such, an 

understanding of the molecular mechanisms of breast cancer, and research on how to 

effectively treat these cancers, is of vital importance.  In 2000 and 2001, Perou and Sorlie 

and colleagues established distinctive molecular sub-types of breast cancers (Perou et al., 

2000; Sorlie et al., 2001).  These genetic classifications were found to correlate well with 

clinical implications of these diseases (Sorlie et al., 2001). 

A. Molecular sub-types of breast cancer   

 The first sub-type, normal-like, contained tumor samples as well as normal breast 

specimens that are typified by expression of genes that are "normally" expressed in basal 

epithelial cells and adipose cells (Perou et al., 2000).  

 The second sub-type, luminal breast cancers, can be further stratified into two groups, 

luminal A and luminal B (Sorlie et al., 2001).  Luminal A breast cancers are approximately 
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45% positive for the estrogen receptor (ER) alpha and express high levels of luminal cell 

keratins 8/18 (Perou et al., 2000), but have low or no expression of HER2.  Luminal A breast 

cancers have the best prognosis (Sorlie et al., 2001).  Luminal B breast cancers express many 

of the same components as luminal A (including ER), and have expression of HER2 (Sorlie 

et al., 2001).  As such, luminal B-type breast cancers have a less favorable outcome than 

luminal A-type breast cancers (Sorlie et al., 2001).  While chemotherapeutics and surgery 

with radiation are standards of care in the breast cancer world, targeted therapeutics have 

become more commonly utilized [reviewed in (Maughan et al., 2010)].  Indeed, after 

approval of selective estrogen receptor modulators (SERMs), which are utilized for treatment 

of ER positive luminal breast cancers, the mortality rates of US women with breast cancer 

have declined significantly (Altekruse SF, 1975-2007) suggesting that targeted therapeutics 

may be more beneficial than previous therapies.  Specifically, tamoxifen, an estrogen 

receptor antagonist, was the first SERM to be approved for use clinically.  Currently, 

tamoxifen is used either alone or in sequence with an aromatase inhibitor for the treatment of 

ER positive breast cancers [reviewed in (Maughan et al., 2010)].  Aromatase inhibitors have 

also shown clinical efficacy in luminal breast cancers, and three have been approved for use 

alone or in sequence with tamoxifen including anastrozole, exemestane, and letrozole (Baum 

et al., 2003; Coombes et al., 2004; Thurlimann et al., 2005).   

 The third sub-type, HER2 positive breast cancer, is characterized by expression of the 

EGFR family member HER2, and GRB7, with low or no estrogen receptor expression (Perou 

et al., 2000).  These cancers have a worse prognosis than luminal breast cancers, however, a 

better prognosis than basal-type breast cancers (described below) (Sorlie et al., 2001). 

Trastuzumab (Trastuzumab), a monoclonal antibody inhibitor of the HER2 receptor, has 
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been clinically approved for the treatment of HER2+ breast cancer.  Trastuzumab targets 

HER2 by binding to domain IV of the extracellular domain of the receptor and activates 

immune effecter cells to the ErbB2-overexpressing tumor (Sliwkowski et al., 1999; Clynes et 

al., 2000; Cho et al., 2003)  The use of trastuzumab has significantly improved the disease-

free and overall survival rates for women with HER2+ breast cancer (Romond et al., 2005; 

Smith et al., 2007).  Recently, a dual HER2/EGFR inhibitor, lapatinib, was approved for the 

treatment of HER2+ breast cancer (Ryan et al., 2008).  

 The final breast cancer sub-type is basal-type.  These tumors represent approximately 15-

20% of all breast cancers and are defined by elevated expression of cytokeratin 5 and 17, 

laminin, and fatty acid-binding protein 7, and lack of estrogen receptor expression (Perou et 

al., 2000; Millikan et al., 2008).  Although basal-type breast cancers do have a high 

chemotherapy response rate (45%), they remain associated with the worst patient prognosis 

(Sorlie et al., 2001; van de Rijn and Rubin, 2002; Rouzier et al., 2005; Fulford et al., 2006; 

Laakso et al., 2006).  Basal-type breast cancers tend to be triple-negative, in that they do not 

express ER, progesterone receptor (PR), or HER2 [reviewed in (Seal and Chia, 2010)].  As 

such, no targeted therapeutic has been approved for the treatment of this type of breast 

cancer.  Thus, the current standard of care for basal-type breast cancers is surgery with 

radiation and/or chemotherapy [reviewed in (Chen and Russo, 2009)].  Taking into account 

the decreased mortality rates after approval of targeted therapeutics for luminal and HER2 

positive breast cancers, it would be advantageous to develop targeted therapeutics for basal-

type breast cancers, which, as mentioned before, are the worst breast cancers in terms of 

prognosis. 
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B. EGFR in breast cancer 

 HER2 is probably the most widely known EGFR family member to be implicated in 

breast cancer.  Initially, HER2 was found to be closely related to the transforming oncogenes 

neu and c-erb-B2 (Shih et al., 1981; Schechter et al., 1984; Coussens et al., 1985; Schechter 

et al., 1985).  Much like these oncogenes, over-expression of HER2 in transgenic mouse 

models induces transformation in the mammary gland (Pierce et al., 1991; Guy et al., 1994b; 

Eccles, 2001).  It was later discovered that the HER2/neu oncogene was amplified in breast 

cancer cell lines and tissue samples (King et al., 1985; Slamon et al., 1987).  Specifically, 

amplification of HER2 is seen in 20-30% of all breast cancers and over-expression of HER2 

correlates with poor clinical outcome (Slamon et al., 1987; Ross et al., 1998; Menard et al., 

2001).    More recently, Perou and colleagues discovered that HER2-positive breast cancers 

share a similar genetic profile (Perou et al., 2000).  Due, in part, to the high level of HER2 

expression, inhibitors to HER2, such as trastuzumab and lapatinib, have been developed.  

These inhibitors increase patient survival by increasing the time to progression of HER2 

positive breast cancers (Slamon and Pegram, 2001). 

EGFR is expressed in 14-91% of all breast cancers (Sainsbury et al., 1987; Klijn et al., 

1992; Ferrero et al., 2001; Tsutsui et al., 2002).  This wide range is most likely due to the 

myriad of techniques utilized to analyze breast cancer specimens for EGFR, including 

autoradiography, immunohistochemistry, immunoezymatic assay, and gene transcript 

analyses.  There are conflicting data on the quality of EGFR expression as a prognostic 

indicator in breast cancer (Rampaul et al., 2005).  These conflicts are due to studies being 

restricted based on small cohort size, short follow-up times, variable adjuvant therapies, and 

differing detection methodologies.  For example, in a study performed by Fox and colleagues 
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370 patients were examined over a period of eighteen months.  Utilizing a ligand-binding 

assay to detect EGFR, no correlation was reported between EGFR expression and size, stage, 

or grade of tumor.  However, multivariate analysis of their data revealed EGFR as a 

prognostic indicator for relapse-free survival (Fox and Das, 1979).  A more recent study by 

Tsuitsu and colleagues utilized immunohistochemistry to detect EGFR in 1029 cases of 

breast cancer over forty-six months and found that EGFR was an independent prognostic 

factor (Tsutsui et al., 2002).  This study, as well as several other large studies, has shown that 

EGFR over-expression is a negative prognostic variable in breast cancer (Bolla et al., 1990; 

Toi et al., 1991; Jardines et al., 1993).  More specifically, EGFR is over-expressed in 60% of 

basal-type breast cancers (Livasy et al., 2006; Siziopikou and Cobleigh, 2007).   

 EGFR contributes to the normal development of the mammary gland and deregulation of 

EGFR is a contributing factor for breast cancer (Hanahan and Weinberg, 2000; Harari et al., 

2007).  Unlike brain and lung cancers (as described earlier), deregulation of EGFR through 

activating mutations is rare in breast cancer (Rae et al., 2004; Weber et al., 2005).  Genetic 

amplification of EGFR occurs in approximately 6% of breast cancers (Kersting et al., 2004; 

Bhargava et al., 2005; Milanezi et al., 2008), however; over-expression at the protein level 

seems to be the primary mechanism by which EGFR becomes deregulated.  Such over-

expression is controlled through transcriptional up-regulation and/or protein stabilization 

(Fox and Harris, 1997). 

Other mechanisms that result in deregulated EGFR signaling include increased ligand 

expression and receptor crosstalk (Arteaga, 2002; Goswami et al., 2005; Milanezi et al., 

2008). Elevated ligand expression is one mechanism by which EGFR is deregulated in breast 

cancer leading to the transformed phenotype.  Specifically, over-expression of TGFα, an 
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EGFR ligand, in transgenic mouse models leads to a hyperplastic phenotype, as well as 

tumor formation in the mammary gland (Matsui et al., 1990; Sandgren et al., 1990; Sandgren 

et al., 1995).  TGFα promotes the growth of breast cancer cell lines, and is expressed at 

higher levels in estrogen receptor negative breast cancers (Perroteau et al., 1986; Bates et al., 

1988; Salomon et al., 1990). Cross-breeding between TGFα and HER2 over-expressing mice 

results in synergistic tumorigenesis due to increased EGFR transactivation of HER2 (Muller 

et al., 1996).  This particular EGFR ligand is expressed in 40-70% of primary and metastatic 

breast tumors (Bates et al., 1988; Dublin et al., 1993; Murray et al., 1993; Ciardiello et al., 

1996).  AREG is also expressed in breast cancer cell lines, although there is evidence that 

ER-positive breast cancers express increased levels of AREG as compared to ER-negative 

cell lines (Plowman et al., 1990).  EGF is also upregulated in breast cancer cell lines where it 

induces PI3K activity resulting in proliferation (Harris, 1989; Atalay et al., 2003).  Receptor 

crosstalk is also capable of inducing EGFR deregulation.  G-protein coupled receptors 

activate EGFR-dependent signaling.  Specifically, Andreev and colleagues have utilized 

genetic knockout models to show that c-Src and Pyk2 (another protein tyrosine kinase) 

mediate activation of EGFR by G-protein coupled receptors leading to activation of MAPK 

signaling (Andreev et al., 2001).  c-Met-dependent activation of EGFR has also been noted in 

breast cancer (Mueller et al., 2008; Mueller et al., 2010).  In particular, c-Met is responsible 

for EGFR-kinase independent phosphorylation of EGFR in breast cancer cells.  Co-treatment 

of these cells with EGFR and c-Met inhibitors resulted in abrogation of EGFR 

phosphorylation and inhibition of breast cancer cell growth (Mueller et al., 2008). 

EGFR expression is twice as frequent in ER/PR negative breast cancer than positive 

(Klijn et al., 1992), and, in fact, cellular proliferation in estrogen receptor negative breast 
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cancers is dependent on EGFR signaling (Biswas et al., 2001). When EGFR and estrogen 

receptor are co-expressed, it is thought that the signaling pathways of these two molecules 

may be intertwined.  For example, EGFR activation results in phosphorylation and activation 

of nuclear estrogen receptor.  Also, plasma-membrane localized estrogen receptor is able to 

hijack the EGFR signaling cascade for signal transduction (Levin, 2003).  EGFR may also be 

involved as a mechanism of resistance to endocrine therapy (Yarden et al., 1996; Yarden et 

al., 2001).  Specifically, estrogen-receptor positive breast cancer cell lines with acquired 

resistance to tamoxifen, an estrogen receptor antagonist, have increased levels of EGFR and 

HER2 expression as compared to the parental cell line (McClelland et al., 2001; Knowlden et 

al., 2003).  Also, treatment naive breast cancers that have elevated EGFR and/or HER2 

expression are more likely to be resistant to estrogen directed therapeutics as compared to 

low expressing cells (Gee et al., 2001).  As EGFR and HER2 are increased on tamoxifen 

resistant breast cancers, lapatinib, a dual EGFR/HER2 inhibitor (described earlier), has been 

used in preclinical studies in an effort to overcome such resistance (Chu et al., 2005).   

 As described previously, both monoclonal antibodies and small molecule tyrosine kinase 

inhibitors directed against EGFR have been designed and tested in clinical trials.  In breast 

cancer, however, the results have been less than hopeful.  While lapatinib, a small molecule 

was approved in 2007 in HER2 positive breast cancer in patients that have failed trastuzumab 

therapy (Ciardiello et al., 1996; Geyer et al., 2006), lapatinib has failed to show efficacy in 

HER2 negative breast cancers, including those of the basal sub-type (Finn et al., 2007; Di 

Leo et al., 2008).  The monoclonal antibody cetuximab has shown promise in vitro, however, 

clinical trials combining cetuximab with chemotherapeutics have shown negative results 

(Modi et al., 2006; Shiu et al., 2008; Burness et al., 2010).  Other small molecule EGFR TKIs 
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have been tested in clinical trial, however, most ER-negative breast cancers fail to respond to 

EGFR-specific tyrosine kinase inhibitors [reviewed in (Atalay et al., 2003)]. 

C. c-Src in breast cancer 

 c-Src expression and activity are elevated in breast tumor tissue and cell lines as 

compared to matched non-tumor tissue (Ottenhoff-Kalff et al., 1992; Verbeek et al., 1996; 

Belsches-Jablonski et al., 2001; Reissig et al., 2001).  Furthermore, inhibition of Src kinase 

activity results in decreased proliferation, adhesion, and invasion of breast cancer cells in 

vitro (Finn et al., 2007; Green et al., 2009).  c-Src expression correlates with breast cancer 

recurrence, and with poor clinical outcome (Aligayer et al., 2002; Wilson et al., 2006).  c-Src 

effectively promotes the mitogenic effects of estrogen (Shupnik, 2004), and as such, has been 

implicated in the tumorigenic phenotype of estrogen receptor positive breast cancers (Herynk 

et al., 2006).  c-Src kinase activity is elevated in in vitro models of tamoxifen resistant breast 

cancers, independent of its gene or protein level (Hiscox et al., 2006).  In these tamoxifen 

resistant cells, inhibition of c-Src kinase activity with a small molecule tyrosine kinase 

inhibitor is sufficient to abrogate invasion and migration (Hiscox et al., 2006), suggesting a 

role for c-Src in resistance to estrogen targeted therapies.  c-Src has also been implicated in 

the metastatic process in breast cancer.  Kinase activity of c-Src is implicated in the highly 

metastatic phenotype of HER2-type breast cancer [reviewed in (Kim et al., 2010)].  Also, 

there is an established association between c-Src and metastases to the bone and other sites 

(Myoui et al., 2003; Rucci et al., 2006; Jallal et al., 2007).   

 The interaction between EGFR and c-Src is apparent in breast cancer.  As mentioned 

earlier, co-overexpression of EGFR and c-Src occurs in a subset of human breast cancer cell 
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lines and tumor tissues (Maa et al., 1995).  The interaction between EGFR and c-Src induces 

oncogenesis through increased EGFR signaling (Luttrell et al., 1988; Wilson et al., 1989; 

Maa et al., 1995; Biscardi et al., 1998; Olayioye et al., 1999).  Inhibition of c-Src kinase 

activity reduces EGFR-mediated proliferation of breast cancer cells (Wilson et al., 1989; 

Roche et al., 1995).  c-Src also plays a role in transactivation of EGFR in breast cancer.  For 

example, activation of EGFR by urokinase-type plasminogen activator (uPA) is c-Src-

dependent, and leads to breast cancer invasion (Guerrero et al., 2004). 

 Due to the apparent role of c-Src in breast cancer growth, drug resistance, and metastasis, 

tyrosine kinase inhibitors of c-Src are currently in clinical trial.  Dasatinib, one such c-Src 

tyrosine kinase inhibitor, is undergoing trials for basal-type breast cancers, as it is efficacious 

in preclinical models (Finn et al., 2007; Huang et al., 2007).  Also, as c-Src expression alone 

is insufficient to cause transformation (Shalloway et al., 1984), c-Src inhibitors are also being 

explored in combination therapies with HER family inhibitors, VEGF inhibitors, PDGFR 

inhibitors, and chemotherapeutics (Boudny and Nakano, 2003; Griffiths et al., 2004; Hatake 

et al., 2007). 

D. Lipid rafts and breast cancer 

Lipid rafts play a role in the growth and survival of breast cancer cells.  Findings 

from multiple studies have indicated a role for lipid rafts in the growth of estrogen receptor 

positive breast cancer (Auricchio et al., 1996; Chambliss et al., 2000; Kelly and Levin, 2001; 

Marquez et al., 2001; Razandi et al., 2002; Li et al., 2003; Song et al., 2004; Marquez et al., 

2006).  Also, disruption of lipid rafts by cholesterol depletion results in increased sensitivity 

to apoptotic stimuli due to a decrease in Akt signaling in breast cancer cells, as well as 
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epidermoid carcinoma and prostate cancer cells (Li et al., 2006).  Lipid rafts also play a role 

in migration and metastasis in breast cancer.  Manes and colleagues have shown a role for 

lipid rafts in migration of breast adenocarcinoma cell lines.  Specifically, the establishment of 

front-rear polarity after growth factor stimulation, which is required for chemotaxis of cancer 

cells, is dependent on lipid rafts (Manes et al., 1999).  Furthermore, EGF-induced chemotaxis 

(Liu et al., 2007), the formation of invadopodia, and extracellular matrix degradation by 

breast cancer cell lines are lipid raft dependent (Yamaguchi et al., 2009).  Together, these 

results suggest a role for lipid rafts in metastasis of breast cancer.   

 Epidemiological data regarding the use of statins (reviewed earlier in this chapter) as 

singular agents in breast cancer prevention or treatment are mixed (Beck et al., 2003; Cauley 

et al., 2003; Kwan et al., 2008).  However, in regards to breast cancer recurrence, the data on 

post-diagnosis statin use are positive.  Specifically, a 2007 study by Kwan and colleagues 

found that starting lipophilic statin treatment after diagnosis resulted in a significant decrease 

in the risk of breast cancer recurrence (Kwan et al., 2008).   

Preclinical data for the use of statins as part of combinatorial therapies in breast cancer 

has also gained support (Katz, 2005).  For example, HER2, a member of the EGFR family of 

receptor tyrosine kinases, is expressed in approximately 30% of breast cancer, and as such, 

HER2 has been an attractive therapeutic target in breast cancer (Slamon et al., 1987; Pierce et 

al., 1991).  However, the response rate for trastuzumab, a clinically approved HER2 

inhibitor, is only 34%, indicating de novo resistance to the therapeutic (Cardoso et al., 2002; 

Vogel et al., 2002).  HER2 has been demonstrated to localize to lipid rafts (Harder et al., 

1998b; Nagy et al., 1998; Nagy et al., 2002), and modulation of lipid rafts through fatty acid 

synthase inhibition has been shown to act synergistically with trastuzumab in breast cancer 
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cells (Menzo et al., 1993).  These data suggest that statins may be an effective therapeutic 

agent in breast cancer. 

1.5 Significance 

 Breast cancer is currently one of the leading causes of cancer death amongst American 

women.  As described, breast cancer is subdivided into molecular sub-types by the genetic 

signature of the tumor.  Of those, basal-type breast cancers have the fewest treatment options.  

Unlike luminal and HER2+ breast cancers, there are  no currently approved targeted 

therapeutics for basal-type breast cancers, therefore, cytotoxic chemotherapy regimens, along 

with surgery and radiation, remains the standard of care.  After the approvals of tamoxifen 

and trastuzumab, the mortality rates of American women with breast cancer declined, 

suggesting that approval of targeted therapeutics may be the key to lowering the rate of death 

from breast cancer.  Identification of a targeted therapy for basal-type breast cancers is 

therefore of the utmost importance.  Nearly 60% of basal-type breast cancers express the 

EGFR.  As such, EGFR may be an attractive therapeutic target in this cancer sub-type.  

However, these breast cancers fail to respond to EGFR tyrosine kinase inhibition.  Thus, the 

work herein seeks to discover mechanisms of resistance to EGFR tyrosine kinase inhibition.  

Levels of cholesterol rich lipid rafts are up-regulated in breast cancer cells as compared to 

normal mammary epithelial cells.  Depletion of cholesterol in breast cancer cells results in 

increased sensitivity to apoptotic stimuli, suggesting that, due to this elevation breast cancer 

cells are dependent on signaling within lipid rafts.  In support of this idea, retrospective 

studies of women with breast cancer found that women who took statins to lower cholesterol 

saw a decrease in the recurrence of their cancer compared to women who did not take statins.  

c-Src, a non-receptor tyrosine kinase, also localizes to these lipid rafts to promote signaling 
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pathways.  c-Src and EGFR interact in breast cancer, and their interaction has been 

implicated in transformation and tumorigenesis.  c-Src is capable of phosphorylating EGFR 

on novel sites, which lead to increased association of signaling molecules with the receptor.  

Thus, we hypothesized that the interaction of these two proteins within lipid rafts may 

mediate resistance to EGFR tyrosine kinase inhibition in breast cancer cells. 
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Chapter 2 

2. Materials and Methods 

2.1 Reagents - Gefitinib was provided by AstraZeneca (Wilmington, DE).  All other reagents 

were purchased from Sigma or VWR unless otherwise noted. 

2.2 Cell lines - The SUM series of cell lines were obtained from Dr. Stephen Ethier (Wayne 

State University/Karmanos Cancer Institute, Detroit, MI).  The remaining cell lines were 

purchased from ATCC (Manassas, VA).  The growth conditions for each cell line are as 

follows.  SUM 52, SUM 149, SUM 159, SUM 185, SUM 225, and SUM 229 cells are grown 

in 5%IH media (Ham’s F-12 media, supplemented with 5% FBS, 1µg/ml hydrocortisone, and 

5µg/ml insulin).  SUM 1315 cells are grown in 5%IE media (Ham’s F-12 media, 

supplemented with 5% FBS, 10ng/ml EGF, and 5µg/ml insulin).  SUM 44 and SUM 190 

cells are grown in SFIH media (Ham’s F-12 media, supplemented with 1µg/ml 

hydrocortisone, 5µg/ml insulin, 5mM ethanolamine, 10mM HEPES, 5µg/ml transferrin, 

10nM triiodo-thyronine, 50µM sodium selenite, and 5% BSA).  SUM 102 and MCF10A cells 

are grown in SFIHE media (Ham’s F-12 media, supplemented with 1µg/ml hydrocortisone, 

5µg/ml insulin, 10ng/ml EGF, 5mM ethanolamine, 10mM HEPES, 5µg/ml transferrin, 10nM 

triiodo-thyronine, 50µM sodium selenite, and 5% BSA).  MCF7, SKBr3, T47D, MDA-MB-

231 and MDA-MB-468 cells are grown in DMEM+10%FBS media (DMEM media, 

supplemented with 10% FBS).  BT-20 cells are grown in Eagles+NEAA media (Eagle’s 

MEM with 2mM L-glutamine and Earle’s BSS adjusted to contain 1.5g/L sodium 

bicarbonate, 0.1mM non-essential amino acids, 1mM sodium pyruvate, and 10% FBS).  BT-

549 cells are grown in RPMI+L-GLUT(2mM) media (RPMI-1640, supplemented to contain 
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1.5g/L sodium bicarbonate, 4.5g/L glucose, 10mM HEPES, 1mM sodium pyruvate, 0.023 

IU/ml insulin, and 10% FBS).  HCC 1937 and HCC 1954 cells are grown in RPMI+L-GLUT 

media (RPMI-1640 media with 2mM L-glutamine adjusted to contain 1.5g/L sodium 

bicarbonate, 4.5g/L glucose, 10mM HEPES, 1mM sodium pyruvate, and 10% FBS).  The 

SUM and HCC cells are cultured in 10% CO2 and the remaining cells are cultured in 5% 

CO2.  All media are supplemented with 2.5 µg/ml amphotericin B and 25 µg/ml genatimycin.  

Information regarding the isolation and estrogen or HER2 receptor status of these cell lines 

can be found in Table 2.1. 

2. 3 Immunoblotting – Breast cancer cell lines were plated at a density of 1X10
6
 cells per 

100-mm
 
dish and grown for 48 h. Cells were treated with indicated reagents (1.0 µM 

gefitinib for 30 min in serum free media, and/or 1 µM lovastatin 72 h, and/or 1.0 µM 

dasatinib 2 h in serum free media).  Media was aspirated, and then cells were washed in 1X 

PBS containing 1 µM sodium orthovanadate.  One milliliter of 1X PBS containing sodium 

orthovanadate was again added, and cells were scrapped and placed into a conical.  Cells 

were pelleted by centrifugation, and then lysed in CHAPs lysis
 
buffer [10 mM CHAPs, 50 

mM Tris (pH 8.0), 150 mM
 
NaCl, and 2 mM EDTA with 10 µM sodium orthovanadate

 
and 

1x protease inhibitor cocktail].  Lysates were then centrifuged for 10 min at a speed of 

18,000Xg at 4 degrees Celsius.  Bradford protein assay was then performed.  For 

immunoblotting,
 
10 to 100 µg of protein lysate were separated by SDS-PAGE (200 V for 30 

min)
 
and transferred to Immobilon P. Membranes were blocked

 
in either 5% nonfat dry milk 

for
 
1 h at 25°C or overnight at 4°C (phospho-MAPK), or 5% BSA overnight at 4°C 

(phospho-SrcY416).   Membranes were probed with EGFR (Cell Signaling Technology, 

Danvers, MA, 1:1000), Akt (Cell Signaling Technology, Danvers, MA, 1:1000), MAPK 
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Cell Line Isolation ER Status 
HER2 

Status 
References 

HMEC Primary    

MCF10A 
Immortalized 

normal mammary 

cell line 
  (Soule et al., 1990) 

SUM 44 Pleural effusion + + (Forozan et al., 1999) 

SUM 52 Pleural effusion - + (Turner et al., 1993; Forozan et al., 1999) 

SUM 102 
Intraductal 

carcinoma 
- - 

(Forozan et al., 1999; Bertucci et al., 2005; 

Anders and Carey, 2008) 

SUM 149 
Invasive ductal 

carcinoma 

(inflammatory) 

- - (Forozan et al., 1999; Bertucci et al., 2005) 

SUM 159 
Anaplastic 

carcinoma 
- - (Forozan et al., 1999) 

SUM 185 Pleural effusion - + (Forozan et al., 1999; Zhou et al., 2004) 

SUM 190 
Invasive ductal 

Carcinoma 

(inflammatory) 

+ + (Forozan et al., 1999) 

SUM 225 

Chest wall 

recurrence of 

ductal carcinoma 

in situ 

- + (Forozan et al., 1999) 

SUM 229 Pleural effusion - - (Forozan et al., 1999) 

SUM 1315 
Skin metastasis 

of infiltrating 

ductal carcinoma 

- + (Forozan et al., 1999) 

MCF7 Pleural effusion + - 
(Soule et al., 1973; Levenson and Jordan, 

1997; Ross and Fletcher, 1998) 

T47D Pleural effusion + - 
(Keydar et al., 1979; Judge and 

Chatterton, 1983) 

BT 20 Carcinoma - - (Keyomarsi and Pardee, 1993) 

BT 474 
Invasive ductal 

carcinoma 
+ + (Lasfargues et al., 1978) 

BT 549 
Invasive ductal 

carcinoma 
- 

- (Lasfargues et al., 1978) 

SKBR3 Pleural effusion - + (Trempe, 1976) 

HCC 1937 
Primary ductal 

carcinoma 
- 

- 
(Gazdar et al., 1998; Tomlinson et al., 

1998) 

HCC 1954 
Invasive ductal 

carcinoma 
- 

+ (Gazdar et al., 1998) 

MDA-MB 231 Pleural effusion - - (Cruciger et al., 1976) 

MDA-MB 468 Pleural effusion - - (Cailleau et al., 1978) 

Table 2.1: Isolation properties and estrogen receptor/HER2 receptor status of cell lines 

used.  
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 (Cell Signaling Technology Danvers, MA, 1:500), phospho-Akt (Ser473; Cell Signaling 

Technology, Danvers, MA, 1:2000), phospho-ERK1/2 (MAPK) (Invitrogen, Carlsbad, CA, 

1:500), phospho-SrcY416 (Cell Signaling Technology, Danvers, MA, 1:1000), c-Src (Cell 

Signaling Technology, Danvers, MA, 1:500),  transferrin receptor (Invitrogen, Carlsbad, CA, 

1:2000), or flotillin (BD Biosciences, San Jose, CA, 1:1000) antibodies. All antibodies were 

incubated overnight at 4°C, except for phospho-MAPK and phospho-SrcY416 (2 h at room 

temperature). Membranes
 
were washed with TBS + 0.1% Tween 20 three times for 10 min, 

followed
 
by incubation with corresponding secondary antibody and another

 
series of three 

washes. Incubation with enhanced chemiluminescence
 
(GE Healthcare Buckinghamshire, 

UK) was followed by exposure to film. Experiments
 
were repeated at least three times and 

quantified using densitometry
 
(NIH Image).  

2.4 In vitro kinase assays – Under normal growth conditions, 1 million cells were grown for 

48 h. Cells were washed in 2X in PBS and lysed in solubilization buffer (50 mM HEPES, pH 

7.5, 10% glycerol, 0.5% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA, 1 mM PMSF, 50 

µg/ml aprotinin, and 400 nM vanadate).  Lysates were cleared by centrifugation, quantified, 

and 0.5 mg of protein was immunoprecipitated using EGFR antibodies (mab108, M. Weber, 

University of Virginia, Charlottesville, VA).  Antibody bound proteins were collected using 

40 µl protein A beads (Upstate Biotechnology, Lake Placid, NY) and washed three times in 

HTG buffer (20 mM HEPES, pH 7.5, 0.1% Triton X-100, and 10% glycerol).  For the kinase 

assay, 40 µl HTG buffer, 4 µl MnCl2 (of 100 mM stock), and 10 µCi 
32

P-γATP were 

incubated with the immunoprecipitates for 10 min at 30ºC.  The beads were pelleted and the 

supernatant removed and discarded.  The beads were washed twice with solubilization buffer 

and once with PBS.  40 µl of sample buffer was added to the pellets, the samples were boiled, 
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and proteins were separated using 7.5% SDS-PAGE.  The gels were dried and exposed to 

film.  Each experiment was repeated at least three times. 

2.5 ShRNA downregulation of EGFR - To downregulate EGFR expression we utilized 21 

EGFR-directed shRNA lentiviral constructs from OpenBiosystems (TRCN0000039633, 

TRCN0000039634, TRCN0000039635, TRCN0000039636, TRCN0000039637, 

TRCN0000010329, TRCN0000121067, TRCN0000121068, TRCN0000121069, 

TRCN0000121070, TRCN0000121071, TRCN0000121202, TRCN0000121203, 

TRCN0000121204, TRCN0000121205, TRCN0000121206, TRCN0000121327, 

TRCN0000121328, TRCN0000121329, TRCN0000121330, TRCN0000121331  ). Three 

constructs were chosen based on their specific reduction in EGFR expression in our cell 

models. Specifically, EGFR shRNA #1 = TRCN0000121071 

(CCGGCCGTGGCTTGCATTGATAGAACTCGAGTTCTATCAATGCAAGCCACGGTT

TTTG), EGFR shRNA #2 = TRCN0000121329 

(CCGGCAGCATGTCAAGATCACAGATCTCGAGATCTGTGATCTTGACATGCTGTT

TTTG), and EGFR shRNA #3 = TRCN0000121204 

(CCGGCCTCCAGAGGATGTTCAATAACTCGAGTTATTGAACATCCTCTGGAGGTT

TTTG) showed pertinent effects in our model system.  The lentiviruses were packaged using 

a third generation lentiviral packaging system developed by Didier Trono and colleagues 

(Lausanne, Switzerland) and purchased from Addgene (Dull et al., 1998).  Specifically, 

Addgene plasmids pMLDg/pRRE (12251), pRSV-Rev (12253), and pMD2.G (12259) were 

transfected into HEK293T cells with the lentiviral vectors containing the shRNAs using 

FUGENE6 (Roche).  Cellular supernatant was collected on days 2 and 3 after transfection, 

pooled, and filtered.  The lentivirus was titered using HEK293T cells in a 24-well plate, 
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incubated with increasing volumes (10 to 100 µl) of virus with 8 µg/ml polybrene and 

selected for via the puromycin selection on the lentiviral vector (1 µg/ml puromycin).  

Colonies were visualized and used to compare viral preps and between viruses for consistent 

titers used in experiments.  To determine the efficacy of EGFR downregulation in breast 

cancer cells, equal multiplicity of infection (MOI) of EGFR shRNA virus (or a non-silencing 

control) was added to the indicated cells in the presence of 8 µg/mL polybrene.  Four days 

later, cell lysates were prepared, separated by SDS-PAGE, and immunoblotted using EGFR 

antibodies as described above.  EGFR was considered knocked down if the densitometric 

values of at least three experiments demonstrated at least a 50% reduction of EGFR protein 

expression.  

 To determine if EGFR downregulation affects cell proliferation in breast cancer cells, the 

indicated cells were incubated with equal MOI of virus and allowed to proliferate for three 

days.  1 µg/ml of puromycin was then added to media to select for cells that contain the 

lentivirus and cells were allowed to proliferate for an additional eight days.  The number of 

cells was quantified using a Beckman Coulter Counter.  Briefly, media was aspirated and 

plates were washed with 1 ml 1X PBS.  Cells were then incubated with 500 µL 

Hepes:MgCl2 solution (0.01 M Hepes, 0.015 M MgCl2 for five minutes, followed by 75 µL 

ZAP (Ethyl hexadecyldimethylammonium bromide) for 10 min.  This solution was then 

added to 9.5 mL of isoton solution and counted using a coulter counter.  Each experiment 

was repeated at least three times with the following control conditions: no puromycin added 

to the cells, no viral infection with puromycin selection, and non-silencing control with 

puromycin selection.  The percent of cell growth was determined by using the non-silencing 

control with puromycin selection as 100% cell growth.   
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2.6 Immunostaining - Anti-EGFR (mab108) was labeled with Alexa-fluor-488 (Invitrogen, 

Carlsbad, CA) and Anti-Src (2-17, S. Parsons, University of Virginia, Charlottesville, VA) 

was labeled with Alexa-flour-594 (Invitrogen, Carlsbad, CA) utilizing Alexa-fluor labeling 

kits.  Cells were plated onto coverslips at a density of 1.5X10
5
 cells per 35mm dish and 

grown for 48 h.  For lipid raft staining, media was aspirated, cells were washed with 1X PBS 

once, and then incubated with Alexa-fluor-594 labeled cholera toxin subunit B (Invitrogen, 

Carlsbad, CA) at 1 µg/ml for 10 min on ice prior to fixation (Roepstorff et al., 2002; Liu et 

al., 2007).  Cells were then washed three times in 1X PBS (washed), fixed with formalin for 

20 min at room temperature, washed, permeabilized with 0.1 % Triton-x 100 (if applicable) 

for 2 min on ice, washed, blocked in 20% goat serum for 1 h at room temperature, then 

incubated with EGFR (Alexa-fluor labeled) or c-Src (2-17 unlabeled for lipid raft staining, 

594 labeled for EGFR co-staining) antibody for 1 h (followed by corresponding Alexa-fluor 

594 secondary antibody if necessary), washed, quickly washed once in deionized water, and 

then mounted onto slides with Prolong Gold containing DAPI (Invitrogen, Carlsbad, CA).  

Imaging was performed via confocal microscopy using a Zeiss Axioplan2 apotome 

microscope fitted with a 63X 1.25 oil immersion lens at the Microscopy and Imaging 

Resources Laboratory (Wayne State University, Detroit, MI).  

2.7 Biochemical Raft Isolation - Biochemical lipid raft isolation was adapted from 

established protocols (Macdonald and Pike, 2005).  Briefly, cells were plated at a density of 

0.5X10
6
 cells in six-100 mm plates for 72 h.  Media was aspirated, and then cells were 

scraped in base buffer [20 mM Tris, pH 7.8, 250 mM Sucrose, 1 mM MgCl2, 1 mM CaCl2, 

100 µM sodium orthovanadate], centrifuged at 250Xg at four degrees to pellet cells
 
and lysed 

in base buffer containing 1X protease inhibitor cocktail (EMD Biosciences, Gibbstown, NJ) 
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by passing through a 22 gauge X 1.5” needle 40 times.  Lysates were centrifuged for 10 min 

at four degrees and 1000Xg, and the first and second post-nuclear supernatants were 

combined and frozen at -20°C.  This freezing step was required for reproducibility of results, 

as without it the isolation was never repeatable.  Samples were thawed and combined with 

equal volume of 50% Opti-Prep (Greiner Bio One, Monroe, NC) and 0-20% Opti-Prep 

gradient was applied.  Gradients were centrifuged for 90 min at 52,000Xg and then 

fractionated into 16 - 0.56 mL fractions from the top of the tube.  Fractions were separated 

via SDS-PAGE, transferred to Immobolin-P (Millipore, Billerica, MA), and immunoblotted 

utilizing antibodies described above.  Fractions were dot blotted with Cholera Toxin Subunit 

B-HRP (Invitrogen, Carlsbad, CA) to determine GM-1 expression.  Incubation with 

enhanced chemiluminescence
 
(GE Healthcare, Buckinghamshire, UK) was followed by 

exposure to film. Experiments
 
were repeated at least three times and quantified using 

densitometry
 
(NIH Image). 

2.8 Immunoprecipitation – Five hundred micrograms of whole cell lysates (as collected for 

immunoblotting) or two hundred microliters of each lipid raft fractionation (1-7) were pooled 

and immunoprecipitated with 10 µg of EGFR antibody (mab108) or 10 µg c-Src antibody (2-

17) for 1 h at 4°C.  Forty microliters of a 50% slurry of protein A agarose beads were added 

for 30 min.  Samples were then pelleted and washed three times in CHAPs lysis buffer, then 

25 µL 2X Lamelli buffer was added, and samples were boiled for 5 min.  Samples were 

subjected to SDS-PAGE followed by immunoblotting for EGFR and c-Src.  Whole cell 

lysates were utilized as a migration control.  Immunoprecipitation with 10 µg mouse IgG 

antibody served as a negative control. 
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2.9 Cholesterol Assay – SUM159 breast cancer cells were plated at a density of 0.5X10
4
 cells 

per well of a 6-well plate then treated with  1 mM methyl-beta cyclodextrin (MBCD 1 h), 1 

µM gefitinib (72 h), 1 µM lovastatin (72 h), 1 µM atorvastatin (LC Laboratories, Woburn, 

MA; 72 h), or 0.5 µM NB-598 (72 h).  Cells were then lysed in CHAPS lysis buffer [10 mM 

CHAPs, 50 mM Tris (pH 8.0), 150 mM
 
NaCl, and 2 mM EDTA with 10 µM sodium 

orthovanadate
 
and 1x protease inhibitor cocktail] and Bradford protein assay (Bio-Rad, 

Hercules, CA)  was performed.  Cholesterol was measured utilizing the Amplex Red 

cholesterol assay kit (Invitrogen, Carlsbad, CA).  Briefly, 5 µl of sample was diluted into 45 

µl 1X reaction buffer and 50 µl Amplex Red buffer [2 U/mL horse radish peroxidase, 2 

U/mL cholesterol oxidase and 0.2 U/mL cholesterol esterase] was added in a 96-well plate.  

Reactions were incubated at 37°C for 30 min to allow for production of hydrogen peroxide 

due to the reaction of cholesterol esterase and oxidase with cholesterol in the samples.  The 

Amplex Red buffer changes fluorescent color upon exposure to hydrogen peroxide, thus 

excitation was performed at 540/525nm and emission measured at 620/640nm utilizing filters 

of a Synergy 2 Multi-Mode Microplate Reader (BioTek, Winooski, VT) to measure the 

amount of hydrogen peroxide produced in the samples.  Emission readings were averaged 

and compared to a cholesterol standard curve, then normalized for protein content. 

2.10 Growth Assays – Cells were plated at a density of 3.5X10
4
cells per well in 6-well plates 

on day 0.  Every other day starting on day 1, cells were treated with 1 µM gefitinib, 1 µM 

lovastatin (EMD Biosciences, Gibbstown, NJ), or increasing doses of dasatinib alone or in 

combination.  On days 1, 4 and 8, cells were counted with a Coulter counter (Beckman 

Coulter, Brea, CA).  Briefly, media was aspirated and plates were washed with 1 ml 1X PBS.  

Cells were then incubated with 500 µL Hepes:MgCl2 solution (0.01 M Hepes, 0.015 M 
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MgCl2 for five minutes, followed by 75 µL ZAP (Ethyl hexadecyldimethylammonium 

bromide) for 10 min.  This solution was then added to 9.5 mL of isoton solution and counted 

using a coulter counter.  Graphs represent the mean of three individual experiments 

performed in triplicate. 

2.11 MTS Assays – Breast cancer cells were plated at a density of 1-2X10
3
 in 96-well plates, 

incubated overnight, and then treated with 0.001-100 µM lovastatin, NB-598, dasatinib, 

and/or gefitinib for 72 h.  Twenty microliters of CellTiter 96 Aqueous One Solution Cell 

Proliferation Assay reagent (Promega, Madison, WI) were added to each well and allowed to 

incubate at 37°C.  Absorbance at 490nm was detected at 2 h using a OpsysMR microplate 

reader (Dynex, Chantilly, VA).  Absorbance units were normalized to the mean of a single 

dose to compare between experiments.  Dose response curves were generated using non-

linear sigmoidal dose response curve analyses in GraphPad Prism 4.  IC50 values were 

calculated and plotted on isobolograms.  The IC50 of the primary drug alone was plotted on 

the y-axis and the IC50 of the secondary drug was plotted on the x-axis.  The line of additivity 

was drawn between them.  IC50 values of the primary drug were calculated at various doses 

of the secondary drug and plotted on the graph.  Points in the graph represent a mean of three 

independent experiments performed in triplicate.  Data points below the line of additivity 

were considered synergistic. 

2.12 Statistics – Student’s t-test was performed utilizing the statistical software in GraphPad 

Prism 4.  P-values of <0.05 were considered statistically significant.  To perform synergy 

analyses, the IC50 gefitinib was calculated for each dose of lovastatin.  The combination 

index (CI-value) was calculated as follows: (IC50 gefitinib at X dose lovastatin)/(IC50 

gefitinib alone) + (dose of lovastatin)/(IC50 lovastatin alone).  
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Chapter 3 

3.1 Introduction 

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase whose function 

has been implicated in many biological processes.  When activated, EGFR stimulates 

signaling pathways involved in cell growth, survival, and migration.  While EGFR contains 

activating mutations in glioblastomas and lung cancer, overexpression is the primary 

mechanism by which EGFR contributes to breast cancer growth and progression (Wong et 

al., 1992; Paez et al., 2004).  EGFR overexpression occurs in approximately 30% of all breast 

cancers and correlates with poor clinical prognosis (Sainsbury et al., 1987; Bolla et al., 1990; 

Toi et al., 1991).  Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR 

have been tested in clinical trials with some success in lung and colon cancers.  While EGFR 

TKIs have shown some clinical efficacy in hormone receptor-positive breast cancer 

(Polychronis et al., 2005; Guix et al., 2008; Cristofanilli et al., 2010), EGFR TKIs lack 

efficacy in hormone receptor-negative breast cancer (Blagosklonny and Darzynkiewicz, 

2003).  

The sub-cellular localization of EGFR determines the signaling pathways stimulated by 

EGFR activation.  In fact, EGFR promotes differential signaling depending on receptor 

localization to endosomes, at the mitochondria, within the nucleus, or on the plasma 

membrane.  Specifically, EGFR localization to endosomes results in ligand-dependent 

activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein 

kinase (MAPK) pathways (Sadowski et al., 2009), while mitochondrial localization of EGFR 

has been implicated in modification of cytochrome c oxidase subunit II activity (Boerner et 
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al., 2004).  Also, EGFR localizes to the nucleus where it may act as a transcription factor 

(Lin et al., 2001).  Perhaps the most well known localization of EGFR is to the plasma 

membrane, where it modulates both MAPK and Akt signaling pathways [reviewed in 

(Bianco et al., 2007)]. 

The plasma membrane contains discrete heterogeneous microdomains (Maa et al., 1995).  

These microdomains are less fluid than the surrounding bulk plasma membrane, and are 

enriched in cholesterol, sphingolipids, and gangliosides.  They have been termed lipid rafts, 

and act as platforms for cellular signaling (Simons and Ikonen, 1997).  Levels of lipid rafts 

are increased in melanomas, prostate, and breast cancer cell lines as compared to normal cell 

lines, which suggests that these structures play a functional role during tumorigenesis 

(Hazarika et al., 2004; Li et al., 2006).  EGFR is one of many proteins shown to exist within 

lipid rafts, but the effect of EGFR localization to lipid rafts is not well understood.  While it 

has been noted that lipid raft localization of EGFR inhibits ligand binding and subsequent 

signaling downstream (Chen and Resh, 2002; Roepstorff et al., 2002), other studies have 

shown that lipid rafts promote EGFR signaling (Zhuang et al., 2002; Peres et al., 2003). 

In this chapter, we have found that lipid raft localization of EGFR plays a role in the 

response of breast cancer cell lines to EGFR TKI-induced growth inhibition.  Specifically, 

EGFR localization to lipid rafts correlated with EGFR TKI resistance.  In addition, reduction 

of cholesterol from lipid rafts sensitized resistant breast cancer cells to the EGFR TKI 

gefitinib.  Significantly, the effects of cholesterol biosynthesis inhibitors and gefitinib were 

synergistic.  Interestingly, while gefitinib abrogated both Akt and MAPK phosphorylation in 

EGFR TKI sensitive cells, Akt remained phosphorylated in EGFR TKI resistant cell lines.  

Lovastatin was sufficient to diminish this phosphorylation.  Thus, our data suggest that lipid 
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rafts provide a platform for EGFR-kinase independent activation of Akt in EGFR TKI 

resistant cell lines. 

3.2 Results 

A. Resistance of EGFR expressing breast cancer cell lines to EGFR TKIs 

The lack of clinical response of breast cancers to EGFR TKIs prevents the use of an 

excellent targeted agent for the treatment of this disease.  To study mechanisms of resistance 

to EGFR TKIs in breast cancer, we characterized a panel of twenty breast cancer cell lines 

for EGFR protein expression (Fig. 3.1A).  Thirteen of the cell lines analyzed expressed 

EGFR protein.  Interestingly, in twelve of the thirteen EGFR expressing cell lines, EGFR 

was kinase active under normal growth conditions (Fig. 3.1B).  To determine the response of 

these twelve cell lines to the EGFR TKI gefitinib, we treated the cells with increasing doses 

of gefitinib, an EGFR TKI, and measured cellular proliferation over time (Table 3.1, Fig. 

3.2).  These experiments identified seven EGFR TKI resistant cell lines: SUM159, SUM229, 

BT20, BT549, HCC1937, MDA-MB231, and MDA-MB468 (Fig 3.2B).  Breast cancer cells 

resistant to gefitinib-induced growth inhibition were also shown to be resistant to other 

EGFR selective TKIs, including the irreversible inhibitor CI-1033 (data not shown).   Others 

have found similar patterns of sensitivity and resistance to EGFR inhibitors in breast cancer 

cell lines (Helfrich et al., 2006).   

In order to determine if gefitinib effectively inhibits EGFR kinase activity in these breast 

cancer cells in vitro kinase assays were performed.  We have previously published that 0.1 

µM gefitinib completely abrogates EGFR kinase activity as measured by 
32

P incorporation 

into EGFR via autophosphorylation  (Mueller et al., 2008).  Interestingly, we found that in  



Figure 3.1 EGFR is expressed and kinase active in breast cancer.  Breast cancer cell lines were grown 

under normal growth conditions. (A) Cells were lysed and 100 µg of lysate was separated by SDS-PAGE, 

transferred to PVDF, and immunoblotted with EGFR or β-actin antibodies.  Immunoblots were repeated at 

least three times.  (B) Cells were lysed in kinase-buffer and immunoprecipitated with EGFR antibodies.  

Kinase assays were performed with 32P-γATP incorporated into EGFR as the substrate for EGFR kinase 

activity. (C) Kinase assays were performed as described after indicated treatment times and doses of 

gefitinib in SUM 229 cells. {These experiments were performed by Julie Boerner, PhD}
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Figure 3.2 Seven of thirteen EGFR expressing breast cancer cell lines are resistant to EGFR TKI 

induced growth inhibition.  Cellular proliferation assays were performed in the presence of increasing 

doses of gefitinib for eight days.  Cell counts were taken on days 1, 4, and 8.  Error bars represent the 

standard error of the mean.  Proliferation assays were performed in triplicate and repeated at least three 

times. (A) Sensitive cells (B) Resistant cells.  {These experiments were performed by Julie Boerner, PhD}
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Cell Line Gefitinib Sensitivity 

SUM 102 Sensitive 

SUM 149 Sensitive 

SUM 159 Resistant 

SUM 229 Resistant 

SUM 1315 Sensitive 

BT20 Resistant 

BT549 Resistant 

SKBR3 Sensitive 

HCC1937 Resistant 

HCC 1954 Sensitive 

MDA-MB 231 Resistant 

MDA-MB 468 Resistant 

H3255 Sensitive 

H1650 Resistant 

 

Table 3.1: Breast cancer cell lines differ in their sensitivity to EGFR TKIs.  

Proliferation of breast cancer cell lines in the presence of increasing doses of gefitinib 

was determined as described for Figure 3.2.  Sensitive cell lines are those where less 

than 1 µM inhibited proliferation, while resistant (bold) cells lines are those that 

continued proliferation in the presence of 1 µM gefitinib. 
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five of the seven EGFR TKI resistant breast cancer cells, tyrosine phosphorylation was 

maintained in the absence of EGFR kinase activity which we have evidence to support occurs 

via transphosphorylation by other activated tyrosine kinases (Mueller et al., 2008).  Here, we 

added to these findings by determining the minimal dose and time of gefitinib required to 

completely inhibit EGFR kinase activity (Fig. 3.1C).    We found that as little as 10 nM 

gefitinib for five minutes was sufficient to deplete EGFR kinase activity in these cells.  

Therefore, EGFR kinase activity was successfully inhibited by the doses of gefitinib utilized 

in these studies in both EGFR TKI sensitive and resistant cell lines. 

Although EGFR kinase activity is not required for the growth of EGFR TKI resistant cell 

lines, the previously described maintenance of EGFR phosphorylation in the absence of 

kinase activity (Mueller et al., 2008) suggests that the protein itself may still be required for 

proliferation.  Thus, to directly determine if proliferation of EGFR TKI resistant cells 

requires EGFR protein expression, we used EGFR-targeting shRNA lentiviral infection to 

down-regulate EGFR protein expression.  Twenty-one EGFR shRNA constructs were 

screened for efficiency of knocking down EGFR expression, as measured by 

immunoblotting.  Three EGFR shRNA constructs consistently decreased EGFR protein 

expression (Fig. 3.3A). Construct three gave the best knockdown, as there was at least a 50% 

reduction in EGFR protein of all cell lines tested when compared to the non-silencing shRNA 

control.  In order to determine if knockdown of EGFR was sustained over the period utilized 

to conduct growth assays, SUM159 and SUM229 cells were infected with EGFR shRNA, 

and grown with puromycin selection for two weeks.  As seen in Figure 3.3B, EGFR protein 

expression remained reduced at two weeks in both cell lines, demonstrating that EGFR #3 

shRNA sufficiently knocks down EGFR expression over the time period necessary for  
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Figure 3.3: EGFR protein expression is required for growth in four of seven EGFR TKI 

resistant breast cancer cell lines. (A) Cells were incubated with equal MOI of virus for four 

days, lysed, separated by SDS-PAGE, and immunoblotted for EGFR and β-actin.  (B) SUM 159 

and SUM 229 cells were grown under selection pressure for two weeks post-infection, then lysed, 

separated by SDS-PAGE, and immunoblotted for EGFR (C) Cells were plated at 1,000 cells/well 

of a 6-well plate and inoculated with EGFR shRNA #3 lentivirus or non-silencing control 

lentivirus.  Three days later, the media was changed to puromycin containing media for eight days.  

Cells were then counted using a Beckman Coulter Counter.  Experiments were performed at least 

three times with the error bars representing the standard error of the mean.  Statistical analyses 

were performed utilizing Student’s t-test, * = p>0.05. {These experiments were performed by Julie 

Boerner, PhD}
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growth assays to be performed.  Additionally, SUM44 cells, which do not express EGFR 

(Fig. 3.1A) were utilized as a negative control, and HCC1954 cells which are sensitive to 

EGFR TKIs (Table 3.1, Figure 3.2A) were utilized as a positive control.  Notably, BT549, 

MDA-MB231, and MDA-MB468  cells continued to grow after a decrease in EGFR protein 

expression (Fig. 3.3C).  This non-dependence on EGFR protein expression in these three 

cells lines may be a result of genetic alterations in signaling proteins downstream of EGFR.  

For example, MDA-MB-468 and BT549 cells have lost PTEN expression and MDA-MB-231 

cells contain an activating K-Ras mutation (Hollestelle et al., 2007).  Conversely, in 

SUM159, HCC1937, SUM229, and BT20 breast cancer cell lines, knocking down EGFR 

expression significantly decreased proliferation, suggesting that EGFR protein expression is 

at least in part required for the growth of these cell lines (Fig. 3.3C, * = p<0.05).   

Previous studies have shown that EGFR localization can modulate EGFR signaling (Lin 

et al., 2001; Chen and Resh, 2002; Zhuang et al., 2002; Boerner et al., 2004; Li et al., 2006).  

Thus, to determine if the localization of EGFR was mediating the response of cells to EGFR 

TKIs, immunostaining and confocal microscopy were performed.  Cells were stained with 

Alexa-Fluor 488-labeled EGFR antibodies (Fig. 3.4; green) and DAPI as a nuclear dye 

(blue).  In two EGFR TKI sensitive cell lines (SKBr3 and SUM1315), EGFR localized 

entirely within intracellular compartments and the cytosol.   However, in two other EGFR 

TKI sensitive cell lines (SUM149 and HCC1954), as well as all four EGFR TKI resistant cell 

lines, EGFR localized both within intracellular regions and at the plasma membrane.  

Interestingly, EGFR staining was not always contiguous around the membrane.  The patchy 

nature of the staining, most prominent in SUM159 cells (Fig. 3.4; arrows), suggested that 

EGFR may localize to lipid rafts (Harder et al., 1998b; Grossmann et al., 2006).  EGFR has  



Figure 3.4: EGFR is localized to the plasma membrane in breast cancer cell lines.  For each cell line, 

two hundred thousand cells were plated onto coverslips and cultured under normal growth conditions for 48 

h.  Cells were fixed, permeabilized, and blocked with 20% goat serum.  EGFR was detected with Alexa-

fluor 488 labeled EGFR antibody (green) and nuclei were identified with DAPI (blue).  Imaging was 

performed using Zeiss Axioplan2 apotome microscope fitted with a 63X 1.25 oil immersion lens at the 

Microscopy and Imaging Resources Laboratory (Wayne State University, Detroit, MI).  Arrows indicate 

patchy EGFR staining.  Scale bars represent a distance of 50 µm.   
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been shown to localize within lipid rafts in Hela and CHO cells (Macdonald and Pike, 2005; 

Pike, 2005).  In order to determine if EGFR was localized to lipid rafts in breast cancer cells, 

we used two methods of identifying these structures: biochemical raft isolation and confocal 

microscopy.  First, a detergent-free Opti-Prep gradient was used to isolate lipid rafts (adapted 

from (Macdonald and Pike, 2005)).  Flotillin, a membrane protein found both within and 

outside of lipid rafts, was used to show presence of membrane components within all 

fractions, while transferrin receptor was used as a marker for non-raft containing fractions.  

These markers, along with dot blotting for the lipid raft specific glycosphingolipid GM-1 

(Fig. 3.5A) indicated fractions 1-7 as lipid raft fractions.  When these fractions were 

immunoblotted using EGFR antibodies, EGFR localization to the lipid raft fractions was 

most prominent in the EGFR TKI resistant cell lines (Fig. 3.5A).  As SKBR3 and SUM1315 

cell lines showed solely intracellular EGFR staining, these cell lines were excluded from 

lipid raft analyses.  Quantification of the percent of total EGFR that was present in the lipid 

raft fractions found that the four EGFR TKI resistant breast cancer cell lines contained 

significantly more EGFR within lipid rafts as compared to the average EGFR content within 

lipid rafts of two EGFR TKI sensitive cell lines, SUM149 and HCC1954 (Fig. 3.5B, * = p < 

0.05).  Taken together, these data suggest that elevated EGFR localization to lipid rafts may 

correlate with resistance to EGFR TKI-induced growth inhibition. 

While lipid rafts are predominately found within the plasma membrane, there is evidence 

that they are also present in endosomes, lysosomes, and mitochondria (Galbiati et al., 2001).  

To determine if EGFR localized specifically within plasma membrane lipid rafts, we used 

immunofluorescent staining under non-permeabilizing conditions.  Cholera toxin subunit B 

binds specifically to GM-1 and was used to detect localization of lipid rafts and EGFR was  
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Figure 3.5: EGFR localization to lipid rafts correlates with EGFR TKI resistance (A) One half 

million cells were plated, cultured 72 h, detergent-free lysis was performed and lipid rafts were 

separated by ultracentrifugation [23].  Western blotting was performed with EGFR, transferrin 

receptor, and flotillin antibodies.  Fractions were dot blotted for GM-1 utilizing cholera toxin 

subunit B-HRP.  Fractions 1-7 indicate lipid raft fractions. # indicates that the blots are 

representative. (B) Densitometry was performed on western blots from A.  Bars represent the 

percent of EGFR in lipid raft fractions (1-7) as compared to the total amount of EGFR present (1-

14) from at least three independent experiments.  Statistical analyses were performed utilizing a 

student's t-test, * = p<0.05 compared to SUM149 and HCC1954 cells. (C) Two hundred thousand 

cells were plated onto coverslips and cultured for 48 h.  Coverslips containing cells were then 

incubated with Alexa-fluor 594 labeled cholera toxin subunit B (red) for 10 min on ice.  Following 

incubation, cells were fixed, blocked in 20% goat serum, and incubated with immunofluorescent 

EGFR antibodies (extracellular domain epitope, green) and nuclei were stained with DAPI (blue).  

Imaging was performed using Zeiss Axioplan2 apotome microscope fitted with a 63X 1.25 oil 

immersion lens at the Microscopy and Imaging Resources Laboratory (Wayne State University, 

Detroit, MI).  Arrows indicate areas of co-localization.  Scale bars represent a distance of 50 µm.
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detected as described above.  In the EGFR TKI resistant cell lines (SUM159, HCC1937, 

SUM229, and BT20), EGFR (green) co-localized (yellow/orange) with GM-1 (red) at the 

plasma membrane (Fig. 3.5C; arrows).  In contrast, in the EGFR TKI sensitive cell lines 

(SUM149 and HCC1954), EGFR and GM-1 did not co-localize (Fig. 3.5C).   These data 

suggested that EGFR localizes within plasma membrane lipid rafts in breast cancer cells that 

are resistant to EGFR TKI-induced growth inhibition. 

B.  Disruption of lipid rafts sensitizes breast cancer cells to EGFR inhibitors 

Cholesterol is the primary structural component of lipid rafts [reviewed in (Barenholz, 

2002)], thus, to determine if the presence of EGFR in lipid rafts mediates cellular response to 

EGFR TKIs, we pharmacologically depleted cholesterol from the cells.  HMG CoA-

reductase inhibitors lovastatin and atorvastatin were used to reduce lipid raft cholesterol 

content [reviewed in (Simons and Toomre, 2000)].  The Amplex Red cholesterol assay, 

which determines total cellular cholesterol content by measuring the amount of H2O2 

produced by the reaction of cholesterol in the sample with cholesterol oxidase and 

cholesterol esterase enzymes, was utilized to determine the ability of these drugs to reduce 

cellular cholesterol (Fig. 3.6).  Methyl-beta cyclodextrin (MBCD), a cytotoxic cholesterol 

sequestering agent, reduced cholesterol by 41.5% +/- 8.1%, and was therefore used as a 

positive control for these experiments.  Seventy-two hours of treatment with the HMG CoA 

reductase inhibitors lovastatin and atorvastatin resulted in depletion of cholesterol content, 

with a reduction of 59.0% +/-12.4% at 1.0 µM lovastatin and a reduction of 49.6% +/-10.3% 

at 1.0 µM atorvastatin (Fig. 3.6).  Importantly, gefitinib treatment had no effect on 

cholesterol content of these cells, and did not alter the ability of lovastatin to reduce total  



Figure 3.6: MBCD, lovastatin, atorvastatin, and NB-598 reduce cholesterol in breast cancer 

cells.  Fifty thousand cells were plated into 6-well plates and treated with 1 mM MBCD (1 h), 1 

µM lovastatin (72 h), 1 µM atorvastatin (72 h), 1.0 µM NB-598 (72 h), 1 µM gefitinib (1 h), or a 

combination of 1 µM gefitinib (1 h) and 1 µM lovastatin (72 h).  Lysis was followed by protein 

quantification and cholesterol was measured using the Amplex Red cholesterol assay kit.  

Absorbance was converted to µg cholesterol/mL utilizing a cholesterol standard curve, and then 

samples were normalized to protein concentration for a final value in µg cholesterol/µg protein.  

Bars represent fraction of cholesterol with untreated samples as 1 (µg cholesterol/µg protein 

sample)/(µg cholesterol/µg protein untreated).  Experiments were repeated at least three times.  

Error bars represent the standard error of the mean. Statistical analyses were performed utilizing 

Student’s t-test, * = p < 0.05 compared to untreated.
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cellular cholesterol (Fig. 3.6).  The levels of cholesterol reduction produced by the statins are 

comparable with published results (Sethy-Coraci et al., 2005; Ehehalt et al., 2008). 

To determine if lovastatin has the ability to sensitize breast cancer cells to gefitinib, cell 

counting assays were used to measure proliferation. Cells were treated every other day with 

the drugs and counted on days 1, 4, and 8 (Fig. 3.7).  As described previously, the four EGFR 

TKI resistant cell lines continued to proliferate in the presence of gefitinib.  Interestingly, 

lovastatin was able to significantly reduce proliferation in the presence of gefitinib when 

compared to gefitinib or lovastatin treatment alone (Fig. 3.7; * = p<0.0001, ♦).  Taken 

together, these data suggested that treatment with lovastatin sensitizes EGFR TKI resistant 

cell lines to gefitinib. 

In order to determine if the effects of lovastatin and gefitinib were synergistic in EGFR 

TKI resistant breast cancer cells, cell viability assays were performed. Briefly, cells were 

treated for 72 h with the combination of lovastatin and gefitinib prior to performing 

tetrazolium-based cell viability assays.  It can be noted that the IC50 values for cell viability 

analyses were much higher than doses found to be effective in cellular proliferation assays.  

While proliferation assays allow for the measurement of the number of cells over time, cell 

viability assays indicate the metabolic activity of the cell population.   The IC50 of gefitinib 

was calculated at various doses of lovastatin, and then isobolograms were generated (Fig. 

3.8).  An additive interaction in SUM149 and HCC1954 cells was calculated from these 

assays (Fig. 3.7, points on the line).  In contrast, synergistic effects were seen in all four 

EGFR TKI resistant cell lines (Fig. 3.8, points below the line).  Combination index (CI) 

values were calculated based on the IC50 values (Table 3.2).  These values were significantly 

lower than one in all of the EGFR TKI resistant cell lines.  These results suggested that the 



Figure 3.7: Lovastatin sensitizes EGFR TKI resistant breast cancer cells to gefitinib.  Thirty 

five thousand cells were plated into 6-well plates and treated for eight days with lovastatin and/or 

gefitinib (HCC1954, SUM149 and SUM159 cell lines were treated with 1 µM of both lovastatin 

and gefitinib, while HCC1937, SUM229, and BT20 cells were treated with 5 µM lovastatin and 1 

µM gefitinib).  Cell number was determined on days 1, 4, and 8 using a coulter counter.  

Experiments were repeated at least three times and counts were averaged.  Error bars represent the 

standard error of the mean. Statistical analyses were performed utilizing Student’s t-test, * = p < 

0.0001.

*

*

*

*

SUM 149

1 2 3 4 5 6 7 8 9
1

10

100

1000

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

SUM 159

1 2 3 4 5 6 7 8 9
1

10

100

1000

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

HCC 1937

1 2 3 4 5 6 7 8 9
0.1

1

10

100

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

HCC 1954

1 2 3 4 5 6 7 8 9
1

10

100

1000

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

SUM 229

1 2 3 4 5 6 7 8 9
1

10

100

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

BT20

1 2 3 4 5 6 7 8 9
1

10

100

Day

N
u

m
b

e
r 

o
f 

c
e

ll
s

 (
X

1
0

4
)

Untreated

Lovastatin

Gefitinib

Lovastatin + Gefitinib

92



Figure 3.8: Lovastatin and gefitinib act synergistically to reduce breast cancer cell 

viability. Two thousand cells were plated onto 96-well plates and treated for 72 h with varying 

doses of gefitinib and lovastatin alone and in combination.  Values were normalized and then 

plotted.  Non-linear regression (sigmoidal-dose response) curves were generated and  IC50s 

were calculated and plotted on isobolograms.  Experiments were repeated at least three times.
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Cell Line 
Lovastatin 

Dose 

Combination Index 

(CI-value) 

p-value 

(compared to 1) 

SUM159 0.25 µM 
0.659 

+/-0.066 
0.0262 

HCC1937 1.0 µM 
0.554 

+/-0.069 
0.0124 

SUM229 1.0 µM 
0.331 

+/- 0.164 
0.0269 

BT20 5.0 µM 
0.695 

+/- 0.065 
0.0348 

 

Table 3.2: Effects of lovastatin and gefitinib are synergistic in EGFR TKI resistant 

cell lines.  The combination index (CI-value) was calculated as follows: (IC50 gefitinib at 

X dose of lovastatin)/(IC50 gefitinib alone) + (dose of lovastatin)/(IC50 lovastatin alone).  

p-values were calculated as a difference between CI-value and one.  p-values, calculated 

by student’s t-test, less than 0.05 were considered significant. 
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combinatorial inhibition of lipid raft structure and EGFR-kinase activity resulted in a 

synergistic decrease in cell viability when EGFR is localized to lipid rafts.  Therefore, the use 

of lovastatin and gefitinib in combination may effectively decrease viability and proliferation 

of breast cancers that contain EGFR within lipid rafts. 

Statin drugs work by inhibiting HMG-CoA reductase.  In addition to cholesterol 

biosynthesis, this enzyme also regulates isoprenoid synthesis.  Therefore, in order to 

determine if the synergistic effect between lovastatin and gefitinib is mediated by cholesterol 

depletion, the drug NB-598 was used.  NB-598 is a squalene monooxygenase inhibitor 

(Horie et al., 1990), and therefore inhibits cholesterol biosynthesis but not isoprenoid 

synthesis.  First, to determine if NB-598 effectively inhibited cholesterol biosynthesis, 

SUM159 cells were treated with NB-598 for 72 h prior to assaying cholesterol esterase 

activity  (Fig. 3.6).  NB-598 treatment reduced cholesterol by 37.1% +/- 0.59%, suggesting 

that NB-598 depleted cholesterol to a comparable level as lovastatin.  Therefore, we utilized 

NB-598 to determine if inhibiting cholesterol biosynthesis in the absence of altering 

isoprenoid synthesis has the ability to sensitize cells to gefitinib.  EGFR TKI resistant breast 

cancer cells were treated with variable doses of NB-598 alone, or in combination with 

gefitinib.  Cell viability assays were used to determine the IC50 of gefitinib at variable doses 

of NB-598. As shown in Figure 3.9, the effects of gefitinib and NB-598 were synergistic.  

These data suggest that cholesterol depletion is sufficient to sensitize EGFR TKI resistant 

cells to gefitinib.   



Figure 3.9: The effects of NB-598 and gefitinib are synergistic. Two thousand cells were plated 

onto 96-well plates and treated for 72 h with varying doses of gefitinib and NB-598 alone and in 

combination.  Values were normalized and then plotted.  Non-linear regression (sigmoidal-dose 

response) curves were generated, and IC50s were calculated and plotted on an isobologram.  

Experiments were repeated at least three times.
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C.  Akt phosphorylation is abrogated with lipid raft disruption 

Resistance to EGFR TKIs suggests that inhibiting the EGFR kinase activity is insufficient 

to turn off growth and survival signaling in these cells.  Localization of EGFR to lipid rafts 

has variable effects on signaling pathways downstream of EGFR (Chen and Resh, 2002; Li et 

al., 2006), thus we determined what effect depletion of cholesterol had on EGFR signaling in 

EGFR TKI resistant cells as compared to EGFR TKI sensitive cells.  As discussed further 

below, BT20 cells contain a PIK3CA mutation, and the HCC1937 cell line has loss of PTEN 

expression, therefore, and lovastatin does not effect the phosphorylation of Akt in these cell 

lines (data not shown).  Thus, two EGFR TKI resistant cell lines (SUM159 and SUM229) 

and one EGFR TKI sensitive cell line (SUM149) were treated with lovastatin and gefitinib 

alone or in combination and immunoblotting was performed to determine the 

phosphorylation of Akt and MAPK.  Gefitinib treatment resulted in a reduction of MAPK 

phosphorylation in both the sensitive SUM149 cell line and two gefitinib resistant cell lines 

(SUM159 and SUM229).  In contrast, Akt phosphorylation was inhibited in the EGFR TKI 

sensitive cell line yet persisted in the presence of gefitinib in EGFR TKI resistant cell lines 

(Fig. 3.10, lane 3).  This phosphorylation persisted even after 72 h treatment with gefitinib 

(data not shown).  When treated with lovastatin, alone or in combination with gefitinib, Akt 

phosphorylation was abrogated (Fig. 3.10, lanes 2 and 4).  These data suggested that, co-

treatment of cells with lovastatin and gefitinib was able to inhibit two major EGFR signaling 

pathways.  Thus, we propose that lipid rafts may provide a platform whereby EGFR may 

functionally interact with other proteins to activate Akt and modulate the response to EGFR 

TKIs.  



pMAPK
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Figure 3.10: Lovastatin inhibits Akt phosphorylation in EGFR TKI resistant cell lines.  One million 

cells were plated and allowed to grow for 48 h.  Cells were then treated with 1 µM (SUM 149 and SUM 

159) or 5 µM lovastatin (SUM 229) for 72 h (LOV) and/or 1 µM gefitinib (G) for 1 h.  Lysates were 

prepared and separated by SDS-PAGE.  Immunoblotting using EGFR, Akt, MAPK, phospho-Akt, and 

phospho-MAPK antibodies was performed as described. 
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3.3 Discussion 

We have provided evidence describing a role for lipid rafts in resistance to EGFR TKI-

induced growth inhibition using four EGFR expressing breast cancer cell lines which 

continue to proliferate in the presence of gefitinib, an EGFR TKI.  We have shown that seven 

of thirteen EGFR-expressing breast cancer cell lines are resistant to EGFR TKI-induced 

growth inhibition, and that four of those cell lines retain the requirement of EGFR protein 

expression for growth.  Also, we have provided evidence that EGFR localization to lipid rafts 

correlates with EGFR TKI resistance.  Further, lovastatin, a HMG CoA reductase inhibitor, 

as well as NB-598, a squalene monooxygenase inhibitor, reduced cholesterol biosynthesis in 

the EGFR TKI resistant breast cancer cells.  In addition, lovastatin sensitized EGFR TKI 

resistant breast cancer cells to gefitinib-induced growth inhibition.  Importantly, this 

sensitization of EGFR TKI growth resistant cells to gefitinib was determined to be 

synergistic for both lovastatin and NB-598.  Our data suggests that Akt phosphorylation 

persists in the presence of EGFR kinase inhibition, and that lovastatin abrogated this 

phosphorylation, thus sensitizing the cells to EGFR kinase inhibition.   

Overexpression of EGFR is one mechanism by which EGFR contributes to cancer 

progression.  In fact, overexpression of EGFR occurs in glioblastomas, breast, prostate, 

ovary, liver, bladder, esophagus, larynx, stomach, colon, and lung cancers (Khazaie et al., 

1993).  This fairly ubiquitous overexpression suggests that EGFR may be an attractive target 

for cancer therapeutics.  Inhibitors of EGFR kinase activity show clinical efficacy in lung, 

pancreatic, colorectal, and head and neck cancers (Baker, 2004; Cohen et al., 2005; Giusti et 

al., 2008; Sobrero et al., 2008), however they have proven ineffective in the treatment of 

breast cancers (Blagosklonny and Darzynkiewicz, 2003; Twombly, 2005).  Herein, we have 
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provided evidence that breast cancer cell lines differ in their responses to these EGFR TKIs 

(Table 3.1).  Seven of thirteen breast cancer cell lines were found to be resistant to EGFR 

TKI-induced growth inhibition using cellular proliferation assays (Table 3.1).  Specifically, 

SUM159, SUM229, BT20, BT549, HCC1937, MDA-MB231, and MDA-MB468 cell lines 

continued to proliferate in the presence of 1 µM gefitinib (Table 3.1). 

A number of mechanisms have been suggested for resistance to EGFR TKI-induced 

growth inhibition including EGFR independence, mutations in EGFR and alterations in 

downstream signaling pathways.  We have shown that three of seven EGFR TKI resistant 

breast cancer cell lines grow independently of EGFR protein expression, while four retain the 

requirement of EGFR expression for their proliferation (Fig. 3.3A-C).  Mutations of EGFR, 

such as the VIII or T790M, have been implicated in glioblastomas and non-small cell lung 

cancers; however, these mutations are rare in breast tumors (Bianco et al., 2005).  We have 

sequenced EGFR in the cell lines we used for our studies and no EGFR mutations were 

present (R. Haddad, personal communication).   

Failure to inhibit Akt signaling, due to mutation or loss of PTEN, constitutive activation 

of PI3K, or overexpression of Akt, has also been shown to be a mechanism of resistance to 

EGFR TKI-induced growth inhibition (Cheng et al., 1992; Lu et al., 1999; Hollestelle et al., 

2007).  Of the cell lines that retain the requirement of EGFR protein expression for growth, 

but are EGFR TKI resistant, one has a PIK3CA mutation (BT20), and one has loss of PTEN 

expression (HCC1937) suggesting that the PI3K/Akt pathway may be important in the 

tumorigenicity of these cell lines (Hollestelle et al., 2007).   Indeed, Akt phosphorylation 

persists in the absence of EGFR kinase activity in these two cell lines and lovastatin had no 

effect on Akt phosphorylation (data not shown).  The two other EGFR TKI resistant cell lines 
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(SUM159 and SUM229) do not contain genetic mutations in the Akt pathway, yet retain Akt 

phosphorylation in the presence of gefitinib (Fig. 3.10, lane 3).  Lovastatin treatment was 

sufficient to abrogate this phosphorylation, suggesting that lipid rafts play a role in the 

regulation of Akt phosphorylation in EGFR TKI resistant cells (Fig. 3.10, lanes 2 and 4).  

Specifically, we suggest that lipid rafts provide a platform for EGFR protein-dependent, 

EGFR kinase-independent activation of Akt signaling.  However, as EGFR signaling is 

mediated by many more proteins than addressed here, it is possible that other pathways may 

also be downstream of EGFR-kinase independent, lipid raft-dependent activation.  

Nevertheless, localization of EGFR to lipid rafts is an important factor in the resistance of 

breast cancer cells to EGFR TKI-induced growth inhibition.   

Lipid rafts have been suggested to play a functional role in cancer cell drug resistance.  

Depletion of lipid rafts through inhibition of fatty acid synthase (FAS) has been found to 

overcome trastuzumab resistance in breast cancer (Menendez et al., 2005).  Specifically 

Her2/Neu co-localizes with lipid rafts in breast cancer cells, and the lipid environment of 

Her2/Neu-overexpressing cells influences the dimerization properties and signaling functions 

of Her2/Neu (Menendez et al., 2005).  Furthermore, preclinical data suggest that lipid raft 

depletion via statins can decrease cell growth and sensitize cells to apoptotic stimuli in a 

number of cancer models including melanoma, prostate, and HER2-overexpressing breast 

cancers (Li et al., 2006; Glynn et al., 2008; Herrero-Martin and Lopez-Rivas, 2008).  

Epidemiologic data regarding the use of statins as singular agents in breast cancer are mixed 

(Beck et al., 2003; Cauley et al., 2003; Kwan et al., 2008).  The apparent in vitro benefit of 

combining statins with other therapies suggests that statins may have a greater clinical 

benefit when utilized as a part of combinatorial therapies (Katz, 2005).  In that regard, we 
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have shown that cholesterol depletion synergizes with gefitinib in four EGFR TKI resistant 

breast cancer cell lines (Fig. 3.8 and 3.9, Table 3.2).  Specifically, co-treatment of these cell 

lines with lovastatin and gefitinib significantly reduces cell proliferation compared to either 

drug alone (Fig. 3.7).  Also, when CI-values were determined for the combination of 

lovastatin and gefitinib, all four cell lines resistant to EGFR TKI-induced growth inhibition 

showed synergy (Table 3.2).  Thus, in breast cancer cells resistant to EGFR TKI-induced 

growth inhibition, EGFR is commonly localized to lipid rafts, and our data indicate that this 

localization plays a functional role in such resistance. 

Our data suggest that the synergistic mechanism between lovastatin and gefitinib in 

breast cancer cells is due to depletion of cholesterol and thereby depletion of lipid rafts.  

However, it is important to note that while statin use has been a common method to deplete 

cells of lipid raft structure for many years, the mechanism of action of statin drugs is not 

solely through the reduction of cholesterol.  Statin treatment and consequent reduction of 

HMG-CoA reductase activity also inhibits protein prenylation.  Indeed, previous studies have 

demonstrated that lovastatin can potentiate the effects of gefitinib (and vice versa) in 

squamous cell carcinoma, non-small cell lung cancer, colon carcinoma, and glioblastoma cell 

lines due to decreased protein prenylation (Mantha et al., 2003; Mantha et al., 2005; Cemeus 

et al., 2008; Park et al., 2009; Zhao et al., 2010).  Specifically, in 2003 Mantha and 

colleagues combined gefitinib and lovastatin in head and neck cancer cell lines and found a 

synergistic interaction between these drugs due, at least in part, to protein prenylation 

(Mantha et al., 2003).  This group later showed a synergistic interaction with this drug 

pairing in cervical and non-small cell lung cancers in addition to recapitulating their findings 

in head and neck cancer.  In that manuscript, the effects of lovastatin are completely 
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attributed to protein prenylation (Mantha et al., 2005).  Further, researchers have described 

such an interaction between lovastatin and gefitinib in glioblastoma and non-small cell lung 

cancer, again attributing their effect to protein prenylation (Cemeus et al., 2008; Park et al., 

2009).  Most recently, Zhao and colleagues have proposed that EGFR dimerization is 

inhibited by treatment with lovastatin, an effect dependent on aberrant prenylation of RhoA 

(Zhao et al., 2010).  While all of these groups show a functional interaction between 

lovastatin and gefitinib, they do not link EGFR localization to lipid rafts as a mechanism of 

this effect.  We cannot completely eliminate the possibility that protein prenylation may play 

a role in the synergistic effect between lovastatin and gefitinib; however, we have clearly 

shown a role for the cholesterol lowering effect of lovastatin in such synergy, as the squalene 

monooxygenase inhibitor, NB-598 (which inhibits cholesterol biosynthesis downstream of 

the prenylation branches) was sufficient to sensitize EGFR TKI resistant breast cancer cells 

to gefitinib (Figs. 3.8 and 3.9).  Taken together, these results suggest that the effects of 

lovastatin treatment in our study are due to cholesterol modulation and subsequent lipid raft 

impairment rather than decreased protein prenylation. 

Here, we have shown that EGFR localizes to lipid rafts in EGFR expressing, EGFR TKI 

resistant, breast cancer cell lines.  We have provided evidence that reducing cholesterol 

biosynthesis sensitizes these EGFR TKI resistant cells to the EGFR TKI gefitinib.  We have 

demonstrated that cholesterol reducing drugs and gefitinib act synergistically to decrease cell 

viability in breast cancer cells that are resistant to EGFR TKI-induced growth inhibition.  We 

have also shown evidence to suggest that cholesterol depletion, not protein prenylation, 

results in a synergistic effect with gefitinib in these cells.  Mechanistically, while gefitinib 

effectively reduced MAPK phosphorylation in EGFR TKI resistant cell lines, Akt 
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phosphorylation persisted.  Lovastatin was sufficient to abrogate this phosphorylation of Akt.  

As EGFR kinase activity is completely inhibited by gefitinib treatment in these cells (Mueller 

et al., 2008), we hypothesize that lipid rafts provide a platform by which EGFR interacts with 

other proteins to activate EGFR kinase-independent signaling pathways including the Akt 

pathway.  Thus, as both statin drugs and gefitinib are well tolerated and approved for use in 

patients, the work herein provides rationale for further exploration of the combination of 

these drugs in breast cancers that are resistant to EGFR TKI-induced growth inhibition. 
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Chapter 4 

4.1 Introduction 

Breast cancer is divided into molecular sub-types that are defined by distinct genetic 

signatures (Perou et al., 2000; Sorlie et al., 2001).  While targeted therapeutics have been 

approved for two of these sub-types (ER+ and HER2+ breast cancers), the basal-type of 

breast cancer has no currently approved targeted therapeutic.  Epidermal growth factor 

receptor (EGFR) is a receptor tyrosine kinase that is over-expressed in 60% of basal-type 

breast cancers (Livasy et al., 2006; Siziopikou and Cobleigh, 2007).  Such over-expression 

correlates with poor clinical outcome [reviewed in (Jardines et al., 1993)].  As such, EGFR is 

an attractive therapeutic target in breast cancer.  Unfortunately, while EGFR-targeted 

therapeutics have shown efficacy in estrogen-receptor positive breast cancers (Polychronis et 

al., 2005; Guix et al., 2008; Cristofanilli et al., 2010), basal-type breast cancers, which are 

estrogen receptor-negative, fail to respond to EGFR inhibitors (Blagosklonny and 

Darzynkiewicz, 2003).   

Our lab has recently described a mechanism of intrinsic resistance of breast cancer cells 

to EGFR tyrosine kinase inhibition (chapter 3), where EGFR localization to lipid rafts 

promotes EGFR-kinase independent survival signaling.  To further characterize the 

mechanism by which lipid rafts mediate EGFR TKI resistance, we sought to identify other 

proteins that associate with EGFR within lipid rafts.  c-Src, a non-receptor tyrosine kinase, is 

over-expressed in many cancer types, including breast cancer (Biscardi et al., 2000; Irby and 

Yeatman, 2000), where it enhances EGFR-dependent cellular functions, including DNA 

synthesis, protein tyrosine phosphorylation, cellular transformation, and tumor formation in 
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nude mice (Luttrell et al., 1988; Wilson et al., 1989; Wilson and Parsons, 1990; Chang et al., 

1995; Maa et al., 1995; Boerner et al., 2005; Dimri et al., 2007).  Recent data from our 

laboratory has described a role for c-Src in c-Met-dependent intrinsic resistance of a basal-

type breast cancer cell line to EGFR inhibitors (Mueller et al., 2008).  c-Src is over-expressed 

in many of the same cancer types as EGFR, including approximately 70% of breast cancers, 

and is known to be co-over-expressed with EGFR in a subset of breast tumors (Maa et al., 

1995).  Additionally, EGFR and c-Src co-overexpression in mouse fibroblasts and human 

mammary epithelial cells results in synergistic increases in tumorigenesis (Maa et al., 1995; 

Belsches et al., 1997; Ware et al., 1997; Biscardi et al., 1999a; Biscardi et al., 1999b; Wilde 

et al., 1999; Dimri et al., 2007).  Furthermore, interaction between EGFR and c-Src results in 

EGFR kinase-independent signaling in breast cancer cell lines (Mueller et al., 2008).   

In addition to its interaction with EGFR, the Src family of tyrosine kinases is well known 

to localize within lipid rafts (Liu et al., 1997; Furuchi and Anderson, 1998; Davy et al., 

2000).  c-Src, the prototypical member of this family, interacts with lipid rafts through N-

terminal myristoylation and basic residues within the unique domain (Sigal et al., 1994).  

Localization of c-Src within lipid rafts has been described in neuronal, hematopoietic, and 

cervical and lung cancer cell lines (Shenoy-Scaria et al., 1993; Mukherjee et al., 2003; Kasai 

et al., 2005; Arcaro et al., 2007).  Lipid rafts mediate c-Src signaling as well, including c-Src-

dependent activation of PI3K/Akt signaling in human small cell lung cancer (SCLC) cell 

lines (Arcaro et al., 2007). 

The data herein shows that c-Src co-localizes and co-associates with EGFR in lipid rafts 

in SUM159 breast cancer cells.  Co-inhibition of c-Src and EGFR kinase activities resulted in 

a synergistic decrease in cell viability.  c-Src kinase inhibition abrogated EGFR-kinase 
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independent Akt phosphorylation, and was additive in combination with lovastatin, results 

that suggest that these inhibitors work on the same pathway.  Thus, c-Src is a portion of the 

mechanism by which lipid rafts mediate EGFR kinase-independent signaling in SUM159 

cells. 

4.2 Results 

A. c-Src localizes to lipid rafts in SUM159 cells 

In chapter 3, we show that in SUM159 cells, an EGFR TKI resistant breast cancer cell 

line, EGFR localized to lipid rafts .  Also, depletion of lipid rafts using cholesterol inhibitors 

sensitized SUM159 cells to the EGFR TKI gefitinib (chapter 3). To determine the 

mechanism by which EGFR localization to lipid rafts mediates EGFR TKI resistance, we 

wanted to identify other signaling components present in lipid rafts.  EGFR and c-Src have 

been shown to functionally interact and c-Src associates with lipid rafts (Maa et al., 1995; 

Furuchi and Anderson, 1998; Davy et al., 2000; Liu et al., 2007); therefore, we hypothesized 

that c-Src co-localized with EGFR in lipid rafts of SUM159 cells.  Using biochemical raft 

isolation techniques described previously, density fractions were collected from SUM159 

and SUM149 (a breast cancer cell line that does not express EGFR in lipid rafts) cell lines.  

Fractions 1-7 were determined to be lipid raft fractions due to absence of transferrin receptor, 

presence of flotillin protein (Fig. 4.1A), and the lipid raft specific ganglioside GM1 (data not 

shown) (Wolf et al., 1998).  Interestingly, in SUM159 cells, significantly more c-Src was 

present in fractions 1-7 than in SUM149 cells when quantified by densitometry (Fig. 4.1B; p-

value < 0.05).   
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Figure 4.1: c-Src localizes within lipid rafts in SUM159 breast cancer cells. (A) SUM159 or SUM149 

cells were plated, cultured for 72 h. Lipid rafts were separated by ultracentrifugation and immunoblotting 

was performed for c-Src, transferrin receptor and flotillin. Lanes numbered 1-7 indicate lipid raft fractions 

(Macdonald and Pike, 2005). (B) Densitometry was performed on c-Src immunoblots from A. Bars 

represent the percent of total c-Src in lipid raft fractions (1-7) compared to the total c-Src (fractions 1-14). 

Fractions 15 and 16 were excluded as pellet fractions. Experiments were repeated at least three times.  p-

value was calculated by comparing the percent of c-Src in lipid rafts in SUM159 cells compared to 

SUM159 cells using the student's t-test. (C) Two hundred thousand cells were plated onto coverslips and 

cultured under normal growth conditions for 48 h.  Coverslips containing cells were then incubated with 

Alexa-fluor 594 labeled cholera toxin subunit B (red) to stain lipid rafts, fixed, permeabilized, blocked, 

and then stained for c-Src utilizing 2-17 and an alexa-fluor 488 labeled secondary antibody (green).  DAPI 

was used to stain the nucleus (blue).  Imaging was performed using Zeiss Axioplan2 apotome microscope 

fitted with 63X 1.25 oil immersion lens at the Microscopy and Imaging Resources Laboratory (Wayne 

State University, Detroit, MI). Arrows represent lipid raft localized c-Src.
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To determine if c-Src localizes to plasma membrane lipid rafts, SUM159 cells were co-

immunostained with Alexafluor labeled cholera toxin subunit B (red) which binds to GM1, 

and with c-Src antibodies (green; Fig. 4.1C).  Co-localization between GM1 and c-Src 

occurred along the membrane of SUM159 cells (yellow, arrows), while staining of c-Src 

alone (green) was seen intracellularly.  No co-localization was observed between GM1 and c-

Src in SUM149 cells.  Taken together, these data further confirm the association of c-Src 

with lipid rafts and define the localization of this association to be at the plasma membrane.  

B. EGFR and c-Src co-localize in SUM159 cells 

Although EGFR and c-Src proteins both localize to lipid rafts in SUM159, it was 

unknown if the proteins co-associate within the same lipid raft domain.  Thus, to determine if 

c-Src and EGFR co-localize, SUM159 and SUM149 breast cancer cells were immunostained 

with Alexafluor labeled EGFR (green) and c-Src (red) antibodies (Fig. 4.2). The merged 

image shows co-localization of EGFR and c-Src (yellow) intracellularly in both cell lines, 

however; co-localization in patchy areas of the membrane (yellow, arrows) occurs solely in 

SUM159 cells.  These results suggest that c-Src and EGFR co-localize in both SUM159 and 

SUM149 cells, but only co-localize at the plasma membrane in SUM159 cells. 

Physical interaction between EGFR and c-Src has been shown in a number of cell types 

(Maa et al., 1995; Tice et al., 1999).  Activation of EGFR increases c-Src catalytic activity 

(Sato et al., 1995a; Sato et al., 1995b; Weernink and Rijksen, 1995), and c-Src can, in turn, 

phosphorylate EGFR, leading to increased activity of downstream pathways that promote  

mitogenesis (Maa et al., 1995; Biscardi et al., 1999a; Tice et al., 1999).  In order to determine 

if EGFR and c-Src physically interact in breast cancer cell lines, co-immunoprecipitation was  
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Figure 4.2: EGFR and c-Src co-localize in SUM159 and SUM149 cells. Two hundred thousand cells 

were plated onto coverslips and cultured under normal growth conditions for 48 h.  Coverslips containing 

cells were blocked, and then incubated with fluorphore-labelled antibodies (EGFR-488: green; Src-594: 

red).  The nucleus was stained with DAPI (blue). Imaging was performed using Zeiss Axioplan2 apotome 

microscope fitted with 63X 1.25 oil immersion lens at the Microscopy and Imaging Resources Laboratory 

(Wayne State University, Detroit, MI).  Arrows indicate areas of co-localization (yellow). 
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performed. Whole cell lysate (WCL) was utilized as a positive immunoblotting control (Fig. 

4.3A and B, lane 1), while mouse immunoglobulin immunoprecipitation was performed as a 

negative immunoprecipitation control (IgG, Fig. 4.3A and B lane 2).  We have previously 

shown that c-Src does not co-immunoprecipitate with EGFR from SUM149 cells (Mueller et 

al., 2010).  However, in SUM159 cells, when EGFR was pulled down from whole cell 

lysates, c-Src co-immunoprecipitated (Fig. 4.3A, lane 3).  When the reverse 

immunoprecipitation was performed, EGFR co-immunoprecipitated with c-Src (Fig. 4.3B, 

lane 3).  These data support the co-localization results demonstrating that EGFR and c-Src 

are localized to similar regions in SUM159 cells.  

The immunofluoresence data from the SUM159 cells suggests that EGFR and c-Src co-

associate at the plasma membrane, and even more specifically within lipid rafts, in the 

SUM159 cells.  Therefore, biochemical raft isolation was performed and equal sample 

volumes from fractions 1-7 were pooled and EGFR or c-Src was immunoprecipitated.  

Samples were then subjected to SDS-PAGE followed by immunoblotting for EGFR and c-

Src.  When EGFR was pulled down from lipid raft fractions of SUM159 cells, c-Src co-

associated (Fig. 4.3C, lane 3).  Low levels of EGFR were also precipitated from non-lipid 

raft fractions (Fig. 4.3C, lane 4).  When the reverse precipitation was performed, EGFR and 

c-Src were again both found immunoprecipitated from lipid raft fractions (Fig. 4.3C, lane 5).  

These data suggest that EGFR and c-Src physically interact within the lipid rafts of SUM159 

cells.   
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Figure 4.3: EGFR and c-Src co-associate within lipid rafts in SUM159 cells. (A and B) SUM159 cells 

were plated, allowed to grow for 48 h, and then lysed.  Five hundred micrograms of protein was 

immunoprecipitated with EGFR antibodies (A) or c-Src antibodies (B), then subjected to SDS-PAGE and 

immunoblotting for EGFR and c-Src.  Ten micrograms (2% input) of whole cell lysate (WCL) was 

utilized as a positive control and mouse IgG immunoprecipitation was performed as a negative control 

(IgG).  (C) Lipid rafts were isolated from SUM159 cells by biochemical raft isolation as described.  Two 

hundred microliters of each fraction (fractions 1-7 (LR), and fractions 8-14 (NR)) were pooled, and EGFR 

or c-Src was immunoprecipitated.  Immunoblotting was then performed for EGFR and c-Src.  Ten 

micrograms of whole cell lysate (WCL, 10% input) was utitilized as a positive control, while 

immunoprecipitation with IgG was utilized as a negative control. Immunoblots were performed at least 

three times. 
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C. EGFR and c-Src kinase inhibitors synergistically inhibit cell viability 

when both EGFR and c-Src are localized to lipid rafts 

Small molecule tyrosine kinase inhibitors of c-Src are currently approved and in use in 

cancer treatment.  Specifically, dasatinib, a c-Src TKI, was approved in 2006 for the 

treatment of leukemia (Brave et al., 2008), and is currently in clinical trials in a number of 

solid tumor types including breast cancer (Laird et al., 2003; Kim et al., 2010).  Tyrosine 

phosphorylation of c-Src on tyrosine 416 is required for activation of c-Src kinase (Sun et al., 

1998; Boerner et al., 2004).  Thus, to determine if dasatinib inhibits c-Src kinase activity in 

our model system, phosphorylation of c-Src on tyrosine 416 was measured.  Cells were 

treated with 0.5 µM dasatinib for 2 h and lysates were immunoblotted with phospho-tyrosine 

416 specific antibodies.  As shown in figure 4.4A, phosphorylation of c-Src on tyrosine 416 

was abrogated with dasatinib treatment.   

Preclinically, dasatinib treatment results in decreased cell growth in some breast cancer 

cell lines (Laird et al., 2003; Kim et al., 2010).  To determine if inhibition of c-Src kinase 

activity was sufficient to decrease SUM159 cell growth, cellular proliferation assays were 

performed.  SUM159 cells were treated with increasing doses of dasatinib and proliferation 

was measured by cell counting on days 1, 4, and 8.  As seen in figure 4.4B, SUM159 cells 

continued to proliferate in the presence of all doses of dasatinib tested. As mentioned 

previously, SUM159 cells also continue to proliferate in the presence of the EGFR TKI 

gefitinib.  Therefore, to determine if concomitant treatment with dasatinib and gefitinib could 

alter cell viability of SUM159 cells, MTS analyses were performed.  Cells were treated with 

dasatinib and gefitinib alone, or in combination for 72 h.  Cell viability was used to calculate  
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Figure 4.4: Dasatinib sensitizes SUM159 cells to gefitinib. (A) SUM159 cells were treated with the 

indicated dose of dasatinib and lysates were subjected to SDS-PAGE followed by immunoblotting for 

EGFR, c-Src and phospho-Y416 c-Src.  (B) Cells were plated in 35mm plates and grown for eight days.  

Treatment with the indicated doses of dasatinib occurred every other day and cell counts were performed 

on days 1, 4, and 8.  (C) Cells were plated in a 96-well plate and treated with variable doses of dasatinib 

and gefitinib for 72 h.  MTS analyses was then performed.  The IC50  of gefitinib at each dose of dasatinib 

was calculated and plotted on an isobologram.   IC50 values below the line denote a synergistic interaction 

between the two drugs, while on the line indicates an additive interaction. The combination index (CI-

value) was calculated as follows: (IC50  gefitinib at X dose of dasatinib)/(IC50  gefitinib alone) + (dose of 

dasatinib)/(IC50  dasatinib alone). CI-values below one denote a synergistic interaction between the two 

drugs, CI-values equal to one indicate an additive interaction, and CI-values above one designate an 

antagonistic interaction. All experiments were performed at least three times. p-values were calculated as 

a difference between CI-values and one utilizing the student's t-test.
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IC50 values and isobolograms were generated to determine drug synergy (Fig. 4.4C).  The 

IC50 of gefitinib alone was plotted on the y-axis and the IC50 of dasatinib alone was plotted on 

the x-axis.  A line was drawn between them.  This line represents the dose pairing that 

suggests an additive relationship between two drugs.  The IC50 of gefitinib was calculated at 

various doses of dasatinib and these data were plotted on the graph.  IC50 points that fall on 

the line are considered additive, while below the line is considered synergistic.  When these 

points were plotted, the IC50 of gefitinib at each dose of dasatinib fell below the line of 

additivity indicating that the effects of gefitinib and dasatinib are synergistic.  Combination 

index (CI) values were also determined for co-treatment of dasatinib and gefitinib. At all 

doses of dasatinib, the CI-value was significantly below 1 (p<0.05), which indicates that 

gefitinib and dasatinib have a synergistic interaction to reduce the viability of SUM159 

breast cancer cells. 

D. Inhibition of c-Src kinase activity and depletion of lipid rafts is additive 

Previous data have indicated that lovastatin, a cholesterol biosynthesis inhibitor, could 

synergize with gefitinib (chapter 3).  This is hypothesized to be due to depletion of lipid rafts 

after cholesterol inhibition.  The data presented so far indicate that c-Src localizes to these 

lipid raft microdomains in SUM159 cells, where it co-associates with EGFR (Figs. 4.1-4.3).  

Therefore, we hypothesized that localization of c-Src to lipid rafts is a mechanism by which 

lipid rafts mediate EGFR TKI resistance in SUM159 cells.  If this is the case, then treatment 

of SUM159 cells with dasatinib and lovastatin would not be synergistic, as they would 

inhibit the same pathway.  Thus, SUM159 cells were treated with dasatinib in combination 

with lovastatin and cell viability analyses were performed.  An isobologram was then created 

as previously described.  As shown in figure 4.5, the effect of dasatinib and lovastatin co- 
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Figure 4.5: Dasatinib and lovastatin are additive in SUM159 cells. Cells were placed in a 96-well plate 

and treated with variable doses of dasatinib and lovastatin for 72 h.  MTS analyses were then performed.  

The IC50  of dasatinib at each dose of lovastatin was calculated and plotted on an isobologram. IC50  values 

below the line denote a synergistic interaction between the two drugs, while on the line indicates an 

additive interaction. The combination index (CI-value) was calculated as follows: (IC50  dasatinib at X 

dose of lovasatin)/(IC50  dasatinib alone) + (dose of lovastatin)/(IC50  lovastatin alone). CI-values below 

one denote a synergistic interaction between the two drugs, CI-values equal to one indicate an additive 

interaction, and CI-values above one designate an antagonistic interaction. All experiments were 

performed at least three times. p-values were calculated as a difference between CI-values and one 

utilizing the student's t-test.
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treatment of SUM159 cells was additive, as the  IC50 of dasatinib at varying doses of 

lovastatin fell along the line of additivity.  When CI-values were calculated, the CI-values for 

the combination of dasatinib and lovastatin were not significantly different from one, 

indicating, again, that these two drugs act additively.  This additive interaction suggests that 

dasatinib and lovastatin act on the same pathway. 

E. c-Src kinase activity mediates EGFR kinase-independent Akt 

phosphorylation 

In 2007, Arcaro and colleagues found that lipid raft associated c-Src was critical for the 

activation of the PI3K/Akt signaling pathway in SCLC cell lines (Arcaro et al., 2007).  Their 

results suggested that lipid rafts provided a platform for interaction between c-Src and PI3K.  

To determine if lipid rafts may also provide such a platform in SUM159 breast cancer cells, 

biochemical raft isolation was performed followed by immunoblotting for p110α (Fig. 4.6A), 

the catalytic subunit of PI3K [reviewed in (Vanhaesebroeck et al., 2010)].  While the 

SUM149 cells contained little p110α in lipid rafts, there was a significant amount of p110α in 

the lipid raft fractions of SUM159 cells.  Thus, it is possible that PI3K signaling occurs 

downstream of the EGFR and c-Src co-association in lipid rafts within the SUM159 cells.  

We have previously shown that depletion of lipid rafts results in decreased EGFR-kinase 

independent Akt phosphorylation (chapter 3).  c-Src is known to be a downstream mediator 

of  EGFR signaling pathways, including Akt and MAPK (Stover et al., 1995; Biscardi et al., 

1999a; Tice et al., 1999).  Thus, to determine if c-Src mediates EGFR kinase-independent 

signaling in SUM159 cells, lysates were immunoblotted for phosphorylation of Akt and 

MAPK following treatment with gefitinib or dasatinib alone, or in combination (Fig. 4.6B). 
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Figure 4.6: Phosphorylation of Akt occurs through a c-Src/p110α co-localization to lipid rafts. (A) 

Biochemical raft isolation was performed as described on SUM159 and SUM149 cells.  Fractions were 

separated by SDS-PAGE and immunblotting for p110α, transferrin receptor, and flotillin was performed.  

(B) Whole cell lysates (right) were collected from SUM159 cells treated with 1.0 µM gefitinib (G) and 1.0 

µM dasatinib (D) alone or in combination (DG). Expression and phosphorylation of Akt and MAPK, as 

well as expression of EGFR was determined by immunoblotting. Immunoblots were repeated at least 

three times. 
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As shown previously, gefitinib effectively abrogates MAPK phosphorylation in SUM159 

cells, but Akt phosphorylation persists (Figure 4.6B, lane 2, and Irwin et Al., under review).  

c-Src kinase inhibition by dasatinib treatment resulted in a small decrease of MAPK 

phosphorylation, and was sufficient to decrease Akt phosphorylation in SUM159 cells (Fig. 

4.6B, lane 3).  Co-treatment with gefitinib and dasatinib resulted in no additional decrease in 

MAPK or Akt phosphorylation.  These data suggest that c-Src mediates EGFR kinase-

independent Akt phosphorylation in SUM159 cells. 

4.3 Discussion 

This study provides evidence that c-Src plays a role in lipid raft-dependent EGFR TKI 

resistance of SUM159 cells.  Specifically, we have shown that c-Src localizes to lipid rafts in 

the SUM159 cells, where it co-localizes and co-associates with EGFR.  The effects of 

inhibiting both EGFR and c-Src tyrosine kinase activities was synergistic in these cells.  

Also, we have demonstrated that dasatinib and lovastatin treatments were additive, 

suggesting that they inhibit members of the same biological pathway.  Lastly, we have shown 

that a catalytic subunit of PI3K (p110α) co-localizes with EGFR and c-Src to lipid rafts in 

SUM159 cells and that inhibition of both EGFR and c-Src kinase activities decreased both 

Akt and MAPK phosphorylation.  Taken together, these data have further characterized a 

mechanism for lipid rafts mediating EGFR TKI resistance by showing that c-Src is active and 

present in lipid rafts where it has the ability to regulate PI3K/Akt survival signals.  

Src family kinases have been described as being capable of localizing to lipid rafts (Liu et 

al., 1997; Furuchi and Anderson, 1998; Davy et al., 2000).  While other family members are 

likely to associate preferentially to lipid rafts through their double lipid modification, c-Src is 
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only singly lipid modified (Paige et al., 1993; Koegl et al., 1994; Shenoy-Scaria et al., 1994; 

Robbins et al., 1995; Yurchak and Sefton, 1995).    However, c-Src localization to lipid raft 

still occurs through interactions between the lipid environment and basic residues within the 

unique domain of c-Src (Sigal et al., 1994).  c-Src has been shown to localize to lipid rafts in 

neuronal (Mukherjee et al., 2003; Kasai et al., 2005), hematopoietic (Stoddart et al., 2002), 

and madin-darby canin kidney cells (Shenoy-Scaria et al., 1994), as well as skeletal 

myoblasts (Smythe et al., 2003), murine fibroblasts (Robbins et al., 1995), and cervical and 

lung cancer cell lines (Shenoy-Scaria et al., 1994; Arcaro et al., 2007).   Specifically, in 

breast cancer cells, Hitosugi and colleagues have shown that adhesion and growth is inhibited 

by lipid raft specific knockdown of c-Src (Hitosugi et al., 2007), suggesting that lipid rafts 

promote c-Src dependent cellular signaling to pathways of cellular adhesion and growth.  We 

have shown that c-Src localizes to lipid rafts in SUM159 breast cancer cells (Fig. 4.1).  Thus, 

it is possible that c-Src may mediate mitogenic signaling in these cells.   

We have identified an interaction between EGFR and c-Src within lipid raft membrane 

microdomains in breast cancer cells (Figs. 4.1-4.3).  Physical interaction between these two 

proteins has been noted previously.  Specifically, Maa and colleagues showed an initial 

physical interaction between EGFR and c-Src in a murine fibroblast model which was 

engineered to over-express both EGFR and c-Src (Maa et al., 1995).  In this model system, c-

Src potentiated EGFR-mediated transformation through direct physical interaction with 

EGFR.  c-Src was also co-immunoprecipitated as part of a complex between EGFR and c-

Met in SUM229 breast cancer cells (Mueller et al., 2008; Mueller et al., 2010).  This 

interaction was described to mediate EGFR TKI resistance of SUM229 cells.  We have 

shown that EGFR and c-Src physically associate in SUM159 breast cancer cells (Fig. 4.3A 
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and B).  More specifically, we have shown that a physical interaction occurs between these 

two proteins within lipid rafts (Fig. 4.3C).  While previous studies have revealed that these 

two proteins are both capable of localizing to lipid rafts in the same cell line (Hur et al., 

2004; Kasai et al., 2005; Jeon et al., 2010), the actual physical association within these lipid 

raft domains has not been previously shown. 

Our data indicate the concomitant inhibition of c-Src and EGFR kinase activities may 

result in decreased cell viability of breast cancer cell lines.  In particular, we have shown that 

while SUM159 cells are resistant to inhibition of either EGFR (chapter 3) and c-Src kinase 

activities (Fig. 4.4B), co-treatment with dasatinib and gefitinib resulted in synergistic 

decreases in cell viability (Fig. 4.4C).  It is not surprising that co-treatment resulted in 

decreased cellular viability in breast cancer cells.  First, c-Src is over-expressed in many of 

the same cancer types as EGFR, including approximately 70% of breast cancers, and is 

known to be co-over-expressed with EGFR in a subset of breast tumors (Maa et al., 1995).  

Additionally, EGFR and c-Src co-overexpression in mouse fibroblasts and human mammary 

epithelial cells results in synergistic increases in tumorigenesis (Maa et al., 1995; Belsches et 

al., 1997; Ware et al., 1997; Biscardi et al., 1999a; Biscardi et al., 1999b; Wilde et al., 1999; 

Dimri et al., 2007).  Thus, it stands to reason that these two proteins together may play an 

important role in mitogenic signaling in breast cancer cells.  Also, data shown in other cancer 

types suggest that dual inhibition of EGFR and c-Src kinase activities decreased cancer cell 

viability.  In particular, Johns and colleagues have demonstrated that down regulation of c-

Src expression improved the response of gliomas to EGFR monoclonal antibodies (Johns et 

al., 2007).  Also, decreased c-Src kinase activity results in increased sensitivity to EGFR 

inhibitors in head and neck cancer and epidermoid carcinoma cell lines (Koppikar et al., 
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2008; Andersen et al., 2009).  A recent Phase I/II study has also been published utilizing 

dasatinib in combination with the EGFR TKI erlotinib in non-small cell lung cancer (Haura 

et al., 2010).  Not only was this combination tolerable in patients, but disease control was 

observed as well.  Thus, our data suggest that combinatorial inhibition of EGFR and c-Src 

kinase activities may result in the decrease of the viability of breast cancer cells. 

It is thought that lipid rafts play a dual role in c-Src signaling.  Lipid rafts are also 

important in mediation of the c-Src dependent activation of PI3K/Akt signaling in human 

SCLC cell lines (Arcaro et al., 2007) and in the activation of FAK to promote early contact 

signaling in cells (Baillat et al., 2008).  Also, c-Src trafficking and co-localization with EGFR 

promotes EGFR-ligand independent MAPK signaling (Donepudi and Resh, 2008).  

However, lipid rafts also provide a platform for Csk binding protien (Cbp) to bring Csk, an 

endogenous inhibitor of c-Src, in close proximity to its substrate, which, in turn, results in 

down regulation of c-Src activity (Torgersen et al., 2001).  We have shown evidence that 

lipid rafts promote c-Src-dependent signaling in SUM159 breast cancer cells.  In particular, 

we suggest that lipid raft localized c-Src plays a role in EGFR-kinase independent signaling 

seen in these cells.  Inhibition of c-Src kinase activity with dasatinib results in abrogation of 

EGFR-kinase independent Akt phosphorylation (Fig. 4.6B).   

Previous studies have suggested that lipid rafts also mediate EGFR-kinase independent 

Akt phosphorylation in this cell line (chapter 3).  We have utilized synergy analyses to 

determine if lipid raft localized c-Src is responsible for Akt phosphorylation in these cells.  

Specifically, we hypothesized that if c-Src was mediating the effects seen downstream of 

lipid rafts in these cells, that concomitant inhibition of c-Src kinase activity and cholesterol 

biosynthesis (which results in reduction of lipid raft levels), would not be synergistic.  
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Indeed, co-treatment with dasatinib and lovastatin was additive in SUM159 cells (Fig. 4.5), 

suggesting that these two inhibitors are working together to down-regulate the same pathway.  

Thus, these data together suggest that lipid raft localized c-Src mediates EGFR-kinase 

independent Akt phosphorylation in SUM159 cells.  Furthermore, the co-localization of 

p110α, EGFR, and c-Src within lipid rafts in SUM159 cells (Fig. 4.6A) suggests that lipid 

rafts provide a platform for interaction between these molecules, leading to EGFR kinase-

independent activation of PI3K/Akt signaling. 

The results described here suggest a model for the activation of EGFR-dependent 

signaling pathways independent of EGFR-kinase activity.  Specifically, we have shown 

previously that lipid rafts play a role in such a pathway (Irwin et Al. under review).  Here, we 

have described a role for the non-receptor tyrosine kinase c-Src in the activation of EGFR-

kinase independent Akt signaling in the EGFR TKI resistant SUM159 breast cancer cell line.  

c-Src co-localized with EGFR in plasma membrane lipid rafts in SUM159 cells.  This co-

localization allowed the interaction between EGFR, c-Src, and PI3K, leading to EGFR-

kinase independent Akt phosphorylation.  The effects of dasatinib, a small molecule c-Src 

kinase inhibitor, and gefitinib, an EGFR TKI, were synergistic in these cells.  Dasatinib is 

currently in clinical trials in solid tumors (Laird et al., 2003; Kim et al., 2010), and therefore 

may be useful in combination with EGFR TKIs for breast cancers that are resistant to EGFR-

directed therapeutics alone. 
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Chapter 5 

5. Conclusions 

 The work herein provides evidence of a role for lipid rafts in EGFR TKI resistance.  We 

have found that EGFR localization to lipid rafts correlates with EGFR TKI resistance.  We 

have shown that depletion of cholesterol through the use of cholesterol biosynthesis 

inhibitors sensitizes breast cancer cells that are resistant to EGFR TKI-induced growth 

inhibition.  Our data suggest that lipid rafts provide a platform for the interaction of EGFR 

with other proteins, including c-Src and PI3K, to promote signaling in the absence of EGFR 

kinase activity (Fig. 5.1).  These findings provide rationale for the use of the cholesterol 

lowering drug lovastatin in combination with EGFR inhibitors in breast cancer. 

 As mentioned previously, breast cancer is one of the prevailing forms of cancer mortality 

in American women.  Specifically, basal-type breast cancers have the worst clinical 

prognosis.  The approval of targeted therapeutics for the treatment of basal-type breast 

cancers is of the utmost importance.  Unfortunately, there is no currently approved targeted 

therapeutic for this sub-type of breast cancer, due to the general lack of estrogen, 

progesterone, and HER2 receptors.  The epidermal growth factor receptor, a HER2 family 

member, is expressed in a large percentage of this sub-type of breast cancer, however; 

EGFR-targeted therapeutics have had limited success here.  Thus, our research provides 

insight that may allow the use of these targeted agents in breast cancer patients afflicted with 

basal-type breast cancer. 

 The work in this dissertation is not without its limitations.  Primarily, gefitinib is no 

longer approved for clinical use in the United States, which may limit the ability to translate 



Figure 5.1: Co-localization of EGFR and c-Src to lipid rafts promotes EGFR kinase-independent 

siganling. (A) Under normal growth conditions, EGFR and c-Src co-localize and co-associate within lipid 

rafts, and Akt and MAPK are phosphorylated leading to cell survival and proliferation. (B) When cholesterol 

is depleted (Statin), Akt phosphorylation is decreased, but MAPK remains phosphorylated. (C) When EGFR 

kinase acitivity is inhibited (gefitinib), EGFR-kinase dependent MAPK phosphorylation is abrogated, 

however, Akt phosphorylation is maintained  (D)  When there is cholesterol is depleted in combination with 

EGFR kinase inhibition, both of these signaling pathways are blocked correlating with an inhibition of 

cellular proliferation.
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this work into the clinical setting.  Further studies utilizing other EGFR inhibitors, such as 

erlotinib, lapatinib, and cetuximab may strengthen the clinical significance of this work.  In 

particular, combination studies looking at proliferation and viability of cells treated with the 

combination of these other EGFR inhibitors and cholesterol lowering drugs may provide 

further rationale for the use of these combinations in patients.  Also, in vivo studies are 

required to move these results towards the clinical arena.  For example, xenograft mouse 

models can be utilized to determine if the combination of EGFR inhibitors and cholesterol 

lowering drugs is a viable option to reduce tumor burden in vivo.  With these types of data, 

and the knowledge that both EGFR inhibitors and cholesterol lowering drugs are well 

tolerated in patients, this work can be translated forward into phase I studies to determine 

proper combinatorial dosing. 

 EGFR is not the only protein that is known to localize within lipid rafts.  Indeed, we have 

shown two other proteins, c-Src and p110α, that also localize to lipid rafts in basal breast 

cancers.  The EGFR family member HER2 also is capable of localizing within lipid raft 

membrane microdomains (Menendez et al., 2005).  HER2 positive breast cancers can 

currently be targeted by the monoclonal antibody trastuzumab, however, inevitably, 

resistance to trastuzumab occurs [reviewed in (Nahta and Esteva, 2006)].  Depletion of lipid 

rafts through inhibition of fatty acid synthase (FAS) has been found to overcome trastuzumab 

resistance in breast cancer (Menendez et al., 2005).  These results suggest that inhibition of 

lipid rafts, through a variety of mechanisms, may be important in the resistance to EGFR 

family member directed therapeutics. 

Recent data have implicated the EGFR family in resistance to estrogen receptor-directed 

therapeutics.  In particular, levels of EGFR and HER2 are elevated in MCF7 cell lines that 
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have acquired resistance to tamoxifen (McClelland et al., 2001; Knowlden et al., 2003).  

Thus, lapatinib, a dual EGFR/HER2 inhibitor (described earlier), has been used in preclinical 

studies in an effort to overcome such resistance (Chu et al., 2005).  However, our findings, 

and those of Menedez and colleagues, suggest that there may be resistance to this inhibitor 

due to elevated levels of lipid rafts in all breast cancer cells.  Preclinical studies regarding the 

localization of EGFR and/or HER2 to lipid rafts in these tamoxifen-resistant cell lines may 

therefore be useful to determine if cholesterol lowering drugs may be useful in such a setting. 

In general, while there is still more work to be done, the data in this dissertation moves 

the field forward towards a better understanding of the underlying mechanisms of resistance 

to EGFR tyrosine kinase inhibition in breast cancer.  The use of cholesterol lowering drugs in 

combination with EGFR inhibitors may provide the targeted clinical therapy needed in basal-

type breast cancers.  It is our hope that the research described here will set the stage for the 

further study of the localization of proteins to lipid rafts, and how this localization may affect 

resistance to well developed targeted therapeutics in breast cancer.    
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Breast cancer can be divided into genetic sub-types including luminal, HER2+, and basal-

type.  With the introduction of targeted therapies against estrogen receptor and HER2 

receptor mortality rates of American women with breast cancer have declined.  

Unfortunately, basal-type breast cancers, which have the worst clinical outcome, do not 

express estrogen receptor or HER2, and as such, have no targeted therapeutic option.  The 

epidermal growth factor receptor is an attractive target for therapeutics in basal-type breast 

cancer, as it is over-expressed in 60% of these cases.  Also, over-expression of EGFR 

correlates with poor patient prognosis.  Unfortunately, inhibitors of EGFR have shown little 

clinical efficacy in basal-type breast cancers.  We have utilized basal-type breast cancer cell 

lines to determine a potential mechanism of resistance to EGFR-targeted small molecule 

tyrosine kinase inhibitors (TKIs).  Specifically, we have shown that EGFR localizes to 

discrete membrane microdomains (lipid rafts) in cell lines that are resistant to EGFR TKI-

induced growth inhibition.  Depletion of lipid rafts via cholesterol reduction results in 

sensitivity of EGFR TKI resistant breast cancer cell lines to the EGFR TKI gefitinib.  
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Importantly, the effects of cholesterol lowering drugs and EGFR TKI in combination were 

synergistic.  We have shown that the non-receptor tyrosine kinase c-Src, which is co-over-

expressed with EGFR in a subset of breast tumors, also localizes to lipid rafts in the SUM159 

breast cancer cell line.  In this model system, c-Src kinase inhibition results in synergistically 

decreased cell viability in combination with EGFR tyrosine kinase inhibition.  c-Src kinase 

inhibition and cholesterol depletion are additive, results that suggest these two inhibitors 

work within the same pathway.  Indeed, treatment with either cholesterol lowering drugs or 

c-Src kinase inhibitors results in decreased EGFR-kinase independent Akt phosphorylation.  

Thus, lipid rafts may provide a platform whereby EGFR and c-Src interact to promote Akt 

signaling in the absence of EGFR kinase activity.  These results suggest, for the first time, 

that lipid rafts are involved in EGFR-kinase independent signaling, and that depletion of 

these rafts may work in combination with EGFR tyrosine kinase inhibition to decrease breast 

cancer cell growth.     
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