
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2010

Scientific Workflow Integration For Services
Computing
Cui Lin
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Lin, Cui, "Scientific Workflow Integration For Services Computing" (2010). Wayne State University Dissertations. Paper 19.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/19?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages

SCIENTIFIC WORKFLOW INTEGRATION FOR SERVICES COMPUTING

by

CUI LIN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2010

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

ACKNOWLEDGMENTS

First of all, I owe my deepest gratitude to my advisor, Professor Shiyong Lu, for his advice,

encouragement, and support over the past years. He has spent tremendous time and efforts to

help me achieve excellence in both research and teaching. I have also benefited greatly from

his rigorous research attitude and his insight on our research.

I am also heartily thankful to my co-advisor, Professor Jing Hua, and my research col-

laborator, Professor Otto Muzik. I feel enormously fortunate to have access to their powerful

intellectual minds and remarkable insights on their research. Their enthusiasm for science is

extremely contagious and has deeply influenced me. Furthermore, I would like to express my

sincere appreciation to Professors Farshad Fotouhi and Zaki Malik for their valuable advice

and efforts as the members of my dissertation committee.

It is a pleasure to thank all the members in the Scientific Workflow Research Laboratory,

who have helped me in many aspects over these years. Also, I want to extend my gratitude to all

the members in the Graphics and Imaging Laboratory, especially Zhaoqiang Lai and Darshan

Pai, for their great support and close research collaborations.

Moreover, I am grateful for the Michigan Technology Tri-Corridor basic research grant

MTTC05-135 / GR686 and the Thomas C. Rumble Fellowship Award, which partially sup-

ported my research.

Last but not the least, I would like to thank my mother Ruichun Cui and my father Guangyue

Lin for their endless love and patience throughout all stages of my growth. Their open minds

and encouragement allow me to transit from my industrial career path to the pursuit of success

in an academic career. I also want to thank my boy friend, Dr. Yunhao Tan, for his love and

support in the past years, which helped me overcome many difficulties and go through some

hard time in these years. Without his support, I could not complete this dissertation.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vi

Chapter 1 Introduction . 1

1.1 Scientific Workflows and Scientific Workflow Management Systems 1

1.2 Problem Statement . 2

1.3 Contributions . 7

1.4 Dissertation Organization . 9

Chapter 2 Related Work . 10

2.1 Architectures of Workflow Management Systems 10

2.1.1 Architectures of Business Workflow Management Systems 10

2.1.2 Architectures of Scientific Workflow Management Systems 13

2.2 Workflow Integration . 17

2.2.1 Services Integration in Workflow Systems 17

2.2.2 Data Integration in Workflow Systems 18

2.3 Workflow Scheduling . 20

2.3.1 Heuristic Scheduling Algorithms . 21

2.3.2 Guided Random Search Scheduling Algorithms 24

Chapter 3 Reference Architecture for Scientific Workflow Management Systems . 26

3.1 Seven Key Architectural Requirements . 26

3.2 Proposed Reference Architecture . 29

3.2.1 Layers . 30

3.2.2 Subsystems . 32

3.2.3 Interfaces . 33

3.2.4 Summary . 34

iii

3.3 System Evaluation Using the Reference Architecture 35

Chapter 4 Workflow Integration in Scientific Workflows 38

4.1 Task Model . 38

4.1.1 Task Template Model . 39

4.1.2 Task Run Model . 43

4.2 Addressing Shimming Problems in Scientific Workflows 46

4.2.1 Addressing TYPE-II Shimming Problem Using TSL 47

4.2.2 Addressing the TYPE-I Shimming Problem Using TSL 50

4.2.3 Advantages of Our Approach . 51

4.2.4 Case Study: Shimming in Volumn Data Surface Extraction 52

4.3 Addressing Heterogeneity Using TRDL . 54

4.4 Addressing Heterogeneity in VIEW Task Manager 54

4.5 Case Study: a Heterogeneous Scientific Workflow for Automating Imaging
Analysis . 56

Chapter 5 Workflow Scheduling for Services Computing Environments 59

5.1 Services Computing Environment . 60

5.2 Workflow Graph Representation . 63

5.3 Workflow Scheduling Problem Description 72

5.4 Proposed Scheduling Algorithms . 76

5.4.1 The Task Prioritizing Algorithm . 76

5.4.2 The SHEFT Algorithm . 78

5.4.3 The SCPOR Algorithm . 82

5.5 Experiments and Discussion . 87

5.5.1 Computing Environment Simulation 87

5.5.2 Random Workflow Graph Generation 88

5.5.3 Workflow Scheduling Result Analysis 89

5.5.4 Statistical Performance Evaluation on Scalable Workflows 91

iv

5.5.5 Statistical Performance Evaluation on Compute-intensive Workflows . 93

5.5.6 Statistical Performance Evaluation on Data-intensive Workflows 94

Chapter 6 The VIEW Scientific Workflow Management System 96

6.1 Architectural Design Principles . 96

6.2 Overall Architecture and Subsystem Architectures 97

6.3 VIEW Kernel Configuration Management . 105

6.4 Task Executor Configuration Management . 106

6.5 Advantages of Using SOA in SWFMSs . 107

6.6 VIEW based FiberFlow System . 108

Chapter 7 Conclusions and Future Work . 111

7.1 Conclusions . 111

7.2 Future Work . 112

Appendix A: Task Specification Language (TSL) . 114

Appendix B: Task Run Description Language (TRDL) 120

References . 125

Abstract . 138

Autobiographical Statement . 140

v

LIST OF FIGURES

Figure 1.1: An integrated framework to integrate heterogeneous analytical tools and
execute them on distributed compute resources. 3

Figure 3.1: The position of an SWFMS within a software stack (left) and zoom-in view
of the reference architecture for SWFMSs (right). 30

Figure 3.2: Architectural evaluation of five scientific workflow management systems. . 36

Figure 4.1: Main concepts and their relationships in a task model. 39

Figure 4.2: An extensible task template model. 40

Figure 4.3: (a) - (b) static mappings between input/output ports of a task interface and
inputs/outputs of the task components WS and A. 41

Figure 4.4: An extensible task run model. 43

Figure 4.5: Task run state transition diagram. 44

Figure 4.6: (a) - (c): dynamic bindings among input/output ports, inputs/outputs and
input/output data at three states. 46

Figure 4.7: (a) The TYPE-I shimming problem; (b) The TYPE-II shimming problem.
(̸=: mismatch) . 47

Figure 4.8: An example of a task template specification. 48

Figure 4.9: Reducing the TYPE-I shimming problem to the TYPE-II shimming problem. 50

Figure 4.10: Algorithm ReduceTYPE-I2TYPE-II . 51

Figure 4.11: A scientific workflow composed in the VIEW 2.1 system with shims to the
TYPE-I and TYPE-II problem. 52

Figure 4.12: A snapshot of a task run descriptor at the Success state. 55

Figure 4.13: VIEW Task Manager for the execution of heterogeneous shims and func-
tional task components. 56

Figure 4.14: A scientific workflow composed of heterogeneous applications and services. 57

Figure 5.1: Workflow scheduling in services computing environments. 62

Figure 5.2: An example of a workflow graph. 66

Figure 5.3: The pseudo-code of the task prioritizing algorithm 77

vi

Figure 5.4: The pseudo-code of the SHEFT algorithm 79

Figure 5.5: The getCPList(G,E) Function . 83

Figure 5.6: The SCPOR Algorithm . 85

Figure 5.7: The workflow in Figure 5.2 is scheduled by (a) the the HEFT algorithm;
(b) the SHEFT algorithm (tidle = 60). 89

Figure 5.8: The workflow in Figure 5.2 is scheduled by (a) the the CPOP algorithm and
(b) the SCPOR algorithm (tidle = 20). 90

Figure 5.9: Scheduling 50,000 randomly generated workflows for the number of tasks
in each range. The comparison of scheduling results (a) between SHEFT
and HEFT and (b) between SCPOR and CPOP. 92

Figure 5.10: Scheduling 50,000 randomly generated compute-intensive workflows. The
comparison of scheduling results (a) between SHEFT and HEFT, (b) be-
tween SCPOR and CPOP, and (c) between SHEFT and SCPOR. 94

Figure 5.11: Scheduling 50,000 randomly generated data-intensive workflows. The com-
parison of scheduling results between (a) SHEFT and HEFT, between (b)
SCPOR and CPOP, and between (c) SHEFT and SCPOR. 95

Figure 6.1: Overall architecture of the VIEW system. 98

Figure 6.2: Architecture of the VIEW Workbench (left) and the VIEW Workflow En-
gine (right). 99

Figure 6.3: Architectures of the VIEW Provenance Manager (left) and the VIEW Data
Product Manager (right). 100

Figure 6.4: Architectures of the Task Master (left) and the Task Executor (right). 103

Figure 6.5: The VIEW Workbench embedded with five subsystem control panels and
a workflow design panel (left), and a user-interaction intensive and visual-
ization intensive scientific workflow displayed in a customized GUI for the
view based FiberFlow system (right). 109

vii

1

CHAPTER 1: INTRODUCTION

1.1 Scientific Workflows and Scientific Workflow Manage-

ment Systems
Workflow technologies originated from the development of office automation and process

re-engineering. In general, a workflow is a computerized model of a process, which consists

of a collection of interconnected tasks (or called activities, actions, actors) that are constructed

to achieve a predefined objective. Workflow concepts and technologies have been developed

in the business world for more than two decades, and a business workflow is a computerized

business process, in which documents, information, or tasks are passed between participants

according to defined sets of rules to achieve, or contribute to, an overall business goal [1]. A

business workflow management system (BWFMS) is a system that provides tools to design,

manage, and execute business workflows.

In recent years, significant scientific advances are increasingly achieved through complex

scientific processes, which may involve tremendous steps of computations and vast amounts of

scientific data for these computations. As such complex computations and data analysis require

tremendous amounts of human efforts and manual coordination, to sustain current growth in

scientific computations and data, workflows have been applied in scientific domains to auto-

mate large-scale scientific processes, termed scientific workflows. A scientific workflow is a

computerized model of a scientific process, in whole or part, which streamlines a collection

of tasks with data channels and dataflow constructs to automate data computation and analy-

sis. Scientific workflows have recently emerged as a new paradigm for scientists to integrate,

structure, and orchestrate a wide range of analytical tools into complex scientific processes to

accelerate scientific discoveries. A scientific workflow management system (SWFMS) is the

system that completely defines, modifies, manages, monitors, and executes scientific work-

2

flows through the execution of scientific tasks whose execution order is driven by a comput-

erized representation of the workflow logic. An SWFMS automates the whole lifecycle of

scientific research for scientists, from data collection, hypothesis formation through compute-

intensive and data-intensive analysis to the publication and dissemination of scientific results,

supporting scientific reproducibility, publication, and sharing.

Since the history of business workflows is far longer than that of scientific workflows,

some concepts and technologies developed in the business domain can be migrated to the sci-

entific domain. However, scientific workflows have their domain specific requirements and

challenges, many of the techniques developed for BWFMSs cannot be directly applied in

SWFMSs. For example, SWFMSs focus on dataflow design patterns and execution models

while BWFMSs tend to have controlflow patterns and events. Such differences determine the

underlying architecture design and workflow formalism [2] for a workflow system; Scientific

workflows are often designed in an ad hoc manner and executed in a trial-and-error pattern,

while business workflows are usually predefined and executed in a routine fashion. Therefore,

the ability to revise, pause, resume, and record workflows required in SWFMSs is not exposed

in most BWFMSs.

1.2 Problem Statement
Today, research collaborations are becoming globally dispersed, scientists increasingly rely

on the Web technology to perform their in silico experiments. These experiments are motivated

by different hypotheses formulated for the research of a particular domain, and each of the hy-

potheses may involve various processes and sub processes. As shown in Figure 1.1, a scientific

workflow, as a computerized model of a scientific process or sub process, relies on two types

of resources: one is a large number of analytical tool resources that are involved in different

scientific processes; another is the compute resources that are distributed over the network.

These analytical tools are often developed as public services or proprietary applications, from

different organizations. More and more compute resources are recently exposed as services,

3

which can be directly accessed via a standardized interface through the Internet. A scientific

workflow today may comprise hundreds or even thousands such heterogeneous analytic tools,

compute services for the execution of these tools may be distributed across different services

computing environments, connected by the Internet, so the integration and management of such

workflows in SWFMSs are pushing the limit of current scientific workflow technology.

Hypothesis 1 Hypothesis 2 Hypothesis 3

Process Sub ProcessSub Process

...

Task 1 ...
Task 4Task 3Task 2 Task N

Task 1 Task NTask 3

Hypothesis Formulation

Task Repository

Workflow Repository

Task 2

Analytical Tool
Resources

Task 4

Compute Resources

Application 4Web Service 3Grid Service 2Cloud Service 1

Figure 1.1: An integrated framework to integrate heterogeneous analytical tools and execute
them on distributed compute resources.

To solve this problem, my dissertation explores new techniques to build an SWFMS that

provides an integrated framework to (1) integrate heterogeneous tools from the analytical tool

resources into uniform workflow tasks, and manage them in a task repository; (2) compose

tasks from the task repository into various scientific workflows and manage them in a workflow

repository; (3) schedule and execute workflows from the workflow repository in services com-

puting environments. Specifically, this dissertation focuses on the following research issues:

4

How to design a proper foundation for workflow composition, scheduling, execution

and management, so that scientific process automation can be managed systematically?

A fundamental problem missing in current scientific workflow research is a proper founda-

tion, which can be used for the systematic development of scientific workflow systems. The

availability of such a reference architecture can not only provide a guidance for the architec-

tural design of an SWFMS, but also provide a proper foundation to integrate all the functions

and components in an SWFMS, so that scientific process automation can be managed system-

atically. While several SWFMSs [3, 4, 5, 6, 7, 8] have been developed during the past few

years, an architectural reference that can provide a high-level organization of subsystems and

their interactions in an SWFMS is still missing. Because of that, the development of a scientific

workflow system is mostly ad hoc in scientific workflow design, specification, development,

execution, and provenance tracking, etc.

Although the reference architecture proposed by the Workflow Management Coalition

(WfMC) and its variant [9] have been widely adopted in the development of different BWFMSs

[10, 11, 12, 13, 14], it is not suitable for SWFMSs as business workflows and scientific work-

flows have different goals. The goal of business workflows is to reduce human resources (and

other costs) and increase revenue, while the goal of scientific workflows is to reduce both hu-

man and computation costs and accelerate the speed of turning large amounts of bits and bytes

into knowledge and discovery. Moreover, business workflows are typically controlflow ori-

ented, while scientific workflows tend to be dataflow oriented, introducing a new set of require-

ments and challenges for system development, from the support of intensive user-interaction

and visualization, customizable and extensible GUI, reproducibility, high-end computing, to

heterogeneous data, software tool, and service management.

How to provide an appropriate abstraction to integrate heterogeneous analytical tools,

so that they can be composed into various scientific workflows?

5

In scientific workflows, analytical tools are often developed by various research organiza-

tions, originally as software tools for their own scientific problems and then are published for

the purpose of sharing and reusing them in solving other scientific problems. Some of these

tools are exposed as services, such as Cloud services, Grid services or Web services; some of

them are developed as proprietary applications. Therefore, it is very common that these tools

are written in various programming languages, invoked via different invocation mechanisms,

and run in disparate computing environments.

The techniques that integrate heterogeneous programs into business workflows cannot be

directly applied to scientific workflows due to the fundamental differences between business

workflows and scientific workflows. More specifically, their approaches cannot be used to

abstract heterogeneous and distributed services and applications into uniform dataflow-based

scientific workflow tasks (i.e., tasks with well-defined input and output ports). Some existing

SWFMSs provide built-in system-specific wrappers for the invocation of external services and

applications; however, they do not support the flexible mappings between the input/output ports

of a task interface and the inputs/outputs of a task component. In most cases, such mappings

have to be performed by the development of a custom task inside an SWFMS, and the task

wraps the invocation of an external tool and hardcodes the mappings between inputs/outputs

of the external tool and input/output ports of the task. This wrapper-programming approach is

not only unnecessarily tedious, error-prone, but also lacks the flexibility of supporting multiple

alternative task components and the dynamic binding capability between a task interface and

a task component. Therefore, how to abstract heterogeneous analytical tools into uniform

workflow tasks remains an open research problem.

The shimming problem is another workflow integration problem caused by the heterogene-

ity. As most of third-party services and applications are syntactically mismatching or seman-

tically incompatible, a special kind of workflow components, called shims, is used to mediate

6

them. A shim takes the output data of an upstream workflow task, performs some transfor-

mation, and then feeds the data to the input of a downstream task. The shimming problem

has been widely recognized as an important problem in the community [15, 16], leading to

much efforts in the development of shims [17], shim-aware workflow composition [15], and

the suggestion of a new discipline called shimology [16]. Existing shimming techniques have

two serious limitations. First, they produce scientific workflows that are cluttered with many

visible shims. Ideally, these shims should be hidden from scientists so that they can better focus

on functional components of workflows. Second, these techniques still require a user to write

custom wrapper around a task component according to the task programming model of a sys-

tem. Moreover, these hard-coded implicit shims are irreusable across other tasks. Therefore,

how to provide a flexible mapping between task ports and inputs/outputs of task components

poses another challenge for workflow integration.

How to provide a run-time framework to schedule and execute workflows on dis-

tributed compute resources in services computing environments?

In a services computing environment, compute resources for a workflow can be assigned

by service requests, and each workflow can be assigned different number and type of resources

for executions. The compute resources assigned to a workflow can be elastically scaled out

or scaled in on demand of the size of the workflow. The execution time of each task in a

workflow may differ using different resources and data associated with a task are required to

be transferred from one resource to another with different data transfer rates between resources.

Therefore, how to schedule a workflow onto suitable compute resources, so that the execution

of a workflow can be completed with the satisfaction of a predefined objective function is one

of the key problems in workflow management.

Generally, the workflow scheduling problem is known as an NP-complete problem [18, 19].

7

Many heuristics and guided random search based algorithms have been proposed in the liter-

ature [20]; however, none of the algorithms provides a solution to schedule a workflow in a

services computing environment, in which resources assigned to a workflow can be elastically

scaled out or scaled in at runtime. This motivates our research in this direction. Furthermore,

once a task is scheduled onto a compute resource, how to provide a runtime framework to

manage, execute, and monitor tasks and their associated data in heterogeneous and distributed

computing environments is another challenging research problem.

1.3 Contributions
To solve the above problems in scientific workflow integration, in this dissertation, we

propose an integrated solution for composing, scheduling, executing, and developing scientific

workflows and scientific workflow management systems. Furthermore, we have developed a

service oriented workflow management system, the VIEW system, and a VIEW based workflow

application system, the FiberFlow system, to validate our architectures, models, languages, and

algorithms. Specifically, the contributions of this dissertation are as follows:

1. Reference Architecture for Scientific Workflow Systems (Chapter 3). We identify

seven key architectural requirements that are particularly needed by scientific workflow

systems. In response to these requirements, we propose the first reference architecture

for scientific workflow management systems, which is composed of four logical layers,

seven major functional subsystems, and six interfaces. The reference architecture not

only provides a high-level organization of subsystems and their interactions in a work-

flow system, but also provides a basis for comparison between different systems and a

guidance for the architectural design of an SWFMS in a specific scientific domain.

2. Task Template Model and Task Specification Language (Chapter 4). We propose a

task template model which not only provides an appropriate abstraction of heterogeneous

8

services and applications, but also encapsulates the composition and mapping of shims

and functional task components within a task interface. We design an XML-based task

specification language, called TSL, to realize the proposed task template model. TSL

not only enables the abstraction of heterogeneous services and applications into uniform

workflow tasks, but also provides a solution to address both TYPE-I and TYPE-II shim-

ming problems in composing scientific workflows. To our best knowledge, this is the

first shimming technique that makes shims invisible at the workflow level, resulting in

scientific workflows that are more elegant and readable.

3. Task Run Model and Task Run Description Language (Chapter 4). We propose a task

run model to model the run-time behaviors of tasks. Based on the task run model, we

design the task run description language, TRDL, for the description of task runs, enabling

the execution of task instances constructed from heterogeneous services and applications.

Furthermore, we propose a service-oriented architecture for task management to enable

the integration of heterogeneous services and applications into scientific workflows in

distributed environments. Our proposed models, languages, and architecture provide

a programming language and platform independent framework; they are extensible for

future services and applications.

4. Workflow Scheduling for Services Computing Environment (Chapter 5). We iden-

tify the workflow scheduling problem for a services computing environment, in which

resources assigned to a workflow can be elastically scaled out or scaled in on demand

of the size of the workflow. We firstly formalize a workflow cost model that enables the

prediction and estimation of workflow execution. Based on the proposed cost model,

two novel workflow scheduling algorithms, the SHEFT (Scalable-Earliest-Finish-Time-

First) and the SCPOR (Scalable-Critical-Path-On-a-Resource) algorithm, are proposed

to map tasks onto suitable resources and order their executions in services computing

environments. Our extensive experiments show that the proposed algorithms outper-

9

form other competitive algorithms especially for scalable, compute-intensive and data-

intensive workflows.

5. Visual Scientific Workflow Management System (Chapter 6). We develop an SOA

based VIEW system to validate the proposed architectures, models, languages, and algo-

rithms. VIEW consists of six loosely-coupled service components, each of which corre-

sponds to a functional component that is identified in the reference architecture, whose

functionality is exposed as a Web service. We present a service configuration man-

agement in the VIEW system that provides a flexible configuration functionality for the

VIEW subsystems. Furthermore, we develop a VIEW based scientific workflow applica-

tion system, called FiberFlow system, to demonstrate the capabilities of the VIEW system

in support of user-interaction intensive and visualization-intensive scientific workflows.

1.4 Dissertation Organization
The remainder of the dissertation is organized as follows. In Chapter 2, we briefly review

prior work done in workflow integration, workflow scheduling and the development of work-

flow management systems. Then in Chapter 3 we propose the first reference architecture for

scientific workflow management systems, which provides a high-level organization of subsys-

tems and their interactions in an SWFMS. In Chapter 4 a task model is presented to enable

the abstraction of heterogeneous services and applications into uniform workflow tasks, and

the proposed task languages based on the task model provide an integrated solution to solve

the shimming problems and support the execution of tasks in heterogeneous and distributed

computing environments. In Chapter 5, our proposed workflow scheduling techniques are pre-

sented to enable tasks in a workflow to be scheduled in a services computing environment.

In Chapter 6, we discuss the system architecture of the developed VIEW system and present a

VIEW based workflow application system, called the FiberFlow system. Finally, we conclude

this dissertation and outline some future research work in Chapter 7.

10

CHAPTER 2: RELATED WORK

Scientific workflow has been well recognized as a multi-disciplinary research area, in which

technologies from various domains have contributed to its development. This chapter intro-

duces the technologies that are most relevant to our solutions proposed in this dissertation. As

the system architecture and major functionalities provide a foundation for the development and

management of a workflow system, we firstly discuss the architectures of existing workflow

management systems proposed in both business and science domains in Section 2.1. Then in

Section 2.2, we analyze the state-of-the-art workflow integration techniques applied in both

business and scientific workflow systems. Finally, we focus on a comprehensive survey of ex-

isting workflow scheduling algorithms developed for a variety of computing environments in

Section 2.3.

2.1 Architectures of Workflow Management Systems
A system architecture defines the fundamental organization of a system. Beyond the al-

gorithms and data structures of the computation, It designs and specifies the overall system

structure, which comprises system components, the properties of these components, the rela-

tionships among them, and the principles governing its design and evolution. The architecture

of workflow management systems (WFMS) mainly considers major system components and

subsystems and what kinds of interactions between these subsystems. In Section 2.1.1 and

Section 2.1.2, we investigate a series of business workflow systems and scientific workflow

systems whose architecture designs emphasize the aspects of system distribution and workflow

integration.

2.1.1 Architectures of Business Workflow Management Systems

Historically, business workflow management systems can be traced back to office automa-

tion systems of the 1970’s and 80’s, and gained momentum in the 90’s under different names

including business process modeling and business process reengineering [21, 22, 23, 24, 25,

11

26, 27, 28, 29, 12, 30, 31]. According to the system distribution model, the representative ar-

chitectures of business workflow management systems (BWFMS) can be distinguished as the

following five variations: centralized-server, replicated-server, localized-server, no-server and

service oriented architecture.

Centralized-server architecture. The BWFMS is built upon a centralized workflow enact-

ment server or a centralized data storage system, which has to be accessed for the execution

of each task in a workflow. For example, the Process WEAVER system [25] is built around a

centralized workflow enactment server and all the communications between servers and other

system components are controlled by broadcast message server (BMS) [32]. Although such an

architecture supports system extensibility, the major disadvantage of systems with such archi-

tecture [22, 23, 24, 26, 28] is the lack of scalability to execute large-scale distributed workflows.

Replicated-server architecture. The BWFMS comprises multiple identical servers and each

server has a workflow enactment and a workflow database subsystem, which contains complete

information required for workflow execution. For example, the FlowMark system [30] consists

of multiple workflow enactment servers, and each of them is connected as a client to a database

server. FlowMark servers can reside in remote hosts other than the one where the database

server is located through the communication of TCP/IP, NetBIOS or APPC. The distribution

of workflow execution is specified in the workflow specification. FlowMark can run across

different platforms (AIX, OS/2, Windows); however, persistent data resides in a single database

server, which is used to store all workflow execution data. It has facilitated the design of the

overall system, but introduces a single point of failure in the architecture. Other systems based

on a centralized database may suffer from the same problem [28]. The main issue of this

architecture is how to accomplish the efficient replication of workflow information and how to

handle the extensive network traffic for distributed workflow execution.

Localized-server architecture. The BWFMS allows multiple servers co-exist, and each

of them is localized close to where activity execution takes place [24]. For example, the

12

METEOR2 [29, 12] system was developed with the emphasis on scalability and large-scale

distributed workflow execution. Three prototype implementations have been developed based

on the METEOR2 model : OrbWork, a fully distributed CORBA-based dynamic workflow

enactment system [33]; NeoWork, a CORBA-based workflow enactment system with central-

ized schedulers; and WebWork, a fully distributed workflow enactment system relying on Web

technology, which supports the development of workflow applications that can run in hetero-

geneous and distributed environments. Each of these workflow enactment systems contains

workflow schedulers, task managers, and a run-time monitor. In METEOR2 and other systems

with similar architectures [26, 26], a centralized monitoring server must be always available in

an operating workflow system, as every step of workflow execution has to be reported to the

monitoring server, in order to perform the system recovery.

Server-less architecture: The BWFMS migrates the server functionality to every partici-

pating client in the workflow system. Each workflow run migrates from one client to another

during workflow execution, so the state of the workflow execution is distributed over the whole

workflow system. A distributed synchronization mechanism is required to determine the actors

which execute workflow activities. To support such architecture, the Exotica/FMQM system

[28] has a reliable communication system based on persistent message queues used to connect

processing nodes. After activity execution is completed, messages are sent to all subsequent

processing nodes which are defined in the workflow graph. The system may choose to retrieve

data produced from a task from the output queue of the previous node. Node synchronization

is thus achieved by means of the transaction system provided by the queuing system. The main

problem with this architecture is that of excessive network traffic. As data produced by a task

has to be sent to all nodes in the system and it is not known on which eligible node the task

will actually execute before node synchronization has taken place.

Service-oriented architecture. More and more recently developed workflow systems are

developed on service-oriented architecture [34, 35]. For example, the YAWL system [36, 37]

13

consists of four YAWL services: (1) YAWL worklist handler, (2) YAWL web services broker,

(3) YAWL interoperability broker, and (4) custom YAWL services. The YAWL worklist handler

corresponds to the classical worklist handler present in most workflow management systems. It

is the component that is used to assign work to users of the system. Through the worklist han-

dler, users can accept work items and signal their completion. In traditional workflow systems,

the worklist handler is embedded in the workflow engine; in YAWL, however, it is considered

to be a service decoupled from the engine. The YAWL web services broker is the glue between

the engine and other web services. Note that it is unlikely that web services will be able to

directly connect to the YAWL engine, since they will typically be designed for more general

purposes than just interacting with a workflow engine; The YAWL interoperability broker is a

service designed to interconnect different workflow engines. A custom YAWL service connects

the engine with an entity in the environment of the system.

2.1.2 Architectures of Scientific Workflow Management Systems

Even though BWFMSs have been under investigation for more than 20 years, there is no

proper business workflow management system architecture that can be directly adapted to sci-

entific workflow management systems. While several scientific workflow management systems

(SWFMS) [3, 4, 5, 6, 7, 8] have been developed during the past few years, which provide much

experience for future research and development, an architectural reference that can provide a

high-level organization of subsystems and their interactions in an SWFMS is missing. The

development of a scientific workflow system is mostly ad hoc in scientific workflow design,

specification, development, execution, and provenance tracking, etc. We investigate several

representative SWFMSs on their architectures, models and unique features.

Actor-oriented. The Kepler system [3, 38, 39, 40, 41] is an open-source scientific workflow

workflow management system. A unique feature of the Kepler is its actor-oriented modeling,

inherited from the underlying dataflow oriented Ptolemy II system [42], which is to build mod-

els of systems based on the assembly of pre-designed components and these components are

14

called actors [43]. An actor is an encapsulation of parameterized actions performed on input

data to produce output data. An actor may be stateless or statefull, depending on whether it

has an internal state. Communication between actors happens through interfaces called ports.

Each actor has input ports and output ports. In addition to ports, actors have parameters, which

configure and customize the actors’ behavior. Ports and parameters are the interfaces of an ac-

tor. Actors can be regarded as reusable independent blocks of computation and they consume

input data from a set of input ports and output results to a set of output ports. A group of actors

can be wired together by introducing a mapping from input ports to output ports.

In Ptolemy II, the term of framework refers to an environment that actors reside in, and

defines the interaction among actors. The interaction styles of actors are captured by models

of computation (MoC). A MoC defines the communication semantics among ports and the

flow of control and data among actors. A framework implements a model of computation.

Frameworks and actors together define a system [43]. The Ptolemy system focuses on visual,

module-oriented programming with an emphasis on multiple component interaction semantics.

It precisely controls the execution model of a workflow via the so-called directors, which is

the only available workflow management system that allows one to plug in different execution

models into workflows [39].

Service-oriented. The Taverna system [44, 45] is an open source, Grid-aware workflow

management system, developed for scientists to perform data-intensive in silico experiments

on distributed resources. Taverna has two major conceptual architectural abstractions: the user

perspective and the services perspective, which separates the perspective of user from underly-

ing middleware and operations. A three-tiered data model serves the two abstractions at differ-

ent levels: In the application data flow layer, a user-level workflow object model is applied to

present the workflow from a user view, hiding the complexity of the service interactions. En-

actor internal object model and myGrid contextual information model are implemented in the

execution flow layer, which manages data structures and fault recovery on behalf of the user.

15

This saves users explicitly handling these at the application data flow layer. The Processor

Invocation layer is used to invoke concrete services using the enactor.

Taverna is implemented as a service oriented architecture. Taverna differs from other

SWFMSs by placing an emphasis on coping with an environment of autonomous service

providers. Another advanced feature in Taverna is that provenance has become an integral part

of the system, which allows scientists to inspect and record their experiment that is composed

of local or external services.

Federation-based architecture. The Triana system [46, 47, 48] is an open source, dis-

tributed, platform independent, middleware independent problem solving environment [49]

and a test application for the GridLab project [50], written in Java. Triana provides a graphical

interactive environment that allows users to compose applications and specify their distributed

behavior.

One unique feature in Triana lies in its federated architecture. It consists of a complex set of

interacting components that create the complete system or any subset. In Triana, components

and services are aggregated, integrated as execution Units or Group Units with defined inter-

actions, so users visually interact with units that can be connected and create a workflow by

dragging the desired units onto the workspace regardless of their underlying implementation.

This federation based architecture gives Triana the flexibility to be applied to many different

scenarios and at many levels, and allows to distribute sections of a workflow to remote ma-

chines through a connected peer-to-peer network.

From Grid to Service. The Pegasus system [6, 51, 52, 53] provides a framework which

maps complex scientific workflows onto distributed Grid resources. Pegasus targets at the

computation-intensive workflows, Grid-based workflows and large-scale workflows, which are

composed of hundreds of or even thousands of individual tasks or collaborative applications.

The Pagasus system can run workflows across multiple heterogeneous resources distributed in

the wide area, while at the same time shielding the user from the Grid detail [6].

16

Pegasus introduces the concepts of abstract workflows and concrete workflows. Abstract

workflows are designed by domain scientists at the application or logical level, who specify

input data, application components and their dependencies. They do not need to care about

which physical resources to use for run-time execution; Concrete workflows at the execution

level include not only the specific tasks to be executed but also the resources that would be

used in the execution of the tasks [6].

Pegasus proposes to consider each application component as a service, in order to integrate

Pegasus with the new Open Services Grid Architecture (OGSA) [54] that provides a syntactic

description of the services. In addition, Pegasus proposes to develop ontologies of application

components and data in their future work so that these ontologies can generate abstract work-

flows more flexibly from user requirements. Pegasus is also expected to employ ontologies to

generate concrete workflows. Ontologies of Grid resources would allow the system to evaluate

the suitability of given resources to provide a particular application service instance [52].

Discussion. From above systems, each of them uses a proprietary scientific workflow lan-

guage, whose semantics has not yet been fully investigated and formalized. Second, each sys-

tem has either no explicit architectural design or the architecture is proprietary and restricted

greatly by the legacy system that the scientific workflow management system is built upon. For

example, Kepler is built on the Ptolemy II system, and therefore, each new requirement that is

needed by an SWFMS is based on extensions to the architecture of Ptolemy. Pegasus, on the

other hand, is built upon Condor DAGMan [55] by adding another workflow mapper on the top

of these two systems. Third, all these systems have different provenance models, not only in

terms of what provenance information should be recorded, but also in terms of representation,

storage, and querying models. We expect that the availability of a reference architecture can

provide a basis for comparison between different systems and a guidance for the architectural

design of an SWFMS in a specific scientific domain.

17

2.2 Workflow Integration
We survey the integration techniques applied in workflow systems in the aspect of services

integration (Section 2.2.1) and data integration (Section 2.2.2).

2.2.1 Services Integration in Workflow Systems

The problem of integrating heterogeneous applications into workflows has been investi-

gated by many business workflow systems [56, 57, 58, 59, 60, 61]. For example, the ME-

TEOR system [56] supports the programming of tasks by specifying possible heterogeneous

task structures (e.g., transactional or non-transactional) and the interactions with external sys-

tems (e.g., DBMSs) or legacy applications. The Mobile prototype [57] introduces the concept

of workflow application (WFA) which requires to encapsulate each application and provide

a uniform interface to communicate with remote proxy objects for invocation. The METU-

Flow system [58] provides a general interface for different task structures (e.g., transactional

or non-transactional) and introduces a generic task object to each type of task structures.

However, these techniques are inapplicable to scientific workflows due to the fundamental

differences between business workflows and scientific workflows: Business workflows tend to

be controlflow oriented [62], while scientific workflows are often dataflow oriented [63, 3, 7,

4], resulting in different architectures and task models [64]. In particular, they are unable to

abstract heterogeneous and distributed services and applications into uniform dataflow-based

scientific workflow tasks (i.e., tasks with well-defined input and output ports).

Several scientific workflow management systems [3, 7, 4, 5, 6, 8, 65] have been developed

over the past few years. Most of them allow users to program a task for invoking an external

application or service, whose source codes are usually unavailable to use (e.g. Web services

and command line applications). For example, the Triana system [8] requires programming

tasks using Java to call a Windows command line application, while the VisTrails system [4]

provides a Python package (i.e. list2cmdline) for users to program for similar purposes. Some

systems provide built-in system-specific wrappers for the invocation of external services and

18

applications. For example, the Kepler system [3] uses a Java class (e.g. ExternalExecution)

for wrapping command line applications, and the Taverna system [7] uses a Java class (e.g.

LocalCommand) for the similar purposes. Compared to the above systems, the Swift system

[5] and the Pegasus system [6] mainly focus on the integration of Grid applications. Finally,

even though the SODIUM system [65] provides a service model that abstracts three types of

services (i.e. Web services, P2P services and Grid services) and employs plug-ins to support

the invocation of these services, other applications and legacy systems need to be wrapped as

one of these services first before they can be integrated into the system.

None of the above systems supports the flexible mappings between the input/output ports of

the task interface and the inputs/outputs of the task component. In most cases, such mappings

have to be performed by the development of custom workflow tasks that wrap the invocation

of external service and applications and hardcode these mappings. This wrapper-programming

approach is unnecessarily tedious, error-prone, and lacking the flexibility of supporting mul-

tiple task components and the dynamic binding capability between the task interface and the

task component. Therefore, how to abstract heterogeneous and distributed services and appli-

cations into uniform workflow tasks remains a challenging problem. Our proposed task tem-

plate model, task run model and their languages provide a programming language and platform

independent framework to support such task abstraction and the execution of tasks constructed

from heterogeneous and distributed services and applications.

2.2.2 Data Integration in Workflow Systems

During workflow design, third party autonomous services and applications are frequently

used. Very often, these services and applications are syntactically mismatching or semantically

incompatible, necessitating the use of a special kind of workflow components, called shims,

to mediate them. A shim takes the output data of an upstream workflow task, performs some

transformation, and then feeds the data to the input of a downstream task. The shimming prob-

lem has been widely recognized as an important problem in the community [15, 16], leading

19

to much efforts in the development of shims [17], shim-aware workflow composition [15] and

the suggestion of a new discipline called shimology [16].

The term “shims” and the shimming problem were first introduced in [17]. In an open

world such as the Web, the shimming problem is unavoidable when third-party autonomous

and heterogeneous services and applications are used to compose scientific workflows, but

the output of one task is incompatible with the input of another task. Incompatibility comes

in two forms: 1) Although the output of a task is syntactically compatible with the input of

another task, they are still not compatible semantically. For example, both tasks might use

xsd:string to encode underlying different complex data types. 2) Although the output of a

task is syntactically incompatible with the input of another task, they could still be semantically

equivalent. For example, DNA sequences might be represented in different formats and data

types, which are semantically equivalent. In both cases, shims are proposed as the treatment of

the shimming problem and are defined as the “software that transforms between closely related

(either syntactically or semantically) in order to join outputs and inputs of two components” in

[17].

Several shimming techniques have been proposed to address the shimming problem. Szom-

szor et al. [66] proposed an architecture to support the automatic translation between two se-

mantically equivalent but syntactically different XML documents. This technique does not

address the first form of incompatibility and the translation of other data types. Bowers and

Ludäscher [16] proposed an ontology-based approach to the shimming problem by associating

each port of a task with an XML-based structural type and an ontology-based semantic type,

respectively. An output port of an upstream task can be directly connected to an input port

of a downstream task if and only if these two ports are both semantically and syntactically

compatible (called semantically valid and structurally valid in their terms). If two ports are

semantically compatible but syntactically incompatible, then an XML shim is created when-

ever possible to mediate the two ports. Similarly, the solution is limited to shims that perform

20

data transformation on XML data. Ambite and Kapoor [15] proposed a planning approach to

automatically construct scientific workflows that process relational data. Shims can be auto-

matically inserted into the workflow when necessary. However, only shims that process rela-

tional data are supported within this framework. Hull et al. [67] proposed that semantic types

should be related to each other by other relationship types, such as hasPart in addition to the

subsumption relationship. In this way, a richer types of shims can be created, such as extractor

shims. A preliminary classification of shims are available in [17]. Existing scientific workflow

management systems [3, 7, 4] provide limited support to the TYPE-I shimming problem; shims

are visible in these systems.

Existing shimming techniques have two serious limitations. First, they produce scientific

workflows that are cluttered with many visible shims. For example, a recent study of the 560

scientific workflows available from myExperiment (www.myexperiment.org) shows that over

30% of workflow tasks are shims. Ideally, these shims should be hidden from scientists so that

they can better focus on functional components of workflows. Second, these techniques do

not address TYPE-II shimming problem and thus require a user to write custom wrapper shim

code around a task component according to the task programming model of a system. More-

over, these hard-coded implicit shims are irreusable across other tasks. Addressing TYPE-II

shimming problem is more challenging due to the heterogeneity of task components and the

needed flexible mapping between task ports and inputs/outputs of task components.

2.3 Workflow Scheduling
Workflow scheduling is one of the key problems in workflow management. It is a process

that maps workflow tasks and their associated data to suitable resources and ordering the exe-

cutions of these tasks, so that the workflow execution can be completed with the satisfaction of

predefined objective functions. Generally, the scheduling problem is known as an NP-complete

problem [18, 19], thus no known algorithms are able to generate the optimal solution within

polynomial time. Therefore, many of heuristics based algorithms have been proposed in the

21

literature. These algorithms can be classified into the heuristic and guided random search

scheduling algorithms.

2.3.1 Heuristic Scheduling Algorithms

Various heuristic workflow scheduling algorithms are proposed to address different schedul-

ing problems. The existing algorithms include independent task scheduling, clustering based

scheduling, duplication based scheduling and list scheduling algorithms.

Independent task scheduling algorithms [68, 69, 70, 71, 72] schedule a collection of in-

dependent tasks with no data dependencies. For example, the UDA (User-Directed Assign-

ment) [68, 69] algorithm maps each task of a workflow, in an arbitrary order, to the resource

with the shortest execution time, without considering the available time of each resource. The

Myopic algorithm [70], implemented in Condor DAGMan [55], retrieves a task from a set of an

unmapped tasks in an arbitrary order, and then maps the task to the resource that is expected to

complete it at the earliest time, until all tasks have been mapped. The Min-Min algorithm [71]

iteratively selects a set of independent tasks and calculates the minimum estimated completion

time for each task on all available resources. The task having the minimum estimated com-

pletion time is selected to be mapped to the best resource which is expected to complete at

the earliest time. The intuition behind the algorithm is that mapping as many tasks as possible

onto their best resources may result in a shorter makespan of the whole workflow. In contrast

to the Min-Min algorithm, the Max-Min algorithm [71] selects tasks with the maximum esti-

mated completion time within a set of tasks. Intuitively, the Max-Min algorithm attempts to

minimize the delay caused by long-running tasks. Mapping long-running tasks onto the best

resources at the first allows the parallel execution with the rest of short-running tasks. This

algorithm may avoid the worst case in which all short-running tasks are executed first, and

then the remaining long-running tasks are executed on several resources, while keeping the

rest of resources idle. It has been shown that the Max-Min algorithm performs better than the

Min-Min algorithm for some workflows which consist much more short-running tasks than

22

long-running tasks [71, 72]. The Sufferage algorithm [71] sets priority to tasks based on their

sufferge value, which is determined by the difference between its earliest completion time and

its second earliest completion time. Sufferage is expected to perform better in case that there

are dramatic performance differences between compute resources. Overall, independent task

scheduling algorithms are easy to implement, but they are only suitable for simple workflow

structures in which several tasks are required to be executed in sequential. Since these algo-

rithms are proposed for independent tasks, so the data transmissions between different tasks

are not applicable in this case.

The clustering based scheduling algorithms [73, 74, 75, 76, 77, 78, 79] can be applied to

scheduling workflows onto unbounded number of resources [80]. These algorithms usually

include two phases: at the first phase, tasks are partitioned into several clusters under the

assumption that there are an unbounded number of resources. At the second phase, clusters are

merged and scheduled on physical resources if the number of available resources is less than

the cluster number. Tasks assigned in the same clusters are mapped onto one resource. For

example, the Sarkar’s algorithm [73] zeros the edge with the highest communication cost at the

first phase if such an operation does not increase the parallel time of the workflow. Continue

the next highest edge until all edges have been visited. At the second phase, clusters are

scheduled to resources based on a priority list. The time complexity of the Sarkar’s algorithm

is O(|D| × (|T | + |D|)), where |T | is the number of tasks, |D| is the number of inter-task

data communications between a set of homogeneous processors. Yang and Gerasoulis [74, 75]

claimed that zeroing the highest communication edges is not the best approach to reduce the

parallel time. They introduced the DSC (dominant sequence clustering) algorithm [76] to

compute the schedule and parallel time incrementally at the first phase, and then map clusters

to physical processors and order the execution of tasks on each processor at the second phase.

The total time complexity of the algorithm is O((|T | + |D|) log|T |). Since most of clustering

scheduling algorithms are proposed for homogeneous multiprogramming environments where

23

the physical machines are shared by multiple users and the number of available processors may

not be known until run time, they are not applicable in heterogeneous computing environments

where the execution time of each task and data transfer rates between tasks differ from one

resource to another, and the number of resources can be requested on demand.

The duplication based scheduling algorithms [81, 82, 83, 84, 85, 86] use some resource idle

time to duplicate tasks, which are also scheduled on other resources. For example, the TANH

algorithm [81] traverses a workflow graph to compute critical information, such as earliest

start and completion time, latest available start and completion time, and then clusters tasks

based on such information. Then tasks are duplicated at idle time of resources and rearranged

to decrease the overall execution time. Instead of duplicating tasks, Ranganathan et al. [85,

86] introduced dynamic replication strategies to improve data access. The performance is

significantly improved when scheduling is performed according to data availability; however,

replication are not able to be done instantaneously given the huge data size and bandwidth

constraints. Although most of duplication based scheduling algorithms effectively decrease the

large data transmission between tasks for complex structured workflows, they are not practical

because of the significantly high time complexity. For example, the time complexity of the

BTDH algorithm [82] and DSH algorithm [83] are in the order of O(|T |4); the time complexity

of the CPFD algorithm [84] is O(|D| × |T |2) for scheduling |T | tasks.

The list scheduling algorithms [87, 88, 89, 90, 91, 92, 93, 94] prioritize each task of a

workflow with a rank value and then order the execution of tasks according to their rank val-

ues; then tasks are selected in order of a priority list generated by the first phase and then are

mapped to its optimal resource while minimizing a predefined cost function. For example,

the MCP (modified critical path) algorithm [90] schedules a task that all its predecessors have

completed execution onto an available resource that allows the task to start its execution at the

earliest possible time. As MCP applies the earliest starting time principle, it may schedule

all tasks to be executed onto one processor in the case that the communication cost is greater

24

than the computation cost. Most of the above algorithms are mainly for homogeneous comput-

ing environments, while the HEFT (Heterogeneous Earliest-Finish-Time) algorithm [94] and

the CPOP (Critical-Path-on-a-Processor) algorithm [94] provide practical solutions to schedule

tasks on heterogeneous and distributed resources. The HEFT algorithm orders the upward rank

value of tasks using the mean value of the task execution time and communication time over

all heterogeneous resources. Then each selected task is assigned to the processor which mini-

mizes its earliest finish time with an insertion-based approach. HEFT has an O(|D|×|R|) time

complexity for |R| processors. For a dense graph when the number of edges is proportional to

O(|T |2), the time complexity is on the order of O(|T |2 × |R|) [94]. The CPOP algorithm [94]

prioritizes tasks using the sum of upward and downward rank values, and schedules tasks in

critical path of the workflow graph onto resources that minimize the total execution time of

these tasks. The time complexity of the CPOP algorithm is equal to O(|T |2 × |R|). It has been

shown in the literature that HEFT and CPOP significantly outperform other algorithms, such

as the DLS (Dynamic Level Scheduling) algorithm [88], the MH (Mapping Heuristic) algo-

rithm [95] and the LMT (Levelized Min Time) algorithm [96], in term of performance and cost

metrics. Overall, list algorithms can generate good quality of scheduling results while keep-

ing lower scheduling overhead; however, most of the list algorithms including the HEFT and

CPOP algorithms were organically proposed for a bounded number of multiprocessor environ-

ments, they cannot directly applied to a services computing environment where the number of

resources are provisioned by service requests and can be dynamically changed at run-time.

2.3.2 Guided Random Search Scheduling Algorithms

Guided Random Search based scheduling algorithms [97, 98, 99, 100, 101] provide gen-

eral heuristics for solving the scheduling problem, which are usually applied to large-scale

workflows. For example, a Greedy Randomized Adaptive Search Procedure (GRASP) [102]

is an iterative randomized search technique, in which a number of iterations are performed

to search a possible optimal solution for mapping tasks onto compute resources. Similar to

25

GRASP, genetic algorithms [103, 104] are of the most widely studied guided random search

techniques in metaheuristics algorithms. The algorithms provide robust search techniques that

allow a high-quality solution to be derived from a large search space in polynomial time by

applying the principle of evolution. A genetic algorithm maintains a population of individuals

that evolves over generations. The quality of an individual in the population is determined by

a fitness function. The fitness value indicates how good the individual solution is compared to

others in the population. Wang [97] encoded each chromosome with two separate parts: the

matching string and the scheduling string. Matching string represents the assignment of tasks

on machines while scheduling string represents the execution order of the tasks. Using genetic

algorithms to schedule workflows in homogeneous and dedicated multiprocess system have

been also proposed in [98, 99]. Although metaheuristics algorithms can produce optimized

scheduling solution based on the performance of entire workflow and available resources, their

execution times are significantly higher than other algorithms. It has been shown that the im-

provement of the GA-based solution to the second best solution was no more than 10 percent

and the GA-based approach required around a minute to produce a solution while the other

heuristics required an execution of a few seconds [105].

However, most of the above algorithms address the problem of assigning a workflow to a

bounded number of resources. Even though some algorithms support unbounded number of

resources for a workflow, they do not support dynamically changing the number of resources

from the environment at runtime. Therefore, these algorithms are not applicable in services

computing environments, in which the number of resources requested for a workflow can be

elastically scaled out or scaled in on demand of the size of a workflow, thus motivates our

research in this direction.

26

CHAPTER 3: REFERENCE ARCHITECTURE FOR
SCIENTIFIC WORKFLOW MANAGEMENT SYSTEMS

As a software architecture for the design of high-level organization of computational ele-

ments and interactions between those elements is critical for any large software system [106],

one of the fundamental issue missing in scientific workflow research is a proper foundation

that can be adopted for SWFMS development. Although the reference architecture proposed

by the Workflow Management Coalition has been well adopted in the development of different

BWFMSs, existing architectures for BWFMSs are not appropriate for SWFMSs since business

workflows are typically controlflow oriented, while scientific workflows tend to be dataflow

oriented, introducing a new set of requirements and challenges for system development, which

are described in Section 3.1. In response to these new requirements, we propose the first ref-

erence architecture for scientific workflow systems in Section 3.2, followed by the evaluations

of five representative systems using the proposed reference architecture in Section 3.3.

3.1 Seven Key Architectural Requirements
In addition to the general requirements of scalability, reliability, extensibility, availability,

and security, what are the key architectural requirements for an SWFMS? Based on a compre-

hensive study of the workflow literature from an architectural perspective [107] and our own

experience from the development of the VIEW system, we identify the following seven key

architectural requirements for an SWFMS:

R1: User interface customizability and user interaction support. In scientific workflows,

scientists are often the end users to design, modify, run, re-run, and monitor scientific work-

flows. User friendly graphical user interfaces are critical to increase the usability of an SWFMS.

Domain specific visualization capability is often needed to support the visualization of various

workflow artifacts. The goal is to speed up the exploratory process of arriving at a proper

workflow design with appropriate parameter values and input datasets that lead to sought-after

27

scientific results. Therefore, a key architectural requirement is the flexibility of customizing

the user interface according to different science and engineering disciplines, scientific domains

or problems, or to an individual scientist’s style, while reusing the same underlying workflow

management framework. Customizing user interface should be localized and should not affect

any other functional components of the system.

R2: Reproducibility support. Reproducibility is the fundamental principle of any science

method. Scientific results produced from the execution of scientific workflows must be repro-

ducible. Therefore, sufficient provenance information, including the derivation history of a data

product, needs to be maintained in order to answer the following questions: What workflows

or workflow steps are executed to produce this result? which versions of softwares and OSs

are used? What parameter values are used? What input datasets have contributed to this result?

What scientists’ interactions are involved in producing this result? With such information, a

scientific result can be reproduced in the same system or in other peer systems when necessary.

Therefore, a key functional component for an SWFMS is the management of provenance meta-

data, from collection, representation, storage, querying, to visualization. Such a component is

usually not required for a BWFMS.

R3: Heterogeneous and distributed services and software tools integration. Scientists often

need to integrate and orchestrate a wide range of heterogeneous analytical and computational

services and software tools into a scientific workflow for solving a complex scientific prob-

lem. Such services and software tools are usually written in various programming languages,

invoked by different invocation mechanisms, and run in heterogeneous and distributed com-

puting environments. Therefore, a key architectural requirement is to provide an abstraction of

various services and software tools as workflow tasks (abr. task in this dissertation). Tasks not

only keep scientists transparent to the heterogeneity and distribution of underlying task com-

ponents, but also promote SWFMS extensibility so that the integration of future services and

software tools whose interfaces and communication protocols are yet unknown does not affect

28

other functional components of an SWFMS.

R4: Heterogeneous and distributed data product management. The execution of scientific

workflows often consume and produce huge amounts of distributed data objects. These data

objects can be of primitive or complex types, files in different sizes and formats, database

tables, or data objects in other forms. Scientists are often overwhelmed and lost in the sea of

heterogeneous and distributed data objects. Therefore, a key architectural requirement for an

SWFMS is to provide an abstraction of these data objects as data products. Data products for

SWFMSs include: 1) workflow source data that are registered into an SWFMS from external

sources (produced by other systems, instruments, or experiments); 2) workflow parameters that

are specified and tuned by users for each workflow run; 3) workflow results which consist of

workflow intermediate and final results produced by workflow runs. Therefore, an SWFMS

needs to support the efficient management of data products, including data product storage,

archival, browsing, querying, access, movement, and visualization.

R5: High-end computing support. Today, many scientific problems need the support of

high-end computing, such as Grid computing and Cloud computing [108]. Given the fast ad-

vance of high-end computing technology, a key architectural requirement for an SWFMS is to

separate the science-focused and technology-independent problem solving environment from

the underlying often fast advanced high-end computing infrastructure. In this way, domain

scientists can focus on their science while utilizing the state-of-the-art computing technologies

in a transparent fashion.

R6: Workflow monitoring and failure handling. The monitoring of the progress of the work-

flow execution is very important, particularly for long-running scientific workflows. Moreover,

since scientific workflows are often designed and modified by scientists in an ad hoc fash-

ion and can involve various distributed tasks that are accessed over network communications,

many exceptions or failures can occur in an unforeseeable way. Finally, the complexity and

scale of data analysis and computation in scientific workflows impose additional challenges

29

on workflow monitoring and failure handling. Therefore, a key architectural requirement for

an SWFMS is to provide the support for status and failure monitoring at various levels and

the mechanism for catching, localizing, and handling failures automatically or with minimal

human intervention.

R7: Interoperability. As more and more scientific research projects become collaborative

in nature and involve multiple geographically distributed organizations, many scientific work-

flows are distributed and collaborative, consisting of multiple subworkflows, each of which

might be managed by a different SWFMS. Therefore, a key architectural requirement for

SWFMSs is to promote and facilitate the interoperability between different SWFMSs so that

one SWFMS can take advantage of the software tool libraries and salient features provided

by another SWFMS. The interoperability for SWFMSs lies in three levels: 1) task-level in-

teroperability, which requires that various tasks and data products from different SWFMSs

can interoperate one with another; 2) workflow-level interoperability, which requires that a

scientific workflow in one SWFMS can be executed in or invoked by another SWFMS; and

3) subsystem-level interoperability, which requires that a subsystem in one SWFMS can be

reused by or shared by different SWFMSs.

3.2 Proposed Reference Architecture
Although several SWFMSs have been developed over the past few years, their architec-

tures are mostly system and domain specific and fail to satisfy some of the key architectural

requirements for SWFMSs identified in Section 3.1. In this section, we propose a reference

architecture for SWFMSs. As shown in Figure 3.1 (right), the reference architecture consists

of four logical layers, seven major functional subsystems, and six interfaces. Figure 3.1 (left)

shows a typical software stack of a scientific workflow application: on top of an operating

system, a data management system and a service management is used by an SWFMS for data

management and service management, respectively. A scientific workflow application system

(SWFAS) is developed over an SWFMS by the introduction of additional domain-specific ap-

30

plication data and functionalities.

Operational Layer

I1

I2

I5 I3

I6

Workflow Management Layer

Task Management Layer

Presentation Layer

Other
Workflow

Engines

Provenance
Management

I4

Workflow
Engine

Workflow
Monitoring

Workflow
Design

1

2

4

3

Data Product
Management

Task
Management

Heterogeneous
Services

Heterogenous
Data Sources

Presentation &
Visualization

Future
Services

Heterogeneous
Software Tools

Operating System

Database Management
System

Service Management
System

Scientific Workflow Application System

I1

I2

I5 I3

I6

Workflow Management Layer

Presentation Layer

Other
Workflow

Engines

Provenance
Management

I4

Workflow
Engine

Workflow
Monitoring

Workflow
Design

2

4

3

Data
Management

Task
Management

Presentation &
Visualization

Scientific Workflow Management System

Figure 3.1: The position of an SWFMS within a software stack (left) and zoom-in view of the
reference architecture for SWFMSs (right).

3.2.1 Layers

The first layer is the Operational Layer, which consists of a wide range of heterogeneous

and distributed data sources, software tools, services, and their operational environments, in-

cluding high-end computing environments. The separation of the Operational Layer from other

layers isolates data sources, software tools, services, and their associated high-end computing

environments from the scope of an SWFMS, thus satisfying requirement R5.

The second layer is called the Task Management Layer. Tasks are the building blocks of

scientific workflows. Tasks consume input data products and produce output data products.

At the same time, provenance is captured automatically to record the derivation history of a

data product, including original data sources, intermediate data products, and the steps that

are applied to produce the data product. This layer abstracts underlying heterogeneous data

into data products, services and software tools into tasks, and provides efficient management

for data products, tasks, and provenance metadata. Therefore, the Task Management Layer

satisfies requirements R2, R3 and R4. Moreover, the separation of the Task Management

Layer from the Operational Layer promotes the extensibility of the Operational Layer with new

31

services and new high-end computing facilities, and localizes system evolution due to hardware

or software advances to the interface between the Operational Layer and the Task Management

Layer. The task-level interoperability requirement (R7: level 1) should be addressed in this

layer.

The third layer is the Workflow Management Layer, which is responsible for the execu-

tion and monitoring of scientific workflows. At this layer, the building blocks of a scientific

workflow are the tasks provided by the underlying Task Management Layer. In this layer, an

execution of a scientific workflow is called a workflow run, which consists of an coordinated

execution of tasks, each of which is called a task run. Therefore, the Workflow Management

Layer addresses requirements R6 and R7. The separation of the Workflow Management Layer

from the Task Management Layer concerns two aspects as follows: 1) it isolates the choice of

a workflow model from the choice of a task model, so changes to the workflow structure do not

need to affect the structures of tasks; and 2) it separates workflow scheduling from task execu-

tion, thus improves the performance and scalability of the whole system. The interoperability

of workflows (requirement R7: level 2) has to be addressed by standardizing workflow models,

workflow run models and workflow languages.

The fourth layer is the Presentation Layer, which provides the functionality of workflow

design and various user interfaces and visualizations for all assets of the whole system. The

Presentation Layer has interfaces to each lower layer (not shown in the figure for simplicity).

The separation of the Presentation Layer from other layers provides the flexibility of customiz-

ing the user interfaces of the system and promotes the reusability of the rest of system com-

ponents for different scientific domains. Thus, this separation supports requirement R1. The

interoperability of workflows (requirement R7: level 2) should be addressed by standardizing

the workflow layout (e.g. look-and-feel) at this layer.

32

3.2.2 Subsystems

The seven major functional subsystems correspond to the key functionalities required for an

SWFMS. Although the reference architecture allows the introduction of additional subsystems

and their features in each layer, this dissertation only focuses on the major subsystems and their

essential functionalities.

The Workflow Design subsystem is responsible for the design and modification of scientific

workflows. Workflow Design produces workflow specifications represented in a workflow

specification language that supports a particular workflow model. One can design and modify

a scientific workflow using a standalone or web-based workflow designer, which supports both

graphical and scripting based design interfaces. The interoperability of workflows (requirement

R7: level 2) should be addressed in this subsystem by the standardization of scientific workflow

languages.

The Presentation and Visualization subsystem is very important especially for data-intensive

and visualization-intensive scientific workflows, in which the presentation of workflows and vi-

sualization of various data products and provenance metadata in multi-dimensions are the key

to gain insights and knowledge from large amount of data and metadata. These two subsystems

are located at the Presentation Layer to meet requirement R1. In this subsystem, the interop-

erability of workflows (requirement R7: level 2) should be addressed by the standardization of

scientific workflow layout.

The Workflow Engine subsystem is at the heart of the whole system and is the subsystem

that provides management and execution environments for workflow runs. The Workflow En-

gine creates and executes workflow runs according to a workflow run model, which defines

the state transitions of each scientific workflow and its constituent task runs. The interoper-

ability of workflows (requirement R7: level 2) should be addressed by the standardization of

interfaces, workflow models, and workflow run models, so that a scientific workflow or its

constituent sub-workflows can be scheduled and executed in multiple workflow engines that

33

are provided by various vendors. In SWFMSs, multiple workflow engine subsystems can be

distributed, and each workflow engine can execute several workflows in parallel.

The Workflow Monitoring subsystem meets requirement R6 and is in charge of monitoring

the status of workflow execution during workflow runtime and if failures occur, provides tools

for failure handling [109].

The Task Management subsystem addresses heterogeneity and distribution issues (require-

ment R3) and provides management and execution environment for tasks, according to a task

model and task run model, respectively. The interoperability of tasks between various workflow

environments (requirement R7: level 1) can be addressed in this subsystem.

The Provenance Management subsystem meets requirement R2 and is mainly responsible

for the management of scientific workflow provenance metadata, including their representation,

storage, archival, searching, and visualization.

The Data Product Management subsystem meets requirement R4 and is mainly responsi-

ble for the management of heterogeneous data products. One key challenge for data product

management is the heterogeneous and potentially distributed nature of data products, making

efficient access and movement of data products an important research problem. The interoper-

ability of data products between various workflow environments (requirement R7: level 1) can

be addressed in this subsystem.

3.2.3 Interfaces

Each subsystem interacts with other subsystems by its interfaces. The interoperability

between subsystems (requirement R7: level 3) in various SWFMSs should be addressed by

standardizing the interfaces provided by each subsystem. In the reference architecture, six

interfaces are explicitly defined, which show how the Workflow Engine interacts with other

subsystems. The details of the interfaces between subsystems at the same layer are not shown

in the figure for simplicity.

Interface I1 provides a set of interfaces for the communications between Workflow Design

34

subsystem and the Workflow Engine, so workflow specifications created by workflow design

tools can be interpreted in the workflow execution environment. Interface I2 provides a set of

interfaces to report workflow run status from the Workflow Engine to the Workflow Monitor

and to send back information from the Workflow Monitor to the Workflow Engine when deal-

ing with exceptions, failure, and recovery. Interface I3 provides a set of interfaces to deal with

the communications between the Workflow Engine and the Task Management subsystem: the

Workflow Engine subsystem sends requests to run each task, and the Task Management subsys-

tem replies the task execution progress and acknowledges the Workflow Engine whether a task

run completes or fails. Interface I4 provides a set of interfaces for communication between the

Workflow Engine and the Provenance Management for provenance tracking and reproducibil-

ity support. Interface I5 provides a set of interfaces between the Workflow Engine and the

Data Product Management subsystem: the Workflow Engine requests data product information

from the Data Product Management subystem, and the Data Product Management subsystem

responds to the request by acknowledging the availability of the required data product and

delivering data or metadata as requested. Finally, Interface I6 provides a set of interfaces to

interoperate with other workflow engines. Workflow specifications can be passed through I6 to

another workflow engine for execution.

3.2.4 Summary

Due to the fundamental difference between scientific workflows and business workflows,

our proposed reference architecture is significantly different from the reference architecture

for BWFMSs. First, the reference architecture for SWFMSs contains the important compo-

nents of provenance management and data product management to support scientific result

reproducibility and to facilitate and speed up data analysis, respectively, which are not present

in the reference architecture for BWFMSs. Second, the separation of the Presentation Layer

from the Workflow Management Layer enables the support of user interaction and user inter-

face customizability, thus reducing human cycles to scientific discovery. Third, the separation

35

of the Workflow Management Layer from the Task Management Layer separates workflow

engineering from task engineering, therefore allowing the parallel advancement of workflow

management and task management. Finally, the separation of the Task Management Layer

from the Operational Layer enables the separation of management of uniform workflow tasks

from the heterogeneous low-level task implementation strategies and execution environments.

Such a layered architectural design is important: for computer scientists, it enables abstractions

and different independent implementations for each layer; for domain scientists, it provides the

opportunity to develop a stable and familiar problem solving environment where rapid tech-

nologies can be leveraged but the details of which are shielded transparently from the scientists

who need to focus on science itself.

3.3 System Evaluation Using the Reference Architecture
In this section, we evaluate five representative scientific workflow management systems

using the proposed reference architecture: Taverna [110], Kepler [111], Triana [8], Pegasus [6],

and Swift [5]. The analysis is performed based on the seven key architectural requirements in

the context of the proposed reference architecture. Our evaluation criteria are as follows: if a

system provides a full support to the specified requirement, a score of “+” will be assigned;

if no support is provided to a particular requirement, a score of “-” will be assigned; a partial

score of “+/-” will be assigned to a system when the support is clearly partial or when there is

an ambiguity associated with such support. With respect to each requirement, we also describe

a summary of the five systems to shed some lights on the state of the art. We have left out our

own VIEW system in this study to avoid a biased evaluation.

The evaluation results are presented in Figure 3.2. We observe that Pegasus and Swift

provide weak user interaction support (R1), mainly due to the technical challenge of support-

ing interaction in a batch-based grid system, while Taverna, Kepler, and Triana provide better

user interaction support. Currently, almost all these systems have poor support to user in-

terface customizability (R1) due to the tightly coupled nature between system interfaces and

36

Requirements Taverna Kepler Triana Pegasus Swift
R1 +/- +/- +/- - -
R2 + + + + +
R3 +/- +/- +/- - -
R4 - +/- - - +/-
R5 +/- +/- +/- + +
R6 +/- +/- +/- +/- +/-
R7 - - - - -

Figure 3.2: Architectural evaluation of five scientific workflow management systems.

runtime subsystems. All the five systems currently support provenance (R2), emphasizing the

importance of provenance in scientific workflow management systems. However, since the

provenance module is closely coupled with its owner SWFMS in these systems, reuse of the

provenance subsystem across other SWFMSs is difficult. Taverna, Kepler, and Triana have

partial support to the integration of heterogeneous services and software tools (R3), while Pe-

gasus and Swift only focus on grid-based applications. Therefore, a general framework that

can provide an abstraction of heterogeneous services and applications as workflow tasks is still

missing. Such a framework needs to clearly separate abstraction of a workflow task from its

implementation and provides mapping and binding mechanisms between the inputs/outputs

of a workflow task to the inputs/outputs to its wrapped service and application component.

Although the importance of data management has been recently emphasized in the scientific

workflow community [112], data product management (R4), particularly the abstraction of

logical data products with transparent dataset representations, formats, and locations, is rel-

atively an unexplored area in the scientific workflow community. For example, Pegasus and

Swift mainly work at the level of files, while Taverna and Kepler work at the levels of XML

messages, files, and database records. Only few systems provide some limited support to the

abstraction: Kepler supports the notion of Nested Data Collections by using custom collection-

oriented actors (co-actors), while Swift introduces the XDTM notation to define a mapping

37

between the logical organization and the underlying physical structure of datasets, which are

limited to files and directories so far. Currently, Pegasus and Swift have better support to high-

end computing (R5); in the meanwhile, other systems are being enhanced in such support:

Kepler and Taverna provide custom tasks to communicate with the Grid environment, while

Triana uses the GAT interface to access Grid jobs. One challenge for data management is how

to avoid the movement of large amounts of data back and forth from a workflow engine to

the Grid environment, while seamlessly integrating workflow tasks that are services-based and

Grid-based applications. All these five SWFMSs currently provide some degree of support to

workflow monitoring and failure handling (R6), however, failure handling for large-scale and

distributed scientific workflows remains a challenge. Finally, interoperability (R7) is poorly

supported in all these SWFMSs although some limited pair-wise interoperability has been in-

vestigated. A community-based initiative such as the Open Provenance Model [113] is a good

effort towards this direction, and we expect interoperability will become more important when

more and more scientific projects become collaborative and need the integration of multiple

SWFMSs.

38

CHAPTER 4: WORKFLOW INTEGRATION IN
SCIENTIFIC WORKFLOWS

Today, scientific services and applications are developed by various research organizations

originally as software tools for their own scientific problems and then are publicized for reusing

them in solving other scientific problems. Therefore, it is very common that these software

tools are written in various programming languages, invoked via different invocation mecha-

nisms, and run in disparate computing environments. How to integrate these heterogeneous

services and applications and execute them in a distributed environment is an open research

problem. To address this problem, we firstly propose a task model and its supporting lan-

guages in Section 4.1. Then we propose our solution to solving shimming problems using our

proposed task template language in Section 4.2. In Section 4.3, we introduce the proposed

task run description language to enable distributed execution in heterogeneous environments.

Finally, in Section 4.4 and Section 4.5, we describe our implementation of an SOA based task

management in VIEW Task Manager and present a case study to validate the proposed models,

languages and architecture.

4.1 Task Model
Tasks are the basic building blocks of a scientific workflow. A task model provides the

modeling primitives to model design-time and run-time behaviors of workflow tasks. As shown

in Figure 4.1, the design-time behavior of a task is modeled in a task template model and

specified in a task specification language (TSL) as a task template specification (TTS), which

often defines the interface of a task, and optionally, its implementation details. A set of task

templates in a system constitute a task library, from which one can instantiate task instances

for the creation of a scientific workflow.

During run-time, the execution status including run-time state and behavior of each task

instance is maintained by a task run, which is modeled according to a task run model and

39

Task Run

1

Task
Instance

Task
Template

Task Template
Model

Task Template
Specification

Task
Specification Language

specifiedFor

definedFor

specifiedIn

Task Run
Description Language

Task Run
Descriptor

Task Run
Model

instanceOf

runOf

instanceOf

instanceOf

definedFor

describedIn

describedFor

Figure 4.1: Main concepts and their relationships in a task model.

described in a task run description language as a task run descriptor. The task template model

and the task run model are described in Section 4.1.1 and Section 4.1.2.

4.1.1 Task Template Model

In this section, we propose a task template model and its task specification language, TSL,

for the specification of dataflow-based task templates, enabling the abstraction of various het-

erogeneous and distributed services and applications into uniform workflow tasks. Our pro-

posed task template model is illustrated in Figure 4.2, consisting of the following three layers:

• The logical layer contains the task interface that models the input ports and output ports

of a task template. In a scientific workflow, tasks are connected to one another via these

ports through data channels. During workflow execution, tasks communicate with each

other by passing data through data channels. The data type of each port is also defined

as part of the task interface.

• The physical layer contains one or more task components that model the services or/and

applications that are used to implement the task. The heterogeneous characteristics of a

task component is modeled in this layer, including task type, inputs, outputs, location,

invocation mechanism, authentication and protocol if needed.

40

• The mapping layer essentially consists of a list of mapping instructions that perform

the mapping between the input/output ports of the task interface and the inputs/outputs

of the task component. For each mapping, a shim is incorporated only if the type of

input/output port and input/output are incompatible. All shims between input ports and

inputs are formed an inputports-to-inputs shim set; while all shims between outputs and

output ports are formed an outputs-to-outputports shim set.

Task Component A

Inputs

Outputs
......

M1/M3

M2/M3

Task Interface

Logical Layer

......

Input Ports

Output Ports

Shim Set A

Task Component B

Physical Layer

......

Shim Set B

Mapping Layer

Figure 4.2: An extensible task template model.

The separation of the logical layer from the physical layer not only hides the implemen-

tation details of a task from its interface, thus providing a uniform interface of a task to the

workflow engine, but also brings the opportunity to integrate various heterogeneous and dis-

tributed services and applications into a scientific workflow in a uniform way. However, the

integration of heterogeneous services and applications into scientific workflows is challenging

since these services/applications are often written in various programming languages, invoked

via different invocation mechanisms and run in disparate computing environments. Currently,

our proposed task template model focuses on the modeling of the following aspects of the

heterogeneity of a task component:

• Heterogeneous inputs of a task component. A task component can take inputs from

command line arguments (user-specified or constant), environment variables, input files,

communication messages (e.g., SOAP messages for Web services), and the system stan-

dard input, etc.

41

• Heterogeneous outputs of a task component. A task component can produce outputs as

environment variables, files, communication messages, the system standard output, the

exit code, and the standard error, etc.

• Heterogeneous invocation mechanisms. Based on different computing environments, the

types and locations of executables, various local and remote invocation mechanisms are

modeled.

Windows/Unix
Application

A

I1

I2

I3

O1

O2

O3

Task
Interface

IP1

IP2

OP2

OP1

"- f "

M1

M2

Task Component

Web service
Operation

WS

I1

I2

I3

O1

O2

O3

Task
Interface

IP1

IP2
OP1

OP2

10.5

M1

M2

Message part Task Component

Legend:
Legend:

(b)(a)

Environment
variable
File

Exit codeM3 M3

Constant
CL argument

Figure 4.3: (a) - (b) static mappings between input/output ports of a task interface and in-
puts/outputs of the task components WS and A.

To hide the heterogeneous characteristics of a task component from the task interface, all

the above heterogeneous aspects of a task component are modeled in the physical layer, while

the mapping layer models the following three kinds of mappings between the input/output ports

of the task interface and the heterogeneous inputs/outputs of a task component:

• The inputports-to-inputs mapping (M1) specifies how the input data taken from an input

port IP i of a task is mapped to an input Ij of the task component C. If IP i is not mapped,

then any data from IP i will not be used by C. For each shim S in an inputports-to-inputs

shim set, M1 contains the mapping between IP i and the input of S and the mapping

between output of S and Ij .

• The outputs-to-outputports mapping (M2) specifies how the output data produced from

an output Oi of a task component is mapped back to an output port OP j of the task.

42

Similarly, if an output of a task component is not mapped, then such output data is dis-

carded. For each shim S in an outputs-to-outputports shim set, M2 contains the mapping

between Oi and the input of S and the mapping between output of S and OP j .

• The constant mapping (M3) specifies a constant that will be assigned to an input of the

task component before the execution of the task component. A constant mapping can also

be used to assign a constant value to an output port of a task when the execution of the

task component completes. Such flexibility is important to improve the configurability

of a task template.

Figures 4.3.(a) - (b) illustrate two cases of the application of our proposed task template

model: Web services and Windows applications. For simplicity, shims are not shown in these

mappings. For M1, in a Web service operation WS, as shown in Figure 4.2.(a), the input port

IP 1 is mapped to I1, one part of the request message of WS; the input port IP 2 is mapped to

I2, a second part of the request message. For M3, a constant 10.5 is assigned to I3, a third part

of the request message. For M2, a part of the response message O1 is mapped to the output port

OP 1; O2, a second part of the response message, is mapped to the output port OP 2; and O3,

a third part of the response message is not mapped, indicating that its value is discarded and

never used afterwards. For Windows/Unix applications, both mappings are more sophisticated

due to the rich modes of inputs and outputs. As illustrated in Figure 4.2.(b), for M1, the input

port IP 1 is mapped to environment variable I1, requiring that this environment variable be

assigned the value from IP 1 before the execution of a Windows/Unix Application A, and such

value will be taken as A’s input; the input port IP 2 is mapped to file I2, indicating that a file I2

needs to be created with the content from IP 2 before the execution of A. For M3, a constant

string of “-f” is assigned to I3, indicating that the invocation of A is achieved via a constant

command line argument of “-f”. For M2, environment variable O1 is mapped to output port

OP 1, thus, after the execution of A, O1 is produced as an environment variable and its value

will be assigned to output port OP 1; the exit code O2 is mapped to output port OP 2, therefore

43

its value will be assigned to OP 2 after the execution of A; the execution of A will produce file

O3; however, since O3 is not mapped, this file is discarded and will not be used afterwards. An

optimization algorithm can delete such files to reclaim storage resources.

4.1.2 Task Run Model

A task run captures the state and run-time behaviors of the execution of a task instance.

In this section, we propose a task run model and its task run description language, TRDL, for

the description of task runs, enabling the execution of task instances constructed from hetero-

geneous services and applications. Our proposed task run model is illustrated in Figure 4.4,

consisting of the following three layers:

Task Run Interface Task Component

Task Run

Logical Layer Physical Layer

Inputs

Outputs
......

Input Data

Output Data

Input Ports

Output Ports

M1/M3

M2/M3 B3

B4/B5

B2

B1/B5

Figure 4.4: An extensible task run model.

• The logical layer corresponds to the logical layer in the task template model. It defines

the input and output ports of a task interface, the state of the task run (one state of a state

transition diagram), and additional run-time information, including the task run ID, task

instance ID, workflow instance ID, and workflow run ID.

• The physical layer corresponds to the physical layer in the task template model. It con-

tains one of task components that are contained in the physical layer of the task template

model.

44

• The binding layer corresponds to the mapping layer in the task template model. Map-

pings are instructions for bindings, while bindings are the realization of mappings and

involve the dynamic binding of data to the input/output ports of task interfaces and the

inputs/outputs of task components.

One important functionality of a task run is the status tracking of the execution of a task

instance. This is achieved by the update of the status field in the logical layer of the task run

model, following a task run state transition diagram shown in Figure 4.5: A task run is created

after the initiation of a task execution. Then, after an execution host is acquired (task mapping),

the task run enters the Mapped state. Next, all the input data needed for the execution of the task

are moved to the host where the task is mapped (data movement), and the task run enters into

the Ready state. The task is then invoked (task invocation), which transits the task run into the

Executing state. Finally, depending on if the task run terminates successfully or unsuccessfully,

the task run enters either the Success state or the Failed state.

task
mapping

data
movement

task
invocation

Failed

SuccessCreated

ExecutingMapped Ready

Figure 4.5: Task run state transition diagram.

The logical layer maintains the status of a task run at an abstract level, regardless of the im-

plementation details of its task component, the separation of the logical layer from the physical

layer provides the opportunity of dynamic binding between the task run interface and the task

component that implements it. This is useful when there are multiple task components that

implement the same task run interface; when the execution of one fails, another task compo-

nent can be bound to carry out the same required functionality transparently from the workflow

45

engine. Further more, dynamic data bindings for data, input/ouput ports of the task interface,

and inputs/outputs of the task component can be performed at different stages of the lifecycle

of a task run. We consider the following five types of bindings in our task run model:

• The inputdata-to-inputports binding (B1) describes that some input data are bound to the

input ports of the task run interface. This binding is typically performed after a task run

is first created.

• The inputdata-to-inputs binding (B2) describes that input data are bound to the inputs of

a task component. This binding is derived from B1 and the inputports-to-inputs mapping

(M1) specified in the task template. This binding is typically performed after a task is

mapped to an appropriate execution host.

• The outputs-to-outputdata binding (B3) describes that the outputs of the task component

are bound to the output data produced as the result of executing the task component. This

binding is typically performed after the successful execution of the task component.

• The outputdata-to-outputports binding (B4) describes that the output data are bound

to the output ports of the task run interface. This binding is derived from B3 and the

outputs-to-outputports mapping (M2) specified in the task template. This binding is

typically performed right after the outputs-to-outputdata binding (B3).

• The constant binding (B5) describes that a constant value is bound to an input/ouput of

the task component before/after its execution. This binding is typically performed right

before a task run enters the Ready state or after a task run enters the Success state.

Figures 4.6.(a) - (c) illustrate some snapshots of a task run constructed from a Windows

application Wj at the states of Created, Ready, and Success, respectively. At the Created state,

two data products, D1 and D2, are bound to input ports IP 1 and IP 2, respectively. At the

Ready state, using the mapping information, D1 is bound to I1 since IP 1 is mapped to I1, and

46

Windows
Application

Wj

I1

I2

I3

O1

O2

O3

Task Run
Interface

IP2

IP1

OP1

OP2

B1
D1

D2

B2

"-f"

Success

D3

D4

Windows
Application

Wj

I1

I2

I3

O1

O2

O3

Task Run
Interface

IP2

IP1

OP1

OP2

B1

M2

D1

D2

Input Data

B2

"-f"

Ready

Windows
Application

Wj

I1

I2

I3

O1

O2

O3

Task Run
Interface

IP2

IP1

OP1

OP2

B1

M1 M2

Created

D2

D1

Input Data

B3

B4

(a) (b) (c)

Input Data Output Data

B5 B5

Task Component Task ComponentTask Component

Figure 4.6: (a) - (c): dynamic bindings among input/output ports, inputs/outputs and in-
put/output data at three states.

D2 is bound to I2 since IP 2 is mapped to I2. Moreover, a constant “-f” is bound to I3 using

the constant mapping information (M3) for I3. Finally, at the Success state, two data products,

D3 and D4 are produced from outputs of the task component O1 and O2, respectively. Using

the outputs-to-outputports mapping (M2) information, they are bound to output ports OP 1 and

OP 2, respectively.

4.2 Addressing Shimming Problems in Scientific Workflows
We refer to the above shimming problem as TYPE-I shimming problem, which occurs at

the workflow level due to the incompatibility of output ports of an upstream task with the input

ports of a downstream task. For example, in Figure 4.7.(a), when the output port OP 2 of up-

stream task T1 is incompatible with the input port IP 3 of downstream task T2, a shim is needed

to mediate them. While still not recognized by the community, we identify a second type of

shimming problem, called TYPE-II shimming problem that occurs at the task level when tasks

are created from third-party heterogeneous services and applications (called task components)

and there is incompatibility between task ports and inputs/outputs of task components. For

example, in Figure 4.7.(b), although T1.OP i (i = 1, 2, 3) and T2.IP i (j = 2, 3, 1) are compat-

ible, inside T2, input port IP 2 is incompatible with input I2 of task component C and output

O3 of C is incompatible with output port OP 3 of task T2.

47

Based on the task template model presented in Section 4.1.1, our proposed approach to

TYPE-II and TYPE-I shimming problems are addressed in Section 4.2.1 and Section 4.2.2,

followed by the summary of advantages of our approach in Section 4.2.3 and a case study in

Section 4.2.4.

4.2.1 Addressing TYPE-II Shimming Problem Using TSL

According to the above task template model, an XML-based task template specification

language, called TSL, is proposed to model heterogeneous and distributed services and appli-

cations, including shims. The XML schema of TSL is shown in Appendix A. In TSL, both

shims and functional task components are uniformly modeled as task components with the

shim role and the functional role, respectively. A task component can be registered with a

system with one role or both roles.

Figure 4.8 presents an example of task template specification (TTS) for a task template

written in TSL. The logical layer, the physical layer, and the mapping layer are realized by

the taskInterface element, the taskComponents element and the mappings ele-

ment, respectively. At the logical layer, the taskInterface element contains sub-elements

inputPorts and outputPorts to define the input and output ports of the task template.

At the physical layer, the taskComponents element contains a set of taskComponent

elements, modeling either functional task components (specified by role = "functional")

T1IP1

OP1

T2
IP1

OP1

C

(b)

(a)

T2

OP3

OP2

T1

IP3
IP2

OP1

OP2

OP3
IP1 IP2

IP3

I1

I2

I3

O1

O3
O2

OP3

OP2

OP1
IP1

Figure 4.7: (a) The TYPE-I shimming problem; (b) The TYPE-II shimming problem. (̸=:
mismatch)

48

<tsl:taskTemplate version="1.0"xmlns:tsl="http://view/tsl ">
 <taskInterface id="T67">
 <taskName>Mesh Hole Fill</taskName>

 <taskDescription> Fill holes in the iso-surface. </taskDescription>
 <inputPorts number="3">
 <port id="IP87"default = "Yes">
 <portType> File(TET)</portType>

 <portDescription> An obj mesh format file of iso-surface. </portDescription>
 <portDefaultValue> ...</portDefaultValue>

 </port>
 <port id="IP88"default = "Yes">...</port>
 <port id="IP89"default = "Yes">...</port>

 </inputPorts>
 <outputPorts number="2">
 <port id="OP83">

 <portType> File(OBJ)</portType>
 <portDescription> An obj mesh format file with holes covered. </portDescription>
 </port>
 <port id="OP84">... </port>
 </outputPorts>
 </taskInterface>
 <taskComponents>
 <taskComponent id="TC101"default = "Yes"role="functional">

 <taskType>Windows Application </taskType>
 <executable> file://localhost/OBJ_FILL.exe </executable>
 <taskDescription> converting a TET file into an OBJ file. </taskDescription>

 <AppName>OBJ_FILL</AppName>
 <inputs>
 <input id= "I123"mode="FILE"fileName="/OBJFILL.obj"type="FILE(OBJ)"/>

 <input id= "I125"mode="EnviornmentVariable "envName="inputEnv"type="String"/>
 <input id= "I126"mode="ConstantCLArg"argName="inputCLArg"type="String"/>

 </inputs>
 <outputs>

 <output id= "O125"mode="FILE"fileName="Subj_hfobj"type="FILE(OBJ)"/>
 <output id= "O124"mode="ExitCode"name="ExitReturnValue "type="Integer"/>

 </outputs>
 <taskInvocation>

<operatingSystem> Windows</operatingSystem>
<invocationMode> Local</invocationMode>
<interactionMode> No</interactionMode>
<invocationAuthentication> ...</invocationAuthentication>

 </taskInvocation>
 </taskComponent>
 <taskComponent id="TC103"default = "No"role="functional">
 <taskType> Web Service</taskType> ...
 </taskComponent>
 <taskComponent id="TC102"default = "No"role="shim">

 <taskType>Windows Application </taskType>
 <taskDescription> converting a TET file into an OBJ file. </taskDescription>
 <executable> file://localhost/TET_FILL.exe </executable>

 <AppName>TET_FILL</AppName>
 <inputs>
 <input id= "I17"mode="FILE"fileName="/input.tet"type="FILE(TET)"/>
 </inputs>
 <outputs>

 <output id= "O13"mode="FILE"fileName="/output.obj"type="FILE(OBJ)"/>
 </outputs>
 <taskInvocation>

<operatingSystem> Windows</operatingSystem>
<invocationMode> Local</invocationMode>
<interactionMode> No</interactionMode>
<invocationAuthentication> ...</invocationAuthentication>

 </taskInvocation>
 </taskComponent>
 </taskComponents>
 <mappings>
 <mapping id="TC101">

 <inputmapping from="IP87"to="I123"shimming = "Yes"/>
 <shims id= "TC102">
 <shimming from="IP87"to="I17">
 <shimming from="O13"to="I123">
 </shims>
 </inputmapping>
 <inputmapping from="IP88"to="I125"shimming = "No"/>
 <inputmapping from="IP89"to="I126"shimming = "No"/>
 <assign from="-f"to="IP89" />
 <outputmapping from="O125"to="OP83" />
 <outputmapping from="O124"to="OP84" />
 </mapping>
 <mapping id="TC103"> ... </mapping>
 </mappings>
<taskInstances>
 <taskInstance id="51">
 <taskComponent id="TC101"/>
 </taskInstance>
 <taskInstance id="52">
 <taskComponent id="TC103"/>
 </taskInstance>
</taskInstances>
</tsl:taskTemplate>

Figure 4.8: An example of a task template specification.

49

or shim task components (specified by role = "shims"). Each functional taskComponent

element specifies one possible implementation of the task interface of the task template. Similar

to functional task components, shims are heterogeneous, distributed and system-independent.

For each task component (shim or functional), we model its input/output information, invoca-

tion details, such as operating system, invocation mode (e.g., local or remote), interaction mode

(interactive or non-interactive), and authentication information. Shims are introduced into

taskComponents only if there is an inputports-to-inputs shim set or outputs-to-outputports

shim set as a result of the TYPE-II shimming problem.

At the mapping layer, the mappings element contains the instructions for M1 (by the

inputmapping element), M2 (by the outputmapping element) and M3 (by the assign

element). If there is no shim for an inputmapping/outputmapping, the shim attribute in-

side the inputmapping/outputmapping is set to “No”; otherwise (shim = “Yes”),

each shimmings element is encoded inside an inputmapping or outputmapping ele-

ment. A shimmings element is uniquely identified by a shim’s taskComponent id. The

shimming elements are encoded inside the shimmings element to provide the mappings

among input/output ports, inputs/outputs of task components and input/outputs of shims.

The taskInstances element contains all task instances that are instantiated from the

same task template and hence share the same task interface. In our model, we consider all func-

tional task components in a task template is functionally equivalent but might have different

implementations and deployments and thus might provide different types of inputs and outputs.

Each task instance uses a unique functional component, which uniquely identifies the neces-

sary mapping and shimming to provide the same task interface. Therefore, in TTS, each task

instance encoded in the taskInstance element contains one specific functional task com-

ponent from alternative task components provided by the task template. The taskComponent’s

id inside each taskInstance can be used to retrieve the corresponding inputmapping and

outputmapping of this task component.

50

T1 T1
T2'

SOPjIP1
IPi OP1

IP1 OP1
O1I1

Ck O1I1

T2

OPj IPi

Ck

Figure 4.9: Reducing the TYPE-I shimming problem to the TYPE-II shimming problem.

Essentially, our example of task template specification, called Mesh Hole Fill (MHF), pro-

vides three input ports and two output ports at the interface. MHF encapsulates two func-

tional task components: one is called OBJ FILL (taskComponent id = TC101), a Win-

dows application that can be locally executed without user interaction. Another functional

component encapsulated in MHF is developed as a Web service (taskComponent id =

TC103). OBJ FILL has three inputs with the modes of file, environment variable and con-

stant command-line argument. Two outputs are defined with the modes of file and exit code.

As the input of OBJ FILL (input id = I123) is incompatible with the inputport (port

id=I123) in input mapping, a shim (taskComponent id = TC102) is incorporated

into the physical layer and the mapping layer of the TTS.

4.2.2 Addressing the TYPE-I Shimming Problem Using TSL

Next, we propose a reduction algorithm that reduces the TYPE-I shimming problem to

the TYPE-II shimming problem and thus provide a transparent solution to both problems.

As shown in Figure 4.9.(a), given two task instances T1 and T2, in which T2 encapsulates

functional task component Ck. When the type of output port T1.OP j is incompatible with the

type of input port T2.IP i, a TYPE-I shimming problem occurs. A new task template T ′
2 can

be created from T2’s task template by encapsulating an appropriate shim S and Ck inside, and

then an instance of T ′
2 can be used as a replacement of T2. The pseudocode of the reduction

algorithm, ReduceTYPE-I2TYPE-II, is sketched in Figure 4.10. First, the TTS of T ′
2 is copied

from the TTS of T2. Second, if possible, a suitable shim S is retrieved automatically based

on the types of T1.OP i and T2.IP j . Finally, different layers of T ′
2 are updated accordingly, in

particular, T ′
2’s input port is mapped to S’s input and S’s output is mapped to the input of the

51

task component Ck.

Algorithm: ReduceTYPE-I2TYPE-II
Input: TypeOf(T1.OP i): a type of a task instance T1’s output port OP i, and

TypeOf(T2.IP j): a type of task instance T2’s input port IP j

Output: a new task instance T ′
2 initialized by a new task template T

Begin
(1) If TYPE-I problem occurs
(2) Then Retrieve a shim from system or third-party
(3) If ∃ a shim S and TypeOf(S.in) = TypeOf(T1.OP i) and TypeOf(S.out) = TypeOf(T2.IP j)
(4) Then
(5) Create new task template T by copying T2’s TTS
(6) Initialize a instance T ′

2 based on T TypeOf(T ′
2.IP j) = TypeOf(T1.OP i) /*update TTS’s logical layer*/

(8) Add S into T ’s taskComponents /*update TTS’s physical layer*/
(9) Map T ′

2.IP j to S.in /*update TTS’s mapping layer*/
(10) Map S.out to the input of T ′

2’s task component Ck

(11) Else
(12) Report to Type Match Error
(13)Else
(14) No shim required to reduce
End Algorithm

Figure 4.10: Algorithm ReduceTYPE-I2TYPE-II

4.2.3 Advantages of Our Approach

we identify the following advantages of our shimming approach:

1) Transparent shimming. This is the first shimming technique that hides all shimming

and mapping details inside a task interface and thus produces scientific workflows in which

all shims are invisible. As a result, a scientist can better focus on the functional part of a

scientific workflow without being distracted by the clutter of shims, which are usually not

science-relevant to the scientist but are technically needed.

2) Addressing both TYPE-I and TYPE-II shimming problems. This is the first solution

that addresses the TYPE-II shimming problem. Moreover, our approach enables the reduction

of the TYPE-I shimming problem to the TYPE-II shimming problem, providing a consistent

solution to both types of shimming problems.

3) System and language independent. Since our shimming technique is based on an XML-

based TSL language, which models all the details of abstraction, shimming and mapping. TSL

can be implemented by different systems using different languages and thus provides a system

and language independent solution.

52

4) Reusable and extensible. In our approach, similar to functional task components, shims

can be arbitrary local and remote heterogeneous services and application written in various lan-

guages and run in different platforms. As a result, shims are reusable across tasks, workflows

and systems. Moreover, TSL is easily extensible for more sophisticated shimming techniques,

such as the composition of basic shims to construct composite shims.

4.2.4 Case Study: Shimming in Volumn Data Surface Extraction

Figure 4.11 presents a typical scientific workflow designed in VIEW 2.1 for surface extrac-

tion from volume data, a required preprocessing process for surface analysis. The workflow

is composed of three task instances: the first is the Iso-Surfacer task instance which uses the

marching cubes algorithm to extract the surface from volume data. The second task instance,

called TET FILL, analyzes the extracted surface to identify holes that are generated in an im-

age file and fill them. The resulting surface is rendered in a 3D-interactive display using the

VTK Display task instance as shown in Figure 4.11.(c). The data types of input/output ports

for each task instance are listed as follows: the Iso-surfacer task instance reads a volume file

formatted as VOL from its inputport, and output a file formatted as OBJ; the inputport and

outputport of TET FILL task instance are typed as File (OBJ); The VTK Display task instance

read a VTK file and then visualize it on a display window.

inputport-input mapping

output-outputport mapping

(a) (b) (c)

Figure 4.11: A scientific workflow composed in the VIEW 2.1 system with shims to the TYPE-I
and TYPE-II problem.

The TET FILL task instance is initialized by the Mesh Fill Hole task template which encap-

53

sulates two task components: the TET FILL task component is a third-party Windows applica-

tion using C++, invoked by a TYPE-D Executor. Another task component is called OBJ FILL,

implemented by a Web service that receives and outputs a datastream encoded in SOAP mes-

sages. This task component is invoked by a TYPE-B Executor. The Mesh Fill Hole task

template’s TSL can be viewed by Task Template Browser in Figure 4.11.(c) and stored in the

VIEW Task Master.

Figure 4.11.(c) illustrates the Type-I shim that occurs between TET FILL and VTK Display

task instances. The input port of VTK Display is typed as File (VTK), incompatible with the

type of TET FILL’s output defined as File (OBJ), then a Type-I shimming problem is detected

automatically by the system (see the blue Type-I shimming detection icon in Figure 4.11.(c)

). By clicking the icon, the system allows scientists to either select system-provided shims or

register any third party shims if there is no existing shim available. In addition, the system

allows scientists to automatically hide shims inside a task instance by applying our proposed

ReducingType-I2Type-II algorithm.

The Type-II shim problem in this workflow occurs when mapping from the TET FILL task

instance’s inputport to an input of its task component. The type of the input port is defined as

File (OBJ), while the input requires a tetrahedral mesh file typed as File (TET). The incompati-

bility is automatically detected by system with the red Type-II shimming detection icon in Fig-

ure 4.11.(b). After clicking the icon, a system-provided shim called OBJ TET CONVERTER

is automatically applied to the input mapping. Figure 4.11.(a) shows the shimming between

the input port (ID:87,Type:File (OBJ)) and the shim’s input (ID:17,Type:File (OBJ)), and the

shimming between the shim’s output (ID:13,Type:File (TET)) and the task component input

(ID:123,Type: File (TET)). The implementation details of the OBJ TET CONVERTER shim

is encoded in the Mesh Fill Hole task template’s TTS, which is implemented as a Windows

application using C++ and invoked remotely by a TYPE-A Executor.

54

4.3 Addressing Heterogeneity Using TRDL
We have proposed an XML-based task run description language, called TRDL, to realize

our proposed task run model. The XML schema of TRDL is shown in Appendix B. Figure 4.12

presents a snapshot of a task run descriptor at the Success state, written in TRDL. The logi-

cal layer, the physical layer, and the binding layer are realized by the taskRunInterface

element, the taskComponent element and the bindings element, respectively. First, the

taskRunInterface element contains subelements inputPorts and outputPorts to

describe the input and output ports of the task, subelements

workflowInstance ID and workflowRun ID to describe the workflow context that the

task is executed within, and the taskRun State element to describe the state of the task run. Sec-

ond, the taskComponent element contains the description of the implementation details of

the task interface; such information is obtained from the corresponding task template specifica-

tion. Finally, the bindings element records all the bindings that have occurred up to the point of

the state of the task run: the data inputport binding element records the inputdata-to-

inputports binding (B1), the data input binding element records the inputdata-to-inputs

binding (B2), the output to data binding records the outputs-to-outputdata binding

(B3), the data outputport binding records the outputdata-to-outputports binding (B4),

and the assign element records the constant binding (B5). Each binding is associated with a

timestamp attribute to record the time that the binding occurs.

4.4 Addressing Heterogeneity in VIEW Task Manager
As shown in Figure 4.13, the architecture of the Task Manager consists of a Task Master

and a set of Task Executors. The Task Master manages all task templates, task instances, and

task runs, while Task Executors are responsible for the invocation and execution of various het-

erogeneous task components. Four types of Task Executors are proposed but the extensibility

are provided for future types of Task Executors:

1) A TYPE-A executor provides an execution environment mostly for user-interaction and

55

<taskRunInterface>
<taskRun_ID>TR01</taskRun_ID>
<task_ID>T03</task_ID>
<taskInstance_ID> TI01</taskInstance_ID>
<workflowInstance_ID> W01</workflowInstance_ID>
<workflowRun_ID> WR01</workflowRun_ID>
<taskRun_State>Success</taskRun_State>
<inputPorts number="3">...</inputPorts>
<outputPorts number="1">...</outputPorts>

</taskRunInterface>

<taskComponent> ...</taskComponent>

<bindings ID="TC01">
<data_inputport_binding from="D01"to="IP01"timestamp="2008-08-08T07:06:30 "/>

 <data_inputport_binding from="D02"to="IP02" timestamp="2008-08-08T07:06:32 "/>
 <data_input_binding from="D01"to="I1"timestamp="2008-08-08T07:08:16 "/>

<data_input_binding from="D02"to="I2"timestamp="2008-08-08T07:08:18 "/>
 <assign from="0.1"to="I3"timestamp="2008-08-08T07:08:19 "/>
 <output_data_binding from="O1"to="D03"timestamp="2008-08-08T07:09:01 "/>
 <data_outputport_binding from="D03"to="OP01"timestamp="2008-08-08T07:09:10 "/>
</bindings>

Figure 4.12: A snapshot of a task run descriptor at the Success state.

visualization intensive tasks, or the tasks that can be executed in the host of the TYPE-A execu-

tor. A TYPE-A executor is typically deployed at a client-side machine such that a user can view

and interact with the graphical user interfaces of tasks assigned to the executor. Each TYPE-

A executor is required to communicate remotely with the Task Master and locally with tasks.

To avoid the clutter of display, tasks are executed sequentially in an execution environment

provided by a TYPE-A executor.

2) A TYPE-B executor provides an execution environment mostly for tasks with tasks com-

ponents being Web services, whose interfaces are described by WSDL. A TYPE-B executor

can be deployed either at the host of the Task Master or at any other standalone host. Each

TYPE-B executor is required to communicate remotely with tasks, which can be executed in

parallel.

3) A TYPE-C executor provides an execution environment for tasks that are registered and

specified to execute on remote systems, including the underlying high-end computing envi-

ronment, such as Grids and Clusters. Typically, those tasks require long-duration back-end

computations without user interactions. This type of executors can be deployed either at the

host of the Task Master or at any other standalone host. Each TYPE-C executor is required to

56

communicate remotely with tasks, which can be executed in parallel.

4) A TYPE-D executor provides an execution environment for built-in tasks and those that

are registered and specified to execute at the host where the Task Master is deployed. Those

built-in tasks can be hard-coded into the subsystem and installed with the Task Master. Each

TYPE-D executor communicates locally with both the Task Master and tasks, and tasks can be

executed in parallel.

Heterogeneous Services and Applications

Scientists

Task Manager

TYPE-A
Executor

TYPE-B
Executor

TYPE-C
Executor

TYPE-D
Executor

Future
applications

Built-in
programs

Remote
Applications

Web
services

Client-side
applications

Future
Executor

Task
Master

Figure 4.13: VIEW Task Manager for the execution of heterogeneous shims and functional task
components.

Different types of Task Executors implement different internal functions to accommodate

tasks using programming languages and invocation mechanisms, but all of them provide uni-

form interfaces to the Task Master on one hand and uniform interfaces to services and applica-

tions on the other hand. The architecture of Task Executors are extensible in nature: to support

new types of task components in the future, it is only required for a particular Task Execu-

tor to add new functions to incorporate their invocation methods without affecting other Task

Executors and the Task Master.

4.5 Case Study: a Heterogeneous Scientific Workflow for

Automating Imaging Analysis
Figure 4.14.(a) shows a scientific workflow designed for automating imaging analysis of

fiber tracts in human brains. The tasks in this workflow were developed by multiple research

57

groups, so they are heterogeneous in nature and distributively deployed on various computing

environments.

T1: Windows App.
 Local Call
 C++ Program

T2: Windows App.
 Local Call
 C Program

T6: Windows App.
 Local Call
 Java Program

T8: Windows App.
 Local Call
 C++ Program

T4: Unix App.
 Remote Call
 C Program

T7: Linux App.
 Remote Call
 Java Program

T3: Built-in App.
 Local Call
 C++ Program

T5: Web Service
 Remote Call
 C# Program

T5

T2

T1

T3

T4

T7

T6

T8

TYPE- D Executor

TYPE- A Executor

TYPE- C Executor
TYPE- B Executor

Figure 4.14: A scientific workflow composed of heterogeneous applications and services.

The Brain Extraction Tool task (T1) strips off a subject’s skull based on Magnetic Reso-

nance Imaging (MRI) volume files; the Volume Alignment task (T2) generates a transformation

matrix, which indicates the spatial mappings from Diffusion Tensor Imaging (DTI) volume

files to MRI files; The Statistics Package task (T6) allows scientists to mark their interested co-

clustering regions and then conducts statistical analysis. The Visualization (T8) task visualizes

statistical coclustering results. Although these four tasks are developed in various program-

ming languages, they are local Windows applications and require intensive user-interactions;

hence, they are handled by a TYPE-A executor. The Fiber Generator task (T4) and Graph

Generator task (T7) are two compute-intensive tasks, so they are assigned to a TYPE-C ex-

ecutor and executed in the Wayne State Grid and a remote high-performance Linux server,

respectively. The Coclustering task (T5) is exposed as a Web service, and it is developed for

clustering human brain fiber tracts into different bundles. These bundles can be employed to

generate statistical hypotheses and to identify particular neural disorders. T5 is assigned to a

TYPE-B executor. The Tensor Fit task (T3) computes the tensor field using DTI, gradient File

and ColorMap to generate various invariant metrics. T3 is a fundamental step needed for most

preprocessing procedures, so it is built in the system and processed by a TYPE-D executor.

Supported by the Task Manager, the heterogeneity and distribution of these tasks are trans-

58

parent to users when they construct this workflow. Figure 4.14 also shows T2’s user interface

waiting for user interaction during a task run and a final statistical result after running T8.

59

CHAPTER 5: WORKFLOW SCHEDULING FOR
SERVICES COMPUTING ENVIRONMENTS

With the advent of services computing technologies, thousands or even millions of dis-

tributed compute resources are able to be exposed as services for other applications or services

to access through the Internet. In such a services computing environment, the number of as-

signed resources to a workflow can be elastically scaled out or in by service requests. Even

though there have been many work on workflow scheduling in the literature, most of proposed

solutions address the problem of assigning a workflow to a bounded number of resources. The

number of resources cannot be automatically determined on demand of the size of the work-

flow and these resources assigned to the workflow will not be released until the execution of

the workflow completes. As a result, resources assigned to a workflow are sometimes insuf-

ficient to the execution of workflows, which leads to a long execution duration, especially for

compute-intensive workflows; or many resources keep idle most of the time during the work-

flow execution, especially for data-intensive workflows, which leads to a waste of resources

and budgets.

The ability of services computing to scale on demand as usage changes through dynamic

provisioning brings a new opportunity to solve this scheduling problem; however, none of

the current scheduling algorithms are applicable in such emerging services computing envi-

ronments. To present our solution, we firstly introduce a services computing environment

in Section 5.1 and a workflow graph representation for such an environment in Section 5.2,

followed by a formalization of the workflow scheduling problem in Section 5.3. Then two

workflow scheduling algorithms - the SHEFT algorithm and the SCPOR algorithm - are pro-

posed in Section 5.4 to schedule workflows in a services computing environment, which not

only optimize workflow execution time but also allow the number of requested resources to

change on demand. Finally, extensive experiments and comparisons are performed to evaluate

60

our proposed solution in Section 5.5.

5.1 Services Computing Environment
Due to the complexity of scientific processes, scientific workflows have become increas-

ingly compute and data intensive. These scientific workflows are often required to be executed

in distributed computing environments, including the recently emerged services computing en-

vironments. A services computing environment has several features that are distinct from other

computing environments: (1) Compute resources in the environment are exposed as services

that provide a standardized interface for other applications or services to access over the net-

work; (2) The number and type of compute resources assigned to a workflow are determined

by service requests; (3) The number of assigned resources to the workflow can be dynamically

changed at runtime: if initially assigned resources are insufficient to an execution, additional

resources can be assigned; if a resource keeps idle for a long time, it can be released to the

environment. Therefore, workflow compute resources from such an environment can be elas-

tically scaled out or in on demand; (4) Not all requested compute resources are necessary to be

assigned at the beginning of the execution. Resources can be assigned only if an execution is

in need.

Resources provisioned by such an environment are often heterogeneous in terms of com-

puting capability and data communication. The computing capability of a compute resource

is mainly determined by the configuration of the number of processors and capability of the

processors. It means that the variation is possible among the execution times for a given task

across all the machines. The resources are connected to each other by an internal network

with different data transfer rates (or bandwidths). In this case, we model such an environment

by partitioning all resources into a number of clusters. Resources with the same computing

capability are grouped into one cluster. Resources within one cluster share the same network

communication, so they have the same data transfer rate with each other within this cluster.

Also, resources within one cluster share the same data transfer rate for transferring data to

61

resources in another cluster. Therefore, a services computing environment can be defined as:

Definition 5.1.1 (Services Computing Environment E(RE, CE, FM , FB, FR)). A services com-

puting environment is a 5-tuple E(RE, CE, FM , FB, FR), where

• RE is a set of resources in the environment,

• CE is a set of clusters that partition the resources RE ,

• FM : RE → CE is the mapping function that maps a resource to its cluster number.

FM(Ri), Ri ∈ RE gives the cluster number Cj, Cj ∈ CE that Ri belongs to.

• FB : CE ×CE → Q+
0 is the data communication rate function. FB(Ci, Cj), Ci, Cj ∈ CE

gives the data communication rate between Ci and Ci. Q+
0 is the set of non-negative

rational number.

• FR : RE → Q+ is the resource computing speed function. FR(Ri), Ri ∈ RE gives the

speed for the computing resource Ri, measured in some pre-determined unit like million

instructions per machine cycles or million instructions per nanoseconds. Q+ is the set of

positive rational number.

�

If the computing capability of all resources are the same, then all these resources are in the

same cluster (|CE| = 1). In this case, the model accommodates a homogeneous computing

environment; if the computing capability of all resources are different, then each cluster only

contains one resource (|CE| = |RE|). In this case, the model accommodates a completely

heterogeneous computing environment.

In such a computing environment, it is assumed that each task of the workflow can be

processed on any of the assigned resources. An accurate estimate of the execution time for

each task on each machine is known prior to execution. The computation of tasks on each

62

compute resource can be overlapped with data communication between resources. During

workflow execution, tasks assigned on one resource can be executed in parallel with tasks on

other resources; however, no task is allowed to run in parallel on two resources at the same

time.

T1 T2
T4

T5

T3

C1

Workflow resources
R1

Services computing environment

Workflow Scheduler

Service interface

R4R3R2

C4C3C2

Figure 5.1: Workflow scheduling in services computing environments.

In Figure 5.1, a workflow that consists of five tasks is scheduled in a services computing

environment. Inside the environment, compute resources are partitioned into four clusters.

For example, high-performance computers are distributed in cluster C1, while the computers

with the lowest computing capability are connected in cluster C2. Initially, three resources

(R1, R2, and R3) are assigned to the workflow, which are selected from clusters C1, C2 and C3,

respectively. An additional resource R4 from cluster C4 is assigned later by a request of the

workflow scheduler. After scheduling this workflow, task T1, as the entry task of the workflow,

is firstly executed on R2, followed by the execution of task T2 on R1. After that, tasks T3 and

T4 can be executed in parallel on resources R2 and R3. Since both T1 and T3 are assigned onto

R2, T3 is scheduled to start sometime after T1 completes. Task T5 can start on resource R4 after

both T3 and T4 complete their executions. Each task may wait for its input data transferred to

63

the scheduled resources before the task starts to run.

5.2 Workflow Graph Representation
A scientific workflow is a computerized model of a scientific process, and it consists of a set

of tasks and a set of data dependencies between these tasks. Each task in a workflow is atomic,

so the operations of a task are not allowed to be interrupted during task execution. A task

produces a dataset that can be consumed by another task of the workflow. A data dependency

specifies that an amount of dataset is required to be transferred after which task completes and

before which task starts. A scientific workflow can be formally defined as:

Definition 5.2.1 (Scientific Workflow W (T,D, FT , FD)). A scientific workflow is a 4-tuple

W = (T,D, FT , FD), where

• T is the set of tasks in the workflow,

• D = {< Ti, Tj > | Ti, Tj ∈ T, i ̸= j, i, j ≤ |T |, Tj consumes dataDi,j produced by Ti}

is the set of data dependencies. Di,j denotes that an amount of data is required to be

transferred after Ti completes and before Tj starts.

• FT : T → Q+
0 is the execution cost function. FT (Ti), Ti ∈ T gives the execution time

of a task Ti, measured in some pre-determined unit like million instructions, machine

cycles or nanoseconds.

• FD : D → Q+
0 is the data size function. FD(Di,j), Di,j ∈ D gives the size of a dataset

Di,j , measured in some pre-determined unit like bits or bytes.

�

Definition 5.2.2 (Predecessors pred(Tj) and Successors succ(Ti)). Given a workflow W , if the

start of a task Tj depends on the completion of a task Ti, then Ti is an immediate predecessor

of Tj , and Tj is an immediate successor of Ti. The task precedence relation can be denoted

64

as Ti → Tj . The set of immediate predecessors of Ti is denoted as pred(Ti), and the set of

immediate successors of Ti is denoted as succ(Ti). �

A task that has no any predecessors is called an entry task; a task that has no any successors

is called an exit task. The entry task and exit task of the workflow are denoted as Tentry and

Texit, respectively. The execution of a workflow starts from an entry task and ends with an exit

task.

Definition 5.2.3 (Scientific Workflow Graph G(T,D,R, Fc, Fc, Fp, Fp, Fu, Fd, Fr)). Given a

workflow W (T,D, FT , FD) in a computing environment E(RE, CE, FM , FB, FR), a weighted

directed acyclic graph that represents the workflow is a 5-tuple G(T,D,R, Fc, Fc, Fp, Fp,

Fu, Fd, Fr), where

• the vertices of the graph represent the set of tasks T ,

• the edges of the graph represent the set of data dependencies D,

• R is a set of resources assigned to W,R ∈ RE ,

• Fc : D×RE×RE → Q+
0 is the data communication cost function. Fc(i, j,m, n), Di,j ∈

D,Rm, Rn ∈ RE gives the data communication cost of Di,j from resource Rm to re-

source Rn.

• Fc : D × R → Q+
0 is the average data communication cost function. Fc(i, j), Di,j ∈ D

gives the average data communication cost of Di,j in resources R, which is taken as the

weight of edge in the graph G. A communication edge may have no data, if solely to

enforce a precedence constraint. The data size of such an edge is assumed to be zero.

• Fp : T × R → Q+ is the task computation cost function. Fp(Ti, Rm), Ti ∈ T,Rm ∈ R

gives the computation cost of Ti on resource Rm.

• Fp : T×R → Q+ is the average task computation cost function, Fp(Ti) gives the average

computation cost of task Ti, which is taken as the weight of vertex in the graph G.

65

• Fu : T → Q+ is the upward rank function. Fu(Ti) gives the value of task Ti’s upward

rank in the workflow graph.

• Fd : T → Q+ is the downward rank function. Fd(Ti) gives the value of task Ti’sdownward

rank in the workflow graph.

• Fr : T → Q+ is the priority rank function. Fr(Ti) gives the value of task Ti’s priority

rank in the workflow graph.

�

If a workflow has multiple entry tasks or exit tasks, a virtual entry task or exit task will be

connected to these entry tasks or exit tasks. The virtual task has zero computation cost and

zero communication cost between the task and other tasks. Therefore, each workflow graph

only has one entry task and one exit task. The in-degree of each vertex in the workflow graph

G is defined as:

d+(Ti) = 0, if Ti = Tentry,

d+(Ti) > 0, if Ti ̸= Tentry, Ti ∈ T.

(5.1)

The out-degree of each vertex in the workflow graph is defined as:

d−(Ti) = 0, if Ti = Texit

d−(Ti) > 0, if Ti ̸= Texit, Ti ∈ T.

(5.2)

Example 5.2.4. Figure 5.2 illustrates a workflow graph G that consists of 14 tasks, in which

T1 is the entry task and T14 is the exit task of the workflow. T = {T1, T2, · · · , T14}, |T | = 14,

D = {D1,2, D1,3, D1,4, D1,5, D1,6, D1,7, D2,8, D3,9, D4,8, D4,10, D5,9, D5,11, D6,10, D7,11, D8,12,

D9,13, D10,12, D11,13, D12,14, D13,14}. pred(T1) = ∅, succ(T1) = {T2, T3, T4, T5, T6, T7}, pred(T9) =

{T3, T5}, succ(T9) = {T13}, pred(T14) = {T12, T13}, and succ(T14) = ∅. �

66

T1

T2 T3 T4 T5

T8 T9 T10

T12 T13

T14

T6 T7

T11

Figure 5.2: An example of a workflow graph.

Definition 5.2.5 (Communication Cost Fc and Average Communication Cost Fc). Given a

workflow W (T,D, FT , FD) in a computing environment E(RE, CE, FM , FB, FR), data Di,j ∈

D is transferred from task Ti ∈ T on resource Rm ∈ RE to task Tj ∈ T on resource Rn ∈ RE .

The communication cost of Di,j in a workflow graph G is defined as:

Fc(i, j,m, n) =

0, if m = n,

FD(Di,j)

FB(FM (Rm),FM (Rn))
, if FM(Rm) ̸= FM(Rn).

(5.3)

If Ti and Tj are mapped onto the same resource (m = n), then Fc(i, j,m, n) = 0. If Ti and

Tj are mapped onto different resources (FM(Rm) ̸= FM(Rn)), the data communication cost

are calculated using data transfer rate between cluster FM(Rm) and FM(Rn).

Given a set of clusters C that are assigned to the workflow, C = {c|∀Ri ∈ R, ∃c =

FM(Ri), c ∈ CE}. The average data transfer rate among all resources R can be defined as:

B =
|C|∑

Ci,Cj∈C FB(Ci, Cj)
. (5.4)

67

The average communication cost of Di,j is defined as:

Fc(i, j) =
FD(Di,j)

B
. (5.5)

�

Example 5.2.6. According to Table 5.1.(b), the data transfer rate between clusters C1 and C2

is 11, between C1 and C3 is 28, and between C2 and C3 is 26. From Table 5.1.(c), it is known

that R1, R2 and R3 are selected from clusters C1, C2 and C3. The total number of clusters

assigned to this workflow is equal to 3. In this case, the average data transfer rate between

R1, R2 and R3 is B = 3/(1/11 + 1/28 + 1/26) ≈ 18.1725. From Table 5.1.(a), the data size

of D1,2 is equal to 229, so the average communication cost of D1,2 between R1, R2 and R3

is Fc(1, 2) = 229/18.1725 ≈ 12.601. The rest of the average data communication costs are

calculated in a similar way. �

Definition 5.2.7 (Computation Cost Fp and Average Computation Cost Fp). Given a workflow

W (T,D, FT , FD) in a computing environment E(RE, CE, FM , FB, FR), the computation cost

of a task Ti ∈ T on a resource Rm ∈ RE in a workflow graph G is defined as:

Fp(Ti, Rm) =
FT (Ti)

FR(Rm)
. (5.6)

The average computation cost of a task Ti in resources R is defined as:

Fp(Ti) =

∑|R|
m=1 Fp(Ti, Rm)

|R|
, (5.7)

�

Example 5.2.8. Table 5.2 presents the computation costs for the workflow in Figure 5.2.

Resource R1, R2, and R3 are assigned to the workflow and the computation costs of each task

68

 <Ti,Tj> FD(Di,j) FP(Ti)

<T 1,T2> 229 12.601

<T 1,T3> 103 5.668

<T 1,T4> 97 5.338

<T 1,T5> 66 3.632

<T 1,T6> 19 1.046

<T 1,T7> 95 5.228

<T 2,T8> 26 1.431

<T 3,T9> 48 2.641

<T 4,T8> 245 13.482

<T 4,T10> 188 10.345

<T 5,T10> 215 11.831

<T 5,T11> 225 12.381

<T 6,T10> 246 13.537

<T 7,T11> 10 0.550

<T 8,T12> 211 11.611

<T 9,T13> 71 3.907

<T 10,T12> 26 1.431

<T 11,T13> 120 6.603

<T 12,T14> 125 6.879

<T 13,T14> 215 11.831

Cm Cn FB(Cm,Cn)

C1 C2 11

C2 C1 11

C1 C3 28

C3 C1 28

C2 C3 26

C3 C2 26

...

Rm FM(Rm)

R1 C1

R2 C2

R3 C3

R4 C1

R5 C3

R6 C1

... ...

(a)

(c)(b)

Table 5.1: (a) The average communication costs of the workflow in Figure 5.2; (b) the data
transfer rates between clusters; (c) The list of mappings between resources and clusters.

on these three resources are different. For example, the computation costs of T1 on R1, R2, and

R3 are 6, 18 and 9, respectively. The average computation cost Fp(T1) = (6 + 18 + 9)/3 =

11.000. The average computation costs of other tasks are calculated in a similar way. �

The upward rank Fu(Ti) is computed recursively by traversing the workflow graph upward,

starting from Texit. It measures the longest path of the workflow graph from Texit to Ti, which

is the sum of the average computation cost of Ti, and the longest path from Texit to the succes-

sors of Ti, determined by the sum of Fu(Tj), Tj ∈ succ(Ti) and the data communication cost

between task Ti and Tj .

Definition 5.2.9 (Upward Rank Fu(Ti)). Given a workflow W (T,D, FT , FD) in a computing

environment E(RE, CE, FM , FB, FR), a task Ti’s upward rank in a workflow graph G is defined

69

FP(Ti)

T1 6 18 9 11.000

T2 13 24 17 18.000

T3 16 20 23 19.667

T4 11 13 5 9.667

T5 13 23 15 17.000

T6 29 10 29 22.667

T7 12 26 25 21.000

T8 24 13 12 16.333

T9 18 10 9 12.333

T10 26 22 16 21.333

T11 23 26 22 23.667

T12 11 24 10 15.000

T13 12 22 10 14.667

T14 15 23 12 16.667

1R 2R 3RiT

Table 5.2: Computation costs of the workflow in Figure 5.2.

as:

Fu(Ti) =

Fp(Ti), if Ti = Texit,

Fp(Ti) + maxTj∈succ(Ti)(Fc(i, j) + Fu(Tj)), otherwise.

(5.8)

�

Example 5.2.10. Below, we demonstrate the upward rank computation procedure for each

task of the workflow in Figure 5.2, given the computation costs and communication costs in

Table 5.2 and Table 5.1.

Fu(T14) = Fp(Texit) ≈ 14.667,

Fu(T13) = Fp(T13) + max{Fc(13, 14) + Fu(T14) = 14.6667 + +max{11.831 + 16.6667} =

43.164,

Fu(T12) = Fp(T12) + max{Fc(12, 14) + Fu(T14)} = 15.0000 + max{6.879 + 16.6667} =

15.0000 + 23.5454 ≈ 38.545,

Fu(T11) = Fp(T11) + max{Fc(11, 13) + Fu(T13)} = 23.6667 + max{6.603 + 38.545} =

23.6667 + 45.148 ≈ 73.434,

70

Fu(T10) = Fp(T10) + max{Fc(10, 12) + Fu(T12)} = 21.3333 + max{1.431 + 38.545} =

21.3333 + 39.976 ≈ 61.309,

Fu(T9) = Fp(T9)+max{Fc(9, 13)+Fu(T13)} = 12.3333+max{3.907+43.164} = 12.3333+

47.071 ≈ 59.405,

Fu(T8) = Fp(T8) + max{Fc(8, 12) + Fu(T12)} = 16.3333 + max{11.611 + 38.545} =

16.3333 + 50.156 ≈ 66.490,

Fu(T7) = Fp(T7)+max{Fc(7, 11)+Fu(T11)} = 21.0000+max{0.550+61.309} = 21.0000+

61.859 ≈ 94.985,

Fu(T6) = Fp(T6) + max{Fc(6, 10) + Fu(T10)} = 22.6667 + max{13.537 + 61.309} =

22.6667 + 74.846 ≈ 97.513,

Fu(T5) = Fp(T5)+max{Fc(5, 9)+Fu(T9)), (Fc(5, 11)+Fu(T11))} = 17.0000+max{(11.831+

59.405), (12.381 + 73.434)} = 17.0000 + 85.815 ≈ 102.816,

Fu(T4) = Fp(T4)+max{(Fc(4, 8)+Fu(T8)), (Fc(4, 10)+Fu(T10))} = 9.6667+max{(13.482+

66.490), (10.345 + 61.309)} = 9.6667 + 79.972 ≈ 89.638,

Fu(T3) = Fp(T3)+max{Fc(3, 9)+Fu(T9)} = 19.6667+max{2.641+59.405} = 19.6667+

62.046 ≈ 81.713,

Fu(T2) = Fp(T2)+max{Fc(2, 8)+Fu(T8)} = 18.0000+max{1.431+66.490} = 18.0000+

67.921 ≈ 85.920,

Fu(T1) = Fp(T1)+max{(Fc(1, 2)+Fu(T2)), (Fc(1, 2)+Fu(T3)), (Fc(1, 3)+Fu(T3)), (Fc(1, 4)+

Fu(T4)), (Fc(1, 5)+Fu(T5)), (Fc(1, 5)+Fu(T6)), (Fc(1, 6)+Fu(T7)), (Fc(1, 7)+Fu(T7))} =

11.0000+max{(12.601+85.920), (5.668+81.713), (5.338+89.638), (3.632+102.816), (1.046+

97.513), (5.228 + 94.985)} = 11.0000 + 106.448 ≈ 117.448. �

The downward rank Fd(Ti) measures the longest path from Tentry to Ti, determined by the

computation cost of Ti, the data communication costs between Ti and its predecessors, and the

Fd value of Ti’s predecessors.

Definition 5.2.11 (Downward Rank Fd(Ti)). Given a workflow W (T,D, FT , FD) in a com-

71

puting environment E(RE, CE, FM , FB, FR), a task Ti’s downward rank in a workflow graph

G is defined as:

Fd(Ti) =

0, if Ti = Tentry,

maxTj∈pred(Ti)(Fp(Tj) + Fc(j, i) + Fd(Tj)), otherwise.

(5.9)

�

Example 5.2.12. Below, we demonstrate the downward rank computation procedure for each

task of the workflow in Figure 5.2, given the computation costs and communication costs in

Table 5.2 and Table 5.1.

Fd(T1) = 0,

Fd(T2) = max(Fp(T1) + Fc(1, 2) + Fd(T1)) = max(11.000 + 12.601 + 0) ≈ 23.601,

Fd(T3) = max(Fp(T1) + Fc(1, 3) + Fd(T1)) = max(11.000 + 5.668 + 0) ≈ 16.668,

Fd(T4) = max(Fp(T1) + Fc(1, 4) + Fd(T1)) = max(11.000 + 5.338 + 0) ≈ 16.338,

Fd(T5) = max(Fp(T1) + Fc(1, 5) + Fd(T1)) = max(11.000 + 3.632 + 0) ≈ 14.632,

Fd(T6) = max(Fp(T1) + Fc(1, 6) + Fd(T1)) = max(11.000 + 1.046 + 0) ≈ 12.046,

Fd(T7) = max(Fp(T1) + Fc(1, 7) + Fd(T1)) = max(11.000 + 5.228 + 0) ≈ 16.228,

Fd(T8) = max{(Fp(T2)+Fc(2, 8)+Fd(T2)), (Fp(T4)+Fc(4, 8)+Fd(T4))} = max{(18.000+

1.431 + 23.601), (9.667 + 13.482 + 16.338)} ≈ 43.032,

Fd(T9) = max{(Fp(T3)+Fc(3, 9)+Fd(T3)), (Fp(T5)+Fc(5, 9)+Fd(T5))} = max{(19.6667+

2.641 + 16.668), (17.0000 + 11.831 + 14.632)} ≈ 43.463,

Fd(T10) = max{(Fp(T4)+Fc(4, 10)+Fd(T4)), (Fp(T6)+Fc(6, 10)+Fd(T6))} = max{(9.6667+

10.345 + 16.338), (22.6667 + 13.537 + 12.046)} ≈ 48.249,

Fd(T11) = max{(Fp(T5)+Fc(5, 11)+Fd(T5)), (Fp(T7)+Fc(7, 11)+Fd(T7))} = max{(17.0000+

12.381 + 14.632), (21.0000 + 0.550 + 16.228)} ≈ 44.013,

Fd(T12) = max{(Fp(T8)+Fc(8, 12)+Fd(T8)), (Fp(T10)+Fc(10, 12)+Fd(T10))} = max{(16.3333+

11.611 + 43.032), (21.3333 + 1.431 + 48.249)} ≈ 71.013,

72

Ti Fu(Ti) Fd(Ti) Fr(Ti)

T1 117.448 0.000 117.448
T2 85.920 23.601 109.522

T3 81.713 16.668 98.381

T4 89.638 16.338 105.976

T5 102.816 14.632 117.448
T6 97.513 12.046 109.558

T7 94.985 16.228 111.212

T8 66.490 43.032 109.522

T9 59.405 43.463 102.868

T10 61.309 48.249 109.558

T11 73.434 44.013 117.448
T12 38.545 71.013 109.558

T13 43.164 74.283 117.448
T14 16.667 100.781 117.448

Table 5.3: Task priority ranks for the workflow in Figure 5.2

Fd(T13) = max{(Fp(T9) + Fc(9, 13) + Fd(T9)), (Fp(T11) + Fc(11, 13) + Fd(T11))}

= max{(12.3333 + 3.907 + 43.463), (23.6667 + 6.603 + 44.013)} ≈ 74.283,

Fd(T14) = max{(Fp(T12) + Fc(12, 14) + Fd(T12)), (Fp(T13) + Fc(14, 13) + Fd(T13))} =

max{(15.0000 + 6.879 + 71.013), (14.6667 + 11.831 + 74.283)} ≈ 100.781.

�

Definition 5.2.13 (Priority Rank Fr(Ti)). Given a workflow W (T,D, FT , FD) in a computing

environment E(RE, CE, FM , FB, FR), a task Ti’s priority rank in a workflow graph G is defined

as:

Fr(Ti) = Fu(Ti) + Fd(Ti). (5.10)

�

5.3 Workflow Scheduling Problem Description
In order to present our solution, we firstly introduce several notions as follows.

73

Definition 5.3.1 (Earliest Ready Time ERT (Ti, Rm)). Given a workflow graph G(T,D,R, Fc,

Fc, Fp, Fp, Fu, Fd, Fr), the earliest start time of Ti is the earliest time when all predecessors

have completed their executions and all input data have arrived at a resource Rm, which can be

defined as:

ERT (Ti, Rm) =

0, if Ti = Tentry,

maxTk∈pred(Ti){EFT (Tk, Rn) + Fc(k, i, n,m)}, if Rm, Rn ∈ R,

Ti ̸= Tentry,

maxTk∈pred(Ti){EFT (Tk, Rn) + Fc(k, i, n,m′)}, if Rm, Rn ∈ RE \R,

∃Rm′ ∈ R,FM(Rm′) = FM(Rm),

maxTk∈pred(Ti){EFT (Tk, Rn) + Fc(k, i)}, if Rm, Rn ∈ RE \R,

∀Rm′ ∈ R,FM(Rm′) ̸= FM(Rm).

(5.11)

�

If an entry task Ti is scheduled onto a resource Rm ∈ R, then ERT (Ti, Rm) = 0; Other-

wise, three cases are considered according to the resource Rm that Ti is assigned to: (1) if Rm

is a resource that has already been assigned to the workflow (Rm ∈ R), then ERT (Ti, Rm) is

determined by the earliest time when all predecessors of Ti have completed executions and all

the input data of Ti have transferred from Rn to Rm; (2) if Rm is a resource from the environ-

ment that has not been assigned to the workflow (RE\R) and its computing capability matches

at least one of the resources (∃Rm′ ∈ R,FM(Rm′) = FM(Rm)), it means that the execution

time of Ti on Rm and Rm′ are the same. The communication cost from Tk to Ti on Rm is

assumed to be equal to the communication cost from Tk to Ti on Rm′. The new resource Rm

is available once it is assigned to Ti, and after Ti completes execution, Rm is available to other

tasks of the workflow (R = R ∪Rm); (3) if Rm is a new resource that could be assigned to the

workflow (Rm /∈ R) but its computing capability does not match any of the currently assigned

74

resources (∀Rm′ ∈ R,FM(Rm′) ̸= FM(Rm), then the communication cost from Tk to Ti is

estimated by the average communication cost Fc(k, i). EFT (Tk, Rn) is the earliest finish time

of task Ti’s predecessor Tk on its assigned resource Rn. A task’s earliest finish time is defined

as follows.

Definition 5.3.2 (Earliest Finish Time EFT (Ti, Rm)). Given a a workflow graph G(T,D,R, Fc,

Fc, Fp, Fp, Fu, Fd, Fr), if task Ti is scheduled onto a resource Rm, the earliest finish time of Ti

is defined as:

EFT (Ti, Rm) =

Fp(Ti) + EST (Ti, Rm), if Rm, Rn ∈ RE \R, ∀Rm′ ∈ R,

FM(Rm′) ̸= FM(Rm),

Fp(Ti, Rm) + EST (Ti, Rm), otherwise.

(5.12)

�

Once a task Ti is scheduled on a resource Rm, the earliest finish time of Ti on Rm is

assigned to the task finish time of task Ti, denoted as TFT (Ti). EST (Ti, Rm) is the earliest

time of task Ti on a resource Rm, which is defined as follows.

Definition 5.3.3 (Earliest Start Time EST (Ti, Rm)). Given a workflow graph G(T,D,R, Fc,

Fc, Fp, Fp, Fu, Fd, Fr), the earliest start time of Ti on a resource Rm can be defined as:

EST (Ti, Rm) =

ERT (Ti, Rm), if Ti = Tentry,

max{getAvailT ime(Rm), ERT (Ti, Rm)}, otherwise.
(5.13)

where getAvailT ime(Rm) returns the earliest time that Rm is ready for a task execution. �

Example 5.3.4. Given the workflow in Figure 5.2, computation costs in Table 5.2, and com-

munication costs in Table 5.1, (1) suppose T1 (the entry task) is scheduled on R1, EST (T1, R1) =

0, EFT (T1, R1) = Fp(T1, R1) + EST (T1, R1) = 6 + 0 = 6; (2) Suppose T5 is the next task

75

scheduled on resource R1 ∈ R, EST (T5, R1) = max{getAvailT ime(R1), ERT (T1, R1) +

Fc(1, 5, 1, 1)}. As T1 has already scheduled on R1, and EFT (T1, R1) = 6, the earliest avail-

able time for R1 is equal to 6. The data communication cost between T1 and T5 is zero since

they are assigned to the same resource. In this case, EST (T5, R1) = max{6, (6 + 0)} = 6,

EFT (T5, R1) = Fp(T5, R1) + EST (T5, R1) = 13 + 6 = 19; (3) Suppose T5 is scheduled

on resource R4 /∈ R, FM(R4) = FM(R3), R4, R3 ∈ C3, the data transfer rate between C1

and C3 is equal to 28, so the data communication cost between between T1 on R1 and T5 on

R4 is Fc(1, 5, 1, 4) = FD(D1,5)/B1,3 = 66/28 ≈ 2.357. EST (T5, R4) = ERT (T1, R1) +

Fc(1, 5, 1, 4) = 6 + 2.357 = 8.357, and EFT (T5, R4) = Fp(T5, R4) + EST (T5, R4) =

Fp(T5, R3) + EST (T5, R4) = 15 + 8.357 = 23.357; (4) Suppose T5 is scheduled on resource

R7 /∈ R ,∀Rm′ ∈ R,FM(R7) ̸= FM(Rm′), R7 ∈ C4, the data communication cost between

T1 on R1 and T5 on R7 is Fc(1, 5, 1, 7) ≈ Fc(1, 5) = 66/18.1725 ≈ 3.632. In this case,

EST (T5, R7) = ERT (T5, R7) + Fc(1, 5) = 9.632, and EFT (T5, R7) ≈ 26.632. �

Definition 5.3.5 (Workflow makespan WMS). Given a workflow graph G in a computing

environment E(RE, CE, FM , FB, FR), the total completion time of the workflow, denoted as

WMS, is defined as:

WMS = TFT (Texit). (5.14)

�

Finally, the scheduling problem in a services computing environment can be formally stated

as follows. Given a workflow W (T,D, FT , FD) in a computing environment E(RE, C, FM , FB,

FR), the workflow can be represented by a weighted directed acyclic graph G(T,D,R, Fc, Fc,

Fp, Fp, Fu, Fd, Fr). A workflow schedule is required to map all tasks of this workflow to the

assigned resources and order the execution of these tasks on the resources, such that WMS

can be minimized.

76

5.4 Proposed Scheduling Algorithms
Our solution to the scheduling problem consists of two phases: a task prioritizing phase

and a resource selection phase. In the task prioritizing phase, we propose a task prioritizing

algorithm to rank the order of tasks for a workflow execution. In the resource selection phase,

we propose a SHEFT algorithm (Scalable-Heterogeneous-Earliest-Finish-Time algorithm) and

a SCPOR algorithm (Scalable-Critical-Path-On-a-Resource algorithm) to schedule large-scale

workflows in a services computing environment. The SHEFT algorithm and the SCPOR algo-

rithm are extensions of the HEFT algorithm (Heterogeneous-Earliest-Finish-Time algorithm)

and the CPOP algorithm (Critical-Path-On-a-Processor) [94], which were applied for mapping

a workflow application to a bounded number of processors. The detailed strategy and proce-

dure are described as follows.

5.4.1 The Task Prioritizing Algorithm

In the task prioritizing phase, each task of a workflow is ordered by its priority rank Fr(Ti).

The algorithm to form a list of prioritized tasks, denoted as ListPriority, is shown in Figure 5.3.

Firstly, we calculate the average communication cost Fc(i, j)(Tj ∈ succ(Ti)) and computation

cost Fp(Ti) for each task in the given workflow graph. After that, the upward rank, downward

rank and priority rank for each task are calculated. Then, we create a temporary list called

ListCandidates to save tasks that are ready to be prioritized. The entry task is initially contained

in the list (line 2), which means that the task is the first one to be processed. Since the entry task

has no predecessors and its priority value is so far the highest in ListCandidates, the entry task

is removed from ListCandidates and added into ListPriority. Then the successors of the entry

task succ(Tentry) are put into ListCandidates. From tasks in ListCandidates, we select a task TC

with the highest priority rank, remove it from ListCandidates, and then add it into ListPriority

(line 3-8). Next, for each successor of the newly removed task TC , if all its predecessors are

in ListPriority, which means that all the predecessors have already been processed, then the

task is eligible to be selected into ListCandidates (line 11-13). Such a procedure is repeated

77

until ListCandidates is empty (line 3 - 15). In this case, all tasks in this workflow are ranked in

ListPriority.

The Task Prioritizing Algorithm
Input: G(T,D,R, Fc, Fc, Fp, Fp, Fu, Fd, Fr)
Output: ListPriority

(1) Begin
(2) ListPriority = ∅, ListCandidates = {Tentry}
(3) while (ListCandidates ̸= ∅) do
(4) int maxPriority = 0, TC = NULL
(5) for each (Tj ∈ ListCandidates)
(6) if (Fr(Tj) > maxPriority)
(7) then maxPriority = Fr(Tj), TC = Tj

(8) end for
(9) ListPriority = ListPriority ∪ TC

(10) ListCandidates = ListCandidates \ TC

(11) for each (Tj ∈ succ(TC))
(12) if (pre(Tj) ⊂ ListPriority)
(13) then ListCandidates = ListCandidates ∪ Tj

(14) end for
(15) end while
(16) End Function

Figure 5.3: The pseudo-code of the task prioritizing algorithm

Example 5.4.1. For each task of the workflow in Figure 5.2, its upward rank, downward

rank and priority rank are listed in Table 5.3. To form a ListPriority for this workflow, task T1,

as the entry task, is firstly added into ListPriority, ListPriority = {T1}. Then ListCandidates =

succ(T1) = {T2, T3, T4, T5, T6, T7}. The next task will be selected from ListCandidates. As

Fr(T5) = 117.448 is the largest priority rank, T5 is selected right after T1. Now, ListPriority =

{T1, T5} and ListCandidates = {T2, T3, T4, T6, T7}. According to their priority ranks, T7 wins

the third place (ListPriority = {T1, T5, T7}). At this time, T11, as an immediate successor of T5

and T7, is added into ListCandidates. The selection is therefore taken from {T2, T3, T4, T6, T11},

their priority values are 109.522, 98.381, 105.976, 109.558 and 117.448, respectively. In this

case, T11 is selected into ListPriority. The rest of tasks are prioritized in a similar way. At last,

78

the priority list of the workflow is ranked as:

{T1, T5, T7, T11, T6, T2, T4, T10, T8, T12, T3, T9, T13, T14}. �

5.4.2 The SHEFT Algorithm

In the resource selection phase, tasks in a workflow are scheduled one by one accord-

ing to their orders in ListPriority. Each task is mapped to a suitable resource that may min-

imize the earliest finish time of the task. Once a resource Rk is assigned to a task Ti, <

Ti, Rk, EST (Ti, Rk), EFT (Ti, Rk) > is recorded into a result set ListSchedule, which is used

to instruct the workflow to be executed during runtime.

In the SHEFT algorithm (Figure 5.4), the available time of each resource Rk ∈ R is firstly

initialized to zero (line 2-4). It means that any of resources is available to be mapped to a task

at the beginning of the scheduling procedure. Then a task Ti with the highest priority rank from

ListPriority is selected to be scheduled (line 7). For each resource Rk ∈ R, the earliest start

time EST (Ti, Rk) and earliest finish time EFT (Ti, Rk) of Ti on a resource Rk is calculated. A

resource that produces the smallest earliest finish time (minEFT) is assigned to a temporary

variable RS (line 8-12).

Next, the scheduling decision is based on the following three cases: (1) If at least one

resource’s available time is earlier than the minimum of task Ti’s earliest ready time on a

resource Rn, then Ti is mapped to RS , < Ti, RS, EST (Ti, RS), EFT (Ti, RS) > is added into

ListSchedule, and the available time of RS is reset to minEFT (line 13-14); (2) If none of the

assignments is available at the earliest ready time of Ti, it means that all assigned resources are

still in process for other tasks. In this case, a new resource Rn from the computing environment

will be considered to be assigned to the workflow. If EFT (Ti, Rn) is earlier than minEFT ,

then Ti is mapped to Rn, < Ti, Rn, EST (Ti, Rn), EFT (Ti, Rn) > is added into ListSchedule.

The resource Rn is assigned to RS and added into R, so Rn can be reused by any other resources

after EFT (Ti, Rn) (line 16-19); (3) If the earliest finish time on any of new resources is later

than minEFT , then Ti is mapped to RS , < Ti, RS, EST (Ti, RS), EFT (Ti, RS) > is added

79

The SHEFT Algorithm
Input: G(T,D,R, Fc, Fc, Fp, Fp, Fu, Fd, Fr),E(RE, CE, FM , FB, FR), ListPriority, tidle
Output: ListSchedule

(1)Begin
(2) for each Rk ∈ R
(3) setAvailT ime(Rk) = 0
(4) end for
(5) while (ListPriority ̸= ∅)
(6) int minEFT = MAX NUMBER,RS = NULL,
(7) select Ti ∈ ListPriority with the highest priority rank
(8) for each Rk ∈ R
(9) calculate EST (Ti, Rk) and EFT (Ti, Rk)
(10) if (EFT (Ti, Rk) < minEFT)
(11) then minEFT = EFT (Ti, Rk), RS = Rk

(12) end for
(13) if (minRk∈R{getAvailT ime(Rk)} ≤ minRn∈R{ERT (Ti, Rn)})
(14) then map Ti to RS, update ListSchedule, setAvailT ime(RS) = minEFT
(15) else
(16) request a new resource Rn /∈ R, ∃Rn′ ∈ R, FM(Rn) == FM(Rn′)
(17) calculate EST (Ti, Rn) and EFT (Ti, Rn)
(18) if (EFT (Ti, Rn) < minEFT)
(19) then map Ti to Rn ,RS = Rn, R = Rn ∪R, update ListSchedule,

minEFT = EFT (Ti, Rn), setAvailT ime(Rn) = minEFT
(20) else
(21) map Ti to RS , update ListSchedule, setAvailT ime(RS) = minEFT
(22) for each Rk ∈ R
(23) if ((minEFT − getAvailT ime(Rk)) > tidle)
(24) then R = R \Rk

(25) end for
(26) ListPriority = ListPriority \ Ti

(27) end while
(28) End Algorithm

Figure 5.4: The pseudo-code of the SHEFT algorithm

into ListSchedule, and the available time of RS is reset to minEFT (line 21).

For each resource Rk, if the resource Rk has been kept idle longer than a given threshold

tidle by the earliest finish time of task Ti ((minEFT − getAvailT ime(Rk)) > tidle), then Rk

will be removed from the assigned resources R (line 22-25). There are mainly three reasons

80

that might cause the workflow resources to scale in: (1) The initially assigned resources are

more than sufficient for the workflow execution; (2) The computing capability of a resource

is far less than any other assigned resources, so it has no chance for being selected; (3) An

unbalanced workflow graph leads to uneven resource usage. For instance, a large number of

resources are only required at the beginning of the execution. The resource availability times

are updated after each task is mapped.

Example 5.4.2. According to the order in ListPriority in Example 5.4.1, T1 is the first

task to be scheduled. At the beginning, getAvailT ime(R1) = 0, getAvailT ime(R2) =

0, getAvailT ime(R3) = 0, R = {R1, R2, R3}. As an entry task, the earliest start times of T1

on resource R1, R2 and R3 are as follows: EST (T1, R1) = 0, EST (T1, R2) = 0, EST (T1, R3) =

0, the earliest finish times of T1 on these three resources are as follows: EFT (T1, R1) =

Fp(T1, R1) + EST (T1, R1) = 6 + 0 = 6, EFT (T1, R2) = Fp(T1, R2) + EST (T1, R2) =

18 + 0 = 18, EFT (T1, R3) = Fp(T1, R3) + EST (T1, R3) = 9 + 0 = 9. Therefore, T1 is

mapped to R1, setAvailT ime(R1) = EFT (T1, R1) = 6.

T5 is the second task to be scheduled in ListPriority. At this time, getAvailT ime(R1) = 6,

getAvailT ime(R2) = 0, getAvailT ime(R3) = 0. The earliest start times of T1 on assigned

resources are as follows:

EST (T5, R1) = max{getAvailT ime(R1), ERT (T5, R1)} = max{6, 6 + 0} = 6,

EST (T5, R2) = max{getAvailT ime(R2), ERT (T5, R2)} = max{0, 6 + 19/11} = 7.727,

EST (T5, R3) = max{getAvailT ime(R3), ERT (T5, R3)} = max{0, 6 + 19/28} = 6.679,

EFT (T5, R1) = Fp(T5, R1) + EST (T5, R1) = 13 + 6 = 19,

EFT (T5, R2) = Fp(T5, R2) + EST (T5, R2) = 23 + 7.727 = 30.727,

EFT (T5, R3) = Fp(T5, R3) + EST (T5, R3) = 15 + 6.679 = 21.679.

Since minRk∈R{getAvailT ime(Rk)} = getAvailT ime(R2) = getAvailT ime(R3) = 0,

minRn∈R{ERT (Ti, Rn) = ERT (T5, R1) = 6, no new resource is considered for T5. In this

case, T5 is mapped to R1 as well, setAvailT ime(R1) = EFT (T5, R1) = 19.

81

In a similar way, T7, T11 and T6 are scheduled onto resource R1, R3 and R2, respectively.

When T2 is ready to be scheduled, getAvailT ime(R1) = 31.00, getAvailT ime(R2) = 36.68,

getAvailT ime(R3) = 53.36. The earliest start times of T2 on currently assigned resources are

as follows:

EST (T2, R1) = max{getAvailT ime(R1), ERT (T2, R1)} = max{31.00, 6 + 0} = 31,

EST (T2, R2) = max{getAvailT ime(R2), ERT (T2, R2)} = max{36.68, 6 + 229/11} =

36.68,

EST (T2, R3) = max{getAvailT ime(R3), ERT (T2, R3)} = max{53.36, 6 + 229/28} =

53.36,

EFT (T2, R1) = Fp(T2, R1) + EST (T2, R1) = 13 + 31 = 44.00,

EFT (T2, R2) = Fp(T2, R2) + EST (T2, R2) = 24 + 36.68 = 60.68,

EFT (T2, R3) = Fp(T2, R3) + EST (T2, R3) = 17 + 53.36 = 70.36.

Since ERT (T2, R1) = 6 is less than the minimum resource available time getAvailT ime(R1) =

31, a new resource is considered in this case. As FB(Cm, Cm) ≫ FB(Cm, Cn),m ̸= n in most

of cases, we approximate Fc(i, j,m, n) ≈ 0 in this dissertation for simplicity (such approxi-

mation does not affect the proposed approach.)

EST (T2, R1′) = max{getAvailT ime(R1′), ERT (T2, R1′)} = max{6 + 0} = 6,

EST (T2, R2′) = max{getAvailT ime(R2′), ERT (T2, R2′)} = max{6 + 229/11} ≈ 20.818,

EST (T4, R3′) = max{getAvailT ime(R3′), ERT (T2, R3′)} = max{6 + 229/28} ≈ 8.179,

EFT (T2, R1′) = Fp(T2, R1′) + EST (T2, R1′) = 13 + 6 = 19.000,

EFT (T2, R2′) = Fp(T2, R2′) + EST (T2, R2′) = 24 + 20.818 = 44.818,

EFT (T2, R3′) = Fp(T2, R3′) + EST (T2, R3′) = 17 + 8.179 = 25.464.

As EFT (T2, R1′) = 19.000 is less than EFT (T2, R1) = 44.00, then a resource R4 from clus-

ter C1 is assigned to T2. The scheduling results of the rest of tasks are shown in Table 5.5 based

on the SHEFT algorithm. �

82

Ti Rk EST (Ti, Rk) EFT (Ti, Rk)

T1 R1 0.000 6.000

T5 R1 6.000 19.000

T7 R3 19.000 31.000

T11 R3 31.357 53.357

T6 R2 7.727 17.727

T2 R2 6.000 19.000

T4 R4 9.464 14.464

T10 R4 27.189 43.189

T8 R2 23.887 36.887

T12 R3 45.003 55.003

T3 R5 6.000 22.000

T9 R1 22.000 40.000

T13 R4 53.357 63.357

T14 R3 63.357 75.357

Table 5.4: The scheduling result for the workflow in Figure 5.2 with the SHEFT algorithm

5.4.3 The SCPOR Algorithm

In the resource selection phase of the SCPOR algorithm, tasks are scheduled according to

their orders in ListPriority, as in the SHEFT algorithm. To minimize the workflow makespan,

the SCPOR algorithm is to map all tasks on the critical path of the workflow graph to a ded-

icated resource, so that the data communication costs between tasks on the critical path are

eliminated. First of all, we introduce the concept of the critical path as follows.

Definition 5.4.3 (Critical Path CP). Given a workflow graph G, there exists at least one path

from Tentry to Texit, such that Tentry → Ti → Tj → · · · → Texit. A set of such a path is

denoted as P . A critical path of the workflow is defined as:

CP (G) = {ρ|ρ ∈ P,∀Ti ∈ Tρ, Fr(Ti) = Fr(Tentry)}, (5.15)

where a set of tasks in a path ρinP is denoted as Tρ. The priority rank of each task in Tρ is

equal to the priority rank of the entry task in the graph. �

83

If a task Ti’s priority rank Fr(Ti) = Fr(Tentry), then Ti is a critical task of the workflow.

A set of critical tasks is denoted as ListCP . A workflow may have multiple critical paths, the

SCPOR algorithm chooses one of them and select critical tasks on this path into ListCP . The

procedure to form ListCP is implemented by the getCPList(G,E,R) function. As shown in

Figure 5.5, ListCP initially contains the entry task in the list. From the successors of the entry

task, a task Tj is selected into ListCP if Fr(Tj) is equal to Fr(Tentry). Then the successors

of Tj will be traversed to select the next task that has the same priority rank with Tentry. The

procedure is repeated until the search reaches the exit task.

The getCPList(G,E) Function
Input: G(T,D,R, Fc, Fc, Fp, Fp, Fu, Fd, Fr), E(RE, CE, FM , FB, FR)
Output: ListCP

(1) Begin
(2) ListCP = {Tentry}
(3) Tk = Tentry

(4) while (Tk ̸= Texit) do
(5) select Tj where (Tj ∈ succ(Tk)) and (Fr(Tj) == Fr(Tentry))
(6) ListCP = ListCP ∪ {Tj}
(7) Tk = Tj

(8) end while
(9) End Function

Figure 5.5: The getCPList(G,E) Function

Example 5.4.4. From the Table 5.3, Fr(T1) = Fr(T5) = Fr(T11) = Fr(T13) = Fr(T14) =

117.448, ListCP = {T1, T5, T11, T13, T14}. �

The first step of the SCPOR algorithm (Figure 5.6) is to select a dedicated resource RC for

the execution of all critical tasks. The total computation cost of critical tasks
∑

Ti∈ListCP ,Rk∈R

Fp(Ti, Rk) is calculated for each resource, and a resource that produces the minimum cost

is selected as RC (line 3-7). RC is exclusively used for critical tasks until all of them are

scheduled.

In the SCPOR algorithm, the scheduling decision to a task is based on the following

84

four cases: (1) If a task Ti is a critical task (Ti ∈ ListCP), then Ti is mapped onto the re-

source RC , < Ti, RC , EST (Ti, RC), EFT (Ti, RC) > is added into ListSchedule, and the avail-

able time of RC is reset to EFT (Ti, RC) (line 11 - 12). Otherwise, the earliest start time

EST (Ti, Rk) and earliest finish time EFT (Ti, Rk) of Ti on a resource Rk is calculated on

each of assigned resources except RC . A resource that produces the smallest earliest finish

time (minEFT) is assigned to a temporary variable RS (line 14-18); (2) if Ti is not a criti-

cal task and the resource RS is available by the earliest ready time of Ti, then Ti is mapped

to RS , < Ti, RS, EST (Ti, RS), EFT (Ti, RS) > is added into ListSchedule, and the available

time of RS is reset to minEFT (line 19-20); (3) if Ti is not a critical task and resource RS is

unavailable at the earliest ready time of Ti, then a new resource Rn will be considered to be

assigned to the workflow. If EFT (Ti, RS) is earlier than minEFT , then Ti is mapped to Rn,

< Ti, Rn, EST (Ti, Rn), EFT (Ti, Rn) > is added into ListSchedule. Resource Rn is assigned

to RS and added into R, so Rn can be reused by any other resources after EFT (Ti, RS) (line

22-25); (4) If Ti is not a critical task and the earliest finish time on any of new resources is later

than minEFT , then Ti is mapped to RS , < Ti, RS, EST (Ti, RS), EFT (Ti, RS) > is added

into ListSchedule, and the available time of RS is reset to minEFT (line 27). The rest of the

procedures for checking the idle time of each resource (line 28-31) is similar to the SHEFT

algorithm.

Example 5.4.5. For each critical task in Example 5.4.4, (1) if they are scheduled onto R1,∑
Ti∈ListCP

Fp(Ti, R1) = Fp(T1, R1)+Fp(T5, R1)+Fp(T11, R1)+Fp(T13, R1)+Fp(T14, R1) =

6+13+23+12+15 = 69; (2) if critical tasks are scheduled onto R2,
∑

Ti∈ListCP
Fp(Ti, R2) =

Fp(T1, R2) + Fp(T5, R2) + Fp(T11, R2) + Fp(T13, R2) + Fp(T14, R2) = 18 + 23 + 26 + 22 +

23 = 112; (3) if critical tasks are scheduled onto R3,
∑

Ti∈ListCP
Fp(Ti, R3) = Fp(T1, R3) +

Fp(T5, R3)+Fp(T11, R3)+Fp(T13, R3)+Fp(T14, R3) = 9+15+10+10+12 = 56. Therefore,

R3 is selected to be the dedicated resource for all critical tasks. �

According to ListPriority in Example 5.4.1, T1 is the first task to be scheduled, T1 ∈

85

The SCPOR Algorithm
Input: G,E, tidle, ListPriority, ListCP

Output: ListSchedule
(1)Begin
(2) int minCP = MAX NUMBER,RC = NULL
(3) for each Rk ∈ R
(4) setAvailT ime(Rk) = 0
(5) if (

∑
Ti∈ListCP

Fp(Ti, Rk) < minCP)
(6) then minCP =

∑
Ti∈ListCP

Fp(Ti, Rk), RC = Rk

(7) end for
(8) while (ListPriority ̸= ∅)
(9) int minEFT = MAX NUMBER,RC = NULL
(10) select Ti ∈ ListPriority with the highest priority rank
(11) if (Ti ∈ ListCP)
(12) then map Ti to RC , update ListSchedule, setAvailT ime(RC) = EFT (Ti, RC)
(13) else
(14) for each Rk ∈ (R \RC)
(15) calculate EST (Ti, Rk) and EFT (Ti, Rk)
(16) if (EFT (Ti, Rk) < minEFT)
(17) then minEFT = EFT (Ti, Rk), RS = Rk

(18) end for
(19) if (minRk∈R{getAvailT ime(Rk)} ≤ minRn∈R{ERT (Ti, Rn)})
(20) then map Ti to RS, update ListSchedule,

setAvailT ime(RS) = minEFT
(21) else
(22) request a new resource Rn /∈ R, ∃Rn′ ∈ R, FM(Rn) == FM(Rn′)
(23) calculate EST (Ti, Rn) and EFT (Ti, Rn)
(24) if (EFT (Ti, Rn) < minEFT)
(25) then map Ti to Rn ,RS = Rn, R = Rn ∪R, update ListSchedule,

minEFT = EFT (Ti, Rn), setAvailT ime(Rn) = minEFT
(26) else
(27) map Ti to RS , update ListSchedule, setAvailT ime(RS) = minEFT
(28) for each Rk ∈ (R \RC)
(29) if (minEFT − getAvailT ime(Rk)) > tidle)
(30) then R = R \Rk

(31) end for
(32) ListPriority = ListPriority \ Ti

(33) end while
(34) End Algorithm

Figure 5.6: The SCPOR Algorithm

86

Ti Rk EST (Ti, Rk) EFT (Ti, Rk)

T1 R3 0.000 9.000

T5 R3 9.000 24.000

T7 R1 12.393 24.393

T11 R3 24.750 46.750

T6 R2 9.731 19.731

T2 R4 9.000 26.000

T4 R5 9.000 14.000

T10 R2 21.231 43.231

T8 R4 26.000 38.000

T12 R4 44.231 54.231

T3 R6 12.679 28.679

T9 R5 30.393 39.393

T13 R3 46.750 56.750

T14 R3 56.750 68.750

Table 5.5: The scheduling result for the workflow in Figure 5.2 with the SCPOR algorithm

ListCP , so it is scheduled onto R3. As the entry task, EST (T1, R3) = 0, EFT (T1, R3) =

Fp(T1, R3) + EST (T1, R3) = 9, setAvailT ime(R3) = EFT (T1, R3) = 9.

T5, ranked as the second task in ListPriority, is also a critical task, so it is scheduled onto

R3 as well. EST (T5, R3) = 9, EFT (T5, R3) = Fp(T5, R3) + EST (T5, R3) = 15 + 9 =

24, setAvailT ime(R3) = EFT (T5, R3) = 24.

The third task to be scheduled in ListPriority is T7. T7 is not a critical task, so T7 will

not be scheduled on R3. Since R1 and R2 are still available at this time, no new resource

is needed to be considered. EST (T7, R1) = max{getAvailT ime(R1), ERT (T7, R1)} =

max{0,max{9+95/28}} = max{0, 12.393} = 12.393, EST (T7, R2) = max{getAvailT ime(R2),

ERT (T7, R2)} = max{0,max{9 + 95/26}} = max{0, 12.654} = 12.654, EFT (T7, R1) =

Fp(T7, R1)+EST (T7, R1) = 12+12.393 = 24.393, EFT (T7, R2) = Fp(T7, R2)+EST (T7, R2) =

26 + 12.654 = 38.654. Therefore, T7 is mapped onto resource R1, setAvailT ime(R1) =

EFT (T7, R1) = 24.393. The scheduling results of the rest of tasks are shown in Table 5.5

based on the SCPOR algorithm.

87

5.5 Experiments and Discussion
We firstly present the simulation of a services computing environment in Section 5.5.1.

Then in Section 5.5.2, our developed workflow generator randomly constructs workflows with

various graph attributes. The results of a randomly generated workflow scheduled by the HEFT,

SHEFT, CPOP and SCPOP algorithms are analyzed and compared in Section 5.5.3. To further

evaluate the performance of our proposed algorithms, extensive experiments on large-scale

workflows, compute-intensive workflows, and data-intensive workflows are performed and all

statistical experiment results are shown in Section 5.5.4, Section 5.5.5 and Section 5.5.6, re-

spectively.

5.5.1 Computing Environment Simulation

To schedule a workflow, we firstly simulate a computing environment with the following

input parameters:

1. The total number of resources in the environment (|RE|). A set of compute resources are

created to simulate a computing environment, given the total number of resources |RE|.

Each resource has three attributes: a unique resource identifier, a cluster identifier, and

the available time of this resource.

2. The total number of clusters in the environment (|CE|). The number of clusters |CE| can

be set between 1 and |RE|.

3. A mapping between resource Ri and Cj (FM(Ri) = Cj). For each resource Ri ∈ RE , a

mapping is randomly generated to assign Ri to a cluster Cj ∈ C. A checking procedure

is performed to make sure that there is no empty clusters. (|Cj| > 0, 1 ≤ j ≤ |CE|).

4. The number of resources assigned to a workflow (|R|). A set of resources R from RE are

assigned to a workflow. In our experiments, if |R| ≤ |CE|, we randomly select resources

from |R| clusters; Otherwise, we firstly select one resource from each cluster, then the

rest of resources (|R| − |CE|) are randomly selected from |CE| clusters.

88

5. The resource idle time threshold for a workflow (tidle). Once the idle time of a resource

Ri ∈ R is larger than tidle, Ri is considered to be returned from R to RE .

6. Data transfer rates between cluster Cm and Cn (FB(Cm, Cn)). In our experiments, a data

transfer rate between two clusters is randomly generated between 0 and 10 Mbps.

5.5.2 Random Workflow Graph Generation

To evaluate our proposed algorithms, we develop a workflow generator to randomly gener-

ate workflow graphs. Each graph is built by the following input parameters:

1. The minimum and maximum numbers of the depth of a graph (MINdepth,MAXdepth).

In our workflow model, the depth of each workflow has at least two levels (the entry

task at the first level and the exit task at the second level), so the minimum depth of the

workflow graph is no less than 2 (MINdepth ≥ 2). The depth of a graph is randomly

generated between MINdepth and MAXdepth.

2. The minimum and the maximum numbers of vertices at each level (MINvertex,MAXvertex).

In our workflow model, only the entry task is at the first level of the graph (MINvertex =

MAXvertex = 1), and only the exit task is at the last level (MINvertex = MAXvertex =

1. Other than these two levels, the number of vertices at each level is randomly gener-

ated between MINvertex and MAXvertex. The total number of tasks in a workflow can

be calculated by the sum of the vertices at each level.

Given the above input parameters, the workflow generator randomly generates a work-

flow graph with the depth between MINdepth and MAXdepth, and a number of vertices

between MINvertex and MAXvertex at each level. For each vertex, the connectivity to

other vertex is determined by a randomly generated boolean value. If the value is true, an

edge is created between these two vertices. After all vertices are processed, a checking

procedures are performed to make sure that the out-degree of each vertex in the graph

complies with the definition of the workflow.

89

3. The weight of each vertex (Fp(Ti)). In our workflow model, the average computation

cost of a task is represented by the weight of a vertex in the workflow graph. In our

experiments, the computation cost of a task on each resource Rk ∈ R is randomly gener-

ated between 0 and 360 hours. A |T |×|R| matrix of computation costs MC is constructed

for calculating the average computation cost of each task of the workflow.

4. The weight of each edge (Fc(i, j)). In our workflow model, the average data communi-

cation cost Fc(i, j) between task Ti and task Tj is represented by the weight of each edge.

In our experiments, the data size transferred between two tasks is randomly generated

between 0 and 10 gigabytes.

T14

T4

T11

R1

R2

T10

T26 19

T6 17.73
T823.887 36.88

T13

12.39
T1 6

T5

T11R3

R4

R5

19

T9

43.19T4

31.36
T14

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110
(a)

27.19
T12

53.36 75.3663.36

R1

R2 T67.73 17.73

T2

30.73

44

T12

12.39
T1 6

T5 T7

R3

19
T3

31.36
T1377.09

31

T8
65.3653.36 75.36

T10 52.73

60

T964.36 74.36

87.09 99.09

T7 31

45

R6
T36 22

4022

9.46 14.46 55

7.73

(b)

Figure 5.7: The workflow in Figure 5.2 is scheduled by (a) the the HEFT algorithm; (b) the
SHEFT algorithm (tidle = 60).

5.5.3 Workflow Scheduling Result Analysis

To evaluate our proposed algorithms, we develop the HEFT, CPOP, SHEFT and SCPOR

algorithms and apply them to schedule the workflow in Figure 5.2, which is randomly generated

90

by our developed framework. Three resources, R1, R2 and R3, are initially assigned to the

workflow from the simulated computing environment. They are in clusters C1, C2 and C3,

respectively. The average computation cost of each task in the workflow are given in Table 5.2,

and the average data communication cost can be calculated given the information in Table 5.1.

In Figure 5.7, the results scheduled by the HEFT and the SHEFT algorithms are shown in

the two Gantt charts. The workflow makespan scheduled by the SHEFT algorithm is 75.36,

24% percent improved from the makespan scheduled by the HEFT algorithm (99.09). The

vertical dashed line in the Figure 5.7 shows the gap of workflow makespan scheduled by the

two algorithms. Using the HEFT algorithm, R1, R2 and R3 are consumed by this workflow

until the exit task T14 completes. The total usage of the three resources is 297.28 seconds;

while the resources can be dynamically changed in SHEFT algorithm, the total resource usage

is 246.92 seconds, 17% improved from the HEFT algorithm.

R1

R2

T49 14

T29 26

T69.73 19.73
T1021.23 43.23

T712.39

T1 9
T5 24

T11R3

R4

R5

(b)

24.75

24.39

T8 38
T1254.2344.23

T312.68 28.68R6

T9 39.3930.39

T13 56.7546.75
T14 68.75

0 10 20 30 40 50 60 70 80 90 100 110

0 10 20 30 40 50 60 70 80 90 100 110

R1

R2 T69.73 19.73
T4 32.73

T712.39

T1 9
T5 24

T11R3 24.75

24.39

T13 56.7546.75
T14 68.75

(a)

T2 37.39

T10 54.73
T8 T1267.73 91.73

T3 53.39
T9 71.39

T3 83.9373.93
T14 108.5495.54

Figure 5.8: The workflow in Figure 5.2 is scheduled by (a) the the CPOP algorithm and (b) the
SCPOR algorithm (tidle = 20).

91

In Figure 5.7.(b), T1, T5 and T7 are scheduled on R1, T6 and T11 are scheduled on R2 and

R3. When T2 is ready to be scheduled, all the three assigned resources are unavailable until

T7 completes at the 31st second. In this case, a new compute resource R4 ∈ C1 is assigned

to T2. R4 is available for other tasks after T2 completes at the 19th second. Then T4, T10, T12

are assigned to new resource R5 ∈ C3, T3 is assigned new resource R6 ∈ C1. Because of the

introduced three resources R4,R5 and R6 , T2.T3, T4, T9, T10, T12 complete earlier than the time

they complete using the HEFT algorithm.

During the workflow execution, the number of resources is equal to 3 at the beginning

(R1, R2 and R3), then increases to 5 at 6th second (R = {R1, R2, R3, R4, R5}), and further

increases to 65 at 9.46th second (R = {R1, R2, R3, R4, R5, R6}). R6 is released at the 22nd

second, followed by R1 released at 31st second, R2 released at 36.88th second, and R4 released

at 40th second, R5 released at 55th second. R3 is finally released to the computing environment

at the 75.36th second. The horizontal dash lines indicate the idle time of the resources.

The two Gantt charts in Figure 5.8 has shown that the SCPOR algorithm performs much

better than the CPOP algorithm in terms of the workflow makespan and resource usage. More

specifically, the workflow makespan scheduled by the SCPOR algorithm is 68.75, 36.66%

percent improved from the makespan scheduled by the CPOP algorithm (108.54). The resource

usage scheduled by these two algorithms are 325.62 and 227.99, respectively. The resource

usage by the SCPOR algorithm is 30% less than the CPOP algorithm.

5.5.4 Statistical Performance Evaluation on Scalable Workflows

To evaluate the scalability performance of our proposed algorithms, we firstly set 7 ranges

for the number of tasks in a workflow. That is [2, 10], [10, 30], [31, 50], [51, 70], [71, 100], [100, 200]

and [200, 300]. For each range, our developed workflow generator randomly generates 50, 000

workflow graphs. The communication costs and computation costs of these workflows are

also randomly generated within defined reasonable ranges. Then we schedule these work-

flows by the HEFT, SHEFT, CPOP and SCPOR algorithms and compare their scheduled

92

workflow makespan as the size of the workflows increases. The total number that one al-

gorithm outperforms another is counted, divided by the total number of experiments (50, 000)

is considered as the probability of this algorithm outperforms the other algorithm. For ex-

ample, in Figure 5.9.(a), there are 14, 550 out of 50, 000 times that the workflow makespan

scheduled by the SHEFT is less than that scheduled by the HEFT algorithm, when the num-

ber of tasks of a workflow is less than 10. Therefore, the probability that SHEFT outper-

forms HEFT is 14550/50000 = 29.1%, and the probability that HEFT outperforms SHEFT is

1− 29.1% = 70.9%.

0

0.2

0.4

0.6

0.8

1

1.2

[2-10] [11-30] [31-50] [51-70] [71-100] [101-200] [201-300]

Task Number

P
ro

b
ab

ili
ty

SHEFT < HEFT

HEFT < SHEFT

0

0.2

0.4

0.6

0.8

1

1.2

[2-10] [11-30] [31-50] [51-70] [71-100] [101-200] [201-300]

Task Number

P
ro

b
ab

ili
ty

SCPOR < CPOP

CPOP < SCPOR

(a) (b)

Figure 5.9: Scheduling 50,000 randomly generated workflows for the number of tasks in each
range. The comparison of scheduling results (a) between SHEFT and HEFT and (b) between
SCPOR and CPOP.

Although the HEFT algorithm shows better performance when the number of tasks is less

than 10, as the size of workflows increases, our proposed algorithm exhibits better perfor-

mance as follows: When tasks of a workflow increases to the range of [11, 30], the probability

of SHEFT outperforms HEFT goes up to 61.1%, then the probability continues to increase

from 74.0%, 79.7%, 85.9% to 96.7%, as the number of tasks in a workflows is increased from

[31, 50], [51, 70], [71, 100] to [100, 200]. When the number of tasks in a workflow is more than

200, all 50, 000 workflows scheduled by SHEFT outperform better than these workflows sched-

93

uled by HEFT.

The performance between the CPOP and SCPOR algorithm follows the same trend. When

the number of tasks is in the range of [2, 10], the probability of CPOP outperforms SCPOR is

63% while the probability of SCPOR wins CPOP is 37%. However, as the number of tasks

increases, the performance of SHEFT is shown better and better. As shown in Figure 5.9.(b),

the probability keeps rising from 78.6%, 93.3%, 97.2% to 98.9%, as the number of tasks in a

workflows increases from [31, 50], [51, 70], [71, 100] to [100, 200]. When the number of tasks

reaches to the range of [101, 200], the probability that SCPOR outperforms CPOP becomes 1,

it means that none of the scheduling results in the 50, 000 experiments scheduled by CPOP is

better than the results scheduled by SCPOR. When the number of tasks continue to increase to

[201, 300], it is still shown that SCPOR outperforms CPOP in all another 50, 000 experiments.

5.5.5 Statistical Performance Evaluation on Compute-intensive Work-

flows

To investigate the performance for compute-intensive workflows, our developed workflow

generator randomly generates 50, 000 workflow graphs for the number of tasks in the ranges

of [2, 50], [51, 100], [101, 150], [151, 200] and [201, 250]. For each workflow, the total num-

ber of computation costs of tasks is at least 50 times greater than the communication costs.

we schedule these workflows by the HEFT, SHEFT, CPOP and SCPOR algorithms and com-

pare their scheduled workflow makespans with different ranges of task numbers. As shown in

Figure 5.10.(a), when the number of tasks are in the range of [2, 50], the probability of SHEFT

outperforms HEFT is 90.2% while the probability of HEFT outperforms SHEFT is 9.8%. From

the number of tasks in the range of [50, 100], all the scheduling results scheduled by SHEFT are

better than the results scheduled by HEFT. In Figure 5.10.(b), all scheduling results scheduled

by SCPOR outperforms the results scheduled by CPOP for the number of tasks at all ranges. In

this case, all the experiments have shown that our proposed algorithms outperforms the HEFT

and CPOP algorithms for compute-intensive workflows.

94

0

0.2

0.4

0.6

0.8

1

1.2

[2-50] [51-100] [101-150] [151-200] [201-250]

Task Number

P
ro

b
ab

ili
ty

SHEFT< HEFT

HEFT< SHEFT

0

0.2

0.4

0.6

0.8

1

1.2

[2-50] [51-100] [101-150] [151-200] [201-250]

Task Number

P
ro

b
ab

ili
ty

SCPOR< CPOP

CPOP<SCPOR

0

0.2

0.4

0.6

0.8

1

1.2

[2-50] [51-100] [101-150] [151-200] [201-250]

Task Number

P
ro

b
ab

ili
ty

SHEFT < SCPOR

SCPOR < SHEFT

(a) (b) (c)

Figure 5.10: Scheduling 50,000 randomly generated compute-intensive workflows. The com-
parison of scheduling results (a) between SHEFT and HEFT, (b) between SCPOR and CPOP,
and (c) between SHEFT and SCPOR.

When the number of tasks are in the range of [2, 50] and [51, 100], the probability of SHEFT

outperforms SCPOR is 73.2% and 98%, as shown in Figure 5.10.(c). When the task number

continues to grow, all the 50, 000 experiments for each range of task number have shown that

SHEFT outperforms SCPOR. It means that SHEFT wins the best for scheduling large-scale

and compute-intensive workflows that are mostly common in scientific computing.

5.5.6 Statistical Performance Evaluation on Data-intensive Workflows

To investigate the performance for data-intensive workflows, our developed workflow gen-

erator randomly generates 50, 000 workflow graphs for the number of tasks in the ranges of

[2, 50], [51, 100], [101, 150], [151, 200] and [201, 250]. For each workflow, the total commu-

nication cost between tasks is at least 50 times greater than the communication cost of the

workflow.

Although the advantage of the SHEFT algorithm over the HEFT algorithm is not as distinct

as in compute-intensive workflows, the probability of SHEFT over HEFT is shown a consistent

increase as the size of workflows grows. As shown in Figure 5.11.(a), the probability of SHEFT

outperforms HEFT is 69.4% with the number of tasks in the range of [2, 50], then it keeps rising

from 76.7% to 80.8%, 82.9%, 83.3%, when the number of tasks from the range of [51, 100] to

[101, 150], [151, 200], [201, 250]. Similar trend goes even faster between the SCPOR algorithm

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

[2-50] [50-100] [101-150] [151-200] [200-250]

Task Number

P
ro

b
ab

ili
ty

SHEFT < HEFT

HEFT<SHEFT

0

0.2

0.4

0.6

0.8

1

1.2

[2-50] [51-100] [101-150] [151-200] [200-250]

Task Number

P
ro

b
ab

ili
ty

SCPOR < CPOP

CPOP < SCPOR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[2-50] [51-100] [101-150] [151-200] [201-250]

Task Number

P
ro

b
ab

ili
ty

SHEFT < SCPOR

SCPOR < SHEFT

(a) (b) (c)

Figure 5.11: Scheduling 50,000 randomly generated data-intensive workflows. The compari-
son of scheduling results between (a) SHEFT and HEFT, between (b) SCPOR and CPOP, and
between (c) SHEFT and SCPOR.

and the CPOP algorithm. As shown in Figure 5.11.(b), the probability that SCPOR outperforms

CPOP continuously increases from 82.3%, 95.2%, 98.5%, 99.8% to 1, when the number of

tasks from the range of [2, 50], [51, 100], [101, 150], [151, 200] to [201, 250].

In Figure 5.11.(c), the probability of SCPOR larger than SHEFT increases from 28.4% in

the range of [2, 50] to 30.3% in the range of [51, 100]. The probability increases continuously

from 30.3% to 34.1%, 38% and to 45.8%, as the number of tasks increases from the range of

[51, 100] to [201, 250]. After that, the workflow makespans scheduled by these algorithms are

very close. It is because that as the size of workflows grows, the data communications between

critical tasks increase as well, the advantage of assigning all critical tasks onto one resource

may become more significant for minimizing workflow makespan. However, as the number

of tasks continues to grow to over 250, the data communications between tasks that are not

on the the critical path become more dominant, workflow scheduling results by the proposed

algorithms are shown statistically very close to each other.

96

CHAPTER 6: THE VIEW SCIENTIFIC WORKFLOW
MANAGEMENT SYSTEM

In order to validate the feasibility of our proposed reference architecture, we propose a

service-oriented architecture for our developed VIEW system that complies with the reference

architecture. In this chapter, we firstly present our architectural design principles that serve

the foundation for the design of the VIEW system in Section 6.1; these principles are desirable

requirements from a general software engineering perspective rather than requirements specif-

ically essential for SWFMSs. Secondly, we introduce the overall VIEW system architecture

and the architectures of subsystems in Section 6.2. Then, we present a service configuration

management in the VIEW system that provides a flexible configuration functionality for the

VIEW Kernel and VIEW Task Executors, in Section 6.3 and Section 6.4. In Section 6.5, we

summarize the advantages of using SOA in SWFMS development. Finally, our developed

VIEW based workflow application called FiberFlow system is presented in Section 6.6.

6.1 Architectural Design Principles
In addition to the principles described in [9], the development of the VIEW system comply

with the following principles to satisfy the requirements of SWFMSs:

P1: Loose-coupling. In the VIEW system, each subsystem is a loosely-coupled, autonomous,

reusable, and discoverable service component, and each service component communicates with

others by simply requesting their services with the interfaces described by WSDL. Changing

the implementation of one service component while remaining the same interfaces does not

affect other service components. Service components interact with each other by Web service

invocation using SOAP messages via Internet-based protocols.

P2: Localized database access. In the VIEW system, a service component is not allowed to

directly access the databases that are managed by other service components; instead, a service

component accesses data by requesting services provided by other service components. There

97

are two reasons behind this: 1) databases for each service component are configurable, which

provides a more flexible implementation for each subsystem on demand, so different service

components are allowed to share the same database or each service component can use their

own databases; and 2) the design of models and data management for each service component

may change, but such changes can be transparent to other service components by using the

same interfaces.

P3: Model-based service component. The granularity of services, i.e., how fine or coarse

grained services should be designed, is an important issue for system development. In the

VIEW system, the granularity of services is based on the granularity of data models, that is, all

operations over one data model is grouped into one service and described by one WSDL, while

operations over different data models are separated into different services. In this way, the

modification of one data model (e.g., a task model) will not affect the functionality of another

data model (e.g. a task run model).

6.2 Overall Architecture and Subsystem Architectures
The overall architecture of VIEW in Figure 6.1 consists of six service components that

correspond to the main functional subsystems proposed in the reference architecture. Other

than Workbench, the interface for each service component is defined and described by WSDL:

IWE, IWM , ITM , IPM and IDPM for the interface of the Workflow Engine, the Workflow Mon-

itor, the Task Manager, the Provenance Manager, and the Data Product Manager, respectively,

which comprises the VIEW Kernel. In the following, we focus our discussion on the architec-

tural details of the VIEW Kernel.

Workbench. The Workbench subsystem implements the functions of workflow design, pre-

sentation, and visualization identified at the Presentation Layer in the reference architecture.

Currently it consists of five components (see Figure 6.2 (left)): Workflow Designer, Provenance

Explorer, and the GUIs for the VIEW Kernel.

Workflow Designer provides a scientist-friendly GUI for the design and modification of

98

Workflow
Engine

WEI

Provenance
Manager

PMI

Workbench

Workflow
Monitor

WMIVIEW Kernel

Task
Manager

Data Product
Manager

TMIDPMI

Figure 6.1: Overall architecture of the VIEW system.

scientific workflows. A scientist can drag and drop registered tasks and data products into

the design panel and link them one to another using various dataflow and controlflow con-

structs. Workflow Designer is supported by our proposed workflow specification language,

called Scientific Workflow Language (SWL) to define a scientific workflow, according to the

VIEW Workflow Model, which supports hierarchical (nested) scientific workflows. Workflow

definitions in the Workflow Designer are saved in XML files into a Local Workflow Repository.

A workflow definition in the VIEW Workbench consists of three parts: 1) a workflow specifica-

tion to store the logical structure and its constituent components; 2) workflow run parameters

to store all parameters for each task run; and 3) a workflow layout to store the graphical lay-

out of the scientific workflow that is required to display the workflow in the Workflow Design

Panel. The first two parts are needed for the execution of a workflow run, and the last part is to

display and manipulate a scientific workflow in the VIEW Design Panel.

Provenance Explorer enables a user to browse and visualize scientific workflow provenance

metadata. Moreover, together with the GUI for the Data Product Manager, one can present

and visualize various data products, from simple data values and plain texts to complex data

types.

The VIEW Workbench supports Windows-based user interfaces for the VIEW Kernel, while

reusing the same service components. These scientist-friendly GUIs interact with subsystems

via ITM , IWM , IPM , and IDPM , respectively. This leads to the architectural flexibility to allow

99

scientists to customize their own GUIs for each particular SWFAS, thus satisfying requirement

R1.

Workflow Designer Subsystem GUIs

Data Product
Manager GUI

WF Monitor
GUILocal Workflow

Repository

Task Manager
GUI

Provenance Explorer

Provenance
Visualization

Configuration
Management GUI

Provenance
Manager GUI

Visual
Workflow Design

Workflow Status
Storage

Translator

Scheduler

Provenance
Collector

Controlflow
Management

Dataflow
Management

IWE

Workflow Status
Management

Workflow Definition
Repository

Figure 6.2: Architecture of the VIEW Workbench (left) and the VIEW Workflow Engine (right).

Workflow Engine. The architecture of the Workflow Engine subsystem is shown in Fig-

ure 6.2 (right). Centered around Scheduler, the Workflow Engine consists of six functional

modules: Scheduler, Translator, Controlflow Management, Dataflow Management, Workflow

Status Management, and Provenance Collector.

First, Translator provides a mapping scheme for translating a workflow specification into

an optimized internal executable workflow representation. Workflow definitions delivered from

Workflow Designer are saved into the Workflow Definition Repository via IWE . A workflow

definition in Workbench’s Workflow Repository should be consistent with the version in Work-

flow Definition Repository during workflow execution. Second, the separation of controlflow

and dataflow management from workflow scheduling greatly improves the extensibility of the

VIEW Workflow Model since the introduction of additional controlflow or dataflow constructs

can be achieved by upgrading their individual modules without modifying other modules.

Third, as Scheduler is able to support multi-thread processing, it can initialize and maintain

a number of workflow runs simultaneously, Workflow Status Storage provides a foundation for

workfow run monitoring and failure handling (requirement R6). Finally, Provenance Collec-

tor is responsible for collecting all provenance information and storing them into Provenance

Manager via IPM . Since the VIEW Workflow Engine supports an open and extensible sci-

entific workflow language and is loosely coupled with other subsystems, the workflows/sub-

100

workflows designed by other SWFMSs can directly request to and invoked by the VIEW Work-

flow Engine via the Web service communication and invocation. Thus, the sharing and map-

ping between the VIEW Workflow Engine and other SWFMSs can be greatly facilitated (re-

quirement R7: level 2).

In contrast to BWFMSs that mostly manage controlflow oriented workflows, in which the

order of task execution is explicitly specified by controlflow constructs, such as sequential,

conditional, and loop, the VIEW Workflow Engine is developed for dataflow-driven scientific

workflows. As a result, the availability of input data for a task initiates its execution, and the

movement of data via data channels determines the execution order of a workflow.

Workflow Monitor. Our current implementation of the Workflow Monitor uses a Pub-

lish/Subscribe model [114] and focuses on the implementation of monitoring workflow ex-

ecution status. Future implementation will introduce other features including forward and

backward recovery in the case of failures.

Provenance Model Mapping Layer

 Provenance Management Layer

Provenance Storage Layer

Exception
Handling

Provenance Model
Management

Provenance
Repository

PMI

SPARQL-to-SQL
Query Mapping

RDF-to-Relational
Data Mapping

Relational

Provenance
Querying

Provenance Ontology
Repository

OWL-to-Relational
Schema Mapping

Data Product Model Mapping Layer

Data Product Management Layer

Data Product Storage Layer

Exception
Handling

Data Product
Registration

Data Product
Annotation

Data Product
Querying

DPMI
Data Product

Movement

XML-to-Relational Data Mapping

Data Product
Repository

Relational

File Repository

Data Type
Management

Figure 6.3: Architectures of the VIEW Provenance Manager (left) and the VIEW Data Product
Manager (right).

Provenance Manager. The architecture of the Provenance Manager subsystem shown in

Figure 6.3 (left) includes three layers: the provenance management layer, the provenance

model mapping layer and the provenance storage layer.

The provenance management layer is responsible for the representation of workflow run

provenance via domain ontologies that serve as vocabularies to describe and serialize prove-

101

nance metadata. It consists of two modules: provenance model management and provenance

querying. Provenance Model Management manages the ontologies that include both general

provenance vocabularies and domain-specific ontologies used to represent knowledge in a par-

ticular scientific field, e.g., Biology or Physics (requirement R2). To address the requirements

of provenance representation interoperability, extensibility, and semantic integration in VIEW,

we use Semantic Web technologies for provenance representation. In particular, Web Ontology

Language (OWL) is used to express ontologies, and Resource Description Framework (RDF) is

used to serialize provenance metadata. Provenance querying [115] is expressed by RDF query

language SPARQL. Exception Handling analyzes all errors reported and implements several

strategies to resolve them, so the subsystem can continue functioning.

The provenance model mapping layer serves as an integration medium between the prove-

nance management layer and the provenance storage layer. It currently contains three map-

pings: 1) OWL-to-Relational schema mapping to generate a relational database schema based

on an ontology that is used to represent provenance metadata; 2) RDF-to-Relational data map-

ping to map provenance metadata in RDF to relational tuples and store them into the rela-

tional database, and 3) SPARQL-to-SQL query mapping to translate provenance queries in

SPARQL into relational queries in Structured Query Language (SQL) that can be executed

by the RDBMS. The main challenge of this layer is to provide various efficient semantics-

preserving mappings between different data models. More details on provenance storage and

querying in VIEW are available in [116, 115], where a sample provenance ontology is described

and the three mappings are further studied and experimentally evaluated.

The relational model layer includes a relational provenance storage implemented using a

Relational Database Management System (RDBMS), which serves as an efficient backend to

store and query provenance metadata. In this layer, provenance metadata is stored in relational

tables and queried using SQL. The requirements addressed by this layer include efficiency and

scalability of provenance metadata management.

102

Data Product Manager. The architecture of Data Product Manager subsystem shown in

Figure 6.3 (right) consists of three layers: the data product management layer, the data product

model mapping layer, and the data product storage layer.

The data product management layer consists of a set of modules that are responsible for

the management of data products based on the VIEW Data Product Model. The Data Product

Manager allows scientists to access various data products transparently with respect to their

heterogeneity and distribution (requirement R4), supported by Data Product Registration, An-

notation, and Querying. The Data Type Management module defines and manages all required

data types to support data storage and task execution. All VIEW subsystems use the same set

of data types that are defined by the Data Product Manager, so the introduction of a new data

type in Data Type Management becomes effective to all other subsystems. The Data Product

Movement mainly has three functions: 1) data products are allowed to be moved from client-

side to Data Product Repository or File Repository during data product registration via IDPM ;

2) data products sometimes have to be moved from where they are registered to where a task

resides in order to execute the task; and 3) data products produced by workflow execution can

be moved back to Data Product Repository/File Repository, or registered with the Data Product

Manager via IDPM .

The data product model mapping layer serves as an integration medium between the data

product management layer and the data product storage layer. The rationale for such an archi-

tecture is that for different scientific domains, there are different data product models, imple-

mentations, and storage approaches that may require different mapping schema, but sharing the

same architecture. One can introduce new data product models, new implementations, or new

storage approaches by simply adding new mapping modules in this layer, without affecting

modules in other layers.

In the data product storage layer, the Data Product Manager employs a relational Data

Product Repository to store data products metadata, and File Repository to store files, so XML-

103

to-Relational data mapping [117, 118] is required in data product model mapping layer to map

XML-modeled data products into relational databases.

Task Model Mapping Layer

Task Management Layer

Task Storage Layer

ITM

Task
Registration

Task
Annotation

Exception
Handling

Task
Repository

Task
Querying

XML-to-Relational Data Mapping

RelationalRelational

Task Run
Steering

Task Run
Status Storage

Task Run
Mapping

Task Run
Dispatch

Task Run Model Mapping Layer

Task Run Execution Layer

Task Run Storage Layer

Exception
Handling

Task
Execution

ITE

XML-to-Relational Data Mapping

Task Run
Status Storage

Task Run
Steering

Task Run
Data Repository

Figure 6.4: Architectures of the Task Master (left) and the Task Executor (right).

Task Manager. The VIEW Task Manager supports a distributed architecture, consisting of

a Task Master and a set of Task Executors of various types.

The architecture of the Task Master shown in Figure 6.4 (left) consists of three layers: the

task management layer, the task model mapping layer, and the task storage layer.

The task management layer provides a set of modules that are responsible for the manage-

ment of tasks and task runs, based on the VIEW Task Template Model and the VIEW Task Run

Model. The Task Master allows scientists to register/delete a task transparently with respect to

its heterogeneity and distribution (requirement R3), which is supported by the modules of Task

Registration, Annotation, and Querying. The task run execution and management are handled

by the models of Task Run Steering, Mapping, and Dispatch. More specifically, Task Run

Steering is used to listen to requests from other subsystems to create/abort/pause/resume a task

run via ITM . Task Mapping performs a dynamic mapping from an abstracted task interface to

a task component containing a physical implementation, and then delivers the task run to Task

Run Dispatch, where a Task Executor is dynamically assigned to execute the task component.

In the task model mapping layer, XML-to-Relational data mapping [117, 118] is required

to map XML-modeled task template specifications into relational Task Repository, and map

XML-modeled task run descriptors into the relational Task Status Storage. The extensions of

104

various mapping mechanisms are allowed to plug-in the task model mapping layer to incorpo-

rate heterogeneous data-model storages in the task storage layer.

In order to support the distributed execution of tasks in a wide range of heterogeneous

environments (requirement R3), a new architectural subsystem called Task Executor is intro-

duced. Task Executor improves the VIEW system in the following aspects: 1) it separates the

task and task run management environment in Task Master from the task execution environ-

ment in Task Executors; 2) task execution becomes more reliable as tasks can be executed on

distributed Task Executors, avoiding the problem of a centralized architecture that may suffer

from a single point of failures; 3) different tasks for one workflow can be executed in parallel at

distributed nodes to improve performance and efficiency; and 4) the integration of a new type

of service or application is achieved by the extension of one Task Executor, without affecting

other Task Executors and the Task Master.

The architecture of the Task Executor consists of three layers: the task run execution layer,

the task run model mapping layer, and the task run storage layer.

The task run execution layer provides a set of modules that control the task run execution

based on the VIEW Task Run Model. Task Run Steering is used to listen to requests from Task

Master to abort/pause/resume a task run via ITM . Task Execution performs data movement and

invokes a task component for a task run.

The implementations at the task run model mapping layer and the task run storage layer

vary from the following scenarios: task run status can be simply maintained in the main mem-

ory, instead of a persistent storage. However, for large-scale workflows that are composed of a

great number of tasks, maintaining a large number of task run status has to rely on a persistent

Task Run Status Storage, such as a relational database. Then XML-to-Relational data map-

ping [117, 118] is required at the task run model mapping layer to map XML-modeled task

run descriptors into relational Task Run Status Storage. Task Run Data Repository at the task

run storage layer is used to save temporary data products that are moved from distributed data

105

sources for a task execution.

Some SWFMSs are built upon a monolithic system or a centralized database that acts as

a single point of failure: when a component of the system or a database fails, there is no way

to continue executing workflows. In response to this issue, the VIEW system is composed of

a set of loosely-coupled and distributed service components, and each service component has

multiple alternative services distributed on other machines. Accordingly, there is a need for the

management of these services to provide higher system availability.

6.3 VIEW Kernel Configuration Management
The VIEW Kernel consists of several loosely-coupled service components, and each of

them could have multiple backup services deployed on different machines. One service com-

ponent may have various implementations, but sharing the same WSDL. All of these service

components are deployed at distributed environments.

In addition, a database in the VIEW system could specifically serve one service component,

or multiple backup service components, or even be shared by serval service components of

the VIEW Kernel. To support database failover, one serving database could also setup several

mirror databases on distributed machines, and each of them is kept synchronized with the

serving database, so that once this database fails, its service component(s) can switch to any

other mirror databases.

To enable an on-demand VIEW Kernel, the VIEW system provides a service component,

called VIEW Configuration Management, to manage the configurations of all VIEW Kernel ser-

vice components and their serving databases. First, the Configuration Management GUI em-

bedded in the VIEW Workbench allows scientists to register all deployed service components

for the VIEW Kernel and their serving database(s). The service components for a VIEW Ker-

nel subsystem employ the same WSDL to describe their common interfaces. Second, when the

VIEW system is adopted by a specific SWFAS, a template of the VIEW system can be composed

on demand by configuring each VIEW Kernel service component and its database(s), which are

106

already registered in the Configuration Management. Third, such template of the system can

invoke the chosen services during the runtime. Once a service of the template is unavailable,

configuration management will invoke another alternative service. As the alternative service

and unavailable service share the same database(s) and repositories in their subsystem storage

layer, workflow run and task run status are still valid, which makes it possible to resume the

workflow execution starting from the service downtime.

6.4 Task Executor Configuration Management
To support the invocation and execution of various heterogeneous task components, the

VIEW Task Manager introduces several types of Task Executors, with each type of Task Ex-

ecutor corresponding to a type of tasks with regard to their programming languages, invocation

mechanisms and computing environments. Each type of Task Executors shares one common

implementation that is different from other types. Each Task Executor can be deployed either

at the host of the Task Master or at any other standalone host. All Task Executors employ the

same architecture and the same WSDL.

To improve the failover in task execution, the VIEW system provides Task Executor Con-

figuration Management to manage the configuration of all Task Executors. First, the Configu-

ration Management GUI embedded in the VIEW Task Manager allows scientists to register all

available Task Executors. Second, an appropriate Task Executor can be automatically assigned

to a task by the VIEW Task Master during task execution. Finally, if a Task Executor happens

to be unavailable during task runtime, an alternative Task Executor will be chosen to retry the

execution. In this case, the whole scientific workflow does not need to be aborted or restarted,

as other Task Executors will not be disturbed during the failover procedure of the failed Task

Executor.

107

6.5 Advantages of Using SOA in SWFMSs
While the emergence of SOA as an architectural paradigm provides many benefits for dis-

tributed computing [119], we identify the following advantages of using SOA specifically for

the development of an SWFMS:

1) Service loose coupling. Service loose coupling minimizes the dependencies among sub-

systems of an SWFMS by the definitions of a set of language and platform independent in-

terfaces. In our proposed architecture, each subsystem’s functionality is exposed as a Web

service. As a result, an SWFMS can be composed on demand from various subsystems pro-

vided by different parties as Web services. One can also easily switch from one service to

another for each subsystem. For example, there may be several provenance management ser-

vices available, and using SOA, one can use and switch any provenance management service

on demand for a specific SWFMS.

2) Service abstraction and autonomy. A Web service provides an abstract interface that

is independent from its implementation. In addition, each Web service is autonomous in the

sense that a service provider has the control over the application logic that the Web service

encapsulates. As a result, a service provider can dynamically change the implementation and

deployment environment of a Web service for a subsystem of an SWFMS with no downtime

for the SWFMS as long as such changes do not affect the defined interface. Such autonomy

also greatly facilitates the management of the development and evolution of the whole system.

3) Service reusability. As each subsystem of an SWFMS becomes a uniform computing

unit with standard interface descriptions and universal accessibility through standard commu-

nication protocols, it can be reused across various SWFMSs, even simultaneously used by both

local SWFMSs and other SWFMSs across the Internet.

4) Service discoverability. As each subsystem of an SWFMS is implemented as a Web

service that is enriched with a semantic description, one can register the service in some public

service registries. As a result, a subsystem becomes discoverable and can be selected and used

108

by other SWFMSs on demand.

5) Service interoperability. Service interoperability is enabled by the open standards of

messages and communication protocols for Web services, which are supported by a large body

of IT industry and the Web Services Interoperability Organization (WS-I). Using Web services,

the interoperability across various SWFMSs (requirement R7: level 3) can be greatly improved.

6.6 VIEW based FiberFlow System
VIEW is an application-independent SWFMS, serving as a foundation on which various

SWFASs can be developed according to their own domain-specific requirements. The Fiber-

Flow system is such an SWFAS developed for automatic transforming the large-scale neu-

roimaging data to knowledge through cross-subject, cross-modality computation, ultimately

leading to high clinical intelligence and more informed and accurate decision making in vari-

ous neural diseases.

The complexity of workflows in the FiberFlow system poses the grand challenges which

can be summarized in the following three aspects: First, each workflow may produce a large

amount of processed data under different experimental parameter settings. All analytical re-

sults and intermediate results vary from data types and formats, and therefore generate great

challenges for data management. Second, some computation-intensive tasks are required to be

performed on distributed Grid environments in order to reduce the wait time. Third, most tasks

in FiberFlow are also interaction-intensive and visualization-intensive, as domain scientists

need to frequently manipulate, process, and evaluate the imaging data. Due to the aforemen-

tioned challenges, an SWFMS is ideal to manage all the research artifacts to speed up the

effective FiberFlow exploratory process.

Figure 6.5 (right) demonstrates a typical workflow designed in the FiberFlow system which

is to automate population-based statistical analysis of the variances of fiber bundle shapes

and fiber connectivity strengths among normal individuals and patients. Most data products

involved in this workflow are volume image files, such as Magnetic Resonance Imaging (MRI)

109

and Diffusion Tensor Imaging (DTI). They are stored in the Analyze format, which is one of

the standard formats for 3D medical imaging. All tasks in this workflow are implemented as

Windows-based applications, and some of them require client-side user interactions to identify

Regions of Interests (ROIs).

Figure 6.5: The VIEW Workbench embedded with five subsystem control panels and a work-
flow design panel (left), and a user-interaction intensive and visualization intensive scientific
workflow displayed in a customized GUI for the view based FiberFlow system (right).

In a nutshell, the first task is to perform segmentation using the Brain Extraction Tool

(BET), which segments a subject’s neocortex based on DTI and MRI imaging data, and out-

puts new volume image files with the subject’s skull being stripped away. Those files become

the input for the Volume Alignment (VA) task. This task conducts spatial mappings between

the two skull-stripped DTI and MRI files, and generates a text file containing a matrix of all

mapping parameters. Besides BET, another preprocessing task is called Tensor Fit (TF). It

computes tensor fields using DTI data, and generates various invariant metrics which, together

with other outputs derived from BET and VA, are inputs of the Fiber Tracking task for fiber

tractography [120]. To derive a population-based statistics on human brains of varying sizes

and shapes, the Conformal Mapping (CM) task is applied to perform an inter-subject regis-

tration, which maps skull-stripped MRI to a common 3D template space. Meanwhile, the

text-based output from the Fiber Track task, together with all volume files from TF, are applied

with the Fiber Bundle Estimator task to identify the specific fiber bundle of interest and com-

putes its isosurface. The user interactions for picking up ROIs are required in this task. Then

110

a volume file recording ROI bundles is produced and supplied to the ROIs Connectivity (RC)

task. Based on the DTI imaging, RC creates a probabilistic model based on the Bayesian in-

ference theory, and estimates connectivity between ROIs. The task’s output recording 3D fiber

bundles becomes the input of Skeletonization, and the result from Skeletonization is supplied to

the Shape Metric Computation (SMC) task to generate quantitative shape descriptors. Finally,

the Statistical Evaluation task collects all data products generated from CM, RC and SMC to

produce statistical results using the t-distribution. The statistical results can be visualized by

the Visualization task, using the MRI as the spatial context with the affected tissues labeled and

the statistical variations colored with different colormaps.

The service-oriented architecture of VIEW enables a fast and convenient development of the

FiberFlow system, by customizing subsystem GUIs, while reusing the underlying VIEW Ker-

nel. Some customizations are performed on the FiberFlow Workbench without changing any

source codes of the VIEW Workbench (see Figure 6.5 (right)). For example, the VIEW Work-

bench provides the options for users to choose which subsystem GUI to be displayed on the

control panel. Users can also customize icons, menus, font size and color in the workflow

design panel to make the look-and-feel consistent with other non-workflow based subsystems

embedded in FiberFlow. We plan to collect more use case scenarios to improve the flexibility

and configurability of customizing the VIEW Workbench for different scientific domains. By

reusing the VIEW Kernel, the Task Manager and the Data Product Manager manage a library

of software tools and data products for this domain. The Workflow Engine manages our en-

tire set of FiberFlow workflows composed by existing software tools and data products. The

Workflow Monitor is used to monitor workflow execution progress, and the Provenance Man-

ager is employed for provenance management, on which provenance mining and provenance

visualization are being conducted for our domain-specific analysis.

111

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions
This dissertation presented an integrated solution to composing, scheduling, executing and

developing scientific workflows and scientific workflow management systems. To provide a

foundation for workflow composition, scheduling, execution and management, we proposed

the first reference architecture for scientific workflow management systems, which is composed

of four logical layers, seven major functional subsystems, and six interfaces. The reference

architecture not only provides a high-level organization of subsystems and their interactions in

a workflow system, but also provides a basis for comparison between different systems and a

guidance for the architectural design of developing an SWFMS in a specific scientific domain.

To integrate heterogeneous services and applications into workflows, we proposed a task

template model which not only provides an appropriate abstraction of heterogeneous services

and applications, but also encapsulates the composition and mapping of shims and functional

task components within a task interface. We designed an XML-based task specification lan-

guage, called TSL, to realize the proposed task template model. TSL not only enables the

abstraction of heterogeneous services and applications into uniform workflow tasks, but also

provides a solution to address both TYPE-I and TYPE-II shimming problems in composing

scientific workflows. To our best knowledge, this is the first shimming technique that makes

shims invisible at the workflow level, resulting in scientific workflows that are more elegant

and readable.

To schedule scientific workflows in emerging services computing environments, we pro-

posed two workflow scheduling algorithms, the SHEFT algorithm and SCPOR algorithm, to

prioritize tasks in a workflow, map tasks onto suitable resources and order the execution of tasks

on the assigned resources, so that the workflow makespan can be minimized. Our extensive

experiments showed that our proposed algorithms not only outperform the HEFT and CPOP

112

algorithms for data-intensive and compute intensive workflows, but also allow the assigned

resources elastically change on demand of the scalability of workflows.

To execute scientific workflows on distributed and heterogeneous computing environments,

we proposed a task run model to model the run-time behaviors of tasks. Based on the task

run model, we designed the task run description language, TRDL, for the description of task

runs, to support the execution of task instances constructed from heterogeneous services and

applications. We also developed an SOA based task management subsystem, the Task Manager,

to manage all task templates, task instances and task runs for the invocation and execution of

various heterogeneous task components.

Finally, our developed VIEW scientific workflow management system and a VIEW based

workflow application system, the FiberFlow system, validate our architectures, models, lan-

guages and algorithms.

7.2 Future Work
We foresee many improvements, extensions, and applications of our current research work.

Possible future research work which I am particularly interested in is listed as follows.

Workflow Computing on the Cloud. Addressing complex scientific problems requires

analyzing massive datasets using cluster-based and high-performance distributed computing.

Managing distributed scientific workflows that can run concurrently on multiple clusters or

computers remains a significant challenge. The ability of cloud computing to scale on demand

as usage changes, through dynamic provisioning and configuration of integrated virtual ma-

chines, offers appealing opportunities for SWFMSs to address this issue. We will endeavor

to develop on-cloud workflow services for scientists to manage distributed scientific work-

flows and perform massively parallel data processing in Cloud environments. In order to fulfill

this plan, we have identified several key research problems for my future research: (1) Cost

models are needed to optimize workflow scheduling in a Cloud environment; (2) Intelligent

and dynamic scheduling algorithms are needed to determine the optimal placement of data

113

and computation in a Cloud computing environment; (3) Workflow monitoring framework is

required to support the reliability of distributed workflow execution and management.

e-Science Workflow Applications and Systems. Through all these years of collaboration

with scientists in multiple domains, we believe that new levels of understanding and knowledge

about scientific processes could underpin new challenges of computing technology. Therefore,

we have strong interests in adapting computational techniques to problems in a wide spec-

trum of scientific domains, and in developing complex workflow application systems that are

resilient, fault tolerant, adaptive, and learning.

APPENDIX A: TASK SPECIFICATION LANGUAGE (TSL)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dt="http://http://database.cs.wayne.edu/DPM/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">

<xs:element name="taskTemplate" type="taskTemplate_XMLElementType"/>
<xs:complexType name="taskTemplate_XMLElementType">
<xs:sequence>
<xs:element name="taskInterface" type="taskInterface_XMLElementType"/>
<xs:element name="taskComponents" type="taskComponents_XMLElementType"/>
<xs:element name="mappings" type="mappings_XMLElementType"/>
<xs:element name="taskInstances" type="taskInstances_XMLElementType"/>
</xs:sequence>
<xs:attribute name="version" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="taskInterface_XMLElementType">
<xs:sequence>
<xs:element name="taskName" type="xs:string"/>
<xs:element name="taskDescription" type="xs:string"/>
<xs:element name="inputPorts" type="inputPorts_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="outputPorts" type="outputPort_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
</xs:complexType>

<xs:complexType name="inputPorts_XMLElementType">
<xs:sequence>
<xs:element name="port" type="port_XMLElementType"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="number" type="xs:NMTOKEN" use="required"/>
</xs:complexType>

<xs:complexType name="outputPort_XMLElementType">
<xs:sequence>
<xs:element name="port" type="port_XMLElementType"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="number" type="xs:int" use="required"/>

114

115

</xs:complexType>

<xs:complexType name="port_XMLElementType">
<xs:sequence>
<xs:element name="portType" type="xs:string"/>
<xs:element name="portDescription" type="xs:string" minOccurs="0"/>
<xs:element name="defaultPortValue" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="default" type="xs:NMTOKEN" use="optional"/>
</xs:complexType>

<xs:complexType name="taskComponents_XMLElementType">
<xs:sequence>
<xs:element ref="taskComponent" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="taskComponent">
<xs:complexType>
<xs:sequence>
<xs:element name="taskType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="WebService"/>
<xs:enumeration value="WindowsApplication"/>
<xs:enumeration value="UnixApplication"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:choice>
<xs:group ref="WebServiceGroup"/>
<xs:group ref="WindowsApplicationGroup"/>
<xs:group ref="UnixApplicationGroup"/>
</xs:choice>
<xs:element name="taskInvocation" type="taskInvocation_XMLElementType"/>
<xs:element name="inputs" type="inputs_XMLElementType"/>
<xs:element name="outputs" type="outputs_XMLElementType"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="default" type="xs:NMTOKEN" use="required"/>
<xs:attribute ref="role" use="required"/>
</xs:complexType>
</xs:element>

<xs:attribute name="role">

116

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="functional"/>
<xs:enumeration value="shim"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<xs:group name="WebServiceGroup">
<xs:sequence>
<xs:element name="wsdlURI" type="xs:string"/>
<xs:element name="serviceName" type="xs:string"/>
<xs:element name="operationName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:group name="WindowsApplicationGroup">
<xs:sequence>
<xs:element name="executable" type="xs:string"/>
<xs:element name="appName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:group name="UnixApplicationGroup">
<xs:sequence>
<xs:element name="directory" type="xs:string"/>
<xs:element name="appName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:complexType name="taskInvocation_XMLElementType">
<xs:sequence>
<xs:element name="operatingSystem">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Windows"/>
<xs:enumeration value="UNIX"/>
<xs:enumeration value="LINUX"/>
<xs:enumeration value="MAC"/>
<xs:enumeration value="Unknown"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="invocationMode">
<xs:simpleType>
<xs:restriction base="xs:string">

117

<xs:enumeration value="Local"/>
<xs:enumeration value="Remote"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="interactionMode">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="invocationAuthentication"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:element name="invocationAuthentication">
<xs:complexType>
<xs:sequence>
<xs:element name="hostName" type="xs:string"/>
<xs:element name="userName" type="xs:string"/>
<xs:element name="password" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="inputs_XMLElementType">
<xs:sequence>
<xs:element ref="input" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="outputs_XMLElementType">
<xs:sequence>
<xs:element ref="output" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="input">
<xs:complexType>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="mode" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
</xs:complexType>

118

</xs:element>

<xs:element name="output">
<xs:complexType>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="mode" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

<xs:complexType name="mappings_XMLElementType">
<xs:sequence>
<xs:element name="mapping" type="mapping_XMLElementType"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="mapping_XMLElementType">
<xs:sequence>
<xs:element name="inputmapping" type="inputmapping_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="outputmapping" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="assign" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
</xs:complexType>

<xs:complexType name="inputmapping_XMLElementType">
<xs:sequence>
<xs:element name="shims" type="shims_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="from" type="xs:string" use="required"/>
<xs:attribute name="to" type="xs:string" use="required"/>
<xs:attribute ref="shimming" use="required"/>
</xs:complexType>

<xs:attribute name="shimming">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

119

<xs:complexType name="shims_XMLElementType">
<xs:sequence>
<xs:element ref="shimming"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
</xs:complexType>

<xs:element name="shimming">
<xs:complexType>
<xs:attribute name="from" type="xs:string" use="required"/>
<xs:attribute name="to" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

<xs:element name="outputmapping">
<xs:complexType>
<xs:attribute name="from" type="xs:string" use="required"/>
<xs:attribute name="to" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

<xs:element name="assign">
<xs:complexType>
<xs:attribute name="from" type="xs:string" use="required"/>
<xs:attribute name="to" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

<xs:complexType name="taskInstances_XMLElementType">
<xs:sequence>
<xs:element name="taskInstance" type="taskInstance_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="taskInstance_XMLElementType">
<xs:sequence>
<xs:element name="taskComponent" type="taskComponent_XMLElementType"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
</xs:complexType>
<xs:complexType name="taskComponent_XMLElementType">
<xs:attribute name="id" type="xs:int" use="required"/>
</xs:complexType>
</xs:schema>

APPENDIX B: TASK RUN DESCRIPTION LANGUAGE (TRDL)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">

<xs:element name="taskRun" type="taskRun_XMLElementType"/>
<xs:complexType name="taskRun_XMLElementType">
<xs:sequence>
<xs:element name="taskRunInterface"
type="taskRunInterface_XMLElementType"/>
<xs:element ref="taskComponent"/>
<xs:element name="bindings" type="bindings_XMLElementType"/>
</xs:sequence>
<xs:attribute name="version" type="xs:string" use="required"/>
</xs:complexType>

<xs:complexType name="taskRunInterface_XMLElementType">
<xs:sequence>
<xs:element name="taskTemplate_ID" type="xs:int"/>
<xs:element name="taskComponent_ID" type="xs:int"/>
<xs:element name="taskInstance_ID" type="xs:int"/>
<xs:element name="workflowRun_ID" type="xs:int"/>
<xs:element name="taskRun_State" type="xs:string"/>
<xs:element name="inputPorts" type="inputPorts_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="outputPorts" type="outputPort_XMLElementType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="id" type="xs:int" use="required"/>
</xs:complexType>

<xs:complexType name="inputPorts_XMLElementType">
<xs:sequence>
<xs:element name="port" type="port_XMLElementType"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="number" type="xs:NMTOKEN" use="required"/>
</xs:complexType>

<xs:complexType name="outputPort_XMLElementType">
<xs:sequence>
<xs:element name="port" type="port_XMLElementType"
maxOccurs="unbounded"/>

120

121

</xs:sequence>
<xs:attribute name="number" type="xs:int" use="required"/>
</xs:complexType>

<xs:complexType name="port_XMLElementType">
<xs:sequence>
<xs:element name="portType" type="xs:string"/>
<xs:element name="portDescription" type="xs:string"
minOccurs="0"/>
<xs:element name="defaultPortValue" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="default" type="xs:NMTOKEN" use="optional"/>
</xs:complexType>

<xs:element name="taskComponent">
<xs:complexType>
<xs:sequence>
<xs:element name="taskType">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="WebService"/>
<xs:enumeration value="WindowsApplication"/>
<xs:enumeration value="UnixApplication"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:choice>
<xs:group ref="WebServiceGroup"/>
<xs:group ref="WindowsApplicationGroup"/>
<xs:group ref="UnixApplicationGroup"/>
</xs:choice>
<xs:element name="taskInvocation"
type="taskInvocation_XMLElementType"/>
<xs:element name="inputs" type="inputs_XMLElementType"/>
<xs:element name="outputs" type="outputs_XMLElementType"/>
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="default" type="xs:NMTOKEN" use="required"/>
<xs:attribute ref="role" use="required"/>
</xs:complexType>
</xs:element>

<xs:attribute name="role">
<xs:simpleType>
<xs:restriction base="xs:string">

122

<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

<xs:group name="WebServiceGroup">
<xs:sequence>
<xs:element name="wsdlURI" type="xs:string"/>
<xs:element name="serviceName" type="xs:string"/>
<xs:element name="operationName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:group name="WindowsApplicationGroup">
<xs:sequence>
<xs:element name="executable" type="xs:string"/>
<xs:element name="appName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:group name="UnixApplicationGroup">
<xs:sequence>
<xs:element name="directory" type="xs:string"/>
<xs:element name="appName" type="xs:string"/>
</xs:sequence>
</xs:group>

<xs:complexType name="taskInvocation_XMLElementType">
<xs:sequence>
<xs:element name="operatingSystem">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Windows"/>
<xs:enumeration value="UNIX"/>
<xs:enumeration value="LINUX"/>
<xs:enumeration value="MAC"/>
<xs:enumeration value="Unknown"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="invocationMode">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Yes"/>
<xs:enumeration value="No"/>

123

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="interactionMode">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Local"/>
<xs:enumeration value="Remote"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element ref="invocationAuthentication" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="invocationAuthentication">
<xs:complexType>
<xs:sequence>
<xs:element name="hostName" type="xs:string"/>
<xs:element name="userName" type="xs:string"/>
<xs:element name="password" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:complexType name="inputs_XMLElementType">
<xs:sequence>
<xs:element ref="input" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="outputs_XMLElementType">
<xs:sequence>
<xs:element ref="output" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="input">
<xs:complexType>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="mode" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

124

<xs:element name="output">
<xs:complexType>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="mode" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>

<xs:complexType name="bindings_XMLElementType">
<xs:sequence>
<xs:element name="data_inputport_binding"
type="binding_XMLElementType" maxOccurs="unbounded"/>
<xs:element name="data_input_binding"
type="binding_XMLElementType" maxOccurs="unbounded"/>
<xs:element name="output_data_binding"
type="binding_XMLElementType" maxOccurs="unbounded"/>
<xs:element name="data_outputport_binding"
type="binding_XMLElementType" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="binding_XMLElementType">
<xs:attribute name="from" type="xs:string" use="required"/>
<xs:attribute name="to" type="xs:string" use="required"/>
<xs:attribute name="timestamp" type="xs:string" use="required"/>
<xs:attribute name="dataValue" type="xs:string" use="required"/>
</xs:complexType>
</xs:schema>

REFERENCES

[1] D. Hollingsworth, “The workflow reference model,” The Workflow Management Coalition, 1994.

[2] I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields, Workflows for e-science, Springer-Verlag

London Limited, 2007.

[3] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao, and

Y. Zhao, “Scientific workflow management and the Kepler system,” Concurrency and Computa-

tion: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[4] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva, and H.T. Vo, “VisTrails: visual-

ization meets data management,” in ACM SIGMOD international conference on Management of

data, 2006, pp. 745–747.

[5] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.V. Laszewski, I. Raicu, T. Stef-Praun, and

M. Wilde, “Swift: Fast, reliable, loosely coupled parallel computation,” in IEEE International

Workshop on Scientific Workflows, 2007, pp. 199–206.

[6] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G.B. Berriman,

J. Good, A. Laity, J.C. Jacob, and D.S. Katz, “Pegasus: A framework for mapping complex

scientific workflows onto distributed systems,” Scientific Programming Journal, vol. 13, no. 3,

pp. 219–237, 2005.

[7] T.M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R.M. Greenwood, T. Carver, K. Glover,

M.R. Pocock, A. Wipat, and P. Li, “Taverna: A tool for the composition and enactment of

bioinformatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[8] S. Majithia, M.S. Shields, I.J. Taylor, and I. Wang, “Triana: A graphical web service composition

and execution toolkit,” in IEEE International Conference on Web Services, 2004, pp. 514–524.

[9] P. Grefen and R.R. de Vries, “A reference architecture for workflow management systems,” Data

and Knowledge Engineering, vol. 27, no. 1, pp. 31–57, 1998.

125

126

[10] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede, “Design and imple-

mentation of the YAWL system,” in International Conference on Advanced Information Systems

Engineering, 2004, pp. 142–159.

[11] L. Liu, C. Pu, and D.D.A. Ruiz, “A systematic approach to flexible specification, composition,

and restructuring of workflow activities,” Journal of Database Management, vol. 15, no. 1, pp.

1–40, 2004.

[12] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H. Singh, “Webwork: METEOR2’s

web-based workflow management system,” Journal of Intelligent Information Systems, vol. 10,

no. 2, pp. 185–215, 1998.

[13] G. Alonso, R. Günthör, M. Kamath, D. Agrawal, A.E. Abbadi, and C. Mohan, “Exotica/FMDC:

A workflow management system for mobile and disconnected clients,” Distributed and Parallel

Databases, vol. 4, no. 3, pp. 229–247, 1996.

[14] F. Leymann and D. Roller, “Business process management with FlowMark,” in COMPCON,

1994, pp. 230–234.

[15] J.L. Ambite and D. Kapoor, “Automatically composing data workflows with relational descrip-

tions and shim services,” in 6th International and 2nd Asian Semantic Web Conference, 2007,

pp. 15–28.

[16] B. Ludäscher, S. Bowers, T.M. McPhillips, and N. Podhorszki, “Scientific workflows: More

e-science mileage from cyberinfrastructure,” in International Conference on e-Science and Grid

Computing, 2006, pp. 145–152.

[17] D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble, “Treating shimantic web syndrome with

ontologies,” in AKT Workshop on Semantic Web Services, 2004.

[18] J.D. Ullman, “NP-complete scheduling programs,” Computer and Systems Sciences, vol. 10, pp.

384–393, 1975.

127

[19] M.R.Garey and D.S.Johnson, Computers and Intractability; A Guide to the Theory of NP-

Completeness, W. H. Freeman & Co., New York, NY, USA, 1990.

[20] F. Dong and S.G. Akl, “Scheduling algorithms for Grid computing: State of the art and open

problems,” Tech. Rep. No. 2006-504, Queens University, 2006.

[21] D. Tombros, An Event- and Repository-Based Component Framework for Workflow System Ar-

chitecture, Phd thesis, Department of Information Technology, University of Zurich, 1999.

[22] M. Hsu and C. Kleissner, “Objectflow: Towards a distributed process management infrastruc-

ture,” Distributed and Parallel Databases, vol. 4, no. 2, pp. 169, 1996.

[23] G. Kappel, B. Proll, S. Rausch-Schott, and W. Retschitzegger, “TriGSflow - active object-

oriented workflow management,” in 28th Hawaii international conference on system sciences,

January, 1995, pp. 12–26.

[24] H. Schuster, S. Jablonski, T. Kirsche, and C. Bussler, “A client/server architecture for distributed

workflow management systems,” in Parallel and Distributed Information Systems, 1994, pp.

253–256.

[25] C. Fernstrom, “Process WEAVER: Adding process support to UNIX,” in International Confer-

ence on Software Process, 1993, pp. 12–26.

[26] P. Heinl and H. Schuster, “Towards a highly scalable architecture of workflow management

systems,” in 7th International Conference on Database and Expert System Applications, 1996.

[27] H. Schuster, S. Jablonski, P. Heinl, and C. Bussler, “A general framework for the execution of het-

erogenous programs in workflow management systems,” in First IFCIS International Conference

on Cooperative Information Systems, 1996, pp. 104 – 113.

[28] G. Alonso, C. Mohan, R. Gunthor, D. Agrawal, A.E. Abbadi, and M. Kamath, “Exotica/fmqm:a

persistent message-based architecture for distributed workflow management,” in IFIP Working

Conference on Information Systems for Decentralized Organizations,Trondheim, Norway, 1995.

128

[29] J. Miller, A. Sheth, K. Kochut, and X.Wang, “CORBA-based runtime architectures for workflow

management systems,” Journal of database management, special issue on multidatabases, vol.

7, no. 1, pp. 16–27, 1996.

[30] F. Leyman and W. Altenhuber, “Managing business processes as an information resource,” IBM

Systems Journal, vol. 33, no. 2, pp. 36–47, 1994.

[31] G. Alonso, B. Reinwald, and C. Mohan, “Wide - a distributed architecture for workflow man-

agement,” in Seventh International Workshop on Research Issues in Data Engineering, 1997, pp.

76–79.

[32] M. Cagan, “The HP softBench environment: an architecture for a new generation of software

tools,” Hewlett-Packard Journal, vol. 41, no. 3, pp. 36–47, 1990.

[33] K.J. Kochut, A.P. Sheth, J.A. Miller, S. Das, and Z. Luo, “ORBWork: A Dynamic Workflow

Enactment Service for METEOR2,” Technical report, University of Georgia, 1997.

[34] Z. Mahmood, “Service oriented architecture: a new paradigm for enterprise application integra-

tion,” in 11th WSEAS International Conference on Computers, 2007, pp. 491–496.

[35] Y. Zhao, Y. Feng, and H. Liu, “Research on service-oriented workflow management system

architecture,” in Ninth International Conference on Hybrid Intelligent Systems, 2009, pp. 369–

372.

[36] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede, “Design and implementa-

tion of the YAWL system,” in 16th International Conference on Advanced Information Systems

Engineering, 2004, pp. 142–159.

[37] W.M.P. van der Aalst and A.H.M. ter Hofstede, “YAWL: yet another workflow language,” Infor-

mation Systems, vol. 30, no. 4, pp. 245–275, 2005.

[38] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee, J. Tao, and Y. Zhao,

“Scientific workflow management and the Kepler system,” Concurrency and Computation: Prac-

tice and Experience, vol. 18, no. 10, pp. 1039–1065, 2005.

129

[39] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock, “Kepler: an extensible

system for design and execution of scientific workflows,” in 16th International Conference on

Scientific and Statistical Database Management, June, 2004, pp. 423– 424.

[40] S. Bowers and B. Ludäscher, “Actor-oriented design of scientific workflows,” in 24st Interna-

tional Conference on Conceptual Modeling. 2005, Springer.

[41] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, and

B. Ludäscher, “A framework for the design and reuse of Grid workflows,” in International

Workshop on Scientific Applications on Grid Computing, 2005, pp. 120–133.

[42] Ptolemy II, ,” in http://ptolemy.eecs.berkeley.edu/ptolemyII/.

[43] X. Liu, J. Liu, J.Eker, and E.A. Lee, Heterogeneous Modeling and Design of Control System,

Software-Enabled Control: Information Technology for Dynamical Systems, April 2003.

[44] T. Oinn, M. Greenwood, M. J. Addis, M. N. Alpdemir, J.Ferris, K. Glover, C. Goble, A. Goderis,

D. Hull, D. J. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe,

“Taverna: Lessons in creating a workflow environment for the life sciences,” Concurrency and

Computation: Practice and Experience, vol. 18, no. 10, pp. 1067–1100, 2005.

[45] T. Oinn, M.J. Addis, J. Ferris, D.J. Marvin, M. Senger, T. Carver, M. Greenwood, K. Glover,

M.R. Pocock, A. Wipat, and P. Li, “Taverna: a tool for the composition and enactment of bioin-

formatics workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[46] I. Taylor, M. Shields, I. Wang, and R. Philp, “Distributed P2P computing within Triana: A galaxy

visualization test case,” 17th International Parallel and Distributed Processing Symposium, pp.

16–27, 2003.

[47] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The Triana Workflow Environment: Architec-

ture and Applications,” in Workflows for e-Science, pp. 320–339. Springer, 2007.

130

[48] S. Majithia, M.S. Shields, I.J. Taylor, and I. Wang, “Triana: A Graphical Web Service Com-

position and Execution Toolkit,” in IEEE International Conference on Web Services, 2004, pp.

514–524.

[49] E. Gallopoulos, E.N. Houstis, and J.R. Rice, “Computer as thinker/doer: Problem solving en-

vironments for computational science,” IEEE Computer Science and Engineering, vol. 1, no. 2,

pp. 11–23, 1994.

[50] G. Allen, T. Goodale, T. Radke, M. Russell, E. Seidel, K. Davis, K.N. Dolkas, N.D. Doulamis,

T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki, J. Shalf, and I. Taylor, “Enabling applications

on the Grid: A GridLab overview,” International Journal of high performance computing ap-

plications: special issue on Grid computing: infrastructure and applications, vol. 17, no. 4, pp.

449–466, 2003.

[51] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil1, M. Su, K. Vahi, and M. Livny,

“Pegasus: Mapping scientificworkflows onto the Grid,” in 2nd European across Grids confer-

ence, 2004.

[52] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini,

A. Arbree, R. Cavanaugh, and S. Koranda, “Mapping abstract complex workflows onto grid

environments,” Journal of Grid computing, vol. 1, no. 1, pp. 25–39, 2003.

[53] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, “Workflow management in GriPhyN,” Grid

resource management: state of the art and future trends, pp. 99–116, 2004.

[54] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, “Grid services for distributed system integra-

tion,” Computer, vol. 35, no. 6, pp. 37–46, 2002.

[55] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a distributed job scheduler,”

Beowulf cluster computing with Linux, pp. 307–350, 2002.

[56] N. Krishnakumar and A. Sheth, “Managing heterogeneous multi-system tasks to support

enterprise-wide operations,” Distributed and parallel databases, vol. 3, no. 2, pp. 155–186,

1995.

131

[57] H. Schuster, S. Jablonski, P. Heinl, and C. Bussler, “A general framework for the execution

of heterogeneous programs in workflow management systems,” in International Conference on

Cooperative Information Systems, 1996, p. 104.

[58] P. Karagoz, S. Arpinar, P. Koksal, N. Tatbul, E. Gokkoca, and A. Dogac, “Task handling in work-

flow management systems,” in International Workshop on Issues and Applications of Database

Technology, 1998.

[59] J.-Y. Jung, H. Kim, and S.-H. Kang, “Standards-based approaches to b2b workflow integration,”

Computers and Industrial Engineering, vol. 51, no. 2, pp. 321–334, 2006.

[60] C. Walker and D. W. Walker, “Integration and data sharing between ws-based workflows,” in

IEEE International Conference on Web Services, 2008, pp. 667–674.

[61] H. Weigand and W.-J. van den Heuvel, “Cross-organizational workflow integration using con-

tracts,” Decision Support Systems, vol. 33, no. 3, pp. 247–265, 2002.

[62] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros, “Workflow

patterns,” Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003.

[63] C. Lin, S. Lu, Z. Lai, A. Chebotko, X. Fei, J. Hua, and F. Fotouhi, “Service-oriented architecture

for VIEW: A visual scientific workflow management system,” in IEEE SCC, 2008, pp. 335–342.

[64] C. Lin, S. Lu, X. Fei, A. Chebotko, Z. Lai, D. Pai, F. Fotouhi, and J. Hua, “A reference ar-

chitecture for scientific workflow management systems and the VIEW SOA solution,” IEEE

Transactions on Services Computing, vol. 2, no. 1, pp. 79–92, 2009.

[65] A. Tsalgatidou, G. Athanasopoulos, M. Pantazoglou, C. Pautasso, T. Heinis, R. Grønmo, H. Hoff,

A. Berre, M. Glittum, and S. Topouzidou, “Developing scientific workflows from heterogeneous

services,” SIGMOD Record, vol. 35, no. 2, pp. 22–28, 2006.

[66] M. Szomszor, T.R. Payne, and L.Moreau, “Automated syntactic medation for web service inte-

gration,” in ICWS, 2006, pp. 127–136.

132

[67] D. Hull, R. Stevens, and P. Lord, “Describing web services for user-oriented retrieval,” in W3C

Workshop on Frameworks for Semantics in Web Services, 2005, pp. 9–10.

[68] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of various mapping algo-

rithms is independent of sizable variances in run-time predictions,” in 7th IEEE Heterogeneous

Computing Workshop, 1998, pp. 79–87.

[69] R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen, E. Keith,

T. Kidd, M. Kussow, J.D. Lima, F. Mirabile, L. Moore, B. Rust, and H.J. Siegel, “Scheduling

resources in multi-user, heterogeneous, computing environments with smartnet,” in 7th IEEE

Heterogeneous Computing Workshop, 1998, pp. 184–199.

[70] M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific workflows in the askalon

Grid environment,” SIGMOD Rec., vol. 34, no. 3, pp. 56–62, 2005.

[71] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund, “Dynamic matching and

scheduling of a class of independent tasks onto heterogeneous computing systems,” in 8th Het-

erogeneous Computing Workshop, 1999, p. 30.

[72] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson,

M. Theys, B. Yao, D. Hensgen, and R.F. Freund, “A comparison of eleven static heuristics

for mapping a class of independent tasks onto heterogeneous distributed computing systems,”

Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.

[73] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, MIT Press, Cam-

bridge, MA, USA, 1989.

[74] T. Yang and A. Gerasoulis, “A fast static scheduling algorithm for dags on an unbounded number

of processors,” in ACM/IEEE conference on Supercomputing, 1991, pp. 633–642.

[75] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for scheduling directed acyclic

graphs on multiprocessors,” Journal of Parallel and Distributed Computing, vol. 16, no. 4, pp.

276–291, 1992.

133

[76] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on an unbounded number of proces-

sors,” IEEE Transactions on Parallel and Distributed Systems, vol. 5, pp. 951–967, 1994.

[77] M.A. Palis, J.-C. Liou, and D.S. Wei, “Task clustering and scheduling for distributed memory

parallel architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 1, pp.

46–55, 1996.

[78] J.C. Liou and M.A. Palis, “An efficient task clustering heuristic for scheduling dags on mul-

tiprocessors,” in Workshop on Resource Management, Symposium of Parallel and Distributed

Processing, 1996, pp. 152–156.

[79] S.J. Kim and J.C. Browne, “A general approach to mapping of parallel computation upon multi-

processor architectures,” in International Conference on Parallel Processing, 1988, pp. 1–8.

[80] J. Liou and M.A. Palis, “A comparison of general approaches to multiprocessor scheduling,” in

11th International Symposium on Parallel Processing, 1997, pp. 152–156.

[81] R. Bajaj and D.P. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,”

IEEE Transactions on Parallel and Distributed Systems, vol. 15, pp. 107–118, 2004.

[82] I. Ahmad and Y. Kwok, “A new approach to scheduling parallel processsing,” in International

Conference on Parallel Processing, 2007, pp. 539–550.

[83] B. Kruatrachue and T.G. Lewis, “Grain size determination for parallel processing,” IEEE Soft-

ware, vol. 5, no. 1, pp. 23–32, 1988.

[84] Y. Chung and S. Ranka, “Applications and performance analysis of a compile-time optimization

approach for list scheduling algorithms on distributed memory multiprocessors,” in Supercom-

puting, 1992, pp. 512–521.

[85] K. Ranganathan and I. Foster, “Decoupling computation and data scheduling in distributed data-

intensive applications,” in 11th IEEE International Symposium on High Performance Distributed

Computing, 2002, p. 352.

134

[86] K. Ranganathan and I. Foster, “Identifying dynamic replication strategies for a high-performance

data Grid,” in 2nd International Workshop on Grid Computing, 2001, pp. 75–86.

[87] H. El-Rewini and T.G. Lewis, “Scheduling parallel program tasks onto arbitrary target machines,”

journal of parallel and distributed computing, vol. 9, no. 2, pp. 138–153, 1990.

[88] G.C. Sih and E.A. Lee, “A compile-time scheduling heuristic for interconnection-constrained

heterogeneous processor architectures,” IEEE Transactions on Parallel and Distributed Systems,

vol. 4, no. 2, pp. 175–187, 1993.

[89] Y.K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task graphs to

multiprocessors,” ACM Computer Surveys, vol. 31, no. 4, pp. 406–471, 1999.

[90] M.Y Wu and D.D. Gajski, “A programming aid for hypercube architectures,” The Journal of

Supercomputing, vol. 2, no. 3, pp. 349–372, 1988.

[91] B. Kruatrachue and T. Lewis, “Grain size determination for parallel processing,” IEEE Software,

vol. 5, no. 1, pp. 23–32, 1988.

[92] J.J. Hwang, Y.-C. Chow, F.D. Anger, and C.-Y. Lee, “Scheduling precedence graphs in systems

with interprocessor communication times,” SIAM Journal on Computing, vol. 18, no. 2, pp.

244–257, 1989.

[93] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective technique for allocating

task graphs to multiprocessors,” IEEE Transactions on Parallel and Distributed Systems, vol. 7,

pp. 506–521, 1996.

[94] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and low-complexity task scheduling

for heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13,

pp. 260–274, 2002.

[95] H. El-Rewini and T.G. Lewis, “Scheduling parallel program tasks onto arbitrary target machines,”

Journal of Parallel and Distributed Computing, vol. 9, no. 2, pp. 138–153, 1990.

135

[96] M.A. Iverson, F. zgner, O. Gregory, and G.J. Follen, “Parallelizing existing applications in a

distributed heterogeneous environment,” in 4th Heterogeneous Computing Workshop, 1995, pp.

93–100.

[97] L. Wang, H.J. Siegel, V.R. Roychowdhury, and A.A. Maciejewski, “Task matching and schedul-

ing in heterogeneous computing environments using a genetic-algorithm-based approach,” Jour-

nal of Parallel and Distributed Computing, vol. 47, no. 1, pp. 8–22, 1997.

[98] E.S.H.Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor scheduling,” IEEE

Transactions on Parallel Distributed System, vol. 5, no. 2, pp. 113–120, 1994.

[99] A.S. Wu, H. Yu, S. Jin, K.C. Lin, and G. Schiavone, “An incremental genetic algorithm approach

to multiprocessor scheduling,” IEEE Transactions on Parallel Distributed Systems, vol. 15, no.

9, pp. 824–834, 2004.

[100] Thomas A. Feo and Mauricio G.C. Resende, “Greedy randomized adaptive search procedures,”

Journal of Global Optimization, vol. 6, pp. 109–133, 1995.

[101] H. Singh and A. Youssef, “Mapping and scheduling heterogeneous task graphs using genetic

algorithms,” in 5th IEEE Heterogeneous Computing Workshop, 1996, p. 8697.

[102] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task scheduling

strategies for workflow-based applications in grids,” in 5th IEEE International Symposium on

Cluster Computing and the Grid, 2005, pp. 759–767.

[103] J.L. Ribeiro Filho, P.C. Treleaven, and P.D. Milano, “Genetic algorithm programming environ-

ments,” IEEE Computer, vol. 27, pp. 28–43, 1994.

[104] M. Srinivas and L.M. Patnaik, “Genetic algorithms: A survey,” Computer, vol. 27, no. 6, pp.

17–26, 1994.

[105] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, A.I. Reuther, M.D. Theys, B. Yao, R.F. Freund,

M. Maheswaran, J.P. Robertson, and D. Hensgen, “A comparison study of static mapping heuris-

136

tics for a class of meta-tasks on heterogeneous computing systems,” Heterogeneous Computing

Workshop, vol. 0, pp. 15, 1999.

[106] D. Garlan, “Research directions in software architecture,” ACM Computing Surveys, vol. 27, no.

2, pp. 257–261, 1995.

[107] C. Lin and S. Lu, “Architectures of workflow management systems: A survey,” Tech. Rep.

TR-SWR-01-2008, Wayne State University, 2008.

[108] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and Grid computing 360-degree com-

pared,” in IEEE Grid Computing Environments, in conjunction with IEEE/ACM Supercomputing,

2008, pp. 1–10.

[109] D. Georgakopoulos, M.F. Hornick, and A.P. Sheth, “An overview of workflow manage-

ment: From process modeling to workflow automation infrastructure,” Distributed and Parallel

Databases, vol. 3, no. 2, pp. 119–153, 1995.

[110] T. Oinn, M. Greenwood, M. J. Addis, M. N. Alpdemir, J.Ferris, K. Glover, C. Goble, A. Goderis,

D. Hull, D. J. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe,

“Taverna: Lessons in creating a workflow environment for the life sciences,” Concurrency and

computation: practice and experience, vol. 18, no. 10, pp. 1067–1100, 2002.

[111] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance collection support in the Kepler sci-

entific workflow system,” in International Provenance and Annotation, Workshop, 2006, pp.

118–132.

[112] E. Deelman and A. Chervenak, “Data management challenges of data-intensive scientific work-

flows,” in IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2008,

pp. 687–692.

[113] Open Provenance Model, http://twiki.ipaw.info/bin/view/Challenge/OPM.

137

[114] K. Ostrowski, K. Birman, and D. Dolev, “Extensible architecture for high-performance, scal-

able, reliable publish-subscribe eventing and notification,” International Journal of Web Services

Research, vol. 4, no. 4, pp. 18–58, 2007.

[115] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, “RDFProv: A relational rdf store for querying and

managing scientific workflow provenance,” Data and Knowledge Engineering, vol. 69, no. 8, pp.

836–865, 2010.

[116] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing and querying scientific workflow

provenance metadata using an RDBMS,” in IEEE International Conference on e-Science and

Grid Computing, 2007, pp. 611–618.

[117] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, “Efficient schema-based XML-to-Relational

data mapping,” Information Systems, vol. 32, no. 3, pp. 458–476, 2007.

[118] A. Chebotko, M. Atay, S. Lu, and F. Fotouhi, “XML subtree reconstruction from relational

storage of xml documents,” Data Knowledge and Engineering, vol. 62, no. 2, pp. 199–218,

2007.

[119] T. Erl, Service-oriented architecture concepts, technology and design, Pearson Education Inc.,

2005.

[120] C. Lin, S. Lu, X. Liang, J. Hua, and O. Muzik, “Cocluster analysis of thalamo-cortical fiber tracts

extracted from diffusion tensor MRI,” International Journal of Data Mining and Bioinformatics,

vol. 2, no. 4, pp. 342–361, 2008.

ABSTRACT

SCIENTIFIC WORKFLOW INTEGRATION FOR SERVICES COMPUTING

by

CUI LIN

August 2010

Advisor: Dr. Shiyong Lu

Major: Computer Science

Degree: Doctor of Philosophy

In recent years, significant scientific advances are increasingly achieved through complex scientific

processes. As the exponential growth in computing technologies and scientific data, a scientific work-

flow may comprise a large number of heterogeneous scientific services and applications, provided by

different organizations. These services, applications, and their associated data are usually distributed

across heterogeneous computing environments. The integration and management of such scientific

workflows are pushing the limits of current workflow technology. This dissertation presents an inte-

grated solution to composing, scheduling, executing and developing scientific workflows and scientific

workflow management systems.

To provide a foundation for workflow composition, scheduling, execution and management, we

propose the first reference architecture for scientific workflow management systems. The reference ar-

chitecture not only provides a high-level organization of subsystems and their interactions in a workflow

system, but also provides a basis for comparison between different systems and a guidance for the ar-

chitectural design of an SWFMS in a specific scientific domain. To integrate heterogeneous services

and applications and enable them composed to workflows, we propose a task template model which not

only provides an appropriate abstraction of heterogeneous services and applications, but also encapsu-

lates the composition and mapping of shims and functional task components within a task interface.

Our proposed task specification language (TSL) not only integrates heterogeneous services and appli-

cations into uniform workflow tasks, but also provides a solution to address both TYPE-I and TYPE-II

shimming problems in composing scientific workflows. To schedule scientific workflows in emerg-

138

139

ing services computing environments, we propose two workflow scheduling algorithms, the Scalable-

Heterogeneous-Earliest-Finish-Time (SHEFT) algorithm and the Scalable-Critical-Path-On-a-Resource

(SCPOR) algorithm, to prioritize tasks in a workflow, map tasks onto suitable resources and order the

execution of tasks on the assigned resources, so that the workflow makespan can be minimized. Our

extensive experiments have shown that our proposed algorithms not only outperform other algorithms

for data-intensive and compute intensive workflows, but also allow the assigned resources elastically

change on demand of the scalability of workflows. To execute workflows on distributed computing en-

vironments, we propose a task run model to model the run-time behaviors of tasks. The proposed task

run description language (TRDL) enables the execution of task instances constructed from heteroge-

neous services and applications. We also develop an SOA based task management subsystem to manage

all task templates, task instances and task runs for the invocation and execution of various heterogeneous

task components. Finally, our developed SOA based workflow management system, the VIEW system,

and a VIEW based workflow application system, the FiberFlow system, validate our architectures, mod-

els, languages, and algorithms.

AUTOBIOGRAPHICAL STATEMENT

Cui Lin

Ms. Cui Lin is currently a PhD candidate in the Department of Computer Science at Wayne State

University. She is a member of the Scientific Workflow Research Laboratory (SWR Lab), one of the top

five leading scientific workflow research groups in North America. Ms. Lin was an IBM certified DB2

Database Expert, and she worked for IBM (IBM Global Services) as a system analyst and project man-

ager after she received her BE in Computer Science from Beijing Information Science and Technology

University. Her research interests include Scientific Workflows, Services Computing, Cloud Computing

and Bioinformatics. She has published several refereed international journals and conference papers.

Ms. Lin is a member of IEEE.

140

	Wayne State University
	DigitalCommons@WayneState
	1-1-2010

	Scientific Workflow Integration For Services Computing
	Cui Lin
	Recommended Citation

