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Chapter 1 Introduction

The term ”flavor” in particle physics stands for describing the types of quarks

and leptons. Presently, six types or flavors of quarks - up, down, strange, charm,

bottom and top, three types or flavors of charged leptons - electron, muon, and τ -

lepton, and three neutrino flavors - electron, muon and tau neutrinos, are known to

exist experimentally. Among the quarks, the up and down are the ones that make

up protons and neutrons and hence the matter that surrounds us. The other quark

flavors, along with the up and down, are also confined in compound states, mesons

and baryons, which are, however, unstable.

Flavor physics incorporates studies of such properties of quarks and leptons as

transitions between different flavors in weak decays, flavor-antiflavor oscillations, ori-

gin of quark and lepton masses and flavor mixing, etc. These studies play an impor-

tant role in understanding the origin of the Universe and its fundamental structure.

Except when the top quark is involved, the transitions between flavors (weak decays,

oscillations) occur at a few GeV or lower energy scales. Yet in spite of this, these

transitions serve as one of the most powerful tools in searching for physics that may

occur at energies as high as 100 GeV and even higher up to a 104 TeV scale [1].

Presently, the world of elementary particles that involves quarks and leptons is

described by the so-called Standard Model (SM) [2] - a theory that incorporates

the description of phenomena occurring due to electromagnetic, strong and weak

interactions of elementary particles. However, there are strong reasons to believe
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that at energy scales higher than 100 GeV the Standard Model should be replaced

by a more fundamental theory. Arguments in favor of such a hypothesis are based on

experimental observations of neutrino oscillations [3, 4, 5, 6, 7] (and hence masses),

evidence for Dark Matter (DM) [8], baryon and lepton asymmetries of the Universe

that the SM is unable to explain. Besides, the SM has theoretical inconsistencies

that are related to quadratic divergence of the loop corrections to the Higgs particle

mass, to renormalize which one needs to tune two quantities to an unnatural accuracy

of 10−34; unexplained hierarchies of the quark and lepton masses and mixing; large

number of free parameters, etc [2, 9].

Presently, there are several extensions of the Standard Model that propose dif-

ferent solutions of the above-mentioned problems. Those incorporate supersym-

metric theories [9, 10, 11], Left-Right Symmetric models [12, 13], models with a

quark/lepton family symmetry [14, 15], models with extra generations of quarks and

leptons [16, 17, 18], dynamical electroweak symmetry breaking models [19, 20, 21],

models with extra dimensions [22, 23] and many others. This great variety of the SM

extensions is being tested at the Tevatron and LHC now, at the center-of-mass ener-

gies of 1.96 TeV and 7 TeV respectively. Presently there is no signal for New Physics

(NP) beyond the Standard Model, however significant progress has been made in

placing limits on hypothetical particles masses, their interaction coupling constants

and their production cross sections (see [24] and references therein).

In this work we examine possible impact of New Physics on heavy meson decays

and meson-antimeson oscillations within some of the SM extensions, mentioned above.

Also, we propose a version of the simplest SM extension with two Higgs doublets that

can explain the existing hierarchy of quark and lepton masses.

Studies of heavy (with masses ∼ few GeV) meson decays and meson-antimeson

oscillations represent ways to search for New Physics beyond the Standard Model.

It may be a direct search for a weakly-coupled hypothetical particle with a mass of
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order of a few GeV or less [25, 26, 27, 28]. Or it may be a search for a decay forbidden

within the Standard Model, but allowed in some of the SM extensions. However, in

most of the cases this is a study of the processes where the NP effects may enter due to

exchange of virtual heavy particles that are predicted by the SM extensions, whereas

both the initial and the final states consist of the SM particles. In the Standard

Model such processes occur due to exchange of W± and Z bosons with masses ∼ 100

GeV. The New Physics contribution may in principle be comparable, if replacing W±

and/or Z by another relevant heavy particles - the NP contribution is suppressed by

the same power of heavy mass as the SM contribution.

Moreover, certain flavor-changing processes occur within the Standard Model only

at loop level and hence are suppressed by a certain loop factor. They may also be sup-

pressed by a power of a light-to-heavy mass ratio and/or be additionally suppressed if

occurring due to quark generation mixing. In contrast, certain extensions of the SM

predict that the same processes occur at the tree level or even if being loop-induced,

may have no other suppression factors present within the SM. In that case the NP

contribution is, in general, essential or even dominant. Such processes are especially

valuable: an experimental evidence for them may lead to a New Physics signal even

earlier than that from the LHC. Alternatively, if the experimental data turn out to

be in accord with the SM predictions, such processes may be used to put constraints

on the relevant NP parameters. These constraints are in general much more severe

than those from the Tevatron and LHC direct searches for New Physics, as we will

see in Chapters 3 and 4.

In this work we will be concentrating on meson-antimeson oscillations as a primary

example. Within the Standard Model, these oscillations are loop-induced and occur

via quark generation mixing (see the next chapter). In addition some of the oscillation

amplitudes contain light-to-heavy mass ratios. As mentioned above, a New Physics

contribution may be essential for these processes.
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Study of an NP contribution to meson-antimeson oscillations involves two pos-

sibilities. First, one may examine if a given oscillation may be dominated by NP

effects or at least if the NP contribution may be comparable with that of the SM.

Here D0 −D0 oscillations are of the primary interest, as the SM predictions for this

process are still uncertain [29]. It is still not excluded that D0 −D0 is dominated by

New Physics effects. A large NP contribution, comparable with that of the SM, is

also possible in Bq−Bq mixing (q = s, d), provided that there is a large CP-violating

phase beyond the Standard Model [30].

Another possibility is related to the use of the existing experimental data for

meson-antimeson oscillations, to place constraints on the relevant NP parameters.

One may then transform these constraints into those on the NP contribution to heavy

meson decays.

In this work we will consider D0 − D
0
and Bs − Bs oscillations. We will first

examine a possibility of a sizable New Physics contribution to the lifetime difference

in D0 −D0 mixing within specific SM extensions.

We proceed then to the Bs−Bs mixing and examine possible correlations between

the NP contribution to Bs mass difference and the leptonic decay Bs → µ+µ−. These

correlations provide in general more powerful constraints on the NP contribution to

Bs → µ+µ− than the existing experimental limit on the branching ratio for this

process.

Since the experimental bound on Bs → µ+µ− decay rate [24] is an order of mag-

nitude greater than the SM prediction, one believes that there is still room to search

for a New Physics signal in this process. Yet, we show that bounds on the NP pa-

rameters from the study of Bs mass difference tend to drive the NP contribution to

Bs → µ+µ− decay rate below the SM value.

Study of quark and lepton flavors beyond the Standard Model enables one also to

explain the existing mass pattern of quarks and charged leptons. Within the Standard
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Model the quark and lepton mass hierarchy is simply related to the unexplained

hierarchy of the fermion Yukawa interaction couplings with the Higgs doublet. In this

work we illustrate that the existing quark and lepton mass pattern may be explained

within the simplest extension of the Standard Model with two Higgs doublets, without

imposing a hierarchy on the fermion Yukawa couplings.

The work is organized as follows. In Chapter 2 we provide a theoretical back-

ground that may be useful to understand the further discussion. We provide a brief

introduction to the Standard Model, then we discuss in detail the quark (and lepton)

masses generation mechanism within the Standard Model, the quark CKM mixing

[31, 32] and the related issues such as Glashow-Iliopoulos-Maiani (GIM) mechanism

[33] and the flavor problem [34]. These issues are going to play an important role

in our further analysis. We finish Chapter 2 with a brief introduction of the meson-

antimeson mixing formalism.

Chapter 3 is devoted to discussion of New Physics searches in the charm sector and,

in particular, in D0 −D0 oscillations as a primary example. We examine the lifetime

difference in D0 − D
0
mixing within R-parity violating supersymmetric models and

within the Left-Right Symmetric models. It is shown that within R-parity violating

supersymmetric models the experimental value of the lifetime difference in D0 −D
0

mixing may be due to destructive interference between the SM and NP contributions.

Otherwise, if the NP contribution is small, it implies rigorous bounds on the relevant

R-parity violation couplings and/or charged slepton masses. In principle, diagrams

with large NP contribution to the lifetime difference in D0−D0
mixing may also occur

within other SM extensions, however their contribution in sum may be negligible due

to the GIM cancelation mechanism. This is the case, as we show, within the non-

manifest Left-Right Symmetric Model.

In Chapter 4 we consider possible correlations between the NP contributions to

Bs −Bs mixing and Bs → µ+µ− decays. We show that the experimental constraints
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on the NP contribution to the mass difference in Bs mixing lead to severe constraints

on the NP contribution to the Bs → µ+µ− decay rate within many SM extensions.

As mentioned above, study of quark and lepton flavors beyond the Standard Model

enables one also to explain the existing mass pattern of quarks and charged leptons.

In Chapter 5 we propose an explanation of this pattern within a general two-Higgs

doublet extension of the Standard Model, without assuming a hierarchy in the quark

and lepton Yukawa couplings. The desired values of the quark and lepton mass ratios

are reached imposing the quark/lepton basis invariant conditions on the quark/lepton

Yukawa matrices and assuming that the ratio of the Higgs doublets vacuum expec-

tation values (vev’s) is sufficiently large. We make concluding remarks in Chapter 6.

Some of derivations and useful formulae are placed in the Appendices.
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Chapter 2 Theoretical Background

This chapter is organized as follows. We make first a brief introduction to the

Standard Model in Section 2.1. Then in Section 2.2 we discuss in detail the quark (and

lepton) mass generation mechanism and the quark CKM mixing. We also discuss the

related issues such as the GIM mechanism and the flavor problem. Finally Section 2.3

is devoted to a brief introduction of the meson-antimeson mixing formalism.

2.1 The Standard Model

The Standard Model of electroweak and strong interactions consists of three gen-

erations of quarks and leptons,

u

d

 ,

 c

s

 ,

 t

b

 ,

 νe

e

 ,

 νµ

µ

 ,

 ντ

τ

 ,

the gauge bosons of their interactions: photon, W±, Z bosons, gluon, and the Higgs

doublet - it is needed to generate quark, lepton and W±, Z boson masses via the

Higgs mechanism [35].
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The Standard Model Lagrangian may be presented as follows:

L = Lgauge + LF + LHiggs + LY ukawa (2.1.1)

In other words, it may be broken into the parts that consist of

• gauge fields kinetic and self-interaction terms, Lgauge;

• fermion kinetic terms and gauge interaction terms, LF ;

• the Higgs doublet kinetic, gauge interaction and self-interaction terms, LHiggs;

• fermion and the Higgs doublet Yukawa interaction terms, LY ukawa.

The gauge fields kinetic and self-interaction terms may be presented as

Lgauge = −1

4
GaµνGa

µν −
1

4
W aµνW a

µν −
1

4
BµνBµν (2.1.2)

where superscript a runs from 1 to 8 in the first term and from 1 to 3 in the second

term of (2.1.2);

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν (2.1.3)

is the color SU(3) non-Abelian gauge gluon octet field tensor, Ga
µ is a gluon field and

gs is the QCD coupling constant;

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gεabcW b

µW
c
ν (2.1.4)

is the weak left isospin SU(2) non-Abelian gauge triplet field tensor, W a
µ is a weak

isospin triplet gauge field, g is the weak coupling constant;

Bµν = ∂µBν − ∂νBµ (2.1.5)
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is the hypercharge U(1) Abelian gauge field tensor, Bµ is the the hypercharge gauge

field and g′ is the hypercharge coupling constant. The relationships between the fields

W a
µ , a = 1, 2, 3, Bµ and W± and Z bosons and the photon are given below.

The fermion kinetic terms and gauge interaction terms may be presented as

LF =
3∑

f=1

[
Q̄f
Lγ

µiDµQ
f
L + L̄fγµiDµL

f + ūfRγ
µiDµu

f
R + d̄fRγ

µiDµd
f
R +

+ℓ̄fRγ
µiDµℓ

f
R

]
(2.1.6)

where f stands for a generation number, Qf
L and Lf are left-handed quark and lepton

weak isospin doublets,

Qf
L =

uf

df


L

, Lf =

 νf

ℓf


L

and ufR (= uR, cR, tR for f = 1, 2, 3 respectively), dfR (= dR, sR, bR for f = 1, 2, 3

respectively), ℓfR (= eR, µR, τR for f = 1, 2, 3 respectively) are right-handed quark

and lepton isospin singlets. Note that the quark fields uf and df are color triplets in

the SUc(3) space. The covariant derivative is given by

Dµ = ∂µ − igsT
a
c G

a
µ − igT aW a

µ − ig′
Y ′

2
Bµ (2.1.7)

where T ac , a = 1, .., 8, are the SUc(3) group generators,

T ac u
f =

λa

2
uf , T ac d

f =
λa

2
df , T ac ℓ

f = T ac ν
f = 0

with λa being Gell-Mann matrices;

T a, a = 1, 2, 3 are the weak left isospin operator components (SU(2)L group genera-
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tors),

T aΨf
L ≡ T a

ψf1

ψf2


L

=
τa

2

ψf1

ψf2


L

, T aψfR = 0, ψf = uf , df , ℓf , νf

with τa being Pauli matrices;

Y ′ is the hypercharge operator and is related to the electromagnetic charge and the

third component of the isospin operator as

Y ′

2
= Q− T3 (2.1.8)

The Higgs sector of the SM Lagrangian has the following form:

LHiggs = (DµΦ)† (DµΦ)− V (Φ) (2.1.9)

where

Φ =

Φ(+)

Φ0

 (2.1.10)

DµΦ =

(
∂µ − ig

τa

2
W a
µ − ig′

2
Bµ

)
Φ (2.1.11)

and

V (Φ) =
λ

2

(
Φ†Φ

)2
+ µ2

(
Φ†Φ

)
(2.1.12)

Note that one must have λ > 0 to assure vacuum stability of the Higgs potential (for

λ < 0, the potential becomes unbound from below as |Φ|2 → ∞). The sign of the

mass parameter µ2 may be arbitrary.
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Finally the Yukawa term of (2.1.1) may be presented as

LY ukawa = −
∑
f,f ′

Yuff ′ Q̄
f
L Φ̃ uf

′

R + Ydff ′ Q̄
f
L Φ df

′

R + Yℓff ′ L̄
f Φ ℓf

′

R (2.1.13)

where Φ̃ = iσ2Φ
⋆. Here we behold the original version of the SM where there are no

right handed neutrinos and no Yukawa terms for the neutrino sector.

The SM Lagrangian given by (2.1.1)-(2.1.13) is symmetric under SU(3)c×SU(2)L×

U(1)Y ′ group transformations, both local and global. Note that the fields entering

the SM Lagrangian are all massless. The masses of fermions, weak interaction gauge

bosons and the physical Higgs state are generated due to spontaneous breaking of

the Lagrangian SUL(2) × U(1)Y ′ symmetry by the Higgs doublet non-zero vacuum

expectation value (vev).

Possibility of having a non-zero Higgs vacuum state or a non-trivial minimum for

the Higgs potential is related to the sign of the parameter µ2 of the Higgs potential.

For µ2 > 0 it is straightforward to see that the Higgs potential minimum V (⟨Φ⟩0) ≡

V0 = 0 is reached for ⟨Φ⟩0 = 0. On the other hand if µ2 < 0, the minimum condition

for the Higgs potential has a non-trivial solution, given by

|⟨Φ⟩0| =
√

−µ2

λ
(2.1.14)

and V0 = −µ4/(2λ).

Further on we will consider µ2 < 0 and the non-trivial solution for the Higgs

potential minimum. The Higgs vacuum state may be presented then in a following

form:

⟨Φ⟩0 =
1√
2

 0

v

 (2.1.15)

with v > 0 (if v is complex or negative, one may redefine the Higgs doublet phase to



12

make v real and positive). According to (2.1.14) and (2.1.15),

v =

√
−2µ2

λ
(2.1.16)

Note that the Higgs vacuum state given by Eq. (2.1.14) is not uniquely defined. In-

stead of (2.1.15), one might choose the upper component of ⟨Φ⟩0 to be non-vanishing,

or even both components of ⟨Φ⟩0 to be non-vanishing. All these possibilities are re-

lated by SU(2)L × U(1)Y ′ transformations, or they are mathematically equivalent in

light of SU(2)L × U(1)Y ′ symmetry of the SM Lagrangian.

However, each possible configuration for the Higgs vev specifies a certain direction

in the SU(2)L × U(1)Y ′ space or spontaneously breaks SU(2)L × U(1)Y ′ symmetry of

the SM Lagrangian. The Higgs vev configuration given by Eq. (2.1.15) corresponds to

the physical situation when the electromagnetic charge is conserved and the photon

remains massless. In other words, SU(2)L ×U(1)Y ′ symmetry of the SM Lagrangian

is spontaneously broken to U(1)EM symmetry of the electromagnetic interactions by

non-zero vacuum expectation value of the Higgs doublet.

Spontaneous breakdown of SU(2)L×U(1)Y ′ symmetry provides an elegant mech-

anism to generate the SM particles masses. The details can be found e.g. in [2],

in this chapter we will discuss only the quark (and lepton) mass generation mech-

anism because of its crucial importance. This is done in the next section, as for

here, we briefly point out the main consequences of the spontaneous breaking of

SU(2)L × U(1)Y ′ symmetry:

• After the global SU(2)L×U(1)Y ′ symmetry is spontaneously broken, the Higgs

doublet may be presented in a following form:

Φ(x) =

 G+(x)

1√
2
[v + h(x) + iG0(x)]

 (2.1.17)
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where G±(x), G0(x) and h(x) are excitations (quantum fluctuations) about the

Higgs doublet vacuum state. Three of these states - the Goldstone bosons G±

and G0, remain massless whereas h acquires a mass mh =
√
λv.

• The Goldstone modes may be removed from the Higgs doublet by some SU(2)L×

U(1)Y ′ gauge transformation, so that

Φ(x) =
1√
2

 0

v + h(x)

 (2.1.18)

The particular gauge, where the Higgs doublet may be presented in this form,

is called unitary gauge. The remaining physical state, h(x), is not detected

experimentally yet. Presently there is only a lower bound on its mass [24],

mh > 114.4 GeV, and the mass range of 162 GeV ≤ mh ≤ 166 GeV is ruled

out. [36].

• The same gauge transformation affects the gauge fields W a
µ and Bµ as well: the

Goldstone bosons re-appear as longitudinal components of these fields. Recall

that massless vector bosons have transverse degrees of freedom only, the appear-

ance of three additional longitudinal degrees of freedom means that three of the

four SU(2)L×U(1)Y ′ gauge fields acquire masses. Thus, after the local (gauge)

SU(2)L × U(1)Y ′ symmetry is spontaneously broken, the Goldstone modes are

”eaten” by the gauge bosons, so that three linear combinations of them,

W±
µ (x) =

1√
2

(
W 1
µ(x)∓W 2

µ(x)
)

(2.1.19)

and

Zµ(x) = W 3
µ(x) cos θW −Bµ(x) sin θW (2.1.20)
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become massive. The fourth linear combination, the photon,

Aµ(x) = W 3
µ(x) sin θW +Bµ(x) cos θW (2.1.21)

remains massless. Thus, U(1)EM symmetry remains unbroken and electric

charge is conserved.

• The weak mixing angle θW in (2.1.20) and (2.1.21) (also called the Weinberg

angle) is given by tan θW = g′/g, experimentally [24] sin2 θW = 0.231. Also,

g sin θW = g′ cos θW = e. With the use of this relationship between the cou-

plings and (2.1.20) and (2.1.21), one may derive the electromagnetic interaction

Lagrangian from the relevant terms in (2.1.6).

• W± and Z bosons acquire masses due to the interaction with the Higgs vev.

The masses are related to the vev as

M2
W =

g2v2

4
, M2

Z =
(g2 + g′2) v2

8
(2.1.22)

Experimentally, MW = 80.4 GeV and MZ = 91.2 GeV [24], they exceed the

quark and lepton masses (except for the top quark) by orders of magnitude.

• The quarks and leptons acquire masses due to Yukawa interactions with the

Higgs vev. More details on how this occurs are presented in the next section.

• The interactions of fermions with W± and Z bosons are given by

Lweak =
g

2
√
2

∑
f

Ψfγ
µ(1− γ5)

(
τ+W+

µ + τ−W−
µ

)
Ψf

+
g

2 cos θW

∑
f

Ψfγ
µ
(
gfV − gfAγ5

)
ΨfZµ (2.1.23)
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where

τ± =
1

2
(τ1 ± iτ2) , gfV = T f3L − 2Qf sin2 θW , gfA = T f3L

with T f3L = 1/2 for uf and νf , and T
f
3L = −1/2 for df and ℓf . The fermion fields

Ψf are given in the weak isospin basis. The relationship between the weak

isospin and mass bases and quark (and lepton) generation mixing are discussed

in the next section.

• In many processes the momentum flowing through W± or Z boson propagators

is much less than W± or Z boson mass, p2 ≪ M2
W ,M

2
Z . Such a momentum

may be neglected in the propagators, or heavy W± or Z dynamical degrees of

freedom may be integrated out with the weak interaction Lagrangian (2.1.23)

being replaced by a low-energy effective Lagrangian, with an effective coupling

proportional to the inverse heavy mass squared. For example, if having a W±

propagator, one would get

g2

8(M2
W − p2)

≈ g2

8M2
W

≡ GF√
2

(2.1.24)

The relevant low-energy effective Lagrangian would be that containing four-

fermion interactions:

Leff = −GF√
2

∑
i,j,k,l

ψ̄iγ
µ(1− γ5)ψjψ̄kγµ(1− γ5)ψl (2.1.25)

• The magnitude of the Fermi coupling constant, GF = 1.166 × 10−5GeV −2

[24], may be found experimentally, using muon decay. Also, using (2.1.22)

and (2.1.24), one may relate GF with the Higgs vacuum expectation value as

v = (
√
2GF )

−1/2 (2.1.26)
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which in its turn yields v = 246 GeV.

• Spontaneous electroweak symmetry breaking is also used in other extensions of

the Standard Model to generate particles masses. Also, beyond the Standard

Model an extended Higgs sector is used, for example consisting of two Higgs

doublets. This Higgs sector for a general two-Higgs doublet model is described

in Appendix C.1.

As it was mentioned above, in this work charm and bottom meson-antimeson os-

cillations and weak decays are of the primary interest. For these kinds of processes

that occur due to weak interactions and at energy scales much lower than W± and Z

boson mass scale, it is often more convenient to use a low-energy effective Lagrangian

instead of (2.1.23). Note that if W±, Z boson and top quark propagators are running

in a loop and/or QCD corrections are taken into account, the set of the relevant

low-energy effective operators is much richer than that in (2.1.25). Low-energy ef-

fective theory is also used to take into account an NP contribution that occurs due

to exchange of NP particles with masses ∼ 100 GeV or larger. The set of relevant

low-energy effective operators depends on a particular process, as we will see in the

next chapters.

2.2 Flavor Problem, Quark Masses and Mixing and GIM Mechanism

As mentioned above, quark masses are generated due to Yukawa interactions of

the quarks with the Higgs doublet vev. The relevant terms of the SM Lagrangian

are, using (2.1.13) and (2.1.15),

− LQM =
∑
f,f ′

[
Yuff ′ ū

f
L u

f ′

R + Ydff ′ d̄
f
L d

f ′

R + h.c.
] v√

2
(2.2.1)
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or, in the matrix form,

− LQM = (ū, c̄, t̄)L
Yu v√

2


u

c

t


R

+
(
d̄, s̄, b̄

)
L

Yd v√
2


d

s

b


R

+ h.c. (2.2.2)

with

Yu v√
2

≡ M̂u,
Yd v√

2
≡ M̂d

being mass matrices for the up- and down-type quarks respectively. Note that M̂u

and M̂d are in general non-diagonal, thus the quark weak isospin or gauge basis is

different from the quark mass basis.

Let VuL , VdL and VuR , VdR be respectively left and right unitary transformation

matrices that diagonalize matrices Yu and Yd:

VuLYuV
†
uR

= Y m
u =


yu 0 0

0 yc 0

0 0 yt

 , VdLYdV
†
dR

= Y m
d =


yd 0 0

0 ys 0

0 0 yb

 (2.2.3)

where superscript m stands for the quark mass basis. The quark states are trans-

formed subsequently as

VuL,R


u

c

t


L,R

=


um

cm

tm


L,R

, VdL,R


d

s

b


L,R

=


dm

sm

bm


L,R

(2.2.4)

or

(VqL,R
)ff ′ qL,Rf ′

= qmL,Rf
qf = uf , df (2.2.5)
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The quark masses can be read off from Eqs. (2.2.2) and (2.2.3) - they are given by

mq =
yqv√
2
, q = u, d, s, c, b, t, (2.2.6)

or quark masses are given by the product of their Yukawa couplings with the Higgs

vev.

Thus, the spontaneous breaking of the electroweak symmetry provides us with

a rather simple mechanism of generation of quark masses. Yet, the quark states

transformation from the weak into the mass bases plays a crucial role in understanding

flavor phenomenology. To start with, note that in the weak interaction Lagrangian

given by Eq. (2.1.23) in terms of weak isospin fermion states, there are no quark

generation mixing terms. In other words, the only allowed hadronic currents are

flavor-conserving ones and those involving quark flavor transitions within the same

quark family.

On the other hand, in terms of the quark mass eigenstates, the weak interaction

Lagrangian has the following form:

Lweak =
g

2
√
2

∑
f,f ′

ūmf γ
µ(1− γ5)W

+
µ Vff ′d

m
f ′ + d̄mf γ

µ(1− γ5)W
−
µ V

⋆
ff ′u

m
f ′ +

+
g

2 cos θW

∑
f

q̄mf γ
µ
(
gfV − gfAγ5

)
qmf Zµ, qmf = umf , d

m
f (2.2.7)

The second term in (2.2.7) - the neutral current interactions with the Z boson, is

still flavor conserving (obviously, this will be true also for the electromagnetic and

strong interaction currents in the mass basis). This is a consequence of the quark

transformation matrices unitarity:

(VqL,R
)ff ′(V

⋆
qL,R

)f ′′f ′ = δff ′′ (2.2.8)
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Thus, the Standard Model Lagrangian contains no Flavor Changing Neutral Currents

(FCNC’s) - those may be induced only via loop diagrams. This is in accord with the

experimental data - the processes occurring due to FCNC’s are greatly suppressed

(see [24] and references therein).

However, in the first term in (2.2.7) - with charged currents interacting with W±,

three uf quarks are transformed into three df ′ quarks (or vice versa), and one may

have f ̸= f ′. In other words, the quark generations (in the mass basis) are mixed in

weak interactions of charged quark currents. The 3×3 mixing matrix, Vff ′ , is related

to the quark rotation matrices VuL,R
and VdL,R

as

V = VuLV
†
dL

(2.2.9)

It is also called the Cabibbo-Kobayashi-Maskawa matrix or ”CKM matrix” [31, 32]

(it is also denoted as VCKM), and the quark generation mixing in weak interactions

is called ”CKM mixing”. The elements of the CKM matrix are determined experi-

mentally in processes that occur via quark generation mixing.

It is important to stress that the CKM matrix is unitary (which stems from

unitarity of VuL and VdL). Thus, measured values of the CKM matrix elements must

satisfy the relevant unitarity conditions - any deviation from these conditions would

imply a New Physics contribution to the process that is used to measure a given

matrix element.

Another consequence of the CKM matrix unitarity is the so-called GIM (Glashow-

Iliopoulos-Maiani) mechanism [33] responsible for cancelations between different di-

agram contributions to a quark flavor transition that occurs due to CKM mixing.

Suppose that in such a transition a quark propagator, e.g. a down-type one, is ex-
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changed. Then the amplitude (or its relevant part) will have a form

M = Vu1dV
⋆
u2d
A(p,mu1 ,mu2 ,md) + Vu1sV

⋆
u2s
A(p,mu1 ,mu2 ,ms) +

+Vu1bV
⋆
u2b
A(p,mu1 ,mu2 ,mb) (2.2.10)

where u1 and u2 are the external up-type quark lines, with u1 ̸= u2, and p is the

external momentum (or the set of external momenta). The explicit form of function

A(p,mu1 ,mu2 ,m) depends on a particular process, but apparently does not depend

on which down-type quark propagator is exchanged, as the strong, electromagnetic

and weak interaction couplings are the same for all the down-type quarks.

Consider now the part of M, M ′, that does not depend on the masses of down-

type quarks exchanged as propagators. E.g. it may be the ultraviolet (UV) divergent

terms of the diagrams contributing to M . Or the energy-momentum at which the

process occurs is much greater than the masses of down-type quarks, p≫ md,ms,mb,

in which case one may rewrite M as M ≈ M ′ + O(mb/p). Obviously, M ′ is derived

from Eq.(2.2.10) by setting md = ms = mb = 0, or

M ′ =
[
Vu1dV

⋆
u2d

+ Vu1sV
⋆
u2s

+ Vu1bV
⋆
u2b

]
A(p,mu1 ,mu2 , 0) (2.2.11)

Yet, as

Vu1dV
⋆
u2d

+ Vu1sV
⋆
u2s

+ Vu1bV
⋆
u2b

= 0

due to the unitarity of the CKM matrix, M ′ vanishes! In other words, the con-

tributions of particular diagrams are canceled out in sum in the limit of vanishing

(internal) quark masses, or in the limit of the exact U(3) quark family symmetry.

Thus, the GIM cancelation mechanism, stemming from the unitarity of the CKM

matrix, is also a manifestation of the underlying symmetry of the electroweak and

strong interactions with respect to transformations in the quark family space.
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If the up-type quarks are exchanged as propagators, the same mechanism is applied

due to

Vud1V
⋆
ud2

+ Vcd1V
⋆
cd2

+ Vtd1V
⋆
td2

= 0 (2.2.12)

where d1 and d2 are the external down-type quark lines with d1 ̸= d2, and (2.2.12)

stems again from the unitarity of the CKM matrix.

Of course, the quark family symmetry is badly broken by the SM Yukawa sector

(or by the quark masses), and often the quarks exchanged as propagators have masses

much greater than the external momenta. The transition amplitudes discussed above

are distinctly different from zero in reality. Nevertheless, the GIM cancelation mech-

anism plays a crucial role in flavor physics. It suffices to note that it accounts for

cancelations of ultraviolet divergences in loop-induced quark FCNC processes and

thus assures the renormalizibility of the Standard Model.

GIM cancelation effects are especially important in the charmed hadron involved

processes, in particular in the charmed meson-antimeson oscillations. As the strange

and down quarks are much lighter than the charm quark, the limit of vanishing down-

and strange quarks masses, or of the exact flavor U-spin symmetry is relevant if s-

and d-quark propagators are exchanged [37]. Often the limit of the exact flavor SU(3)

symmetry is considered rather than its U-spin subgroup, as long as with the down

and strange masses, the up quark mass is also set to be zero.

If CP-violation is neglected, one may use the two quark generation mixing ap-

proximation in studying charm decays and charmed meson oscillations. This approx-

imation is based on the fact that mixing of the third generation with the first two

generations of quarks is suppressed as compared to the first two generations mixing.

Within this approximation, the quark mixing matrix V is a 2 × 2 complex unitary

matrix, it is also called the Cabibbo matrix, VC [31]. The unitarity condition relevant
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to the GIM cancelation mechanism in the charm sector is now

VudV
⋆
cd + VusV

⋆
cs = 0 (2.2.13)

Of course, flavor SU(3) is broken as well by the up, down and strange masses. Yet,

as mentioned above, these masses are much less than the charm mass and hence the

energy-momentum of the processes of interest. As a consequence, the charm decay

and oscillation amplitudes, affected by the GIM mechanism, are suppressed in powers

of the strange-to-charm mass ratio, ms/mc. This makes physics of the charm sector

different from that of bottom and strange flavors. We will discuss this in more detail

in the next section and in Chapter 3.

The GIM mechanism is perhaps the unique property of the quark generation

mixing that is independent of the explicit form and structure of the CKM matrix.

More generally, flavor physics depends on the CKM matrix structure in a crucial way,

so let us discuss this structure in more detail.

It is instructive to start with the case of two-generation mixing (called Cabibbo

mixing as mentioned above), when the quark mixing matrix is a 2×2 complex unitary

matrix. Such a matrix has four independent parameters: a rotation angle in the two-

dimensional quark family space and three phases. Yet, we have a freedom in redefining

four quark flavor phases. One of these phase transformations, an equal phase rotation

for all the four flavors, cancels out in (2.2.7) and has no impact on the Cabibbo matrix.

However, the other three phase rotations may be used to eliminate the three phases in

the Cabibbo matrix. Thus, in the two-generation mixing scenario, the mixing matrix

VC depends on only one parameter - the rotation angle in the two-dimensional quark
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family space, or on Cabibbo angle θC :

VC =

 cos θC , sin θC

− sin θC , cos θC

 (2.2.14)

where sin θC = 0.225 [24].

It is worth noting that for two generations the mixing matrix is real. Thus, for

two quark families the weak interaction Lagrangian is CP-invariant.

For three quark generations, the 3×3 unitary mixing matrix has nine independent

parameters - three O(3) rotation angles and six phases. Again, one may redefine six

quark flavor phases, to eliminate the phases of the CKM matrix. Like in the two-

generation case, one of these phase transformations, an equal phase rotation for all

the six flavors, cancels out in (2.2.7) and has no impact on the CKM matrix. Thus,

only five out of six phases in the CKM matrix may be eliminated. In what follows, we

are left with four independent parameters in the CKM matrix - three rotation angles

in the quark family space and a phase that accounts for CP-violation.

There are several ways to parameterize the CKM matrix [38, 24]. In this work we

will use the so-called Wolfenstein parametrization [39] based on the hierarchy of the

quark generations mixing:

VCKM =


1− λ2

2
, λ, Aλ3(ρ− iη)

−λ, 1− λ2

2
, Aλ2

Aλ3(1− ρ− iη), −Aλ2, 1

+O(λ4) (2.2.15)

where λ ≃ sin θC = 0.225. For the other parameters the experimental fits give [24]

A = 0.808+0.022
−0.015, ρ̄ = 0.132+0.022

−0.014, η̄ = 0.341± 0.013 (2.2.16)
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where ρ̄ ≡ ρ (1− λ2/2), η̄ ≡ η (1− λ2/2).

Note that the CKM matrix is nearly diagonal. While its diagonal elements are

of order of unity, the non-diagonal ones are suppressed in powers of the Wolfenstein

parameter λ. Nevertheless, CKM mixing plays a crucial role in the particle phe-

nomenology. It suffices to mention that for many hadrons the dominant (weak) decay

mode is one occurring via CKM mixing (see [24] and references therein).

The discussed mass generation mechanism is readily extended to the leptonic

sector: for the charged leptons,

mℓ =
yℓv√
2

(2.2.17)

The neutrinos are massless within the SM, the neutrino flavors νe, νµ and ντ are

defined to be the states that are transformed respectively into electron, muon and

tau-lepton when emitting or absorbing W-boson. There is no mixing between the

lepton generations within the Standard Model, the lepton number is conserved for

each generation separately.

Presently there is compelling evidence from several experiments [3, 4, 5, 6, 7] for

the neutrino flavor oscillations, which implies that neutrinos have masses and that

the mass eigenstates are different from the flavor states. The matrix that relates the

neutrino mass and flavor eigenstates is called the MNSP (Maki-Nakagawa-Sakata-

Pontecorvo) matrix [40] - this is the analogue of CKM matrix for the leptonic sector.

Yet, unlike the CKM, the non-diagonal elements of MNSP matrix are of order unity

[24]. To parameterize the MNSP matrix, one often uses the empirically well-supported

tri-bi-maximal mixing approximation. The explicit form of the MNSP matrix in this

approximation may be found e.g. in [41].

Note that in general one needs right-handed neutrinos to generate the neutrino

mass terms. Within the Standard Model there are no right handed neutrinos: they are

singlets under all three SM gauge groups. Thus, one should invoke some New Physics
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beyond the Standard Model, to introduce right-handed neutrinos1. The study of

neutrino masses and their generation mechanism goes beyond the scope of the present

work, however the problem of neutrino masses illustrates that in spite of providing

an elegant mechanism to generate the fermion masses and flavor mixing, there are

certain related issues that the SM is unable to explain.

Another issue of that kind is the so-called flavor puzzle or flavor problem [34]. It

may be formulated by the following set of questions:

• Are there only three generations of quarks and leptons?

• Where does the hierarchy of the quark and lepton masses and that of CKM

mixing come from?

• Why are flavor changing neutral currents suppressed?

Presently, there is no well-motivated theoretical explanation for limiting the quark

and lepton generation number to three. Viable models with four generations of

fermions still exist [16, 17, 18].

Nor is the Standard Model able to explain the existing hierarchy of the quark

and lepton masses as well as that of CKM mixing. It just provides a mechanism

to generate the masses and the mixing and attributes the mass hierarchy to that of

Yukawa couplings, and the CKM matrix elements hierarchy to suppression in powers

of the Wolfenstein parameter λ.

The Standard Model does explain why the FCNC’s are suppressed - there are no

flavor changing neutral currents in the SM Lagrangian. Yet, any FCNC process has

room for some New Physics contribution, either due to some experimental uncertain-

ties or due to some theoretical uncertainties of the SM prediction. Unlike the SM,

1Alternatively, if one assumes that neutrinos are Majorana fermions and uses solely the left
handed Majorana neutrino mass terms, one should still invoke some New Physics to explain where
such mass terms come from.
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many of its extensions have FCNC terms in the Lagrangian. To fit the existing exper-

imental data, either the New Physics FCNC couplings should be suppressed (∼ 10−7),

or if not, the New Physics scale should be ∼ 104 TeV [1]. There is no explanation

why the NP FCNC couplings are so suppressed or why the NP scale should be so

heavy.

Solving the flavor problem represents one of the challenging tasks of flavor physics.

An attempt is made in this work as well: in Chapter 5 we try to explain the quark

and charged lepton mass hierarchy within the simplest SM extension with two Higgs

doublets.

As for here, we continue with providing some theoretical background needed for

the further discussion. We proceed now to introducing some basic inputs of the

meson-antimeson oscillation formalism.

2.3 Meson - Antimeson Oscillations

Meson-antimeson oscillations are a manifestation of transformations of matter

into antimatter and vice versa in the Nature. Because of their pure quantum nature,

these oscillations may be used to understand fundamental properties of elementary

particles. The first evidence for CP-violation, observed in neutral Kaon decays [42],

has been interpreted properly by using theK0−K0
oscillation mechanism [2, 38]. It is

also believed that in the presence of a source of large CP-violation (which may occur

beyond the Standard Model) the meson-antimeson mixing mechanism may provide

an explanation of the existing baryon asymmetry of the Universe. More generally, due

to its quantum nature and occurrence via exchange of heavy virtual particles (∼ 100

GeV or heavier), meson-antimeson mixing is invaluable as a source of information on

the physics that occurs at high energy scales.

The time evolution of an oscillating meson-antimeson system, e.g the D0 − D
0
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system, is given by the Schrodinger equation:

i
∂

∂t

D0(t)

D
0
(t)

 =

(
M − i

2
Γ

)D0(t)

D
0
(t)

 (2.3.1)

where the mass matrix M and the width matrix Γ are Hermitian, and CPT invariance

requires that M11 = M22 and Γ11 = Γ22 . The oscillation is parameterized by the

off-diagonal elements, M12 = M⋆
21 and Γ12 = Γ⋆21. M12 corresponds to the dispersive

part and Γ12 corresponds to the absorptive part of the oscillation amplitude [43]:

M12−
i

2
Γ12 =

1

2MD

⟨D0|H∆C=2
W |D0⟩+ 1

2MD

∑
n

⟨D0|H∆C=1
W |n⟩⟨n|H∆C=1

W |D0⟩
MD − En + iϵ

(2.3.2)

where MD is the meson average mass, |n⟩ is an intermediate state and HW is a weak

interaction low-energy effective Hamiltonian.

The mass eigenstates, D1 and D2, are related to D0 and D
0
as

|D1,2⟩ = p|D0⟩ ± q|D0⟩ (2.3.3)

where (
q

p

)2

=
M⋆

12 − i
2
Γ⋆12

M12 − i
2
Γ12

(2.3.4)

The physical observables used to describe meson-antimeson mixing are the eigen-

states mass difference and the eigenstates width difference or lifetime difference2:

∆M − i

2
∆Γ = 2

√(
M12 −

i

2
Γ12

)(
M⋆

12 −
i

2
Γ⋆12

)
(2.3.5)

2Rigorously speaking, width difference and lifetime difference are equivalent when using dimen-
sionless quantities: normalized width difference, ∆Γ/Γ, and normalized lifetime difference, ∆τ/τ ,
where Γ and τ are the average width and lifetime respectively.
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In the limit of CP conservation M12 and Γ12 are real, thus |q| = |p| and

∆M ≡M+ −M− = 2M12 (2.3.6)

∆Γ ≡ Γ+ − Γ− = 2Γ12 (2.3.7)

where ”+” and ”-” are the CP-even and CP-odd eigenstates respectively. This limit is

well-justified when consideringD0−D0
mixing, where ∆M ∼ ∆Γ and no CP-violation

has been observed so far [44].

For the other mode of interest, Bs −Bs, according to the experimental data [24],

one has ∆M ≫ ∆Γ. As one can see after doing some algebra, |M12| ≫ |Γ12| then. In

this limit equation (2.3.5) may be rewritten as

∆M ≡MH −ML ≃ 2|M12| (2.3.8)

∆Γ ≡ ΓL − ΓH ≃ 2|Γ12| cosΦ (2.3.9)

where Φ = arg(−M12/Γ12), and ”H” and ”L” denote heavy and light eigenstates

respectively.

As if follows from Eq. (2.3.4), for M12 ≫ Γ12 the ratio |q/p| is close to one -

CP-violation is small in Bs − Bs mixing regardless of the phases of M12 and Γ12.

However, these phases are non-negligible for the Bs width difference, as follows from

Eq. (2.3.9). In the case when M12 has two or more components (e.g. the SM and NP

contribution or different NP contributions), the relative phases of the components

may be of importance as well [30] .

Within the Standard Model meson-antimeson oscillations occur due to Cabibbo-

Kobayashi-Maskawa mixing of quark generations in weak interactions. To the lowest

order in perturbation theory these oscillations occur at one-loop via the box diagrams

with W± bosons and quarks running in the loops, as depicted in Figure 2.1. For Bs−
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Figure 2.1: Box diagrams within the SM a) for Bs −Bs, b) for D
0 −D

0
.

Bs meson oscillations, the box diagrams give the dominant contribution to the process

amplitude - this is a short-distance contribution dominated process (see e.g. [45] ).

In contrast, for D0 −D
0
mixing the total contribution of the SM box diagrams is

suppressed [46] due to GIM cancelation effects. As discussed in the previous section,

GIM cancelation in charm decays and/or oscillations occurs, if the flavor transition

is due to CKM mixing and is mediated by a down-type quark propagator. In the

diagram in Fig. 2.1 (b) two down-type quark propagators are present, hence double

GIM cancelation occurs. Furthermore, studying the behavior of the oscillation am-

plitude under the flavor U-spin transformations, one can show [37] that in terms of

the strange-to-charm mass ratio the amplitude is suppressed as (m2
s/m

2
c)

2 = m4
s/m

4
c

rather than just (ms/mc)
2 (as could be naively expected when having double GIM

cancelation). As a result, box diagram contribution to D0 −D0 mixing is negligible

in the SM [43].

Within the SM D0 −D0 oscillations are dominated by long-distance effects [29] -

due to exchange of charmless mesonic states. A large short-distance contribution to

D0−D
0
may however occur due to New Physics interactions (if no GIM cancelations

occur).

As mentioned above, the NP contribution compatible with the SM one or even

exceeding it comes from diagrams with W± bosons being replaced by other heavy
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particles that may exist beyond the Standard Model. In some of the SM extensions

the quarks running in the box loops are replaced along with W-s by heavy degrees of

freedom as well.

Also, if Flavor Changing Neutral Currents (FCNC) are present in the model,

meson-antimeson oscillations (or at least some of them) may occur at tree level.

Unless it contradicts the experimental data, the NP contribution may exceed the SM

one by orders of magnitude.

In general, New Physics may have impact both on the mass difference and the life-

time difference in meson-antimeson oscillations. Yet, a sizable NP contribution to the

lifetime difference occurs within specific SM extensions only, as we discuss in the next

two chapters. Therefore an NP contribution to the mass difference is studied more

frequently. Study of the lifetime difference in meson-antimeson oscillations within the

SM extensions has however its own advantage: it allows one to get an information

on a specific model that is independent or weakly dependent on assumptions made

about this model. We discuss this in more detail in the next chapter.
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Chapter 3 New Physics Searches in the Charm Sector

We will examine here one the most prominent charmed particle involving phe-

nomena, the D0 − D0 mixing. As discussed above, meson-antimeson mixing is an

important vehicle for indirect studies of New Physics. Due to the absence of tree-

level flavor-changing neutral current transitions in the Standard Model (SM), it can

only occur via quantum effects associated with the SM and NP particles. In fact,

the existence of both charm and top quark were inferred from the kaon and beauty

mixing amplitudes [38]. The estimates of masses of those particles were later found

to be in agreement with direct observations. This motivates indirect searches for NP

particles in a meson-antimeson mixing.

Recently, there has been a considerable interest in the only available meson-

antimeson mixing in the up-quark sector, the D0 − D0 mixing [46]. The fact that

the search is indirect and complimentary to existing constraints from the bottom-

quark sector actually provides parameter space constraints for a large variety of NP

models [47, 48].

A flurry of recent experimental activity in that field led to the observation of

D0 − D0 mixing from several different experiments such as BaBar [49], Belle [50]

and CDF [51]. These results have been combined by the Flavor Averaging Group

(HFAG) [44] to yield

yexpD = (8.0± 1.3) · 10−3 (3.1)

xexpD = (5.9± 2.0) · 10−3, (3.2)
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where xD and yD are defined as

xD ≡ ∆MD

ΓD

, and yD ≡ ∆ΓD

2ΓD

, (3.3)

ΓD is the average width of the two neutral D meson mass eigenstates, and ∆MD,

∆ΓD are the mass and width differences of the neutral D-meson mass eigenstates. In

the limit of CP-conservation, ∆ΓD ≡ Γ+ − Γ−, where ”+” and ”-” are CP-even and

CP-odd D-meson eigenstates respectively.

One can also write yD as an absorptive part of the D0 −D0 mixing matrix [52],

yD =
1

ΓD

∑
n

ρn⟨D
0|H∆C=1

w |n⟩⟨n|H∆C=1
w |D0⟩, (3.4)

where ρn is a phase space function that corresponds to a charmless intermediate state

n. This relation shows that ∆ΓD is driven by transitions D0, D
0 → n, i.e. physics of

the ∆C = 1 sector.

Eqs. (3.1) and (3.2) imply one-sigma window for the HFAG values of xD and yD,

3.9 · 10−3 < xD < 7.9 · 10−3 (one− sigma window) (3.5)

6.7 · 10−3 < yD < 9.3 · 10−3 (one− sigma window) (3.6)

In principle, these results can be used to constrain parameters of NP models with

the anticipated improved accuracy for the future D-mixing measurements. In reality,

those results can only provide the ballpark estimate to be used for constraining NP

models. The reason is that the SM estimate for the parameters xD and yD is rather

uncertain, as it is dominated by long-distance QCD effects [29, 52, 53]. It was nev-

ertheless shown that even this estimate provides rather stringent constraints on the

NP parameter space for many models affecting the mass difference xD [47], [54]-[59].

It was recently shown [48] that D0 −D0 mixing is a rather unique system, where
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yD can also be used to constrain the models of New Physics1. This stems from

the fact that there is a well-defined theoretical limit (the flavor SU(3)-limit) where

the SM contribution vanishes and the lifetime difference is dominated by the NP

∆C = 1 contributions. In the real world, flavor SU(3) is, of course, broken, so the

SM contribution is proportional to a (second) power of ms/Λ, which is a rather small

number. If the NP contribution to yD is non-zero in the flavor SU(3)-limit, it can

provide a large contribution to the mixing amplitude.

To see this, consider aD0 decay amplitude which includes a small NP contribution,

A[D0 → n] = A
(SM)
n +A

(NP)
n . Experimental data for D-meson decays are known to be

in decent agreement with the SM estimates [61, 62]. Thus, A
(NP)
n should be smaller

than (in sum) the current theoretical and experimental uncertainties in predictions

for these decays.

One may rewrite equation (3.4) in the form (neglecting the effects of CP-violation)

yD =
∑
n

ρn
ΓD

A(SM)
n Ā(SM)

n + 2
∑
n

ρn
ΓD

A(NP)
n Ā(SM)

n +
∑
n

ρn
ΓD

A(NP)
n Ā(NP)

n . (3.7)

The first term in this equation corresponds to the SM contribution, which vanishes

in the SU(3) limit. In ref. [48] the last term in (3.7) has been neglected, thus the

NP contribution to yD comes there solely from the second term, due to interference

of A
(SM)
n and A

(NP)
n . While this contribution is in general non-zero in the flavor SU(3)

limit, in a large class of (popular) models it actually is [48, 63]. Then, in this limit,

yD is completely dominated by pure A
(NP)
n contribution given by the last term in

eq. (3.7)! It is clear that the last term in equation (3.7) needs more detailed and

careful studies, at least within some of the NP models.

Indeed, in reality, flavor SU(3) symmetry is broken, so the first term in Eq. (3.7)

is not zero. It has been argued [29] that in fact the SM SU(3)-violating contributions

could be at a percent level, dominating the experimental result. The SM predictions

1A similar effect is possible in the bottom-quark sector [60].
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of yD, stemming from evaluations of long-distance hadronic contributions, are rather

uncertain. While this precludes us from placing explicit constraints on parameters

of NP models, it has been argued that, even in this situation, an upper bound on

the NP contributions can be placed [47] by displaying the NP contribution only, i.e.

as if there were no SM contribution at all. This procedure is similar to what was

traditionally done in the studies of NP contributions to K0 −K
0
mixing, so we shall

employ it here too.

In this chapter we revisit the problem of the NP contribution to yD and provide

constraints on R-parity-violating supersymmetric (SUSY) models as a primary ex-

ample. It has been recently argued in [64] that within /R- SUSY models, the New

Physics contribution to yD is rather small, mainly because of stringent constraints on

the relevant pair products of RPV coupling constants. However, this result has been

derived neglecting the transformation of these couplings from the weak isospin basis

to the quark mass basis. This approach seems to be quite reasonable for the scenarios

with baryonic number violation. However, in the scenarios with leptonic number vi-

olation, transformation of the RPV couplings from the weak eigenbasis to the quark

mass eigenbasis turns out to be crucial, when applying the existing phenomenological

constraints on these couplings.

We show here that within R-parity-breaking supersymmetric models with leptonic

number violation, the New Physics contribution to the lifetime difference in D0 −D0

mixing may be large, due to the last term in eq. (3.7). When being large, it is

negative (if neglecting CP-violation), i.e. opposite in sign to what is implied by the

recent experimental evidence for D0 −D0 mixing.

Of course, diagrams with a large NP contribution to yD are possible also within

other SM extensions. Moreover, some NP diagrams, even though vanishing in the

exact flavor SU(3) limit, are proportional to the first power of ms/mc and hence

may give a sizable contribution to the lifetime difference in D0 −D0 mixing. This is
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in particular the case within the non-manifest Left-Right Symmetric Model, where

such diagrams contribution to yD may be ∼ 10−3 and hence compatible with the

experimental data [65].

Yet, the contribution of these types of diagrams should be considered in sum,

in light of possible cancelations due to the GIM mechanism. We show that the

diagrams considered in ref. [65] have negligible contribution in sum due to the GIM

cancelation effects. Thus, the NP contribution to yD within the non-manifest Left-

Right Symmetric Model is negligible.

This chapter is organized as follows. In Section 3.1 we discuss the R-parity vio-

lating interactions that, in particular, contribute to D0 −D0 lifetime difference. We

confront the form of these interactions in the weak isospin basis to that in the quark

mass basis, emphasizing the important differences. In Section 3.2 we re-derive for-

mulae for the RPV SUSY contribution to yD. Unlike ref. [64], transformation of the

RPV coupling constants from the weak to the quark mass eigenbasis is taken into

account. Also the behavior of different /R- SUSY contributions in the limit of the

flavor SU(3) symmetry is discussed in detail. In Section 3.3 we examine the exist-

ing phenomenological constraints on the RPV coupling constants. The importance

of taking into account the transformation of these couplings from the weak to the

mass eigenbasis is emphasized again. We present our numerical results within the

RPV SUSY model in Section 3.4. Finally in Section 3.5 we discuss briefly the New

Physics contribution to D0−D0 lifetime difference within the non-manifest Left-Right

Symmetric Model. Some details of the derivation of bounds on the pair products of

RPV couplings, relevant for our analysis, are contained in Appendix A. The results

presented in this chapter are based on those published in [66] and [63].
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3.1 R-Parity Breaking Interactions: Weak vs Mass Eigenbases

We consider a general low-energy supersymmetric scenario with no assumptions

made on a SUSY breaking mechanism at the unification scales (∼ (1016 − 1018)GeV ).

The most general Yukawa superpotential for an explicitly broken R-parity supersym-

metric theory is given by

W/R =
∑
i,j,k

[
1

2
λijkLiLjE

c
k + λ′ijkLiQjD

c
k +

1

2
λ′′ijkU

c
iD

c
jD

c
k

]
(3.1.1)

where Li, Qj are SU(2)L weak isodoublet lepton and quark superfields, respectively;

Ec
i , U

c
i , D

c
i are SU(2) singlet charged lepton, up- and down-quark superfields, re-

spectively; λijk and λ′ijk are lepton number violating Yukawa couplings, and λ′′ijk is

a baryon number violating Yukawa coupling; λijk = −λjik, λ′′ijk = −λ′′ikj. To avoid

rapid proton decay, we assume that λ′′ijk = 0 and work with a lepton number violating

/R- SUSY model.

For meson-to-antimeson oscillation processes, to the lowest order in perturbation

theory, only the second term of (3.1.1) is of importance. The relevant R-parity break-

ing part of the Lagrangian is the following:

L/R =
∑
i,j,k

λ′ijk

[
−ẽiL d̄kRujL − ũjL d̄kReiL − d̃kR ē

c
iR
ujL + ν̃iL d̄kRdjL +

+d̃jL d̄kRνiL + d̃kR ν̄
c
iR
djL

]
+ h.c. (3.1.2)

The quark and squark states in (3.1.2) are weak isospin eigenstates. The weak and

mass quark eigenstates are related by the unitary transformations (2.2.4), (2.2.5).

Generally speaking, squark transformation matrices from the weak to the mass

eigenstates are different from those for quarks. Nevertheless, we choose for squarks

to be rotated by the same matrices VuL,R
and VdL,R

that make quark mass matrices
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diagonal, i.e.

ũmjL = VuLjn
ũnL

, ũmjR = VuRjn
ũnR

d̃mkL = VdLkp
d̃pL , d̃mkR = VdRkp

d̃pR (3.1.3)

This is a super-CKM basis, in which the squark mass matrices are non-diagonal and

result in mass insertions that change the squark flavors [9, 34, 67, 68]. This source of

flavor violation is very important in the pure MSSM sector. In particular, it plays a

crucial role in examining the MSSM contribution to D0 − D̄0 mass difference [47].

In the R-parity breaking part of the SUSY Lagrangian, flavor changing neutral

currents are present a priori. In order to simplify our analysis, we put all the squark

masses to be nearly equal. Then the squark mass matrix is proportional to the identity

matrix, i.e. it is diagonal in any basis.

In the quark mass mass basis one may rewrite (3.1.2) as2

L/R = −
∑
i,j,k

λ̃′ijk

[
ẽiL d̄kRujL + ũjL d̄kReiL + d̃∗kR ē

c
iR
ujL

]
+

+
∑
i,j,k

λ′ijk

[
ν̃iL d̄kRdjL + d̃jL d̄kRνiL + d̃∗kR ν̄

c
iR
djL

]
+ h.c. (3.1.4)

where λ̃′ijk = V ∗
nj λ

′
ink, and we redefine the couplings λ′ to absorb the relevant

elements of matrices VdL,R
. Such a redefinition of λ′ is also equivalent to choosing the

weak and mass eigenbases for down-quarks being the same, while for up-quarks they

are related by CKM matrix3. As it follows from (3.1.4), (s)down-down-(s)neutrino

vertices have the weak eigenbasis couplings λ′, while charged (s)lepton-(s)down-(s)up

2Hereafter in this chapter, since all the formulae are given in the quark mass basis, we will drop
the superscript m for simplicity of notation.

3This redefinition of λ′ is not unique. For example, Allanach et al. [69] used the up-quark
weak and mass eigenbases to be the same, relating the bases for down-quarks by the CKM matrix.
Another possibility is to redefine λ′ in such a way that (s)up-(s)down-charged (s)lepton vertices have
the couplings λ′ while (s)down-down-(s)neutrino vertices have the couplings λ′ ·VCKM [70]. Clearly
all these approaches are equivalent.
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vertices have the up quark mass eigenbasis couplings λ̃′.

Very often in the literature (see e.g. [48], [64], [71]-[73]) one neglects the difference

between λ′ and λ̃′, based on the fact that the diagonal elements of the CKM matrix

dominate over non-diagonal ones, i.e.

Vjn = δjn +O(λ) so λ̃ijk ≈ λ′ijk +O(λ) (3.1.5)

where λ = sin θC is the Wolfenstein parameter.

Notice that relation Eq. (3.1.5) is valid if only there is no hierarchy in couplings

λ′. On the other hand, the existing strong bounds on pair products λ′×λ′ (or λ̃′× λ̃′)

[69, 71, 72] and relatively loose bounds on individual couplings λ′ [69] suggest that

such a hierarchy may exist. As we will see in Section 4, pair products λ̃′ × λ̃′ may be

orders of magnitude greater than corresponding products λ′ × λ′.

To the end of this section, we explicitly write down the terms of the R-parity

breaking part of the Lagrangian that contribute to D0 − D̄0 lifetime difference:

LD0−D̄0

= −
∑
i

[
λ̃′i21ẽiL d̄

(
1− γ5

2

)
c+ λ̃′i22ẽiL s̄

(
1− γ5

2

)
c+

+λ̃′∗i11ẽ
∗
iL
ū

(
1 + γ5

2

)
d+ λ̃′∗i12ẽ

∗
iL
ū

(
1 + γ5

2

)
s

]
−

−
∑
k

[
λ̃′12kd̃

∗
kR
ēc
(
1− γ5

2

)
c+ λ̃′22kd̃

∗
kR
µ̄c
(
1− γ5

2

)
c+

+λ̃′∗11kd̃kR ū

(
1 + γ5

2

)
ec + λ̃′∗21kd̃kR ū

(
1 + γ5

2

)
µc

]
(3.1.6)

In the next section we will integrate out heavy degrees of freedom in (3.1.6), thus

finding the /R-SUSY part of the ∆C = 1 effective Hamiltonian. Then we will compute

the R-parity breaking SUSY contribution to ∆ΓD.
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Figure 3.1: D0 − D̄0 diagrams with a slepton exchange due to RPV interactions.

3.2 D0 − D̄0 Lifetime Difference Within RPV SUSY

Assuming CP-conservation, the normalized D0− D̄0 lifetime difference is given by

yD =
1

2mDΓD
Im

[
⟨D̄0|i

∫
d4x T

{
H∆C=1
W (x)H∆C=1

W (0)
}
|D0⟩

]
, (3.2.1)

where H∆C=1
W is an effective Hamiltonian including both SM and NP parts. To the

lowest order in perturbation theory, the /R-SUSY contribution to D0 − D̄0 mixing

comes from the one-loop graphs with

• W± boson, charged slepton and two down-type quarks (Fig. 3.1a);

• two charged sleptons and two down-type quarks (Fig. 3.2a);

• two down-type squarks and two charged leptons4 (Fig. 3.3a) .

Within the low-energy effective theory, D0 − D̄0 lifetime difference occurs as a result

of a bi-local transition with two ∆C = 1 effective vertices. The relevant low-energy

diagrams in Fig.’s 3.1b) - 3.3b) are derived by integrating out heavy W± boson,

charged slepton and down-type squark degrees of freedom.

For R-parity-violating SUSY models one can therefore write

H∆C=1
W = H∆C=1

WSM
+H∆C=1

Wℓ̃
+H∆C=1

Wq̃
(3.2.2)

4As it follows from (3.1.6), lepton propagators in Fig. 3.3 must be constructed by contractions of
charge conjugates of the electron and/or muon field operators.
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Figure 3.2: Same as in Fig. 3.1, but due to two charged slepton exchange.

The first term in the r.h.s of (3.2.2) is the Standard Model contribution, whereas the

second term comes from ∆C = 1 transitions with a slepton exchange and the last

term comes from ∆C = 1 transitions with a squark exchange. The Standard model

part of ∆C = 1 effective Hamiltonian is given by

H∆C=1
WSM

=
GF√
2

[
C1(µc) δ

a1a4 δa3a2 + C2(µc) δ
a1a2 δa3a4

]
×
∑
q1, q2

Vuq1V
∗
cq2

ūa1(x)γµ(1− γ5)q
a2
1 (x) q̄a32 (x)γµ(1− γ5)c

a4(x) (3.2.3)

where q1 = s, d, q2 = s, d, ai are the color indices, and C1 and C2 are the operator

Wilson coefficients. The Wilson coefficients are to be evaluated at a low-energy scale

µc, which we choose here as µc = mc.

To simplify the following calculations, let us assume that all the sleptons and all

squarks are nearly degenerate, i.e.

mẽi = mν̃i = mℓ̃, and md̃k
= mũk = mq̃. (3.2.4)
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Figure 3.3: Same as in Fig.’s 3.1, 3.2, but due to down-type squark exchange.

With this assumption, the low energy effective Hamiltonian for the R-parity-violating

interactions are given by

H∆C=1
Wℓ̃

= −

[
C̃1(µc) δ

a1a4 δa3a2 + C̃2(µc) δ
a1a2 δa3a4

]
×
∑
q1, q2

λq1q2
4m2

ℓ̃

ūa1(x)(1 + γ5)q
a2
1 (x) q̄a32 (x)(1− γ5)c

a4(x), (3.2.5)

and

H∆C=1
Wq̃

= −
∑
ℓ1, ℓ2

λℓ1ℓ2
4m2

q̃

ūa(x)(1 + γ5)ℓ
c
1(x) ℓ̄

c
2(x)(1− γ5)c

a(x) (3.2.6)

where q1 = s, d, q2 = s, d, ℓ1 = e, µ, and ℓ2 = e, µ. The superscript ′′c′′ stands for

charge conjugation. Also,

λq1q2 ≡
∑
i

λ̃′∗i1q1 λ̃
′
i2q2

and λℓ1ℓ2 ≡
∑
k

λ̃′∗ℓ11k λ̃
′
ℓ22k

(3.2.7)

We assume that λq1q2 and λℓ1,ℓ2 are real.

The insertions of Hamiltonians of eqs. (3.2.3), (3.2.5), and (3.2.6) can lead to the

lifetime difference in the D0 −D0 system. Let us write it as

yD = ySM + ySM,NP + yℓ̃ℓ̃ + yq̃q̃, (3.2.8)
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where

ySM,NP =
1

2mDΓD
Im

[
⟨D̄0|i

∫
d4x T

{
H∆C=1
WSM

(x)H∆C=1
Wℓ̃

(0) +

+H∆C=1
Wℓ̃

(x)H∆C=1
WSM

(0)

}
|D0⟩

]
(3.2.9)

is the term coming form the interference of the SM and NP contributions to H∆C=1
W ,

and

yℓ̃ℓ̃ =
1

2mDΓD
Im

[
⟨D̄0|i

∫
d4x T

{
H∆C=1
Wℓ̃

(x)H∆C=1
Wℓ̃

(0)

}
|D0⟩

]
, (3.2.10)

yq̃q̃ =
1

2mDΓD
Im

[
⟨D̄0|i

∫
d4x T

{
H∆C=1
Wq̃

(x)H∆C=1
Wq̃

(0)

}
|D0⟩

]
(3.2.11)

are coming from two insertions of the NP vertices.

It might seem unreasonable to include double insertions of the NP Hamiltonian

to compute yD, as each insertion generates a contribution that is suppressed by some

NP scale MNP , which in general is greater than the electroweak scale set here by

MW . Yet, as the Standard Model contribution is zero in the flavor SU(3) limit (i.e.

suppressed by powers of strange quark mass), New Physics contributions can be

large [48]. Also, as can be seen from refs. [48] and [64], ySM,NP resulting from the

single insertion of the NP Hamiltonian is forbidden in the SU(3) flavor symmetry

limit. Thus, double insertion of the NP Hamiltonian can be important, especially

if this contribution does not vanish in the SU(3) limit! This construction can give

numerically large contribution to yD if (MW/MNP )
2 > (ms/mc)

2.

Note that contribution to ∆ΓD is nonzero if the intermediate states are the on-

mass-shell real physical states. It is therefore easy to see from energy-momentum

conservation that diagrams like those in Fig.’s 3.1-3.3 but with b-quarks, ττ , τµ pairs

running in a loop, are irrelevant for our analysis. While the diagrams with a τe
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pair running in a loop do give nonzero contribution to ∆ΓD, their contributions are

suppressed by the available phase space. Thus, we shall not consider them too.

It is known that the correlation function in (3.2.1) (as well as those in (3.2.9)-

(3.2.11)) may be presented as a sum of local ∆C = 2 operators, which corresponds to

a 1/mc power expansion of (3.2.1) (or (3.2.9) - (3.2.11)). Here we are interested in the

lowest order terms in this expansion. Keeping only the leading terms in xs ≡ m2
s/m

2
c

and xd ≡ m2
d/m

2
c , we get

ySM,NP = −GF√
2

(K1 +K2)

4πmDΓD

(
m2
c

m2
ℓ̃

)[
λsd

√
xsxd +

+ λ (λssxs − λddxd)− λ2λds
√
xsxd

]
⟨Q⟩ (3.2.12)

and

yℓ̃ℓ̃ =
m2
c (λ

2
ss + λ2dd + 2λsdλds)

192πmDΓDm4
ℓ̃

{
−

[
K̃2

2
+ K̃1

]
⟨Q⟩+

+
[
K̃2 − K̃1

]
⟨QS⟩

}
(3.2.13)

where λ = sin θC is the Wolfenstein parameter, and

⟨Q⟩ ≡ ⟨D̄0| ūa1(0)γµ
(
1− γ5

2

)
ca1(0) ūa2(0)γµ

(
1− γ5

2

)
ca2(0) |D0⟩ (3.2.14)

⟨QS⟩ ≡ ⟨D̄0| ūa1(0)
(
1 + γ5

2

)
ca1(0) ūa2(0)

(
1 + γ5

2

)
ca2(0) |D0⟩ (3.2.15)

are the matrix elements of the effective low energy ∆C = 2 operators and

K1 = 3 C1 C̃1 + C1 C̃2 + C2 C̃1, K2 = C2 C̃2 (3.2.16)

K̃1 = 3 C̃2
1 + 2 C̃1 C̃2, K̃2 = C̃2

2 (3.2.17)
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are the Wilson coefficients. It is important to stress that ySM,NP , just like a Standard

Model contribution, vanishes in the limit of exact flavor SU(3) symmetry - it is

proportional to light quark masses via xs, xd and
√
xsxd. On the contrary, yℓ̃ℓ̃ is

nonzero even in the limit of exact flavor SU(3) symmetry! Therefore, as we shall see

in Section 5, yℓ̃ℓ̃ dominates over ySM,NP if R-parity breaking coupling products λss

and/or λdd approach their boundaries. In other words, contribution of diagrams in

Fig. 2 with both ∆C = 1 vertices generated by New Physics interactions, dominates

over the contribution of diagrams in Fig. 1, with one of the ∆C = 1 vertices coming

from the Standard Model and the other one coming from New Physics.

Similarly, keeping only the leading order terms in xe ≡ m2
e/m

2
c , xµ ≡ m2

µ/m
2
c , one

gets

yq̃q̃ =
−m2

c

(
λ2µµ + λ2ee + 2 λµeλeµ

)
192πmDΓD m4

q̃

[⟨Q⟩ + ⟨QS⟩] . (3.2.18)

As one can see from (3.2.18), yq̃q̃ is non-vanishing in the limit of exact flavor SU(3)

symmetry as well.

As usual, we parameterize matrix elements ⟨Q⟩ and ⟨Qs⟩ in terms of B-factors [47],

i.e.

⟨Q⟩ = 2

3
f 2
D m2

D BD, ⟨QS⟩ = − 5

12
f 2
D m2

D B̄S
D (3.2.19)

where

B̄S
D ≡ BS

D

m2
D

m2
c

(3.2.20)

We shall follow the approach of ref. [48] and neglect QCD running of the local ∆C = 1

operators generated by NP interactions. Thus, C̃1 = 0 and C̃2 = 1, or

K1 = C1(mc), K2 = C2(mc), K̃1 = 0, K̃2 = 1. (3.2.21)
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Using (3.2.19) and (3.2.21), one may rewrite (3.2.12), (3.2.13) and (3.2.18) in a fol-

lowing form:

ySM,NP =
− GF√

2

f 2
DBDmD

6πΓD

(
m2
c

m2
ℓ̃

)
[C1(mc) + C2(mc)]

[
λsd

√
xsxd +

+ λ (λssxs − λddxd)− λ2λds
√
xsxd

]
(3.2.22)

yℓ̃ℓ̃ =
− m2

c f
2
DBDmD

288πΓD m4
ℓ̃

[
1

2
+

5

8

B̄S
D

BD

] [
λ2ss + λ2dd + 2 λsdλds

]
(3.2.23)

yq̃q̃ =
m2
c f

2
DBDmD

288πΓD m4
q̃

[
5

8

B̄S
D

BD

− 1

] [
λ2µµ + λ2ee + 2 λµeλeµ

]
(3.2.24)

Formulae (3.2.22)-(3.2.24) involve only the lowest order short-distance (pertur-

bative) contribution to the D0 − D0 lifetime difference. Yet, it has been mentioned

already that long-distance effects play a very important role in D0 −D0 oscillations.

In particular, in the Standard Model, where the short-distance contribution to yD has

a suppressing factor ∼ m4
s/m

4
c [43], the long distance contribution to D0−D0 lifetime

difference dominates [29]. However, within /R-SUSY models we have a different situ-

ation. As it is mentioned above, New Physics contribution to yD is non-vanishing in

the exact flavor SU(3) limit, thus there is no suppression in powers of ms/mc in the

dominant short-distance NP terms. In what follows, long distance effects, which may

be interpreted as ΛDCD/mc power corrections, are subdominant. Thus, they may be

neglected to the leading-order approximation that is used here.

Further analysis depends on bounds on R-parity breaking coupling constants, so

in the next section we discuss the existing constraints on these couplings.

3.3 Present Bounds on R-parity Breaking Coupling Constants

Bounds on R-parity violating couplings λ′ have been widely discussed in the lit-

erature [69] - [86]. Summary of bounds on λ′ijk may be found e.g. in [69]. More
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recent (updated) bounds on some λ′ × λ′ pair products, coming from the studies of

K0 − K̄0 and B0 − B̄0 mixing and K+ → π+νν̄ decays, are presented in [71, 73]

and [74] respectively.

It is interesting to note that bounds on RPV couplings coming from K0 − K̄0

and B0 − B̄0 mixing and empirical individual bounds on couplings λ′ijk are derived

neglecting the difference between λ′ and λ̃′. While for the individual bounds it is a

self-consistent approach, for the constraints on RPV coupling pair products such an

approach in general is questionable.

Empirical individual bounds on RPV couplings are derived, assuming that only

one coupling λ′ijk is nonzero at a time. If such an assumption is made, then it is easy

to see that

λ̃′ijk = λ′ijk ×
(
1 +O(λ2 = sin2 θC)

)
, (3.3.1)

λ̃′ink = O(λ)× λ′ijk (3.3.2)

if n ̸= j, and

λ̃′rnm = 0 (3.3.3)

if r ̸= i or m ̸= k.

Thus, as it follows from (3.3.1)-(3.3.3), when deriving an individual bound on

λ′ijk by studying a given process, there is no essential difference whether the /R-SUSY

diagram for this process contains λ′ijk or it contains λ̃′ijk at the vertices.

Of course, in the realistic /R-SUSY scenarios several λ′ couplings are in general non-

zero. As it has been pointed out in [69], even if at the unification scales (∼ (1016 −

1018)GeV) one has only one non-zero RPV coupling, other non-zero RPV couplings

appear when evolving down from the unification scales to the electroweak breaking

scale. However, the individual bounds on λ′ couplings are still approximately valid, if

one assumes that one RPV coupling dominates over all other ones. If several couplings

dominate, individual bounds may still be used, if they are not correlated or weakly
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correlated with each other.

The situation with the constraints on the RPV coupling pair products is more

complicated. As we will see, bounds on λ̃′× λ̃′ and the corresponding λ′×λ′ products

may be different by several orders of magnitude. One must therefore be careful when

using the bounds given in the literature and specify whether these bounds are on

λ′ × λ′ product or they are on λ̃′ × λ̃′. This may be easily done, using the following

”rule of thumb”:

• If the process that is used to put constraints on the RPV coupling products

is described by diagram(s) with down-down-sneutrino or down-sdown-neutrino

vertices, bounds are derived on a λ′ × λ′ product.

• If such a process is described by diagram(s) with up-down-charged slepton, up-

sdown-charged lepton or sup-down-charged lepton vertices, bounds are derived

on a λ̃′ × λ̃′ product.

• If both types of vertices are present, bounds are derived on some admixture of

λ′ × λ′ and λ̃′ × λ̃′ products.

In addition to the individual bounds, we use here constraints on the RPV coupling

pair products that are derived from study of K+ → π+νν̄ decay and ∆mK0 . An R-

parity breaking SUSY contribution toK+ → π+νν̄ is described by tree-level diagrams

with a down-type squark exchange and quark-squark-neutrino interaction vertices

[74, 75, 70]. Thus, this decay gives bounds on λ′ × λ′ products.

The situation with K0 − K̄0 mixing is more involved: there are several sets of /R-

SUSY diagrams that contribute to this process. In order to get bounds on the RPV

couplings, one assumes that only a given RPV coupling product or a given sum of RPV

coupling products is nonzero. Possible bounds on the RPV coupling pair products

have been originally listed in [72]. Recently these bounds have been improved in [71].

Bounds that are relevant for our analysis are presented in Appendix A.1. We also

specify which of them are for λ′ × λ′ pair products and which of them are for λ̃′ × λ̃′.
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Keeping in mind everything that has been said above, let us consider the RPV

coupling products, which are present in formulae (3.2.22)-(3.2.24). We start with

λss ≡
∑
i

λ̃′∗i12λ̃
′
i22 =

∑
i,j,n

V1nV
∗
2j λ

′∗
in2λ

′
ij2. (3.3.4)

Using the Wolfenstein parametrization for the CKM matrix, keeping for each λ′×λ′∗

product only the leading order term in λ = sin θC , and assuming that all λ′ × λ′∗

products are real (no new source of CP-violation), we rewrite (3.3.4) in a following

form:

λss ≡
∑
i

λ̃′∗i12 λ̃
′
i22 =

∑
i

λ′∗i12 λ
′
i22 + λ

[∑
i

|λ′i22|2 −
∑
i

|λ′i12|2
]

+ Aλ2
∑
i

λ′∗i12 λ
′
i32 + Aλ3(1 + ρ− iη)

∑
i

λ′∗i32 λ
′
i22

+A2λ5(ρ− iη)
∑
i

|λ′i32|2 (3.3.5)

There is a strong bound on the Cabibbo-favored term in the r.h.s. of (3.3.5) from the

K+ → π+νν̄ decay. Assuming that λ′∗i1k λ
′
i2k ̸= 0 only for k=2, one gets [74]

|λ′∗i12 λ′i22| ≤ 6.3 · 10−5
( mq̃

300GeV

)2
(3.3.6)

We have rescaled the bound of ref. [74] to the units of mq̃/300 GeV. Values of the

squark masses less than 300 GeV are disfavored by many experiments (see [24] for

more details). For this reason, we follow ref. [71] assuming that mq̃ ≥ 300 GeV.

If squarks happen to be superheavy5, there is still a strong bound on the Cabibbo

favored term in (3.3.5) from K0 − K̄0 mixing. As it follows from our discussion in

Appendix A.1,

|
∑
i

λ′∗i12 λ
′
i22| ≤ 2.7× 10−3

( mℓ̃

100GeV

)2
(3.3.7)

5We thank X. Tata for discussion of this scenario.
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Thus, the Cabibbo favored term in (3.3.5) is strongly suppressed, if one assumes that

only λ′i12 ̸= 0. and λ′i22 ̸= 0. On the other hand, even under such an assumption, one

still has

λss ≡ λ̃′∗i12 λ̃
′
i22 ̸= λ′∗i12 λ

′
i22

due to the first order Cabibbo suppressed terms in (3.3.5). Furthermore, constraints

(3.3.6) or (3.3.7) may in particular be satisfied, when |λ′i22| is close to its boundary

value whereas |λ′i12| → 0, and vice versa. Taking into account that individual bounds

are, in general, orders of magnitude looser than (3.3.6) or (3.3.7), it is not hard to

see that λss is dominated by the first order Cabibbo suppressed term in (3.3.5).

Further on we will very often deal with a situation, when expanding λ̃′×λ̃′ products

in a basis of λ′ couplings, the Cabibbo favored term is negligible whereas the first

order Cabibbo suppressed term dominates, and the only possible constraints on the

first order Cabibbo suppressed term are the individual bounds on λ′ couplings. In

order to use these bounds we assume hereafter that only one coupling λ′ijk dominates

at a time.

After making such an assumption, it is easy to see that

− 0.025
( mq̃

300GeV

)2
≤ λss ≤ 0.29, if mq̃ ≤ 1TeV,

−0.29 ≤ λss ≤ 0.29, if mq̃ ≥ 1TeV (3.3.8)

The upper bound on λss is derived when one of λ′i22 couplings dominates. Individual

bounds on λ′i22 are the loosest for i = 3 [69]. For mq̃ ≥ 300GeV, |λ322| ≤ 1.12 - this

is the perturbativity bound on λ322. The lower bound on λss is derived when one of

the λ′i12 couplings dominates. Individual bounds on λ′i12 are the loosest for i=3 again:

|λ′312| ≤ 0.33(mq̃/300GeV ), if mq̃ ≤ 1TeV and |λ312| ≤ 1.12 - the perturbativity

bound, if mq̃ ≥ 1TeV .
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It is important to stress that, in general, as it follows from (3.3.6), (3.3.7), (3.3.8),

λss ≡
∑
i

λ̃′∗i12λ̃
′
i22 ≫

∑
i

λ′∗i12λ
′
i22 (3.3.9)

Thus, as it has been already pointed out in the beginning of this section, bounds on

λ̃′ × λ̃′ products differ by several orders of magnitude from those on corresponding

λ′ × λ′ products. In the considered case, the λ̃′ × λ̃′ product is restricted by a much

weaker bound than the corresponding λ′ × λ′ product.

Relation (3.3.9) plays a crucial role in our analysis. We will see in the next section

that, as a consequence of this relation, the R-parity breaking SUSY contribution to

∆ΓD is quite large.

For λdd, analysis is performed in exactly the same way and yields

− 0.025
( mq̃

300GeV

)2
≤ λdd ≤ 0.29, if mq̃ ≤ 1TeV,

−0.29 ≤ λdd ≤ 0.29, if mq̃ ≥ 1TeV (3.3.10)

Also, the relation similar to (3.3.9) is obtained:

λdd ≡
∑
i

λ̃′∗i11λ̃
′
i21 ≫

∑
i

λ′∗i11λ
′
i21 (3.3.11)

and relation (3.3.11) is as crucial as (3.3.9). It is also useful to transform (3.3.8) and

(3.3.10) into restrictions on λ2ss and λ
2
dd:

λ2ss ≈ λ2
[∑

i

|λ′i22|2 −
∑
i

|λ′i12|2
]2

≤ 0.0841 (3.3.12)

λ2dd ≈ λ2
[∑

i

|λ′i21|2 −
∑
i

|λ′i11|2
]2

≤ 0.0841 (3.3.13)

Bounds on λds and λsd are derived using the experimental data for ∆mK0 . As it
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follows from formula (A.1.1) in Appendix A.1,

|λds| ≡
∣∣∣∑

i

λ̃′∗i11λ̃
′
i22

∣∣∣ ≤ 1.7 · 10−6
( mℓ̃

100GeV

)2
(3.3.14)

In order to derive constraints on λsd, one must write it in the following form (using

λ′ijk = Vnjλ̃
′
ink):

λsd ≡
∑
i

λ̃′∗i12λ̃
′
i21 = (V ∗

11V22)
−1

[∑
i

λ′∗i12λ
′
i21 −

∑
j,n

′
V ∗
j1Vn2

(∑
i

λ̃′∗ij2λ̃
′
in1

)]
(3.3.15)

where prime indicates that the sum over j and n does not contain the term with

j = 1 and n = 2. Bounds on the terms present in the r.h.s. of (3.3.15) are given in

Appendix A.1. Using these bounds, one can see that

λsd < few× 10−7
( mℓ̃

100GeV

)2
(3.3.16)

It is interesting to note that such strong constraints on λds and on λsd are derived

assuming that only one λ̃′ × λ̃′ or λ′ × λ′ product is nonzero. It is also assumed that

the pure MSSM sector gives a negligible contribution to ∆mK0 [71]. These two as-

sumptions are not necessarily true. If one gives up these assumption, then destructive

interference of the pure MSSM and /R-SUSY diagrams or the one of different /R-SUSY

diagrams will somehow distort bounds (3.3.15), (3.3.16). However, unless there is a

fine-tuning or an exact cancelation between two (or more) diagram contributions, it

is very unlikely for the distortion of these bounds to be such that λds and/or λsd be

∼ 10−1 or ∼ 10−2. Therefore in our numerical calculations we will use the following

relations:

λds ≪ λss, λdd (3.3.17)

λsd ≪ λss, λdd (3.3.18)
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For the remaining four coupling products - λee, λµµ, λµe and λeµ - that are contained

in the expression (3.26) for yq̃q̃, the analysis is similar to that for λss and λdd. For the

details and subtleties of the analysis, we refer the reader to Appendix A.2. Here we

only point out that bounds on λee, λµµ are the following:

−0.91 · 10−3
( mq̃

300GeV

)2
≤ λee ≤ 3.83 · 10−3

( mq̃

300GeV

)2
−0.0072

( mq̃

300GeV

)2
≤ λµµ ≤ 0.091

( mq̃

300GeV

)2
, if mq̃ ≤ 530 GeV, (3.3.19)

−0.0072
( mq̃

300GeV

)2
≤ λµµ ≤ 0.29, if mq̃ ≥ 530 GeV. (3.3.20)

Also, for two other couplings we get

|λµe| ≤ 0.019
( mq̃

300GeV

)2
, |λeµ| ≤ 0.019

( mq̃

300GeV

)2
,

if mq̃ ≤ 530 GeV

|λµe| ≤ 0.033
( mq̃

300GeV

)
, |λeµ| ≤ 0.033

( mq̃

300GeV

)
, (3.3.21)

if mq̃ ≥ 530 GeV

We also obtain that

λµe ≈ λeµ (3.3.22)

As mq̃ increases, squark mass dependent empirical bounds on the RPV couplings are

replaced by squark mass independent perturbativity bounds. In formulae (3.3.19)-

(3.3.22), we indicate the change in the behavior of the bounds with the squark mass,

if it occurs for mq̃ ≤ 1TeV.

When transforming (3.3.19)-(3.3.22) into the restrictions on λ2ee, λ
2
µµ, λµeλeµ, one

can see that these restrictions are much weaker than the relevant constraints listed in

ref. [64]. This is because in the present work we do not neglect the transformations of

RPV couplings from the weak eigenbasis to the quark mass eigenbasis. More precisely,

we do not neglect the difference between λ̃′ × λ̃′ and λ′ × λ′ pair products.
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From (3.3.19)-(3.3.22), one can also see that generally speaking,

λ2µµ ≫ λµeλeµ ≫ λ2ee (3.3.23)

It is worth mentioning here that additional bounds on λee, λµµ, λµe, λeµ may be

derived from studying rare D-meson decays, such as D → Xℓ+ℓ−, D0 → ℓ+ℓ−, etc

[62]. As it follows from the analysis performed in ref. [62], bounds derived in this way

may be even stronger than those given by (3.3.19) -(3.3.22). Bounds coming from the

rare D-meson decays are however still to be elaborated in detail, taking into account

new experimental data, as well as possible impact of the long-distance SM and (short-

distance) pure MSSM contributions. Such an elaboration is beyond the scope of this

work, in particular because yq̃q̃ turns out to be a (numerically) subdominant part

of the New Physics contribution to the D0 − D̄0 lifetime difference, even if we use

constraints on λee, λµµ, λµe, λeµ given by (3.3.19)-(3.3.22) (see the next section).

Having obtained constraints on all RPV coupling products in (3.2.22)-(3.2.24), we

may proceed to computation of ySM,NP , yℓ̃ℓ̃, yq̃q̃.

3.4 RPV SUSY Contribution to yD: Numerical Analysis

In our numerical calculations we use [24, 87] GF = 1.166 · 10−5 GeV−2, λ ≈ 0.23,

ΓD ≈ 1.6 · 10−12 GeV, mD ≈ 1.865 GeV; mc ≡ mc(mc) ≈ 1.25 GeV, ms(2GeV ) ≈

95 MeV,

ms(mc) ≈ ms(2GeV )

(
αs(mc)

αs(2GeV )

)12/25

≈ 105 MeV, xs ≡
m2
s(mc)

m2
c(mc)

≈ 0.007;

C1(mc) = −0.411, C2(mc) ≈ 1.208 [43], BD ≈ 0.8 [43, 88], fD ≈ 0.22 [89].

While the value of BD is known from the lattice QCD calculations, there is no

theoretical or experimental prediction on BS
D. Here we follow the approach of ref.
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[43], assuming that

BS
D = BD, BS

D = 0.8BD, BS
D = 1.2BD. (3.4.1)

Let us first determine the sign of ySM,NP , yℓ̃ℓ̃, yq̃q̃. Using relations (3.3.17), (3.3.18),

(3.3.23), one may rewrite equations (3.2.22)-(3.2.24) in a much simpler form,

ySM,NP ≈ − GF√
2

f 2
DBDmD

6πΓD

(
m2
c

m2
ℓ̃

) [
C1(mc) + C2(mc)

]
λ λss xs (3.4.2)

yℓ̃ℓ̃ ≈ − m2
c f

2
DBDmD

288πΓD m4
ℓ̃

[
1

2
+

5

8

B̄S
D

BD

] [
λ2ss + λ2dd

]
(3.4.3)

yq̃q̃ ≈ m2
c f

2
DBDmD

288πΓD m4
q̃

[
5

8

B̄S
D

BD

− 1

]
λ2µµ (3.4.4)

It follows from (3.4.2), (3.4.3) that the sign of ySM,NP is opposite to that of λss and

yℓ̃ℓ̃ < 0.

One can see from (3.4.4) that the sign of yq̃q̃ is determined by the factor
[

5
8

B̄S
D

BD
−1
]
.

As it follows from (3.2.20) and (3.4.1), for mc ≡ mc(mc) ≈ 1.25GeV, this factor is

positive, hence

yq̃q̃ > 0.

On the other hand,
[

5
8

B̄S
D

BD
− 1

]
and hence yq̃q̃ flips its sign when using the charm

quark pole mass 6, mpole
c ≈ 1.65 GeV.

In general, such an ambiguity in sign of yq̃q̃ may cause trouble in numerical eval-

uation of the results, signaling the need for next-to-leading order evaluation of the

appropriate contributions, where the scheme ambiguity cancels out. Here we disre-

gard this sign ambiguity, as yq̃q̃ turns to be a (numerically) subdominant part of the

6To derive the proper value of mpole
c , the two-loop relation between the pole and MS quark

masses must be used. This is because the MS value of the c-quark mass has been extracted using
the perturbative QCD analysis up to the order α2

s [24]. One can check that the use of the three
loop relation between the pole and MS quark masses [90] leads to the physically meaningless result
mpole

c ≈ 1.93 GeV > mD.
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New Physics contribution to D0 − D̄0 lifetime difference. In our opinion, the use of

the MS charm mass, mc(mc) = 1.25 GeV, is more appropriate in this calculation.

Then yq̃q̃ has positive sign.

Let us proceed to our results. It is convenient to start with yq̃q̃. Using the listed

numerical values of parameters present in (3.4.4), we get

BS
D = 0.8BD : yq̃q̃ ≈ 0.0011 λ2µµ

(
300GeV

mq̃

)4

BS
D = BD : yq̃q̃ ≈ 0.0038 λ2µµ

(
300GeV

mq̃

)4

(3.4.5)

BS
D = 1.2BD : yq̃q̃ ≈ 0.0064 λ2µµ

(
300GeV

mq̃

)4

As it follows from (3.4.5), to the lowest order in perturbation theory, yq̃q̃ is highly

sensitive to the choice of parameters BS
D and BD. Moreover, if one uses the approach

of ref. [64], choosing B̄S
D = BD or BS

D = (m2
c/m

2
D)BD ≈ 0.45BD, yq̃q̃ flips sign

7.

Using the bounds on λµµ given by (3.3.20) yields

BS
D = 0.8BD : yq̃q̃ ≤ 0.9 · 10−5

BS
D = BD : yq̃q̃ ≤ 3.12 · 10−5 (3.4.6)

BS
D = 1.2BD : yq̃q̃ ≤ 5.34 · 10−5

for mq̃ ≤ 530 GeV and

BS
D = 0.8BD : yq̃q̃ ≤ 0.9 · 10−5

(
530GeV

mq̃

)4

BS
D = BD : yq̃q̃ ≤ 3.12 · 10−5

(
530GeV

mq̃

)4

(3.4.7)

BS
D = 1.2BD : yq̃q̃ ≤ 5.34 · 10−5

(
530GeV

mq̃

)4

7yq̃q̃ is equivalent to −y(RPV−RPV,l) in the notations of [64].
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for mq̃ ≥ 530 GeV.

Thus, if using bounds on λee, λµµ, λµe, λeµ, given by (3.3.19) - (3.3.22), one obtains

that yq̃q̃ is at least two orders of magnitude less than the experimental value of yD.

As it was mentioned above, constraints on λee, λµµ, λµe, λeµ and hence on yq̃q̃ may

become even stronger if one elaborates the constraints on RPV couplings coming from

the rare D-meson decays. Further on we simply ignore yq̃q̃ because of its smallness.

This way we also avoid the problems related to the dependence of the obtained results

on the choice of the renormalization scheme and BD-factors.

Consider ySM,NP now. For this quantity one gets

ySM,NP ≈ 0.0040 λss

(
100GeV

mℓ̃

)2

(3.4.8)

which after using (3.3.8) yields

− 0.0011

(
100GeV

mℓ̃

)2

≤ ySM,NP ≤ 0.99 · 10−4
( mq̃

300GeV

)2(100GeV

mℓ̃

)2

(3.4.9)

for mq̃ ≤ 1 TeV and

− 0.0011

(
100GeV

mℓ̃

)2

≤ ySM,NP ≤ 0.0011

(
100GeV

mℓ̃

)2

(3.4.10)

for mq̃ ≥ 1 TeV.

As it follows from (3.4.9), (3.4.10), |ySM,NP | may be by an order of magnitude

greater than quoted in [64]8. This is because the analysis in ref. [64] has been

restricted by consideration of mq̃ = 100 GeV only. On the other hand, as it follows

from Table I of ref. [69] and our analysis in Section 4, bounds on RPV couplings and

hence on λss become weaker for the greater values of squark masses. Else, unlike ref.’s

[48, 64], we obtain that ySM,NP can be both positive and negative. This is because,

8ySM,NP = −y(SM−RPV ) in the notations of [64].
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as one can see from equation (3.3.5) and the following it discussion, λss may have

both of signs even if one assumes that all RPV couplings are real and positive.

Finally, consider yℓ̃ℓ̃. Using the numerical values of the parameters present in

(3.4.3), one gets

BS
D = 0.8BD : yℓ̃ℓ̃ ≈ −1.25

[
λ2ss + λ2dd

](100GeV

mℓ̃

)4

BS
D = BD : yℓ̃ℓ̃ ≈ −1.47

[
λ2ss + λ2dd

](100GeV

mℓ̃

)4

(3.4.11)

BS
D = 1.2BD : yℓ̃ℓ̃ ≈ −1.69

[
λ2ss + λ2dd

](100GeV

mℓ̃

)4

As one can see from (3.4.11), varying the ratio BS
D/BD from 0.8 to 1.2, one gets about

15% uncertainty in the predictions for yℓ̃ℓ̃. Thus, yℓ̃ℓ̃ is only weakly sensitive to the

choice of the parameter BS
D. As we are interested in the order of the effect only, we

may for simplicity assume BS
D = BD hereafter.

To be consistent with a one dominant coupling approximation, we will assume

that only one of the coupling products λss or λdd is at its boundary at a time. Notice

however that if we allow both λss and λdd to be simultaneously large, our results

will change at most by a factor two, which is unimportant, if one is interested in the

order-of-magnitude of the effect only.

Using the bounds on λ2ss and λ
2
dd given by (3.3.12) and (3.3.13) we obtain

− 0.12

(
100GeV

mℓ̃

)4

≤ yℓ̃ℓ̃ < 0 (3.4.12)

It is important to stress that |yℓ̃ℓ̃| may be ∼ 10−1, if mℓ̃ = 100 GeV.

This result is in contradiction with the one of ref. [64]: yRPV−PRV,q = −yℓ̃ℓ̃ ≤

2.5 · 10−11, for mℓ̃ = 100GeV. This contradiction is related to the fact that authors of

ref. [64], following other papers on the meson-antimeson mixing phenomenon, have

neglected the transformation of the RPV couplings from the weak eigenbasis to the
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quark mass eigenbasis. This allowed them to impose very stringent constraints on λ2ss

and λ2dd from K+ → π+νν̄ decay. As it follows from our discussion in Section 4, this

approach is not always appropriate9.

We are now able to compute the total New Physics contribution to D0 − D̄0

lifetime difference,

ynew = ySM,NP + yℓ̃ℓ̃ + yq̃q̃.

As it is mentioned above, we neglect yq̃q̃ because of its smallness. Also, as it follows

from (3.4.8) and (3.4.11), yℓ̃ℓ̃ ≫ ySM,NP unless λdd → 0 and the ratio λss/m
2
ℓ̃
is small

enough. It is not very hard to see after doing some algebra that

− 0.12

(
100GeV

mℓ̃

)4

≤ yℓ̃ℓ̃ + ySM,NP ≤ 2.72 · 10−6 (3.4.13)

The (negative) lower bound in (3.4.13) is derived neglecting ySM,NP as compared

to yℓ̃ℓ̃. The (positive) upper bound in (3.4.13) is derived for λdd = 0 and λss =

−0.00136 (mℓ̃/100GeV )2, when ySM,NP = −2yℓ̃ℓ̃. As it follows from (3.4.6) and

(3.4.13), ynew is negligible, if positive, and may be as large as ∼ 10−1, if negative.

Thus, within the R-parity breaking supersymmetric models with lepton number

violation, the New Physics contribution toD0−D̄0 lifetime difference is predominantly

negative and may exceed in absolute value the experimentally allowed interval. In

order to avoid a contradiction with experiment, one must either have a large positive

contribution from the Standard Model, or place severe restrictions on the values of

RPV couplings. As follows from [29], ySM may be as large as ∼ 1%. In what follows,

|ynew| must be ∼ 1% or smaller as well. If |ynew| ∼ 1%, one may neglect ySM,NP as

compared to yℓ̃ℓ̃. Then, imposing the condition

− 0.01 ≤ ynew ≈ yℓ̃ℓ̃ (3.4.14)

9Unless one imposes the conditions λ′
i22 ∼ λ′

i12 and λ′
i21 ∼ λ′

i11.
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one obtains that either mℓ̃ > 185 GeV, or if mℓ̃ ≤ 185 GeV, condition (3.4.14) implies

new bounds on λss and λdd:

|λss| ≤ 0.082
( mℓ̃

100GeV

)2
(3.4.15)

|λdd| ≤ 0.082
( mℓ̃

100GeV

)2
(3.4.16)

Note that bounds (3.4.15) and (3.4.16) may not be saturated simultaneously. (3.4.15)

is saturated if λdd = 0. Subsequently, (3.4.16) is saturated if λss = 0. For the opposite

limiting case, λss = λdd, one gets
√
2 times stronger restrictions:

|λss| ≤ 0.058
( mℓ̃

100GeV

)2
, |λdd| ≤ 0.058

( mℓ̃

100GeV

)2
(3.4.17)

It is interesting to compare the restrictions on λss and λdd, given by (3.4.15)-(3.4.17),

with those derived in [47] from study of D0 − D̄0 mass difference. Translated to our

notation, we may rewrite the relevant constraints of ref. [47] in the following form:

λss ≤ 0.085
√
xexp

( mq̃

500GeV

)
, λdd ≤ 0.085

√
xexp

( mq̃

500GeV

)
(3.4.18)

This constraint has been derived assuming that mq̃ = mℓ̃. If mq̃ ̸= mℓ̃, bounds in

(3.4.18) must be divided by the factor 1
2

√
1 +m2

q̃/m
2
ℓ̃
, as it follows from formulae

(130)-(134) of ref. [47]. Assuming for simplicity that m2
q̃ ≫ m2

ℓ̃
and inserting xexp =

0.0117 into (3.4.18), one gets

λss ≤ 0.0037
( mℓ̃

100GeV

)
, λdd ≤ 0.0037

( mℓ̃

100GeV

)
(3.4.19)

Thus, bounds of [47] on λss and λdd are about 20 times stronger than our ones.

On the other hand, constraints of ref. [47] on the RPV coupling products are derived

in the limit when the pure MSSM contribution to ∆mD is negligible. Generally
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speaking, the MSSM contribution to D0 − D̄0 mass difference is significant even for

the squark masses of about 2 TeV. In what follows, destructive interference of the

pure MSSM and /R-SUSY contributions may distort bounds (3.4.19), making them

inessential as compared to (3.4.15)-(3.4.17) or even to (3.3.8), (3.3.10).

Contrary to this, pure MSSM contributes to ∆ΓD only in the next-to-leading

order via two-loop dipenguin diagrams. Naturally, this contribution is expected to be

small. In what follows, unlike those of ref. [47], our constraints on the RPV coupling

products λss and λdd, given by (3.4.15)-(3.4.17), seem to be insensitive or weakly

sensitive to assumptions on the pure MSSM sector of the theory.

Thus, our main result is that within R-parity breaking supersymmetric theories

with leptonic number violation, the New Physics contribution to ∆ΓD may be quite

large and is predominantly negative.

For simplicity we assumed that all sleptons have nearly the same mass and all

squarks have nearly the same mass. It is easy to see that taking into account the

difference between the slepton masses does not affect our main results. There are

however subtleties concerning the squark masses. First, recall that our analysis has

been performed for mq̃ ≥ 300 GeV. While this constraint is quite reasonable for d̃

and s̃, the bottom squark is still allowed experimentally to be about 100 GeV [24].

On the other hand, we have seen that bounds on ySM,NP and yℓ̃ℓ̃ either grow or are

insensitive to the squark masses. As for the bound on yq̃q̃, it is insensitive to mq̃ for

low values of the squark masses. Thus, no new effect is going to be observed, if one

takes the squark masses to be about 100 GeV.

Another point to be made, is that the squark mass matrix is in general non-

diagonal in the super-CKM basis, if one takes the squark masses to be different. It

has been already mentioned in Section 2, that no new flavor violation effects are

obtained, however this may somehow weaken bounds (3.3.19) - (3.3.22) on λee, λµµ,

λµe λeµ, when applying arguments analogous to those used in Section 4. However,
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as it was mentioned above, λee, λµµ, λµe λeµ are expected to get additional strong

constraints from the analysis of the rare D-meson decays, so that one may expect

for yq̃q̃ to be in any case restricted by an even more stringent bound than (3.4.5).

In other words, giving up the assumption of nearly equal squark masses leads to

complication of the analysis without observation of any new effect. If large, the RPV

SUSY contribution to the lifetime difference in D0 −D0 mixing still may have only

negative sign.

When studying the lifetime difference in D0 − D0 mixing within the Standard

Model and beyond, one usually assumes that CP-violating effects are negligible [48,

29, 43, 63, 64]. Following this strategy, we have chosen for the RPV coupling products

that contribute to D0 −D0 mixing amplitude to be real. The natural question arises

if our results may be affected by possible complex phases of these coupling products.

Clearly, |ynew| still may be large, however the complex phases may possibly affect

its sign. One may suggest - because of no evidence of CP-violation in the D0 − D0

system [49, 50] - that the phases of the relevant RPV coupling products are small.

In this case, the contribution to D0 − D0 lifetime difference, proportional to the

imaginary parts of the RPV coupling products, is subdominant and cannot affect the

sign of ynew: if large in absolute value, ynew is negative . Yet, it may happen that

RPV coupling products that contribute to D0 − D0 mixing have large phases, and

no evidence of CP-violation in D0 − D0 system is related to the fact that - unlike

the D0 − D0 oscillations - the /R-SUSY contribution to D0 meson decays is rather

small. In that case the formalism, used here, is not valid anymore. A more general

and involved approach should be used, taking into account possible correlations in

the values of D0 − D0 mass and lifetime differences as well as possible correlations

in the SM, pure MSSM and RPV sector contributions. Thus, to clarify if the RPV

couplings complex phases may affect the sign of the NP contribution to D0 − D0

lifetime difference, thorough and detailed study of the case, when the relevant phases
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are large, is needed.

3.5 Non-Manifest Left-Right Model Contribution to yD.

In this section we will briefly discuss the NP contribution to D0 − D0 lifetime

difference within SU(2)R × SU(2)L × U(1) models or Left-Right (LR) Symmetric

Models. Within these models, along with the left weak isospin gauge tripletW a
L, a=1,

2, 3, one has a right weak isospin gauge triplet, W a
R. The right-handed fermions are

isodoublets and the left-handed fermions are isosinglets with respect to the SU(2)R

group.

The fermion and gauge boson masses are generated in two steps. First, SU(2)R×

SU(2)L ×U(1) symmetry is spontaneously broken to SU(2)L ×U(1)Y ′ at some scale

MR ≫ 100 GeV, to assure that non-SM gauge bosons, W±
2 , Z ′, are too heavy to

be seen experimentally. Next, SU(2)L × U(1)Y ′ is spontaneously broken to U(1)EM ,

as discussed in Chapter 2. To implement such a two-step spontaneous symmetry

breaking scenario, an involved Higgs sector is needed. More about the Left-Right

Symmetry Models and their phenomenology may be found elsewhere else [91, 92, 93].

Here only the basic aspects of the model, relevant for our analysis, are pointed out.

The lightest charged W-boson, W±
1 (with MW1 = 80.4 GeV), is predominantly

the Standard Model W-boson, W±
L , yet it also contains a small admixture of W±

R :

W±
1 =W±

L cos ζ +W±
R sin ζ ≈ W±

L + ζW±
R (3.5.1)

ζ ∼ M2
W1
/M2

W2
≪ 1. The heaviest charged W-boson, W±

2 (with a mass ∼ MR) is

predominantly W±
R :

W±
2 ≈ W±

R − ζW±
L (3.5.2)

The quark charged current interactions with exchange of W±
1 consist of both the
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SM and the NP interaction terms now:

LW =
1√
2

∑
f,f ′

[
ūfW

+
1

(
gLV

L
ff ′PL + ζgRV

R
ff ′PR

)
df ′ + h.c

]
(3.5.3)

where PL = (1− γ5)/2, PR = (1 + γ5)/2, gL and gR are respectively the SM and NP

weak coupling constants, V L = VuLV
†
dL

is the SM (left-handed quark) CKM matrix

and V R = VuRV
†
dR

is the right-handed quark CKM matrix. Depending on assumptions

on V R, two types of Left-Right Symmetric Models are considered:

Pseudo-manifest Left-Right Symmetric Model, where |V R
ff ′| = |V L

ff ′|.

Non-manifest Left-Right Symmetric Model, where V R is arbitrary.

It has been shown in [48] that within the pseudo-manifest Left-Right Symmetric

Model, the New Physics contribution to the lifetime difference in D0 − D0 mixing

is negligible. Yet, as it has been argued in [65], within the non-manifest Left-Right

Symmetric Model, the New Physics contribution to the lifetime difference in D0− D̄0

mixing may be significant:

|yLR| ≡
|∆ΓDLR

|
2ΓD

≤ 1.4× 10−3, (3.5.4)

which means that yLR may be of the same order as the experimental value of yD.

This result has been derived by considering the box diagrams with one of ∆C = 1

transitions being generated by a new physics (NP) interaction and mediated by a

propagator with WL − WR mixing (Fig. 3.4), or equivalently mediated by a W±
1

propagator with one of the vertices being the one with the SM interaction and the

other one being that with the NP interaction.

Note that WR part of the propagator couples with the u-quark, which (assuming

that VRus ∼ 1) allows one to remove a power of the suppression in terms of λ =

sin θC ≈ 0.23.
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c

u

W

W

L

R

q  = s, d

q’  = s, d

Figure 3.4: ∆C = 1 transition mediated by a propagator with WL −WR mixing.

In this section we revisit the contribution of the box diagrams with the new physics

generated ∆C = 1 transition, presented in Fig 3.4. While the analysis of ref. [65] is

restricted by considering only the diagrams with the intermediate s-quark states, i.e.

q = s and q′ = s, we include also the diagrams with q = d and/or q′ = d. We will see

that diagrams with the intermediate d-quark states may not be neglected, in spite of

md ≪ ms. Moreover, they play a crucial role in properly taking into account GIM

cancelation effects.

We show that box diagrams with the new physics generated ∆C = 1 transition,

presented in Fig 3.4, are negligible in sum due to GIM cancelation. Thus, one must

replace the bound on yLR, given by equation (3.5.4), by

|yLR| ≤ 8.8× 10−5 (3.5.5)

This constraint on yLR has been derived in [48], neglecting the ∆C = 1 transition

presented in Fig. 3.4.

For the ∆C = 1 interaction in Fig. 3.4, the relevant part of the low-energy effective
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Hamiltonian has the following form:

H∆C=1
WL−R

= −4GF ξg√
2

∑
q,q′

V ∗L
cq V

R
uq′

[
C̄1(mc)Q1 +

+C̄2(mc)Q2

]
(3.5.6)

Q1 = ūiγ
νPRq

′
j q̄jγνPLci, Q2 = ūiγ

νPRq
′
iq̄jγνPLcj

where i, j stand for color indices and ξg = ζgR/gL. If only one ∆C = 1 transition

in the box diagrams is generated by an NP interaction, the approach described in

ref. [48] may be used. For the new physics ∆C = 1 effective Hamiltonian given

by equation (3.5.6), only the term I4(xq, xq′) ⟨ D̄0 | Oijkl
4 | D0 ⟩ in equation (7) of

[48] contributes. Basically, this result is in agreement with that of ref. [65], however

there is an essential difference. While q = q′ = s in [65], we take here q = s, d and

q′ = s, d. If one denotes by y
(1)
LR the contribution to the lifetime difference in D0 − D̄0

mixing considered here, then, using Eqs. (7), (9), (10) in ref. [48] (setting there

Dqq′ = −
(
GF/

√
2
)
ξgV

L∗
cq V

R
uq′ , Γ̄1 = γνPR, Γ̄2 = γνPL), it is straightforward to show

after doing some algebra that

y
(1)
LR =

∑
q, q′

Cqq′

LR V
L∗

cq′ V
R
uq′

[
K2⟨Q′⟩+K1⟨Q̃′⟩

]
(3.5.7)

where

Cqq′

LR =
G2
Fm

2
c ξg

2πmDΓD
V L∗

cq V
L
uq

√
xq′
[
(1− xq′)

2 −

−2xqxq′ − x2q

]
(3.5.8)

and the notations in (3.5.7) and (3.5.8) are the same as in [65].

Formulae (3.5.7) and (3.5.8) are generalization of formulae (3) and (4) of ref. [65]

for the case when both s- and d-quark intermediate states are considered, thus CLR
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of [65] is replaced here by Cqq′

LR and the sum over q, q′ is implemented. Furthermore,

in order to take properly into account GIM cancelation effects, we keep in equation

(3.5.8) higher order terms in the expansion in powers of xq ≡ m2
q/m

2
c and xq′ ≡

m2
q′/m

2
c .

It is worth noting that dependence on xq appears only in the next-to-next-to-

leading order terms of this expansion. The difference in the behavior of y
(1)
LR with xq

and with xq′ is related to different chiralities of the light quarks q and q′ in (3.5.6).

More detailed discussion of the behavior of the D0 − D̄0 mixing amplitude with

the light quark masses, depending on these quarks chiralities, may be found in refs.

[37, 94, 95]. Discussion for a particular case of the width difference is also available

in [29, 96].

If one takes the limit xd ≡ m2
d/m

2
c = 0, Cqq′

LR = 0 for q′ = d. Thus, formula (3.5.7)

is significantly simplified:

y
(1)
LR =

[
Css
LR + Cds

LR

]
V L∗

cs V
R
us

[
K2⟨Q′⟩+K1⟨Q̃′⟩

]
(3.5.9)

where

Css
LR =

G2
Fm

2
c ξg

2πmDΓD
V L∗

cs V
L
us

√
xs

[
(1− xs)

2 − 3x2s

]
(3.5.10)

Cds
LR =

G2
Fm

2
c ξg

2πmDΓD
V L∗

cd V
L
ud

√
xs (1− xs)

2 (3.5.11)

As it follows from (3.5.9) - (3.5.11), in the limit md = 0 there is an additional

contribution - as compared to that of ref. [65] - from the diagram in Fig. 3.4 when

q = d and q′ = s: Cds
LR ̸= 0. Moreover, using the fact that V L∗

cs V
L
us ≈ −V L∗

cd V
L
ud+O(λ

5),

it is not hard to see that Css
LR ≈ −Cds

LR with accuracy of the terms ∼ λ5 or ∼ x
5/2
s .

Thus, the sum of Css
LR and Cds

LR is much less in absolute value than these quantities

by themselves. This is a manifestation of (approximate) GIM cancelation that makes



67

y
(1)
LR negligible.

Using the unitarity condition,

V L∗

cs V
L
us + V L∗

cd V
L
ud + V L∗

cb V
L
ub = 0 (3.5.12)

one gets after doing some algebra

Css
LR + Cds

LR =
G2
Fm

2
c ξg

2πmDΓD

√
xs

[
−Re

(
V L∗

cb V
L
ub

)
(1−

−xs)2 − 3 V L∗

cs V
L
us x

2
s

]
(3.5.13)

Note that unlike the CKM products in (3.5.7) - (3.5.11), V L∗

cb V
L
ub has a non-negligible

phase [24], thus one must explicitly indicate that the real part of this product is

only relevant. It is assumed no new source of CP-violation [48] (VR is real and no

spontaneous CP-violation). In this case, the impact of CP-violating effects on ∆ΓD

is negligible.

As it was mentioned above, when studyingD0−D̄0 oscillations, one puts V L∗

cb V
L
ub ≈

0, as |V L∗

cb V
L
ub| ≪ V L∗

cs V
L
us, thus using the two quark generation mixing approxima-

tion. However, in the considered case this approximation is not valid. Indeed, using

Re
(
V L∗

cb V
L
ub

)
≈ A2λ5ρ and V L∗

cs V
L
us ≈ λ, it is not hard to see that the first term in

the square brackets in (3.5.13) dominates over the last one, for A ≈ 0.81, λ ≈ 0.23,

ρ ≈ 0.13 [24] and xs ≡ m2
s(mc)/m

2
c(mc) ≈ 0.007 [66].

To the lowest order in perturbation theory, one gets a rough estimate of the effect

rather than a precise numerical evaluation. In what follows, one may to a good

approximation disregard the subdominant terms in (3.5.13). Then, one may rewrite

equation (3.5.9) in a more compact form:

y
(1)
LR = −C̄LR V L∗

cs V
R
us

[
K2⟨Q′⟩+K1⟨Q̃′⟩

]
(3.5.14)
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where

C̄LR =
G2
Fm

2
c ξg

2πmDΓD
Re
(
V L∗

cb V
L
ub

) √
xs (3.5.15)

We parameterize ⟨Q′⟩ and ⟨Q̃′⟩, using the moderate vacuum saturation approach

[47]:

⟨Q′⟩ ≡ ⟨D̄0|ūiγµPLciūjγµPRcj|D0⟩ =

= −1

2
f 2
Dm

2
DBD − 1

3
f 2
Dm

2
D

(
mD

mc

)2

BS
D (3.5.16)

⟨Q̃′⟩ ≡ ⟨D̄0|ūiγµPLcjūjγµPRci|D0⟩ =

= −1

6
f 2
Dm

2
DBD − f 2

Dm
2
D

(
mD

mc

)2

BS
D (3.5.17)

where fD ≈ 0.22GeV [89], BD ≈ 0.8 [43, 88], and we choose BS
D ≈ BD. Then, using

GF = 1.166× 10−5GeV −2, ΓD ≈ 1.6× 10−12GeV, mD ≈ 1.865GeV, mc ≡ mc(mc) ≈

1.25GeV [24, 87], K1 ≡ 3C1C̃1 + C1C̃2 + C2C̃1 ≈ 3C2
1 + 2C1C2, K2 ≡ C2C̃2 ≈ C2

2 ,

C1(mc) = −0.411, C2(mc) = 1.208 [43], V L
cs ≈ 1 − λ2/2, V R

us ≈ 1 and [65, 97]

ξg ≤ 0.033, one gets

y
(1)
LR ≤ 1.4× 10−7 (3.5.18)

Thus, due to GIM cancelation, box diagrams with the new physics generated

∆C = 1 transition, presented in Fig. 3.4, give in sum negligible contribution to the

lifetime difference in D0 − D̄0 mixing.

It is left for the reader to verify that one gets a negligible contribution to yLR also

in the case when the WL −WR propagator in Fig. 3.4 is flipped so that WR couples

with the charm quark.

In what follows, one should use the result of ref. [48] that has been derived

neglecting the ∆C = 1 transition in Fig. 3.4. In other words, one should use the

bound on yLR, given by equation (3.5.5). Thus, within the non-manifest Left-Right

Symmetric Model, the New Physics contribution to the lifetime difference in D0− D̄0
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mixing is rather small.

In is worth noting here that this result has been derived considering the diagrams

with only one ∆C = 1 transition generated by a New Physics interaction. There are

also box diagrams with both ∆C = 1 transitions occurring due to NP interactions.

These diagrams have not been considered so far, as within the Left-Right Symmetric

Models they are estimated to have a small contribution to ∆ΓD. On the other hand, it

is still possible that within the non-manifest version of the LR model, there are some

corners of the parameter space with MWR
below 1 TeV [98], where such diagrams are

perhaps non-negligible. Study of this possibility requires detailed and careful scanning

of the parameter space of the theory, taking into account all possible constraints,

coming fromKL−KS and B0−B̄0 mass differences, as well as other phenomenological

constraints. Such a detailed analysis is beyond the scope of this work.
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Chapter 4 NP Searches in Bs Decays and Oscillations

Study of the bottom mesons is often more advantageous that the charmed ones, as

the long-distance effects in B meson decays and oscillations are rather small. Study

of Bs meson is of special interest, as there is still room for New Physics in Bs meson

decays and oscillation.

In this chapter we examine possible correlations between the NP contribution

to the mass difference in Bs − Bs mixing and that to Bs → µ+µ− leptonic decay.

The Standard Model (SM) prediction for Bs → µ+µ− is currently smaller than the

experimental branching fraction limit [24] of B(expt)

Bs→µ+µ− by about a factor of 15. This

presents a window of opportunity for observing New Physics (NP) effects in this

mode.

This topic is particularly timely in view of experimental indications of NP effects in

both the exclusive decayBs → J/Ψ+ϕ [99] (for recent CDF results, also see Ref. [100])

as well as the inclusive like-sign dimuon asymmetry observed in pp̄ → µµ+X [101].

Moreover, future work at LHC, e+e− Super B-factories and ongoing CDF & D0

measurements at Fermilab (see the discussion following Eq. (4.6)) is expected to

markedly improve the current branching fraction bound.

Our strategy in this chapter is somewhat reminiscent of the recent studies in [102]

noting that in some NP models theD0 mixing andD0 → µ+µ− decay amplitudes have

a common dependence on the NP parameters. If so, one can predict the D0 → µ+µ−

branching fraction in terms of the observed ∆MD provided that much or all of the
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mixing is attributed to NP. This is a viable possibility for D0 mixing: as discussed

above, the Standard Model (SM) signal has large theoretical uncertainties and many

NP models can produce the observed mixing [47].

For ∆MBs the situation is very different. Here, the SM prediction is in accord

with the observed value (e.g. see Refs. [103, 45] and papers cited therein). In fact, the

analysis described below (cf. see Eqs. (4.12),(4.13)) gives |∆M (NP)
Bs

/∆M
(SM)
Bs

| ≤ 0.20,

which demonstrates just how well the SM prediction agrees with the experimen-

tal value of ∆MBs . In view of this, our SM expression for ∆MBs will be given at

NLO [105, 106] whereas LO results will suffice for NP models. As regards the corre-

sponding width difference ∆ΓBs , the experimental and theoretical uncertainties are

still rather significant (viz Sect. 4.1-C).

In those NP models where mixing and Bs → µ+µ− arise from a common set of

parameters, the severe constraint on any NP signal to Bs mixing places strong bounds

on its contribution to BBs→µ+µ− .
1 In fact, we shall find the constraint can be so strong

that for some NP models the predicted Bs → µ+µ− branching fraction lies well below

the SM prediction.

The first step in our study (cf Section 4.1) will be to revisit the SM predictions

for mixing in the b-quark system by using up-to-date inputs. We carry this out

for the two mixing quantities ∆MBs and ∆ΓBs/∆MBs . The former in turn yields

phenomenological bounds on NP mixing contributions which in certain models can be

used to bound the magnitude of the Bs → µ+µ− decay mode. We also update the SM

branching fraction for Bs → µ+µ− by using the observed Bs mixing as input. Then, in

Section 4.2 we discuss general properties of NP models with tree-level amplitudes. In

Section 4.3, we explore various NP models such as extra Z ′ bosons, family symmetry,

R-parity violating supersymmetry, flavor-changing Higgs models, and models with

the fourth sequential generation. Some technical details are relegated to Appendix B.

1In particular, Ref. [103] considers the possibility, not covered here, of effects of so-called minimal
flavor violation which affect the quark mixing-matrix elements.
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The results presented in this chapter are based on those published in [104].

4.1 Update of Bs Mixing and Bs → µ+µ− in the Standard Model

We begin by considering the SM predictions for Bs mixing. This step is crucial to

obtaining bounds on NP contributions. We also use the Bs mixing signal as input to

a determination of the branching fraction for Bs → µ+µ−.

4.1.1 Inputs to the Analysis

The work in this Section takes advantage of recent progress made in determin-

ing several quantities used in the analysis. We summarize our numerical inputs in

Table 4.1, along with corresponding references. Included in Table 4.1 is an updated

determination of the top quark pole mass [107] m
(pole)
t which in turn is used to deter-

mine the corresponding running mass m̄t(m̄t) [90] along with several decay constants

and B-factors as evaluated in lattice QCD. For definiteness, we have used values ap-

pearing in Ref. [109]. This area is, however, constantly evolving and one anticipates

further developments in the near future [110]. Our values for the Cabibbo-Kobayashi-

Maskawa (CKM) matrix elements |Vts| and |Vtb| are taken from Ref. [24]. Similar

values occur for the global fits cited elsewhere (e.g. Refs. [111, 112]).

MBs = 5366.3± 0.6 MeV [24] τBs = (1.425± 0.041)× 10−12 s [24]

∆MBs = (117.0± 0.8)× 10−13 GeV ∆ΓBs/ΓBs = 0.092+0.051
−0.054 [24]

xBd
= 0.776± 0.008 [24] xBs = 26.2± 0.5 [24]

m
(pole)
t = 173.1± 1.3 [107] αs(MZ) = 0.1184± 0.0007 [108]

fBs = 0.2388± 0.0095 GeV [109] fBs

√
B̂Bs = 275± 13 MeV [109]

|Vts| = 0.0403+0.0011
−0.0007 [24] |Vtb| = 0.999152+0.000030

−0.000045 [24]

Table 4.1: List of Input Parameters.



73

4.1.2 ∆MBs

The pdg2010 value for ∆MBs ,

∆M
(expt)
Bs

= (117.0± 0.8)× 10−13 GeV , (4.1)

is a very accurate one – the uncertainty amounts to about 0.7%. The NLO SM

formula,

∆M
(SM)
Bs

= 2
G2

FM
2
WMBsf

2
Bs
B̂Bs

12π2
|V ∗

tsVtb|2ηBsS0(x̄t) , (4.2)

is arrived at from an operator product expansion of the mixing hamiltonian. The

short-distance dependence in the Wilson coefficient appears in the scale-insensitive

combination ηBsS0(x̄t), where the factor S0(x̄t) is an Inami-Lin function [113] (with

x̄t ≡ m̄2
t (m̄t)/M

2
W) and m̄t(m̄t) is the running top-quark mass parameter in MS

renormalization. In particular, we have m̄t(m̄t) = (163.4 ± 1.2) GeV which leads to

S0(x̄t) = 2.319 ± 0.028. Using the same matching scale, we obtain ηBs = 0.5525 ±

0.0007 for the NLO QCD factor.

Our evaluation for ∆M
(SM)
Bs

then gives

∆M
(SM)
Bs

=
(
117.1+17.2

−16.4

)
× 10−13 GeV , (4.3)

which is in accord with the experimental value of Eq. (4.1). The theoretical uncer-

tainty in the SM prediction of Eq. (4.3) is roughly a factor of twenty larger than the

experimental uncertainty of Eq. (4.2). The largest source of error occurs in the non-

perturbative factor B̂Bsf
2
Bs
, followed by that in the CKM matrix element Vts. The

asymmetry in the upper and lower uncertainties in ∆M
(SM)
Bs

arises from the corre-

sponding asymmetry in the value of Vts cited in Ref. [24].

Finally, we note in passing that for the ratio ∆MBd
/∆MBs the experimental value

is 0.02852 ± 0.00034 whereas the SM determination gives 0.02714 ± 0.00193. This
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good agreement is not surprising since the ratio ∆MBd
/∆MBs contains less theoretical

uncertainty than ∆MBd
or ∆MBs separately.

4.1.3 The Ratio ∆ΓBs/∆MBs

The above discussion of ∆M
(SM)
Bs

sets the stage for analyzing NP contributions to

Bs → µ+µ−. There is, in principle, a second approach which instead utilizes ∆ΓBs .

The pdg2010 value for the Bs width difference is ∆Γ
(expt)
Bs

= 0.062+0.034
−0.037 × 1012s−1.

Together with Eq. (4.1), this gives2

r(expt) ≡
∆Γ

(expt)
Bs

∆M
(expt)
Bs

=
0.062+0.034

−0.037 × 1012 s−1

(17.77± 0.12)× 1012 s−1
= (34.9± 20.0)× 10−4 . (4.4)

whereas the corresponding SM prediction from Ref. [45] is r(SM) = (49.7 ± 9.4) ×

10−4. In contrast to the mass splitting ∆MBs , the theoretical uncertainty in the

ratio ∆ΓBs/∆MBs is much smaller than in the current experimental determination.

Nonetheless, this situation is expected to change once LHCb gathers sufficient data.

As such, we would expect a highly accurate value of ∆Γ
(expt)
Bs

to eventually become

available. We propose that it could be applied to the kind of analysis used in this

chapter as follows. We define a kind of mass difference DMBs as

DMBs ≡
∆M

(thy)
Bs

∆Γ
(thy)
Bs

∆Γ
(expt)
Bs

. (4.5)

The point is that if NP contributions are neglected in ∆B = 1 transitions, then

∆Γ
(thy)
Bs

is purely a SM effect. In addition, the ratio ∆M
(SM)
Bs

/∆Γ
(SM)
Bs

will be less

dependent on hadronic parameters than either factor separately.

This quantity is also important in the scenarios where NP contributes a significant

CP-violating phase to ∆MBs . In this situation, ∆Γ
(expt)
Bs

will be reduced compared

2Using instead the recent CDF evaluation ∆Γ
(CDF)
Bs

= 0.075± 0.035± 0.01 × 1012 s−1 implies

r(expt) = (42.2± 20.5)× 10−4, consistent with the value in Eq. (4.4).
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Figure 4.1: SM diagrams for Bs → µ+µ−.

to its SM value ∆Γ
(SM)
Bs

by a factor of cos 2ξ, where ξ is related to the relative phase

between the SM and NP contributions to ∆MBs [114].

At the very least, the relation in Eq. (4.5) would be of interest to analyze the NP

issue using both quantities ∆MBs and the above DMBs .

4.1.4 Bs → µ+µ−

pdg2010 entries for BBs→ℓ+ℓ− are

B(expt)

Bs→µ+µ− < 4.7× 10−8 and B(expt)

Bs→e+e− < 5.4× 10−5 , (4.6)

with no experimental limit currently for the Bs → τ+τ− transition. Data collected by

the D0 and CDF collaborations will improve the above branching fraction limit. For

example, the D0 collaboration reports B(D0)

Bs→µ+µ− < 5.1 × 10−8, with an anticipated

limit of eleven times the SM prediction and similarly for the CDF collaboration [115].

To the lowest order in perturbation theory, the SM diagrams for the Bs → µ+µ−

are depicted in Fig. 4.1. Since the LD estimate for the branching fraction of Bs →

µ+µ− in the SM gives B(LD)

Bs→µ+µ− ∼ 6× 10−11, we consider only the SD component in

the following. Using Eq. (4.2) as input to the SD-dominated Bs → µ+µ− transition
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(see also Ref. [103]) we arrive at

B(SM)

Bs→µ+µ− = ∆MBs τBs

3G2
FM

2
Wm

2
µ

4ηBsB̂Bsπ
3

[
1− 4

m2
µ

M2
Bs

]1/2
Y 2(x̄t)

S0(x̄t)
, (4.7)

where Y (x̄t) is another Inami-Lin function [113]. Expressing B(SM)

Bs→µ+µ− in this manner

serves to remove some of the inherent model dependence. Numerical evaluation gives

B(SM)

Bs→µ+µ− ≃ 3.3× 10−9 . (4.8)

4.2 Study of New Physics Models

In this section, we first obtain a numerical (1σ) bound on any possible New Physics

contribution to ∆MBs . We then use this to constrain couplings in a variety of NP

models and thereby learn something about the Bs → µ+µ− transition.

4.2.1 Constraints on NP Models from Bs Mixing

As shown in Ref. [60], New Physics in ∆B = 1 interactions can in principle

markedly affect ∆Γs. The logic is similar to that used in Ref. [48] regarding the

possible impact of NP on ∆ΓD. Since, however, in Bs mixing such models are not

easy to come up with, one can simply assume that ∆B = 1 processes are dominated

by the SM interactions. Thus we can write

∆MBs = ∆M
(SM)
Bs

+∆M
(NP)
Bs

cosϕ , (4.9)

If the ∆B = 1 sector were to contain significant NP contributions, then the above

relation would no longer be valid due to interference between the SM and NP com-

ponents.

As can be seen from Eq. (4.9), interference between the SM and NP components
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may also occur in the presence of a CP-violating phase ϕ in the NP part of the

mixing amplitude [30]. This large NP phase could markedly affect ∆Γ
(expt)
Bs

even in the

absence of a NP contribution to the on-shell ∆B = 1 transitions (recall that ∆Γ
(expt)
Bs

depends explicitly on the cosine of the CP-violating phase ξ [45, 114]; the explicit

relation between ϕ and ξ can be found in [114]). It is therefore more reasonable

to use ∆Γ
(expt)
Bs

in studying those scenarios with a large NP phase. The appropriate

strategy here would be to use ∆Γ
(expt)
Bs

and ∆Γ
(SM)
Bs

to extract the phase ξ, eliminate

cosϕ from Eq. (4.9), and then extract ∆M
(NP)
Bs

in order to relate it to the rare leptonic

decay rate. To do so, however, will require a significant reduction in the experimental

uncertainty of ∆Γ
(expt)
Bs

. Alternatively, CP-violating phases could be extracted at

LHCb from the studies of Bs → J/ψϕ transition [30]. We shall defer those studies to

a future publication [172]. Here we shall assume that the phase in the NP component

of ∆MBs is sufficiently small (although not necessarily negligible),

∆MBs = ∆M
(SM)
Bs

+∆M
(NP)
Bs

. (4.10)

Accounting for NP as an additive contribution,

∆M
(expt)
Bs

= ∆M
(SM)
Bs

+∆M
(NP)
Bs

, (4.11)

we have from Eqs. (4.1),(4.3),

∆M
(NP)
Bs

=
(
−0.1+16.4

−17.2

)
× 10−13 GeV . (4.12)

The error in ∆M
(expt)
s has been included, but it is so small compared to the theoretical

error in ∆M
(SM)
s as to be negligible. The 1σ range for the NP contribution is thus

∆M
(NP)
Bs

= (−17.3 → +16.5)× 10−13 GeV . (4.13)
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To proceed further without ambiguity, we would need to know the relative phase

between the SM and NP components. Lacking this, we employ the absolute value of

the largest possible number,

|∆M (NP)
Bs

| ≤ 17.3× 10−13 GeV , (4.14)

to constrain the NP parameters.

4.2.2 Generic NP Models with tree-level amplitudes

New Physics can affect both Bs mixing and rare decays like Bs → µ+µ− by

engaging in these two transitions at tree level. In this section we will, for generality,

consider a generic spin-1 boson V or a spin-0 boson S with flavor-changing and flavor-

conserving neutral current interactions that couple both to quarks and leptons. The

bosons V and S can be of either parity. This situation is frequently realized, as in the

interactions of a heavy Z ′ boson or in multi-Higgs doublet models without natural

flavor conservation.

Spin-1 Boson V: Assuming that the spin-1 particle V has flavor-changing cou-

plings, the most general Lagrangian can be written as

HV = g′V 1ℓ
′
LγµℓLV

µ + g′V 2ℓ
′
RγµℓRV

µ + gV 1bLγµsLV
µ + gV 2bRγµsRV

µ + h.c. .(4.15)

Here Vµ is the vector field and the flavor of the lepton ℓ′ might or might not coincide

with ℓ. It is not important whether the field Vµ corresponds to an abelian or non-

abelian gauge symmetry group. Using methods similar to those in Ref. [102], we

obtain

∆M
(V)
Bs

=
f 2
Bs
MBs

3M2
V

Re
[
C1(µ)B1 + C6(µ)B6 −

5

4
C2(µ)B2 +

7

8
C3(µ)B3

]
,(4.16)
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where the superscript on ∆M
(V)
Bs

denotes propagation of a vector boson in the tree

amplitude. The Wilson coefficients evaluated at a scale µ are related to the couplings

gV 1 and gV 2 as

C1(µ) = r(µ,MV ) g
2
V 1 ,

C2(µ) = 2 r(µ,MV )
1/2gV 1gV 2 ,

C3(µ) =
4
3

[
r(µ,MV )

1/2 − r(µ,MV )
−4
]
gV 1gV 2 ,

C6(µ) = r(µ,MV ) g
2
V 2 ,

where (presuming that M > mt and µ ≥ mb),

r(µ,M) =

(
αs(M)

αs(mt)

)2/7(
αs(mt)

αs(µ)

)6/23

. (4.17)

Similar calculations can be performed for the B0
s → ℓ+ℓ− decay. The effective Hamil-

tonian in this case is

H(V)

b→qℓ+ℓ− =
1

M2
V

[
gV 1g

′
V 1Q̃1 + gV 1g

′
V 2Q̃7 + g′V 1gV 2Q̃2 + gV 2g

′
V 2Q̃6

]
, (4.18)

where the operators {Q̃i} can be read off from those in Ref. [102] with the label

changes c→ s and u→ b. This leads to the branching fraction,

B(V)

B0
s→ℓ+ℓ− =

f 2
Bs
m2
ℓMBs

32πM4
V ΓBs

√
1− 4m2

ℓ

M2
Bs

|gV 1 − gV 2|2|g′V 1 − g′V 2|2 . (4.19)

Clearly, Eqs. (4.16),(4.19) can be related to each other only for a specific set of NP

models.

Spin-0 Boson S: Analogous procedures can be followed if now the FCNC is gener-

ated by quarks interacting with spin-0 particles. Again, the most general Hamiltonian

can be written as

HS = g′S1ℓLℓRS + g′S2ℓRℓLS + gS1bLsRS + gS2bRsLS + h.c. . (4.20)
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Evaluation of ∆M
(S)
Bs

at scale µ = mb gives

∆M
(S)
Bs

=
5f 2

Bs
MBs

24M2
S

Re

[
7

5
C3(µ)B3 − (C4(µ)B4 + C7(µ)B7)

+
12

5
(C5(µ)B5 + C8(µ)B8)

]
(4.21)

with the Wilson coefficients defined as

C3(µ) = −2r(µ,MS)
−4 gS1gS2 ≡ C3(µ) gS1gS2

C4(µ) = −
[(

1

2
− 8√

241

)
r+(µ,MS) +

(
1

2
+

8√
241

)
r−(µ,MS)

]
g2S2 ≡ C4(µ) g

2
S2

C5(µ) =
1

8
√
241

[r+(µ,MS)− r−(µ,MS)] g
2
S2 ≡ C5(µ) g

2
S2 (4.22)

C7(µ) = −
[(

1

2
− 8√

241

)
r+(µ,MS) +

(
1

2
+

8√
241

)
r−(µ,MS)

]
g2S1 ≡ C7(µ) g

2
S1

C8(µ) =
1

8
√
241

[r+(µ,MS)− r−(µ,MS)] g
2
S1 ≡ C8(µ) g

2
S1 ,

where for notational simplicity we have defined r± ≡ r(1±
√
241)/6. Note that Eq. (4.21)

is true only for the real spin-0 field S. If S is a complex field, then only operator Q3

will contribute to Eq. (4.21).

The effective Hamiltonian for the B0
s → ℓ+ℓ− decay via a heavy scalar S with

FCNC interactions is then

H(S)

b→sℓ+ℓ− = − 1

M2
S

[
gS1g

′
S1Q̃9 + gS1g

′
S2Q̃8 + g′S1gS2Q̃3 + gS2g

′
S2Q̃4

]
, (4.23)

and from this, it follows that the branching fraction is

B(S)

B0
s→ℓ+ℓ− =

f 2
BM

5
Bs

128πm2
bM

4
SΓBs

√
1− 4m2

ℓ

M2
Bs

|gS1 − gS2|2

×
[
|g′S1 + g′S2|2

(
1− 4m2

ℓ

M2
Bs

)
+ |g′S1 − g′S2|2

]
. (4.24)
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Note that if the spin-0 particle S only has scalar FCNC couplings, i.e. gS1 = gS2, no

contribution to B0
s → ℓ+ℓ− branching ratio is generated at tree level; the non-zero

contribution to rare decays is instead produced at one-loop level. This follows from

the pseudoscalar nature of the Bs-meson.

Let us now consider specific models where the correlations between the Bs − Bs

mixing rates and (in particular) the Bs → µ+µ− rare decay can be found.

4.2.3 Z ′ Boson

Bs Mixing: The Bs mixing arising from the Z ′ pole diagram has the same form

as in D0 mixing [47],

∆M
(Z′)
Bs

=
MBsf

2
Bs
BBsr1(mb,MZ′)

3
·
g2
Z′sb̄

M2
Z′

, (4.25)

where r1(mb,MZ′) is a QCD factor which we take to be

r1(mb,MZ′) ≃ 0.79 . (4.26)

This is a compromise between r1(mb, 1 TeV) = 0.798 and r1(mb, 2 TeV) = 0.783.

Solving for the Z ′ parameters, we have

g2
Z′sb̄

M2
Z′

=
3|∆M (NP)

Bs
|

MBsf
2
Bs
BBsr1(mb,MZ′)

≤ 2.47× 10−11 GeV−2 (4.27)

upon using the constraint from Bs mixing.

Bs → µ+µ− Decay: This has already been calculated for D0 → µ+µ− decay in

Ref. [102]. Inserting obvious modifications for D0 → Bs, we have from the branching

fraction relation Eq. (39) of Ref. [102],

B(Z′)
Bs→µ+µ− =

GFf
2
Bs
m2
µMBs

16
√
2πΓBs

√
1−

4m2
µ

M2
Bs

g2
Z′sb̄

M2
Z′

· M
2
Z

M2
Z′

. (4.28)
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Upon inserting numbers, we obtain

B(Z′)
Bs→µ+µ− ≤ 0.25× 10−9 ·

(
1 TeV

MZ′

)2

. (4.29)

This value is already below the corresponding SM prediction (B(SM)

Bs→µ+µ− = 3.3×10−9)

even if we take a Z ′ mass as light as MZ′ ≃ 1 TeV.

4.2.4 R Parity Violating Supersymmetry

One of the models of New Physics that has a rich flavor phenomenology is R-parity

violating (RPV) SUSY. The crucial difference between studies of RPV SUSY contri-

butions to phenomenology of the up-quark (see [102]) and down-type quark sectors is

the possibility of tree-level diagrams contributing to Bs-mixing3 and Bs → ℓ+ℓ− de-

cays [71, 116, 117, 118] Like in studies of D0−D0 oscillations in the previous chapter,

we shall require baryon number symmetry by setting λ′′ to zero in the superpotential

(3.1.1) Also, we will assume CP-conservation, so all couplings λijk and λ
′
ijk are treated

as real.

B0
s−B0

s Mixing: Neglecting the baryon-number violating contribution, the Lagrangian

describing the RPV SUSY contribution to B0
s −B0

s mixing can be written as

L̸R = −λ′i23ν̃iLbRsL − λ′i32ν̃iLsRbL + h.c. , (4.30)

where i = 1, 2, 3 is a generational index for the sneutrino. Matching to Eq. (4.20)

implies that the only non-zero contribution comes from the operator Q3. Taking

into account renormalization group running, we obtain for ∆Ms from the R-parity

3We assume in this subsection that there is no strong hierarchy between the RPV SUSY couplings
that favors possible box diagrams.
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violating terms,

∆M
(̸R)
Bs

=
5

24
f 2
Bs
MBsF (C3, B3)

∑
i

λ′i23λ
′∗
i32

M2
ν̃i

, (4.31)

where Mν̃i denotes the mass of the sneutrino of ith generation and the function

F (C3, B3) =
7

5
C3(µ,Mν̃i)B3, (4.32)

is defined in terms of reduced Wilson coefficient of Eq. (4.22) and the B-factor is

defined in Table B.1 of the Appendix B.

Bs → µ+µ− Decay: In RPV-SUSY, the underlying transition for Bs → µ+µ− is s +

b̄→ µ++µ− via tree-level u-squark or sneutrino exchange. In order to relate the rare

decay to the mass difference contribution from RPV SUSY ∆M
(̸R)
Bs

, we need to assume

that the up-squark contribution is negligible. This can be achieved in models where

sneutrinos are much lighter than the up-type squarks, which are phenomenologically

viable. Employing this assumption leads to the predicted branching fraction

B( ̸R)

Bs→µ+µ− =
f 2
Bs
M3

Bs

64 π ΓBs

(
MBs

mb

)2(
1−

2m2
µ

M2
Bs

) √
1−

4m2
µ

M2
Bs

×

∣∣∣∣∣∑
i

λ∗i22λ
′
i32

M2
ν̃i

∣∣∣∣∣
2

+

∣∣∣∣∣∑
i

λi22λ
′∗
i23

M2
ν̃i

∣∣∣∣∣
2
 . (4.33)

In order to relate Bs → µ+µ− to ∆Ms in the framework of RPV SUSY, we need

to make additional assumptions. In particular, we shall assume that the sum is

dominated by a single sneutrino state, which we shall denote by ν̃k. In addition, we

will assume that λ′k23 = λ′k32, which will reduce the number of unknown parameters.

This assumption is not needed, however, if one wishes to set a bound on a combination

of coupling constants directly from the experimental bound on BBs→µ+µ− . Then,
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Figure 4.2: BB0
s→µ+µ− as a function of λk22.

neglecting CP-violation,

B( ̸R)

Bs→µ+µ− = k
f 2
Bs
M3

Bs

64π ΓBs

(
λi22λ

′
i32

M2
ν̃i

)2(
MBs

mb

)2(
1−

2m2
µ

M2
Bs

) √
1−

4m2
µ

M2
Bs

, (4.34)

where k = 2 if an assumption that λ′k23 = λ′k32 is made, and k = 1 otherwise.

Since no Bs → µ+µ− signal has yet been seen, we can use the experimental bound

to obtain an updated constraint on the RPV couplings,

λk22λ
′
k32 ≤ 5.5× 10−6

(
Mν̃k

100 GeV

)2

. (4.35)

Now, assuming λ′k23 = λ′k32, one can relate the branching ratio BBs→µ+µ− to x
(̸R)
Bs

,

B(̸R)

Bs→µ+µ− =
3

20π

M2
Bs

F (C3, B3)

(
MBs

mb

)2(
1−

2m2
µ

M2
Bs

)√
1−

4m2
µ

M2
Bs

x
(̸R)
Bs

λ2k22
M2

ν̃i

. (4.36)

It is possible to plot the dependence of BBs→µ+µ− on λk22 for different values of Mν̃i ,

which we present in Fig. 4.2 for Mν̃i = 100 GeV, 150 GeV and 200 GeV.
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4.2.5 Family (Horizontal) Symmetries

The gauge sector in the Standard Model has a large global symmetry which is

broken by the Higgs interaction [119]. By enlarging the Higgs sector, some subgroup

of this symmetry can be imposed on the full SM Lagrangian and the symmetry

can be broken spontaneously. This family symmetry can be global [14] as well as

gauged [15]. If the new gauge couplings are very weak or the gauge boson masses

are large, the difference between a gauged or global symmetry is rather difficult to

distinguish in practice [120]. In general there would be FCNC effects from both the

gauge and scalar sectors. Here we study the gauge contribution. Consider the family

gauge symmetry group SU(3)G acting on the three left-handed families. Spontaneous

symmetry breaking renders all the gauge bosons massive. If the SU(3) symmetry is

broken first to SU(2) before being completely broken, we may have an effective ‘low’

energy symmetry SU(2)G. This means that the gauge bosonsG ≡ {Gi} (i = 1, . . . , 3)

are much lighter than the {Gk} (k = 4, . . . , 8). For simplicity we assume that after

symmetry breaking the gauge boson mass matrix is diagonal to a good approximation.

If so, the light gauge bosons G are mass eigenstates with negligible mixing.

The LH doublets

u0

d0


L

,

 c0

s0


L

,

 t0

b0


L

, (4.37)

transform as IG = 1/2 under SU(2)G, as do the lepton doublets

 ν0e

e0


L

,

 ν0µ

µ0


L

 ν0τ

τ 0


L

. (4.38)

and the right-handed fermions are singlets under SU(2)G. In the above, the super-
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script ‘o′ refers to the fact that these are weak eigenstates and not mass eigenstates.

The couplings of fermions to the light family gauge bosons G is given by

L = f
[
ψ̄d0,Lγµτ ·Gµψd0,L + ψ̄u0,Lγµτ ·Gµψu0,L + ψ̄ℓ0,Lγµτ ·Gµψℓ0,L

]
, (4.39)

where f denotes the coupling strength and τ are the generators of SU(2)G

The fermion mass eigenstates are given by, first for quarks,


d

s

b


L

= Ud


d0

s0

b0


L

and


u

c

t


L

= Uu


u0

c0

t0


L

(4.40)

and then for leptons,


e

µ

τ


L

= Uℓ


u0

µ0

τ 0


L

and


ν1

ν2

ν3


L

= Uν


ν0e

ν0µ

ν0τ


L

. (4.41)

The four matrices Ud, Uu, Uℓ and Uν are unknown, except for

UuU
†
d = VCKM and U †

νUℓ = VMNSP . (4.42)

where VMNSP is the Maki-Nakagawa-Sakata-Pontcorvo lepton mixing matrix. The
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couplings of the gauge bosons relevant for the Bs system in the mass basis are:

L = f

[
Gµ

1 .

(
Ub1U

∗
s2b̄LγµsL + Us1U

∗
b2s̄LγµbL

+Ub2U
∗
s1b̄LγµsL + Us2U

∗
b1s̄LγµbL

)
+iGµ

2

(
−Ub1U∗

s2b̄LγµsL − Us1U
∗
b2s̄LγµbL

+ Ub2U
∗
s1b̄LγµsL + Us2 U

∗
b1s̄LγµbL

)
+Gµ

3

(
Ub1U

∗
s1b̄LγµsL + Us1U

∗
b1s̄LγµbL

− Ub2U
∗
s2b̄Lγµs̄L − Us2U

∗
b2s̄L γµ bL

)]
(4.43)

The contribution to B0
s − B̄0

s mixing is given by

∆M
(FS)
Bs

=
2MBsf

2
Bs
BBsr(mBs,M)

3
f 2

[
A

m2
1

+
C

m2
3

+
B

m2
2

]
(4.44)

where

A = Re
[
(Ub1 U

∗
s2 + Ub2 U

∗
s1)

2]
B = −Re

[
(Ub1 U

∗
s2 − Ub2 U

∗
s1)

2]
C = Re

[
(Ub1U

∗
s1 − Ub2U

∗
s2)

2]
(4.45)

In a simple scheme of symmetry breaking [121], one obtains m1 = m3 and the

square bracket in Eq. (4.44) becomes

[
A+ C

m2
1

+
B

m2
2

]
. (4.46)

Although the matrices Ui (i = d, u, ℓ) in principle are unknown, it has been argued

that a reasonable ansatz [122], which is incorporated in many models is Uu = I, U †
d =
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VCKM. In this case4 one can simplify A,B and C further:

A,B ≪ C ≃ 1.6× 10−3 . (4.47)

Thus the Bs mixing becomes

∆M
(FS)
Bs

≃
2MBS

f 2
Bs
BBsr(mb,M)

3

f 2

m2
1

1.6× 10−3 , (4.48)

so that, substituting the experimental bound ∆M
(FS)
Bs

= ∆M
(NP)
Bs

,

f 2

m2
1

≤
3|∆M (NP)

Bs
|

2MBS
f 2
Bs
BBsr(mb,M)1.6× 10−3

. (4.49)

The same above ansatz also implies that U †
ℓ = UMNSP and Uν = 1. Then the coupling

of the gauge bosons to muon pairs is given by

LGµ+µ− = f

[ (
U∗
µ1Uµ2 + Uµ1 U

∗
µ2

)
Gλ

1

+ i
(
−Uµ1 U∗

µ2 + U∗
µ1Uµ2

)
Gλ

2 +
(
Uµ1 U

∗
µ1 − Uµ2 U

∗
µ2

)
Gλ

3

]
µ̄LγλµL . (4.50)

The branching ratio for Bs → µ+µ− is given by

BBs→µ+µ− =
MBS

f 2
Bs
m2
µ

32πΓBs

f 4

∣∣∣∣(Ub1U∗
s2 + Ub2U

∗
s1)
(
Uµ1U

∗
µ2 + U∗

µ1 Uµ2
)

m2
1

−
(Ub1U

∗
s2 − Ub2U

∗
s1)
(
Uµ1U

∗
µ2 − Uµ2U

∗
µ1

)
m2

2

+
(Ub1U

∗
s1 − Ub2U

∗
s2)
(
Uµ1U

∗
µ1 − Uµ2U

∗
µ2

)
m2

3

∣∣∣∣2 (4.51)

Next we employ the approximation (well-supported empirically) that UMNSP ≃ UTBM,

4Here, we use values listed in Ref. [24].
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where UTBM is the tri-bi-maximal matrix [41]. Then Eq. (4.50) becomes

LGµ+µ− = −f

[√
2

3
Gµ

1 +
1

6
Gµ

3

]
µ̄LγµµL . (4.52)

With this, the contribution to the branching ratio for Bs → µ+µ− becomes

BBs→µ+µ− =
MBsf

2
Bs
m2
µf

4

32πΓBs

[√
2

3

(
1.1× 10−2

)
+

1

6
× 0.04

]2
1

m4
1

≃
MBsf

2
Bs
m2
µf

4

32πΓBs

1.4× 10−4

m4
1

. (4.53)

The dependence on unknown factors in Eq. (4.53) (i.e. (f/m1)
4) can be entirely

removed by using the bound in Eq. (4.49) to yield

B(FS)

Bs→µ+µ− ≤
3.85m2

µ

πMBS
f 2
Bs
ΓBsB

2
Bs
r2(mb,m1)

|∆M (NP)
Bs

|2 . (4.54)

From the bounds of Eqs. (4.12),(4.13), we obtain

B(FS)

Bs→µ+µ− ≤ 0.5× 10−12 . (4.55)

4.2.6 FCNC Higgs interactions

Many extensions of the Standard Model contain multiple scalar doublets, which

increases the possibility of FCNC mediated by flavor non-diagonal interactions of neu-

tral components. While many ideas exist on how to suppress those interactions (see,

e.g. [124, 125, 126]), the ultimate test of those ideas would involve direct observation

of scalar-mediated FCNC.

Consider a generic Yukawa interaction consisting of a set of N Higgs doublets Hn

(n = 2, .., N) with SM fermions,

HY = λUijnQLiURjH̃n + λDijnQLiDRjHn + λEijnLLiERjHn + h.c. , (4.56)
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where H̃n = iσ2H
∗
n and QLi (LLi) are respectively the left-handed weak doublets of

an ith-generation of quarks (leptons). Restricting the discussion to Bs Mixing and

Bs → µ+µ− decay, we find that Eq. (4.56) reduces to

HH
Y = λD23nsLbRΦ

0
n + λD32nbLsRΦ

0
n + λE22nµLµRΦ

0
n + h.c., (4.57)

where Φ0
n ≡ (ϕ0

n + ia0n) /
√
2. Bringing this to the form of Eq. (4.20) and confining the

discussion only to the contribution of the lightest ϕ0
n and a0n states, we obtain

HH
Y =

λD†
23√
2
bRsLϕ

0 +
λD32√
2
bLsRϕ

0 +
λE22√
2
µLµRϕ

0

− i
λD†
23√
2
bRsLa

0 + i
λD32√
2
bLsRa

0 + i
λE22√
2
µLµRa

0 + ... + h.c. , (4.58)

where ellipses stand for the terms containing heavier ϕ0
n and a0n states whose contri-

butions to ∆MBs and BBs→µ+µ− will be suppressed.

If the matrix of coupling constants in Eq. (4.58) is Hermitian, e.g. λD†
23 = λD32,

then we can identify the couplings of Eq. (4.20) as

gS1 = gS2 =
λD32√
2
, g′S1

= g′S2
=
λE22√
2

(4.59)

for scalar interactions and

gS1 = −gS2 =
iλD32√
2
, g′S1

= −g′S2
=
iλE22√
2

(4.60)

for pseudoscalar interactions.

To proceed, we need to separate two cases: (i) the lightest FCNC Higgs particle

is a scalar, and (ii) the lightest FCNC Higgs particle is pseudoscalar.
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Light scalar FCNC Higgs

The case of relatively light scalar Higgs state is quite common, arising most often in

Type-III two-Higgs doublet models (models without natural flavor conservation) [127,

128, 130].

B0
s -B̄

0
s Mixing: Given the general formulas of Eq. (4.21), it is easy to compute the

contribution to ∆M
(ϕ)
Bs

of an intermediate scalar (ϕ) with FCNC couplings,

∆M
(ϕ)
Bs

=
5f 2

Bs
MBsfϕ(Ci,mb)

48

(
λD32
Mϕ

)2

, (4.61)

fϕ(C i,mb) ≡
7

5
C3(mb)B3 −

(
C4(mb)B4 + C7(mb)B7

)
+

12

5

(
C5(mb)B5 + C8(mb)B8

)
,

with ’reduced’ Wilson coefficients {Ci(µ)} given in Eq. (4.22).

B0
s → µ+µ− Decay: Comparing Eq. (4.59) to Eq. (4.24), we can easily see that the

branching fraction for the rare decay B0
s → ℓ+ℓ− is zero for the intermediate scalar

Higgs,

B(ϕ)

B0
s→ℓ+ℓ− = 0 . (4.62)

This is consistent with what was already discussed in Sec. 4.2.2 and implies that the

FCNC Higgs model does not produce a contribution to B0
s → µ+µ− at tree level. The

non-zero contribution to B0
s → µ+µ− decay is produced at one-loop level [129].

Light pseudoscalar FCNC Higgs

The case of a lightest pseudoscalar Higgs state can occur in the non-minimal su-

persymmetric standard model (NMSSM) [131, 132, 134, 135], or related models [133].

In the NMSSM, a complex singlet Higgs is introduced to dynamically solve the µ

problem. The resulting pseudoscalar can be as light as tens of GeV. This does not

mean, however, that it necessarily gives the dominant contribution to both B0
s − B

0

s

mixing and the B0
s → µ+µ− decay rate since there can be loop contributions from
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other Higgs states. In the following, we shall work in the region of the parameter

space where it does.

B0
s -B̄

0
s Mixing: The contribution to ∆M

(a)
Bs

due to intermediate pseudoscalar with

flavor-changing couplings can be computed using the general formula in Eq. (4.21)

along with the identification given in Eq. (4.60),

∆M
(a)
Bs

=
5f 2

Bs
MBsfa(Ci,mb)

48

(
λD32
Ma

)2

, (4.63)

fa(Ci,mb) =

[
7

5
C3(mb)B3 +

(
C4(mb)B4 + C7(mb)B7

)
− 12

5

(
C5(mb)B5 + C8(mb)B8

)]

with ‘reduced’ Wilson coefficients Ci(µ) again being defined in Eq. (4.22).

B0
s → µ+µ− Decay: The branching ratio for rare decay can be computed with the

help of the general formula of Eq. (4.24),

B(a)

B0
s→ℓ+ℓ− =

1

32π

f 2
BM

5
Bs

m2
bΓBs

(
1− 4m2

ℓ

M2
Bs

)1/2(
λD32 λ

E
22

M2
a

)2

. (4.64)

We can now eliminate one of the three unknown parameters (λD32, λ
E
22, andMa) which

appear in Eqs.(4.63) and (4.64). We choose to eliminate λD32, so

B(a)

B0
s→ℓ+ℓ− =

3

10π
·

M4
Bs
x
(a)
s

m2
bfa(C i,mb)

(
1− 4m2

ℓ

M2
Bs

)1/2(
λE22
Ma

)2

, (4.65)

where x
(a)
s = ∆M

(a)
Bs
/ΓBs . As one can see, the unknown factors enter Eq. (4.65) in

the combination λE22/Ma. It is, however, more convenient to plot the dependence on

Ma for different values of λE22, which we present in Fig. 4.3 for λE22 = 1, 0.5, 0.1 (left)

and λE22 = 0.1, 0.05, 0.01 (right).

It must be emphasized that the discussion above assumed the absence of large de-

structive interference of the NP and SM contributions to B0
s − B0

s mixing. Concrete

models where such interference is present (and thus the New Physics contribution is
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Figure 4.3: BB0
s→µ+µ− as a function of Ma.

larger than the SM one) can be constructed [136]. In such models possible contribu-

tion to Bs → µ+µ− could be large.

4.2.7 Fourth generation models

One of the simplest extensions of the Standard Model involves addition of the

sequential fourth generation of chiral quarks [16, 17, 18], denoted for the lack of the

better names by t′ and b′. The addition of the sequential fourth generation of quarks

leads to a 4×4 CKM quark mixing matrix [137]. This implies that the parametrization

of this matrix requires six real parameters and three phases. Besides providing new

sources of CP-violation, the two additional phases can affect the branching ratios

considered in this chapter due to interference effects [138].

There are many existing constraints on the parameters related to the fourth gen-

eration of quarks. In particular, a fit of precision electroweak data (S and T parame-

ters) [139, 140, 141] implies that the masses of the new quarks are strongly constrained

to be [142]

mt′ −mb′ ≃
(
1 +

1

5

mH

(115 GeV)

)
× 50 GeV, (4.66)

with mt′ > 400 GeV. Here mH is the SM Higgs mass, which we take for simplicity to
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be 120 GeV. We also used updated constraints on CKM matrix elements [143].

The relationship between ∆MBs and BBs→µ+µ− in the model with four generations

of quarks has been previously studied in detail in [144]. Here we update their result.

The branching ratio of Bs → µ+µ− can be related to the experimentally-measured5

xBs as [144]

BBs→µ+µ− =
3α2m2

µxBs

8πB̂BsM
2
W

√
1−

4m2
µ

m2
Bs

|Ctot
10 |

2

|∆′|
, (4.67)

where the parameter ∆′ is a Bs-mixing loop parameter [144],

∆′ = ηtS0(xt) + ηt′R
2
t′tS0(xt′) + 2ηt′Rt′tS0(xt, xt′), (4.68)

and Rt′t = Vt′sV
∗
t′b/VtsV

∗
tb. B̂Bs can be obtained from Table 4.1. The definition of the

function S0(xt, xt′) can be found in Ref. [144]. The Wilson coefficient Ctot
10 is defined

as

Ctot
10 (µ) = C10(µ) +Rt′tC

t′

10(µ) (4.69)

with Ct′
10 obtained by substituting mt′ into the SM expression for C10 [145]. The

results can be found in Fig. 4.4, where we plot the branching ratio of BB0
s→µ+µ− as a

function of the top-prime mass mt′ for different values of the phase ϕt′s = 0, π/2, π

(solid, dashed, dash-dotted lines) and λt
′

bs = |Vt′sV ∗
t′b| ≃ 10−4 [143], [146], and as a

function of the CKM parameter combination λt
′

bs with ϕt′s = 0 and different values of

mt′ = 400 GeV (solid), 500 GeV (dashed), and 600 GeV (dash-dotted). As one can

see, the resulting branching ratios are still lower than the current experimental bound

of Eq. (4.6), but for the values of the four-generation CKM matrix λt
′

bs = |Vt′sV ∗
t′b| of

about 0.01, disfavored by [143], but still favored by [146], can be quite close to it.

5Here we use ∆MBs from Table 4.1, as the separation of NP and SM contributions used in the
rest of this chapter, xBs = xSM3 + xSM4, is not possible due to loops with both t′ and t, c, or u
quarks.
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Chapter 5 The Flavor Puzzle in Multi-Higgs Models

So far we were examining the New Physics impact on the charm and bottom

flavor oscillations and decays and possibility of detecting a New Physics signal in

these processes. As discussed previously, study of quark and lepton flavors within

the Standard Model extension also enables one to resolve some of the particle physics

puzzles that the Standard Model is unable to explain. As it was mentioned above, one

of these puzzles is the existing pattern of the quark and lepton masses. The Standard

Model provides a way to generate masses of quarks and leptons, however it does not

explain the apparent hierarchal structure of flavor parameters such as fermion masses

and mixing parameters [147]. The ratios of the quark and lepton masses are known

experimentally, for the central values [148],

mt

mc

≃ 267 ,
mc

mu

≃ 431 ,

mb

ms

≃ 47.5 ,
ms

md

≃ 21 , (5.1)

mτ

mµ

≃ 17 ,
mµ

me

≃ 207 .

Here we use the four loop MS masses evaluated at µ = mt for the quark masses as

defined in [149]. In addition, the Cabibbo-Kobayashi-Maskawa (CKM) quark matrix

elements have a clear hierarchal structure, as the elements further away from the

main diagonal tend to get smaller and smaller, e.g., Vud ∼ 1, Vus ∼ 0.2, Vcb ∼ 0.04,

and Vub ∼ 0.004. To add to the puzzle, the neutrino mixing matrix has a completely
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different structure. In comparison, gauge couplings do not exhibit such an apparent

hierarchy.

All quark and lepton masses are generated in the SM via Higgs Yukawa interac-

tions. For a single fermion field ψ interacting with a single scalar field ϕ,

L1 = −yψψ̄LψRϕ+ h.c.→ −yψv√
2

(
ψ̄LψR + ψ̄RψL

)
, (5.2)

the mass mψ = yψv/
√
2 is set by the value of the Yukawa coupling, yψ, if the scalar

vacuum expectation value (vev) v = ⟨ϕ⟩ is fixed. This is so in the SM, where the Higgs

vev v = 246 GeV is fixed by the electroweak measurements, leaving a strong hierarchy

in the dimensionless Yukawa coupling sector for different quarks and leptons,

yu ∼ 10−5, yc ∼ 10−2, yt ∼ 1,

yd ∼ 10−5, ys ∼ 10−3, yb ∼ 10−2, (5.3)

ye ∼ 10−6, yµ ∼ 10−3, yτ ∼ 10−2.

The reason for this hierarchy is the essence of the SM flavor problem.

One can observe that since the value of the fermion mass is given by the product

of the Higgs vev and the Yukawa coupling, the problem of the strong hierarchy of

Yukawa couplings can be made less prominent in models with several scalar fields.

For example, a hierarchy of masses of two fermions, ψ and χ, can be arranged by

tuning both the ratio of vev’s of the scalar fields and Yukawas. Limiting the scalar

sector to two scalar fields, this can be done in several ways. For example, each scalar

can interact only with one fermion at a time,

L2 = −yψψ̄LψRϕ1 − yχχ̄LχRϕ2 + h.c. (5.4)

In this case, mψ = yψv1/
√
2 and mχ = yχv2/

√
2, where ⟨ϕ1⟩ = v1 and ⟨ϕ2⟩ = v2. Here
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the mass hierarchy

mχ

mψ

=
yχ
yψ

v2
v1

=
yχ
yψ

tan β ≫ 1 , (5.5)

can be arranged if either yχ/yψ ≫ 1 or tan β ≡ v2/v1 ≫ 1 or both. Alternatively, one

scalar can couple to both fermions, while the other to only one,

L′
2 = −yψψ̄LψRϕ1 − yχχ̄LχRϕ1 − y′χχ̄LχRϕ2 + h.c., (5.6)

in which case the fermion masses are given by

mψ = yψv1/
√
2, mχ = yχv1/

√
2

(
1 +

y′χ
yχ

tan β

)
, and

mχ

mψ

=
yχ
yψ

(
1 +

y′χ
yχ

tan β

)
. (5.7)

Clearly, both (5.5) and (5.7) can ameliorate the fermion mass hierarchy problem by

tuning additional parameters, such as tan β. Models along the lines of (5.4) and

(5.6) have been considered in [150, 151]. However, the situation is somewhat more

complicated than what one would naively expect from this simplified picture. In

general, these models are actually the same up to field redefinitions to a model with

a single Higgs field getting a vacuum expectation value (vev) [152, 153]. Therefore,

if one wishes to build a model with the flavor structure leading to (5.5) or (5.7), one

must supplement the above Lagrangians with additional conditions that fix which

combination of Higgs fields generate a vacuum expectation value (vev). Only after

this additional constraint is specified do parameters such as tan β take on a physical

meaning. In models such as the minimal supersymmetric standard model (MSSM)

[11] supersymmetry is sufficient to fix a basis for the Higgs fields; in general, however,

this is an added requirement. In this work, we find suitable conditions by imposing

constraints on the Yukawa matrices. This fixes a special “Higgs basis” [154, 155]

which can be used to define tan β.
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Another complication of the SM over the above models comes from the flavor

structure: while the couplings of Higgs fields to fermions are defined in the gauge

basis, the mass parameters are measured in the mass basis. In this chapter we analyze

models with an extended Higgs sector that can be built to naturally generate the mass

hierarchy. We find basis-independent conditions on the Yukawa matrices that ensure

the hierarchy remains after rotations of fermion basis.

We consider a class of models with two Higgs doublets,

Φi =

ϕ+
i

ϕ0
i

 i = 1, 2 . (5.8)

each of which can couple to both up-type and down-type quarks and leptons. These

models are sometimes referred to as Type-III two-Higgs doublet models [125, 128,

156]. The vacuum expectation values of the Higgs states can be defined as

⟨Φ1⟩ =
1√
2

 0

v1

 , ⟨Φ2⟩ =
1√
2

 0

v2

 . (5.9)

We assume that v1,2 > 0 and real. These Higgs fields then have couplings to the SM

fermions

− LY =
∑
i=1,2

(
Q̄L[Y

(i)
u ]uRΦ̃i + Q̄L[Y

(i)
d ]dRΦi + L̄L[Y

(i)
ℓ ]ℓRΦi

)
+ h.c. . (5.10)

where Φ̃i = iσ2Φ
⋆
i and Y

(1,2)
u,d,ℓ are complex generally non-Hermitian Yukawa matrices.

This chapter is organized as follows. We consider two toy versions of the Standard

Model with two generations in Section 5.1: first to generate the hierarchy between the

first and second generation, and then the first and third generation. We then consider

the realistic scenario of all three generations in Section 5.2. Some phenomenological
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implications are discussed in Section 5.3. Finally, we discuss our results in Sec-

tion 5.4. The Higgs sector of the Type-III two-Higgs doublet model is reviewed in

Appendix C.1. Finally, several formulae are collected in Appendix C.2 and C.3 for

future reference. The results presented in this Chapter are published in [130].

5.1 Quark mass hierarchy: two generation case

5.1.1 tan β hierarchy in the 1–2 generation

We start the quark mass hierarchy analysis by considering a toy model with two

quark generations: u

d

 ,

 c

s

 .

In the most general case the Lagrangian mass terms in (5.10) may be written (in the

weak isospin basis) as

(q̄1L , q̄2L)
[
Y (1) + Y (2) tan β

] q1R

q2R

 v cos β + h.c. , (5.1.1)

where q1 = u, d; q2 = c, s; tan β = v2/v1; and we assume throughout this chapter

that tan β ≫ 1. Y (1) and Y (2) are 2 × 2 complex non-Hermitian Yukawa matrices

of the quark interactions with the Higgs doublets Φ1 and Φ2 respectively. It is also

convenient to define the total Yukawa matrix,

Y = Y (1) + Y (2) tan β , (5.1.2)
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which is diagonalized by the rotation

VLY V
†
R =

 y1 0

0 y2

 , (5.1.3)

with the quark masses related to the eigenvalues as

mq1,2 = |y1,2|v cos β , (5.1.4)

and1 VuLV
†
dL

= VCKM . Our aim is to find some U(2) invariant conditions on the

Yukawa matrices that assure having a hierarchy in the eigenvalues y1 and y2 and

hence in the quark masses.

For 2 × 2 matrices the U(2) invariants are related to traces and determinants of

those matrices. Rigorously speaking, only the traces and determinants of Hermitian

matrices are invariant under U(2) rotations: for instance, the traces and determinants

of Y Y † and Y †Y . Note that

VLY Y
†V †

L =

 |y1|2 0

0 |y2|2

 , (5.1.5)

VRY
†Y V †

R =

 |y1|2 0

0 |y2|2

 . (5.1.6)

Yet, dealing with the products Y Y † and Y †Y would make our analysis too in-

volved. For the two generation case, it is more instructive to generate the quark mass

hierarchy, studying the matrices Y , Y (1), Y (2) by themselves. We will however discuss

briefly what the conditions imposed on Y , Y (1) and/or Y (2) invariants imply on Y Y †

1In the two generation case, this matrix is just the Cabibbo matrix, but the generalization to
CKM is clear.
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and its components. This is going to be useful for the realistic scenario with three

quark (or lepton) generations.

As the matrices Y , Y (1) and Y (2) are non-Hermitian, one must be careful when

dealing with the traces and determinants. Notice first that the traces of Y , Y (1) and

Y (2) are not invariant under U(2) rotations. For instance, the diagonal elements of Y

in the weak isospin basis are related to that in the quark mass basis by (no sum over

i)

Y m
ii = VLij

YjkV
⋆
Rik

. (5.1.7)

So Tr Y m ̸= Tr Y as
∑

i V
⋆
Rik
VLij

̸= δkj.

On the other hand, for the determinants we have

detY m = ei(ΦL−ΦR) detY , (5.1.8)

detY (1)m = ei(ΦL−ΦR) detY (1) ,

detY (2)m = ei(ΦL−ΦR) detY (2) ,

where eiΦL = detVL and eiΦR = detVR. In other words, the determinants of Y , Y (1)

and Y (2) are only multiplied by some phase factor under U(2) rotations. Thus the

absolute values of the determinants are rotational invariants. This allows one to use

Y , Y (1) and Y (2) determinants to impose some U(2) rotational invariant conditions

on the Yukawa matrices and generate the desired quark mass hierarchy.

Here we impose the condition2

detY (2) = 0 . (5.1.9)

Certainly, this condition is invariant under U(2) rotations. By imposing this condi-

tion, one generates the hierarchy y2 ∼ y1 tan β. To see this, consider the eigenvalue

2Up to this point, tanβ is not a physical parameter (see the discussion in Appendix C.1, but
once we impose this constraint on the Yukawa matrices, this ambiguity is lost.
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equation for the total matrix in Equation (5.1.2)

y2 − (Tr Y ) y + detY = 0 . (5.1.10)

Generally speaking, Tr Y , detY and hence y1, y2 are complex. Yet, in the quark

mass basis one redefines quark phases so that y1 > 0 and y2 > 0 with both real. As

q2 corresponds to heavier quark states c and s, we will choose y2 > y1.

As

y1 + y2 = Tr Y = Tr [Y (1) + Y (2) tan β] ∼ O(Y (2) tan β) , (5.1.11)

one infers that

y2 ∼ O(Y (2) tan β) . (5.1.12)

On the other hand

y1y2 = detY = detY (1) + εijεkl

(
Y

(1)
ik Y

(2)
jl + Y

(2)
ik Y

(1)
jl

)
tan β

+detY (2) tan2 β (5.1.13)

Condition (5.1.9) on the Y (2) determinant assures that O(tan2 β) terms on the r.h.s.

of (5.1.13) vanish. Thus,

y1y2 ∼ O(Y (1)Y (2) tan β) . (5.1.14)

Hence, combining (5.1.12) and (5.1.14) one gets

y1 ∼ O(Y (1)) , (5.1.15)

where O(Y (1)) denotes the order of the Y (1) matrix elements – during our analysis we

assume that this matrix elements are of the same order (at least the diagonal ones).
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Thus, as it follows from (5.1.12) and (5.1.15),

y2 ∼ y1 tan β , (5.1.16)

provided that there is no hierarchy in the elements of the matrices Y (1) and Y (2).

The exact solutions of the eigenvalue equation (5.1.10) may be written as

y1,2 =
1

2

{
Y

(1)
11 + Y

(1)
22 +

(
Y

(2)
11 + Y

(2)
22

)
tan β

∓

[(
Y

(1)
11 + Y

(1)
22 +

(
Y

(2)
11 + Y

(2)
22

)
tan β

)2
− 4

(
Y

(1)
11 Y

(1)
22 − Y

(1)
12 Y

(1)
21

)

−4
(
Y

(1)
11 Y

(2)
22 + Y

(2)
11 Y

(1)
22 − Y

(1)
12 Y

(2)
21 − Y

(2)
12 Y

(1)
21

)
tan β

]1/2}
. (5.1.17)

Expanding (5.1.17) in terms of 1/ tan β power series, one gets

y1 ≈ Y
(1)
11 Y

(2)
22 + Y

(2)
11 Y

(1)
22 − Y

(1)
12 Y

(2)
21 − Y

(2)
12 Y

(1)
21

Y
(2)
11 + Y

(2)
22

, (5.1.18)

y2 ≈
(
Y

(2)
11 + Y

(2)
22

)
tan β + Y

(1)
11 + Y

(1)
22

− Y
(1)
11 Y

(2)
22 + Y

(2)
11 Y

(1)
22 − Y

(1)
12 Y

(2)
21 − Y

(2)
12 Y

(1)
21

Y
(2)
11 + Y

(2)
22

. (5.1.19)

The O(tan β) hierarchy in the values of y1 and y2 is apparent. Also, in terms of the

mass ratios one gets

mq2

mq1

≈

∣∣∣Y (2)
11 + Y

(2)
22

∣∣∣2 tan β
|Y (1)

11 Y
(2)
22 + Y

(2)
11 Y

(1)
22 − Y

(1)
12 Y

(2)
21 − Y

(2)
12 Y

(1)
21 |

. (5.1.20)

Note that O(tan β) hierarchy alone is insufficient to reproduce quark mass ratios

for both types of quarks (as well as charged leptons). Recall that for the central
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values of the fermion masses one has

ms(mt)

md(mt)
≃ 21,

mc(mt)

mu(mt)
≃ 431,

mµ

me

≃ 207 .

Choosing e.g. tan β = 20, one can reproduce the strange to down quark mass ratio.

Yet, to reproduce the other ratios, an additional reduction of the denominator in

(5.1.20) is necessary, by imposing some conditions on the relevant Yukawa couplings.

The simplest way to do it is to assume that (Y
(1)
u )ij ∼ 0.05Tr Y

(2)
u and (Y

(1)
ℓ )ij ∼

0.1Tr Y
(2)
ℓ . There is nothing technically unnatural in imposing such conditions, and

this small tuning is drastically reduced from the usual SM Yukawas. Moreover, as

it follows from our analysis, we have an expansion in terms of Y (1)

Y (2) tanβ
rather than

of 1/ tan β. In what follows, these assumptions on the up-quark and charged lepton

Yukawa matrices do not spoil our derivations.

Thus, imposing the rotationally invariant condition (5.1.9) on the Y (2) determi-

nant, one is able to reproduce the first and second generation quark and lepton mass

ratios, without assuming a large family hierarchy in the couplings with the Higgs

doublets.

To see what the imposed condition on the Y (2) determinant implies on the quark

interactions with the Higgs doublets, note that in addition to the mass and weak

isospin bases, two additional quark bases exist that are relevant:

• basis (a) where the matrix Y (1) is diagonal; this basis is related to the weak

isospin basis as

 q
(a)
1

q
(a)
2


L,R

= V
(a)
L,R

 q1

q2


L,R

V
(a)
L Y (1)V

(a)†
R ≡ Y (1)a =

 y
(1)
1 0

0 y
(1)
2

 (5.1.21)

• basis (b) where the matrix Y (2) is diagonal; this basis is related to the weak
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isospin basis as

 q
(b)
1

q
(b)
2


L,R

= V
(b)
L,R

 q1

q2


L,R

V
(b)
L Y (2)V

(b)†
R ≡ Y (2)b =

 y
(2)
1 0

0 y
(2)
2

 (5.1.22)

As the condition is imposed on Y (2) determinant, it is natural to consider the

quark interactions with the Higgs doublets in basis (b). In that basis, condition (5.1.9)

implies

Y (2)b =

 0 0

0 y
(2)
2

 or Y b =

Y
(1)b
11 Y

(1)b
12

Y
(1)b
21 Y

(1)b
22 + y

(2)
2 tan β

 . (5.1.23)

In other words, in basis (b) the second Higgs doublet interacts with the second gen-

eration quarks only. The first generation quarks interact with each other and with

the second generation quarks solely due to exchange of Φ1. This interaction scheme

is depicted below.

u(b)

d(b)


 c(b)

s(b)


↑ ↗ ↑
Φ1 Φ2

This scheme is very similar in spirit to “texture” models in [157, 158, 159]. The

big difference between these models and ours is that they assume this structure in the

gauge basis, whereas we impose the basis independent condition (5.1.9) and derive

this scenario. However, as we see below, basis (b) is generally distinct from the gauge

basis, and this will have important consequences in what follows.
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It is also worth mentioning that in terms of the Yukawa matrix elements in ba-

sis (b), the formula for the quark mass ratios looks like

mq2

mq1

≈ |Y (2)b
22 | tan β
|Y (1)b

11 |
=

|y(2)2 | tan β
|Y (1)b

11 |
. (5.1.24)

A similar interaction scheme and formula for the mass ratio may be derived in basis (b)

for the charged lepton families as well.

One may choose basis (b) to coincide with the weak isospin basis, by assuming

that V
(b)
dL

= V
(b)
dR

= V
(b)
uL = V

(b)
uR = V (b) and redefining the isospin basis as

 d

s

→ V (b)

 d

s

 ,

u

c

→ V (b)

u

c

 .

However, such a scenario does not seem to be realistic. It is not hard to infer from

(5.1.23) and (5.1.24) that basis (b) is transformed to the quark mass basis by means of

rotation angles ∼ mq1/mq2 ≪ θC , where θC is the Cabibbo angle with sin θC ≈ 0.2259.

Thus, generating the Cabibbo mixing properly within a scenario with coinciding weak

isospin basis and basis (b) is very unlikely. One should rather have the weak isospin

basis distinctly different from basis (b) and with Φ2 interacting (in the isospin basis)

with both the first and second quark generations, however with the Yukawa couplings

being constrained by condition (5.1.9).

On the other hand, basis (b) differs only slightly from the quark mass basis: as

discussed, these two bases are related by small rotations (∼ md/ms ∼ 0.05 and ∼

mu/mc ∼ 0.002 for the down and up sectors respectively; also if extending our analysis

to the charged lepton sector, ∼ me/mµ ∼ 0.005). Thus, the interaction scheme

within basis (b) presented above in (5.1.24), is nearly true in the mass basis as well.

Namely, one has Y
(2)m
11 , Y

(2)m
12 , Y

(2)m
21 ∼ (mq1/mq2)Y

(2)m
22 and Y

(2)m
11 , Y

(2)m
12 , Y

(2)m
21 ∼

Y
(1)m
11 / tan β, Y

(1)m
22 / tan β, since we assumed Y

(1)m
11 , Y

(1)m
22 ∼ (mq1 tan β/mq2)Y

(2)m
22 ,
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as discussed above. In other words, within the quark mass basis, the interaction of

Φ2 with the first generation quarks is greatly suppressed as compared both to that

of Φ2 with the second generation quarks and to that of the other doublet, Φ1, with

both generations of quarks.

Thus, we conclude that imposing the rotationally invariant condition (5.1.9) on

the Y (2) matrix determinant for tan β ≫ 1 gives the desired quark mass hierarchy, as

well as an interaction scheme where, within the quark mass basis, the Higgs doublet

Φ2 interacts predominantly with the second generation quarks, while the other Higgs

doublet Φ1 interacts equally with both quark generations. Extending this picture for

the charged lepton generations is also straightforward.

To conclude this subsection, we discuss what condition (5.1.9) implies when con-

sidering the Hermitian product (Y Y †); we will need this when switching to the three-

generation case as well as in the next subsection. Note that in addition to the con-

straints det (Y (2)Y (2)†) = det (Y (2)Y (1)†) = det (Y (1)Y (2)†) = 0, condition (5.1.9) also

implies

det
[(
Y (1)Y (2)† + Y (2)Y (1)†) tan β + Y (2)Y (2)† tan2 β

]
= det

[
Y (1)Y (2)† + Y (2)Y (1)†] tan2 β , (5.1.25)

which is easily proven in basis (b). The product Y Y † may be presented as

Y Y † = Y (1)Y (1)† + Y (1)Y (2)† tan β + Y (2)Y (1)† tan β + Y (2)Y (2)† tan2 β . (5.1.26)

Generally, for large tan β, det (Y Y †) ∼ O(tan4 β), however as condition (5.1.25) is

imposed, one gets

det (Y Y †) ∼ O(tan2 β) . (5.1.27)
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5.1.2 tan2 β hierarchy in the 1–3 generation

Having just one scheme for generating the fermion mass hierarchy is insufficient to

reproduce all three quark and charged lepton masses. In order to reproduce properly

the first and second and the first and third family mass ratios, at least two mechanisms

for generating the mass hierarchy are needed. The first mechanism has been discussed

in the previous subsection. The natural candidate for the second mechanism is the

one that generates an O(tan2 β) hierarchy. Indeed, the quark mass ratios may be

presented as:

A ≡ ms(mt)

md(mt)
≃ 21 ,

mb(mt)

md(mt)
≃ 2.26× A2 , (5.1.28)

B ≡ mc(mt)

mu(mt)
≃ 431 ,

mt(mt)

mu(mt)
≃ 0.62×B2 . (5.1.29)

Thus, the third to first generation mass ratios may be presented as the second to

first generation mass ratios squared multiplied by some O(1) factors. These factors

may easily be generated by appropriately choosing the values of the Yukawa matrix

elements without imposing any family hierarchy on the Yukawa couplings.

In this subsection we continue to study the toy model with two quark generations,

however we now look for a U(2) invariant condition that generates an O(tan2 β)

hierarchy in the total Yukawa matrix eigenvalues and hence in the quark masses.

Subsequently, q2 now denotes t or b quark states.

An O(tan2 β) hierarchy in the quark masses may be generated by imposing the

rotationally invariant condition

| detY | = | detY (1)| . (5.1.30)
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This condition assures that

y1y2 = detY ∼ O
(
(Y (1))2

)
, (5.1.31)

which, combined with y2 ∼ O(Y (2) tan β) as shown in Equation (5.1.12), yields

y1 ∼ O

( (
Y (1)

)2
Y (2) tan β

)
, (5.1.32)

and subsequently,

y2
y1

∼ tan2 β . (5.1.33)

The exact solutions of the eigenvalue equation (5.1.10) is now

y1,2 =
1

2

{
Y

(1)
11 + Y

(1)
22 +

(
Y

(2)
11 + Y

(2)
22

)
tan β

∓

[(
Y

(1)
11 + Y

(1)
22 +

(
Y

(2)
11 + Y

(2)
22

)
tan β

)2
− 4 detY

]1/2}
, (5.1.34)

which, after expansion in powers of 1/ tan β, may be rewritten as

y1 ≈ detY(
Y

(2)
11 + Y

(2)
22

)
tan β

+O(tan−2 β) , (5.1.35)

y2 ≈
(
Y

(2)
11 + Y

(2)
22

)
tan β + Y

(1)
11 + Y

(1)
22

− detY(
Y

(2)
11 + Y

(2)
22

)
tan β

+O(tan−2 β) . (5.1.36)

In general, there is an ambiguity in solutions (5.1.35) and (5.1.36) because of an

unknown phase in

detY = eiϕ detY (1) = eiΦ
(
Y

(1)
11 Y

(1)
22 − Y

(1)
12 Y

(1)
21

)
.
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Yet, in the mass basis where y1 > 0, y2 > 0 and hence detY = | detY (1)| > 0, this

ambiguity is removed. More generally, for large tan β, the last term in the expression

for y2 may be neglected, and for y1 this problem is avoided by considering the absolute

values of the eigenvalues, as only the absolute values have physical meaning. Then

|y1| ≈

∣∣∣Y (1)
11 Y

(1)
22 − Y

(1)
12 Y

(1)
21

∣∣∣∣∣∣Y (2)
11 + Y

(2)
22

∣∣∣ tan β , (5.1.37)

|y2| ≈
∣∣∣Y (2)

11 + Y
(2)
22

∣∣∣ tan β . (5.1.38)

Subsequently,

mq2

mq1

≈

∣∣∣Y (2)
11 + Y

(2)
22

∣∣∣2 tan2 β∣∣∣Y (1)
11 Y

(1)
22 − Y

(1)
12 Y

(1)
21

∣∣∣ . (5.1.39)

Thus, imposing condition (5.1.30) on | detY |, one gets the desired O(tan2 β) hierarchy

in the total Yukawa matrix eigenvalues and subsequently on the quark mass ratios.

To see what this condition on | detY | implies on the quark interactions with the

Higgs doublets, it is convenient to rewrite (5.1.30) in the following form:

det (Y Y †) = det
(
Y (1)Y (1)†) . (5.1.40)

Comparing to (5.1.26), tan β dependent terms in the expression for det (Y Y †) must

vanish to satisfy condition (5.1.40). In general, this may occur in different ways. Yet,

for tan β ≫ 1, the natural way to satisfy (5.1.40) is to demand for the tan β-dependent

terms to vanish to all orders in tan β.

It has already been discussed in the previous subsection that the vanishing of

O(tan4 β) and O(tan3 β) terms in det (Y Y †) may be assured by imposing condition

(5.1.9) on detY (2). This means that we have again the interaction scheme where Φ2

interacts with the heaviest family of quarks – exactly in basis (b) and predominantly
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in the mass basis.

Yet, as condition (5.1.30) or equivalently (5.1.40) on detY is much stronger than

(5.1.9), one may expect that the interaction scheme corresponding to O(tan2 β) quark

mass hierarchy is more constrained than that discussed in the previous subsection.

To see this, one may rewrite the Hermitian product Y Y † in basis (b) in the following

form (provided that detY (2) = 0):

Y bY b† = |Y (1)b
11 |2 + |Y (1)b

12 |2, Y
(1)b⋆
21 Y

(1)b
11 + Y

(1)b⋆
22 Y

(1)b
12 + y

(2)⋆
2 Y

(1)b
12 tanβ

Y
(1)b
21 Y

(1)b⋆
11 + Y

(1)b
22 Y

(1)b⋆
12 + y

(2)
2 Y

(1)b⋆
12 tanβ, |Y (1)b

21 |2 + |Y (1)b
22 |2 + 2Re

[
y
(2)
2 Y

(1)b⋆
22

]
tanβ + |y(2)2 |2 tan2 β


(5.1.41)

The conditions for O(tan2 β) and O(tan β) terms in det (Y Y †) to vanish in the

rotational invariant form are respectively (provided that detY (2) = 0)

det
(
Y (1)Y (2)† + Y (2)Y (1)†) tan2 β + det

(
Y (1)Y (1)† + Y (2)Y (2)† tan2 β

)
− det

(
Y (1)Y (1)†) = 0 , (5.1.42)

det
[
Y (1)Y (1)† +

(
Y (1)Y (2)† + Y (2)Y (1)†) tan β]

− det
(
Y (1)Y (2)† + Y (2)Y (1)†) tan2 β − det

(
Y (1)Y (1)†) = 0 . (5.1.43)

It is a matter of algebra to show that these two conditions in basis (b) become

Y
(1)b
11 = 0 . (5.1.44)

In other words, the rotationally invariant condition (5.1.30) not only leads to an

O(tan2 β) hierarchy in the quark (and charged lepton) masses, but also implies that

in basis (b) the lightest generation quarks do not interact with the doublet Φ2 and

interact with the doublet Φ1 only via transitions to the heavier generation quarks.

This scheme is also nearly true in the quark mass basis, since as before, basis (b) differs
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from the mass basis by small rotation angles (∼ md/mb ∼ 0.001; ∼ mu/mt ∼ 10−5;

∼ me/mµ ∼ 0.0005).

5.2 Quark mass hierarchy: three generation case

5.2.1 Conditions on Yukawa Matrices

Having the mass hierarchy generation mechanisms at hand, we may now turn to

the realistic three generation model. For the three generation case, the mass terms

in the Lagrangian may be written as

(q̄1L , q̄2L , q̄3L)
[
Y (1) + Y (2) tan β

]

q1R

q2R

q3R

 v cos β + h.c. , (5.2.1)

where Y (1) and Y (2) are now 3 × 3 complex generally non-Hermitian matrices. The

total Yukawa matrix is still given by (5.1.2), and

VLY V
†
R =


y1 0 0

0 y2 0

0 0 y3

 , (5.2.2)

with the quark masses related to the eigenvalues as

mqi = |yi|v cos β, i = 1, 2, 3 . (5.2.3)

The eigenvalue equation is now

y3 − (Tr Y ) y2 + (det2Y ) y − detY = 0 , (5.2.4)
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where

det2Y =
∑
i<j

(YiiYjj − YijYji) , (5.2.5)

is the sum of all the second order diagonal minors of Y . In the mass basis, one may

choose real y1 > 0, y2 > 0 and y3 > 0, by redefining the quark phases. As q1 = u, d;

q2 = c, s; q3 = t, b; we assume y3 > y2 > y1.

If no condition is imposed on the Yukawa matrices, one gets

y1 + y2 + y3 = Tr Y = Tr
(
Y (1) + Y (2) tan β

)
∼ O(Y (2) tan β) ,

y1y2 + y1y3 + y2y3 = det2Y = det2
(
Y (1) + Y (2) tan β

)
∼ O

(
(Y (2))2 tan2 β

)
,

y1y2y3 = detY = det
(
Y (1) + Y (2) tan β

)
∼ O

(
(Y (2))3 tan3 β

)
,

and subsequently

y3 ∼ y2 ∼ y1 ∼ O(Y (2) tan β) .

Yet our aim is to find U(3) invariant constraints on the matrix elements that yield

det2Y = det2
(
Y (1) + Y (2) tan β

)
∼ O

(
Y (1)Y (2) tan β

)
, (5.2.6)

detY = det
(
Y (1) + Y (2) tan β

)
∼ O

(
(Y (1))3

)
, (5.2.7)

and thus

y3 ∼ O(Y (2) tan β) , (5.2.8)

y2 ∼ O(Y (1)) , (5.2.9)

y1 ∼ O

(
Y (1)

Y (2) tan β

)
. (5.2.10)

The relevant condition on detY is still given by (5.1.30) or, equivalently, by

(5.1.40). However, there is a problem with imposing conditions on det2Y , det2Y
(1) or
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det2Y
(2): these quantities are not invariant under U(3) rotations. Thus, at this point

we cannot use matrices Y , Y (1) and Y (2) anymore. Rather we have to proceed to the

Hermitian product Y Y † (or Y †Y ) and its components.

For Y Y † we have

VLY Y
†V †

L =


|y1|2 0 0

0 |y2|2 0

0 0 |y3|2

 , (5.2.11)

and the eigenvalue equation is now

|y|6 − (Tr
(
Y Y †)) |y|4 + (det2

(
Y Y †)) |y|2 − det

(
Y Y †) = 0 , (5.2.12)

and thus

|y1|2 + |y2|2 + |y3|2 = Tr
(
Y Y †) = Tr

[
Y (1)Y (1)† +

(
Y (1)Y (2)† + Y (2)Y (1)†) tan β

+Y (2)Y (2)† tan2 β

]
∼ O

(
|Y (2)|2 tan2 β

)
,(5.2.13)

and (with the use of condition (5.1.40))

|y1|2|y2|2|y3|2 = det
(
Y Y †) = det

(
Y (1)Y (1)†) ∼ O

(
|Y (1)|6

)
. (5.2.14)

Note that for 3× 3 Hermitian matrices the sum of the second order diagonal minors

is invariant under U(3) rotations and therefore may be used to derive the missing

condition that leads to the desired hierarchy of the eigenvalues. This condition is

det2
(
Y (2)Y (2)†) = 0 . (5.2.15)
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Apart from the fact that this condition implies det
(
Y (2)Y (2)†) = 0, one also gets

|y1|2|y2|2 + |y1|2|y3|2 + |y2|2|y3|2 = det2
(
Y Y †) ∼ O

(
|Y (1)|2|Y (2)|2 tan2 β

)
. (5.2.16)

As before, one can show this working in basis (b), where the matrix Y (2) is diagonal.

With condition (5.2.15), one has

Y (2)bY (2)†b =


0 0 0

0 0 0

0 0 |y(2)3 |2

 ⇒ Y (2)b =


0 0 0

0 0 0

0 0 y
(2)
3

 . (5.2.17)

Because of the importance for our analysis, we also present explicitly the total Yukawa

matrix Y and Y Y † in basis (b) in Appendix C.2. With the use of (5.2.17) and

the formulae in the Appendix, proving that det2
(
Y Y †) ∼ O

(
|Y (1)|2|Y (2)|2 tan2 β

)
is

straightforward.

One infers from Eqs. (5.2.13), (5.2.14), (5.2.16), for |y3|2 > |y2|2 > |y1|2,

|y3|2 ∼ O
(
|Y (2)|2 tan2 β

)
, (5.2.18)

|y2|2|y3|2 ∼ O
(
|Y (1)|2|Y (2)|2 tan2 β

)
, (5.2.19)

|y1|2|y2|2|y3|2 ∼ O
(
|Y (1)|6

)
, (5.2.20)

or

|y3|2 ∼ O
(
|Y (2)|2 tan2 β

)
, (5.2.21)

|y2|2 ∼ O
(
|Y (1)|2

)
, (5.2.22)

|y1|2 ∼ O

(
|Y (1)|4

|Y (2)|2 tan2 β

)
. (5.2.23)

This is the desired hierarchy in the values of y1, y2 and y3.
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Formulae (5.2.21)-(5.2.23) determine only the order of magnitude of |y1|, |y2| and

|y3| qualitatively. Finding the most general solution of the cubic eigenvalue equation

(5.2.12) is not easy. However, if |y3|2 ≫ |y2|2 ≫ |y1|2, as it follows from Eqs. (5.2.21)-

(5.2.23), one gets

|y3|2 ≈ Tr
(
Y Y †) , (5.2.24)

|y2|2 ≈
det2

(
Y Y †)

Tr (Y Y †)
, (5.2.25)

|y1|2 ≈
det
(
Y Y †)

det2 (Y Y †)
, (5.2.26)

where det
(
Y Y †) is given by (5.1.40) and, following the accuracy of the approach, one

should leave only the leading-order in tan β terms in the expressions for Tr
(
Y Y †)

and det2
(
Y Y †). The resulting formulae for the |yi|2 and the subsequent mass ratios

are given in Appendix C.3.

For tan β = 20, the down-type quark mass ratios

ms(mt)

md(mt)
≃ 1.05 tan β,

mb(mt)

ms(mt)
≃ 2.38 tan β,

mb(mt)

md(mt)
≃ 2.5 tan2 β, (5.2.27)

may be reproduced by choosing the elements of matrices Y
(1)
d and Y

(2)
d to be of the

same order while satisfying the imposed rotationally invariant conditions. Numeri-

cally, the elements of these matrices must be chosen appropriately to reproduce the

finite factors in front of tan β and tan2 β in (5.2.27), however no family hierarchy in

the down-quark Yukawa interactions is needed.

To reproduce the up-type quark mass ratios,

mc(mt)

mu(mt)
≃ 21.6 tan β,

mt(mt)

mc(mt)
≃ 13.4 tan β,

mt(mt)

mu(mt)
≃ 290 tan2 β, (5.2.28)

some weak tuning must be imposed on the denominators of (C.3.4)-(C.3.6). Like in
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the toy models with two generations, the easiest way to do this is to assume

|(Y (1)
u )ij|2 ∼ 0.01 Tr

(
Y (2)
u Y (2)†

u

)
.

As discussed, this condition does not spoil our derivations: in fact our expansion is in

powers of Y (1)

Y (2) tanβ
rather than in powers of 1/ tan β. Again, no large family hierarchy

in the Yukawa interactions is needed.

Thus, imposing condition (5.1.40) on the Y Y † determinant and condition (5.2.15)

on the sum of the Y (2)Y (2)† second order diagonal minors, one is able to reproduce

the actual ratios of the quark masses, without imposing a large family hierarchy on

the Yukawa interactions of the quarks with the Higgs doublets.

While no family hierarchy in the quark Yukawa interactions is assumed in our

model, the imposed rotational invariant conditions (5.1.40) and (5.2.15) certainly

have an impact on interactions, as discussed in the previous section. As before, it is

convenient to examine this impact in basis (b) where the matrix Y (2) is diagonal. In

this basis, as it follows from Eq. (5.2.17), only the third generation quarks interact

with Φ2, as depicted in the scheme below.

u(b)

d(b)


 c(b)

s(b)


 t(b)

b(b)


↖ ↑ ↗ ↑

Φ1 Φ2

This interaction scheme remains nearly true in the mass basis too, as

q
(b)
3 ≈ q

(m)
3 , (5.2.29)
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with accuracy of O(mq2/mq3) ∼ O
(

Y (1)

Y (2) tanβ

)
terms. This stems from the fact that

(Y bY b†)33 ≈ |y(2)3 |2 tan2 β ≫ (Y bY b†)13, (Y
bY b†)23 ∼ O

(
Y (1)y

(2)
3 tan β

)
≫ (Y bY b†)11, (Y

bY b†)12, (Y
bY b†)22 ∼ O

(
(Y (1))2

)
(5.2.30)

So far the analysis has been conducted along the same lines as within the previous

section for the toy two generation models. Yet, as the three generation case is more

involved in general, it is natural to expect that some differences in the analysis still

may occur. One of them is related to the constraints on the light quark interactions

with Φ1, due to condition (5.1.40) on det
(
Y Y †). For the two-generation case condi-

tion (5.1.40) gives (5.1.44) or equivalently that the lightest generation quarks interact

in basis (b) with Φ1 only via transitions to the heaviest generation quarks; this re-

mains nearly true in the mass basis as well. For the three generation case condition

(5.1.40) places constraints on combinations of the Yukawa couplings rather than on

only one of them. For instance, one gets

Y
(1)b
11 Y

(1)b
22 − Y

(1)b
12 Y

(1)b
21 = 0 . (5.2.31)

The scenario where for example Y
(1)b
11 = Y

(1)b
12 = 0, i.e.: the first generation quarks

in basis (b) interact with Φ1 only via transitions to heavier generation quarks, is

only one particular scenario that satisfies (5.2.31). More generally, (5.2.31) may be

satisfied in any scenario with Y
(1)b
ij tuned appropriately.

Most importantly, any condition expressed in terms of Y (1) matrix elements in

basis (b) changes drastically when rotating to the mass basis. This is because unlike

the toy models of the previous section, in the three-generation case basis (b) and the

mass basis are not related by small rotations as far as the first two generation mixing

angles are concerned. In other words, if neglecting the third generation mixing with
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two others, one has

q
(m)
1 ≈ q

(b)
1 cos θ

(b→m)
12 + q

(b)
2 sin θ

(b→m)
12 , (5.2.32)

q
(m)
2 ≈ −q(b)1 sin θ

(b→m)
12 + q

(b)
2 cos θ

(b→m)
12 , (5.2.33)

where θ
(b→m)
12 is not small in general. This stems from the fact that the elements of

the 2 × 2 upper sub-matrix of the matrix Y bY b† are in general the same order, as it

follows from formula (C.2.2) in the Appendix C.2. Thus, θ
(b→m)
12 should not be small

in general for the hierarchy in the values of mq2 and mq1 to be generated.

One may in principle have θ
(b→m)
12 ∼ θC if one assumes a slight hierarchy, Y

(1)b
11 ∼

0.25Y
(1)b
22 . The advantage of allowing such a hierarchy is that unlike the two generation

toy models, basis (b) may naturally coincide with the weak isospin basis; the necessary

conditions for this to occur have been discussed in the previous section. In that case,

the interaction scheme depicted above (5.2.29) is valid both in the mass basis and in

the isospin basis.

In summary, when imposing the rotationally invariant condition (5.1.40) on the

Y Y † determinant and (5.2.15) on the sum of the Y (2)Y (2)† second order diagonal

minors, in addition to reproducing the actual ratios of the quark masses, one derives

a quark-to-Higgs interacting scheme where in basis (b) the Higgs doublet Φ2 interacts

only with the third generation of quarks. This scheme remains nearly true in the mass

basis as well. Also, if one allows a slight hierarchy in the elements of the upper 2× 2

sub-matrix of the matrix Y (1), one may choose basis (b) to coincide with the weak

isospin basis. In that case the derived interaction scheme is the one both within

the isospin basis (precisely) and within the mass basis (approximately). Notice also

that the imposed rotationally invariant conditions imply some conditions on (rather

complicated) combinations of the Y (1) matrix elements.

We complete this section by considering the charged lepton mass problem. One
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may proceed in the same way as for the quarks. For tan β = 20,

mµ

me

≃ 10.4 tan β,
mτ

mµ

≃ 0.85 tan β,
mτ

me

≃ 8.8 tan2 β. (5.2.34)

TheO(1) coefficient in front of tan β for the ratio mτ

mµ
indicates that the elements of the

matrices Y
(1)
ℓ and Y

(2)
ℓ must be of the same order, as one can infer from Eq. (C.3.5).

Yet, to reproduce the coefficient 10.4 in front of tan β for the ratio mµ

me
, the elements

of the matrix Y
(1)
ℓ must be tuned appropriately for det

(
Y

(1)
ℓ Y

(1)†
ℓ

)
to be suppressed,

as it follows from (C.3.4).

5.2.2 More on Basis (b)

Because of its crucial importance, basis (b) and its physical meaning, as well as

the meaning of condition (5.2.15), deserve more detailed discussion. If one assumes

for the Higgs masses mA0 ,mH+ ,mH0 ≫ mh0 , so that flavor changing neutral cur-

rents (FCNCs) are suppressed, then for the CP-even Higgs rotation angles defined

in Appendix C.1, one has α ≈ β − π/2. If tan β ≫ 1, (C.1.7) and (C.1.8) (ignoring

Goldstone modes) may be approximated by

Φ1 ≈

 −H+

1√
2
[v1 +H0 − iA0]

 , (5.2.35)

Φ2 ≈

 0

1√
2
[v + h0]

 . (5.2.36)

To this approximation, Φ2 is the SM Higgs doublet, while Φ1 is new physics (NP).

Thus, basis (b) is the basis where the SM Yukawa matrix is diagonal.

In our model, the family symmetry is broken in two steps. Quark interactions

with the SM Higgs doublet Φ2 break U(3) quark family symmetry down to U(2). If
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only Φ2 gets a vev, then only the top and bottom quarks would acquire masses, while

other quarks would remain massless. Yet interactions of the NP Higgs doublet Φ1

with quarks break the family symmetry completely and generate both the first two

generation quark masses and the CKM mixing. Thus, in the scenario considered here,

the up, down, strange and charm quark interactions with the Higgs particles as well

as the CKM mixing are predominantly beyond the Standard Model physics. Yet, the

Yukawa interactions of the first two generation quarks with the Higgs doublets are

still suppressed, due to the NP Higgs masses being at TeV or even higher scales.

This interpretation of the model assumes that the weak isospin basis coincides with

basis (b). On the other hand, if this model is an effective theory originating from a

more fundamental theory at TeV or higher scales, then the weak isospin basis may

be different from basis (b). Note that our results based on the rotationally invariant

conditions are independent of how these two bases are related to each other.

There are strong reasons to believe that the two-Higgs doublet model discussed

here is an effective theory that originates from a more fundamental theory that occurs

at TeV or higher scales. For instance, having the NP Higgs masses at TeV or higher

scales requires the mass parameters µ1, µ2 and µ3 of the Higgs potential to have

magnitudes of the order of TeV or higher scales as well. A possible explanation of

the scale of these parameters may be the existence of a gauge singlet scalar field S,

with interactions

LS ⊃ λS1 |S|2
(
Φ1Φ

†
1

)
+ λS2 |S|2

(
Φ2Φ

†
2

)
+
(
λS3S

2
(
Φ1Φ

†
2

)
+ h.c.

)
, (5.2.37)

with

µ2
1 = λS1 ⟨S⟩2, µ2

2 = λS2 ⟨S⟩2, µ2
3 = λS3 ⟨S⟩2 , (5.2.38)

and ⟨S⟩ ≫ v = 246 GeV.

Another reason to believe there is a more fundamental theory at higher scales is
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that presently we are able to clearly interpret only condition (5.2.15) on the sum of

the Y (2)Y (2)† second order diagonal minors through the importance of basis (b). The

meaning of the other condition, (5.1.40) on the Y Y † determinant and the resulting

constraints on the Y (1) matrix elements remain obscure.

5.3 Phenomenological Implications: FCNC Processes and K − K̄

Let us now consider flavor changing processes. As mentioned in Appendix C.1, in

the limit that mA ≫ v, these are naturally suppressed, but we would like to see this

explicitly. To do that, we write out the Yukawa interactions in a very suggestive way:

− LY = Q̄L[Yu]uRΦ̃1 + Q̄L[Y
(2)
u ]uRΨ̃

+ Q̄L[Yd]dRΦ1 + Q̄L[Y
(2)
d ]dRΨ+ h.c. . (5.3.1)

where Φ̃1 = iσ2Φ
⋆
1, Ψ̃ = iσ2Ψ

⋆ and Yu,d are the total Yukawa matrices for the up-type

and down-type quarks, defined in (5.1.2). We have also defined the linear combination

of Higgs fields

Ψ = Φ2 − Φ1 tan β , (5.3.2)

and we are only considering the physical Higgs fields ((C.1.7) and (C.1.8) minus the

vev’s). It should be clear that this is the same as our original Yukawa interactions,

but the first term in each line is proportional to the mass matrices and is therefore

flavor diagonal in the mass basis by construction. Therefore all the tree level flavor-

changing processes in the Higgs sector couple to the Ψ−combination of Higgs fields

and appear in the second term on each line. Also note that all FCNCs are coming

from Y (2), whose off diagonal elements in the mass basis are naturally small due to

(5.2.15). Notice that this is consistent with the interpretation of Section 5.2.2.

With FCNC’s at tree level, we can apply constraints from various flavor standard
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candles, such as meson mixing and electric dipole measurements [160]. Since we have

already shown that we can suppress FCNCs in various regions of parameter space, we

will only consider K − K̄ mixing here (which is typically the strongest constraint),

and leave the other flavor observables for future research [161].

To study K − K̄ mixing, we consider the effective Lagrangian

Leff =
1

m2
h0

∑
i

CiOi ;

we will use the operator basis of [162], where they define the four-quark operators

(i, j are color indices):

O1 = (d̄iLγ
µsiL)(d̄

j
Lγµs

j
L) , Õ1 = (d̄iRγ

µsiR)(d̄
j
Rγµs

j
R) ,

O2 = (d̄iRs
i
L)(d̄

j
Rs

j
L) , O3 = (d̄iRs

j
L)(d̄

j
Rs

i
L) ,

Õ2 = (d̄iLs
i
R)(d̄

j
Ls

j
R) , Õ3 = (d̄iLs

j
R)(d̄

j
Ls

i
R) ,

O4 = (d̄iRs
i
L)(d̄

j
Ls

j
R) , O5 = (d̄iRs

j
L)(d̄

j
Ls

i
R) . (5.3.3)

There are also dipole operators, but these are irrelevant at tree level. For K − K̄

mixing there are three Higgs exchange diagrams at tree level that give

M1 =
i

2
(Y

(2)∗
d21 )2⟨Ψ0⋆Ψ0⋆⟩⟨K0|O2|K̄0⟩ , (5.3.4)

M2 =
i

2
(Y

(2)
d12)

2⟨Ψ0Ψ0⟩⟨K0|Õ2|K̄0⟩ , (5.3.5)

M3 = i (Y
(2)
d12Y

(2)∗
d21 )⟨Ψ0Ψ0⋆⟩⟨K0|O4|K̄0⟩ , (5.3.6)

where the Ψ0 propagators are for the neutral Higgs states (that is, the lower com-

ponent of the doublet). It is a straightforward exercise to expand out the Higgs

propagators using the mass basis defined in Appendix C.1 and this allows us to write

down the tree level Higgs contributions to the matching conditions at the Higgs mass
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scale3 µh:

C2(x, y;µh) = −1

4
(Y

(2)∗
d21 )2

[
(cosα+ sinα tanβ)2

+
(sinα− cosα tanβ)2

x
− sec2 β

y

]
, (5.3.7)

C4(x, y;µh) = −1

2
(Y

(2)
d12Y

(2)∗
d21 )

[
(cosα+ sinα tanβ)2

+
(sinα− cosα tanβ)2

x
+

sec2 β

y

]
, (5.3.8)

where x ≡ m2
H0/m2

h0 and y ≡ m2
A0/m2

h0 ; C̃2 is the same as C2 with Y
(2)∗
d21 → Y

(2)
d12 and

C1(µh) = C̃1(µh) = C3(µh) = C̃3(µh) = C5(µh) = 0 . (5.3.9)

Notice that in the limit mA0 → ∞, the heavy Higgs contributions vanish4. Further-

more, in the same limit, α ≃ β − π/2 and a little trigonometry shows that the light

Higgs contribution also vanishes. Therefore, there are no contributions to K − K̄

mixing in this limit, as expected.

Yet, in an actual scenario, the masses of the A0, H0 fields should be set at some

reasonable scale. Also, the CP-even mixing angle α deviates somehow from the

saturation limit. To get insight into model constraints fromK−K̄ mixing, we consider

the simplified scenario where mA0 ≫ mh0 and Y
(2)
d12 = 0; in this case, C̃2 = C4 = 0.

As we are close to the decoupling limit, we write α = β − π/2 + ϵ, where ϵ ≪ 1,

and we may keep only the first term in (5.3.7) due to a cancelation between the H0

and A0 contributions. This approximation is valid up to a O(1) factor, and should

be sufficient for our purposes. In this limit, the nonvanishing matching conditions

3Here we will chose µh = mh0 and ignore the errors of order log
(

mheavy

mlight

)
, but for the sake of

generality we keep µh arbitrary in these formulae.
4Recall the Heavy CP-even Higgs field mass also grows with mA0 from (C.1.10).
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become

C2(mh0) = −1

4
(Y

(2)∗
d21 )2

(
ϵ

cos β

)2

+O(ϵ3) , (5.3.10)

To get the final answers, we must run down to the hadronic scale to resume QCD

logarithms and match operator matrix elements to the expressions with bag factors,

as described in [162], for instance. Using their equations (14-15), we find:

C2(µhad) = η22C2(mh0) ,

C3(µhad) = η32C2(mh0) ,

(5.3.11)

and all others zero, where

η22 = 0.983η−2.42 + 0.017η2.75 ,

η32 = −0.064η−2.42 + 0.064η2.75 ,

(5.3.12)

and

η =

(
αs(mc)

αs(µhad)

)6/27

·
(
αs(mb)

αs(mc)

)6/25

·
(
αs(mh0)

αs(mb)

)6/23

. (5.3.13)

We choose µhad to be where αs(µhad) = 1 and defining nonperturbative matrix ele-

ments at this scale

⟨K|O2|K̄⟩
∣∣
µhad

= − 5

24

(
mK

md +ms

)2

mKf
2
KB2 ,

⟨K|O3|K̄⟩
∣∣
µhad

=
1

24

(
mK

md +ms

)2

mKf
2
KB3 ,

(5.3.14)

we can put constraints on the size of Y
(2)∗
d21 and ϵ given mh0 . Here Bi are the bag
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factors; in what follows, we set Bi = 1, the “vacuum saturation approximation,”

which is sufficient at this level of accuracy.

For example, we can assume mh0 = 120 GeV, as suggested by the EW fits and

direct searches, and apply constraints on ∆mK

∆mK = 2Re
(
⟨K|Leff |K̄⟩

)
< 3.48× 10−12 MeV . (5.3.15)

For simplicity, we let the Yukawa phases vanish5. To satisfy (5.3.15) we require that

|ϵ| < 10−5 for O(1) or slightly smaller values of the off-diagonal Yukawas.

To understand the meaning of this constraint, one can use (C.1.14) and a bit of

mathematical analysis to find

ϵ ∼ sin(4β)m2
h0/m

2
A0 . (5.3.16)

For tan β = 20 and mh0 = 120 GeV, this means that the heavy Higgses should have

masses around 10 TeV or higher. Yet, due to condition (5.2.15) Y
(2)
d21 is driven to

be significantly less than one. Then the bound on ϵ may be about two orders of

magnitude weaker (ϵ . 10−3), or the Heavy Higgses may have masses around 1 TeV.

Of course, these bounds should be taken with an appropriate grain of salt, since

we should also include the 1/m2
A0 terms in the matching conditions, as well as perform

a more careful scan over the full parameter space. However, this simplified analysis

gives us a good place to start, and a more careful analysis is reserved for future work

[161].

5The introduction of phases would naively weaken the bounds by allowing for destructive inter-
ference, so by setting phases to zero gives us the most conservative bound.
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5.4 Discussion

In this chapter we have attempted to explain the flavor hierarchy by appealing to

the two Higgs doublet model. We have found that we can explain the fermion masses

quite easily with little or no hierarchies in the dimensionless Yukawa couplings so long

as our Yukawa matrices satisfy two flavor basis independent conditions

det2(Y
(2)Y (2)†) = 0 , (5.4.1)

| det(Y )| = | det(Y (1))| , (5.4.2)

where Y is given by (5.1.2). With these conditions, the Yukawa couplings need at

most a 10% tuning, as opposed to a tuning of one part in 106 in the usual SM.

Furthermore, we have shown that although this model has tree level flavor changing

neutral currents, they are all proportional to Y (2) matrix elements in the mass basis

which are naturally small in this setup. The first condition implies that this matrix

has (at least) two vanishing eigenvalues, and this motivated us to define a basis where

only the 33 component of this matrix was nonzero, which we call “basis (b).” This

basis may or may not be related to the gauge basis, which is relevant for deriving the

CKM matrix, but the conditions we impose are basis independent and therefore will

hold everywhere, including the physical mass basis.

We have taken these conditions as axioms of the flavor sector, but it is certainly

within the realm of possibility [163, 164, 165, 166, 167, 168, 169, 170] that there is

a dynamical explanation for this Yukawa pattern. For example, one might imagine

that the Yukawa matrices are actually vev’s of fields that are charged under some

larger flavor symmetry which is spontaneously broken at some high scale. Then

this pattern can come from minimizing some as yet unknown effective potential, and

technical naturalness of the couplings will protect the pattern as we run to lower

scales.
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Typically the most important flavor changing standard candle is K − K̄ mixing

due to the high precision of the measurements. We considered the simple case of the

near-decoupling limit in the vacuum saturation approximation, where only the light

Higgs boson contributes appreciatively to the mixing parameters. We estimate that

as long as the heavy Higgs states are around a TeV or higher, there are no significant

contributions to this observable. Since we remain agnostic on what mechanism stabi-

lizes the Higgs masses, we do not view this as a problem from the flavor puzzle point

of view. Generalizing this to other points in Higgs parameter space is straightforward

and will be considered in more detail in future [161]. In addition, it is a straightfor-

ward exercise to repeat the analysis for D − D̄ [47, 1] and B − B̄ [171] mixing as

well. Each of these are sensitive to different Y
(2)
ij , and together, along with the above

condition, can be used to test the full validity of this model. For the lepton sector,

µ− e conversion, as well as rare µ and τ decays can also be used.

One can also imagine solving the larger Higgs fine tuning problem with some ex-

tended model such as supersymmetry. If one wishes to incorporate this model into

the MSSM, we would require four Higgs doublets. Then there would be a basis anal-

ogous to our basis (b) where two of these Higgs doublets only coupled to the heavier

generations, and the other pair of Higgs doublets coupled to all three generations,

where each pair would have an up-type and a down-type Higgs.
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Chapter 6 Conclusions

We examined possible New Physics contributions to D0 − D0 and Bs − Bs os-

cillations as well as Bs → µ+µ− leptonic decay. We also considered a possibility

of explaining quark and lepton mass hierarchies within a general two-Higgs doublet

extension of the Standard Model.

We computed first a possible contribution from R-parity-violating SUSY models

to the lifetime difference in D0 − D0 mixing. The contribution from RPV SUSY

models with leptonic number violation is found to be negative, i.e. opposite in sign

to what is implied by recent experimental evidence, and possibly quite large, which

implies stronger constraints on the size of relevant RPV couplings.

We discussed currently available constraints on those couplings (especially on their

products), available from kaon mixing and rare kaon decay experiments. We empha-

size that the use of these data in charm mixing has to be done carefully separating

the constraints on RPV couplings taken in the mass and weak eigenbases, given the

gauge and CKM structure of D0 −D0 mixing amplitudes.

Diagrams with a large New Physics contribution to the lifetime difference in D0−

D̄0 mixing may be present within other Standard Model extensions as well, however

contribution of such diagrams is often negligible in sum. In particular this is the

case within the non-manifest Left-Right Symmetric Model. It has been shown that,

due to GIM cancelation effects, new physics contribution to the lifetime difference in

D0 − D̄0 mixing within this model is rather small, as compared to the experimental
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value.

We studied next an experimentally allowed New Physics contribution to the other

meson-antimeson oscillation mode, Bs − Bs, and the possible correlations with the

New Physics contribution to Bs → µ+µ− leptonic decay.

Experiment has determined ∆MBs exceedingly well. The Standard Model deter-

mination provides a consistent value, although with a markedly greater uncertainty

(due mainly to the dependence on the nonperturbative quantity f 2
Bs
B̂Bs and to a

lesser extent on the CKM mixing element Vts). We have argued that this fact can

be used to constrain NP predictions for other processes, such as the Bs → µ+µ−

transition considered here.

We expect this kind of correlation to be a rather general feature of New Physics

models, provided there is an overlap between the NP parameters which describe

∆MBs and (for our purposes here) Bs → µ+µ−. However, given the abundance of

New Physics scenarios, each with its particular structure, it is not reasonable to ex-

pect any universal correlation between Bs-mixing and Bs → µ+µ−. Instead, what

we have done in this work is to analyze several NP models in detail. In each case,

we have first determined the set of unknown NP parameters and then, using dynam-

ical assumptions, have been able to reduce (or entirely eliminate) the arbitrariness.

Analyzing specific NP models this way has two purposes: to serve as an instruc-

tive example for further study and to see what kinds of numerical predictions these

particular models yield.

Not surprisingly, the simplest model (with a single Z ′ boson) provides a strong

correlation between ∆MBs and Bs → µ+µ− in which the latter is determined in

terms of MZ′ . An even stronger prediction occurs in the particular version of the

Family Symmetry model discussed earlier, where a clean determination of Bs →

µ+µ− is obtained. In this instance, a set of reasonable assumptions allows for the

initial presence of unknown parameters to be totally overcome. A similar, but not



132

quite as fortunate, situation occurs for R-parity violating supersymmetry, wherein a

reasonable assumption partially reduces the NP parameter set. In this case, Bs →

µ+µ− can be expressed in terms of a ratio of a coupling constant and sneutrino mass

Mν̃ . The flavor-changing Higgs model turns out to be less accommodating in that

no set of assumptions known to us can reduce the original set of three unknown

parameters. Thus, the constraint from Bs mixing still leaves one with two unknowns

(see Fig. 4.3). We also updated constraints on the models with a fourth sequential

generation of quarks.

Finally, we have attempted to explain the flavor hierarchy by appealing to the two

Higgs doublet model. We have found that we can explain the fermion masses quite

easily with little or no hierarchies in the dimensionless Yukawa couplings so long as

our Yukawa matrices satisfy some flavor basis independent conditions. With these

conditions, the Yukawa couplings need at most a 10% tuning, as opposed to a tuning

of one part in 106 in the usual SM. We have shown that although this model has

tree level flavor changing neutral currents, they are all proportional to non-diagonal

Yukawa matrix elements which are naturally small in this setup.

So, from our analysis one may conclude that study of the charm and bottom

flavor-antiflavor oscillations may serve as a powerful tool in searching possible indi-

rect signals for New Physics or, alternatively, in placing rigorous constraints on the

considered NP models parameter space. Also, study of the quark and lepton flavors

within the SM extensions may lead to understanding the origin of existing quark

and lepton mass pattern and perhaps the other puzzles that particle physics pushes

forward.

Of course, these topics may be explored further. Future projects in particular

include study of possible NP contribution to CP-violation in D0−D0 mixing and cor-

relations between the NP contributions to D0 −D0 mass difference and CP-violation

observables.
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Also, as discussed in Sect. 4.2, it would be of interest to address the impact of NP

CP-violating contributions to Bs mixing. Indeed, we plan do so in a future project,

but first await more accurate data on ∆Γs or studies of Bs → J/ψϕ transition at

LHCb.

When exploring correlations between Bs mixing and Bs → µ+µ−, additional NP

models are available for study, e.g. R-parity conserving supersymmetry [172], and

work proceeds on these.

D0 − D0 and Bq − Bq oscillations may also be used to test the model that we

proposed to explain the quark and charged lepton masses hierarchy.

As, mentioned in Sect. 5.4, one could also try to construct such a model within

supersymmetric scenarios. It would be interesting to see what analogous constraints

we would have to put on the corresponding Yukawa matrix elements in such a model.

Another interesting task would be to test how our model works for the neutrino

sector, provided that neutrino masses or their ratios (rather than mass differences)

are known, and all the neutrino mass terms (beyond the Yukawa sector) are specified.

Finally, there are other phenomenological questions we can ask in this model of

the Higgs sector. For example, the important decay h→ γγ is typically dominated by

top and W/Z particles in a loop. But with the possibility of changing the Yukawa cou-

plings, this can have strong effects on this decay and possibly change the expectations

for discovery at LHC.

These questions lay an important framework for future analysis of problems dis-

cussed in this thesis.
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APPENDIX A

Bounds on the RPV Couplings

A.1 Bounds on the RPV coupling pair products from ∆mK0

R-parity breaking part of SUSY contributes to K0 − K̄0 mixing by the tree-level

diagram with a sneutrino exchange, by the so-called L2 type of box diagrams withW±

boson and a charged slepton exchange and by the so-called L4 type of box diagrams

with all four vertices being new physics generated vertices [71]. Bounds on the RPV

coupling products are derived assuming that only a given pair product or a given sum

of pair products is non-zero.

Here we list the bounds, derived in [71], that are relevant for our analysis. We

consider only the case when the pair products are real. We specify which of constraints

are for λ′ × λ′ products and which of them are for λ̃′ × λ̃′:
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|λds| ≡
∣∣∣∑

i

λ̃′∗i11λ̃
′
i22

∣∣∣ ≤ 1.7 · 10−6
( mℓ̃

100GeV

)2
(A.1.1)∣∣∣∑

i

λ̃′∗i32λ̃
′
i11

∣∣∣ ≤ 2.2 · 10−6
( mℓ̃

100GeV

)2
(A.1.2)∣∣∣∑

i

λ̃′∗i32λ̃
′
i21

∣∣∣ ≤ 5.1 · 10−7
( mℓ̃

100GeV

)2
(A.1.3)∣∣∣∑

i

λ̃′∗i12λ̃
′
i31

∣∣∣ ≤ 7.5 · 10−6
( mℓ̃

100GeV

)2
(A.1.4)∣∣∣∑

i

λ̃′∗i22λ̃
′
i31

∣∣∣ ≤ 3.3 · 10−5
( mℓ̃

100GeV

)2
(A.1.5)∣∣∣∑

i

λ′∗i12λ
′
i21

∣∣∣ ≤ 9.8 · 10−8
( mℓ̃

100GeV

)2
(A.1.6)∣∣∣∑

i,k

λ′∗i1kλ
′
i2k

∣∣∣ ≤ 2.7 · 10−3 for mℓ̃ = 100GeV, mq̃ = 300GeV (A.1.7)

If one assumes that the RPV coupling products are non-zero only for a given i and a

given k, one may apply them to each term in the above sums.

Bounds (A.1.1) - (A.1.5) are derived from charged slepton mediated L2 diagrams

and (A.1.6) is derived from a tree level sneutrino mediated diagram. Naturally these

bounds scale with the slepton mass squared. Contrary to this, to derive (A.1.7), both

sneutrino mediated and squark mediated L4 diagrams are used. Thus, it is not easy to

scale this bound. However for mℓ̃ = 100GeV and mq̃ = 300GeV , the squark mediated

diagrams contribution is about 10% of that of the slepton mediated ones [71]. In what

follows, (A.1.7) is also approximately valid if mq̃ ≫ mℓ̃. Then this bound may be

scaled with the slepton mass squared as well. Assuming that λ′∗i1kλ
′
i2k ̸= 0 only for a

given value of k, one gets

∣∣∣∑
i

λ′∗i1kλ
′
i2k

∣∣∣ ≤ 2.7 · 10−3
( mℓ̃

100GeV

)2
(A.1.8)

We do not use bounds of [71] for ij2 × ij1 combination products. Using our ”rule
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of thumb” one can see that these are bounds on some admixture of λ′∗ij2λ
′
ij1 and

λ̃′∗ij2λ̃
′
ij1. We use instead earlier bounds of ref. [72]. These bounds are derived using

L2 diagrams only, neglecting L4 ones. These diagrams vertices contain λ̃′ couplings,

but not λ′. Thus one has

∣∣∣∑
i

λ̃′∗i12λ̃
′
i11

∣∣∣ ≤ 1.4 · 10−6
( mℓ̃

100GeV

)2
(A.1.9)∣∣∣∑

i

λ̃′∗i22λ̃
′
i21

∣∣∣ ≤ 1.4 · 10−6
( mℓ̃

100GeV

)2
(A.1.10)∣∣∣∑

i

λ̃′∗i32λ̃
′
i31

∣∣∣ ≤ 7.7 · 10−4
( mℓ̃

100GeV

)2
(A.1.11)

A.2 Bounds on λee, λµµ, λeµ, λµe

We may present λee, λµµ, λµe, λeµ in a following form:

λee ≡
∑
k

λ̃′∗11kλ̃
′
12k =

∑
k

λ′∗11kλ
′
12k + λ

[∑
k

|λ′12k|2 −
∑
k

|λ′11k|2
]
+O(λ2)(A.2.1)

λµµ ≡
∑
k

λ̃′∗21kλ̃
′
22k =

∑
k

λ′∗21kλ
′
22k + λ

[∑
k

|λ′22k|2 −
∑
k

|λ′21k|2
]
+O(λ2)(A.2.2)

λµe ≡
∑
k

λ̃′∗11kλ̃
′
22k =

∑
k

λ′∗11kλ
′
22k + λ

[∑
k

λ′∗12kλ
′
22k −

∑
k

λ′∗11kλ
′
21k

]
+O(λ2)(A.2.3)

λeµ ≡
∑
k

λ̃′∗21kλ̃
′
12k =

∑
k

λ′∗21kλ
′
12k + λ

[∑
k

λ′∗22kλ
′
12k −

∑
k

λ′∗21kλ
′
11k

]
+O(λ2)(A.2.4)

The Cabibbo favored terms in (A.2.1)-(A.2.4) have severe constraints e.g. from study

of K+ → π+νν̄ decay [74]:

∑
k

λ′∗i1kλ
′
i′2k ≤ 4.75× 10−5

( mq̃

300GeV

)2
(A.2.5)

for i ̸= i′, and ∑
k

λ′∗i1kλ
′
i2k ≤ 6.3× 10−5

( mq̃

300GeV

)2
(A.2.6)



137

For i = i′, bounds are about 30% weaker because of the impact of the SM and pure

MSSM contributions [74].

It turns out that because of the stringent bounds on the Cabibbo favored terms,

r.h.s. of (A.2.1)-(A.2.4) are dominated by the first order Cabibbo suppressed terms.

The analysis for λee and λµµ is very similar to that for λss and λdd. Assuming

that one of the couplings λ12k or λ11k dominates (say for k=3), one gets

− 0.91 · 10−3
( mq̃

300GeV

)2
≤ λee ≤ 3.83 · 10−3

( mq̃

300GeV

)2
(A.2.7)

In analogous way, assuming that one of the couplings λ22k or λ21k dominates, one gets

−0.0072
( mq̃

300GeV

)2
≤ λµµ ≤ 0.091

( mq̃

300GeV

)2
, if mq̃ ≤ 530GeV,

−0.0072
( mq̃

300GeV

)2
≤ λµµ ≤ 0.29, if mq̃ ≥ 530GeV (A.2.8)

The upper bound in the second line of (A.2.8) comes from the perturbativity bound

on λ′22k for k=2,3 [69]: λ′22k ≤ 1.12. We indicate the perturbativity bound saturation

if only it occurs for mq̃ ≤ 1TeV .

The analysis for λµe and λeµ is more subtle: instead of individual couplings squared

in absolute value, the first order Cabibbo suppressed terms contain RPV coupling

pair products now. On our knowledge, there is no bounds on pair products1 λ′12kλ
′∗
22k

and λ′11kλ
′∗
21k. Thus, we must use individual bounds on these four couplings. As we

deal with a pair product, we may not anymore assume that only one RPV coupling

dominates. We must now allow for two RPV couplings to be at their boundaries at a

time. There is however one subtlety: one may do this, if only there is no correlations

between the constraints on λ′22k and λ′12k or between those on λ′21k and λ′11k.

One can check that constraints on λ′22k and λ′12k are indeed independent of each

1One can meet some bounds in the literature on λ′
1mkλ

′∗
2mk from study µ → eγ decay (see [86]

and references therein). However, using our ”rule of thumb”, it is easy to see that these are bounds

on λ̃′
12kλ̃

′∗
22k, thus they may not be used here.
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other and constraints on λ′11k are independent of the values of λ′21k. The sources of

these constraints and references to the relevant literature are given in [69]. At first

glance, the situation with λ′21k seems to be more complicated: bounds on λ′21k are

derived from Rπ ≡ Γ(π → eν)/Γ(π → µν), assuming that [76]

|λ′11k|2 ≪ |λ′21k|2 (A.2.9)

On the other hand, one can see from Table I in ref. [69] that

max
[
|λ′11k|2

]
≤ 0.13max

[
|λ′21k|2

]
(A.2.10)

Thus, condition (A.2.9) is satisfied to a good extent, when λ′11k and λ′21k are at their

boundaries.

In what follows, one may use individual bounds on couplings λ′11k, λ
′
21k, λ

′
12k,

λ′22k presented in ref. [69], to get constraints on the pair products λ′∗11kλ
′
21k and

λ′∗12kλ
′
22k. Using these constraints and assuming that only one of these pairs is non-

zero (dominant) and only for a given k (say k=3), one gets

|λµe| ≤ 0.019
( mq̃

300GeV

)2
, |λeµ| ≤ 0.019

( mq̃

300GeV

)2
, if mq̃ ≤ 530GeV

|λµe| ≤ 0.033
( mq̃

300GeV

)
, |λeµ| ≤ 0.033

( mq̃

300GeV

)
, if mq̃ ≥ 530GeV(A.2.11)

In deriving (A.2.11), one must take into account that products λ′∗11kλ
′
21k and λ′∗12kλ

′
22k

may be both positive and negative.

Coincidence of bounds on λµe and λeµ is not accidental: the first order Cabibbo

suppressed terms in equations (A.2.3) and (A.2.4) are complex conjugates of each

other. Thus, λµe ≈ λ∗eµ or because we assume that RPV coupling products relevant

for our analysis are real, one has

λµe ≈ λeµ (A.2.12)
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When deriving (A.2.11) and (A.2.12), we neglected O(λ2) Cabibbo suppressed

terms in the expressions for λeµ and λµe. If one assumes that two RPV couplings

dominate at a time, one should take into account these terms as well. We leave for

the reader to verify that O(λ2) terms in the expressions for λeµ and λµe have at least

several times stronger bounds than the first order Cabibbo suppressed terms.
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APPENDIX B

Bs Mixing Matrix Elements

There are eight ∆b = 2 effective operators that can contribute to Bs-mixing. The

operator basis we shall employ is

Q1 = (bLγµsL) (bLγ
µsL) ,

Q2 = (bLγµsL) (bRγ
µsR) ,

Q3 = (bLsR) (bRsL) ,

Q4 = (bRsL) (bRsL) ,

Q5 = (bRσµνsL) (bRσ
µνsL) ,

Q6 = (bRγµsR) (bRγ
µsR) ,

Q7 = (bLsR) (bLsR) ,

Q8 = (bLσµνsR) (bLσ
µνsR) ,

(B.1.1)

where quantities enclosed in parentheses are color singlets, e.g. (bLγµsL) ≡ bL,iγµsL,i.

These operators are generated at a scale M where the NP is integrated out. A

non-trivial operator mixing then occurs via renormalization group running of these

operators between the heavy scale M and the light scale µ at which hadronic matrix

elements are computed.

We need to evaluate the B0
s -to-B

0

s matrix elements of these eight dimension-six

basis operators. This introduces eight non-perturbative B-parameters {Bi} that re-

quire evaluation by means of QCD sum rules or QCD-lattice simulation. We express
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these in the form

⟨Q1⟩ = 2
3
f 2
Bs
M2

Bs
B1 ,

⟨Q2⟩ = −5
6
f 2
Bs
M2

Bs
B2 ,

⟨Q3⟩ = 7
12
f 2
Bs
M2

Bs
B3 ,

⟨Q4⟩ = − 5
12
f 2
Bs
M2

Bs
B4 ,

⟨Q5⟩ = f 2
Bs
M2

Bs
B5 ,

⟨Q6⟩ = 2
3
f 2
Bs
M2

Bs
B6 ,

⟨Q7⟩ = − 5
12
f 2
Bs
M2

Bs
B7 ,

⟨Q8⟩ = f 2
Bs
M2

Bs
B8 ,

(B.1.2)

where fBs is the Bs meson decay constant and ⟨Qi⟩ ≡ ⟨B̄0
s |Qi|B0

s ⟩.

Ref. [123] has performed a QCD-lattice determination (quenched approximation)

of the B-parameters in an operator basis {Oi} which is distinct from the {Qi} of

Eq. (B.1.1),

O1 = b
i
γµ(1 + γ5)s

i b
j
γµ(1 + γ5)s

j ,

O2 = b
i
(1 + γ5)s

i b
j
(1 + γ5)s

j ,

O3 = b
i
(1 + γ5)s

j b
j
(1 + γ5)s

i ,

O4 = b
i
(1 + γ5)s

i b
j
(1− γ5)s

j ,

O5 = b
i
(1 + γ5)s

j b
j
(1− γ5)s

i .

(B.1.3)

Three more operators Oi (i = 6, 7, 8) can be obtained by substituting right-handed

chiral projection operators with the left-handed ones Oi (i = 1, 2, 3) in Eq. (B.1.3).

TheB0
s -to-B

0

s matrix elements of these operators have been parameterized in Ref. [123]

as

⟨O1⟩ = 8
3
f 2
Bs
M2

Bs
B̃1 ,

⟨O2⟩ = −5
3
R2
sf

2
Bs
M2

Bs
B̃2 ,

⟨O3⟩ = 1
3
R2
sf

2
Bs
M2

Bs
B̃3 ,

⟨O4⟩ = 2R2
sf

2
Bs
M2

Bs
B̃4 ,

⟨O5⟩ = 2
3
R2
sf

2
Bs
M2

Bs
B̃5 .

(B.1.4)

Also, the chiral structure of QCD requires that ⟨O6⟩ = ⟨O1⟩, ⟨O7⟩ = ⟨O2⟩, and

⟨O8⟩ = ⟨O3⟩.
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Several of the quantities introduced above are scale dependent, i.e. {Bi(µ)},

{B̃i(µ)} and R2
s(µ). Throughout this paper, we shall understand all these quantities

to be renormalized at a common scale µ = mb and to simplify notation, we shall

denote them simply as {Bi}, {B̃i} and R2
s. In particular, our evaluation at scale

µ = mb of the quantity Rs(µ) ≡MBs/(mb(µ) +ms(µ)) yields

R2
s =M2

Bs
/ (m̄b(m̄b) + m̄s(m̄b))

2 = 1.57+0.04
−0.10 , (B.1.5)

where we have used the input values m̄b(m̄b) = 4.2+0.17
−0.07 GeV [24] and m̄s(m̄b) =

0.085± 0.017 GeV [45].

The two bases {Qi} and {Oi} can be related via Fierz rearrangement,

O1 = 4 Q1 ,

O2 = 4 Q4 ,

O3 = −2 Q4 − 1
2
Q5 ,

O4 = 4 Q3 ,

O5 = −2 Q2 .

(B.1.6)

from which we find

B1 = B̃1 ,

B2 =
2
5
B̃5R

2
s ,

B3 =
6
7
B̃4R

2
s ,

B4 = B̃2R
2
s ,

B5 = −1
3
R2
s

(
2B̃3 − 5B̃2

)
,

B6 = B̃1 ,

B7 =
6
7
B̃4R

2
s ,

B8 = −1
3
R2
s

(
2B̃3 − 5B̃2

)
.

(B.1.7)

Alternatively, the B-parameters can be estimated using the ‘modified vacuum sat-

uration’ (MVS) approach, wherein all matrix elements in Eq. (B.1.2) are written in

terms of (known) matrix elements of (V −A)× (V −A) and (S−P )× (S+P ) matrix
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List of {Bi} {Bi} from lattice QCD Bi in MVS

(in {Qi} Basis) (from Ref. [123]) (from Eq. (B.1.8))

B1 = B6 0.87 0.87

B2 0.70R2
s 0.87

[
3
5
+ 2

5
R2
s

]
B3 0.99R2

s 0.87
[
1
7
+ 6

7
R2
s

]
B4 = B7 0.80R2

s 0.87R2
s

B5 = B8 0.71R2
s 0.87R2

s

Table B.1: Numerical Estimates of the B-parameters.

elements BB and B
(S)
B ,

⟨Q1⟩ =
2

3
f 2
Bs
M2

Bs
BBs ,

⟨Q2⟩ = f 2
Bs
M2

Bs
BBs

[
−1

2
− η

Nc

]
,

⟨Q3⟩ = f 2
Bs
M2

Bs
BBs

[
1

4Nc

+
η

2

]
,

⟨Q4⟩ = −2Nc − 1

4Nc

f 2
Bs
M2

Bs
BBs η ,

⟨Q5⟩ =
3

Nc

f 2
Bs
M2

Bs
BBs η ,

⟨Q6⟩ = ⟨Q1⟩ ,

⟨Q7⟩ = ⟨Q4⟩ ,

⟨Q8⟩ = ⟨Q5⟩ ,

(B.1.8)

where we take Nc = 3 as the number of colors and define

η ≡
B

(S)
Bs

BBs

·
M2

Bs

(m̄b(m̄b) + m̄s(m̄b))
2 → R2

s for B
(S)
Bs

= BBs . (B.1.9)

It is instructive to compare how well the MVS approximation estimates the recent

lattice results. We provide such a comparison in Table B.1.
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APPENDIX C

2HDM Higgses, Basis (b) and the Mass Ratios

C.3 The Higgs sector

In this appendix we review the structure of the Higgs sector. We have two Higgs

doublets:

Φi =

ϕ+
i

ϕ0
i

 i = 1, 2 . (C.1.1)

We can write a generic potential for the these fields:

V = µ2
1Φ

†
1Φ1 + µ2

2Φ
†
2Φ2 + µ2

3(Φ
†
1Φ2 + h.c.) +

λ1
2
(Φ†

1Φ1)
2 +

λ2
2
(Φ†

2Φ2)
2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

(λ5
2
(Φ†

1Φ2)
2 + h.c.

)
+
(
λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

)
. (C.1.2)

One can easily check that the λ6,7 terms introduce no essential change in the analysis

[173], thus they may be neglected for simplicity. We also assume that λ5 and µ2
3

are real: thus there is no explicit CP-violation in the Higgs potential. Also, no

spontaneous CP-violation is assumed, thus the Higgs doublet vacuum expectation

values are taken to be real.
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The Higgs doublet vacuum states may be presented in the following form:

⟨Φ1⟩ =
1√
2

 0

v1

 , ⟨Φ2⟩ =
1√
2

 0

v2

 , (C.1.3)

with v1,2 > 0 and real. The Higgs potential minimum conditions,

∂V
∂v1

=
∂V
∂v2

= 0 , (C.1.4)

may be written as

λ1v
2
1 + λ̃v22 + 2µ2

1 + 2µ2
3v2/v1 = 0 , (C.1.5)

λ2v
2
2 + λ̃v21 + 2µ2

2 + 2µ2
3v1/v2 = 0 , (C.1.6)

where λ̃ = λ3 + λ4 + λ5.

The Higgs doublet vacuum expectation values must satisfy the following condition:

v21 + v22 = v2 = (246 GeV)2. Constraints on the coupling constants λi may be derived

from the analysis of their renormalization group equations [173, 174]. Two of the mass

parameters of the Higgs potential, say µ2
1 and µ2

2, may be eliminated from minimum

conditions (C.1.5) and (C.1.6). The parameter µ2
3 however remains arbitrary.

It should be mentioned at this point that in a general Type-III two-Higgs doublet

model, v1 and v2 are not well defined [152, 153]. In fact, since Φ1,2 have the same

quantum numbers, any linear combination of them can get a vev, and one can always

perform a field redefinition that changes the value of v1,2 while keeping the value

of v2 = v21 + v22 fixed. However, when we discuss Higgs couplings to the fermions

in Sections 5.1 and 5.2, in particular conditions (5.1.9), (5.1.40) and (5.2.15), this

ambiguity is removed, and so we will proceed as if these vevs have a physical meaning.

One may express Φ1 and Φ2 in terms of the excited Higgs states in the following
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from:

Φ1 =

 G+ cos β −H+ sin β

1√
2
[v1 + h1 + i (G0 cos β − A0 sin β)]

 , (C.1.7)

Φ2 =

 G+ sin β +H+ cos β

1√
2
[v2 + h2 + i (G0 sin β + A0 cos β)]

 , (C.1.8)

where tan β = v2/v1, G
0, G± are the Goldstone modes, h1, h2 are CP-even, A0 is

CP-odd and H± is the charged physical Higgs states. It is straightforward to check,

using minimum conditions (C.1.5) and (C.1.6), that the Higgs potential contains no

terms linear in the physical Higgs fields.

Without any CP violation, the CP-even and -odd Higgs states will not mix, and

can be considered separately. The mass of the CP-odd Higgs boson is given by

m2
A0 =

−2µ2
3

sin 2β
− λ5v

2
2 = µ2

1 + µ2
2 +

1

2

(
λ1 cos

2 β + λ2 sin
2 β + λ′

)
v2 , (C.1.9)

where λ′ = λ3 + λ4 − λ5. The CP-odd mass may be chosen to be a free parameter of

the theory. Then the charged Higgs mass is given by

m2
H± = m2

A0 −
(λ4 − λ5)v

2

2
. (C.1.10)

The 2× 2 mass matrix for the CP-even Higgs fields h1 and h2 is the following:

M2 =


(
λ1 cos

2 β + λ5 sin
2 β
)
v2 +m2

A0 sin
2 β

(
(λ3 + λ4)v

2 −m2
A0

)
sin β cos β(

(λ3 + λ4)v
2 −m2

A0

)
sin β cos β

(
λ2 sin

2 β + λ5 cos
2 β
)
v2 +m2

A0 cos2 β

 .

(C.1.11)
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The CP-even Higgs eigenstates, h0, H0, are related to h1 and h2 as

H0 = h1 cosα + h2 sinα , (C.1.12)

h0 = −h1 sinα+ h2 cosα , (C.1.13)

where

tan 2α =
2M2

12

M2
11 −M2

22

, (C.1.14)

and

m2
h0,H0 =

1

2

[
M2

11 +M2
22 ∓

√
(M2

11 −M2
22)

2 + 4(M2
12)

2

]
. (C.1.15)

Writing explicitly the matrix elements in (C.1.14)-(C.1.15) would make these for-

mulae rather complicated – due to large number of independent couplings the predic-

tive power of the general two-Higgs doublet model is rather weak. Nevertheless, one

can derive an upper bound on the lightest CP-even Higgs mass

m2
h0 ≤

(
λ1 cos

4 β + λ2 sin
4 β + 2λ̃ sin2 β cos2 β

)
v2 , (C.1.16)

which is saturated as m2
A0 → ∞; this state is usually identified with the “Standard

Model Higgs.” In the same limit, m2
H0 ≈ m2

H± ≈ m2
A0 , that is to say all the other

Higgs particles may be arbitrarily heavy. Also, at this limit the mixing angle is given

by α ≈ β − π/2.

Note that form2
A0 ≫ v2, the problem of flavor changing neutral currents is avoided

in a natural way. The FCNCs are suppressed when A0 or H0 is exchanged. One can

also show that for α = β − π/2, no FCNCs occur when quarks interact with the

exchange of the lightest Higgs boson h0. This result is intuitive, since in this limit we

effectively only have one Higgs doublet as in the usual SM, and there are no FCNCs

coming from the SM Higgs sector.
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C.4 Y and Y Y † in basis (b)

For the three generation case, in basis (b) the total Yukawa matrix is given by

Y b =


Y

(1)
11 Y

(1)
12 Y

(1)
13

Y
(1)
21 Y

(1)
22 Y

(1)
23

Y
(1)
31 Y

(1)
32 Y

(1)
33 + y

(2)
3 tan β

 (C.2.1)

The elements of the Hermittean matrix Y Y † in the same basis are

(
Y bY b†)

11
= |Y (1)b

11 |2 + |Y (1)b
12 |2 + |Y (1)b

13 |2(
Y bY b†)

21
=
(
Y bY b†)⋆

12
= Y

(1)b
21 Y

(1)b⋆
11 + Y

(1)b
22 Y

(1)b⋆
12 + Y

(1)b
23 Y

(1)b⋆
13(

Y bY b†)
31

=
(
Y bY b†)⋆

13
= Y

(1)b
31 Y

(1)b⋆
11 + Y

(1)b
32 Y

(1)b⋆
12 +

(
Y

(1)b
33 + y

(2)
3 tan β

)
Y

(1)b⋆
13(

Y bY b†)
22

= |Y (1)b
21 |2 + |Y (1)b

22 |2 + |Y (1)b
23 |2 (C.2.2)(

Y bY b†)
32

=
(
Y bY b†)⋆

23
= Y

(1)b
31 Y

(1)b⋆
21 + Y

(1)b
32 Y

(1)b⋆
22 +

(
Y

(1)b
33 + y

(2)
3 tan β

)
Y

(1)b⋆
23(

Y bY b†)
33

= |Y (1)b
31 |2 + |Y (1)b

32 |2 + |Y (1)b
33 |2 + 2Re

[
y
(2)
3 Y

(1)b⋆
33

]
tan β + |y(2)3 |2 tan2 β

C.5 Mass eigenvalues and ratios in terms of Isospin basis Yukawa couplings

The mass matrix eigenvalues can be written in terms of the Yukawa couplings.

To leading order in tan β the results are:

|y3|2 ≈ Tr
(
Y (2)Y (2)†

)
tan2 β (C.3.1)

|y2|2 ≈

det2
(
Y (1)Y (2)† + Y (2)Y (1)†)+∑i ̸=j

[(
Y (1)Y (1)†)

ii

(
Y (2)Y (2)†)

jj
−
(
Y (1)Y (1)†)

ij

(
Y (2)Y (2)†)

ji

]
Tr
(
Y (2)Y (2)†

)
(C.3.2)
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|y1|2 ≈

det
(
Y (1)Y (1)†) tan−2 β

det2
(
Y (1)Y (2)† + Y (2)Y (1)†

)
+
∑

i ̸=j

[(
Y (1)Y (1)†

)
ii

(
Y (2)Y (2)†

)
jj

−
(
Y (1)Y (1)†

)
ij

(
Y (2)Y (2)†

)
ji

]
(C.3.3)

Subsequently, for the mass ratios, mqi/mqj = |yi|/|yj|, one gets

mq2

mq1

≈ tanβ√
Tr
(
Y (2)Y (2)†

)
det
(
Y (1)Y (1)†

) ×

det2 (Y (1)Y (2)† + Y (2)Y (1)†
)
+
∑
i ̸=j

[(
Y (1)Y (1)†

)
ii

(
Y (2)Y (2)†

)
jj

−
(
Y (1)Y (1)†

)
ij

(
Y (2)Y (2)†

)
ji

]
(C.3.4)

mq3

mq2

≈

Tr
(
Y (2)Y (2)†) tanβ√

det2
(
Y (1)Y (2)† + Y (2)Y (1)†

)
+
∑

i ̸=j

[(
Y (1)Y (1)†

)
ii

(
Y (2)Y (2)†

)
jj

−
(
Y (1)Y (1)†

)
ij

(
Y (2)Y (2)†

)
ji

]
(C.3.5)

mq3

mq1

≈

√
Tr
(
Y (2)Y (2)†

)
det
(
Y (1)Y (1)†

) tan2 β ×√
det2

(
Y (1)Y (2)† + Y (2)Y (1)†

)
+
∑
i ̸=j

[(
Y (1)Y (1)†

)
ii

(
Y (2)Y (2)†

)
jj

−
(
Y (1)Y (1)†

)
ij

(
Y (2)Y (2)†

)
ji

]
(C.3.6)
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ABSTRACT

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

by

GAGIK YEGHIYAN
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Advisor: Dr. Alexey A. Petrov
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Degree: Doctor of Philosophy

We examine possible New Physics impact on certain heavy quark flavor involving

processes, such as charm and bottom strange meson-antimeson oscillations and lep-

tonic meson decays. Also, we consider a possibility of explaining within a two-Higgs

doublet extension of the Standard Model the quark and charged lepton mass hierarchy.

We show that the experimental value of the lifetime difference in D0−D0 mixing may

be due to destructive interference of the Standard Model and New Physics contribu-

tions. We examine next possible correlations between the New Physics contribution

to Bs − Bs mass difference and Bs → µ+µ− leptonic decay. We show that these

correlations tend to rule out possible large New Physics contribution to Bs → µ+µ−.

We propose also to explain within a general two-Higgs doublet extension of the Stan-

dard Model the quark and lepton mass hierarchy by imposing some basis invariant

conditions on the quark and lepton Yukawa matrices with no or little hierarchy in

Yukawa couplings.
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