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CHAPTER 1  INTRODUCTION AND MOTIVATION 

Optimization is defined as the process of “finding and comparing feasible solutions until no 

better solution can be found” (Deb and Kalyanmoy 2001).  Solutions are evaluated based upon solution 

objectives and other criteria such as constraints.  Evolutionary algorithms, including the Cultural 

Algorithm (Reynolds 1986; Reynolds 1994), and other bio-inspired approaches are frequently used to 

solve problems that are not tractable for traditional approaches.  The application of these new 

computation genres are motivated by the following facts: they can find multiple solutions in one 

simulation run because of their population based approach; and they can identify satisfying solutions 

using limited resources for problems that traditional approaches take prohibitive amounts of effort to 

solve, etc.  . 

Previously, research in the field of evolutionary optimization has focused on single-objective 

problems.  On the contrary, most real-world problems involve more than one objective where these 

objectives may conflict with each other.  For example in manufacturing the criteria of lowering 

production costs may be at odds with a goal of improving product quality.  If multiple objectives can be 

unified into one for a given problem, such a problem can be viewed as single-objective in nature. 

However, this can be problematic if the goals are conflicting. 

The first real application of evolutionary algorithms to find multiple trade-off solutions in one 

single simulation run was presented by Schaffer in his doctoral dissertation (Schaffer 1984).  In this work, 

a simply modified single-objective genetic algorithm was able to capture multiple weighted solutions; 

however, after a large number of iterations the algorithm tended to converge to individual optimal 

solutions.  The next work on MOEAs came from Goldberg (Goldberg 1989) who introduced the concept 



2 

 

 
 

of domination.  Domination is a partial order relationship in which a dominating solution is superior to 

dominated solutions in terms of all objectives.  Ever since then, a number of researchers have developed 

different implementations of MOEAs using this important concept.   

Fonseca and Fleming (Fonseca and Fleming 1995) proposed a multi-objective GA and identified 

some issues that were raised by MOEAs, such as how they affected the fitness landscape.  Srinivas and 

Deb proposed a non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994).  Later, Deb 

and others proposed a fast and elitist MOEVA, NSGA II (Deb et al. 2000).  Horn, Nafploitis and Goldberg 

also proposed a niched Pareto-GA (Horn, Nafpliotis, and Goldberg 1994).  

All of the approaches described above assumed a population-based approach where there was 

little or no interaction between individual solutions in the population.  Since then, several socially 

motivated approaches have been proposed to solve multi-objective optimization problems.  In these 

approaches knowledge can be explicitly exchanged between problem solvers in the solution of an 

optimization problem.  Since multi-objective problems are particularly characteristic of complex social 

systems these approaches may provide insights into how such problems are dealt with in social situation.  

While the socially motivated approaches will be discussed in the next section in detail, several of the 

most popular ones are presented in the concise Figure 1.1 below in terms of the scales (spatial and 

temporal) of the original social system from which the approach was taken.  We can see that while Ant 

Colony and Particle Swarm approaches focus on evolution over a short period in a limited space, the 

Cultural Algorithm is inherently able to address large-scale problems that spread large temporal and 

spatial scales, such as the evolution of human civilization.  We will briefly discuss the work done on the 

multi-objective version for each. 
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Figure 1.1  Temporal and Spatial Scales of MOEAs 

1.1 Particle Swarm Optimization (PSO) and Multi-objective PSO 

At the smallest conceptual scale is Particle Swarm Optimization. Particle Swarm Optimization 

(PSO) is a population-based socially motivated optimization technique (Eberhart and Kennedy, 1995), 

inspired by social behavior of bird flocking or fish schooling (Kennedy, 1998).  Similar to genetic 

algorithms, PSO is initialized with a population of random individuals and searches for optima by 

updating generations.  However, unlike GA, PSO has no evolutionary operators such as crossover and 

mutation.  Instead, in each generation, each particle may change its velocity and move to a local best 

solution or a global one.  Particles move through the problem space by following the information 

derived from the best of their neighbor particles.  There are just a few parameters to adjust for PSO to 
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work.  Particle swarm optimization can be used across a wide range of applications.  In some cases it 

consumed a fraction of resources that traditional approaches might use (Shi and Eberhart, 1998). 

Adopting PSO for multi-objective problems follows the success of its original version.  One of the 

efforts was MOPSO (Coell-Coello and Salazar 2002) which borrowed the concept of Pareto dominance 

and used a secondary population to store the non-dominated solutions that had been found so far 

which helped the flock to aggregate around good solutions.  In a sense, the secondary population serves 

the same role as of Situational knowledge in the Cultural Algorithm as we will discuss later.  Later, in an 

improved version EMOPSO (Toscano-Pulido etc, 2007) a turbulence operator was added to further 

spread the flock and prevent premature convergence.  Its experiments showed EMOPSO was able to 

depict reasonably good approximations of the Pareto front of problems with up to 30 decision variables 

with the by-then the least computing load.  A thorough survey of multi-objective PSOs can be found in 

(Reyes-Sierra 2006), which suggested that in order to solve multi-objective problems, PSOs have to “1. 

Maximize the number of elements of the Pareto optimal set found.  2. Minimize the distance of the 

Pareto front produced by our algorithm with respect to the true (global) Pareto front (assuming we know 

its location).  3. Maximize the spread of solutions found, so that we can have a distribution of vectors as 

smooth and uniform as possible”, which actually represent the pursuing of all MOEAs at large. 

Multi-objective PSOs have been widely used to solve various problems, such as designing planar 

multilayered electromagnetic absorbers in engineering (Chammani 2007); reducing harmonic current 

and mitigating noise on electrical utility grid (Sharaf 2009); and designing automobile transmission (Wu 

2010), among others. 
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1.2 Ant Colony Optimization (ACO) and Multi-objective ACO (MOACO) 

Another socially motivated evolutionary system is Ant Colony Optimization (ACO) (Dorigo, 1992).  

It is based on stigmergy, a mechanism of indirect coordination between agents or actions, where the 

trace left in the environment by an action stimulates, positively or negatively, the performance of a 

subsequent action, either by the same or a different agent.  

While stigmergy occurs in many social animal societies, a typical example is that ants exchange 

information indirectly by depositing pheromones during their food exploitation.  In this scenario, ants 

initially wander randomly and will return to their colony while laying down pheromone trails right after 

finding food. If other ants find such a path, they prefer following it to travelling at random directions.  As 

new ants find food at the end of the trail, they will return to colony and deposit pheromone along their 

traces too. 

If there are multiple trails to the food (which was found by multiple ants), the shortest one has 

greater chance to become the preference of all ants because of the phenomenon explained below.  

Over time, the pheromone trail starts to evaporate and its attractive strength is reduced.  The more time 

it takes for an ant to travel down the path and back again, the more time the pheromones has to 

evaporate.  A shortest path, by comparison, gets marched over more frequently, and thus the 

pheromone density remains high as it is laid on the path as fast as it can evaporate.  Pheromone 

evaporation has also the advantage of avoiding the convergence to a locally optimal solution.  If there 

was no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to 

the following ones.  In that case, the exploration of the solution space would be constrained.  Thus, 

when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely 

to follow that path, and positive feedback eventually leads all the ants following a single path.  The idea 
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of the ant colony algorithm is to mimic this behavior by simulating ants generating paths through a 

graph from an origin to a destination. 

There are many variations of ACOs (Dorigo and Gambardella, 1997, Stützle and Hoos, 2000) 

which share the general framework of optimization by canonical ant colonies (COA).  In general, any 

algorithm containing an exchange of information between agents via the environment, i.e., stigmergy, 

can be deemed an ACO.  A thorough survey of ACOs can be found in (Dorigo 2006). 

The first approaches to using ACO to handle multiple objectives were based on the ordering or 

weighting the objectives according to their relative importance (Gambardella et al 1999, T’kindt et al 

2002, Doerner 2003).  However, when preferences or weights cannot be given, the goal is to find a set 

of non-dominated solutions that are optimal in the Pareto sense.  The first ACO algorithm for finding 

non-dominated solutions was proposed in (Iredi et al, 2001) for the bi-objective scheduling problem, in 

which heterogeneous multiple colonies were used.  The ants differ in their preferences to either of the 

two criteria; and every colony uses two pheromone matrices, each suitable for one optimization 

criterion, so that ants were able to find different solutions along the Pareto front.  Later, this approach 

evolved into a hybrid one (Häckel 2008) by merging Dynamic Programming and Look-Ahead Heuristic.  

Multi-objective ACOs have had successful applications such as portfolio selection (Doerner 2006), and 

the quadratic assignment problem (Ibanez 2004).   

1.3 Predator-prey co-evolution 

Another socially motivated approach is predator prey models. They take their cue from 

population biology where predator movement is based on information that is not only dynamic 

temporarily as in ant colony optimization but spatially as well.  It is based upon the assumption that a 
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predator will remain in an area until the calories extracted from prey drop below a certain point relative 

to the calories that will be expended travelling to another location (Charnov, 1976).  Adoption of 

predator-prey co-evolutionary models in solving MOPs is sparse.  However, in one existing work 

Drezewski (2007) concluded that “the tendency to lose population diversity appeared” during the 

solution process. This often led to premature convergence. 

1.4 Cultural Algorithms (CA) and Multi-objective CAs 

The next socially motivated evolutionary learning system is the Cultural Algorithms (CA) 

(Reynolds 1979, Reynolds 1994), which may be popularly considered as an extension of Genetic 

Algorithms (GA) (Goldberg 1989).  However, the CA includes much more than the GA. While the former 

simulates the process of population evolution, additionally, the CA recognizes interaction between 

individuals form a culture.  In other words, the CA is a functional model of the process by which human 

fitness is improved through knowledge sharing in a population.   

Culture is dynamic and always evolving.  Human activities continuously reshape the culture, 

inject new material into it, and promote new stages while we are reversely defined and constrained by 

the extra-natural "culture" or "society" (Schwimmer 1996).  This bidirectional interaction that pushes 

forward the cultural evolution process has a straightforward mapping in the CA.  The major components 

of a Cultural Algorithm are the population space, the belief space, and the communication protocols, 

including acceptance and influence functions, through which the first two components interact.  The 

population space can support any population-based computational model, such as Genetic Algorithms, 

Evolutionary Programming, etc.  The primitive framework is shown in Figure 1.2. 
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Figure 1.2  Basic Framework of the Cultural Algorithm 

The Cultural Algorithm has been applied to solve a variety of problems in business, science, 

industry, and society.  With its ability to step across a larger range of time and space, the CA was used to 

model the evolution of agriculture (Reynolds 1979) and to assess how humans have solved MOPs 

relative to the different criteria for ancient site location in the Valley of Oaxaca, Mexico (Reynolds and 

Nazzal 1997).  These criteria related to defensive location on the one hand to accessing resources and 

trade routes on the other hand.  As a system characterized by human activities, it provides a flexible 

framework (Reynolds 1994) in which to study the emergence of organizational complexity in a multi-

agent system (MAS).  Additionally, CA has been used to solve benchmark optimization problems (Chung 

and Reynolds 1998) and to solve real-valued function optimization (Jin and Reynolds1999, Reynolds and 

Saleem 2005).  Recently the Cultural Algorithm was applied to the study of optimization problems of 

varying complexity, from simple to chaotic in a “cones world environment” (Peng 2004, Che 2009). 

As a result of its successful applications to single objective problems, CA has been adopted in 

solving MOPs.  The first application was done by Nazzal (1997).  His approach echoed that of Schaeffer in 
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that the different objectives were weighted as part of a single objective function.  The goal was to 

determine what objectives were most important in driving the settlement observed in an ancient 

civilization in the Valley of Oaxaca, Mexico (Reynolds and Nazzal 1997).  More recently, Coello-Coello 

(Coello-Coello and Becerra 2003) developed a CA for multi-objective problems in which they saved the 

non-dominated agents into an external memory, which was similar to the Cultural Algorithm’s 

Situational knowledge and considered as a belief space.  They located these non-dominated agents in 

the objective space, and if the external memory was full but new non-dominated agents were found, 

one individual who had a crowded neighborhood would be replaced.  . This was thought to reduce the 

likelihood of premature convergence.  Most recently, the original CA implementation has been 

expanded for MOPs (Best et al. 2009) using a wider variety of Cultural Knowledge and it was concluded 

that “Cultural Algorithms are a promising technique for solving multi-objective problems” (Best, 2009).  

Even with this promising early-stage success, the multi-objective CA has still many more 

opportunities for improvement.  Here we have developed a design for a full-fledged multi-objective 

Cultural Algorithm optimization engine, MOCA.  The key is to investigate how the different knowledge 

sources present in the Cultural Algorithm can be used to guide the solution process.  Specifically we will 

inquire about what additional information needs to be added to the knowledge sources to enable 

efficient searches to take place.  

In this thesis, we will investigate the extent to which the Cultural Evolution process can fully 

support the multi-criteria optimization process.  Since the spatial and temporal scale of CA encompasses 

all of the other approaches, multi-objective techniques used with them can in fact be applied within the 

cultural algorithm framework.  We begin in chapter 2 by summarizing the existing achievements of 

multi-objective CAs’ and analyzing how to take advantage of merits of the features of other MOEAs in 
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order to enhance the performance of a CA for multi-objective problems.  Some of the features used by 

other MOEAs that we will exploit here will be spread and volume. We will examine in our experiments 

how these different features are exploited by the CA during the problem solving process.  

1.5 Organization of the dissertation 

The organization of the dissertation is as follows. Chapter 2 explores the literature of multi-

objective algorithms, including a very brief introduction to CA.  Chapter 3 then enumerates the details of 

previous enrichments to CAT, including the latest version, MOCAT, which is able to handle MOPs.  

Chapter 4 describes the design of the improved MOCAT, which is to a large-extent self-adapting, by 

choosing a specific network configuration that most effectively helps propagating knowledge among 

populations.  Chapter 5 presents the concrete implementation of MOCAT which can also serve as a 

simple user manual.  Chapter 6 introduces the experimental framework with demonstrations of various 

system output.  Chapter 7 discusses and analyzes the experiment results on ZDT1, which has a 

continuous concave Pareto front and may be considered as easy for some MOEAs.  Chapter 8 focuses on 

experiment results on ZDT2, which is similar to ZDT1 but has a convex Pareto front.  Chapter 9 analyzes 

the experiment results on ZDT3, whose Pareto front consists of five separate segments.  Chapter 10 

discusses the experiment results on ZDT4, whose Pareto front has a similar shape with ZDT1 but is 

discrete.  Chapter 11 presents experiment results on ZDT5, which has string encoding for individuals 

instead of normal numeric representation and was missed in some related literature.  Chapter 12 

discusses about experiment results on ZDT6 whose Pareto front does not cross the whole objective 

space.  Each of the ZDT benchmark problems has special characteristics which are discussed in details in 

corresponding chapter.  Finally, Chapter 13 summarizes all experiment results and concludes the 

dissertation. 
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CHAPTER 2  LITERATURE VIEW OF MOEAS 

Most initial research in the optimization field focused on single-objective problems.  Since there 

is only one objective, all solutions can be compared based on one criterion, naturally, the solutions 

together compose a totally ordered set.  As a consequence, making a choice between two solutions is 

generally uncontested. 

If multiple objectives can be unified into one objective function, i.e., the objectives are not 

conflicting with each other, such a problem is a single-objective one in nature because the minimum 

solution corresponding to any objective function is the same (Deb, 2001).  And, certainly single-objective 

algorithms can solve them by combining multiple objectives into one.  Those problems that contain no 

solutions that are optimal for all objectives are commonly named well-formed (wiki 2010, Beheshti and 

Rahmani 2009) and are the focus of interest in this study.  Traditional single-objective optimization 

algorithms cannot be adopted for well-formed MOPs without some modification.  In other words, 

single-objective optimization is not a degenerate case of multi-objective optimization but rather the 

latter is not merely a simple extension of the former. 

Among optimization algorithms, Evolutionary Algorithms (EAs) (Deb, 2001) mimic nature’s 

evolutionary process in order to direct its search towards optimal solutions: reproduction, mutation, 

recombination, and selection.  Candidate solutions to the optimization problem play the role of 

individuals in a population, and the fitness is determined in the environment within which the solutions 

live.  Evolution of the population takes place after the repeated application of the above operations.  

Since in each round of evolution a population exists and is processed, the outcome of an EA is the 

existence of a set of solutions.  The ability of EAs to produce multiple optimal solutions in one single 
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simulation run makes them ideal in solving MOPs, especially while classical optimization methods can at 

best find one solution in one simulation run.  Such EAs are called Multi-Objective Evolutionary 

Algorithms (MOEAs). 

Based upon the type of interaction between agents, MOEAs are divided into two genres, non-

socially-motivated, and socially-motivated.  In the latter genre, knowledge can be explicitly exchanged, 

either directly or indirectly, or both, between problem solvers in the solution of an optimization problem.  

It is a common occurrence within social systems to have agents deciding between numerous conflicting 

objectives.  In fact, we argue that for cultures to survive they must support mechanisms for the solution 

of such multiple objective problems.  As a result, socially-motivated MOEAs are prominently pervasive 

and successful in solving MOPs, and thereafter in this thesis they are of our special focus.  However, to 

complete this section, non-socially-motivated MOEAs are introduced as well. 

There are a few popular MOEA approaches, among which are PSO, ACO, and the Cultural 

Algorithms.  In the rest of this chapter we will go through each optimization approach by describing their 

unique characteristics and how they are proposed to handle MOPs. 

2.1 Non-socially-motivated Optimization algorithms 

The first real application of evolutionary algorithm was a non-socially motivated one which tried 

to find multiple trade-off solutions in one single simulation run (Schaffer 1984).  In fact, this work was a 

modified single-objective genetic algorithm that had the ability to capture multiple weighted solutions.  

As the first exploration into multi-objective optimization, the algorithm tended to converge to individual 

optimal solutions after a large number of iterations.  The next work on MOEAs (Goldberg 1989) 

successfully brought up the concept of domination in its simple 10-line code draft.  Ever since then, a 
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number of researchers have developed different implementations of MOEAs using this important 

concept.  Domination is a partial order relationship in which a dominating solution is superior to 

dominated solutions in terms of all objectives.  In his book Goldberg (Goldberg 1989) pointed out that 

while traditional numerical calculation algorithms were efficient to some specific problems, they were 

not as robust as evolutionary algorithms.   

Fonseca and Fleming (Fonseca and Fleming 1995) proposed a multi-objective GA and identified 

some issues that were raised by MOEAs, such as how they affected the fitness landscape.  Srinivas and 

Deb proposed a non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994).  Later, Deb 

and other proposed a fast and elitist MOEVA, NSGA II (Deb et al. 2000).  Horn, Nafploitis and Goldberg 

presented niched Pareto-GA (Horn, Nafpliotis, and Goldberg 1994).  It was very soon verified that 

domination-based MOEAs could be reliably used to find good solutions.  At the same time, other 

different versions of EAs were successful in solving MOPs as well.  For example, Kursawe used diploidy 

approach (Kursawe 1991) which tried to gain insight into the structure of the Pareto set by computing a 

finite number of efficient solutions.  Osyczka and Kundu proposed a distance-based GA (Osyczka and 

Kundu 1995).  Hajela and Lin proposed weight-based approach (Hajela and Lin 1992) for designs of 

structural systems with a mix of continuous, integer and discrete design variables.   

2.2 Socially motivated optimization algorithms 

Socially motivated evolutionary approaches support the explicit interaction of individuals.  These 

approaches are a good fit with the multi-objective approach since they will allow sub-groups of the 

population to work on different objectives.  In the Figure 1.1 several of the most popular socially 

motivated approaches are presented in terms of the scales (spatial and temporal) of the original social 
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system from which the approach was taken.  We can see that various socially motivated algorithms scale 

remarkably different in the two dimensions.  Admittedly, the difference originated from the social 

system that they tried to emulate.  Each of these original versions was extended to deal with multi-

objective problems.  In the rest of this chapter we will discuss the original work, MOP versions, and 

improvements done for the change for PSO, Any Colony Optimization, and Predator-Prey models.  We 

will discuss Cultural algorithms separately in the next chapter. 

2.2.1 PSOs and MO PSOs 

PSO (Kennedy and Eberhart, 1995), a population based stochastic optimization technique, was 

first inspired by the social behavior of bird flocking or fish schooling (Kennedy, 1998) with some add-ons 

to simulate human social behavior.  

To emulate intelligent behaviors, a small piece of memory of each agent —the best position it 

has been—is retained and implemented in code as an array of PBEST.  Conceptually, each individual 

remembers its own experience and the velocity adjustment associated with PBEST has been called 

“simply nostalgia” since the individual tends to return to the place that most satisfied it in the past.   

While birds and fish adjust their physical movement to avoid predators and seek food, humans 

adjust not only their physical movement, but also cognitive or experiential factors as well.  To emulate 

intelligent behaviors at this level, each agent senses the globally best position, marked as GBEST, that 

one member of the flock had found.  Obviously, GBEST is conceptually similar to publicized knowledge 

which all individuals seek to attain.   

The pseudo code of classic PSO taken from (Eberhart et al, 2001) is shown below: 



15 

 

 
 

For each particle: 

        Initialize particle 

End For 

 

Do: 

      For each particle POP[i]: 

            Calculate fitness value 

            If the fitness value is better than the best fitness value (PBEST[i]) in  history 

                  Set current value as the new PBEST[i] 

         End For 

      For each particle POP[i]: 

            Find in the particle neighborhood, the particle with the best fitness 

             Calculate particle velocity according to the velocity equation 

            Apply the velocity constriction 

            Update particle position according to the position equation 

            Apply the position constriction 

         End For 

While maximum iterations or minimum error criteria is not attained 

Figure 2.1  Pseudo code of the classic PSO 

In general PSO is similar to GA in that it is initialized with a population of random individuals and 

searches for the optima by updating generations.  However, unlike the GA, PSO has no evolutionary 

operators such as crossover and mutation.  Instead, in each generation every particle may change its 

velocity and move towards a local best solution or a global one.  As a result, the PSO requires only 

primitive mathematical operators, and is computationally inexpensive in terms of both memory 
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requirements and speed.  The side effect is that it is mainly used for problems in which only limited 

communication is needed between individuals; which is why in Figure 1.1 it is located near to origin 

point.  Another problem is that in emulation, the flock can quickly settle on a unanimous, unchanging 

direction.  Therefore, a stochastic variable called craziness was introduced (Eberhart et al, 2001), which 

was reflected as the random coefficients in the formula calculating the individual velocity.  The formula 

used in the original PSO is described as: 

                                                                

                             

In this formula, POP represents the population. Therefore, POP[i] is an agent while superscripts 

T and T+1 indicate the generation number and P_INCREMENT is a constant that specifies how agile an 

agent is when moved to a position that is guided by both its own memory and the global optimum.  In 

the original paper P_INCREMENT was set to 2. 

Among multi-objective versions of PSO, one of the first efforts was MOPSO (Coello-Coello and 

Salazar 2002) which borrowed the concept of Pareto dominance to better rank the fitness of individuals 

and used a secondary population to store the non-dominated solutions that had been found so far to 

guide the flock to good solutions.  The motivation of proposing MOPSO was described as “The use of 

global attraction mechanism combined with a historical archive of previously found nondominated 

vectors would motivate convergence towards globally nondominated solutions.” In some sense, the 

secondary population served the same role as Situational knowledge does in Cultural Algorithm as we 

will discuss later.  As in the original PSO, in MOPSO each agent still retains its own memory of the best 

position that it has explored by-far.  However, the MOPSO maintains multiple non-dominated agents in 

its global memory and adopted a complex calculating process to choose one of them to affect the agent 
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during evolution.  Such global information became effective through a geographically-based approach 

with the intention to maintain population diversity.  This corresponds to topographic knowledge in the 

basic cultural algorithm.  The whole evolution process will be explained in detail below. 

At the beginning of the evolution of MOPSO, every particle is initialized to be stationary.  For 

each particle POP[i] a memory is maintained in PBESTS[i].  During the evolution of T+1th round, the 

following formula was used: 

                                                                           

In this formula which mainly derives from the original single-objective one, W was the inertia 

weight and takes a value of 0.4 (while in PSO 1 was taken for granted).R1 and R2 are two random 

numbers in the range [0, 1] that depict the craziness of this individual.  PBESTS is an array saving the best 

memory for each agent, which may be updated only when a new non-dominated agent is found,  

While the whole formula is straightforward to understand,       which replaced the single-

value GBEST in the original formula, needs extra explanation: It is a value take from the repository and is 

selected in the following way in each generation: 

Divide the objective space into hyper-cubes (which is a multiple dimensional analog of a cube) 

and assign values to them that are calculated by the underneath formula: 

Hyper-cubes containing no particles are assigned 0; 

Hyper-cubes containing one particle are assigned the particle's fitness value; 

Hyper-cubes containing multiple particles are assigned a fitness equal to the result of 

 

                                     
, where x>1 and is an any number, in the original paper, x=10.  
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This is named fitness sharing by giving crowded hyper-cubes small values proportional to its 

particle density 

Apply roulette-wheel selection on these fitness values to select one hyper-cube; 

Select one particle (randomly if there are more than one particle) from the selected hyper-cube, 

its position will be        .   

During this step of evolution, particles will be updated while avoiding moving particles out of the 

search space: 

                                  

Then, for each agent,           will be updated if its new position dominates the previous best 

ones in the memory. 

By doing this MOPSO tried to improve the speed in which particles are moved towards the 

Pareto fronts and enlarge the diversity by fitness sharing.  Later, an improved version EMOPSO 

(Toscano-Pulido etc, 2007) used a list of methods to improve its original algorithm by distributing non-

dominated solutions. 

First, EMOPSO used an adaptive grid (Knowles and Corne, 2000) which was a space formed by 

adjacent hyper-cubes that have as many coordinates as objective functions.  Each hyper-cube 

represents a geographical region that contains some number of individuals.  The adaptive grid allows us 

to store non-dominated solutions and to redistribute them when the maximum capacity of the hyper-

cube is reached.  When each solution is generated, its grid location in objective space is determined.  As 

the individual appears in one hyper-cube, the edges of this hyper-cube may be bisected in the middle so 
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that a smaller hyper-cube containing the individual is produced.  One normal cause for this further 

division is that the number of agents in the hyper-cube exceeds some threshold.  Creating a classic 

hyper-cube grid can be memory prohibitive because, there are totally d dimensions and if we repeatedly 

bisect the range in each objective l times, there will be 2lxd hyper-cubes generated.  For example, for a 4-

objective problem with l=5, the objective space is divided into 1,048,576hyper-cubes.  To remedy this 

exponential worst-case memory usage, the adaptive grid just divides the crowded hyper-cube as needed.  

Two other benefits come with this adaptation.  First, there is a smaller computational cost at the 

beginning and second, there is no pre-defined cube size is needed.  The concept is exactly the same with 

Topographic knowledge in the Cultural Algorithms (Jin and Reynolds, 1999). 

In EMOPSO, to both prevent being crowded in one hyper-cube and further reduce the load of 

calculation, a note of ε-dominance was used.ε-dominance is a relaxed form of dominance in which the 

so-called ε-Pareto set is an archiving strategy that maintains a subset of generated solutions. The 

general idea of this mechanism is to divide the objective function space into subspaces of size ε but no 

further.  In other words, no edge of any hyper-cube can be smaller than this fixed value.  Inside each 

hyper-cube, the contained agents can be interpreted as a geographical region that contains a single 

solution.  The approach accepts a new solution into the ε-Pareto set if: 1) it is the only solution in the 

box which it belongs to; 2) it dominates other(s) solution(s); or 3) it competes against other non-

dominated solutions inside the subspace, but it is closer to the origin vertex of the box.  In both theory 

and practice, it guarantees convergence and diversity according to the value of the ε parameter, which 

defines the resolution of the grid to be adopted for the secondary population.  This mechanism prevents 

the infinite division of the adaptive grid when the fitness is evaluated in terms of real numbers.  One 
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practical challenge of using ε-dominance is the unknown box size, i.e., the ε parameter which is 

problem-dependent and normally not known before executing a MOEA. 

Additionally, EMOPSO tried to distribute non-dominated solutions using so called Hyper-plane 

distributions.  The motivation was to create a series of individuals that are well distributed and a 

reasonable representation of the objective hyperspace and use them to guide evolution.  The algorithm 

divided hyperspace into n−1 regions.  A perpendicular line to the hyper-plane was computed for each 

regional vertex.  Then only the solutions which were closest to each line could be selected for 

population during evolution.  While the above description is abstract, the concrete example that was 

given in the proposal of EMOPSO is actually easy to follow, which is copied here in Figure 2.2.  In those 

figures, black dots represent agents that are located at the current Pareto front while the dotted line 

depicts the real Pareto front, shown in the top right figure.  In order to efficiently guide the search to 

evenly cover the real Pareto front, five representative solutions, including both end points of the Pareto 

front, and their corresponding normal lines (lines perpendicular to the tangent planes) are marked out, 

as shown in the bottom left figure.  An agent with the closest distance to any normal lines has priority to 

be propagated into the next generation over others with larger distance, which is shown in the bottom 

right figure.  There, three agents are selected in this case while others are eliminated according to this 

policy. 
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Figure 2.2  Graphical representation of the hyper-plane distribution of EMOPSO 

Experiments comparing EMOPSO and NSGA-II showed that EMOPSO was able to depict 

reasonably good approximations of the Pareto front of problems with up to 30 decision variables with 

less computing load than NSGA-II.  With limited computation, EMOPSO was superior to NSGA-II 

regarding spread on Pareto front.  However, the paper also indicated that “if allowed to perform a 

higher number of fitness function evaluations, the NSGA-II would be able to converge to the true Pareto 

front of most of these test functions”; in other words, EMOPSO performs better only with limited 

computing. 
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In addition to the above approaches to maintaining a set of well-distributed non-dominated 

solutions, the turbulence operator was introduced that avoids premature convergence, which was not 

reflected in the above formula.   

                       
                  

                 
 
   

       
                  

                 
      

This turbulence operator alters the flight velocity of a particle in all dimensions so that the 

particle can move to completely isolated regions.  From the formula we can see that the probability of 

turbulence becomes smaller along generations, i.e., the extent to which the modification caused by 

turbulence attenuated along with the evolution progress.  This change is desired because at the 

beginning of the search there should be higher probability to perturb the flight of the particles so that 

they intend to explore unknown spaces, and at the end the particles should move slowly so that they are 

easy to converge to Pareto front. 

As to constraint handling, EMOPSO inherited the approach proposed in (Pulido and Coello, 

2004).  The idea was to punish the particle that was infeasible under the constraints in selecting a leader.  

When comparing two particles, if both of them are feasible, the one with higher fitness value wins.  If 

one is feasible while the other is not, the feasible one wins.  If neither is feasible, the particle that has 

the lowest value in terms of its total violation of constraints (normalized with respect to the largest 

violation of each constraint achieved by any particle in the current population) wins.  

So, in total, EMOPSO has the following improvements MOPSO: 1. Using norms of the evenly 

distributed positions along the real Pareto front to help distribute solutions obtained by the algorithm, 2. 

Adding a turbulence operator to spread the flock and prevent premature convergence especially at the 
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early stage of evolution, 3.  Contronlling the number of sub-swarms by using ε-dominance; 4. Handling 

constraints by punishing violating agents.   

A summary of multi-objective PSOs can be found in (Reyes-Sierra 2006).  There, the authors 

suggested that to solve multi-objective problems, PSOs have to “1. Maximize the number of elements of 

the Pareto optimal set found.  2. Minimize the distance of the Pareto front produced by our algorithm 

with respect to the true (global) Pareto front (assuming we know its location).  3. Maximize the spread of 

solutions found, so that we can have a distribution of vectors as smooth and uniform as possible” 

(page291).  One thing worth pointing out is that in different variations of multi-objective PSOs different 

neighborhood topologies are used, among which there are two popular ones: fully connected and ring; 

which have been applied in the CAT system as well. 

Recently, metrics, such as spacing and maximum spread combined, have been used to evaluate 

the evolution of Pareto fronts.  During evolution the metrics were used to determine the switching rules 

between the operation modes and it was found that the combination of multiple metrics outperformed 

other algorithms that used only one metric (Bastos-Filho and Miranda, 2011).   

2.2.2 ACO  and MO ACOs 

It has been long known that ants were capable of finding the shortest path from a food source 

to the nest without using visual cues (Hölldobler and Wilson, 1990).  Ants were also observed to be 

capable of adapting to changes in the environment, for example, finding a new shortest path once the 

old one is no longer feasible due to a new obstacle.  Ant Colony Optimization (ACO) (Dorigo et. Al, 1996) 

was inspired by the observation of laboratory ant colonies (Beckers, Deneubourg, and Goss, 1992). 
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It is well known that the primary means for ants to form and maintain the line is a pheromone 

trail.  In the Ant Colony Optimization Algorithms, an ant is defined to be a simple computational agent, 

which iteratively constructs a solution to a problem, frequently a path planning problem.  In the model, 

ants deposit a certain amount of pheromone, a chemical substance, while walking, and each ant 

probabilistically prefers to follow a direction rich in pheromone.  Thus, the pheromone and the density 

of the pheromone along the trail is the knowledge that the ACO shares among its individual ants.  Partial 

problem solutions are seen as states and each ant moves from a state to another one corresponding to 

a more complete partial solution.  At each step, each ant computes a set of feasible expansions to its 

current state, and moves to one of these according to a probability distribution. 

Since the first ACO emerged in the 1990s, several other ACO algorithms have been proposed.  

One thing worth pointing out is that there are many variations of ACOs (Dorigo and Gambardella, 1997, 

Stützle and Hoos, 2000). In general, any algorithm containing the exchange of information between 

agents via the environment, i.e., stigmergy, can be deemed an ACO.  A thorough survey of ACOs can be 

found in (Dorigo 2006), which observed that ACOs had been applied for NP-hard problems, dynamic 

optimization problems, stochastic optimization problems, continuous-variable optimization problems, 

etc. 

The pseudo code of the classic ACO is available from (Mariezzo and Carbonaro, 1999). 

Step 1. (Initialization) 

        Initialize τιψ, ι, ψ 

 

Step 2. (Construction) 
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For each ant k do 

repeat 

compute η ιψ, ι, ψ 

choose the state to move into 

append the chosen move to the k
th

 ant’s set tabuk 

until ant k has completed its solution 

carry the solution to its local optimum 

End For 

 

Step 3. (Trail upate) 

For each ant move (ιψ) do 

computer Δτιψ 

update the trail matrix 

End For 

Step 4. (Terminating condition) 

If not (end condition) go to step 2. 

Figure 2.3  Pseudo code of classic ACO 

The first approaches to using ACO to handle multiple objectives were based on the ordering or 

weighting the objectives according to their relative importance (Mariano 1999, Gambardella et al 1999, 

T’kindt et al 2002, Doerner 2003); their approach suggested that they were not working on well-formed 

MOPs so that they are out of our concern in this thesis.   

The first ACO algorithm for finding non-dominated solutions was proposed by Iredi et al (Iredi et 

al, 2001) for the bi-objective scheduling problem.  This paper pointed out one important fact that 

multiple colony ant algorithms have been proposed before as parallel ACO algorithms, which were 
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different from multi-objective ACOs.  Iredi worked on the Single Machine Total Tardiness Problem 

(SMTTP), which is known to be NP-complete.  In this problem there are two optimization objectives: one 

is minimizing the sum of the waiting times of all jobs, while the other one is minimizing the changeover 

costs that happened when the machine switched its service target.  Both objectives needed to be 

minimized and were intuitively conflicting with each other.   

Heterogeneous multiple colonies were used Iredi. i.e., the ants differed in their preferences to 

either of the two criteria; and every colony used two pheromone matrices while each suitable for one 

optimization criterion, so that ants were able to find different solutions along the Pareto front.  In the 

extreme case, an ant considered only one objective while totally ignoring the other one.  Obviously, 

following this permutation patter, for n objectives, there are totally n2 configurations, in one of the n 

colonies n different pheromone matrices are used.  To update the pheromones, all ants in the non-

dominated front of the generation were allowed to update.  An ant that updated would update both 

pheromone matrices corresponding to the two objectives.  However, Iredi pointed out that this strategy 

made sense only when there were not too few ants in a colony, because otherwise no real competition 

about best solutions could be expected to occur since the sparse ants would search in different regions 

of the nondominated front.  Nonetheless, it was not explicitly defined how many agents were enough to 

avoid this problem. 

Later, this approach evolved into a hybrid one (Häckel 2008) which combined dynamic 

programming and a Look-Ahead Heuristic (LAH) into the implementation.   

Dynamic Programming (Bellman, 1957) is a method for solving complex problems by dividing 

them into simpler sub-steps.  For example, Dijkstra’s shortest path algorithm in a graph can be viewed as 

an instance of Dynamic Programming because in it the shortest path is the sum of the distances of the 
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source node to its neighbors and their neighbors to the target node, so that if we find the shortest path 

from the neighbors to the target node, the original problem is solved.   

Generally, when Dynamic Programming is applicable, the method is expected to take less time 

than classical methods because solutions to the complex problem are built upon solutions to smaller 

sub-problems which are easier to get and cached for reuse.  Because Häckel chose a problem in which 

all objective functions were separable and fulfilled the terms of Dynamic Programming, the algorithm 

was applied.  The intermediate results created by the Dynamic Programming were saved into a look-up 

table to facilitate future search, which is called Look-Ahead Heuristic (LAH). 

The test problem is a classic acyclic directed graph with three added objectives to be minimized: 

1. Monetary value of cost, which was the result of summing up all weights along the certain path, 2. An 

aggregated probability value, which was the product of all weights along the path that described the 

possibility of local hazard events, 3. A value subject to the Min-Max aggregation method, which could be 

used as a threshold for acceptability decisions. 

For an ant at a specific location, heuristic information about local status is provided to depict the 

length of a section or the attractiveness of a single alternative, respectively.  The pheromone 

information includes a global memory of the ants and therewith an experience about the global 

attractiveness of alternatives.  For the Traveling Salesman Problem (TSP) the available alternatives were 

built from the total number of edges that go out from the current node without the edges leading to 

already visited nodes.  To reach higher performance, the known shortest distance from the current node 

to the end node was used in calculating the heuristic value so that it was named the Look Ahead 

Heuristic. 
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2.2.3 Prey-predator 

Predator prey models were inspired from population biology where a predator is assumed to 

remain in current area until the calories extracted from prey drop below a certain point relative to the 

calories that will be expended travelling to another location (Charnov, 1976).  Another term to describe 

this scenario is co-evolution. 

Adoption of predator-prey co-evolution model in solving MOPs is sparse.  There is one existing 

work (Drezewski 2007) that used the predator-prey approach without explaining why the formulas were 

particularly suitable for MOPs in detail.  Two problems were used to test the proposed approach, 

CoEMAS.  It turned out that on the easy problem CoEMAS was slightly better than the other two 

algorithms, Predator Prey Evolutionary Strategy (PPES) (Laumanns 1998) and the Niched Pareto Genetic 

Algorithm (NPGA) (Zitzler 1999), but on the hard problem CoEMAS clearly won out.  Finally the paper 

concluded that “the tendency to lose population diversity appeared” and extra effort was needed 

“especially when we consider the stable maintaining of useful population diversity”. 

In general, all such socially-motivated optimization algorithms have simple social structures and 

strict evolutionary mechanisms.  Nonetheless, they lack competitions between different evolutionary 

propulsion and dynamics inside evolution.  The Cultural Algorithms have such merits. 

Add a conclusion section here saying what you did. 
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CHAPTER 3  INTRODUCTION TO THE CULTURAL ALGORITHM 

In every society, some social structures have emerged as the efficient solution of problems that 

the society must deal with.  Miraglia (Miraglia 1999) stated that, “culture, as a body of learned behaviors 

common to a given human society, acts rather like a template (i.e. it has predictable form and content), 

shaping behavior and consciousness within a human society from generation to generation”.  From this 

perspective, culture is useful in guiding the problem solving activities and social interaction of individuals 

in the population (Reynolds 1994).  Since in reality people are always facing multiple conflicting 

objectives and making decisions upon them, it has been conjectured that “Culture is an optimizing 

process”. Based on principles of human social evolution, Reynolds (Reynolds 1978) developed the 

Cultural Algorithm to model the evolution of cultural systems. 

Culture is not static but evolving. The culture we have, even just a few years ago, is much 

different from what we have now. Human activities continuously reshape it, inject new material into it, 

and promote new stages. At the same time, we often find ourselves defined and constrained by the 

extra-natural "culture" or "society"(Schwimmer 1997). This bi-directional interaction forms the cultural 

evolution process which is reflected in the Cultural Algorithms. 

At large, cultural evolution can be seen as an inheritance process that occurs at two levels: the 

micro-evolutionary level—in the population, and the macro-evolutionary level—in the culture; both at 

the same time and reciprocally (Melin etc, 2007).  As a result of emulating cultural evolution, similarly, 

the CA can also be viewed as running on two levels; in other words, it is deemed as a dual inheritance 

system that characterizes evolution in human culture at both the macro-evolutionary level, which takes 

place within the belief space, and at the micro-evolutionary level, which occurs in the population space.  
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Knowledge produced in the population space at the micro-evolutionary level is selectively accepted or 

passed to the belief space and used to adjust the knowledge structures there.  This knowledge can then 

be used to influence the changes made by the population in the next generation. 

3.1 History of the CA Implementation 

Elaborations to the Cultural Algorithms were made in two areas: with the belief space and 

within the population space.  First in terms of the Belief Space Chung and Reynolds (Chung and Reynolds, 

1998) began by using Situational and Normative knowledge. Situational knowledge reflects specific 

examples of performance for a problem. Normative knowledge reflects ranges of acceptable behavior 

by agents. Jin (Jin and Reynolds, 1999) added in topographic knowledge that describes aspects of the 

performance landscape for the problem solvers. 

Reynolds and Saleem (Reynolds and Saleem 2001, Saleem 2001) then amended these 

Knowledge sources by introducing Domain and History Knowledge; Saleem first started integration of all 

knowledge sources into the same Cultural Algorithm Framework while at the beginning knowledge 

sources were randomly selected to affect the population.  Saleem developed the Cultural Algorithms for 

Dynamic Environment (CADE) to investigate how knowledge structures in Belief Space affect in tracking 

changes in dynamic environments.   The internal structure of the Belief Space is depicts in the figure 

below. 
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Figure 3.1  Structure of the Belief Space of CADE 

It is shown in Figure 3.1 that the information extracted from the population can update multiple 

knowledge structures simultaneously; and two knowledge sources Historic and Situational will be 

additionally updated if a different evolution trend is found.  In their implementation, knowledge sources 

were selected randomly to influence individuals.  Saleem noticed that even with random selection 

knowledge sources performed better in some contexts.   

Peng (Peng 2004, Peng 2005) found that the similarities in social structures that emerged in 

similar cultures were a result of the integration of different knowledge sources in the solving process. So 

that she proposed a biologically motivated method to integrate the application of these knowledge 

sources based upon the Marginal Value Theorem (Charnov 1976) to drive the problem solving process.  

She demonstrated that certain social structures emerged from the Cultural System as a result of this 

approach.  Her system was implemented with Java and MATLAB was used for visualizing the 

experimental results. In her system, each individual agent in the population was associated with a single 
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knowledge source that influenced it at each time step and there was no exchange of information 

between agents in the population.   

Up to this point individuals in the population were viewed as independent entities whose 

communication was indirect through their contributions to the Belief Space.  Next, Ali (Ali 2008) 

expanded the ability of knowledge sources to influence a population through the notion of a “social 

fabric”, i.e., networks connecting individuals in the population.  He embedded the Cultural Algorithms 

framework within the Recursive Porous Agent Simulation Tool (Repast) (North and Howe 2005) and 

produced a toolkit called Cultural Algorithms Simulation Toolkit (CAT) (Reynolds and Ali 2008).  The 

network was called the “social fabric” because the connections between individuals were viewed to be 

easily modified during problem solving. The term was derived from work at IBM in which they were 

interested in building software to dynamically support interconnections between individuals in a 

software development team (Cheng, etc. 2005).  The social fabric enabled the spread of knowledge 

through a population. In his system, knowledge sources in the Belief Space select individuals from the 

population to directly influence. The actual decision as to which knowledge source was to influence 

individual agents in the population was made by a majority vote based upon the direct influence for the 

agent and that of their directly connected neighbors.  While the network itself was static, he allows the 

actual connections of the nodes in the network to be changed randomly at each time step, because Ali’s 

purpose was to “investigate whether just having access to the Social Fabric is sufficient for the 

Knowledge sources to improve the performance of the influence function as opposed to not having a 

network to distribute their influence at all”.  In these initial experiments, individuals were randomly 

connected with others at each time step. So there was no persistent connection between any pair of 

individuals. However, just having the ability to distribute successful influences through the population 
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space was sufficient to produce statistically significant improvement in performance for a set of 

benchmark engineering problems. 

Next, Che (2009) further investigated the effectiveness of various kinds of social fabrics in 

complex systems in his thesis.  In his research, networks of individuals had a memory, i.e., the network 

organization was established before the evolution began and its topology was retained all along: the 

connections between individuals remained fixed over the problem solving process while the individuals 

move to various different positions in the domain space. Additionally, Che upgraded CAT into version 2.0. 

CAT 2.0 embedding the Cultural Algorithm within an agent-based problem solving framework, Repast 

2.0. The agents make up the population space in the CAT systems and are interconnected with each 

other through a social network. With the consideration of the nature of MOPs, multiple agents are often 

used.  A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents that 

can be used to solve problems which are difficult or impossible for an individual agent or monolithic 

system to solve.  In the CAT system, the population component is made up of a population of Repast 

agents. 

Most recently, the CA has been expanded to handle MOPS (Best et al 2009) by introducing non-

domination sort into the implementation, which was named MOCA.  Best compared MOCA to NSGA-II 

using two performance metrics: hyper volume (HV) (Zitzler and Thiele 1999) and generational distance 

(GD) (Valenzuela-Rendon, Uresti-charre, and Monterrey 1997) on the benchmark known as DTLZ (Deb, 

etc, 2002).  With comparably good experiment results, Best concluded that the Cultural Algorithms were 

a promising technique for solving multi-objective problems.  Meanwhile, some behaviors were observed 

and correspondent future work was proposed, such as the gradient approximation that was used in 

domain knowledge source is not always effective and more heuristics might be used; the situational and 
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historical knowledge sources can achieve an acceptable spread on simple problems but not on problems 

with very uneven density and overall spread over the Pareto font sometimes can be improved.  Such 

proposals will be addressed in this thesis. 

In the rest of this section, most introduced features of the CA have been implemented in CAT 

2.0 and all multi-objective parts come from MOCA. 

3.2 The Cultural Algorithm Framework 

The basic CA framework is shown in Figure 1.2, from which it can be seen that the CA has three 

major components: a population space, a belief space, and a protocol that describes how knowledge is 

exchanged between the first two components, including accept process which extracts knowledge from 

population space into belief space, an update process that the adjusts the knowledge sources based 

upon this new information, and the influence function which enables specific knowledge sources to 

influence the behavior of problem solvers in the population space. 

While the CA is often viewed as an extension of GA, Cultural algorithms are additionally based 

on some theories proposed in sociology and archaeology to model cultural evolution, but not only GA. 

As a result, the population space of CA can support any population-based computational model, not 

exclusively Genetic Algorithms, such as Evolutionary Programming.  Similarly, there are no inherent 

restraints for the concrete implementation of the belief space.  The communication protocol can be 

developed independently of both the Belief Space and the Population Space as well.  Thus, over time 

additional knowledge sources, population structures, update processes, and communication protocols 

have been added into various versions of the system. Some example technologies that have been added 

are swarm-based, predator-prey based among others. 
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The pseudo code of the classic CA implementation is shown in Figure 3.2 below. 

Begin 

    t = 0; 

    initialize Bt, Pt 

repeat 

 evaluate Pt {objective()} 

 update(Bt, accept(Pt)) 

 generate(Pt, influence(Bt)) 

 t = t + 1; 

 select Pt from Pt-1 

until (termination condition  achieved) 

End 

Figure 3.2  Pseudo code of classic CA 

In the pseudo code, Pt represents the Population at time t, and Bt for the Belief Space at the 

same time.  When the CA begins, both the Population and the Belief Space are initialized.  In normal 

implementations, population is initialized with randomly created individuals that distribute in the 

domain space and belief space is initialized without knowledge or memory. 
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At each generation, individuals in the Population space are first evaluated with the objective 

function so that the good-performing individuals are found. The acceptance function, accept(), is then 

used to determine which individuals will be allowed to update the Belief space, which normally is an 

elitist activity.  Knowledge carried by those chosen individuals is then added to the Belief space via 

function update().  Next, knowledge from the Belief Space is instilled into some chosen individuals 

through the influence() function to produce new decision makers.  By merging the old generation and 

new individuals and filtering them to create the next generation, whose effect is expected to be 

transferred into the Belief Space in the next generation, we expect the product to have better 

performance than its precedents as a whole.  The Cultural Algorithm repeats this process for each 

generation until either a solution—for single-objective problems, or a good Pareto front—for multi-

objective problems is identified or a predefined iteration number is reached.  From this description we 

can see that the population and the Belief space interact with each other reciprocally in a way that is 

analogous to the evolution of human culture (Barkow et al 1995, Johnson and Earle 2000, Richerson and 

Boyd 2004).   

In the rest of this section, details of these components of the basic CA will be introduced. 

3.2.1 The Population Space 

The Population space is the framework in which individuals contribute to the belief space, 

assimilate new knowledge, and may be replaced by some descendants over time. Theoretically any 

population model can be used for the population; however, Che selected an agent-based framework for 

the Cultural Algorithm Toolkit. The agent based model was based on the Repast (North and Collier 2005, 

Anon 2008a), an agent-based simulation environment.  Agents can interact with other agents and with 

the knowledge sources through networks. 
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Frequently we need to find individuals in the population space that perform better than other 

peers.  In single-objective problems, it is unambiguous to find the winner in terms of performance and 

locate the top m individuals; however, in multi-objective problems, the concept of non-dominance takes 

the place of simple ranking.  As a general rule, if the CA wants a single good individual, it will be selected 

randomly from the Pareto front; if the CA wants a list of good individuals for the situational knowledge 

in the belief space then multiple agents are selected from the Pareto front; however, if there are not 

enough agents, then agents on the next Pareto front will be taken into consideration. , This process will 

be run until enough agents have been chosen.   

3.2.1.1 Agents 

There are multiple definitions of the concept of agent.  A general view is that any type of 

independent component can be viewed as an agent (Bonabeau 2001), no matter its behavior is a 

primitive reaction or complex intelligent system. On the other hand, others require very specialized 

behavior for an agent.  Casti (1997) insisted that a component’s behavior must be adaptive in order for it 

to be considered an agent. In other words, agents have to be able to learn from their environments and 

change their behaviors in response. Some (Dowty 1991) claimed that an agent is only a proto-agent if it 

maintains a set of properties and behaviors but does not exhibit learning behavior.   

Though the agents in a multi-agent system could be robots, humans or human teams, here we 

are mainly interested in software agents. One computer-science view (Jennings 2000) of agents 

emphasized the essential characteristic of autonomous behavior.  In other words, an agent is the 

capability of the component to make independent decisions. This requires agents to be active rather 

than purely passive. 
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Under this definition, the agents in a multi-agent system have several important characteristics: 

Autonomy, the agents are at least partially autonomous; Local views, no agent have a full global view of 

the system, or the global knowledge is too complex for an agent to make practical use; Decentralization, 

there is no designated controlling agent.   

3.2.1.2 Network Configuration (Social Fabrics) 

In addition to being autonomous, individuals in CA are impacting each other through a network 

of relations.  The interconnections among individuals in the population are viewed as a social fabric in 

which human culture which is created by the interactions between people.  After a knowledge source in 

the belief space selects individual from the population to influence, the candidate agent is affected by its 

peers that are connected by it through the social fabric. As in human culture, the impact of knowledge is 

distributed into the population through human interactions.  Each individual is connected to a set of 

neighbors and each individual is influence by a knowledge source.  A given individual decides which 

knowledge source to use in order to direct its decisions based on a weighted majority vote over itself 

and its neighbors. 

In order to emulate various social fabrics in human society multiple geometrical shapes of 

different complexity are used.  In this way, each agent has a particular position on the predefined and 

fixed network.  If we consider that the social fabric represents paths connecting agents, a specific 

organization of social fabric is a configuration of the links in one network. Here, we use network 

configuration to indicate a specific instance of the social fabric.  The term that was used in previous CA 

literature was that of a graph, which emphasized the geometric meaning other than the human-society 

metaphor.   
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The network configurations that have been used so far are lbest (local best with connection 

degree of two for each agent), square (degree of 4 for each agent), gbest (all individuals, degree of n-1 

nodes for each agent), star (one hub agent is connected to all other agents which have no other 

neighbors), and circle (agents are metaphorically arranged on circle and an arc centered at one agent 

covers its neighbors). Such topologies are shown below.   

 

Figure 3.3  Topology of lbest 

For the lbest network configuration, an individual is only aware of its closest neighbors, here l 

indicates local.  As shown in the figure, the top agent only knows the neighbors that are painted in dark.  

In lbest the information or influence flows in only one direction, left or right for a given structure. Ring 

structure is less likely to converge to a sub-optimal point and require fewer computations than the 

others. 
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Figure 3.4  Topology of global 

For global topology, every individual is connected to all the rest.  Admittedly, such a topology 

required the most calculation during influence because each agent has the maximum number of 

neighbors. Such topologies can produce premature convergence during the search process. 
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Figure 3.5  Topology of square 

For a square topology, an individual is connected to a square. No the agent is connect to four 

other neighbors. I have no idea what the thing above. 
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Figure 3.6 Topology of star 

In the Star topology, the hub individual is connected to all others individuals, while every other 

individual is only connected to the central one.  The number of neighbors is then either 1 or n-1, 

depending on the position of the individual. 
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Figure 3.7  Topology of circle 

The topology Circle can be deemed as an extension of lbest. In the circle the information flows 

in both directions from an individual. So each individual has two neighbors who can influence them 

while in a ring it is just one.  

In addition to those topologies that have been used in previous implementations, more ways of 

constructing a neighborhood topology can be found in (Jin, Girvan, and Newman 2001, Pattison and 

Robins 2002, Ebel, Davidsen, and Bornholdt 2002). 

3.2.2 The Belief Space 

Culture, as defined by Tylor in Primitive Culture(Tylor 1920), as “culture, or civilization, taken in 

its broad, ethnographic sense, is that complex whole which includes knowledge, belief, art, law, morals, 
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custom, and any other capabilities and habits acquired by man as a member of society.”  Certainly, a 

culture is overwhelmingly complex for existing modeling approaches.. 

In order to deal with that, anthropologists such as Durham (1991) suggested that cultural 

evolution can occur on both of two levels, the population level and the belief or knowledge level. In the 

previous section we examined aspects of the population space. Here, we describe the knowledge 

sources in the belief space and their interconnections. 

While there are other socially-motivated evolutionary algorithms, Cultural Algorithms 

distinguishes itself from the PSO and ACO algorithms in that the CA uses five basic knowledge types in 

the problem solving process rather than just one or two locally transmitted value.  It has been observed 

in the field of cognitive science that each of these knowledge types is supported by various animal 

species (Wynne 2001; Clayton, Griffiths etc, 2000) and it is assumed that human social systems at least 

support each of these knowledge types as well. The knowledge sources include: normative knowledge 

(ranges of acceptable behaviors); situational knowledge (exemplars or memories of successful and 

unsuccessful solutions etc.); domain knowledge (knowledge of domain objects, their relationships, and 

interactions); history knowledge (temporal patterns of behavior); and topographical knowledge (spatial 

patterns of behavior). This set of categories is viewed as being complete for a given domain in the sense 

that all available knowledge can be expressed in terms of a combination of one of these classifications. 

In the rest of this section, all knowledge sources will be introduced in detail.   Each knowledge 

source will be described in terms of a simple data structure in order to describe the major relationships 

supported within it. However, in any given application the exact implementation of each will vary. 
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3.2.2.1 Situational Knowledge 

Situational Knowledge maintains a set of non-dominated individuals, which can be viewed as 

exemplary cases, with the expectation of facilitating individual experiences.  Obviously, situational 

knowledge leads individuals to “move toward the exemplars”. This was the earliest knowledge source 

used with Cultural Algorithms and was inspired by elitist approaches in Genetic Algorithm.  This 

mechanism has been extensively adopted by various MOEAS, such as the GBEST in PSO.   

There is no specific data structure for this knowledge source.  For example in MOCA during 

update, non-dominated individuals are promoted into this knowledge source as exemplars.  In single-

objective application, the CA will keep a list of elitists in situational knowledge. In multi-objective 

optimization, the CA will randomly select from the Pareto front; and will go to the next Pareto front if 

there are not enough individuals here until enough exemplars are found to fill the list. 

3.2.2.2 Topographical Knowledge 

Topographical knowledge was originally named “regional schema” (Jin and Reynolds 1999). It is 

represented in terms of a multi-dimensional grid if there are more than one objectives or an array if 

there is only one objective.  While in CA the term grid cell has been used, some other literature uses 

hyper-cube to depict the same concept.  This mechanism has been used by other MOEAs such as the 

hyper-cubes in MOPSO. 

Topographical knowledge was motivated in conjunction with data mining problems where the 

problem space was so large that a systematic way of partitioning the space during the search process 

was needed so that search could focus on the promising areas. If we view a state as associated with a 
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region in the functional landscape then the topographic knowledge source is looking for new states. 

Thus, the state space may vary dynamically as new sub-regions are discovered and added to the mix. 

The topographical knowledge source is initialized by sampling a solution in every grid cell and 

creating a list of best cells. The update occurs when a cell is divided into sub-cells when an accepted 

individual’s fitness value is better than the best solution in that cell, or if the fitness value of the cell’s 

best solution has increased after a change event is detected.  In reality, topological knowledge is used to 

distribute individuals potentially over the entire landscape. 

 

Figure 3.8  Structure of Topographical Knowledge: different space volumes 

Figure 3.8 presents a division of the gird, some cells are large, while some other have been 

divided into smaller ones recursively because more non-dominated individuals have been found in them.  

Conceptually, topographical knowledge is similar to adaptive grid that had been used in EMOPSO. 

One of the important changes is that Topographical knowledge is implemented upon the idea of 

belief cell [98] to answer the challenge given by high dimension.  Previously, MOCA cut the whole 

objective space into sub space and continue the process along with evolution.  This method was similar 

to adaptive grid [97] that had been used by many other MOEAs.  However, one mere division on each of 
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30 dimensions will produce 230 sub spaces.  This large number exerts heavy and unnecessary computing 

burden to MOCA.  To solve the explorative growth of power function, MOCA borrowed the concept of 

belief cell in that the whole space is virtually divided into sub spaces in advance; and only those who 

containing non-dominated individuals and thereafter look promising are deposited into the Topographic 

knowledge.  For example for a problem having 30 dimensions, if each dimension is divided into 10 

segments, there are totally 1030 sub spaces.   

At the beginning of evolution, population is randomly created.  Since then on, the population 

evolves in the same way of MOCA.   

3.2.2.3 Normative Knowledge 

Normative Knowledge retains a set of intervals for objectives that provide promising variable 

ranges for good solutions, metaphorically, define standards for social individual behaviors.  Such 

intervals are named beacon.  While use of norms is the key of human social intelligence (Clayton et al 

2000), normative knowledge is expected to guide an individual to jump into a good range if it is not 

already there.  This mechanism is rarely seen in related literature. 

The normative knowledge data structure for n objectives is shown underneath. 

Object 1 Object 2 …… Object n 

[L1, U1] [L2, U2] …… [Ln, Un] 

Figure 3.9  Normative Knowledge 

For each objective, there is a pair of number defining the lower and upper bond of the range in 

which good individuals are expected to be found.  During update procedure, beacons are updated 



48 

 

 
 

according to the current non-dominated individuals.  During influence procedure, if the chosen 

individual is outside of the good range, then one that is randomly produced in the good range will 

replace it. 

3.2.2.4 Domain Knowledge 

As its name suggests, domain knowledge takes advantage of the knowledge of the problem 

space to guide search into good areas in objective space efficiently.  Say, for a continuously derivable 

solution surface, we can use the maximum gradient of a give location to guide the individual to move 

upwards quickly.  When the CA dealt with the “Cones World” (Che 2009) to produce arbitrary real-

valued landscapes, such a strategy was used.  This mechanism was adopted by some MOEAS and 

deemed as a hybrid approach of accelerating search in local areas, such as the hill climbing using local 

differentials in a hybrid evolutionary algorithm (Gong etc 2010). 

3.2.2.5 Historical Knowledge 

Historical knowledge, also known as temporal knowledge, monitors the search process and 

records good Individuals that have been found historically.  In order to reason about global dynamics 

and to facilitate backtracking or the retracing of actions, it contains information about sequences of 

environmental changes in terms of shifts in the distance and direction of the optimum in the search 

space.  This knowledge source does not only save the locations of the good individuals—which has been 

done by situational knowledge—but also the direction for finding them.  Therefore, history knowledge 

can consult those recorded events for guidance in predicting a good move direction.  While it is easy to 

see avatars of situational knowledge in other MOEAs, historical knowledge is rarely seen in related 

literature. 
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Its cognitive origin comes from episodic memory (both in humans and animals), which is a type 

of event-based memory. It stores information about events, and temporal-spatial relations among those 

(Heyes and Huber 2000). 

History knowledge is expected to provide a global perspective regarding the change in solutions. 

It computes the average change in parameter values within a region, the window size, and predicts the 

direction of the shift in the optimum from the previous position. The knowledge data structure 

representation is shown underneath. 

Individual1 

location: (x1, x2, … xn) 

direction (d1, d2, …dn) 

Individual1 

location: (x1, x2, … xn) 

direction (d1, d2, …dn) 

... … Individual1 

location: (x1, x2, … xn) 

direction (d1, d2, …dn) 

Figure 3.10  Data structure of Historical Knowledge 

To help guide the optimization process, knowledge sources have been selected in order to 

influence members of the population by sampling a dynamic probability distribution, which was 

implemented as a roulette wheel in source code. As the optimization runs, we adjust the distribution of 

knowledge sources in order to encourage knowledge sources that are producing promising individuals 

by increasing their probability.  Additionally, a mechanism for the preventing the starvation of any 

knowledge source was implemented by giving each knowledge source a minimum quota of influencing, 

with the intention of ensuring that all sources have the opportunity to affect the evolution. 

3.3 Effectiveness of MOCA and weakness 

Best’s MOCA confirmed CA’s ability for solving MOPs while bringing to light the fact that there 

are still some aspects that can be improved.  Best has pointed out that in his implementation the 
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situational and historical knowledge sources can achieve an acceptable spread on simple problems but 

not on problems with very uneven density.  In addition, the topographical knowledge source, which was 

effective in previous CAT version to solve the Cones World problem, is less productive when considering 

only one of the objective functions in the problem at a time. Best suggested modifying the topographical 

influence function to divide the search space based on the Pareto rank of the individuals in the 

population.  Among all the concerns of improving MOCA, such as improving the computation efficiency 

by adopting a more heuristic gradient calculation in domain knowledge, the assessment of spread 

appear to the most prominent problem. 

The insufficiency of population spread was caused by the fact that in SOPs, which CAT had been 

designed for, there is no such a criterion for evaluating and guiding the evolutionary process.  As an 

initial extension of CAT to hand MOPs, MOCA can identify good individuals quickly.  The following table 

describes the Pareto fronts after non-domination sorting for the population of year 40 that was 

produced by MOCA on DTLZ.   

Table 3-1  Pareto fronts at year 40 for DTLZ1 

Pareto# X Y Z     

0 0.059093 0.144503 0.296429 2 2.57E-05 max 0.022237 
min 1.84E-06 
ave 0.005329 

  
  
  
 
  
  
  

0 0.088483 0.186583 0.228858 3 0.003924 

0 0.090181 0.023987 0.387014 3 0.001182 

0 0.104606 0.33921 0.057196 3 0.001013 

0 0.082192 0.155827 0.263213 4 0.001233 

0 0.121097 0.071882 0.324418 2 0.017397 

0 0.12114 0.147176 0.233667 2 0.001983 

0 0.110408 0.174008 0.215586 2 1.84E-06 

0 0.261906 0.194125 0.066206 4 0.022237 

0 0.25402 0.118836 0.130343 4 0.003198 

1 0.160917 0.106704 0.234819 2 0.00244 max 0.025982 
min 6.08E-05 1 6.56E-04 0.021131 0.48082 2 0.002608 
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1 0.286969 0.188181 0.044658 4 0.019808 ave 0.010122 
  
  
  
  
  

1 0.098354 0.16674 0.239664 4 0.004757 

1 0.023299 0.034007 0.452065 5 0.009371 

1 0.034693 0.130959 0.334456 3 0.000108 

1 0.037244 0.066256 0.398099 2 0.001599 

1 0.12833 0.143864 0.237547 4 0.00974 

1 0.109934 0.107252 0.282874 1 6.08E-05 

2 0.023484 0.244979 0.251207 4 0.01967 max 8.851882 
min 0.000138 
ave 0.50207 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

2 0.113673 0.31913 0.093179 4 0.025982 

2 0.059151 0.207388 0.233876 2 0.000415 

2 0.038543 0.133362 0.333718 2 0.005623 

2 0.036419 0.226744 0.238054 4 0.001218 

2 0.313544 0.1382 0.048394 2 0.000138 

2 0.157233 0.029503 0.318062 2 0.004799 

2 0.060426 0.107375 0.342032 4 0.009833 

2 0.571029 3.95E-04 0.039593 2 0.111017 

2 8.62E-04 0.186234 0.327298 3 0.014393 

2 0.202133 0.183341 0.115779 2 0.001253 

2 0.148676 0.048386 0.303354 4 0.000415 

2 8.83E-05 0.003727 0.498384 2 0.002199 

2 0.046358 0.064087 0.395163 4 0.005608 

2 0.117267 0.290411 0.113012 2 0.020691 

2 0.057488 2.36E-04 9.294158 5 8.851882 

2 0.228741 0.023326 0.249054 3 0.001121 

2 0.291634 0.142923 0.066475 4 0.001032 

2 0.024447 0.071008 0.406476 2 0.001932 

2 0.034435 0.400285 0.068967 2 0.003687 

We can see clearly in the table that even those individuals that lie on rear fronts still have good 

fitness values.  This confirms the conclusion of insufficient Pareto front coverage because otherwise 

solutions with good fitness value won’t be put on secondary fronts.  In other words, aggregation of 

individuals reduces the system’s computation power. 

The statistics of Pareto fronts at the end of evolution 100 generations is shown in Table 3-2.   

We can see that the phenomenon discussed in the above paragraph still presents.  In addition, fitness of 
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best individuals doesn’t get considerably improved; which, on the other side, proved the efficiency of CA 

to find good solutions. 

Table 3-2  Pareto fronts at the end of evolution 

  Max Min Average 

Pareto 0 0.507109 1.31E-06 0.056808 

Pareto 1 3.40E-02 7.49E-07 4.77E-03 

Pareto 2 0.039243 1.75E-07 0.003916 

Pareto 3 0.016857 2.51E-07 0.003903 

Pareto 4 0.010412 1.82E-05 0.002896 

Pareto 5 2.48492 2.16E-08 0.141828 

Pareto 6 0.006206 0.000216 0.002372 

The insufficiency of spread cannot be solved with the fitness evaluation alone; there must be 

additional approaches.  For example, in the popular Multi-Objective algorithm Non-dominant Sorting 

Genetic Algorithm (NSGA), agents don't know the general layout of the population, and they just try to 

reach the Pareto front and stay far away from neighbors. They don't care where the whole population 

should go as a team, they don't know (or care) whether the Pareto varies along time, neither do they 

know how crowded or spare one special sub area is.  This strategy, though simple, had been proved to 

be effective.  However, in Cultural Algorithms we should be able to coordinate our mining of the Pareto 

Front more efficiently. 

The insufficiency of spread cannot be solved without amending other CA components either.  In 

the previous CAT version, the belief space has been tuned to speed up the search process, such as that 

Domain knowledge was used to guide the search trend in some specific directions.  While the 

populations aggregate into small areas, even though some individuals have good fitness values, it is hard 

to evaluate the solutions as good as a whole.  Even though random deviation in evolutionary algorithms 

cannot be fully eradicated because they are population-based, populations are guided by various 
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knowledge sources to aggregate to some small areas.  Our investigation figured that after population 

aggregated to some parts of the Pareto front, they had inertia to stay around but not energy to explore 

new areas.   

Figure 3.11 represents the X-Y projection of the domain space for DTLZ1 when year==60 for 

previous MOCA, which is typical for our test.  With the consideration that the optimal solution is a line of 

x+y=1, we can see that most individuals lie close to the real solution line.  However, those individuals are 

aggregated into three sections while leaving two big empty areas unexplored.  After our observation of 

this figure, even when we extend evolution to year 200, most individuals still stay in the three areas. 

 

Figure 3.11  Representative illustration of partial aggregation in population 
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Certainly, due to randomness of evolution, the aggregation pattern shown in the figure is not 

the only one, though it is the representative one that appears frequently.  In a few simulations we have 

observed different aggregation patterns, such as aggregating at only the ends of the Pareto front.  Best 

had not pointed out the cause of such aggregations.  Similarly, we are not interested in figuring out the 

exact cause of such phenomenon though we primitively assume it was due to the dominance of 

situational knowledge source over the other knowledge sources in the current implementation.  Instead, 

we generalize the phenomenon as the problem that the current implementation of CA cannot cover 

sufficient spread of Pareto front.  In this way, we hope that we can eradicate this problem. 

One way of doing this is to make all knowledge sources stronger participants in the problem 

solving process as we suggested earlier.  As Che (2008) has confirmed in this thesis, different knowledge 

sources fit different problems.  As a reasonable extension, in front of a specific implementation of MOCA, 

for different problems, there may be different knowledge sources that can contribute to the generation 

of a more evenly distributed front. 

In summary, CA is mature in increasing individual’s fitness, we can see how fast and efficiently it 

finds a few good individual solutions; in addition, it has been confirmed that network configuration plays 

an important role in distributing knowledge in a population and therefore increase the evolution 

efficiency. In this thesis, we will add the consideration of spread of the whole generation into our 

implementation and identify its usefulness with quantitative analysis. 

3.4 Expansion of the CA for Multi-objective Optimization 

During the expansion of CA into MOCA, the same framework, including the five knowledge 

sources and the communication protocol between the population space and the belief space that has 
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been used in CAT were inherited.  Certainly, there have been some modifications that are necessary for 

tuning CAT to fit MOPs, and, some modifications are critical for turning the CA into MOCA and are worth 

special attention.  Most of the work that is introduced in this section was done by Best (Best, 2009); 

First, as has been mentioned above, in the CA the highest performing individuals are frequently 

needed.  For a multi-objective problem, in which generally there is no such single individual because 

populations are not a completely ordered set, MOCA used the Goldberg ranking scheme (Goldberg 

1989), where all non-dominated solutions in the population are given rank 1; these solutions are 

removed, and the non-dominated solutions in the remaining population are given rank 2, and so on.  

Individuals laying at the same front are considered as being equally good.  The total ordering on 

solutions is replaced by a partial ordering of individuals into Pareto ranks. As a result, the concept of 

“the best performing individual” in single-objective optimization is replaced by “an individual chosen 

from the set of non-dominated individuals in the current population.” for multi-objective problems.  This 

choice is currently random, though for specific problems a heuristic can be used to suggest an auspicious 

individual. 

Another change in MOCA was related to how knowledge sources are chosen to influence 

individuals.  To help guide the optimization process, knowledge sources have been selected in order to 

influence members of the population by sampling a dynamic probability distribution. Each knowledge 

source, KSi, has an associated probability Pi of being chosen to influence a given individual.  In the classic 

CA, Pi is calculated by summing the fitness values of the individuals that were influenced by it.  Here for 

multi-objective optimization, Pi is derived from the Pareto ranks of the individuals in the current 

population for which KSi is generated. The formula used to calculate the score of each knowledge source 

to be used in roulette wheel selection is listed as follows.   
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In this formula, INDi represents the set of individuals in a population that were created by KSi 

and INDi,j is the jth individual in it; PR() is the function to retrieve the Pareto ranking, and operation || 

gets the cardinality of the set. 

For example, we see a population for a two-objective space in Figure 3.12. It shows eight 

individuals from three arbitrary knowledge source marked by Δ, Ο, and □.  The two axes represent 

the two objectives, three curves marked by numbers are three Pareto fronts while the numbers are 

their Pareto ranking. 

 

Figure 3.12  Illustration of calculation of performance of knowledge sources 

The individuals form three Pareto ranks. The scores for each knowledge source are as follows: 

        Δ  

 

 
 

 

 
 

 

 

 
  

 

 

 
  

 

 
 



57 

 

 
 

        Ο  

 

 
 

 

 
 

 

 

 
  

 

 

 
  

 

 
 

        □   

 

 
 

 

 

 
 

 

 

 
  

 

  
 

Except for the new evaluation mechanism, the random selection of a knowledge source in the 

belief space during the influence procedure is the same with CAT 2.0.   

In addition, since the benchmark problem set DTLZ on which Best worked can easily scale to 

have high dimensions, such as 10, Topographical knowledge source splits the domain space only as 

needed.  In his implementation, each hyper cube is called a cell; when individuals in the cell got crowded 

the cell will be split in half along each dimension.  At the end of evolution, some cells have tiny volume 

because they are the results of multiple divisions while some others are big hyper cubes since there are 

not many individuals contained inside. 

After such modifications, Best was able to apply the Cultural Algorithms on DTLZ benchmark.  He 

compared MOCA to NSGA-II using two performance metrics: hypervolume (HV) (Zitzler and Thiele 1999) 

and generational distance (GD) (Valenzuela-Rendon, Uresti-charre, and Monterrey 1997).  With 

comparably good experiment results, Best concluded that the Cultural Algorithms were a promising 

technique for solving multi-objective problems.   

3.5 Conclusions  

In this section we began by providing an overview of the Cultural Algorithm framework with an 

eye towards how they might be modified for Multi-Objective problem solving. We then discussed the 
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major changes made by Best in adopting the CAT 2.0 system to multi-objective problem solving. In his 

approach he focused on only a reduced set of features available in the Cultural Algorithm. 

 In general, the changes made to it to become MOCA were not complicated enough to hinder 

those who have studied CA from understanding the system. This suggests that there is a natural fit 

between Cultural Systems as modeled by the Cultural Algorithms and multi-objective problem solving. 
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CHAPTER 4  THE MOCAT 1.0 SYSTEM DESIGN 

Previously MOCA has demonstrated the ability of Cultural Algorithms to handle MOPs.   

However, the MOCA implementation does not take advantage of all of the available features in the 

Cultural Algorithm Toolkit. In particular, as discussed earlier, it makes limited use of the available 

knowledge sources to influence the problem solving.  As Best indicated (Best 2009), the gradient 

approximation that was used in domain knowledge source was not always effective and more heuristics 

might be useful.  Also, the situational and historical knowledge sources can achieve an acceptable 

spread on simple problems but not on problems with very uneven density. As a result, overall spread 

over the Pareto font sometimes can be improved by augmenting the data structures and connectivity of 

existing knowledge sources in order to address a more general class of multi-objective optimization 

problems. In other words, the system does not produce enough coverage on the Pareto front.   

In addition, we need to take into consideration spread metrics used to guide the system.  In this 

thesis we employ modified versions of two different spread metrics, spread and hyper volume, in order 

to provide more information to the knowledge sources. Neither metric had been used in conjunction 

with each other in the past. It was felt that if they provided complementary information on spread then 

more information would be available for the knowledge sources to generate solutions. 

A third modification relates to how the influence of successful knowledge sources is spread 

through the population. The spread of knowledge through the population takes place within the social 

fabric.  As the problem solving process progresses, especially for complex problems, it was felt that the 

appropriate network structure would need to change as well. 
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In addition to the theoretical changes, to unify CAT 2.0 and MOCA and to take advantage of the 

visualization power of Repast Simphony, a new multi-objective CA execution framework is designed and 

implemented.  This chapter discusses how each of the suggestions mentioned above are implemented 

and proposes an improved toolkit framework.  The concrete implementation, named MOCAT 1.0 is 

presented in details in the next sub section. 

Section 4.1 gives the overall architecture of the MOCAT system.  Section 4.2 describes the 

internal implementation of knowledge sources.  Section 4.3 describes the acceptance function, including 

how voters are selected from the population.  Section 4.4 explains the update functions for the belief 

space, especially how the slices in the roulette wheel are updated.  Section 4.5 focuses on the influence 

function which has two parts: One part describes using pseudo code how to select the topologies for a 

generation and the other part of the section discusses how the knowledge sources are selected.  

4.1 System Framework 

MOCAT is implemented in Java as a stand-alone system as shown in Figure 4.1.  Input is the 

classes that implement the problem formulas.  The CA engine will control the evolution in which a set of 

individuals hopefully move to the Pareto front.  Output of the MOCAT system includes both a visual 

representation of the population and files that include information about the evolution.  While the real-

time display give us a good chance of observing the progress of evolution, the files that are save on hard 

disk contain all necessary information that is used to do detailed statistical analysis of the optimization.   

MOCAT can easily work on other problems that have not been coded in the current 

implementation if only the new problem is wrapped in an algorithm class following a specific format.  At 
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this stage, MOCAT only handles numeric problems.  In other words, the domain space and the objective 

space of the problem have to be described in numbers. 

 

Figure 4.1  MOCAT System 

To render a brief image of the MOCAT, the pseudo code which shows the basic framework of 

the implementation is given in Table 4-1. 

Table 4-1  The Pseudo Code and Execution Flow Chart of MOCAT 

Begin 

    t = 0; 

    initialize Bt, Pt 

    initialize roulette wheel for network configurations 

repeat 
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 accept() 

  non-dominance sorting 

  voting 

  updating the belief space, including the roulette wheel and knowledge sources 

 influence() 

  choosing knowledge sources based on their performance 

   guarantee no knowledge source die out: N/20 quota 

  choosing a network configuration  

   currently support:  lbest,  square, ring, star, global 

  t = t + 1; 

  select Pt from Pt- 1 by starting from better Pareto fronts 

  keep record of the performance of the recently used network configuration 

  updating the roulette wheel that is used to select network configurations 

until (termination condition  achieved) 

End 

The pseudo code reveals a similar frame that has existed in previous CAs.  While the theory of 

the Cultural Algorithms remains—therefore, we still claim that MOCAT 1.0 is a CA, but not an 

application based on CA, though a lot of changes have been made into MOCAT 1.0 so that it encourages 
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beneficial competitions among knowledge sources and competitions among social fabrics, is able to 

spread found solutions over real Pareto front, and is able to scale easily. 

MOCAT was implemented upon object-oriented programming techniques and was designed to 

embrace new algorithms without need of structural changes.  Figure 4.2 depicts the system structure of 

MCOAT using a format that is similar to UML class diagrams.   



64 

 

 
 

 

Figure 4.2  Object diagram of MOCAT 

Figure 4.2 shows that there are clearly belief space and population space in MOCAT and they 

interact through function accept() and influence(); those are the intrinsic characteristics of the CA.  We 

can see from Figure 4.2 that MOCAT 1.0 has specially tuned up for multi-objective optimization by 
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encouraging competition between knowledge sources and competition between social fabrics.  While 

parts of Figure 4.2 have been introduced in Chapter 3, in this chapter we specially focus on the 

improvements that MOCAT brings to the traditional CA. 

One programming progress is that each test problem is implemented as a separate class that is 

used to describe the problem, calculate objective values, and explore derivatives around neighborhood.  

While for any individual of given location, MOCAT is able to calculate its fitness, measure its fitness error, 

and figure out the slopes in local area.  However, MOCAT has no clue of what shape the real Pareto 

front is or what kind of search strategy will be effective in exploring the objective space.   

4.2 Knowledge sources  

In Figure 4.2, we can tell that the belief space contains five concrete knowledge sources, 

normative, situational, domain, historical, and topographical.  Knowledge sources are updated by voters, 

which are in turn selected from the population with the help of non-domination sort.  This sub section 

will discuss the internal data structure of every knowledge source, how they are updated by voters, and 

what kind of effect through their influence. 

4.2.1 Normative knowledge source 

Normative knowledge source contains intervals which are used to mark the boundary of the 

promising space.  In MOCAT, there are separate intervals for each dimension.  Figure 4.3 shows that for 

a n-dimension problem, the interval for the second dimension defines the high and low values of this 

dimension. 
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Figure 4.3  The structure of Normative Knowledge 

It is updated according to the following formula when a voter is on the found Pareto front. 

 
 
 

 
   

      
                       

  

  
                          

 

  
      

                       
 

  
                        

 

  

As a result, intervals for all dimensions delimit boundaries of one hyper cube in which the real 

Pareto front exists.  In function influence(), an individual is randomly created inside the hyper cube.  It 

provides coarse heuristics while allow big flexibility to evolution.   

4.2.2 Situational knowledge source 

Situational knowledge source records all exemplars that have been identified up to now.   

 

Figure 4.4  The structure of situational knowledge 
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It is updated by merging the exiting exemplars with voters and then selecting the elitists among 

them.  In this procedure, some previous elitists may be discarded since they are dominated by some 

new solutions. 

                             

In function influence(), an exemplar is randomly selected and a new individual is created by 

dragging the parent individual to it.  Obviously, it provides strong guidance to evolution while leaves 

flexibility.  However, when the objective space fluctuates violently, the new individual that is created by 

situational knowledge source may have inferior fitness values because short distance in domain space 

does not guarantee similar objective values.   

4.2.3 Domain knowledge source 

Different from other knowledge sources, domain knowledge source does not work upon its 

persistent memory.  Instead, it takes advantage of the limited but precise information that problem 

class can give to any specific location in the problem space.   

Since there is no way to exhaustively detect the maximum slope from a given location, and in 

order to save computing resource, only the derivatives along axes are calculated.  If one move produces 

a new individual that is not dominated by the parent individual, this move is counted.  Finally, the vector 

sum of all counted move points to the direction that the new individual should be moved.   

After the maximum slop is identified, we will move along that direction 20 times with equal step 

length to find out 20 candidates of the new individual; then non-domination sort is used to select one 

from the non-domination set.  Now the step length is a random number smaller than 0.005. 
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4.2.4 Historical knowledge source 

Historical knowledge source is used to record the evolution history.  It consists of separate 

memories for each objective dimension.    

 

Figure 4.5  The structure of historical knowledge 

The historical knowledge source is updated based on each objective dimension without 

interference with each other: 

            
     

            
                     

          
                         

    

where   is predefined size limit of saved solutions and enew is an individual in the voters which 

has the highest fitness value on dimension t.  In function influence(), one memory is randomly selected 

and then a saved individual is randomly selected out of it to sprout a new individual around its 

neighborhood. 
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In this way, while we encourage the evolution to forage area that is only certainly good for one 

objective, we will practically spread the found Pareto front along every dimension. 

4.2.5 Topographical knowledge source 

Topographical knowledge source contains belief cells (Jin 1999) which are used to indicate hyper 

grid in problem space.  Since we will handle high-dimension problems, traditional division of problem 

space along each dimension will create large amount of child hyper cubes.  For example, for 30 

dimensions, one single division will split the current hyper cube into 230 ones.  This exponential increase 

makes topographical knowledge source stop working.  Thereafter, we conceptually split the whole 

problem space into hyper cubes in advance and only record those in which promising individuals exist.   

 

Figure 4.6  Topographical knowledge source provides a mosaic view of Pareto front 

From Figure 4.6, we can see that topographical knowledge marks a coarse-granularity record of 

the found Pareto front.  At this point, the domain space is cut to 10 segments along each dimension.  In 

this way, topographical knowledge source works like a group of normative knowledge sources.  Its data 

structure is shown in Figure 4.7. 
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Figure 4.7  The structure of topographical knowledge 

A belief cell is added into topographical knowledge source if a non-dominated solution in the 

voters appears in it.  Topographical knowledge source provides guidance to evolution in a way that is 

more flexible than domain knowledge source but stricter than normative knowledge source. 

4.2.6 Interactions among Knolwege sources 

All of the knowledge sources contribute to the optimization process. As in the real world, 

different objectives can be more effectively viewed by different knowledge sources.  The key is that 

results elicited by individuals generated by one knowledge source can be distributed to other knowledge 

sources in the belief space since both the population and the belief space have a network structure.  
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Figure 4.8  Network of Knowledge sources 

In Figure 4.8  the network for the knowledge sources in the belief space is given.  By allowing the 

knowledge sources not only to compete but to share results of their explorations, the system is able to 

exploit the dual inheritance feature of cultural algorithms to hone in on the solution quickly. 

4.3 The accept() function 

Not all of the populations are used to update the belief space, instead, only those who perform 

not worse than others can be elected as voters to update the belief space.  Non-domination sort is used 

to evaluate and rank individuals.   

4.3.1 Non-domination sorting solutions 

Domination (Goldberg, 1989) is a partial order relationship in which a dominating solution is 

superior to dominated solutions in terms of all objectives.  Two solutions that do not dominate each 

other are on the same Pareto front. 
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Table 4-2  Pseudo code of non-domination Pareto ranking 

Set pr = 1 

While(population is not empty) 

 Identify the solutions that are not dominated by others, mark their Pareto rank = pr 

 Remove the identified solutions 

 Set pr = pr + 1 

End While 

4.3.2 Accept as voters 

Based on non-domination sort, the function accept() prefers the solutions on anterior fronts. 

Table 4-3  Pseudo code of function accept()  

Set pr = 1 

Set returnSet = empty set 

While(wantedSolution# > 0) 

 If #solutions on front pr <= wantedSolution# 

  add front pr to returnSet 

  Set wantedSolution# = wantedSolution# - #solutions on front pr 

 Else 

  Randomly select wantedSolution# solutions from front pr, put into returnSet 

  Set wantedSolution# = 0 

 End If 

 Set pr = pr + 1 

End While 
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return returnSet 

In other words, the solutions that are able to push the found Pareto front forward will be 

preferred to update the knowledge saved in the belief space.  In this way, we expect the belief space to 

have more efficient information to guide evolution. 

4.4 The update() function 

This function updates the knowledge saved in the belief space.  How the five knowledge sources 

are updated has been introduced in 4.3.  Nonetheless, function update() additionally update the 

roulette wheel in the belief space.   

In the belief space, there is a roulette wheel to partially randomly pick up a knowledge source to 

influence an individual.  However, on the roulette wheel, the size of the slices for knowledge sources is 

proportional to their moving average performance.  The performance of a knowledge sources is defined 

as average of the evaluations of all the individuals that have been influenced by it: 

                                   

 
 

          
 

      
 

This evaluation formula was defined by Goldberg (1989).  The roulette wheel remembers 

performance values for each knowledge source; during the function of update(), performances of 

knowledge sources that are calculated from voters will be taken into consideration to create 

mathematical averages, which serve as the new performance values for the knowledge sources.   
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Then, sum of slices is normalized to 1.0 and the portion of each knowledge source is calculated.  

Now, we can rotate the roulette wheel to partially randomly select a knowledge source. 

Table 4-4  Pseudo code of selecting a knowledge source from the roulette wheel 

Set sum = sum of slices 

Set nsi = Slicei / sum 

create random number r   [0, 1.0); 

Set splitter = 0.0 

Set ksResult = 1 

While(ksResult <= #Knowledge sources) 

 Set splitter = spliter + nsksResult 

 If (splitter > r) 

  Return KSksResult 

 Else 

  Set ksResult = ksResult + 1 

 End If 

End While 

return KSksResult-1 

In this way, when a knowledge source fails to contribute to the evolution, other knowledge 

sources have the change to take its position; but still every knowledge source has opportunities to 

influence individuals.  

In summary, the function update() updates both the knowledge sources  and the roulette wheel 

which is used to select a knowledge source for influence() with the consideration of their performances.  
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4.5 The population space 

The population space accommodates the individuals and various topologies that are used to 

connect the social fabric.  While the topologies in the population has been introduced in 3.2.1, this sub 

we will discuss about the data structure of individuals and the two metrics that are implemented in the 

population space to evaluate the spread of the solutions over the real Pareto front. 

4.5.1 Individuals 

Individuals in socially motivated evolutionary algorithms represent locations in the domain 

space.  While their coordinates determine the objective values, individuals are also named solutions.  

Additionally, since MOCAT uses Repast Simphony, individuals are also called agents according to the 

terminology of Simphony.  Thereafter, in this thesis, individuals, solutions, and agents indicate the same 

concept and are inter-exchangeable. 

An individual mainly holds its own information, such as its location, fitness values, and the 

knowledge source under which it was created—the operator.  At the beginning of evolution, individuals 

have unknown operators.  An individual object also provides storage for its Pareto rank after non-

domination sort for future use.  To facilitate non-domination sort, two functions are provided to decide 

whether another individual dominates or is dominated by this individual.  The UML class diagram of an 

individual is shown in Figure 4.9. 
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Figure 4.9  Class of Agent 

4.5.2 Metrics to evaluate the spread over the Pareto front 

As shown in Chapter 3.3, sometimes MOCA could not spread found solutions evenly over the 

whole Pareto front.  Thereafter, there is a need to encourage individuals to explore areas that are not 

crowded.  This sub section introduces existing spread metrics and then chooses two in our 

implementation and explains why they are preferred to others. 

4.5.2.1 Existing Metrics 

There are a few ways to evaluate the performance of MOEAs, including the spread over Pareto 

front.  First, graphical plots serve as an intuitive way to compare the outcomes of MOEAs, especially 

when different results have prominent discrepancies, such as in (Zitzler et al, 2000).  The advantage is 

that it is easy to evaluate the outcome and most times very helpful; the disadvantage is that it is hard to 

quantify the visual evaluations and therefore incorporate into the heuristics in the CAT system.  

Second, the distance from the known Pareto front to the true can be calculated.  As shown in 

Veldhuizen etc (Van Veldhuizen and G. B Lamont 2000), the distance metric is a value representing how 

“far” the unknown Pareto front (PFknown) is from the true Pareto front (PFtrue) and is defined as:  
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where n is the number of vectors in PFknown , p = 2,and di is the Euclidean distance (in objective 

space) between each vector and the nearest member of PFtrue .  The idea is to calculate the shortest 

distance of the points of the known Pareto front to the true one; the sum of all the distances shows how 

good the known Pareto front is as a whole.  The theoretical minimum result of 0 indicates PFtrue =  

PFknown; any other value indicates PFknown deviates from PFtrue.  In their paper, an example with a discrete 

Pareto front is given as Figure 1 for illustration of the formula. 

Third, the spread of the known Pareto front can be calculated.  One representative example is 

published by Deb etc (Deb et al. 2000).  The idea is to get an evaluation of the density of solutions 

surrounding a particular solution in the population by calculating the average distance of two points on 

either side of this point along each of the objectives, which was called “crowding distance”.   

As shown in Figure 4.10, for each solution located at i, this value roughly estimates the size of 

the largest box, or cuboid, enclosing the point i without merely touching any other point in the 

population.  Here, the crowding distance of i-th solution in its front (represented as solid dots) is the 

average side-length of the cuboid (shown as the dashed box). 
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Figure 4.10 Cuboid metric for Pareto front 

Because they calculated the perimeters instead of the volumes of the cuboids, they were able to 

design a linear algorithm to accumulate the distances along each domain after sorting solutions along it.  

If we arrange all individuals in a linear way and then walk along either the x or y axes from one individual 

to next, the walk length is a quarter of the crowding distance.  While the true Pareto front is unknown, 

such a metric cannot really describe the coverage of the known Pareto front over the real one.  For 

example, if we shift the known Pareto front in Figure 4.10 down, the calculated metric stays the same, 

while this generation becomes farther away from the true Pareto front and intuitively it covers the true 

Pareto front in a worse way.  In this approach, the spread of the current Pareto front is calculated, while 

the real coverage over the true Pareto front is unknown.  To overcome this shortcoming, end points of 

the problems were added in the result set (Deb et al, 2000) and the sum of the distances between them 

was calculated.   

Another such metric is (Schott 1995) in which the metric is a value measuring the spread 

(distribution) of vectors throughout PFknown.  While PFknown’s beginning and end are known by sorting the 

solutions along dimensions, Schott proposed the following formula to calculate the range variance of 

neighboring vectors in PFknown.  In this metric, avalue of zero indicates all members of PFknown are equally 

distributed.  However, the true Pareto front is not necessarily uniformly spaced, similar to the above 

metric.  Certainly, adding end points into the solution set may improve the situation. 

Forth, IGD (Inverted Generational Distance) (Van Veldhuizen and Gary B Lamont 1998) combines 

both the second and the third metrics.  In this approach, a single value tries to describe both the fitness 

and the spread.  Let P* be a set of uniformly distributed points along the Pareto front in the objective 

space. Let A be an approximate set to the PF, the average distance from P* to A is defined as: 
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where d(v, A) is the minimum Euclidean distance between v and the points in A. If P* is large 

enough to represent the Pareto front very well, IGD(A; P*) could measure both the diversity and 

convergence of A in a sense. To have a low value of D(A; P*), The set A must be very close to the PF and 

cannot miss any part of the whole PF.  In the following figure, f1 and f2 indicate two coordinates in the 

objective space. 

 

Figure 4.11 Illustration of calculation of IGD 

For CEC test problems, the data file and source code of computing IGD (Zhang n.d.) was created 

in C and Matlab by Zhang and can be downloaded from online. 

All the later three metrics have only one real number indicating the quality of the result, while 

the later two are of our interest.   
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4.5.2.2 Chosen spread metric 

Schott (1995) in his Ph.D thesis proposed spacing metric which estimates the diversity of the 

found Pareto front.  The metric value is evaluated by computing the relative distance between adjacent 

solutions as:  

    
 

   
        

 
   

   

 

where n is the number of non-dominated solutions, di is the distance between adjacent 

solutions to the solution i,    is the average distance between the adjacent solutions.  Certainly, this 

metric does not reflect complete information of whether the found Pareto fronts cover the real one 

evenly; for example, if the individuals on the first Pareto front evenly cover only a small portion of the 

real Pareto front, the metric values is zero, which is the best it achieves.  Nonetheless, the metric is 

chosen by us because of its merit that it does not require any knowledge about the real Pareto front.   

In addition to the spread metric, one more metric is selected by us to increase competition and 

dynamics in evolution, which will be introduced in the next sub section. 

4.5.2.3 Chosen hyper-volume metrics 

Zitzler (1999) in his Ph.D thesis proposed hyper-volume metric which was defined by the hyper 

volume in the objective space covered by the found Pareto front.  The formula is:   

              

 

  

where     (I = 1, 2, …) is a non-dominated solution of the Pareto front P*. 
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Figure 4.12  Hyper-volume of Pareto fronts 

For each Pareto front, the metric value is the union of hyper volumes that are defined by the 

individuals that are on this front.  The meaning can be easily seen in Figure 4.12 which uses a two-

objective space to illustrate hyper-volume metric.  There are three Pareto fronts identified in the 

population and all individuals are marked with their Pareto ranking numbers, as shown in the left part.  

The hyper volume covered by any single individual is the rectangle that is limited by axes f1 and f2, and 

the two lines starting from the individual and perpendicular to either axis.  Nonetheless, the overlapped 

areas are not taken into account multiple times.  Finally, the hyper-volume metric values are the areas 

that are constrained by the serrated Pareto fronts—which is also named aliasing Pareto front since in 

Computer Graphics describing a curve using serrated vertical and horizontal lines is called aliasing. 

4.6 The influence() function 

There are two steps during influence of each generation, first, metric roulette wheels are used 

to choose a network configuration and then individuals under the influence will be affected by the 
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neighbors defined by this network.  This former step of social fabric selection is transparent to the 

knowledge sources.   

4.6.1 Selection of topologies  

The topologies in MOCAT include lbest (local best), square, octal, hex, and global.  However, for 

any given generation, there is only one social fabric in effect.  The choice is made by a partially random 

selection with the consideration of the performances of the topologies.   

The performance of a social fabric is evaluated as the metric value of the new population that 

has been created while this social fabric is enabled.   

               
    

                                                         
                                                                                            

  

Since there are two metrics that are used in MOCAT, spread metric and hyper-volume metric, 

practically there are two different sets of performances, depending on which metric is being enabled.  

This implies that for each given generation only one metric is in effect.   

There are two roulette wheels corresponding to the two metrics.  On each of them, there are 

five slices that are corresponding to the five topologies; and the size of a slice is represented as the 

performance value of the topology.   

For any new generation, when only one metric and one social fabric are enabled, the 

corresponding roulette wheel will be updated for that used social fabric:  
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Then, sum of slices is normalized to 1.0 and the portion of each topology is calculated.  Now, we 

can rotate the roulette wheel to partially randomly select a topology for a new generation of evolution. 

Table 4-5  Pseudo code of selecting a topology from the roulette wheel 

Set sum = sum of slices 

Set nsi = Slicei / sum 

create random number r   [0, 1.0); 

Set splitter = 0.0 

Set topoResult = 1 

While(topoResult <= #Topologies) 

 Set splitter = spliter + nstopoResult 

 If (splitter > r) 

  Return TopologytopoResult 

 Else 

  Set topoResult = topoResult + 1 

 End If 

End While 

return TopologytopoResult-1 

This social fabric selection procedure is transparent to the knowledge sources.  However, when 

a social fabric is selected for a generation, the influence of knowledge sources will infiltrate through 

them to more efficiently distribute knowledge and enhance evolution (Ali 2008). 

After a topology is selected, every individual has defined neighbors.  Then, majority voting is 

used to find out which knowledge source should be used for any given individual. 
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Table 4-6  neighbors voting for knowledge source to use on an individual Ind 

Set IndSet = [Ind] 

Add neighbors of Ind into IndSet 

Create an array ksCount[#knowledgeSources] 

Initialize ksCount to all 0s 

For each individual idv in IndSet 

 inc ksCount[knowledge source that created inv into IndSet]  

End For 

Find max value M of ksCount 

Create a set S containing knowledge sources ks if ksCount[ks] ==M 

randomly select a knowledge source R from S 

Return R. 

4.6.2 Influence of knowledge sources 

First, a knowledge source should be selected to influence the population.  The selection 

algorithm has been presented in Table 4-4.  After  

Normative knowledge source tries to create a new individual with random location in its hyper 

cube.  It provides coarsest heuristics while allow big flexibility to evolution.   

Table 4-7  Pseudo code of influence of normative knowledge source 

Create a new individual Ind 

For each dimension d 

 Create a random number r   [0, 1] 
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 Set Ind.location[d] = Interval[d].L + r * (Interval[d].H - Interval[d].L) 

End For 

If (parent individual dominates Ind) 

 return parent individual 

Else 

 return Ind 

End If 

Topographical knowledge source influences a new individual with random location in one of the 

belief spaces that it maintains.   

Table 4-8  Pseudo code of influence of topographical knowledge source 

Randomly select a belief cell C 

Create a new individual Ind 

For each dimension d 

 Create a random number r   [0, 1] 

 Set Ind.location[d] = C.location[d].L + r * (C.location[d].H - C.location[d].L) 

End For 

If (parent individual dominates Ind) 

 return parent individual 

Else 

 return Ind 

End If 
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Situational knowledge source maintains exemplars that have been found up to now.  It creates 

new individual by dragging the parent individual to it.   

Table 4-9  Pseudo code of influence of situational knowledge source 

Create a new individual Ind 

For each dimension d 

 Create a random number r   [0, 1] 

 Set Ind.location[d] = Interval[d].L + r * (Interval[d].H - Interval[d].L) 

End For 

If (parent individual dominates Ind) 

 return parent individual 

Else 

 return Ind 

End If 

Historical knowledge source maintains memories for every objective domain.  During influence(), 

one memory is randomly selected and then a saved individual is randomly selected out of it to sprout a 

new individual around its neighborhood.   

Table 4-10  Pseudo code of influence of historical knowledge source 

Randomly select one individual Idv 

Create a new individual Ind 

For each dimension d 

 Create a random number r   [0, 0.1] 
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 Set Ind.location[d] = Idv.location[d] + r 

End For 

return Ind 

Domain knowledge explores the objective space by move along each dimension to detect the 

slope of it.  After the maximum slop is identified, we will move along that direction 20 times with equal 

step length to find out 20 candidates of the new individual; then non-domination sort is used to select 

one from the non-domination set.  Now the step length is a random number smaller than 0.005.In 

function influence(), one memory is randomly selected and then a saved individual is randomly selected 

out of it to sprout a new individual around its neighborhood. 

Table 4-11  Pseudo code of influence of domain knowledge source 

Set delta = 0.1 

Create array maxSlop of #dimension elements 

Initialize maxSlop to all 0s 

For each dimension d 

 Clone new individual Ind from Parent 

 Set Ind.location[d] = Parent.lcoation[d] + delta 

 If(Ind is not dominated by Parent) 

  add delta to maxSlop[d] 

 End If 

 Set Ind.location[d] = Parent.lcoation[d] - delta 

 If(Ind is not dominated by Parent) 

  add -delta to maxSlop[d] 
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 End If 

End For 

Create random number step    [0, 0.005] 

Create newIndSet = empty set 

For Iteration =1 to 20 

 Create individual nId 

 nId.location = Parent.location + step * maxSlop * Iteration 

 add nId into newIndSet 

End For 

Non-domination sort newIndSet 

return  one individual from the first Pareto front 

4.7 Summary 

The execution of MOCAT is described in Figure 4.13, in which the top left element MOCAT is the 

control class that drives the evolution and stops it when evolution is complete.  The evolution is 

completed upon the close collaboration of the population space and the belief space. 
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Figure 4.13  Execution of MOCAT 
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CHAPTER 5  AN EXAMPLE MOCAT RUN 

In the previous chapter we described the MOCAT 1.0 system. In this chapter we focus on the 

information needed to generate a MOCAT 1.0 run and the information produced by the system as a 

result. We will select the ZDT1 problem described in chapter 7.0 as our example here. 

This section will introduce a complete run of MOCAT on ZDT1, explain what data are created, 

and how they are displayed.  Since Repast Simphony supports both 2-D and 3-D real-time display of 

evolutionary process, observing how MOCAT works is straightforward.  

5.1 Start MOCAT 1.0 

At the very beginning, when a project is created in Simphony, the integrated development 

environment (IDE) automatically creates an executable program framework and an execution 

configuration for it, so that both adding system behaviors and executing the evolution are easy.  

Additionally, Simphony automatically creates a builder which will produce a single-file installer.  After 

the installation is done, MOCAT can run in the future without the Simphony’s IDE.  Certainly, 

programming details are not concern of this chapter while some of them can be found in Appendix I.  In 

this chapter, we will focus on how to run MOCAT 1.0, control the evolution procedure, understand its 

user interface, and learn about the data that are produced along evolution.  

To start running MOCAT, we click the button , Initially a menu is provided with the 

different execution options presented. Here, we click on “Run MOCAT model”, as shown in Figure 5.1.   
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Figure 5.1  To run MOCAT model 

Presentation of a Simphony project is configured at runtime.  Features such as what kind of 

display, 2D or 3D can be configured and setup.  After setup is done, we can click the disk button 

which is on the toolbar or select the menu “File | Save” to remember the configuration so that future 

runs will automatically load the same configuration and represent the same interface to users in the 

future.  Again, in this chapter we only care about the interface that is ready to be sued. Figure 5.2 

represents the interface that has been prepared for the experiments through these activities.   
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Figure 5.2  Startup of MOCAT 

The parameters of MOCAT can be dynamically passed into the algorithm before evolution starts.  

The parameters are shown in Figure 5.3.  Some parameters are related to the graphical representation 

or used by Simphony internally so that they are out of our interest. 

 Continuous Space X Extent 

 Continuous Space Y Extent 

 Continuous Space Z Extent 

 Default Random Seed 

The parameters that are specified and used by MOCAT are: 
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 Dimension, dimension of the problem space, for ZDT1 it is 30; in real experiment we 

additionally increase it to 60 

 Elitist Ratio, defined the percentage of the individuals that will be selected as voters 

 Generation To Switch Metric, if spread metric and hyper-volume metric are combined, 

after how many generations the metric is alternated 

 Number of Generation, after how man y generations the evolution stops 

 Number of Population, how many individuals are there in each generation 

 Problem Name, one of ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, and ZDT6 

At this point, MOCAT is prepared to run ZDT1 with domain dimension 30, generation 100, 

population 100, and every 25 generations the spread or hyper-volume metrics will be switched. 
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Figure 5.3  Parameters of ZDT1 

To start evolution, we click the power button  on the toolbar or select the menu Run | init, 

to make Simphony be ready to run.  We can see from Figure 5.4 that setup of MOCAT is disabled at this 

point. 
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Figure 5.4  MOCAT is ready to run 

5.2 Control the evolution 

After MOCAT is initialized, we can either step on the evolution by clicking  so that we can 

observe progress in details, as shown in Figure 5.5, or run MOCAT non-stop by clicking  as shown in 

Figure 5.6.  Corresponding control buttons are disabled in either situation. 
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Figure 5.5  Step run of MOCAT 

Along with the evolution, the generation number is told by the number shown in the top right 

corner, such as . 



97 

 

 
 

 

Figure 5.6  Run of MOCAT 

Along with evolution, the most interesting interface component is the 2D display, in which the 

solutions in the objective space are shown.  The displays dynamically refresh along with the evolution 

and reflect the up-to-date information.   

When the maximum generation number is reached, execution ceases as shown in Figure 5.7.  

Termination of the evolution can be told by the still picture and the unchanged Tick Count that is located 

at the top right corner. 

At this point, we can visually tell who good this evolution run is by observing the figure shown in 

the 2D display. 
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Figure 5.7  MOCAT finishes on run 

5.3 Collected data 

5.3.1 Information about a single run 

Along with evolution, details about individual solutions from each generation are recorded in 

files; and when evolution is finished, statistical information about this run is sent to summary files.  To 

facilitate the automation of date collecting and analyzing, such data files are specially named and 

organized.  Each run is assigned an exclusive id, RunID, which is generated according to the experiment 

time and is different from other ids. 

Evolutionary details are saved in a sub-folder in the data collection folder with the name format 

ProblemName-GenerationNumber-PopulationNumber-Dimension-GenerationsToSwithcMetric_RunID.  A 
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sample name is “ZDT1-100-100-30-200.43204”.  This long name reveals how we organize saved data.  

While the naming convention is easy to understand, GenerationToSwitchMetric needs special 

explanation: number 200 indicates that the evolution only uses spread metric, number 300 indicates 

that the evolution only uses hyper-volume metric, and all other numbers specify after how many 

generations the metric will be switched in MOCAT. 

Coordinates of individuals are recorded in a file named GenerationCounter.coord.txt and the 

locations in objective space are saved in a file named GenerationCounter.obj.txt.   

When the evolution is done, five other files are additionally saved.  Files ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-topology.*.txt remember metric values and 

their quotations on the roulette wheel of all generation in time order.  Files ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-knowledge.*.txt record how every knowledge 

source behaves along evolution under the influence of different metrics.  The last file ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-summaries.txt contains textual information 

which is ready to be copied as an introduction to this test run, the text reads like,  

“On ZDT1 with dimension 30 run #ZDT1-100-100-30-25.49768 finished in 35 (s). 

In the last generation, the absolute range of fitness error is [0.000000000, 5.119815513]. 

In evolution, every 25 generations the metric for network configuration is switched. 

In Spread roulete wheel, each network configuration (Topology) is used : 18  1  8  8  15 times 

In Volume roulete wheel, each network configuration (Topology) is used : 12  9  8  14  7  times.” 
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Such information is high-level and intended to be read by human readers.  Statistical 

information, such as how knowledge sources change, how social fabrics are used, etc, is saved in 

summary files which will be introduced next. 

 

Figure 5.8  Data collected for one single run 

5.3.2 Information about all runs on the same problem 

In the data collection folder, there are a few summary files containing information about 

evolution of all test runs that have been done up to now.  Every test that has been done on the same 

problem with the same generation, population, and dimension is collected in a single total summary file, 

such as ZDT1-100-100-30-totalSummary.csv.  These files record the status of the roulette wheel in the 

belief space, performances of topologies, and the statistical information of the found solutions.  
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Figure 5.9  Data files after several experiment runs 

Depending on how spread metric, hyper-volume metric, or combined metrics are used in 

evolution, the other two sets of summary files record all solutions that have been found in test runs and 

all relationships between knowledge sources and topologies. 

Information saved in summary files will be used after test runs are completed to produce 

various statistics about the experiments.  To complete this thesis, Microsoft Excel is used because of its 

general availability. 
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CHAPTER 6  EXPERIMENTAL FRAMEWORK 

We want to check whether MOCAT can get competitive results fast enough, whether the 

evolution is robust and stable, and whether it can handle scalable problems with stable performance.  In 

other words, we want to find out whether MOCAT can compete with other capable MOEAs.  In addition, 

in complex evolution, we want to observe interactions of metrics and problems—whether one metric 

may work better on some kinds of problems than on others; interactions of metrics and dimensionality

—whether metrics behave differently while dimensionality rises up; how metrics select specific 

topologies or whether they prefer any one; etc.  Thereafter, we need a benchmark that contains a 

variety of different kinds of optimization problems and has been popularly adopted in related 

publications. 

Based on the considerations listed above, ZDT test suite (Zitzler et al, 2000) was selected for 

our experiments.   

Realizing that “Two major problems must be addressed when an evolutionary algorithm is 

applied to multi-objective optimization:  1. How to accomplish fitness assignment and selection, 

respectively, in order to guide the search towards the Pareto-optimal set.  2. How to maintain a diverse 

population in order to prevent premature convergence and achieve a well distributed trade-off front.”, 

Zitzler etc. designed the benchmark problems with special consideration in mind.   

Concerning the first issue, multi-modality, deception, and isolated optima—which indicates that 

the Pareto front can be divided into separate areas each of which seems continuous—are normally 

obstacles to evolution towards real Pareto front.  As to the second issue, convex or non-convex Pareto 
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front shape, discreteness of Pareto front, and non-uniformity of density of Pareto front are obvious 

challenges to MOEAs.  Thereafter, Zitzler et al. designed six problems each of which was corresponding 

to different considered factors.  However, in fact, none of the problems has even density of Pareto front, 

which is understandable since all of them are curves.  In addition, they restricted the problems to only 

two objectives in order to observe evolution easily while two objectives were still “sufficient to reflect 

essential aspects of multi-objective optimization.”   

Finally, following DTLZ benchmark problems that had been proposed earlier (Deb etc, 1999), all 

test problems share the same mathematical formula format.  Such a format allows domain modality to 

be easily scaled up.  Similar to DTLZ problems as well, ZDT benchmark was composed with the 

consideration of including challenges to MOEAs so that they are abstraction of practical problems but 

not direct derivatives of them.  The motivation for composing a set of testing problems is to facilitate 

the observation on the same problem while its modality changes but not compare the efficiency of 

MOEAs upon different problems (Deb et al, 1999). 

ZDT benchmark has been generally used in recent optimization venues (). 

6.1 ZDT 1 
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where m=30 and         .  The Pareto-optimal front is formed with g(x) = 1. 

The Pareto front is: 

          

 

Figure 6.1  ZDT1 Pareto front 

ZDT1 has a concave and continuous Pareto front and may be handled by most MOEAs efficiently. 

6.2 ZDT 2 
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where m=30 and         .  The Pareto-optimal front is formed with g(x) = 1. 

The Pareto front is: 

        
  

 

Figure 6.2  ZDT2 Pareto front 
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ZDT2 has a continuous Pareto front but it is convex; which may be a challenge to some MOEs 

(Deb, 2001) because they tried to reduce the area encircled by the found Pareto font and X and Y axes. 

6.3 ZDT 3 

      

                       
 

   
 

                  
  
 
                  

       

The Pareto front is: 

                              where 
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Figure 6.3  ZDT3 Pareto front 

Clearly, ZDT3 has an isolated Pareto front, which can be deemed as five separate sub-problems.  

Intuitively, many spread metrics that evaluate whether the density of Pareto front is even will be 

challenged by ZDT3. 

6.4 ZDT 4 
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where m=30 and                                .   

The Pareto front contains 219 local Pareto fronts and the overall curve is described as: 

          

 

Figure 6.4  ZDT4 Pareto front 

The Pareto front of ZDT4 looks like the one of ZDT1, however, they are fundamentally different: 

while the Pareto front of ZDT1 is continuous, there the Pareto front of ZDT4 contains 219 local Pareto 
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fronts.  This means that if an algorithm cannot jump out of local neighborhood it will be stuck in a small 

area. 

6.5 ZDT 5 

            

                    
 

   
 

           
 

  
 

where       gives the number of ones in the bit vector    (unitation). 

           
                    

                             
  

and m=11,           , an d          for j =2, … m. 

The Pareto front is formed with g(x)=10 while the best deceptive Pareto front is represented by 

the solutions for which g(x)=11.   
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Figure 6.5 ZDT5 Pareto front 

ZDT5 stands out with several special characteristics; first, its problem description does not use 

mathematic formula directly; second, it Pareto front is not continuous; third, the area of domain space 

that contributes to the Pareto front is a tiny portion of the whole domain space thereafter ZDT5 will 

beat many MOEAs that solely depends on gradient exploration. 

6.6 ZDT 6 
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where m=30 and                               .   

The Pareto front is: 

        
  while                    . 

 

Figure 6.6  ZDT6 Pareto front 

The Pareto front of ZDT6 does cross the whole objective space so that it is an extremity of 

having uneven density of Pareto front. 

For selected test problems, we will run MOCAT 20 times with population of 100, generation of 

100, and may use Spread metric, Hyper-volume metric, and both of them alternatively after 25 

generations.  All results will be presented and summarized with statistical analyses. 



112 

 

 
 

6.7 Summaries 

MOCAT runs on each problem of ZDT benchmark and execution processes are detailed recorded.  

During one run, maybe only spread metric is effective, or only hyper-volume metric is effective, or both; 

we try each configuration 20 runs.  At the end of each run, statistics are made to present the 

characteristics of the run.  Finally, statistics of experiments are made to sum up.  Additionally, to test the 

scalability of MOCAT, we will double the standard dimensions of ZDT problems and redo the 

experiments.  Admittedly, doubling dimensions increase computation load and challenges to MOCAT. 

A couple of result sets are extracted from related literature and used as a baseline to evaluate 

the performance of MOCAT.  The following table was taken from (Bastos-Filho and Miranda, 2011) 

which only contained the performance values. 

Table 6-1  Existing benchmark results I 

Algorithms Metrics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

MOPSO 
Spread 0.0046/5E-4 0.006/0.001 0.005/4E-4 0.006/0.0014 0.129/0.122 

Hyper-volume 0.36/0.002 0.69/0.001 0.950/0.004 0.631/0.526 1.261/0.386 

m-DNPSO 
Spread 0.0457/0.014 0.054/0.017 0.045/0.016 0.04/0.037 0.126/0.108 

Hyper-volume 0.713/0.053 0.94/0.06 1.296/0.088 2.157/0.935 1.279/0.506 

MOPSO 
CDLS 

Spread 0.0042/6E-4 0.006/0.001 0.006/9E-4 0.005/9E-4 0.186/0.145 

Hyper-volume 0.39/0.003 0.716/0.0035 1.006/0.009 4.82/2.174 1.717/0.519 

CSS 
MOPSO 

Spread 0.0023/1E-4 0.0035/7E-4 0.003/7E-4 0.005/0.1112 0.234/0.153 

Hyper-volume 0.34/0.002 0.674/0.001 0.953/0.008 5.38/2.54 2.051/0.697 

MOPSO 
CDR 

Spread 0.0033/2E-4 0.0032/1E-4 0.003/2E-4 0.003/3E-4 0.088/0.056 

Hyper-volume 0.33/3E-5 0.66/3E-5 0.92/1E-4 0.57/0.26 1.670/0.300 

MOPSO 
CDRS 

Spread 0.0027/1E-4 0.0029/2E-5 0.0025/0.0 0.0025/2E-4 0.078/2E-3 

Hyper-volume 0.31/2E-5 0.656/3E-5 0.94/6E-5 0.56/0.012 1.345/0.46 

Tables borrowed from (Li et al, 2008).  The performance values are listed in Table 6-2: 

Table 6-2  Existing benchmark results II 

 Algorithm ZDT1 ZDT2 ZDT3 ZDT4 
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NSGA2 
mean 0.03348 0.07239 0.11450 0.51305 

stdev 0.06892 0.177989 0.089107 0.34418 

PESA2 
mean 0.00105 0.00074 0.00789 9.98254 

stdev 0.0000 0.00000 0.010488 4.487093 

MOPSO 
mean 0.00133 0.00089 0.00418 7.37429 

stdev 0.00000 0.00000 0.00000 2.341551 

AMOPSO 
mean 0.00099 0.00074 0.00391 0.40311 

stdev 0.00000 0.00000 0.00000 0.112205 

ANMOPSO 
mean 0.00005 0.00000 0.00006 0.04083 

stdev 0.00000 0.00000 0.00000 0.039749 

The original paper used variance in its tables, which have been calculated into standard 

deviation, i.e., square root of their values. Calculation of our fitness error makes our error data look 

bigger than the real values. For concave curve, we use the vertical distance from the individual to the 

curve as the fitness values, for concave curve, we use the horizontal distance from the individual to the 

curve, which can be much bigger than the distance from the individual to the curve. MOCAT runs in this 

way without any problems. 

We use double precision numbers in our emulation and use scientific representation in our 

tables for them to avoid over large length. 

At the end of evolution, only the individuals that have comparatively good performance and stay 

at the first Pareto front will be evaluated for statistics.  However, in the middle of evolution, all 

individuals will be taken into count to calculate statistics.  This is a reasonable computation method 

because we want to introduce randomness into the evolutionary procedure. 

For topologies, in each run we will use one concrete example to represent how they behave 

during the whole evolution, whilst the statistical table renders a general picture of their behavior.  
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6.8 Hardware and software configurations 

MOCAT was implemented in Java on top of Repast Simphony.  The Java version is 1.6_20 and 

had the default configuration. 

The experiments were done on a computer with 2G memory, 5400 rpm 3.5-inch hard disk, and a 

CPU of Intel Core 2 Duo T5270 that is running at 1.40GHz.  This computer has an on-board video card.  

The operating system is Windows XP Home edition with Service Pack 3 installed.   

During experiments, only the evolution time is counted while the graphical interface 

initialization time is ignored.  As a fact we find that execution time is very stable for the same problem in 

different runs.  There were no performance data in terms of evolution time in related literature.  Here 

we recorded the average execution time in numbers with two decimal digits.   

6.9 MOCAT initialization 

To prepare MOCAT to run, the population solution is filled with randomly created individuals.  

Then we calculate the performances for all social fabrics and update the population space roulette 

wheel accordingly.  Otherwise, after the first generation one social fabric on the wheel has non-zero 

values while all others have zeros; that means the social fabric for the whole evolution has been fixed.  

In the belief space, the roulette wheel for knowledge sources is initialized with performance 

values of the knowledge sources after they temporarily influence the population.  However, the new 

created individuals are simply discarded instead of merged into the population and all knowledge 

sources will clear their memory after the initialization.  The motivation for us to test run one step is t 

figure out the value range of the performances of the knowledge sources.  For example, for one 
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problem the ranges may be [0.1, 1] while for another problem the rages may be [0.001, 0.1]; excessively 

large or smaller initial values may lead evolution to wrong directions at the beginning.  For example, if 

we give over big initial values, after function update() is executed, the knowledge sources that 

contribute to pushing the found Pareto front are punished because their performance values are 

actually decreased. 

6.10 Definition of fitness error 

To evaluate how close the solutions approach the real Pareto front, the minimal distance of the 

solution to the Pareto front is often used.  In MOCAT, to save computation power, fitness error was 

defined and used in measuring the closeness of the solutions to the real Pareto front. 

                          
    

Where   
  is the fitness value on the second objective while    is fixed.  The graphical 

representation of the meaning of the fitness error is shown in Figure 6.7, which the yellow curve depicts 

the real Pareto front.  As to ZDT problems, the fitness error for an individual is generally bigger than the 

minimal distance from the individual to the real Pareto front. 
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Figure 6.7  Fitness error vs. minimal distance to real Pareto front 

6.11 Hypotheses 

At first, we want to test whether MOCAT can efficiently handle multi-objective optimization.  

Second, we want to test whether MOCAT is scalable, i.e., whether it can handle higher-dimension 

problems.  In addition to these, we want to observe internal behaviors inside MOCAT; to be precise, 

how knowledge sources and topologies interact with each to contribute to evolution. 

There are a series of hypotheses that we want to test, and these null hypotheses are: 

1. All knowledge sources contribute equally to solution finding; 

2. All topologies contribute equally to solution finding; 

3. Specific knowledge sources have no preference of topologies, and vice versa.   

We will use statistical approaches to validate these null hypotheses. 
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6.12 Collection of data 

During the experiment, some data are routinely collected, which include: 

1. The sequence of screen copies of the first run, so that the evolution can be visually 

presented; 

2. For each run, the fitness errors of the ending solutions and statistics upon them for all runs; 

at the end of evolution, only the non-dominated individuals are picked as solutions while 

dominated individuals are discarded; 

3. Under a specific metric, how many times the topologies are used for each run, and the 

statistics upon them for all runs; 

4. Under a specific metric, how many times the knowledge sources influence non-dominated 

individuals for each run, and the statistics upon them for all runs; 

5. Under a specific metric, how many times the knowledge sources influence non-dominated 

individuals through different topologies for each run, and the statistics upon them for all 

runs. 
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CHAPTER 7  SOLVING PROBLEMS WITH CONVEX PARETO FRONTS USING 

MOCAT: ZDT1 

In this chapter we begin a looking at how MOCAT deals with problems that generate a 

traditional convex Pareto front. In terms of such problems we will investigate the following questions: 

1. What is the relative effectiveness of the Homogeneous Spread metric, Homogeneous Hyper-

volume metric, and the combined metrics in directing the generation of the Pareto Front using 

the Cultural Algorithm? 

2. What are the relative contributions of the various knowledge sources to the generation of 

convex Pareto fronts? 

3. What social fabric topologies are most effective in spreading information through the 

population during the generation process? 

4. How are these relationships affected as the dimensionality of the problem is increased from 30 

dimensions to 60? 

5. How do these different configurations compare to the results produced for convex Pareto fronts 

by other MOEAs? 

We begin in section 7.1 by describing the ZDT1 problem.  
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7.1 The ZDT 1 Function Specification 

There are several features that can cause problems for Evolutionary Algorithms in terms of 

generating an optimal Pareto Front and maintaining diversity within the population.  

One such situation can occur when the optimal front exhibits a convex curve which means that 

the neighbors of a given non-dominated solution are non-linearly related to each other. 

      

                       
 

   
 

                 

       

where m=30 and         .  The Pareto-optimal front is formed with g(x) = 1. 

The Pareto front is: 
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Figure 7.7.1  ZDT1 Pareto front 

Figure 7.1 gives the optimal Pareto front for this problem. ZDT1 has a convex and continuous 

Pareto front and may be handled by most MOEAs efficiently. The continuity of the front will make it 

relativity easy to generate diversity, whereas the non-linearity of the optimal front will provide a 

challenge to MOEAs.  Most MOEAs have been developed to handle this category of problems. 

7.2 Performance of the Cultural Algorithm Using a Spread Metric on ZDT1 

with 30 Dimensions 

The runs were complete in an average of 33.54 seconds for 100 generation and 100 individuals 

in each population.   
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7.2.1 The Evolution of the Found Pareto Front 

In this section we provide a series of screen shots that describe the evolution of the Pareto front 

over time using just the spread metric as a performance guide. 

 

Figure 7.2  ZDT1 population at generation 4. 

Figure 7.2 shows the population of solutions generated after just four generations.  Notice that 

the system has produced outcomes primarily on a secondary front which exhibits a fairly linear patterns

—patterns that are easy for EAs to pick up. There are a couple of points that appear to on or very near 

the optimal front. Those points and the knowledge sources that generated them will be attractors for 

the population in subsequent generations. As we will observe later, both normative and topographical 

knowledge have a marked influence in these early stages, while all five knowledge sources play some 



122 

 

 
 

role. Traditionally these two are known for their exploratory activities. Once they have been able to find 

attractive points, the other knowledge sources swarm to those areas and exploit them.  

 

Figure 7.3  ZDT1 at generation 10 

At generation 10, Figure 7.3, the population has produced a linear approximation of the optimal 

Pareto front.  In other words, the Normative and Topographic knowledge sources that typically are 

exploratory in nature gradually make way for the Situational, Domain, and History knowledge sources 

that exploit the detail around the linear curve. This detail will produce nonlinearities seen in the final 

result.  These relative roles have been observed in every version of the CAT system from Peng (2007) 

through Che (2009). 
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Figure 7.4  ZDT1 at generation 20 

By generation 20, Figure 7.4, the population has produced a more convex approximation of the 

optimal Pareto front. What remains to be done is to fill in the gaps along the continuous curve.  By this 

time the exploitative knowledge sources, situational, Domain and History, are dominating the search 

while the exploratory knowledge sources have moved on to search other less productive parts of the 

space. While this might seem inefficient, if something happens to cause a shift in the Pareto front then 

the exploratory knowledge sources will be in a good position to exploit them. 

We can see that while each run left some gaps along the real Pareto frontwhich is unavoidable 

because there are only limited number of individuals in the population (100) at each time step in our 

configuration. Still the gaps are not uniformly spread out which suggests that additional information 

may be useful in guiding the system. Note however, thatwhen we combine the points produced over all 

20 runs we get the continuous curve shown in Figure 7.5 below. 
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Figure 7.5  Overall found Pareto front 

7.2.2 Performance of MOCAT 

In table 7.1 we give the statistics for the 20 runs that were conducted. The errors were 

produced by comparing each point with the actual value on the known curve. The system was run for 

just 100 generations and not until it converged so the errors are non-zero overall. 

Table 7-1 Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending solutions 

  median  mean  min  max stdev 

Run #1 3.35E-05 8.76E-05 0.00E+00 6.31E-04 1.34E-04 

Run #2 9.54E-06 2.59E-05 0.00E+00 2.36E-04 4.56E-05 

Run #3 9.54E-06 2.59E-05 0.00E+00 2.36E-04 4.56E-05 

Run #4 1.17E-05 1.39E-05 0.00E+00 7.28E-05 1.22E-05 

Run #5 3.39E-05 4.30E-05 0.00E+00 1.53E-04 3.94E-05 

Run #6 5.28E-05 9.12E-05 1.00E-09 5.63E-04 1.03E-04 

Run #7 6.81E-05 6.86E-04 0.00E+00 3.69E-02 3.84E-03 

Run #8 3.04E-05 4.02E-05 0.00E+00 1.69E-04 3.53E-05 

Run #9 2.49E-05 3.69E-05 0.00E+00 2.39E-04 4.31E-05 

Run #10 5.79E-06 7.52E-06 0.00E+00 2.74E-05 6.55E-06 
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Run #11 7.06E-05 1.24E-04 1.80E-08 7.51E-04 1.44E-04 

Run #12 4.62E-05 5.16E-05 0.00E+00 1.83E-04 4.43E-05 

Run #13 3.34E-05 3.39E-05 0.00E+00 1.37E-04 2.75E-05 

Run #14 1.24E-05 2.38E-04 0.00E+00 1.40E-02 1.60E-03 

Run #15 1.68E-04 2.40E-04 2.00E-09 1.11E-03 2.30E-04 

Run #16 7.73E-06 8.66E-06 0.00E+00 2.76E-05 6.37E-06 

Run #17 3.37E-05 2.67E-04 0.00E+00 2.02E-02 2.07E-03 

Run #18 5.94E-05 1.33E-04 1.00E-09 2.78E-03 3.31E-04 

Run #19 5.42E-06 7.72E-06 0.00E+00 4.20E-05 9.18E-06 

Run #20 2.76E-04 3.37E-04 1.00E-09 1.69E-03 3.55E-04 

mean 4.97E-05 1.25E-04 1.15E-09 4.01E-03 4.56E-04 

stdev 6.33E-05 1.61E-04 3.90E-09 9.10E-03 9.43E-04 

The performances are good; its median and standard deviation are both better than NSGA-II 

shown in 6.7 More importantly, we can see that the performance of MOCAT is very stable and reliable. 

7.2.3 Statistics of Topologies using Spread metric 

In Figure 7.2 examines how the five homogeneous topologies affected the search process here. 

It shows the number of times that each topology was used over the 100 generations used in each run.  

T-Tests were conducted and appended to the table that tested whether a topology was used more 

frequently for this convex problem than other topologies. The statistical significance of the tests is not 

sufficiently high to reject the null hypothesis that there is no difference in usage here. 

Table 7-2 Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 13 20 26 15 26 0.847027419 

Run #2 23 12 30 17 18 1.111389115 

Run #3 10 19 21 21 29 1.119421394 

Run #4 21 16 36 16 11 0.978107524 

Run #5 28 14 13 19 25 1.086135314 

Run #6 14 19 23 21 23 6.666230388 
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Run #7 21 23 16 21 19 1.287356055 

Run #8 16 20 18 14 32 1.098285051 

Run #9 21 23 17 27 12 0.964309758 

Run #10 22 26 17 16 19 1.168181793 

Run #11 23 20 14 19 24 6.535200529 

Run #12 22 26 23 17 12 8.853087069 

Run #13 20 14 14 24 28 6.822412532 

Run #14 11 19 27 14 29 1.251946181 

Run #15 22 22 19 19 18 1.077883337 

Run #16 29 25 14 18 14 4.076536355 

Run #17 15 13 23 27 22 1.129818909 

Run #18 12 22 17 28 21 8.931720072 

Run #19 19 25 12 27 17 1.030404928 

Run #20 36 14 13 11 26 1.211594209 

mean 19.9 19.6 19.65 19.55 21.25  

stdev 6.512336 4.5002924 6.425893 4.925498 6.19741  

t-test Lbest vs. 0.433213 0.451691 0.424538 0.252964  

 Square vs.  0.488714 0.48672 0.170998  

 Octal vs.   0.47813 0.213915  

 Hex vs.    0.171623  

7.2.4 Behaviors of Knowledge sources using the Spread Metric 

In table 7-3 we see the number of individuals influenced by each knowledge source over time. 

Notice that each of the two exploratory knowledge sources, normative and topographic, are both 

relatively low in the number of agents controlled in comparison with the exploitative knowledge sources. 

The t-tests given in the table show that there are indeed statistically significant differences, at alpha =.05, 

between the influence of the different knowledge sources. Clearly the system spends most of its time 

exploiting the early results of search over all runs. 

Table 7-3  The number of Individuals influenced by KS using the Spread Metric 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 346 1453 1489 1075 187 
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Run #2 356 1395 1535 1159 168 

Run #3 350 1464 1422 1167 172 

Run #4 310 1381 1615 919 130 

Run #5 335 1399 1523 1033 151 

Run #6 324 1459 1503 1039 126 

Run #7 317 1496 1537 805 81 

Run #8 291 1434 1519 1003 122 

Run #9 289 1402 1508 1051 160 

Run #10 311 1400 1516 977 109 

Run #11 344 1443 1548 1122 128 

Run #12 292 1401 1557 1044 107 

Run #13 279 1481 1415 1059 124 

Run #14 330 1386 1526 1162 163 

Run #15 317 1373 1617 872 128 

Run #16 326 1415 1548 1008 171 

Run #17 346 1475 1523 1120 168 

Run #18 301 1428 1542 880 167 

Run #19 343 1399 1532 1068 168 

Run #20 282 1362 1456 1101 146 

mean 319.45 1422.3 1521.55 1033.2 143.8 

stdev 24.4 38.8 50.6 101.0 27.9 

t-test KS-N vs. 8.22E-43 2.05E-36 2.25E-19 1.01E-22 

 KS-S vs.  1.96E-08 7.94E-15 4.64E-47 

 KS-D vs.   4.99E-18 4.33E-40 

 KS-H vs.    9.09E-22 

7.2.5 Statistics of Topology-Knowledge tuple 

In Table 7-4 the total number of non-dominated solutions that are generated by each 

knowledge source for a given topology on average over the 20 runs is given. The exploratory knowledge 

sources, Normative and Topographic, generate the fewest non-dominated individuals per run but they 

are critical to generating the first approximations that the three exploitative knowledge sources (history, 

situational and domain) exploit. Notice that the hexagonal topology produces the most non-dominated 
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solutions over all of the topologies on average. In fact the most complex topologies, hex and global, 

generate the most non-dominated solutions. 

In Table 7-5 the ratio of the standard deviation to the mean is given. This ratio gives an estimate 

of the variability in production of non-dominated solutions. Notice that the topologies that produce the 

most non-dominated solutions are the most consistent. On the other hand, LBEST, which is the simplest 

topology, is the most variable in the generation of non-dominated solutions from run to run. This 

suggests that it is used in a more opportunistic sense than the other topologies here.. 

Table 7-4 The total number of non-dominated solutions generated over all 20 runs for 
each KS Topology pairing. 

  N S D H T 

Lbest 
mean 59.8 267.55 272.45 198.2 27.65 

stdev 36.77327 127.2964 130.2578 95.18326 19.75981 

Square 
mean 65.95 290.25 305.75 216 29.3 

stdev 33.80202 86.61401 98.94968 67.4412 12.86816 

Octal 
mean 67.45 284.95 291.8 217.95 32.45 

stdev 24.7439 100.2625 101.2753 80.25058 15.54442 

Hex 
mean 66.4 303.9 319.1 229.1 30.9 

stdev 23.27954 85.46769 85.82044 57.93363 12.0739 

Global 
mean 65.9 286.3 302.9 210.05 33.15 

stdev 23.38218 102.2999 100.3326 78.35377 18.28222 

Table 7-5  Variability of Topology-Knowledge tuple Production. 

stdev/mean N S D H T 

Lbest 0.614938 0.475785 0.478098 0.480238 0.71464 

Square 0.51254 0.298412 0.323629 0.312228 0.439186 

Octal 0.366848 0.35186 0.347071 0.368206 0.479027 

Hex 0.350595 0.281236 0.268945 0.252875 0.390741 

Global 0.354813 0.357317 0.33124 0.373024 0.5515 
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7.3 Using Hyper Volume to Guide MOCAT for ZDT1 in 30 dimensions 

In this section we use the other spread metric, hyper-volume, to guide the search. The overall 

Pareto front produced is similar to that for the spread metric and will not be given here.  Each run was 

completed in an average of 34.42 seconds.   

7.3.1 Performance of MOCAT 

The statistics shown in Table 7-6 give the overall error produced using the hyper-volume for the 

20 runs. In general, the mean error and standard deviation is slightly higher than that for the spread 

metric. This suggests that it is focused on a larger portion of the search space then for the spread metric 

on average. 

Table 7-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of endingsolutions 

  median  Mean  Min  max stdev 

Run #1 3.79E-05 5.41E-05 1.00E-09 2.89E-04 5.50E-05 

Run #2 3.74E-05 5.12E-05 0.00E+00 3.24E-04 5.23E-05 

Run #3 2.46E-04 8.07E-04 2.00E-09 4.80E-02 4.93E-03 

Run #4 4.60E-05 5.23E-05 0.00E+00 1.80E-04 4.17E-05 

Run #5 1.43E-04 1.98E-04 0.00E+00 8.21E-04 1.74E-04 

Run #6 2.23E-05 1.97E-04 0.00E+00 3.55E-03 5.92E-04 

Run #7 9.99E-05 1.30E-04 0.00E+00 5.30E-04 1.15E-04 

Run #8 2.29E-05 3.62E-05 0.00E+00 2.05E-04 4.12E-05 

Run #9 1.25E-05 1.74E-05 0.00E+00 6.14E-05 1.66E-05 

Run #10 1.70E-04 1.93E-04 0.00E+00 5.97E-04 1.25E-04 

Run #11 1.97E-05 2.50E-05 1.00E-09 1.04E-04 2.02E-05 

Run #12 1.37E-05 2.19E-05 0.00E+00 8.62E-05 2.20E-05 

Run #13 1.11E-05 1.45E-05 0.00E+00 6.07E-05 1.37E-05 

Run #14 1.23E-04 1.88E-04 1.00E-09 9.72E-04 2.23E-04 

Run #15 2.81E-05 7.41E-05 0.00E+00 9.55E-04 1.50E-04 

Run #16 2.33E-05 2.58E-05 0.00E+00 1.09E-04 2.07E-05 

Run #17 5.56E-05 6.09E-05 0.00E+00 2.35E-04 5.60E-05 
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Run #18 2.57E-05 2.99E-05 0.00E+00 1.96E-04 2.73E-05 

Run #19 8.19E-05 4.10E-04 0.00E+00 4.65E-03 8.00E-04 

Run #20 7.18E-05 8.54E-05 0.00E+00 3.01E-04 6.69E-05 

mean 6.46E-05 1.34E-04 2.50E-10 3.11E-03 3.77E-04 

stdev 6.15E-05 1.81E-04 5.36E-10 1.04E-02 1.06E-03 

7.3.2 Statistics of Topologies using Hyper-volume metric 

In table 7-7 the number of times that each topology was selected during a given run is 

presented. The t-test given in the table suggests that as with the spread metric there is no evidence for a 

difference in the use of topologies to direct the search process for the convex problem here. 

Table 7-7  Use Count of Topologies of each run 

 

 
Using Hyper-volume metric 

 

Hyper-volume 
Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 28 17 14 19 22 0.737209538 

Run #2 22 19 22 18 19 0.680990974 

Run #3 16 23 17 19 25 0.532614128 

Run #4 22 19 16 26 17 0.555647676 

Run #5 18 30 19 23 10 0.626039696 

Run #6 19 18 20 21 22 0.65271006 

Run #7 17 16 27 17 23 0.694732545 

Run #8 24 20 20 16 20 0.621438754 

Run #9 17 28 16 23 16 0.682875636 

Run #10 25 13 25 14 23 0.505261666 

Run #11 22 18 14 26 20 0.574701695 

Run #12 22 25 18 13 22 0.493580557 

Run #13 15 20 24 17 24 0.582580069 

Run #14 17 25 17 22 19 1.20564987 

Run #15 19 22 18 20 21 0.725434879 

Run #16 20 12 16 27 25 0.701219191 

Run #17 25 18 25 23 9 0.675484116 

Run #18 20 14 27 18 21 0.634895268 

Run #19 21 19 20 19 21 0.938095568 

Run #20 24 22 20 16 18 0.582703204 

mean 20.65 19.9 19.75 19.85 19.85  
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stdev 3.468277 4.700504 4.063639 3.963983 4.295346  

t-test Lbest vs. 0.284761 0.227989 0.250581 0.260512  

 Square vs.  0.457303 0.485593 0.486086  

 Octal vs.   0.468811 0.470055  

 Hex vs.    0.5  

7.3.3 Behaviors of Knowledge sources using Hyper-volume Metric 

In table 7-8 we see the extent to which each of the knowledge sources can influence the 

individuals in the population. As with the spread metric the exploratory knowledge sources are used less 

frequently than the exploitative knowledge sources. The t-tests in the table indicate a significance 

difference in the influence of the knowledge sources over the courses of the runs. This result is again 

similar to that for the spread metric. 

Table 7-8  Using Hyper-volume metric #Individuals influenced by KS 

Using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 366 1416 1507 993 188 

Run #2 331 1444 1518 907 176 

Run #3 333 1432 1518 1146 155 

Run #4 319 1454 1443 1179 144 

Run #5 347 1425 1553 976 181 

Run #6 332 1468 1541 929 142 

Run #7 315 1471 1465 1181 169 

Run #8 320 1451 1450 1059 155 

Run #9 299 1389 1492 1026 133 

Run #10 311 1406 1430 1231 127 

Run #11 337 1464 1477 1127 180 

Run #12 291 1475 1479 879 118 

Run #13 318 1452 1513 963 142 

Run #14 332 1456 1501 898 126 

Run #15 284 1432 1492 928 90 

Run #16 319 1417 1540 899 117 

Run #17 332 1434 1509 1058 149 

Run #18 276 1418 1548 934 128 
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Run #19 320 1464 1549 1093 175 

Run #20 353 1439 1455 1068 183 

mean 321.75 1440.35 1499 1023.7 148.9 

stdev 22.4 23.6 37.5 109.0 27.0 

t-test KS-N vs. 6.84E-55 2.7E-43 3.04E-18 4.4E-23 

 KS-S vs.  6.85E-07 8.01E-14 5.53E-55 

 KS-D vs.   9.35E-16 2.05E-48 

 KS-H vs.    1.38E-20 

7.3.4 Generation of non-dominated individuals by Knowledge Topology Tuple Using the 

Hyper-Cube Performance Function 

Table 7-9 gives the number of non-dominated solutions produced by each topology-knowledge 

source pair. Notice that the global topology was the most effective at generating non-dominated 

solutions in each of the knowledge sources for this problem. In terms of the knowledge sources, the 

exploitative knowledge sources dominated the generation of non-dominated solutions, especially the 

domain knowledge source. The latter is influential in driving the hill climbing activity of the Cultural 

Algorithms. These results are similar to the spread metric version. 

Table 7-10 examines the how each knowledge source topology pair varies in its production of 

non-dominated solutions over the ten runs.  The statistic is produced by taking the ratio of the standard 

deviation for the runs and dividing by the mean of the runs. The values are taken from Table 7-9. The 

larger the ratio the more diversity there is in the generation of the non-dominated solutions for each 

pair. It is clear that the exploitative knowledge sources ( history, domain, and situational) are more 

consistent generators of non-dominated solutions across all runs. On the other hand, the exploitative 

knowledge sources show more variability in the generation of the non-dominated solutions over the set 

of runs. This indicates that more exploration may be needed in one run versus another based upon how 

the search process begins. 
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Table 7-9  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 66.3 296.65 307.8 204.05 34.3 

stdev 21.53357 70.33998 64.90852 50.27448 13.7462 

Square 
mean 61.65 268.15 281.6 191.5 25.85 

stdev 22.47168 57.56852 63.87109 41.99311 9.560197 

Octal 
mean 58.7 265.7 281.7 200.65 29.25 

stdev 19.855 70.57217 75.61962 59.27037 11.76021 

Hex 
mean 64.2 279.25 294.45 198.15 28.4 

stdev 18.70997 53.16298 58.6304 46.66485 12.62579 

Global 
mean 71.15 318.15 337.85 223.65 34.6 

stdev 21.0595 69.41278 72.35459 52.80578 14.8054 

Table 7-10  Variability in the Production  of Non-Dominated Solutions by Topology-
Knowledge tuple as given by the ratio of the standard deviation to the mean for each 

knowledge topology pair. 

stdev/mean N S D H T 

Lbest 0.32479 0.237114 0.210879 0.246383 0.400764 

Square 0.364504 0.214688 0.226815 0.219285 0.369834 

Octal 0.338245 0.265608 0.26844 0.295392 0.402059 

Hex 0.291433 0.190378 0.199118 0.235503 0.44457 

Global 0.295987 0.218176 0.214162 0.236109 0.427902 

7.4 Solving ZDT1 with dimension 30 using the combined metrics 

In these 20 runs we combine the two metrics and observe their performance in guiding the 

MOCAT search here.  Each run was complete in an average of 36.18 seconds.  Thus, the combined 

metric version takes about two seconds more on average to generate a solution than the hyper-cube 

volume metric controlled Cultural Algorithm. Recall that in the combined approach the metric took turns 

guiding the search process, switching every 25 generations. 
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7.4.1 Performance of MOCAT with the Combined Metrics 

The performance statistics for the MOCAT system guided by the combined metrics are given in 

Table 7-11. Overall the combined system produces results that are similar to the two independent 

metrics above. Of the three metric combinations used the spread metric by itself had the smallest mean 

overall error but the largest standard deviation. The hyper-volume metric on its own produced a slightly 

increased mean error term but reduced the standard deviation from that of the spread metric.  However, 

the overall mean error for the combined metrics is the highest of the three configurations, but it exhibits 

the lowest standard deviation. This suggests that the combined metric controlled solution is more 

focused than either of the two metric controlled Cultural Algorithms on their own. 

Table 7-11  Statistics for the fitness errors of ending solutions 

 Statistics for the fitness errors of ending generation   

  median  mean  min  max stdev 

Run #1 3.39E-05 4.30E-05 0.00E+00 1.53E-04 3.94E-05 

Run #2 1.86E-04 4.09E-04 0.00E+00 5.98E-03 7.71E-04 

Run #3 2.16E-04 5.53E-04 0.00E+00 4.30E-03 7.43E-04 

Run #4 1.61E-05 2.51E-05 1.00E-09 1.05E-04 2.56E-05 

Run #5 5.25E-05 9.02E-05 0.00E+00 8.92E-04 1.24E-04 

Run #6 1.42E-04 1.85E-04 1.10E-08 8.40E-04 1.67E-04 

Run #7 9.99E-06 3.31E-05 0.00E+00 1.72E-03 1.75E-04 

Run #8 2.06E-06 2.52E-06 3.00E-09 2.30E-05 3.31E-06 

Run #9 9.75E-05 1.33E-04 9.10E-08 1.03E-03 1.54E-04 

Run #10 4.84E-05 6.06E-05 1.00E-09 3.92E-04 6.30E-05 

Run #11 2.97E-04 4.16E-04 3.00E-09 4.35E-03 5.45E-04 

Run #12 1.15E-05 1.73E-05 1.00E-09 1.01E-04 1.76E-05 

Run #13 9.24E-05 1.36E-04 4.00E-09 9.72E-04 1.48E-04 

Run #14 3.83E-05 4.33E-05 9.00E-09 2.00E-04 3.70E-05 

Run #15 9.65E-05 1.13E-04 0.00E+00 3.67E-04 8.48E-05 

Run #16 2.73E-05 2.90E-04 0.00E+00 2.04E-03 4.60E-04 

Run #17 2.56E-05 2.47E-05 0.00E+00 9.31E-05 1.83E-05 

Run #18 1.15E-05 9.74E-05 4.30E-08 5.12E-03 5.58E-04 
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Run #19 3.32E-05 4.58E-05 0.00E+00 1.50E-04 3.89E-05 

Run #20 2.29E-05 3.33E-04 0.00E+00 3.99E-03 6.85E-04 

mean 7.30E-05 1.53E-04 8.35E-09 1.64E-03 2.43E-04 

stdev 7.79E-05 1.56E-04 2.12E-08 1.90E-03 2.64E-04 

7.4.2 Statistics of Topologies for both metrics 

Given that the control was switched every 25 generations, each metric was observed for 50 

generations in each run. Tables 7-12 and 7-13 give the topology usage for each of the two metric 

components respectively  over the 50 generations that they were used. 

Table 7-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 9 18 10 9 4 1.030436212 

Run #2 9 10 11 12 8 1.317797209 

Run #3 8 10 9 8 15 1.02599956 

Run #4 7 6 8 11 18 1.038701676 

Run #5 6 18 6 14 6 7.19100245 

Run #6 7 10 14 11 8 1.029884084 

Run #7 7 3 15 11 14 1.068474789 

Run #8 10 22 6 2 10 0.964449467 

Run #9 13 10 8 6 13 4.142557897 

Run #10 4 9 16 12 9 1.318180782 

Run #11 13 7 13 4 13 1.038507953 

Run #12 10 10 7 9 14 7.978955659 

Run #13 8 12 14 10 6 1.17575409 

Run #14 13 6 15 4 12 1.600382192 

Run #15 4 6 9 21 10 1.115927844 

Run #16 12 12 7 7 12 4.758465232 

Run #17 8 4 12 20 6 1.178250946 

Run #18 8 12 7 10 13 5.903779215 

Run #19 7 11 9 12 11 6.744121779 

Run #20 8 9 14 13 6 1.034601066 

mean 8.666667 10.277778 10.38889 10.05556 10.61111  

stdev 2.786522 5.0035935 3.415172 4.940496 3.775134  
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t-test Lbest vs. 0.086345 0.024465 0.080109 0.039653  

 Square vs.  0.424235 0.486784 0.45601  

 Octal vs.   0.439177 0.464632  

 Hex vs.    0.470606  

For the spread metric in Table7-12 there are t-tests showing whether there are statistical 

differences between the pair of use of topologies when.  Here we can see that topology Lbest has 

obviously lower values of usage than the others for the spread metric.  In fact, it is significantly lower 

than Octal and Global topologies in use. This suggests that Lbest was not as effective in distributing 

knowledge as the other more connected topologies with the spread metric in the combined case.  

Table 7-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 10 7 14 11 8 0.487763434 

Run #2 10 1 9 14 16 0.554713793 

Run #3 8 17 6 10 9 0.580528462 

Run #4 13 9 13 9 6 0.598461602 

Run #5 7 8 13 12 10 0.600307753 

Run #6 14 8 9 13 6 0.617521337 

Run #7 11 12 9 8 10 0.581744843 

Run #8 9 8 11 14 8 0.664396647 

Run #9 13 11 12 5 9 0.710420946 

Run #10 7 9 10 12 12 0.556012493 

Run #11 5 9 10 13 13 0.515702789 

Run #12 8 11 15 7 9 0.913295602 

Run #13 11 9 12 11 7 0.853775975 

Run #14 7 14 13 7 9 0.531787556 

Run #15 10 9 12 11 8 0.716315639 

Run #16 11 7 12 8 12 0.672850736 

Run #17 15 8 5 11 11 0.659040005 

Run #18 9 9 11 10 11 0.663649704 

Run #19 12 7 7 8 16 0.669755857 

Run #20 7 10 11 9 13 0.520502392 

mean 9.85 9.15 10.7 10.15 10.15  

stdev 2.680828623 3.133435982 2.617753155 2.49789385 2.870448342  
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t-test Lbest vs. 0.226282 0.158378 0.358147 0.367275  

 Square vs.  0.048998 0.135884 0.149656  

 Octal vs.   0.250384 0.265232  

 Hex vs.    0.5   

As shown in Table 7-13 the Octal topology is used most frequently on average under the control 

of the hyper-cube metric, just as with the spread metric. It is used significantly more often than the 

LBEST topology, similar to the spread metric. While both metrics did not exhibit statistical difference in 

their usage of topologies on their own, when combined they make similar usage of the topologies. Octal 

is used the most in both, and its usage is significantly more than that of LBEST for both the Spread 

metric and Hyper-Volume phases of the combined approach.  

7.4.3 Behaviors of Knowledge sources with the two metric phases. 

Tables 7-14 and 7-15 give the relative use of the knowledge sources by both the spread metric 

and the hyper-volume phases of the combined system respectively. As was exhibited by each metric 

separately, the most influential knowledge source was the domain knowledge source which controlled 

the hill climbing activities. It was used significantly more often than the other statistics in both phases of 

the problem solving process. Also, we can see that knowledge sources N and T, the exploratory 

knowledge sources, were chosen significantly  less frequently than other knowledge sources.   

 

Table 7-14  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 209 692 746 541 109 

Run #2 216 726 766 490 124 

Run #3 264 682 761 450 91 

Run #4 229 723 743 438 76 



138 

 

 
 

Run #5 219 742 788 422 100 

Run #6 220 702 766 494 109 

Run #7 194 730 785 380 71 

Run #8 205 735 787 515 124 

Run #9 229 719 798 443 99 

Run #10 215 717 747 584 94 

Run #11 190 727 748 554 81 

Run #12 182 759 709 467 76 

Run #13 191 702 773 499 48 

Run #14 234 697 808 439 79 

Run #15 185 722 754 548 102 

Run #16 215 708 802 380 67 

Run #17 215 745 747 471 90 

Run #18 208 722 754 420 54 

Run #19 201 685 794 424 104 

Run #20 230 696 748 487 68 

mean 212.55 716.55 766.2 472.3 88.3 

stdev 19.6 20.7 25.2 56.9 21.2 

t-test KS-N vs. 6.1E-44 8.04E-42 3.33E-16 2.07E-21 

 KS-S vs.  2.73E-08 9.37E-16 5.07E-47 

 KS-D vs.   2.81E-18 1.57E-45 

 KS-H vs.    2.38E-20 

Table 7-15  Using Hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 145 711 781 603 95 

Run #2 119 723 734 546 70 

Run #3 120 714 759 559 64 

Run #4 106 747 721 533 49 

Run #5 124 696 761 566 52 

Run #6 136 703 755 588 68 

Run #7 146 742 739 437 47 

Run #8 122 731 743 580 85 

Run #9 106 678 750 505 56 

Run #10 116 665 726 629 80 

Run #11 117 708 730 638 70 

Run #12 113 744 730 524 63 
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Run #13 127 709 744 509 60 

Run #14 123 727 736 600 53 

Run #15 97 702 724 535 50 

Run #16 134 685 772 580 69 

Run #17 120 731 696 584 59 

Run #18 107 721 754 516 40 

Run #19 131 773 734 497 48 

Run #20 105 715 713 553 60 

mean 120.7 716.25 740.1 554.1 61.9 

stdev 13.2 25.4 20.3 48.9 13.8 

t-test KS-N vs. 2.12E-37 1.9E-44 8.99E-22 1.27E-16 

 KS-S vs.  0.001138 5.85E-14 3.47E-39 

 KS-D vs.   6.84E-15 2.06E-46 

 KS-H vs.    4.13E-23 

7.4.4 The Generation of non-dominated solutions by Topology-Knowledge tuples. 

Tables 7-18 and 7-19 give the productivity of each topology-knowledge source combination over 

all of the runs in terms of non-dominated solutions.  Whereas the most productive pairings were octal-

Domain and Hex-Domain for the spread metric and Global-Domain for the hyper-volume metric, the 

combined metric system employs the hex-domain combination to produce the most non-dominated 

solutions. This appears to be a blending of influences for the two different metric phases. 

Also, in Table 7-16 we note that now the system is using the exploitative knowledge sources in a 

more focused way, with less variation. This is the reason for a reduction in the overall variability in 

performance over the 20 runs. 

Table 7-16  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 60.2 283.85 303.75 211.6 26.1 

stdev 22.7286 55.47429 68.24482 48.89559 7.05542 

Square 
mean 58.75 280.15 297.65 201.95 27.6 

stdev 19.24325 54.02658 58.86941 39.5494 7.111148 
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Octal 
mean 64.3 287.15 305.95 209.4 30.65 

stdev 20.68842 49.95501 51.15968 45.22971 12.68764 

Hex 
mean 74 298.5 314.5 216.9 31.95 

stdev 25.21487 72.89249 76.26236 53.4956 13.2207 

Global 
mean 61.25 274.6 295.25 203.8 28.1 

stdev 27.44924 84.78418 90.13375 58.35337 12.61119 

Table 7-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.377552 0.195435 0.224674 0.231076 0.270323 

Square 0.327545 0.192849 0.197781 0.195838 0.25765 

Octal 0.321748 0.173968 0.167216 0.215997 0.413953 

Hex 0.340741 0.244196 0.242488 0.246637 0.413793 

Global 0.448151 0.308755 0.305279 0.286327 0.448797 

7.4.5 Analysis of found Pareto front  

The Optimal Pareto front produced by the combination of the results from the 20 runs is given 

below. The coverage of the optimal front is quite complete. 

 

Figure 7.6  Overall found Pareto front 
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7.5 Summary of ZDT1 

In summary, based upon the 20 runs the MOCAT system is able to perform better than other 

existing systems such as NSGA_II on the convex problem .It’s performance is affected by the spread 

metrics employed. Some conclusions that can be drawn from our experiments are: 

1. MOCAT solves the problem by first generating a linear approximation to the curve via 

exploration and then pushes out on the line using exploitation.  

2. Exploratory knowledge sources are used less frequently than exploitation knowledge sources to 

generate non-dominated solutions. 

3. For 30 dimensions there is no statistically significance preference for one topology over another 

for either of the metrics individually or combined. The combined use of the metrics produces a 

system in 30 dimensions with a slightly increased performance error but decreased standard 

deviation. This suggests a synergy between the two metrics since the spread metric is good at 

supporting search and the hyper-volume metric good at exploitation.   

4. There is also an apparent blending of behaviors between the two approaches when they are 

used together. They focus in on a shared topology=knowledge source that is different that is 

slightly different from the ones that were favored by each alone. 

5. The complex topologies, hex and global, generate more non-dominated solutions here with the 

simpler topologies generating fewer. 

6. The exploratory generate fewer non-dominated solutions than the exploitative ones but their 

contribution is more volatile reflecting the need to jump start the search process in certain 

situations. 
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7. The combined metric system produced more focused search which means that there is less 

variability in the productivity of the knowledge-source-topology pairs. 

8. While this problem is relatively straightforward and can be handled by either metric on its own 

with an emphasis on hill-climbing, the combined sytem does provided a more focused and 

blended environment for problem solving. This will become more important as the problems to 

be solved become more difficult. 
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CHAPTER 8  THE PERFORMANCE OF MOCAT ON PROBLEMS WITH 

CONCAVE PARETO FRONTS: DTZ2 

At the first glance, ZDT2 is very similar to ZDT1, especially in terms of the definition of the 

problems.  However, ZDT1 is a concave problem whereas ZDT2 is a convex. It will be interesting to 

observe how the spread metrics perform in this case. Recall that the system first developed a linear 

approximation and then proceeded to shift points to produce a curve. Here the direction of the curve, 

and therefore movement of points will be in the opposite direction.  The ability of MOCAT to move 

individuals in both directions will be an indicator of its versatility. Thereafter, in this section we will 

observe whether MOCAT can still perform well in presence of disturbance. 

We will use homogeneous spread metric, homogeneous hyper-volume metric, and combined 

two metrics to conduct experiments and try to observe and summarize the correspondence among 

knowledge sources and topologies. 

8.1 Using MOCAT To Find Optimal Pareto Front for Concave Problems: ZDT 2 

with 30 dimensions 

ZDT2 is a continuous function with an optimal Pareto Front that is concave. The mathematical 

description of the problem is shown below and the optimal front is shown in Figure 8.1 
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where m=30 and         .  The Pareto-optimal front is formed with g(x) = 1. 

The Pareto front is: 

        
  

 

Figure 8.1  ZDT2 Pareto front 

ZDT2 has a continuous Pareto front but it is convex; which may be a challenge to some MOEs 

(Deb, 2001) because they tried to reduce the area encircled by the found Pareto font and X and Y axes. 
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The runs were complete in an average of 33.78 seconds for 100 generation and 100 individuals 

in each population.   

8.1.1 Performance of MOCAT Guided by the Spread metric 

In Figure 8.2 (a-d) the evolution of the Pareto front over the 100 generations of an example run 

is given. Notice that the optimal front is represented by a small but relatively linear sequence of points 

that serve as attractors for the knowledge sources that exploit that pattern to create a more convex 

curve. Since we use only 100 individuals and run for only 100 generations there will undoubtedly be 

gaps in the curve for any run. At the end of the section, the individual points generated over each of the 

20 runs are merged to produce a more refined curve. 

 

(a) Generation 5. 
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Generation 10 
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(c)Generation 20 
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(d)Generation 100 

Figure 8.2 (a-d). A series of screen shot s showing how the Pareto front is constructed over 
time. 

Table 8-1 gives the performance for the MOCAT system using the spread metric performance 

function. What is interesting is that while the mean error is higher than that for the convex problem 

(3.63E-4 vs. 1.25E-04) the standard deviation is now lower (4.56E-03 vs. 1.15E-03). These results 

outperform all of the other benchmarked systems given in table 6.2. 

Table 8-1  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  mean  min  max  stdev 

Run #1 1.85E-05 5.61E-05 0.00E+00 5.06E-04 6.80E-05 

Run #2 4.01E-05 2.21E-04 -5.55E-17 1.39E-03 3.00E-04 
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Run #3 4.80E-07 1.80E-05 4.07E-11 6.86E-04 9.62E-05 

Run #4 2.95E-06 4.47E-04 9.96E-12 4.12E-02 4.20E-03 

Run #5 2.29E-05 1.04E-04 -5.55E-17 6.86E-04 1.36E-04 

Run #6 1.94E-04 6.35E-04 -5.55E-17 3.07E-03 6.40E-04 

Run #7 1.46E-04 1.04E-03 3.55E-12 3.68E-02 3.76E-03 

Run #8 3.10E-06 1.67E-05 4.97E-10 7.60E-05 2.09E-05 

Run #9 1.70E-05 9.77E-05 1.20E-10 8.74E-04 1.36E-04 

Run #10 6.54E-04 7.80E-04 1.08E-09 2.85E-03 6.42E-04 

Run #11 2.41E-06 5.60E-06 -3.28E-17 1.90E-05 4.48E-06 

Run #12 1.01E-04 3.11E-04 -5.55E-17 1.32E-03 3.04E-04 

Run #13 1.31E-04 1.75E-04 3.46E-12 7.00E-04 1.69E-04 

Run #14 2.71E-05 1.27E-04 8.98E-09 9.91E-04 1.67E-04 

Run #15 3.20E-04 1.18E-03 3.51E-13 7.98E-03 1.39E-03 

Run #16 8.50E-05 4.87E-04 8.89E-11 2.50E-03 6.02E-04 

Run #17 3.27E-06 4.94E-05 -3.64E-17 3.00E-03 3.05E-04 

Run #18 6.48E-06 1.41E-05 3.83E-13 4.94E-05 1.06E-05 

Run #19 1.05E-06 7.31E-06 -2.78E-17 1.65E-04 2.33E-05 

Run #20 4.91E-06 1.49E-03 2.47E-11 7.70E-02 1.00E-02 

mean 8.90E-05 3.63E-04 5.43E-10 9.09E-03 1.15E-03 

stdev 1.53E-04 4.31E-04 1.95E-09 1.93E-02 2.34E-03 

Since we ran the system for only 100 generation, we pooled the results of the 20 runs to get the 

Pareto front shown in Figure 8.3 below. 
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Figure 8.3  Overall Computed Pareto front 

8.1.2 The Use of the Topologies in MOCAT with the Spread Metric 

Table 8-2 gives the count of the topologies used under the spread performance metric. For the 

Convex problem there were no significant differences in usage of the topologies by MOCAT with the 

Spread Metric. Here, the use of the GLOBAL topology is significantly less than the others with the 

exception of the Hexagonal topology. 

Table 8-2  Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 13 20 22 28 17 1.075076 

Run #2 30 17 20 15 18 7.713442 

Run #3 27 17 19 19 18 6.858578 

Run #4 19 19 21 18 23 6.617002 

Run #5 23 29 28 9 11 1.131607 

Run #6 24 25 15 18 18 8.642619 

Run #7 12 23 23 18 24 3.38353 

Run #8 24 19 28 11 18 6.399448 
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Run #9 23 25 15 20 17 7.085921 

Run #10 11 21 30 22 16 3.380326 

Run #11 21 14 17 24 24 1.41518 

Run #12 25 17 19 24 15 7.526634 

Run #13 30 12 13 30 15 5.384621 

Run #14 28 19 17 20 16 1.131752 

Run #15 28 22 24 10 16 5.427405 

Run #16 26 24 12 17 21 7.559107 

Run #17 15 15 35 18 17 1.409467 

Run #18 17 22 22 20 19 6.90993 

Run #19 21 14 25 21 19 7.021774 

Run #20 24 27 16 21 12 7.132664 

mean 22.05 20.05 21.05 19.15 17.70  

stdev 5.71 4.50 5.87 5.20 3.35  

t-test Lbest vs. 0.119021 0.298726 0.054902 0.003716  

 Square vs.  0.279661 0.285862 0.038157  

 Octal vs.   0.148802 0.019375  

 Hex vs.    0.157143  

In the convex case the more complex topologies such as global were more active in the problem 

solving process.  For the concave case it is the other way around, LBEST is now used most frequently on 

average. This suggests that too much communication with other individuals may have adverse effects on 

the evolution for ZDT2.  It may be that too much communication results in more individuals being 

moved in the wrong direction from the concave front. Additionally, it suggests that the system is able to 

adjust its search process to reflect changes in the Pareto front for a given problem.  

8.1.3 Knowledge Source Usage with the Spread Metrics 

In table 8-3 the number of individuals influenced by each knowledge source for each run is given. 

Notice that as with the convex problem each knowledge source is used to a statistically different extent. 

The system here has reduced the emphasis on exploration by reducing the usage of normative and 

topographic knowledge and increased it use of domain and situational knowledge source, ones that 
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focus on exploitation in an area. This may be a way of reducing the number of attempts to move 

individuals to the left of the linear approximation, so as to generate a concave one. 

Table 8-3  The Number of Individuals Influenced by the Spread Metric for Each Knowledge 
Source. 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 260 1487 1476 1020 99 

Run #2 261 1337 1550 892 96 

Run #3 295 1362 1616 863 93 

Run #4 318 1344 1467 973 73 

Run #5 277 1358 1501 983 101 

Run #6 298 1375 1602 704 87 

Run #7 285 1317 1662 674 101 

Run #8 309 1442 1479 1026 89 

Run #9 308 1390 1540 880 73 

Run #10 252 1388 1514 925 60 

Run #11 295 1444 1528 1013 92 

Run #12 287 1410 1547 832 74 

Run #13 299 1389 1523 918 75 

Run #14 258 1398 1533 1033 91 

Run #15 311 1309 1560 946 99 

Run #16 310 1395 1562 918 86 

Run #17 269 1396 1534 770 73 

Run #18 266 1474 1485 945 64 

Run #19 294 1390 1480 996 69 

Run #20 291 1475 1519 807 85 

mean 287.15 1394.00 1533.90 905.90 84.00 

stdev 19.73 49.18 48.85 102.07 12.55 

t-test KS-N vs. 2.58E-33 9.48E-35 2.07E-17 1.4E-28 

 KS-S vs.  5.29E-11 1.81E-17 1.54E-31 

 KS-D vs.   2.9E-20 1.39E-32 

 KS-H vs.    2.2E-19 
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8.1.4 Combined Usage Frequency of Topology-Knowledge Tuple with the Spread 

Performance Metric 

In Table 8-4 the average number of non-dominated solutions produced by each knowledge 

source topology pair is given. Although the most complex topologies dominated the generation of non-

dominated solutions for the convex problem, here the simplest topology dominates the generation of 

non-dominated solutions.   This suggests that in the concave problem much more local search is used. In 

Table 8-5 the variability in production is now associated with the exploratory knowledge sources 

regardless of topology. This means that exploratory knowledge sources will be invoked more frequently 

when they have found a good region in the search space. 

Table 8-4  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 65.65 308.3 343.1 196.95 21.2 

stdev 31.01829 76.42065 98.05847 63.95432 11.53302 

Square 
mean 52.25 278.75 306.65 182.85 15.35 

stdev 21.036 68.70139 75.46228 42.44907 8.36833 

Octal 
mean 64.5 288.05 325.5 190.4 17.55 

stdev 29.18273 76.6856 87.49707 60.22624 10.41494 

Hex 
mean 55.3 268.4 291.5 177 17.95 

stdev 22.06474 76.5736 76.91246 55.05595 10.92787 

Global 
mean 49.45 250.5 267.15 158.7 11.95 

stdev 21.69034 52.93243 55.47429 35.55885 7.830272 

Table 8-5  Randomness of Topology-Knowledge tuple, Standard deviation divided by the 
mean 

stdev/mean N S D H T 

Lbest 0.47248 0.247878 0.285801 0.324724 0.54401 

Square 0.402603 0.246462 0.246086 0.232152 0.545168 

Octal 0.452445 0.266223 0.268808 0.316314 0.593444 

Hex 0.399001 0.285297 0.263851 0.311051 0.608795 

Global 0.438632 0.211307 0.207652 0.224063 0.655253 
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8.2 Solving ZDT 2 30 with Homogeneous Hyper-Volume Metric Performance 

Function 

For the convex problem the spread metric by itself was more effective in solving the problem 

than the hyper- volume metric.  For the concave problem it is the situation is reversed.  The Hyper-

volume guided system outperforms the spread metric based system in terms of mean error and 

standard deviation. In fact, it outperformed all of the other systems based upon their statistics in tables 

6-2 and 6-3 using just 100 individuals over 100 generations.  

The runs were complete in an average of 36.78 seconds.   

8.2.1 Performance of MOCAT on ZDT2 Using the Hyper-Volume Metric 

In Table 8-6 the mean error and standard deviation of the error is given. These values are both 

improvements over that of the spread metric and better than any of the other benchmarked system 

values given in Chapter 6. This suggests that while the spread metric is more effective in guiding MOCAT 

search in convex situations, the Hyper-Volume metric does better in the concave situation. 

Table 8-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  Mean  min  max  stdev 

Run #1 6.13E-06 1.95E-04 1.68E-12 1.55E-02 1.58E-03 

Run #2 8.51E-05 2.39E-04 1.48E-09 9.13E-04 2.21E-04 

Run #3 2.48E-04 2.86E-04 4.22E-15 1.02E-03 2.33E-04 

Run #4 1.33E-05 3.21E-05 2.08E-09 1.92E-04 2.89E-05 

Run #5 8.67E-06 3.65E-05 -5.55E-17 3.23E-04 5.27E-05 

Run #6 6.74E-06 2.01E-05 -2.11E-17 9.06E-05 1.99E-05 

Run #7 7.97E-07 2.41E-06 7.25E-13 1.34E-05 3.49E-06 

Run #8 5.26E-08 2.15E-07 1.29E-12 1.55E-06 2.80E-07 

Run #9 4.97E-06 2.74E-05 3.54E-09 1.98E-04 3.71E-05 
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Run #10 3.45E-05 2.64E-04 0.00E+00 2.53E-03 5.05E-04 

Run #11 1.81E-04 6.57E-04 1.92E-11 3.61E-03 6.91E-04 

Run #12 2.10E-06 5.80E-06 4.15E-11 2.45E-05 5.66E-06 

Run #13 1.73E-05 4.39E-05 2.44E-09 2.32E-04 4.15E-05 

Run #14 1.32E-05 1.62E-05 -2.78E-17 7.37E-05 1.45E-05 

Run #15 3.44E-05 5.92E-05 1.85E-11 2.07E-04 6.15E-05 

Run #16 5.67E-08 4.19E-05 2.44E-15 9.79E-04 1.69E-04 

Run #17 1.98E-08 5.93E-08 -5.39E-17 3.22E-07 7.54E-08 

Run #18 2.53E-05 9.09E-05 -4.16E-17 7.43E-04 1.25E-04 

Run #19 2.21E-05 6.49E-05 1.04E-17 2.87E-04 6.53E-05 

Run #20 1.06E-04 2.82E-04 1.25E-11 1.72E-03 2.90E-04 

mean 4.05E-05 1.18E-04 4.81E-10 1.43E-03 2.07E-04 

stdev 6.49E-05 1.58E-04 1.01E-09 3.35E-03 3.61E-04 

8.2.2 Statistics of Topologies using Hyper-volume metric 

Table 8-7 gives the number of times that each topology was used over the 20 runs. The 

statistical tests in the extended table suggest that all topologies are used equally over the search. This is 

in contrast with the Spread metric situation in which the global topology was used significantly less. 

There was a slight tendency to use the simpler topologies such as square, but not a statistically 

significant trend. 

Table 8-7  Use Count of Topologies of each run for the Hyper-Volume 

 

 
Using Hyper-volume metric 

 

Hyper-volume 
Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 23 19 24 16 18 1.011891 

Run #2 14 15 23 21 27 1.304145 

Run #3 20 21 24 14 21 1.531087 

Run #4 27 17 17 20 19 1.185342 

Run #5 23 13 21 20 23 1.214848 

Run #6 18 30 17 19 16 1.37573 

Run #7 24 15 25 16 20 1.138522 

Run #8 23 19 15 25 18 0.900597 

Run #9 20 22 17 18 23 1.044022 
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Run #10 24 21 13 28 14 1.734349 

Run #11 22 19 20 16 23 1.32526 

Run #12 22 19 24 23 12 0.949667 

Run #13 18 31 15 20 16 1.17246 

Run #14 20 28 18 17 17 1.351572 

Run #15 17 18 29 12 24 1.152803 

Run #16 24 26 20 14 16 1.055576 

Run #17 17 21 24 19 19 0.907154 

Run #18 19 12 25 24 20 1.401431 

Run #19 7 27 18 25 23 0.963887 

Run #20 17 11 17 30 25 1.135178 

mean 19.95 20.20 20.30 19.85 19.70  

stdev 4.32 5.64 4.16 4.68 3.82  

t-test Lbest vs. 0.439501 0.400273 0.472902 0.425572  

 Square vs.  0.475394 0.418181 0.375589  

 Octal vs.   0.377955 0.323044  

 Hex vs.    0.457227  

Table 8-8 gives the number of individuals controlled by the knowledge sources over the 20 runs. 

All five knowledge sources exhibited statistically different influences over the 20 runs. As with the 

spread metric the two exploitative knowledge sources, situational and domain, were used the most 

frequently. The two exploratory knowledge sources were used much less frequently. 

Table 8-8  Using Spread metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 292 1353 1499 895 78 

Run #2 278 1425 1601 743 89 

Run #3 278 1455 1549 793 78 

Run #4 334 1363 1561 989 97 

Run #5 290 1423 1540 893 83 

Run #6 293 1402 1510 822 77 

Run #7 259 1480 1556 784 85 

Run #8 311 1500 1471 957 72 

Run #9 282 1347 1650 822 91 

Run #10 254 1377 1568 787 89 
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Run #11 244 1397 1555 856 86 

Run #12 279 1426 1508 992 97 

Run #13 300 1401 1557 853 93 

Run #14 286 1456 1470 922 90 

Run #15 274 1375 1499 948 90 

Run #16 346 1431 1464 883 71 

Run #17 298 1392 1464 971 65 

Run #18 267 1433 1542 861 72 

Run #19 273 1441 1543 843 53 

Run #20 247 1367 1634 840 73 

mean 284.25 1412.20 1537.05 872.70 81.45 

stdev 25.31 41.14 51.51 70.68 11.15 

t-test KS-N vs. 1.26E-41 1.17E-36 4.94E-22 9.18E-23 

 KS-S vs.  3.81E-10 5.53E-24 1.05E-33 

 KS-D vs.   3.62E-28 2.46E-31 

 KS-H vs.    2.02E-22 

8.2.3 Number of Non-Dominated Solutions generated by Each Topology-Knowledge tuple 

In table 8-9 the number of non-dominated solution produced by each topology-knowledge 

source pair is given. While the Octal Domain tuple generates the most there is no dominant 

configuration on display here. In Table 8-10 it is clear that while the topographic knowledge source 

generates the fewest overall; that the number generated can increase if it finds a good region to search. 

Table 8-9  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 53.9 283.65 302.05 174.95 14.85 

stdev 14.54901 65.62916 65.20129 50.52928 7.095403 

Square 
mean 59.35 280.8 308.8 175.5 20.1 

stdev 26.65624 82.59196 87.71161 51.30661 13.61462 

Octal 
mean 59.95 286.1 317.35 181.4 16.9 

stdev 21.08498 59.855 68.68714 47.33242 10.73067 

Hex 
mean 56.65 282.85 304.55 171.6 14.85 

stdev 20.23617 71.46974 81.9059 47.14412 8.863141 

Global 
mean 54.4 278.8 304.3 169.25 14.75 

stdev 16.69352 55.82265 67.81872 37.88886 9.419325 
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Table 8-10  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.269926 0.231374 0.215863 0.288821 0.477805 

Square 0.449136 0.294131 0.28404 0.292345 0.677344 

Octal 0.351709 0.20921 0.21644 0.260928 0.634951 

Hex 0.357214 0.252677 0.268941 0.274733 0.596844 

Global 0.306866 0.200225 0.222868 0.223863 0.638598 

8.3 ZDT 2 30 with combined metrics 

For the convex problem the combined solution using both metric did not fare as well as the 

spread metric on its own, although the combined approach had a slightly reduced error. The problem 

was simple enough that the potential synergy provided by both metrics was not necessary.  Here, the 

combination of the two metrics produced an improvement over either on their own and changed how 

each participated in the solution. Recall that in these runs the metrics took turns guiding the search for 

25 generations each. 

The runs were complete in an average of 35.78 seconds.   

8.3.1 Performance of MOCAT 

In Table 8-11 is clear that the combined system performance is an improvement over both 

metrics on their own. While the Hyper-Volume metric was the better of the two, the combined system 

outperforms that as well.  The results outperform those for all of the benchmarked systems as described 

in chapter 6. 

Table 8-11  Statistics for the fitness errors of ending solutions 

 Statistics for the fitness errors of ending generation   

  median  mean  min  max  stdev 

Run #1 1.79E-05 4.59E-05 2.50E-12 9.70E-04 1.15E-04 
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Run #2 7.33E-05 1.80E-04 -5.55E-17 7.07E-04 1.46E-04 

Run #3 1.33E-05 1.43E-04 0.00E+00 1.06E-03 2.16E-04 

Run #4 1.05E-05 2.57E-05 2.56E-09 7.83E-05 1.85E-05 

Run #5 6.79E-09 1.93E-08 3.82E-17 7.29E-08 1.81E-08 

Run #6 6.97E-06 3.14E-05 2.62E-12 2.44E-04 4.52E-05 

Run #7 8.14E-06 1.17E-05 2.21E-15 5.55E-05 1.10E-05 

Run #8 1.06E-05 5.27E-05 3.38E-17 4.29E-04 7.66E-05 

Run #9 4.31E-05 5.27E-05 3.40E-11 2.02E-04 4.60E-05 

Run #10 1.53E-05 3.92E-05 1.69E-12 2.62E-04 4.05E-05 

Run #11 1.35E-06 5.66E-05 2.08E-16 1.98E-03 2.27E-04 

Run #12 2.94E-05 7.65E-05 6.28E-13 3.71E-04 8.07E-05 

Run #13 2.98E-05 1.04E-03 3.66E-13 8.95E-02 9.12E-03 

Run #14 5.82E-05 1.50E-04 3.16E-08 4.70E-04 1.19E-04 

Run #15 1.44E-06 5.07E-06 5.84E-13 2.68E-05 5.38E-06 

Run #16 3.94E-06 1.24E-05 2.39E-13 5.31E-05 1.28E-05 

Run #17 3.36E-06 9.83E-06 1.70E-11 5.70E-05 1.39E-05 

Run #18 1.84E-06 4.27E-06 3.02E-09 1.15E-05 3.24E-06 

Run #19 4.88E-05 2.38E-04 6.08E-13 1.95E-03 3.57E-04 

Run #20 2.71E-05 1.06E-04 2.21E-09 5.88E-04 1.23E-04 

mean 2.02E-05 1.14E-04 1.97E-09 4.95E-03 5.39E-04 

stdev 2.05E-05 2.22E-04 6.87E-09 1.94E-02 1.97E-03 

8.3.2 Statistics of Topologies for both metrics 

Tables 8-12 and 8-13 give the number of times that each topology was used in the combined run. 

Since each was used overall for just 50 generations the counts will have changed but what is important 

is the differences in usage between the topologies. When used by itself the spread metric used 

statistically fewer global topologies however there is no difference in usage. On the other hand the 

spread metric now uses significantly more global topologies than before. 

Table 8-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 10 7 8 19 6 6.991931 
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Run #2 12 9 7 12 10 6.648939 

Run #3 9 8 4 21 8 6.661652 

Run #4 17 8 7 11 7 1.329185 

Run #5 2 10 14 6 18 6.378567 

Run #6 12 13 10 9 6 6.691653 

Run #7 9 9 6 12 14 4.612961 

Run #8 4 7 13 16 10 7.144973 

Run #9 9 10 9 14 8 7.232991 

Run #10 13 5 14 9 9 5.881953 

Run #11 8 8 6 5 23 1.124861 

Run #12 12 11 11 9 7 1.352452 

Run #13 9 7 11 3 20 1.37916 

Run #14 9 9 9 13 10 0.9547 

Run #15 12 14 11 6 7 1.152332 

Run #16 7 13 9 13 8 4.821896 

Run #17 11 10 12 9 8 6.209814 

Run #18 11 11 3 9 16 1.275664 

Run #19 16 11 10 9 4 1.259173 

Run #20 13 5 13 8 11 7.114922 
mean 10.25 9.25 9.35 10.65 10.50  

stdev 3.45 2.43 3.09 4.41 4.96  

t-test Lbest vs. 0.154232 0.200979 0.378583 0.429004  

 Square vs.  0.456108 0.117393 0.166355  

 Octal vs.   0.149865 0.198811  

 Hex vs.    0.461037  

Here we cannot see statistical difference between any pair of topologies.   

Table 8-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 8 17 4 10 11 1.46096 

Run #2 10 5 11 5 19 1.253579 

Run #3 10 9 8 11 12 1.226193 

Run #4 7 11 12 8 12 1.516897 

Run #5 8 8 9 14 11 1.112439 

Run #6 10 6 10 14 10 1.425319 

Run #7 11 9 11 6 13 0.983411 

Run #8 14 9 10 9 8 0.962264 
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Run #9 11 16 12 6 5 1.747168 

Run #10 7 10 11 12 10 1.326611 

Run #11 11 8 8 9 14 1.769225 

Run #12 9 7 13 14 7 1.237062 

Run #13 8 8 17 8 9 1.345778 

Run #14 10 8 13 6 13 1.194311 

Run #15 11 5 7 14 13 2.493285 

Run #16 9 7 10 11 13 1.112412 

Run #17 9 7 11 7 16 1.096588 

Run #18 9 1 16 13 11 1.379982 

Run #19 11 6 10 12 11 1.128648 

Run #20 7 15 4 11 13 1.125405 

mean 9.50 8.60 10.35 10.00 11.55  

stdev 1.72 3.75 3.18 2.97 3.01  

t-test Lbest vs. 0.174889 0.156994 0.264825 0.007496  

 Square vs.  0.064624 0.104895 0.005553  

 Octal vs.   0.363891 0.119852  

 Hex vs.    0.059023  

As shown in the above table, this time Square has a smaller mean than other topologies while 

Global has the biggest mean.  The difference between Lbest and Global and Square and Global are 

statistically important.   

8.3.3 Behaviors of Knowledge sources with the two metrics 

Tables 8-14 and 8-15 give the number of individuals controlled by each knowledge source over 

the 20 runs. As before, each knowledge source exhibits a significantly different control effect from the 

others. The domain and situational knowledge sources still dominate, but now the history knowledge 

source plays more of a role. This is because as control shifts between the two metrics the history 

knowledge source is able to facilitate the shift in terms of the distribution of information from one 

phase to the next. The results of the spread metric are now available for the Hyper-Volume metric 

through the history knowledge source. 
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Table 8-14  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 197 684 771 498 66 

Run #2 182 746 698 446 68 

Run #3 183 697 758 446 47 

Run #4 188 707 820 343 59 

Run #5 166 655 763 454 45 

Run #6 199 699 779 460 52 

Run #7 187 684 767 411 68 

Run #8 155 727 749 469 59 

Run #9 186 748 794 343 73 

Run #10 195 676 829 340 61 

Run #11 222 658 756 423 63 

Run #12 185 759 757 496 61 

Run #13 208 700 766 411 57 

Run #14 180 711 760 405 58 

Run #15 183 704 799 404 43 

Run #16 153 695 731 496 68 

Run #17 200 718 787 367 55 

Run #18 179 736 769 477 41 

Run #19 162 660 753 464 60 

Run #20 195 690 798 399 63 

mean 185.25 702.70 770.20 427.60 58.35 

stdev 16.68 29.07 28.87 50.17 8.69 

t-test KS-N vs. 7.54E-35 1.23E-36 2.12E-16 3.18E-23 

 KS-S vs.  7E-09 8.64E-20 1.04E-30 

 KS-D vs.   1.68E-22 8.66E-32 

 KS-H vs.    6.1E-19 

Table 8-15  Using Hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 94 703 728 545 38 

Run #2 77 658 732 501 36 

Run #3 92 696 726 501 14 

Run #4 96 717 780 422 25 
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Run #5 113 679 789 422 31 

Run #6 88 699 784 433 31 

Run #7 94 723 722 527 39 

Run #8 96 699 754 479 36 

Run #9 80 712 757 468 40 

Run #10 104 709 776 385 33 

Run #11 82 670 766 534 27 

Run #12 91 673 734 599 36 

Run #13 106 641 766 476 10 

Run #14 85 718 794 442 22 

Run #15 95 693 772 494 36 

Run #16 98 701 754 533 33 

Run #17 92 701 747 504 28 

Run #18 93 719 762 513 44 

Run #19 87 725 761 490 32 

Run #20 98 692 783 503 43 

mean 93.05 696.40 759.35 488.55 31.70 

stdev 8.49 21.85 21.57 48.89 8.60 

t-test KS-N vs. 3.67E-35 1.65E-36 9.32E-20 1.3E-23 

 KS-S vs.  3.53E-11 5.86E-16 2.43E-36 

 KS-D vs.   9.87E-19 1.31E-37 

 KS-H vs.    5.09E-21 

8.3.4 The Generation of non-dominated solutions by Topology-Knowledge tuple 

Tables 8-16 and 8-17 give the number of non-dominated solutions produced by each tuple on 

the one hand, and the variability in that production on the other. Recall that for the spread metric the 

LBEST topology was the most productive. Now the global topology has become the dominant one. In 

addition, the ability of history knowledge to produce non-dominated solutions has increased markedly 

as well. 

Thus, in the combined system increased performance is produced by increasing the connectivity 

within the topology on the one hand and between the metric segments using history knowledge on the 

other. 
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Table 8-16  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 59.25 272.8 303.25 180.4 14.2 

stdev 23.48544 52.60038 57.56449 34.90498 7.338435 

Square 
mean 46.35 247.7 272.25 167.15 16.85 

stdev 15.8721 42.45505 55.50901 36.03401 9.033709 

Octal 
mean 51.05 277.6 303.95 174.4 21.2 

stdev 15.73623 58.36131 65.78712 43.45887 10.90919 

Hex 
mean 61.9 291.4 311.15 191.85 18.15 

stdev 18.18588 71.47351 75.3918 50.83852 10.40382 

Global 
mean 59.75 309.6 338.95 202.35 19.65 

stdev 30.69695 82.78978 98.57376 52.70601 10.0644 

Table 8-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.396379 0.192817 0.189825 0.193487 0.516791 

Square 0.34244 0.171397 0.20389 0.215579 0.536125 

Octal 0.308251 0.210235 0.216441 0.249191 0.514585 

Hex 0.293795 0.245276 0.242301 0.264991 0.573213 

Global 0.513756 0.267409 0.290821 0.26047 0.512183 

8.3.5 Analysis of found Pareto front  

The resultant Pareto front produced by merging the results of the 20 runs is given below for the 

combined system. 
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Figure 8.4  Overall found Pareto front 

8.4 Summary of ZDT2 

ZDT2 has a convex Pareto front which is normally considered as a challenge for hyper-volume 

metric.  However, in our experiments, performance of hyper-volume metric cannot be considered 

inferior.  This has to do with the fact that in our system the hyper-volume is not just the only source of 

knowledge in the search. Data collected in the knowledge sources is used to guide the search. As a result, 

the hyper-volume metric outperforms the spread metric here  as well as the other benchmarked 

systems. In summary, the following conclusions can be drawn: 

1. Of the two solo metrics, the hyper-volume metric is better as controlling the MOCAT search 

for the problem than the spread metric. 

2. Here the combined system outperforms either metric individually since both types of metric 

knowledge are integrated together. The integration takes place through the increased use of 
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the global topology to distribute information and the history knowledge source to convey 

information produced by the one metric for use by the other metric. 

3. Unlike the other MOEP systems, the metrics are not the principle source of information here. 

They are used as guides for the generation of knowledge and its spread through the social 

fabric by MOCAT. MOCAT is able to adjust the configuration of the system in order to exploit 

the different information provided by each. 
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CHAPTER 9  SOLVING EXPERIMENT RESULTS OF ZDT3 

ZDT3 is not an easy problem for MOEAs because its real Pareto front consists of five segments 

that are far from each other which may impair the effectiveness of both spread metric and hyper-

volume metric. In other words the front has been discretized into segments. We will still use 

homogeneous spread metric, homogeneous hyper-volume metric, and the combined two metrics to 

conduct experiments and try to observe and summarize the correspondence among knowledge sources 

and topologies.  

While such a problem can be hard for other MOEAs it is important to recall that those 

approaches only use the metrics to guide the search. In MOCAT there are 5 other knowledge sources 

that can contribute. It is clear from the discussion of the first two problems that the presence of these 

five knowledge sources serves to enhance the performance of the MOCAT system over traditional ones. 

9.1 ZDT 3 30 with homogeneous Spread metrics 

ZDT3 is simply a modified version of ZDT1 where a sine function has been added to the equation 

which results in the discretization of the front into segments. Although the front is now segmented, the 

parameter space is still continuous. The optimal Pareto Front is given in Figure 8.3. This can pose a 

problem to systems that just use spread metrics. However, MOCAT has other knowledge sources than 

can generate knowledge for use in the search. The question then is, what knowledge sources will be 

recruited here to deal this discretization issue? 
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Figure 9.1  ZDT3 Pareto front 

9.2 Performance of MOCAT using the spread metric for zdt3 30 

In the previous problems MOCAT started with a basic linear approximation of the curve and 

then adjusted it using exploitation activities. The system works the same way here. It is illustrated in the 

following section using the spread metric to guide the process.  

The runs were complete in an average of 32.48 seconds for 100 generation and 100 individuals 

in each population.   
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9.2.1 Using the spread metric to guide the solution of ZDT3 in 30 dimensions 

The following sequence of figures 9(a-e) presents in one run how the population moves to the 

Pareto front under the spread metric.  As before, the system generates a linear approximation of the 

curve and then proceeds to bend each segment successively to produce a more curved shape. There is a 

clear preference for the system to modify the segments from left to right. 

 

(a) 
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(b) 
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(e) 

Figure 9.2  (a,b,c,d,e)  A series of screen copies showing the evolution of the front under 
the guidance of the spread metric. 

Finally, in Figure 9.3 the addition of found Pareto front from each run is represented, which is a 

much better approximation of the real Pareto front, compared to any single run. 
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Figure 9.3  Overall found Pareto front 

We can see that while each run left some empty spots along the real Pareto front—which is 

unavoidable because there are always only limited number of individuals and each was run for only 100 

generations, in total the 20 runs covers the Pareto front.  The overall found Pareto font does not have a 

perfect shape and there are some outliers which reflect the fact that the last segment at the bottom still 

needs exploration. 

9.2.2 Performance of MOCAT Using the Spread Metric 

Table 9-1 gives the run statistics for MOCAT using just the spread metric. The results are not as 

good as for the first two problems since it is more difficult. On the other hand, the achieved mean error 

and standard deviation exceeds all of the other benchmarked systems except ANMOPSO. However, this 

is just with one metric on board. It will be interesting to see how the combined metric will fare. 
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Table 9-1  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  mean  min  max  stdev 

Run #1 4.39E-03 1.25E-02 1.87E-04 8.76E-02 1.76E-02 

Run #2 5.06E-03 2.25E-02 3.89E-05 8.98E-02 2.52E-02 

Run #3 9.06E-03 2.13E-02 4.14E-05 9.28E-02 2.47E-02 

Run #4 1.14E-02 2.02E-02 1.27E-04 9.90E-02 2.26E-02 

Run #5 4.08E-03 1.35E-02 3.40E-05 6.18E-02 1.44E-02 

Run #6 1.11E-02 1.85E-02 7.00E-04 9.84E-02 2.14E-02 

Run #7 4.89E-03 2.26E-02 7.45E-04 8.89E-02 2.40E-02 

Run #8 1.06E-02 2.01E-02 6.65E-05 9.48E-02 2.23E-02 

Run #9 8.55E-03 1.62E-02 4.34E-04 9.05E-02 2.12E-02 

Run #10 4.28E-03 1.39E-02 1.98E-04 8.61E-02 1.68E-02 

Run #11 3.84E-03 1.57E-02 9.92E-04 8.28E-02 1.93E-02 

Run #12 8.42E-03 1.63E-02 1.09E-04 7.70E-02 1.99E-02 

Run #13 4.28E-03 1.66E-02 2.30E-04 9.92E-02 2.01E-02 

Run #14 5.11E-03 2.06E-02 2.06E-04 9.52E-02 2.44E-02 

Run #15 3.73E-03 1.49E-02 1.60E-04 8.61E-02 1.95E-02 

Run #16 6.22E-03 1.68E-02 6.67E-04 9.32E-02 2.29E-02 

Run #17 8.95E-03 1.54E-02 2.76E-04 8.63E-02 1.70E-02 

Run #18 5.73E-03 1.01E-02 5.38E-04 9.72E-02 1.41E-02 

Run #19 5.54E-03 9.78E-03 2.21E-04 6.36E-02 1.33E-02 

Run #20 6.85E-03 1.57E-02 2.35E-04 8.40E-02 2.15E-02 

mean 6.61E-03 1.67E-02 3.10E-04 8.77E-02 2.01E-02 

stdev 2.51E-03 3.65E-03 2.68E-04 1.01E-02 3.52E-03 

9.2.3 Statistics of Topologies using Spread metric 

Table 9-2 give the usage of the topologies over the 20 runs. It can be seem that there is no 

preference for one topology over another with the spread metric.  

Table 9-2  Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 20 19 21 14 26 1.833499 
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Run #2 25 23 21 16 15 1.153962 

Run #3 1 31 27 19 22 0.952648 

Run #4 25 19 10 29 17 1.472176 

Run #5 22 14 24 19 21 1.26794 

Run #6 8 26 26 27 13 2.036993 

Run #7 21 28 21 14 16 1.754554 

Run #8 19 16 22 22 21 1.362669 

Run #9 27 18 12 28 15 1.363473 

Run #10 21 25 16 13 25 1.883721 

Run #11 25 19 15 15 26 1.856412 

Run #12 28 21 19 21 11 1.766661 

Run #13 20 21 21 22 16 1.377467 

Run #14 27 25 11 19 18 1.028349 

Run #15 16 16 19 28 21 1.503096 

Run #16 28 15 15 22 20 1.407871 

Run #17 26 17 18 18 21 1.538659 

Run #18 16 17 24 24 19 1.926854 

Run #19 24 21 17 17 21 1.499136 

Run #20 22 18 21 19 20 1.372687 

mean 21.05 20.45 19.00 20.30 19.20  

stdev 6.63 4.48 4.65 4.82 3.99  

t-test Lbest vs. 0.372882 0.138731 0.346197 0.152743  

 Square vs.  0.166798 0.460668 0.184835  

 Octal vs.   0.201287 0.443827  

 Hex vs.    0.224252  

9.2.4 Behaviors of Knowledge sources using Spread Metric 

The number of individual influenced by each knowledge source is given in Table 9-3. What is 

interesting is that while the knowledge sources are still exhibiting statistically significant differences in 

influence, the role of the Knowledge Sources now different. The exploratory knowledge sources are now 

being used much more frequently to explore the space. Also, domain knowledge is now the dominant 

knowledge source for exploitation. 
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Table 9-3  Using Spread metric #Individuals influenced by KS. 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 463 1314 1588 718 198 

Run #2 447 1260 1693 668 186 

Run #3 446 1366 1574 793 149 

Run #4 442 1280 1677 716 221 

Run #5 391 1364 1615 799 175 

Run #6 466 1257 1627 737 178 

Run #7 428 1377 1585 635 176 

Run #8 456 1340 1617 688 138 

Run #9 399 1345 1570 745 203 

Run #10 458 1247 1651 750 167 

Run #11 440 1217 1656 695 205 

Run #12 466 1284 1607 725 212 

Run #13 478 1282 1614 817 216 

Run #14 417 1213 1616 745 137 

Run #15 456 1256 1604 805 190 

Run #16 409 1352 1567 833 170 

Run #17 476 1216 1676 682 177 

Run #18 375 1371 1641 855 227 

Run #19 475 1262 1589 801 223 

Run #20 449 1291 1562 720 206 

mean 441.85 1294.70 1616.45 746.35 187.70 

stdev 28.92 53.66 37.89 58.04 26.51 

t-test KS-N vs. 1.27E-32 1.54E-46 1.23E-18 2.83E-27 

 KS-S vs.  1.22E-21 2.24E-28 9.31E-35 

 KS-D vs.   4.86E-34 2.83E-48 

 KS-H vs.    4.62E-25 

9.2.5 Statistics of Topology-Knowledge tuple 

Tables 9-4 and 9-5 give the number of non-dominated solutions generated by each topology 

knowledge source tuple and the variability in their production respectively. It is clear that regardless of 

the topology domain knowledge better at generating solutions than the other knowledge sources 
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overall for this problem. In terms of variability, it appears that the LBEST topology is the most able to 

adjust to take advantage of new found areas. 

Table 9-4  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 91.65 271.95 341.9 154.85 40.5 

stdev 31.87686 90.01197 113.0346 52.70901 15.35372 

Square 
mean 83.9 265.35 324.8 155.6 40.85 

stdev 23.27388 65.18014 72.44788 37.25926 13.15205 

Octal 
mean 89.7 245.9 309.95 138.8 34.6 

stdev 29.64722 66.90205 80.58697 38.0714 13.82751 

Hex 
mean 84.85 260.45 334.95 153.75 36.9 

stdev 25.46675 69.1965 84.01533 44.61045 13.67248 

Global 
mean 91.75 251.05 304.85 143.35 34.85 

stdev 22.52922 50.1403 66.46826 34.12867 9.062793 

Table 9-5  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.347811 0.330987 0.330607 0.340388 0.379104 

Square 0.2774 0.245638 0.223054 0.239455 0.32196 

Octal 0.330515 0.27207 0.26 0.27429 0.399639 

Hex 0.300138 0.265681 0.250829 0.290149 0.370528 

Global 0.24555 0.199722 0.218036 0.238079 0.260051 

9.3 ZDT 3 30 with homogeneous Hyper-volume metrics 

9.3.1 Performance of MOCAT Using the Hyper-Volume Metric 

As shown in table 9-6 below, the hyper-volume metric guided system outperforms that of the 

spread metric slightly in terms of both mean error and standard deviation of the error.   In fact, it now 

outperforms all of the other benchmarked functions including ANMOPSO. 

The runs were complete in an average of 39.42 seconds.   
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Table 9-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  Mean  min  max  stdev 

Run #1 4.37E-03 1.84E-02 8.16E-04 8.89E-02 1.94E-02 

Run #2 2.81E-03 1.63E-02 6.72E-04 9.89E-02 2.17E-02 

Run #3 7.74E-03 1.11E-02 2.97E-05 6.24E-02 1.29E-02 

Run #4 3.43E-03 1.46E-02 4.70E-05 6.94E-02 1.82E-02 

Run #5 9.09E-03 1.69E-02 7.49E-05 9.61E-02 2.33E-02 

Run #6 9.24E-03 1.69E-02 4.16E-06 8.96E-02 2.06E-02 

Run #7 4.08E-03 1.29E-02 5.10E-05 7.90E-02 1.43E-02 

Run #8 4.21E-03 1.88E-02 2.69E-04 9.99E-02 2.31E-02 

Run #9 9.17E-03 1.34E-02 2.25E-04 9.74E-02 1.62E-02 

Run #10 2.47E-03 1.06E-02 5.77E-04 8.98E-02 1.63E-02 

Run #11 9.89E-03 2.08E-02 4.45E-04 9.82E-02 2.57E-02 

Run #12 4.44E-03 1.97E-02 1.54E-04 8.86E-02 2.25E-02 

Run #13 4.47E-03 1.49E-02 1.66E-04 9.59E-02 2.03E-02 

Run #14 8.34E-03 2.19E-02 1.47E-04 9.70E-02 2.55E-02 

Run #15 1.06E-02 1.66E-02 7.81E-04 9.12E-02 1.87E-02 

Run #16 4.46E-03 1.79E-02 3.41E-06 9.49E-02 2.23E-02 

Run #17 3.55E-03 1.48E-02 9.18E-04 9.34E-02 2.08E-02 

Run #18 3.93E-03 1.66E-02 1.35E-04 8.89E-02 2.16E-02 

Run #19 7.31E-03 1.36E-02 9.62E-04 8.47E-02 1.54E-02 

Run #20 6.53E-03 1.13E-02 1.27E-03 8.35E-02 1.68E-02 

mean 6.01E-03 1.59E-02 3.87E-04 8.94E-02 1.98E-02 

stdev 2.58E-03 3.10E-03 3.78E-04 9.57E-03 3.52E-03 

9.3.2 Statistics of Topologies using Hyper-volume metric 

While there was no statistical difference in usage between topologies for the spread metric, 

table 9-7 indicates that both the simplest (LBEST) and the most complex (Global) are the preferred 

choices here. The former is to conduct local search and latter is to link the segments together in the 

search. 

Table 9-7  Use Count of Topologies of each run 

 

 
Using Hyper-volume metric 

 
Hyper-volume 
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Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 20 16 24 17 23 0.817267 

Run #2 20 17 20 21 22 0.742551 

Run #3 21 17 19 19 24 1.204697 

Run #4 24 17 21 19 19 1.061088 

Run #5 24 13 19 19 25 0.9809 

Run #6 26 21 17 10 26 0.96152 

Run #7 23 17 17 24 19 0.94163 

Run #8 15 25 21 26 13 0.733853 

Run #9 18 24 20 22 16 1.366974 

Run #10 31 24 8 18 19 0.850537 

Run #11 15 19 27 22 17 0.72768 

Run #12 24 17 24 15 20 0.874815 

Run #13 18 18 19 21 24 0.905912 

Run #14 24 21 16 24 15 0.937269 

Run #15 14 15 20 19 32 1.041747 

Run #16 22 18 17 16 27 1.049134 

Run #17 32 9 21 18 20 1.070652 

Run #18 28 18 16 17 21 1.934245 

Run #19 22 23 13 27 15 0.757881 

Run #20 25 25 21 15 14 0.621279 

mean 22.30 18.70 19.00 19.45 20.55  

stdev 4.80 4.05 4.00 3.98 4.78  

t-test Lbest vs. 0.008506 0.013514 0.026869 0.133521  

 Square vs.  0.409779 0.284139 0.103039  

 Octal vs.   0.365038 0.142704  

 Hex vs.    0.222873  

9.3.3 Behaviors of Knowledge sources using Hyper-volume Metric 

As with the spread metric the hyper-volume system uses the exploratory knowledge sources in 

the search more than in the previous problems. Also, domain knowledge controls the most individuals 

over the 20 runs as with the spread metric. 

Table 9-8  Using Hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 
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  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 437 1296 1547 738 189 

Run #2 468 1288 1568 788 170 

Run #3 423 1302 1571 782 167 

Run #4 423 1373 1512 834 192 

Run #5 420 1266 1598 840 214 

Run #6 474 1318 1500 725 182 

Run #7 363 1334 1555 847 166 

Run #8 415 1336 1491 797 180 

Run #9 500 1237 1605 776 199 

Run #10 370 1359 1561 817 192 

Run #11 417 1351 1523 834 197 

Run #12 470 1275 1557 714 163 

Run #13 455 1292 1646 757 225 

Run #14 466 1345 1565 724 202 

Run #15 447 1384 1526 815 241 

Run #16 421 1286 1555 734 178 

Run #17 434 1388 1517 697 203 

Run #18 410 1346 1546 892 200 

Run #19 445 1270 1568 784 191 

Run #20 422 1366 1591 817 217 

mean 434.00 1320.60 1555.10 785.60 193.40 

stdev 32.62 42.47 36.80 50.99 19.99 

t-test KS-N vs. 1.59E-40 2.73E-47 3.48E-23 7.52E-24 

 KS-S vs.  2.02E-20 3.27E-30 4.21E-37 

 KS-D vs.   4.31E-35 1.93E-43 

 KS-H vs.    5.1E-26 

The values are similar to those in ZDT3 30 using pure spread metric. 

9.3.4 Statistics of Topology-Knowledge tuple 

MOCAT using the hyper-volume metric is able to produce more non-dominated solution with 

exploratory knowledge sources than the spread metric. Since the Pareto front is separated into 

segments this gives it a strong competitive edge. Domain Knowledge is still the dominant method for 
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generating non-dominated solutions regardless of topology. As shown in Table 9-10, no one topology 

exhibits the ability to vary its generation of non-dominated solutions markedly. 

Table 9-9  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 94.35 294.55 350.55 177.7 40.1 

stdev 28.19346 72.5574 74.29633 40.95967 11.1256 

Square 
mean 84.2 245.35 290.95 146.8 39.1 

stdev 27.54441 54.24338 67.61071 33.30497 15.92053 

Octal 
mean 81.8 255 289.4 151 36.75 

stdev 26.22895 56.43534 65.03311 36.39549 12.16066 

Hex 
mean 80 258.25 306.3 150.5 36 

stdev 20.38059 58.49145 68.64255 33.63504 13.95104 

Global 
mean 93.65 267.45 317.9 159.6 41.45 

stdev 26.97811 63.75981 76.07192 42.08563 18.96111 

Table 9-10  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.298818 0.246333 0.211942 0.230499 0.277446 

Square 0.327131 0.221086 0.232379 0.226873 0.407175 

Octal 0.320647 0.221315 0.224717 0.24103 0.330902 

Hex 0.254757 0.226492 0.224102 0.223489 0.387529 

Global 0.288074 0.238399 0.239295 0.263694 0.457445 

9.3.5 Analysis of found Pareto front 

The found front below still favors segments to the left as did the spread metric, but now the 

intervals are much more fleshed out with fewer gaps than before. 
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Figure 9.4  Overall found Pareto front 

9.4 ZDT 3 30 with combined metrics 

Configuration for this part of experiment is: population 100, generation 100, dimension 30, and 

every 25 generations Topology metrics are switched. 

The runs were complete in an average of 33.96 seconds.   

9.4.1 Performance of MOCAT with the Combine Metrics 

The combined metrics again outperform either one separately as shown in Table 9-11 in terms 

of both mean error and standard deviation of the error.  It again illustrates the synergy of combining the 

two metrics together in terms of controlling the knowledge sources. The question is how does the 

combination impact how each knowledge source conducts its segment? 
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Table 9-11  Ratios on the Belief Space roulette wheel before generation 20 

 Statistics for the fitness errors of ending generation   

  median  mean  min  max  stdev 

Run #1 8.62E-03 1.85E-02 2.90E-06 9.17E-02 2.31E-02 

Run #2 4.68E-03 1.71E-02 6.20E-04 9.59E-02 2.44E-02 

Run #3 6.03E-03 1.98E-02 2.15E-03 8.63E-02 1.93E-02 

Run #4 9.19E-03 1.32E-02 8.50E-04 6.47E-02 1.24E-02 

Run #5 1.01E-02 1.63E-02 3.07E-05 8.19E-02 1.91E-02 

Run #6 3.50E-03 1.07E-02 2.35E-06 9.05E-02 1.40E-02 

Run #7 2.91E-03 8.32E-03 9.56E-05 6.64E-02 9.98E-03 

Run #8 4.89E-03 1.72E-02 8.95E-05 9.67E-02 1.84E-02 

Run #9 6.12E-03 1.19E-02 1.86E-04 9.07E-02 1.77E-02 

Run #10 8.55E-03 2.18E-02 7.73E-05 9.28E-02 2.74E-02 

Run #11 6.94E-03 1.50E-02 1.16E-04 9.31E-02 2.14E-02 

Run #12 4.61E-03 1.82E-02 1.13E-03 8.49E-02 2.11E-02 

Run #13 7.75E-03 1.60E-02 1.45E-04 9.84E-02 1.94E-02 

Run #14 4.47E-03 1.52E-02 6.89E-04 8.96E-02 1.68E-02 

Run #15 7.47E-03 1.45E-02 4.13E-04 9.38E-02 2.06E-02 

Run #16 6.56E-03 9.44E-03 1.58E-04 8.13E-02 1.28E-02 

Run #17 7.68E-03 1.41E-02 5.21E-06 9.18E-02 1.80E-02 

Run #18 5.76E-03 1.01E-02 5.90E-04 6.87E-02 1.42E-02 

Run #19 5.79E-03 1.91E-02 3.06E-04 9.69E-02 2.46E-02 

Run #20 3.45E-03 1.32E-02 1.10E-04 8.32E-02 1.69E-02 

mean 6.25E-03 1.50E-02 3.88E-04 8.70E-02 1.86E-02 

stdev 1.97E-03 3.57E-03 5.09E-04 9.81E-03 4.37E-03 

9.4.2 Statistics of Topologies using for Both Metrics 

Tables 9-12 and 9-13 give the usage of topologies for both metrics during their 50 generations. 

Recall that they take turns conducting the search every 26 generations. It is interesting to note that 

LBEST and Octal are dominant for the spread portion but for the hyper-volume portion it is LBEST and 

Square. In fact, Octal is significantly worse the LBEST there. This suggests that the two phases are 

working in complementary ways. 
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Table 9-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 8 8 19 8 7 1.344107 

Run #2 10 9 13 5 13 1.804859 

Run #3 12 12 7 8 11 1.631843 

Run #4 8 8 14 12 8 1.75174 

Run #5 11 8 11 8 12 1.497024 

Run #6 13 6 12 13 6 1.464572 

Run #7 17 16 5 6 6 1.600356 

Run #8 14 7 12 7 10 1.817861 

Run #9 11 8 9 8 14 1.396507 

Run #10 12 7 11 9 11 0.95383 

Run #11 11 11 3 9 16 0.655216 

Run #12 14 5 11 12 8 3.33157 

Run #13 8 6 9 18 9 1.915242 

Run #14 8 6 17 12 7 1.931795 

Run #15 4 12 10 12 12 1.768109 

Run #16 11 7 14 8 10 1.087823 

Run #17 12 11 11 7 9 1.392345 

Run #18 8 13 12 10 7 1.713928 

Run #19 10 12 9 9 10 1.566155 

Run #20 14 9 11 8 8 1.588173 

mean 10.80 9.05 11.00 9.45 9.70  

stdev 2.87 2.82 3.56 2.91 2.67  

t-test Lbest vs. 0.032877 0.42502 0.079079 0.114448  

 Square vs.  0.034765 0.334595 0.234894  

 Octal vs.   0.075171 0.105656  

 Hex vs.    0.391921  

Table 9-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 10 13 14 7 6 1.449694 

Run #2 10 11 6 8 15 1.112144 

Run #3 13 6 5 10 16 0.886865 

Run #4 12 9 8 10 11 0.860081 

Run #5 12 9 10 10 9 2.258497 
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Run #6 15 9 5 9 12 0.860638 

Run #7 10 7 7 14 12 1.5608 

Run #8 16 10 12 10 2 0.905942 

Run #9 9 10 5 16 10 1.323813 

Run #10 10 10 9 14 7 0.705549 

Run #11 8 12 11 8 11 0.82653 

Run #12 12 8 13 9 8 1.083261 

Run #13 15 14 3 10 8 0.75213 

Run #14 9 6 11 13 11 0.780946 

Run #15 9 17 13 5 6 0.805511 

Run #16 10 10 5 12 13 0.811523 

Run #17 7 9 10 14 10 1.440028 

Run #18 9 10 10 9 12 0.828039 

Run #19 11 10 10 8 11 0.995826 

Run #20 8 12 9 14 7 0.855525 

mean 10.75 10.10 8.80 10.50 9.85  

stdev 2.43 2.57 3.09 2.80 3.23  

t-test Lbest vs. 0.21375 0.018648 0.385191 0.169022  

 Square vs.  0.083466 0.324494 0.396578  

 Octal vs.   0.041915 0.156223  

 Hex vs.    0.255794  

9.4.3 Behavior of Knowledge sources with the two metrics 

Again the complementary nature of the two phases is visible in tables 9-14 and 9-15 below. The 

spread metric controls more individuals with the normative and topographic exploratory metrics than 

does the hyper-volume metric. The hyper-volume makes more use of the history knowledge sources to 

control search. As said earlier, this is a way of transferring learned knowledge from one phase to the 

next. 

Table 9-14  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 286 633 758 395 99 

Run #2 237 626 852 355 98 
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Run #3 301 601 829 355 102 

Run #4 254 644 788 357 104 

Run #5 237 673 773 398 107 

Run #6 261 567 876 301 86 

Run #7 270 662 786 353 115 

Run #8 296 587 837 290 93 

Run #9 218 676 823 345 95 

Run #10 263 623 766 344 96 

Run #11 268 627 855 371 119 

Run #12 298 628 846 307 109 

Run #13 259 656 792 422 137 

Run #14 307 575 852 310 110 

Run #15 251 610 846 266 92 

Run #16 254 600 849 409 114 

Run #17 310 578 846 301 92 

Run #18 249 572 917 283 88 

Run #19 274 652 803 324 124 

Run #20 251 676 783 367 94 

mean 267.20 623.30 823.85 342.65 103.70 

stdev 24.82 35.14 40.22 42.94 12.85 

t-test KS-N vs. 4.29E-29 2.45E-32 1.13E-07 1.8E-21 

 KS-S vs.  6.43E-19 5.16E-23 4.76E-28 

 KS-D vs.   5.03E-31 4.76E-29 

 KS-H vs.    1.84E-17 

Table 9-15  Using Hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 160 639 783 394 68 

Run #2 188 656 788 369 74 

Run #3 209 610 771 414 92 

Run #4 145 660 769 351 86 

Run #5 173 687 747 427 89 

Run #6 178 633 764 320 52 

Run #7 148 690 739 424 89 

Run #8 183 660 765 349 55 

Run #9 161 670 782 445 92 

Run #10 166 698 775 464 89 
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Run #11 140 691 762 400 83 

Run #12 162 645 798 406 69 

Run #13 179 672 782 444 106 

Run #14 169 666 815 381 69 

Run #15 159 673 779 304 59 

Run #16 176 635 781 421 101 

Run #17 170 624 824 367 98 

Run #18 152 665 836 382 87 

Run #19 169 666 790 394 117 

Run #20 177 670 709 442 84 

mean 168.20 660.50 777.95 394.90 82.95 

stdev 15.66 22.88 27.90 41.66 16.66 

t-test KS-N vs. 9.53E-40 3.2E-37 6.19E-18 5.82E-19 

 KS-S vs.  9.39E-17 2.14E-21 7.3E-43 

 KS-D vs.   2.19E-27 7.34E-40 

 KS-H vs.    1.72E-21 

9.4.4 Statistics of Topology-Knowledge tuple 

As shown in Table 9-16 and 9-17 the dominant topology in producing non-dominated solutions 

is LBEST. This is to be expected since both metrics on their own favored this topology. 

The system demonstrates increased ability to generate new solutions in good areas for both of 

the exploratory knowledge sources. 

Table 9-16  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 91.4 272.45 345.05 160.65 40.65 

stdev 27.51727 49.31368 62.73962 42.19164 11.95727 

Square 
mean 84.5 247.95 301.15 142.3 36.25 

stdev 26.30889 53.9439 64.45747 32.20183 12.28124 

Octal 
mean 94.85 252 320.4 143.8 35.75 

stdev 32.80609 63.05303 92.60067 43.33298 13.00152 

Hex 
mean 87.15 257.2 321 143.3 39.65 

stdev 20.57151 51.1135 56.03007 38.52559 13.58899 

Global 
mean 77.5 254.2 314.2 147.5 34.35 

stdev 19.50304 62.64738 75.2173 39.29979 8.579504 
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Table 9-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.301064 0.181001 0.181828 0.262631 0.294152 

Square 0.311348 0.21756 0.214038 0.226295 0.338793 

Octal 0.345873 0.25021 0.289016 0.301342 0.363679 

Hex 0.236047 0.198731 0.174548 0.268846 0.342723 

Global 0.251652 0.246449 0.239393 0.266439 0.249767 

9.4.5 Analysis of found Pareto front  

The found optimal front exhibits small gaps only in the last segment, much improved over either 

metric separately. 

 

Figure 9.5  Overall found Pareto front 

9.5 Summary of ZDT3 

ZDT3 has a special Pareto front which consists of five segments which are distant from each 

other, which does impose big challenges to MOCAT in that fitness errors are much larger than those in 
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previous two sections.  However, both the hyper-volume system and the combined systems outperform 

all of the other benchmarked systems for this problem. The combined system out performs the hyper-

volume system as well. The curves produced by the combined system exhibit fewer gaps as well. 

Some basic conclusions are: 

1. For this problem there has emerged a clear distinction between local and global search. 

Bothe the global and lbest topologies are favored by the combined system. 

2. Also, there is an increased emphasis on the exploratory knowledge sources on the one hand 

and the domain knowledge source on the other. 

3. History knowledge again plays a fundamental role in connecting the activities of the two 

metric together in the combined system. 
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CHAPTER 10  USING MOCAT TO SOLVE MULTI-MODAL PROBLEMS: ZDT4 

At the first glance, ZDT4 is the same as ZDT1. However, they are fundamentally different.  While 

for ZDT1 the real Pareto front is a continuous curve, for ZDT4 the real one contains 219 local Pareto 

fronts.  This problem combines aspects of all three previous problems into one problem. It has been 

observed previously that as the Pareto front has become more complex the MOCAT system has been 

able to adjust how it uses the knowledge sources and distributes their influences using the topologies. 

While the other approaches relied primarily on the spread metrics to control search, in MOCAT 

knowledge from the search is digested into the knowledge sources and used to guide the search as well. 

This provides a powerful mechanism for generating the Optimal Pareto front. Also, it is clear that the 

combined metrics can combine their influences in order to produce an overall better result than either 

metric by itself. It will be interesting to see whether this trend continues for this more complex problem. 

We will still use homogeneous spread metric, homogeneous hyper-volume metric, and 

combined two metrics to conduct experiments and try to observe and summarize the correspondence 

among knowledge sources and topologies.  

10.1 ZDT 4 10 with homogeneous Spread metrics  

In ZDT4 the function is similar to ZDT1 but now there are a number of locally optimal fronts. In 

order to achieve the global optimal front the system will need to connect together the various local 

fronts. 
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where m=30 and                                .   

The Pareto front contains 219 local Pareto fronts and the overall curve is described as: 

          

 

Figure 10.1  ZDT4 Pareto front 
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The Pareto front shown in Figure 10.1 for ZDT4 looks like the one of ZDT1, however, they are 

fundamentally different. While the Pareto front of ZDT1 is continuous, there the Pareto front of ZDT4 

contains 219 local Pareto fronts.  This means that if an algorithm cannot jump out of local neighborhood 

it will be stuck in a small area.  As such, it requires all of the knowledge needed to solve each of the first 

three problems in order for this one to be effectively solved. 

The runs were complete in an average of 14.38 seconds.   

10.1.1 Evolving the Pareto Front 

The following sequence of figures 10-a-e are taken from one run of the MOCAT system using the 

spread metric by which we can see that the evolution is similar to ZDT1 but a remarkable difference is 

that for ZDT4 at the beginning of evolution individuals do not spread to the far right bottom. Instead, 

they are attracted there during the evolution process.   
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(c) 



198 
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(e) 

Figure 10.2  A series of screen copies along evolution (a-e) 

10.1.2 Performance of MOCAT Using the Spread Metric 

In Table 10-1 the performance statistics for MOCAT are given. The mean and standard deviation 

for the MOCAT system with the spread metric outperforms the benchmark results for all of the other 

systems. In fact, the mean error and the standard deviation are the least four all four problems that we 

have examined so far. 

Table 10-1  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  mean  min  max  stdev 

Run #1 1.79E-06 1.26E-05 2.28E-14 1.87E-04 2.47E-05 
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Run #2 3.71E-07 1.49E-06 -5.55E-17 1.31E-05 2.38E-06 

Run #3 3.14E-07 5.08E-06 0 6.51E-05 1.08E-05 

Run #4 3.07E-06 2.57E-05 -3.47E-17 2.92E-04 4.67E-05 

Run #5 1.18E-06 1.20E-05 -2.78E-17 1.95E-04 3.02E-05 

Run #6 1.63E-07 3.34E-06 0 1.03E-04 1.35E-05 

Run #7 3.25E-08 1.80E-04 0 0.003007 4.74E-04 

Run #8 4.28E-07 6.91E-06 -3.47E-17 8.24E-05 1.31E-05 

Run #9 1.09E-08 3.07E-08 1.14E-13 1.55E-07 3.10E-08 

Run #10 1.57E-07 2.64E-06 0 6.34E-05 8.10E-06 

Run #11 3.83E-06 2.03E-05 -5.55E-17 2.69E-04 3.98E-05 

Run #12 7.17E-07 3.20E-06 -5.55E-17 2.16E-05 4.31E-06 

Run #13 1.70E-09 8.04E-09 -3.82E-17 6.71E-08 1.29E-08 

Run #14 6.77E-09 3.48E-08 0 4.85E-07 6.54E-08 

Run #15 4.69E-07 7.99E-06 3.01E-14 1.24E-04 2.11E-05 

Run #16 1.02E-06 4.30E-05 1.01E-13 0.001302 1.85E-04 

Run #17 4.05E-07 1.72E-06 0 1.22E-05 2.34E-06 

Run #18 4.31E-06 4.86E-05 -2.78E-17 8.52E-04 1.10E-04 

Run #19 1.17E-06 4.53E-06 0 2.94E-05 5.82E-06 

Run #20 5.94E-07 2.31E-05 -2.78E-17 5.94E-04 8.23E-05 

mean 1.00E-06 2.01E-05 1.34E-14 3.61E-04 5.37E-05 

Stdev 1.25E-06 3.91E-05 3.24E-14 6.89E-04 1.06E-04 

10.1.3 Statistics of Topologies using Spread metric 

In terms of the usage of topologies over the runs Table 10-2 indicates that there is no significant 

difference in usage of the topologies with the spread metric. 

Table 10-2  Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 19 18 20 28 15 1.304667 

Run #2 16 24 25 15 20 2.478954 

Run #3 27 23 19 18 13 1.289089 

Run #4 23 19 15 19 24 2.04255 

Run #5 26 22 13 18 21 1.090334 

Run #6 21 13 20 21 25 0.936189 
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Run #7 22 23 18 13 23 2.435693 

Run #8 18 19 25 16 22 0.995736 

Run #9 23 25 19 17 16 1.095636 

Run #10 20 18 19 22 21 1.205241 

Run #11 18 22 15 17 27 1.154544 

Run #12 18 19 18 18 25 1.134337 

Run #13 18 15 20 19 27 1.316264 

Run #14 17 23 27 15 18 2.907291 

Run #15 16 22 24 23 14 0.945172 

Run #16 23 23 14 20 17 1.418885 

Run #17 21 21 15 24 19 1.042119 

Run #18 11 20 32 15 22 1.572977 

Run #19 16 25 20 17 22 1.319642 

Run #20 17 16 27 21 19 1.027526 

mean 19.50 20.50 20.25 18.80 20.50  

stdev 3.72 3.25 4.89 3.52 4.02  

t-test Lbest vs. 0.191596 0.298962 0.277362 0.215554  

 Square vs.  0.426909 0.064963 0.5  

 Octal vs.   0.150554 0.432106  

 Hex vs.    0.086712  

10.1.4 Behaviors of Knowledge sources using Spread Metrics 

Table 10-3 gives the extent to which the different knowledge sources control individuals in the 

population. Notice that the MOCAT system uses the normative exploratory knowledge source more 

than for previous problems. This is also true for history knowledge.  It is suggested that these two 

knowledge sources are necessary to make the leap between the different parts of the Pareto front 

Table 10-3  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 293 1487 1420 1102 67 

Run #2 261 1383 1434 1116 80 

Run #3 278 1349 1502 975 60 

Run #4 290 1395 1425 1148 68 

Run #5 296 1465 1437 1102 58 
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Run #6 262 1317 1562 863 60 

Run #7 296 1420 1464 898 86 

Run #8 259 1379 1504 917 61 

Run #9 303 1455 1445 1146 72 

Run #10 283 1440 1439 1094 60 

Run #11 290 1376 1493 875 75 

Run #12 264 1407 1480 1039 61 

Run #13 317 1393 1465 1171 67 

Run #14 250 1439 1500 987 73 

Run #15 270 1463 1433 1087 84 

Run #16 256 1407 1518 1102 66 

Run #17 283 1403 1412 1108 79 

Run #18 284 1423 1494 976 77 

Run #19 271 1404 1514 931 41 

Run #20 308 1397 1421 1066 71 

mean 280.70 1410.10 1468.10 1035.15 68.30 

stdev 18.21 39.87 40.38 95.96 10.36 

t-test KS-N vs. 1.95E-37 1.08E-37 1.23E-19 2.88E-29 

 KS-S vs.  3.58E-05 6.77E-15 8.05E-34 

 KS-D vs.   2.15E-16 5.03E-34 

 KS-H vs.    3.55E-21 

10.1.5 Statistics of Topology-Knowledge tuple 

While there was no significant difference in the usage of the topologies it is clear from table 10-

4 that the Global topologies is clearly the best at generating non-dominated solutions over the 20 runs. 

The global domain knowledge tuple is the most successful in generating non-dominated solutions here. 

Topographic knowledge exhibits the most variability in the generation of the non-dominated solutions. 

The found Pareto front is shown in Figure in 10-6. 

Table 10-4  Overall Statistics of Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 53.65 271.65 287.25 200.3 10.1 

stdev 13.04355 54.8455 58.0534 50.79484 6.835665 

Square mean 56.3 286.95 298.1 210.15 11.35 
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stdev 16.86822 54.39086 52.3439 41.22375 6.037384 

Octal 
mean 50.8 292.65 294.65 206.7 10.55 

stdev 16.456 69.04634 80.26946 47.55728 6.492708 

Hex 
mean 55.45 260.7 274.55 201.05 13.35 

stdev 18.17886 51.99706 62.30103 46.43102 8.934116 

Global 
mean 64.5 298.15 313.55 216.95 22.95 

stdev 22.38773 59.87291 66.46366 46.09884 13.70929 

Table 10-5  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.243123 0.201898 0.202101 0.253594 0.676799 

Square 0.299613 0.189548 0.175592 0.196163 0.531928 

Octal 0.323937 0.235935 0.272423 0.230079 0.615423 

Hex 0.327842 0.199452 0.226921 0.230943 0.669222 

Global 0.347097 0.200815 0.211971 0.212486 0.597355 

 

Figure 10.3  Overall found Pareto front 
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10.2 ZDT 4 10 with homogeneous Hyper-volume metric 

 This problem is similar to ZDT1 some similarities can be noticed. The spread metric tends to do 

well with problems of convex search. So it is not surprising that it outperforms the hyper-volume metric 

controlled MOCAT here. 

The runs were complete in an average of 15.12 seconds. 

10.2.1 Performance of MOCAT with the Hyper-Volume Metric 

The hyper-volume controlled MOCAT outperformed all of the benchmarked function for this 

problem but still trailed the spread metric version in performance here. This confirms our previous 

understanding that the spread metric provides better control in convex search problems than does the 

hyper-volume metric. However, we will also find that as before, the hyper-volume metric excels at local 

search, thereby reducing the standard deviation of the error. This suggests that again their combined 

system will exhibit the best of both. 

Table 10-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  Mean  min  max  Stdev 

Run #1 4.79E-06 9.23E-06 0 7.06E-05 1.24E-05 

Run #2 1.71E-06 1.80E-05 2.46E-14 3.17E-04 3.93E-05 

Run #3 5.72E-10 4.21E-04 -5.55E-17 0.027293 0.002928 

Run #4 7.95E-07 9.20E-06 -4.16E-17 3.00E-04 3.23E-05 

Run #5 1.55E-05 6.62E-05 8.10E-12 6.18E-04 1.03E-04 

Run #6 2.51E-06 1.79E-05 0 2.20E-04 3.06E-05 

Run #7 1.45E-07 8.30E-07 0 9.97E-06 1.44E-06 

Run #8 4.38E-08 2.26E-07 -5.20E-17 2.46E-06 3.62E-07 

Run #9 1.81E-06 1.98E-05 -4.16E-17 1.80E-04 3.50E-05 

Run #10 3.60E-08 1.32E-07 -5.55E-17 9.37E-07 1.80E-07 

Run #11 1.55E-05 7.39E-05 0 4.95E-04 9.89E-05 
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Run #12 3.86E-06 1.24E-05 2.24E-11 7.43E-05 1.56E-05 

Run #13 3.05E-08 6.90E-07 1.65E-14 2.87E-05 3.16E-06 

Run #14 1.37E-08 2.93E-07 -2.78E-17 6.47E-06 8.02E-07 

Run #15 2.77E-06 8.08E-05 5.63E-14 0.001074 1.71E-04 

Run #16 1.18E-05 2.93E-05 0 1.48E-04 3.66E-05 

Run #17 1.55E-08 2.54E-06 -5.07E-17 5.15E-05 8.67E-06 

Run #18 4.87E-07 1.53E-06 -2.78E-17 1.10E-05 1.83E-06 

Run #19 2.96E-10 1.59E-09 0 1.16E-08 2.06E-09 

Run #20 1.50E-06 7.61E-06 0 6.93E-05 1.19E-05 

mean 3.17E-06 3.86E-05 1.53E-12 1.55E-03 1.77E-04 

stdev 4.91E-06 9.12E-05 5.11E-12 5.91E-03 6.33E-04 

10.2.2 Statistics of Topologies using Hyper-volume metric 

Table 10-7  Use Count of Topologies of each run 

 

 
Using Hyper-volume metric 

 

Hyper-volume 
Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 34 25 14 19 8 2.59969 

Run #2 7 35 34 21 3 2.816862 

Run #3 22 23 13 12 30 1.153938 

Run #4 25 6 6 33 30 2.16683 

Run #5 16 9 23 16 36 2.807655 

Run #6 9 41 1 25 24 1.311071 

Run #7 26 21 17 27 9 2.625014 

Run #8 13 23 27 25 12 1.103295 

Run #9 36 4 19 13 28 2.732501 

Run #10 35 31 10 20 4 4.489101 

Run #11 19 2 18 14 47 2.723188 

Run #12 10 19 48 14 9 1.870899 

Run #13 16 8 23 19 34 2.631353 

Run #14 16 22 8 27 27 2.565681 

Run #15 5 18 30 35 12 14.05727 

Run #16 30 13 19 18 20 3.435748 

Run #17 20 12 24 15 29 1.944189 

Run #18 38 10 23 22 7 3.322236 

Run #19 7 35 1 22 35 7.289603 

Run #20 30 22 6 19 23 4.763994 
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mean 20.70 18.95 18.20 20.80 21.35  

stdev 10.34 10.73 11.33 6.21 12.28  

t-test Lbest vs. 0.305805 0.240853 0.485701 0.43044  

 Square vs.  0.417557 0.260079 0.262534  

 Octal vs.   0.193667 0.208148  

 Hex vs.    0.431476  

No statistical difference between any pair of topologies can be found.  Once again, different 

topologies were selected with similar possibilities.  The cause may be the high standard deviation: the 

highest and lowest means are corresponding to the two highest standard deviations. 

10.2.3 Behaviors of Knowledge sources using Hyper-volume Metric 

As with the spread metric , the system favors an increase in the use of exploratory knowledge 

sources, particularly the normative knowledge source. At the same time the history knowledge source is 

used extensively as a means to link the the parts of the global curve. 

Table 10-8  Using hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 282 1380 1474 1057 62 

Run #2 299 1406 1460 1317 88 

Run #3 279 1407 1462 1083 69 

Run #4 273 1418 1506 1031 76 

Run #5 278 1475 1458 1017 80 

Run #6 265 1437 1391 1042 69 

Run #7 270 1447 1442 1169 84 

Run #8 315 1436 1461 1115 72 

Run #9 294 1418 1432 1142 73 

Run #10 261 1445 1438 1105 64 

Run #11 296 1410 1490 953 87 

Run #12 299 1462 1447 1181 63 

Run #13 259 1412 1428 1192 83 

Run #14 330 1464 1373 953 58 
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Run #15 328 1350 1544 1083 64 

Run #16 299 1371 1479 1150 55 

Run #17 263 1378 1517 1105 57 

Run #18 313 1405 1428 1191 81 

Run #19 304 1410 1391 1153 88 

Run #20 272 1402 1541 975 79 

mean 288.95 1416.65 1458.10 1100.70 72.60 

stdev 21.41 31.82 45.43 89.10 10.59 

t-test KS-N vs. 1.02E-46 9.4E-37 2E-21 3.02E-26 

 KS-S vs.  0.001275 1.23E-13 6.11E-38 

 KS-D vs.   1.06E-15 2.42E-32 

 KS-H vs.    2.21E-22 

10.2.4 Statistics of Topology-Knowledge tuple 

Here in Table 10-9 the Hexagonal Social fabric is best at generating non-dominated solutions for 

the exploitative knowledge sources (situational, domain, and history) where the global topology does 

best at generating non-dominated solution for the exploratory knowledge sources. Again, this indicates 

the ability of the MOCAT system to conduct search at different levels of granularity, both the local and 

global level.  Table 10-10 indicates that system is most variable in generating topographic solutions. 

Table 10-9  Number of non-dominated solutions generated by Topology-Knowledge tuples 

  N S D H T 

Lbest 
mean 57.55 288.9 304.85 225.1 15.75 

stdev 44.4942 142.3328 162.934 98.7852 16.16649 

Square 
mean 57.35 274.2 269.15 218.7 13.15 

stdev 40.49987 156.8075 156.4334 118.9118 13.6122 

Octal 
mean 50.15 272.6 271.4 212.4 13.25 

stdev 39.67005 162.8672 169.0803 126.9627 13.81409 

Hex 
mean 60.6 301.05 309.6 235.05 12.7 

stdev 36.0882 87.87699 105.1247 54.49334 9.841373 

Global 
mean 64 282.85 298.9 211.2 17.5 

stdev 54.67223 187.8609 204.828 123.1151 17.82813 
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Table 10-10  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.77314 0.492671 0.534473 0.43885 1.026444 

Square 0.706188 0.571873 0.581213 0.543721 1.035149 

Octal 0.791028 0.597459 0.622993 0.597753 1.042572 

Hex 0.595515 0.291902 0.33955 0.231837 0.774911 

Global 0.854254 0.664171 0.685273 0.582931 1.01875 

10.2.5 Analysis of found Pareto front  

The overall found pareto front does not contain any major gaps for this problem. 

 

Figure 10.4  Overall found Pareto front 

10.3 ZDT 4 10 with combined metrics 

Although for the first convex function that we looked at the spread metric by itself performed 

well, here the performance of the combined system far exceeds the perform of either system. This is 

because as mentioned earlier it is able to integrate both local and global search and to exchange that 

information between control segments during the search process. 
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The runs were complete in an average of 16.12 seconds.   

10.3.1 Performance of MOCAT with the Combined metric 

As shown in Table 10-11 the performance of the combined system far exceeds that of either 

single metric guided system. In addition, it outperforms the benchmarked systems as well.  

While we have seen the advantage of the combined metric approach for every problem so far, 

as the problems have increased in complexity from ZDT1 through ZDT4 the relative performance of the 

combined system have increased dramatically. Not only is it a better solution than the other systems, it 

is actually the most accurate of all solved fronts so far. 

Table 10-11  Statistics for the fitness errors of ending solutions 

 Statistics for the fitness errors of ending generation   

  median  mean  min  max  stdev 

Run #1 1.57E-07 1.46E-06 0 2.12E-05 3.63E-06 

Run #2 7.36E-07 6.41E-06 0 7.19E-05 1.27E-05 

Run #3 3.45E-07 6.22E-06 -6.94E-18 1.54E-04 2.16E-05 

Run #4 9.14E-07 4.64E-06 0 8.37E-05 9.45E-06 

Run #5 1.37E-07 5.31E-07 0 4.80E-06 8.87E-07 

Run #6 1.05E-07 3.21E-07 -2.78E-17 3.87E-06 6.15E-07 

Run #7 1.59E-06 7.26E-06 -5.55E-17 4.54E-05 9.58E-06 

Run #8 7.14E-07 2.54E-06 -5.55E-17 2.39E-05 3.52E-06 

Run #9 2.37E-07 1.59E-06 -5.55E-17 2.97E-05 4.22E-06 

Run #10 2.08E-06 1.05E-05 3.10E-13 1.03E-04 1.80E-05 

Run #11 2.94E-06 8.58E-06 7.49E-13 5.01E-05 8.79E-06 

Run #12 1.06E-07 2.59E-07 -5.55E-17 3.57E-06 5.34E-07 

Run #13 8.22E-08 9.49E-07 8.73E-14 9.66E-06 1.95E-06 

Run #14 8.78E-07 5.10E-06 -2.78E-17 5.01E-05 8.75E-06 

Run #15 2.14E-08 4.70E-07 1.04E-13 9.22E-06 1.30E-06 

Run #16 5.98E-07 2.94E-06 1.96E-11 2.99E-05 4.46E-06 

Run #17 2.74E-08 1.36E-07 1.85E-13 1.07E-06 1.92E-07 

Run #18 9.22E-07 2.40E-05 1.48E-14 3.35E-04 5.99E-05 

Run #19 1.09E-08 5.90E-08 2.72E-14 4.55E-07 8.68E-08 
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Run #20 1.22E-06 5.43E-05 2.57E-10 0.001952 2.57E-04 

mean 6.91E-07 6.92E-06 1.39E-11 1.49E-04 2.14E-05 

stdev 7.60E-07 1.22E-05 5.60E-11 4.20E-04 5.57E-05 

10.3.2 Statistics of Topologies for the Two Metrics 

The usage of the topologies in each of the two phases of the combined metric system is given in 

Figures 10-12 and 10-13. For the spread metric, there is no significant different in the amount of usage 

among them. For the hyper-volume metric the usage of the square topology is significantly more 

frequent than that of LBEST or HEX. This suggests a more mid-grained knowledge distribution strategy, 

one that values between very local and global. 

Table 10-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 9 9 13 5 14 1.004007 

Run #2 3 12 11 10 14 7.554531 

Run #3 11 10 11 5 13 1.207365 

Run #4 13 10 9 11 7 1.181344 

Run #5 12 3 7 8 20 1.116746 

Run #6 2 7 14 11 16 0.916237 

Run #7 13 3 8 18 8 1.154282 

Run #8 1 8 25 12 4 5.225867 

Run #9 5 10 15 11 9 4.892349 

Run #10 12 15 7 6 10 1.097043 

Run #11 10 9 17 6 8 1.050697 

Run #12 8 12 3 8 19 7.583102 

Run #13 14 14 11 6 5 1.066084 

Run #14 9 3 9 18 11 1.245117 

Run #15 14 15 4 14 3 1.062168 

Run #16 14 10 6 7 13 7.774937 

Run #17 15 15 8 6 6 1.072286 

Run #18 9 10 10 8 13 1.857044 

Run #19 15 2 13 8 12 2.155665 
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Run #20 8 13 14 7 8 0.996331 

mean 9.85 9.50 10.75 9.25 10.65  

stdev 4.21 4.06 4.85 3.79 4.59  

t-test Lbest vs. 0.397767 0.272431 0.323549 0.289345  

 Square vs.  0.197083 0.422738 0.209035  

 Octal vs.   0.14757 0.474127  

 Hex vs.    0.155932  

Table 10-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 10 13 7 14 6 2.47357 

Run #2 16 11 13 1 9 11.75539 

Run #3 5 6 12 15 12 17.14695 

Run #4 3 13 3 8 23 9.25986 

Run #5 6 14 21 8 1 25.66597 

Run #6 11 12 16 5 6 4.45085 

Run #7 14 19 11 1 5 5.19906 

Run #8 4 11 10 11 14 6.69113 

Run #9 5 16 18 5 6 27.42015 

Run #10 6 6 15 13 10 3.15135 

Run #11 5 17 3 14 11 2.68119 

Run #12 12 16 1 11 10 5.90485 

Run #13 4 5 12 12 17 1.51482 

Run #14 15 13 1 9 12 7.70107 

Run #15 13 7 22 2 6 1.14883 

Run #16 11 21 3 9 6 4.37885 

Run #17 13 9 16 10 2 8.92897 

Run #18 8 4 9 9 20 1.98441 

Run #19 14 18 14 3 1 6.834429 

Run #20 12 10 6 4 18 2.994 

mean 9.35 12.05 10.65 8.20 9.75  

stdev 4.15 4.77 6.27 4.35 6.07  

t-test Lbest vs. 0.03529 0.228248 0.204951 0.407042  

 Square vs.  0.221871 0.006643 0.101233  

 Octal vs.   0.085483 0.327862  

 Hex vs.    0.186116  
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10.3.3 Behaviors of Knowledge sources for the combined  metrics 

The extent to which the knowledge sources control the population in each phase of the search 

process is given in tables 10-14 and 10-15. As was to be expected both spread metrics maintain 

significant differences in knowledge source control in their specific phases of the problem solving 

process. What is interesting is the complementarity that is displayed there. The spread metric phase 

makes more use of the exploratory knowledge sources than the hyper-volume phases. On the other 

hand, the hyper-volume phase makes more use of history knowledge. This again makes sense because it 

is the vehicle used to pass information from one phase of the process to the next. 

Table 10-14  using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 159 728 730 448 33 

Run #2 178 681 757 466 53 

Run #3 177 696 731 514 48 

Run #4 202 711 757 506 53 

Run #5 144 726 768 480 40 

Run #6 143 669 770 475 49 

Run #7 149 650 753 486 45 

Run #8 149 760 646 562 40 

Run #9 187 714 695 503 42 

Run #10 146 667 799 353 51 

Run #11 149 687 783 386 38 

Run #12 200 733 770 470 56 

Run #13 194 692 700 462 59 

Run #14 180 668 753 498 41 

Run #15 180 678 737 491 42 

Run #16 203 711 714 511 46 

Run #17 176 642 776 509 65 

Run #18 190 731 730 527 63 

Run #19 202 670 759 454 60 

Run #20 174 698 751 597 42 
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mean 174.10 695.60 743.95 484.90 48.30 

stdev 20.92 30.08 34.44 52.01 8.73 

t-test KS-N vs. 8.66E-37 1.39E-34 3.76E-19 2.27E-19 

 KS-S vs.  2.31E-05 3.99E-16 3.06E-30 

 KS-D vs.   5.35E-19 6.2E-29 

 KS-H vs.    4.96E-20 

Table 10-15  Using Hyper-volume metric #Individuals influenced by KS 

using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 105 730 667 593 19 

Run #2 123 700 750 618 10 

Run #3 97 737 734 580 32 

Run #4 101 698 690 616 15 

Run #5 104 680 681 579 20 

Run #6 112 717 682 624 21 

Run #7 97 753 728 552 26 

Run #8 102 677 645 653 10 

Run #9 112 746 705 607 31 

Run #10 131 706 716 527 23 

Run #11 120 724 743 577 11 

Run #12 93 749 704 638 27 

Run #13 116 714 710 595 16 

Run #14 109 698 714 681 22 

Run #15 89 750 703 619 31 

Run #16 97 697 718 589 27 

Run #17 114 726 674 595 37 

Run #18 101 739 699 591 35 

Run #19 107 718 691 614 25 

Run #20 101 724 708 599 16 

mean 106.55 719.15 703.10 602.35 22.70 

stdev 10.36 22.25 25.24 32.99 7.96 

t-test KS-N vs. 2.23E-37 4.36E-34 3.2E-27 3.83E-26 

 KS-S vs.  0.022256 1.04E-14 1.3E-35 

 KS-D vs.   7.98E-13 5.41E-33 

 KS-H vs.    1.95E-27 
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10.3.4 Statistics of Topology-Knowledge tuples 

In tables 10-16 and 10-17 the generation of non-dominated solutions by the topology-

knowledge sources tuples is presented. It is clear that the Octal topology is best at generating non-

dominated solutions using the exploitation knowledge sources. It is also is the best at generating non-

dominated solutions with topographic knowledge. In general, there is much more variability in the 

generation of non-dominated solutions across all combinations of topology knowledge source tuples. 

This is an indication of the difficulty of the problem and the need to maintain and exploit diversity within 

the system. 

Table 10-16  generation of Non-Dominated Solutions using the Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 56.35 275.25 286.65 207.45 16.7 

stdev 27.08714 86.0348 95.26267 70.52097 11.98727 

Square 
mean 60.5 308.15 314.1 246.1 15.8 

stdev 18.16156 70.74214 70.40028 56.56938 9.666001 

Octal 
mean 58.65 301.8 303.45 227.65 16.1 

stdev 22.89628 124.052 106.937 93.62258 8.686953 

Hex 
mean 51.6 246.1 251.95 192.7 11.95 

stdev 19.04676 56.29986 54.06962 46.055 7.708335 

Global 
mean 53.15 284.05 292.75 207.6 12.75 

stdev 25.70536 93.50343 96.20585 77.2422 7.510519 

Table 10-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.480695 0.31257 0.332331 0.339942 0.717801 

Square 0.300191 0.22957 0.224133 0.229863 0.611772 

Octal 0.390388 0.411041 0.352404 0.411257 0.539562 

Hex 0.369123 0.228768 0.214605 0.238998 0.645049 

Global 0.483638 0.329179 0.328628 0.372072 0.58906 
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10.3.5 Analysis of found Pareto front 

The found Pareto front is given below for the combined system. 

 

Figure 10.5  Overall found Pareto front 

10.4 Summary of ZDT4 

At the first glance, ZDT4 is the same as ZDT1; however they are fundamentally different.  While 

for ZDT1 the real Pareto front is a continuous curve, for ZDT4 the real one contains 219 local Pareto 

fronts.  This difference is not represented in figures due to the high density; but does bring changes of 

evolution internally. 

In fact, as to experiment results, ZDT4 has many special exclusive features.  MOCAT runs on 

ZDT4 as well as on the first two problems while some other evolutionary algorithms have much worse 

performance on ZDT4 than on ZDT1 and ZDT2.  In fact, using MOCAT, evolution for ZDT4 is similar to it 
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on ZDT1 and ZDT2, with exception that for ZDT4 at the beginning of evolution individuals do not spread 

to the far right bottom. Instead, they are attracted there along with evolution.   

What is particularly interesting is that while each single metric version has it own style of 

problem solving, when they are combined there are changes in the usage of the knowledge sources and 

topologies in each. This ability to adapt the nature and flow of information to the nature of the problem 

is very important here. Some specific highlights are: 

1. Certain topologies begin to favor the generation of individuals for exploratory knowledge 

sources and other for exploitative knowledge sources. 

2. The different metric takes different roles in guiding the system during their respective 

phases. The spread metric focuses on exploration while the hyper-volume metric 

concentrates on exploitation. This distinction was only slight in ZDT1 but now is very 

pronounced as the problem has become more complex. 

3. History knowledge takes an active role in translating the results from the one phase to the 

next during the problem solving process. 
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CHAPTER 11  EXPERIMENTAL RESULTS FOR MOCAT ON DECPETIVE 

PROBLEMS: ZDT5 

This test function was described as “a deceptive problem” (Zitzler et al, 2000).The original 

meaning of the description referred to the fact thatZDt5 “distinguishes itself from the other test 

functions in that represents a binary string”. This is an important distinction since most MOEAs rely on 

hill climbing to solve problems. Such a representation is not at all conducive to that directly and was 

able to deceive several MOEAs. 

While our belief space currently saves only numerical information, there is a need to map binary 

strings to numbers.  In fact, in the definition of ZDT5, function u provides a mapping from strings to 

integers.  In addition, the integers need to be mapped back to binary strings if we want to keep 

numerical encoding in our current implementation.  Fortunately, this requirement can be easily satisfied 

because for any given integer that is legitimate for the dimension, we are able to create a string that 

produces such an integer value.  Though this integer-to-string mapping is not injective, it does not 

impair the correctness of the encoding.  Thereafter, in our implementation we directly evolve on u 

values instead of physical binary strings.   

Again, we will use homogeneous spread metric, homogeneous Hyper-volume metric, and 

combined two metrics to conduct experiments and try to observe and summarize the correspondence 

among knowledge sources and topologies. 
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ZDT5 is special also in that it does not have the same range for all dimensions.  According to its 

definition, the first dimension has a data range of [0, 30] while all the rest have range [1, 5].  The 

standard ZDT5 has dimension of 11 (1 + 10) ZDT 5 11 with homogeneous Spread metrics. 

11.1 An Example of the Evolution of ZDT5 Optimal Curve 

The runs were complete in an average of 11.78 seconds.   

Figure 11-1 (a-f) illustrates how the MOCAT system as guided by the spread metric solves the 

ZDT5 problem. The problem, like ZDT1 and ZDT4, is essentially convex with a steep initial part and a 

relatively flat final portion. As with ZDT4 the system generated solutions to the left and then as the 

number of generations proceeds they begin to move to the portion with the least change. 
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a. Generation 1 

 

b. Generation 5 
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c. Generation 20 
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d. Generation 50 
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e. Generation 80 
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f. Generation 100 

Figure 11.1  The sequence for Pareto front produced through cultural evolution. 

11.1.1 Performance of MOCAT with the spread metric 

For ZDT5 we lack public available existing experiment data to evaluate our performance.  

However, the performance shown in Table 11-1 below exhibits the least precision of all problems 

worked on so far. 

Table 11-1  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  mean  min  max stdev 

Run #1 1.00E+00 3.34E+00 -2.22E-16 3.50E+01 6.11E+00 

Run #2 1.28E+00 3.98E+00 -2.22E-16 3.60E+01 5.94E+00 

Run #3 1.00E+00 3.67E+00 -2.22E-16 3.30E+01 5.70E+00 
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Run #4 1.00E+00 3.70E+00 -4.44E-16 3.60E+01 6.31E+00 

Run #5 1.00E+00 3.68E+00 -2.22E-16 4.20E+01 7.16E+00 

Run #6 1.00E+00 3.93E+00 -4.44E-16 3.40E+01 6.27E+00 

Run #7 1.00E+00 3.04E+00 -4.44E-16 3.10E+01 5.43E+00 

Run #8 1.00E+00 3.15E+00 -4.44E-16 2.90E+01 5.23E+00 

Run #9 1.22E+00 2.84E+00 -2.22E-16 2.70E+01 4.12E+00 

Run #10 1.00E+00 3.25E+00 -2.22E-16 3.60E+01 5.47E+00 

Run #11 1.00E+00 3.42E+00 -2.22E-16 3.30E+01 5.51E+00 

Run #12 1.00E+00 2.93E+00 -4.44E-16 3.10E+01 5.33E+00 

Run #13 1.00E+00 3.83E+00 -2.22E-16 3.80E+01 7.38E+00 

Run #14 1.00E+00 3.42E+00 -2.22E-16 4.00E+01 6.10E+00 

Run #15 1.00E+00 3.11E+00 -4.44E-16 3.60E+01 5.72E+00 

Run #16 1.00E+00 2.93E+00 -4.44E-16 3.50E+01 5.45E+00 

Run #17 1.00E+00 2.98E+00 -2.22E-16 3.20E+01 5.10E+00 

Run #18 1.23E+00 3.83E+00 -4.44E-16 4.40E+01 6.58E+00 

Run #19 1.00E+00 2.97E+00 -2.22E-16 3.30E+01 5.60E+00 

Run #20 1.00E+00 3.05E+00 -4.44E-16 4.20E+01 6.32E+00 

mean 1.04E+00 3.35E+00 -3.22E-16 3.52E+01 5.84E+00 

stdev 8.58E-02 3.69E-01 1.10E-16 4.30E+00 7.15E-01 

11.1.2 Statistics of Topologies using Spread metric 

In terms of the usage of topologies Table 11-2 indicates that there is no statistical difference in 

the usage here between the topologies. However, the spread metric typically uses the global topology 

to facilitate search. 

Table 11-2  Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 20 14 25 22 19 4.478448 

Run #2 26 13 21 20 20 5.500802 

Run #3 30 16 17 16 21 3.1204 

Run #4 16 13 33 22 16 3.187408 

Run #5 19 15 27 18 21 8.980074 

Run #6 19 16 19 17 29 13.11974 
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Run #7 23 15 21 24 17 8.58566 

Run #8 14 18 20 29 19 4.238895 

Run #9 15 17 26 22 20 7.039125 

Run #10 20 15 17 23 25 5.491045 

Run #11 27 20 13 18 22 5.966925 

Run #12 22 16 26 16 20 5.519773 

Run #13 26 17 31 14 12 3.321442 

Run #14 15 25 19 12 29 3.000329 

Run #15 14 16 25 17 28 4.242641 

Run #16 29 39 16 9 7 16.37494 

Run #17 19 23 12 20 26 9.896835 

Run #18 17 26 11 31 15 6.550872 

Run #19 26 14 25 20 15 3.122606 

Run #20 18 17 15 20 30 6.987281 

mean 20.75 18.25 20.95 19.50 20.55  

stdev 4.97 5.96 6.02 5.06 5.90  

t-test Lbest vs. 0.084234 0.455843 0.223628 0.455327  

 Square vs.  0.086377 0.245127 0.119666  

 Octal vs.   0.213456 0.418641  

 Hex vs.    0.279901  

11.1.3 Behaviors of Knowledge sources using Spread Metric 

What is interesting here is that for the first time the MOCAT system has shifted to emphasizing 

exploration over exploitation. This suggests that due to the fact that hill climbing is less productive here 

there is more emphasis placed on systematic search. More individuals are controlled by exploratory 

knowledge sources than exploitative ones due to the reduced ability to do local hill climbing for this 

problem. All knowledge source usages are, as usual, statistically different from each other. 

Table 11-3  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 1592 207 51 752 407 

Run #2 952 223 15 832 388 

Run #3 1325 229 67 1081 303 
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Run #4 1137 260 15 662 285 

Run #5 1288 296 94 1022 320 

Run #6 1555 277 74 822 460 

Run #7 1577 277 51 648 406 

Run #8 1465 259 61 865 516 

Run #9 859 250 32 612 423 

Run #10 1344 229 78 1085 305 

Run #11 922 210 39 855 379 

Run #12 1445 251 34 777 455 

Run #13 1380 247 50 996 340 

Run #14 441 161 8 459 291 

Run #15 390 170 4 382 253 

Run #16 1513 233 48 765 436 

Run #17 1406 231 26 658 434 

Run #18 1537 296 86 802 390 

Run #19 422 186 3 443 275 

Run #20 1089 221 22 543 341 

mean 1181.95 235.65 42.90 753.05 370.35 

stdev 386.32 36.56 27.02 199.85 70.89 

t-test KS-N vs. 8.06E-10 3.69E-11 9.12E-05 7.91E-09 

 KS-S vs.  6.22E-20 2.28E-10 2.33E-08 

 KS-D vs.   1.02E-12 2.45E-16 

 KS-H vs.    2.31E-08 

The table shows a phenomenon that is not seen in other problems.  Individuals influenced by 

situational knowledge source had better chance to contribute to the evolution than those influenced by 

domain knowledge source.  At first glance, this is contrary to being intuitive while situational knowledge 

source will choose a random location in near neighborhood but domain knowledge source will probe the 

adjacent positions on each dimension.  Nonetheless, a deep analysis finds that situational knowledge 

may influence an individual to jump to a new position that is much farther than the distance that can be 

got under the influence of domain knowledge source.  Using the situational knowledge source, on each 

dimension a random offset is moved so that sum of such offsets can be big upon accumulation.  Using 

domain knowledge source, the new individual is chosen from a pool of candidates whose locations are 
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different from the parent on only one dimension (Che, 2008) and the difference is only one since ZDT5 

has discrete domain space.  It looks like walking around inside a small neighborhood does not bring the 

evolution any progress for ZDT5.  If this conjecture is true, ZDT5 will impose unconquerable challenges 

to the evolutionary algorithms that heavily depend on local exploration.   

11.1.4 Statistics of Topology-Knowledge tuple 

Here it is clear the exploratory knowledge source tuples are doing the best at generating non-

dominated solutions. Of the exploitative knowledge sources history is best at exploring areas around 

existing solutions. All of the tuples exhibit variability in the generation process. 

Table 11-4  The Generation of non-dominated solutions by Topology-Knowledge tuples 

  N S D H T 

Lbest 
mean 186.15 1.15 5 161.7 67.3 

stdev 96.3187 1.531253 6.488857 65.54637 30.87343 

Square 
mean 190.85 0.55 6.1 164.15 66.3 

stdev 91.41823 0.759155 6.896986 80.09815 27.8683 

Octal 
mean 167.05 0.65 4.85 148.25 54.7 

stdev 66.09919 0.933302 4.319783 71.83891 22.66948 

Hex 
mean 167.15 0.9 6 148.9 59.8 

stdev 77.0183 1.372665 6.844129 65.72823 20.45946 

Global 
mean 173.4 0.8 4.25 154.5 65.8 

stdev 65.34475 1.361114 3.739899 54.58697 22.83949 

Table 11-5  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.517425 1.331525 1.297771 0.405358 0.458743 

Square 0.479006 1.380281 1.130654 0.487957 0.420336 

Octal 0.395685 1.435849 0.890677 0.484579 0.414433 

Hex 0.460774 1.525184 1.140688 0.441425 0.342131 

Global 0.376844 1.701393 0.879976 0.353314 0.347105 
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11.1.5 Analysisof found Pareto front  

Finally, the addition of found Pareto front of each run is represented. 

 

Figure 11.2  Overall found Pareto front 

For ZDT5, the explored Pareto front consists of a series of discrete locations.  For f1= 1, f2 should 

be 10, however, in our final result set 20 is also presented.  There is one location (4, 4) which is far from 

the real Pareto front. This indicates that in one run we have missed locations (3, 3,333) and (4, 2.5).  And 



229 

 

 
 

we can see some overlap at locations (6, 1.667), (8, 1.25), etc.  Nonetheless, in total, the Pareto front 

that MOCAT has identified is a good representation of the ideal. 

11.2 ZDT 511 with homogeneous Hyper-volume metrics 

The runs were complete in an average of 12.12 seconds. 

11.2.1 Performance of MOCAT with Hyper-volume 

The performance of the MOCAT system with hyper-volume is slightly better than with the 

spread metric in terms of both mean error and standard deviation of the error. This is consistent with 

ZDT2, ZDT3, and ZDT4. 

Table 11-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  Mean  min  max stdev 

Run #1 1.00E+00 3.34E+00 -4.44E-16 3.00E+01 5.72E+00 

Run #2 8.00E-01 2.94E+00 -4.44E-16 3.20E+01 5.41E+00 

Run #3 1.32E+00 4.34E+00 -2.22E-16 3.60E+01 6.79E+00 

Run #4 1.35E+00 3.79E+00 -4.44E-16 3.20E+01 5.46E+00 

Run #5 1.00E+00 3.25E+00 -2.22E-16 3.40E+01 5.13E+00 

Run #6 9.52E-01 3.01E+00 -4.44E-16 3.30E+01 5.47E+00 

Run #7 1.00E+00 3.13E+00 -2.22E-16 3.50E+01 5.29E+00 

Run #8 1.00E+00 3.48E+00 -2.22E-16 3.60E+01 6.69E+00 

Run #9 8.57E-01 2.96E+00 -2.22E-16 3.60E+01 5.53E+00 

Run #10 1.00E+00 3.40E+00 -2.22E-16 3.90E+01 5.64E+00 

Run #11 1.00E+00 3.06E+00 -4.44E-16 3.20E+01 4.83E+00 

Run #12 1.00E+00 3.18E+00 -4.44E-16 3.10E+01 5.32E+00 

Run #13 1.00E+00 3.37E+00 -2.22E-16 3.70E+01 6.25E+00 

Run #14 1.00E+00 3.24E+00 -2.22E-16 3.30E+01 5.55E+00 

Run #15 1.13E+00 3.75E+00 -2.22E-16 3.60E+01 5.96E+00 

Run #16 6.63E-01 3.30E+00 -2.22E-16 4.20E+01 7.12E+00 

Run #17 1.00E+00 3.95E+00 -4.44E-16 4.10E+01 6.73E+00 
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Run #18 1.00E+00 3.37E+00 -2.22E-16 2.70E+01 4.83E+00 

Run #19 1.18E+00 3.50E+00 -4.44E-16 3.80E+01 5.96E+00 

Run #20 6.90E-01 2.34E+00 -4.44E-16 3.20E+01 4.55E+00 

mean 9.97E-01 3.34E+00 -3.22E-16 3.46E+01 5.71E+00 

stdev 1.64E-01 4.11E-01 1.10E-16 3.64E+00 6.86E-01 

11.2.2 Statistics of Topologies using Hyper-volume metric 

Unlike the spread metric MOCAT system, favored certain topologies during the runs.  The hyper-

volume version used the square topology significantly more often than LBEST, HEX, and Global as shown 

in Table 11-7.  

Table 11-7  Use Count of Topologies of each run 

 

 
Using Hyper-volume metric 

 

Hyper-volume 
Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 19 22 18 20 21 100.8287 

Run #2 23 17 15 24 21 101.062 

Run #3 23 17 26 19 15 96.44014 

Run #4 20 26 23 15 16 120.8224 

Run #5 16 24 18 24 18 113.3882 

Run #6 21 21 18 21 19 137.8363 

Run #7 19 19 21 16 25 154.6373 

Run #8 22 15 25 18 20 113.098 

Run #9 24 18 23 12 23 104.3497 

Run #10 22 29 15 16 18 105.062 

Run #11 21 20 20 20 19 105.8229 

Run #12 16 21 19 26 18 137.3104 

Run #13 18 18 18 28 18 126.496 

Run #14 18 23 22 14 23 118.1137 

Run #15 21 19 23 20 17 129.9446 

Run #16 14 27 17 21 21 119.7099 

Run #17 20 24 24 14 18 112.0656 

Run #18 16 21 31 10 22 119.8202 

Run #19 18 24 19 21 18 113.6576 

Run #20 20 26 13 25 16 96.44519 

mean 19.55 21.55 20.40 19.20 19.30  
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stdev 2.64 3.68 4.20 4.72 2.57  

t-test Lbest vs. 0.031218 0.230202 0.389835 0.384438  

 Square vs.  0.187573 0.047782 0.017963  

 Octal vs.   0.206433 0.16882  

 Hex vs.    0.467947  

11.2.3 Behaviors of Knowledge sources using Hyper-volume Metric 

Table 11-8 describes the extent of control over the population by each of the knowledge sources. 

Given the local hill climbing is effectively disabled search control has moved over to the exploratory 

knowledge sources as we saw with the spread metric version earlier. While both exploratory knowledge 

sources are used frequently, the hyper-volume metric increases its use of situational history knowledge 

to replace the hill climbing activities of the domain knowledge. This is reasonable since the hyper-

volume metric is more supportive of exploitative search than the spread metric, so it tries to identify 

other ways to improve it. 

Table 11-8  Using Hyper-volume metric #Individuals influenced by KS 

usingHyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 1685 283 69 753 582 

Run #2 1702 315 99 887 510 

Run #3 1414 263 25 968 497 

Run #4 1330 245 34 1243 428 

Run #5 1225 292 36 772 358 

Run #6 1714 280 36 732 504 

Run #7 513 261 4 354 244 

Run #8 1421 257 36 806 303 

Run #9 1445 252 58 785 385 

Run #10 1185 266 51 836 317 

Run #11 1499 277 67 712 370 

Run #12 1605 291 63 903 542 

Run #13 1659 265 59 877 322 

Run #14 639 157 15 557 314 
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Run #15 1293 248 94 1165 448 

Run #16 1441 270 45 884 370 

Run #17 1549 235 39 1080 321 

Run #18 1727 260 34 775 374 

Run #19 1267 262 15 664 327 

Run #20 1323 248 37 472 250 

mean 1381.80 261.35 45.80 811.25 388.30 

stdev 316.19 30.16 24.04 208.12 94.50 

t-test KS-N vs. 1.32E-12 5.97E-14 9.29E-08 2.75E-12 

 KS-S vs.  2.38E-24 1.89E-10 5.77E-06 

 KS-D vs.   6.1E-13 2.52E-13 

 KS-H vs.    6.57E-09 

11.2.4 Statistics of Topology-Knowledge tuple 

As shown in Table 11-9, the only exploitative knowledge source that is produce with the hyper-

volume measure is History. However, with the hyper-volume performance metric it is much more 

productive then with the spread metric. Both situational and domain knowledge are ineffective in 

generating non-dominated solution for this problem because of the reliance on local improvements. 

Another interesting note, is that the variability of domain knowledge is high which means that if it did 

find something in a region it would do some limited hill climbing. 

Table 11-9  Production of non-dominated solution by Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 190.9 0.6 6.3 170.4 71.3 

stdev 59.45356 0.680557 4.117996 54.24545 23.53519 

Square 
mean 169.25 0.55 6.25 148.7 58.3 

stdev 78.04646 0.944513 5.552382 52.68087 18.53617 

Octal 
mean 183.95 0.5 6.65 181.3 66.7 

stdev 42.44188 0.888523 5.314083 53.9845 24.07904 

Hex 
mean 214 0.55 6.4 186.85 69.95 

stdev 83.90408 1.145931 5.255573 74.07768 26.77877 

Global 
mean 204.55 0.6 6.8 176.7 70.5 

stdev 63.82829 0.88258 5.084548 41.05978 18.53446 
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Table 11-10  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.311438 1.134262 0.65365 0.318342 0.330087 

Square 0.461131 1.717297 0.888381 0.354276 0.317945 

Octal 0.230725 1.777047 0.79911 0.297763 0.361005 

Hex 0.392075 2.083511 0.821183 0.396455 0.382827 

Global 0.312042 1.470967 0.747728 0.23237 0.2629 

11.2.5 Analysis of found Pareto front  

 

Figure 11.3  Overall found Pareto front 
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The system produced a good approximation. Notcie that the only flaw is in the transitional point 

point between the steep part of the curve and the flatter part. It will be interesting to see how the 

combined metric approach deals with this situation. 

11.3 ZDT 511 with combined metrics 

In this section MOCAT system that uses the combined metric is examined. The key problem with 

the deceptive function is the removal of hill climbing as a search option. Thus, a critical issue is to how to 

replace the search power lost.  

The runs were complete in an average of 12. 89 seconds. 

11.3.1 Performance of MOCAT with the Combined Metrics 

The performance of MOCA with the combined metrics is slightly worse than that of the hyper-

volume system on its own.  The system synergy is best when both exploration and exploitation can take 

place together. In ZDT1 the emphasis was on exploitation and here the emphasis was on exploration. In 

both situations a single performance metric approach dominated rather than a combination. As will be 

demonstrated the two subsystems perform in very similar ways for the problem, so there is little 

opportunity for synergy. Both focus on the extreme topologies (lbest or square, and global) and on the 

exploratory knowledge sources along with a single exploitative knowledge source, history. 

Table 11-11  Statistics for the fitness errors of ending solutions 

 Statistics for the fitness errors of ending generation   

  median  mean  Min  max stdev 

Run #1 7.50E-01 2.76E+00 -4.44E-16 2.70E+01 4.14E+00 

Run #2 1.13E+00 4.13E+00 -4.44E-16 3.70E+01 7.01E+00 

Run #3 1.00E+00 3.71E+00 -4.44E-16 3.70E+01 6.61E+00 
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Run #4 6.90E-01 3.04E+00 -2.22E-16 3.80E+01 6.60E+00 

Run #5 2.00E+00 4.10E+00 -2.22E-16 3.60E+01 6.18E+00 

Run #6 1.00E+00 3.18E+00 -2.22E-16 3.70E+01 6.12E+00 

Run #7 1.00E+00 2.76E+00 -2.22E-16 2.10E+01 3.91E+00 

Run #8 1.00E+00 3.13E+00 -2.22E-16 3.70E+01 5.59E+00 

Run #9 8.97E-01 2.79E+00 -2.22E-16 3.60E+01 5.18E+00 

Run #10 1.00E+00 3.55E+00 -2.22E-16 3.60E+01 6.04E+00 

Run #11 1.00E+00 3.50E+00 -2.22E-16 3.70E+01 6.95E+00 

Run #12 1.00E+00 3.20E+00 -4.44E-16 2.10E+01 4.02E+00 

Run #13 9.17E-01 3.00E+00 -2.22E-16 3.30E+01 5.37E+00 

Run #14 1.10E+00 3.13E+00 -2.22E-16 3.60E+01 4.67E+00 

Run #15 9.41E-01 3.26E+00 -4.44E-16 3.60E+01 5.51E+00 

Run #16 1.00E+00 3.76E+00 -2.22E-16 3.60E+01 6.64E+00 

Run #17 1.42E+00 3.98E+00 -2.22E-16 3.70E+01 6.31E+00 

Run #18 1.00E+00 3.40E+00 -2.22E-16 3.60E+01 5.76E+00 

Run #19 1.35E+00 3.66E+00 -4.44E-16 3.10E+01 5.58E+00 

Run #20 9.69E-01 3.35E+00 -2.22E-16 3.70E+01 6.25E+00 

mean 1.06E+00 3.37E+00 -2.89E-16 3.41E+01 5.72E+00 

stdev 2.68E-01 4.13E-01 1.02E-16 5.02E+00 9.20E-01 

11.3.2 Statistics of Topologies for the combined Metrics 

There is no statistically significant difference in usage between the topologies for the spread 

metric in the combined system similar to how it performed on its own. It tends to favor use of the 

simplest and most complex topologies as shown in Table 11-12. On the other hand, on its own the 

hyper-volume favored the square topology whereas in the combined system it favored the LBEST 

topology over the others. 

Table 11-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 6 14 11 8 11 6.468369 

Run #2 12 10 16 8 4 4.636591 

Run #3 7 11 13 8 11 4.385989 
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Run #4 8 6 10 11 15 11.40611 

Run #5 9 10 12 7 12 6.889167 

Run #6 10 9 7 6 18 9.806533 

Run #7 10 4 10 8 18 8.092147 

Run #8 13 20 1 2 14 3.141398 

Run #9 6 11 7 16 10 12.70618 

Run #10 12 14 13 4 7 8.430844 

Run #11 7 5 16 9 13 13.95457 

Run #12 11 3 6 14 16 5.968624 

Run #13 8 10 9 11 12 3.754187 

Run #14 15 12 7 9 7 9.377765 

Run #15 14 15 8 7 6 3.800018 

Run #16 13 5 10 10 12 5.581133 

Run #17 12 14 8 12 4 3.642426 

Run #18 9 4 16 11 10 8.796178 

Run #19 8 10 3 16 13 11.01232 

Run #20 10 17 1 12 10 17.39656 

mean 10.00 10.20 9.20 9.45 11.15  

stdev 2.61 4.56 4.37 3.50 3.98  

t-test Lbest vs. 0.434607 0.248988 0.293133 0.149841  

 Square vs.  0.246962 0.286454 0.248914  

 Octal vs.   0.423335 0.079196  

 Hex vs.    0.0851  

Table 11-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 12 10 14 7 7 96.96355 

Run #2 13 8 11 7 11 134.6014 

Run #3 9 7 17 6 11 119.1882 

Run #4 11 10 8 9 12 105.3409 

Run #5 14 9 6 11 10 100.9886 

Run #6 16 5 14 9 6 117.065 

Run #7 8 7 15 11 9 110.8687 

Run #8 10 12 9 10 9 106.9506 

Run #9 9 13 6 11 11 117.0063 

Run #10 9 6 11 13 11 107.2813 

Run #11 10 12 11 7 10 123.9455 

Run #12 14 10 12 9 5 102.2482 
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Run #13 9 5 12 12 12 131.5261 

Run #14 11 10 6 10 13 136.8117 

Run #15 11 9 9 11 10 93.67658 

Run #16 15 12 9 8 6 105.1895 

Run #17 14 6 8 15 7 120.1524 

Run #18 10 4 13 14 9 103.1443 

Run #19 13 7 6 14 10 101.5949 

Run #20 14 13 7 7 9 90.30836 

mean 11.60 8.75 10.20 10.05 9.40  

stdev 2.31 2.74 3.23 2.58 2.15  

t-test Lbest vs. 0.000673 0.066938 0.02925 0.002165  

 Square vs.  0.072102 0.070028 0.210614  

 Octal vs.   0.437636 0.187999  

 Hex vs.    0.202247  

11.3.3 Behaviors of Knowledge sources in the combined system 

The different in influence of the knowledge sources over individuals in the population is given in 

Figures 11-14 and 11-15. Both exhibit statistically different influence values for all knowledge sources. 

Both emphasize the two exploratory knowledge sources and the exploitative history knowledge source.  

Table 11-14  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 681 156 9 333 163 

Run #2 492 137 13 578 156 

Run #3 594 143 19 432 242 

Run #4 551 121 23 356 176 

Run #5 516 135 32 527 232 

Run #6 555 156 35 413 355 

Run #7 631 140 3 337 216 

Run #8 619 128 18 446 253 

Run #9 609 155 23 528 172 

Run #10 567 144 18 403 247 

Run #11 606 129 18 323 179 

Run #12 225 129 4 380 135 
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Run #13 625 131 33 393 277 

Run #14 583 155 7 527 182 

Run #15 609 172 18 325 150 

Run #16 517 117 10 468 160 

Run #17 441 142 38 701 230 

Run #18 629 133 15 341 200 

Run #19 505 125 13 518 165 

Run #20 563 144 14 357 218 

mean 555.90 139.60 18.15 434.30 205.40 

stdev 94.45 13.59 9.80 99.24 51.79 

t-test KS-N vs. 1.76E-14 1.99E-16 0.000208 5.26E-15 

 KS-S vs.  2.18E-27 2.54E-11 1.18E-05 

 KS-D vs.   6.12E-14 4.93E-13 

 KS-H vs.    4.7E-10 

Table 11-15  Using Hyper-volume metric #Individuals influenced by KS 

usingHyper-volume metric #Individuals influenced by KS 

 778 132 14 275 107 

Run #1 807 141 27 602 167 

Run #2 787 132 28 496 248 

Run #3 807 86 41 295 112 

Run #4 747 113 65 528 227 

Run #5 840 134 51 357 263 

Run #6 969 139 5 386 163 

Run #7 916 102 38 435 197 

Run #8 849 126 30 506 199 

Run #9 800 113 35 438 196 

Run #10 951 111 41 361 169 

Run #11 500 118 6 277 100 

Run #12 939 119 40 371 238 

Run #13 949 147 20 477 187 

Run #14 737 131 22 306 125 

Run #15 870 119 39 492 201 

Run #16 605 114 49 721 158 

Run #17 984 109 20 363 199 

Run #18 784 118 14 531 172 

Run #19 703 108 21 297 132 

Run #20 816.10 120.60 30.30 425.70 178.00 
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mean 120.24 14.38 15.18 115.91 45.59 

stdev 778 132 14 275 107 

t-test KS-N vs. 1.28E-16 1.17E-17 1.03E-12 1.04E-17 

 KS-S vs.  3.97E-21 2.19E-10 1.35E-05 

 KS-D vs.   2.19E-12 1.07E-12 

 KS-H vs.    2.88E-09 

11.3.4 Production of non-dominated solutions by Topology-Knowledge tuples 

As with the previous statistics there is little difference in the behavior of the spread metric 

controlled phase of the combined system with that of the hyper-volume controlled phase. In each case 

the three most productive knowledge sources are normative, topographic, and history.  The octal metric 

is the most productive topology with the octal normative pair being the most productive overall.  In the 

standalone systems the most productive topologies tended towards the extremes. Here, the 

combination has reduced the complexity of the social fabric.  

Table 11-16  Generation of non-dominated solutions by Topology-Knowledge tuples 

  N S D H T 

Lbest 
mean 197.75 0.55 7.95 180 67.05 

stdev 53.9199 1.099043 4.978639 51.33686 21.57112 

Square 
mean 194.5 0.5 8.25 178 70.45 

stdev 50.5595 0.688247 4.982865 59.35797 26.64676 

Octal 
mean 223.5 0.6 8.25 196.35 81.1 

stdev 67.4689 0.940325 3.537394 51.40784 26.27166 

Hex 
mean 209.55 0.7 8.8 191.05 78.3 

stdev 63.54814 1.080935 5.818301 55.67242 29.53161 

Global 
mean 179.5 0.65 6 168.3 67.1 

stdev 71.35346 1.268028 4.768316 48.934 22.82865 

Once again, variations for S are always bigger than one. 

Table 11-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.272667 1.998259 0.626244 0.285205 0.321717 

Square 0.259946 1.376494 0.603984 0.333472 0.378237 
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Octal 0.301874 1.567208 0.428775 0.261817 0.323942 

Hex 0.30326 1.544193 0.661171 0.291402 0.37716 

Global 0.397512 1.950812 0.794719 0.290755 0.340218 

11.3.5 Analysis of found Pareto front  

While the system performs slightly less well than the hyper-volume system on its own, it has 

done a slightly better job at the interface between the steep curve and the gradual one. That was the 

improvement that we had hoped for in the combined metric. 
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Figure 11.4  Overall found Pareto front 

11.4 Summary of the MOCAT performance for ZDT5 

The deceptive nature of the problem means that the knowledge sources that utilize hill climbing 

as a vehicle for exploitation in problem solving will be less effective. In fact, it was the first problem 

where the exploratory knowledge sources dominated the exploitative ones in usage. As a result the 

options for each were limited to the remaining three knowledge sources. Both the spread and hyper-
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volume versions were forced to exploit the same knowledge sources and as a result there were only 

minor differences between the two stand-along metric systems and the combined system although the 

hyper-volume system was slightly better. 

The two phased combined system is less effective when the phases are inherently the same. 

There were some adjustments in the knowledge and topology usage in the combined system but 

nothing that made a strong impact on overall performance. However, since history knowledge was still 

the primary vehicle for the exchange of information between phases there was some opportunity for 

interaction. The result of that interaction showed up in the transitional portion of the convex curve 

between the steep and the shallow portions. 

In summary, the combined system can serve to blend the results of both phases. When there is 

sufficiently different activity in both phases then the combined system is worth more likely to perform 

better than the individual ones. In both ZDT1 and ZDT5, there was less need for both exploratory and 

exploitation activities so that there was less benefit from the interaction. Yet, even in such cases we did 

notice some smoothing of the curves and overall reduction in standard error deviation. 
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CHAPTER 12  EXPERIMENT RESULTS OF ZDT6 

ZDT6 looks similar to ZDT2 but its structure is the most complicated of the set for two reasons.  

First the Pareto optimal solutions are not uniformly distributed along the concave front and they are 

more dense near certain regions where f(x) =1. Also, there are fewer solutions near the optimal curve 

than away from it. So there are features from ZDT2, ZDT3, and ZDT4 combined in the problem. 

We will use homogeneous spread metric, homogeneous hyper-volume metric, and combined 

two metrics to conduct experiments and try to observe and summarize the correspondence among 

knowledge sources and topologies.   

12.1 ZDT 6 

This problem combines features from problems ZDT2 through ZDT4. As such it is likely to be best 

solved using the combined system.  

      

                        
 

   
 
    

 

            
  
 
   

       

where m=30 and                               .   

The Pareto front is: 
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Figure 12.1  ZDT6 Pareto front 

For selected test problems, we will run MOCAT 20 times with population of 100, generation of 

100, and may use Spread metric, Hyper-volume metric, and both of them alternatively after 25 

generations.  All results will be presented and summarized with statistical analyses. 

12.1.1 Analysisof found Pareto front  

From the following sequence of found Pareto front along with evolution, we can see that 

MOCAT approximates the real Pareto front slower than it does in ZDT1, 2, and 4.  For ZDT6, the 

individuals on the first front still could not compose a smooth curve at generation 30 which is done at 
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generation 40, while in other similar problems the curve has become smooth at generation 20; 

thereafter the evolution is twice slower.  In fact, since ZDT4 has only 10 dimensions, while ZDT1 and 2 

have 30, the curve is seen at generation 12 but does not reach far right corner yet. 

 

(a) 
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(g) 

Figure 12.2  A series of screen copies along evolution (a-g) 

Finally, the addition of found Pareto front of each run is represented.  It is a close match to the 

real Pareto front. 
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Figure 12.3  Overall found Pareto front 

12.2 ZDT 610 with homogeneous Spread metrics 

The runs were complete in an average of 16.31 seconds.   

12.2.1 Performance of MOCAT 

In table 12-1 the performance results for the 20 runs are given. The results in terms of mean 

error and standard deviation of the error are much better than any of the other benchmarked function 

performances. In addition, some individuals lay on top of the real Pareto front within the tolerance of 

floating precision.  Once again, this may be due to the low dimension. 

Table 12-1Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  mean  min  max stdev 

Run #1 7.18E-05 1.30E-04 0 7.92E-04 1.79E-04 

Run #2 4.57E-06 3.32E-05 0 5.19E-04 9.48E-05 
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Run #3 5.17E-04 4.86E-04 -5.55E-17 0.001019 1.86E-04 

Run #4 5.17E-04 0.001485 -2.78E-17 0.011747 0.001672 

Run #5 1.07E-04 2.52E-04 3.54E-06 7.87E-04 2.12E-04 

Run #6 1.02E-07 6.31E-06 3.77E-09 4.90E-04 5.10E-05 

Run #7 7.04E-04 0.001079 0 0.00888 0.001709 

Run #8 3.49E-07 1.47E-06 1.66E-08 1.10E-05 2.62E-06 

Run #9 2.88E-04 3.10E-04 -5.55E-17 8.05E-04 1.66E-04 

Run #10 2.43E-05 6.89E-05 -2.78E-17 7.49E-04 1.43E-04 

Run #11 3.22E-05 2.95E-04 0 0.002017 4.57E-04 

Run #12 3.68E-04 3.60E-04 -5.55E-17 8.82E-04 2.30E-04 

Run #13 1.89E-05 2.66E-05 -5.55E-17 1.11E-04 2.47E-05 

Run #14 3.27E-06 5.01E-06 0 1.38E-04 1.44E-05 

Run #15 3.17E-06 1.78E-04 0 0.008146 0.001113 

Run #16 6.25E-06 6.35E-05 -5.55E-17 3.23E-04 9.30E-05 

Run #17 4.10E-07 2.87E-06 0 3.58E-05 6.56E-06 

Run #18 7.99E-07 1.16E-05 0 1.19E-04 2.45E-05 

Run #19 6.49E-05 1.38E-04 0 9.02E-04 9.33E-05 

Run #20 1.99E-08 4.36E-05 0 9.80E-04 1.84E-04 

mean 1.37E-04 2.49E-04 1.78E-07 1.97E-03 3.33E-04 

stdev 2.12E-04 3.76E-04 7.72E-07 3.29E-03 5.11E-04 

12.2.2 Statistics of Topologies using Spread metric 

For the system there is no real difference in usage of the topologies based upon the 20 runs 

displayed in Table 12-2. 

Table 12-2  Use Count of Topologies of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 21 20 23 15 21 13.83631 

Run #2 20 14 23 30 13 13.45325 

Run #3 17 18 29 17 19 12.8008 

Run #4 20 19 24 11 26 13.39179 

Run #5 31 22 18 11 18 12.68232 

Run #6 20 25 17 23 15 13.9696 

Run #7 18 23 13 24 22 17.74052 
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Run #8 15 14 25 26 20 13.94492 

Run #9 24 23 12 17 24 6.847155 

Run #10 26 20 22 20 12 5.605137 

Run #11 27 20 24 15 14 6.30135 

Run #12 21 14 22 23 20 11.98244 

Run #13 18 15 26 21 20 12.4234 

Run #14 17 25 18 21 19 14.96249 

Run #15 27 15 17 15 26 14.27985 

Run #16 19 20 24 19 18 12.91152 

Run #17 24 19 13 20 24 15.33948 

Run #18 22 12 21 27 18 10.4571 

Run #19 13 29 19 18 21 8.703409 

Run #20 12 17 25 22 24 6.017679 
mean 20.60 19.20 20.75 19.75 19.70  

stdev 4.75 4.34 4.58 4.92 3.95  

t-test Lbest vs. 0.174476 0.460789 0.295489 0.264633  

 Square vs.  0.145626 0.358436 0.356278  

 Octal vs.   0.260282 0.227041  

 Hex vs.    0.486315  

12.2.3 Behaviors of Knowledge Sources using Spread Metrics 

While in ZDT5 the exploratory knowledge sources dominate search, here the exploitative 

knowledge sources again control the most individual agents over the course of the runs. However, the 

normative exploratory knowledge sources are still an important contributor. The relative counts of use 

are all significantly different from each other. However, we notice that the contribution of H is much 

worse than those in ZDT1, ZDT2, and ZDT4.  This indicates that historical information does not bring as 

much contribution as it does in other three problems. 

Table 12-3  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 253 1037 1726 541 88 

Run #2 195 1118 1631 541 80 
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Run #3 180 1125 1625 609 75 

Run #4 195 1010 1815 280 64 

Run #5 296 1115 1682 606 77 

Run #6 316 1024 1761 414 69 

Run #7 229 995 1737 437 72 

Run #8 257 1058 1737 499 83 

Run #9 222 1040 1679 489 74 

Run #10 187 960 1700 464 76 

Run #11 224 999 1610 463 69 

Run #12 206 1113 1602 558 69 

Run #13 241 1075 1630 587 70 

Run #14 249 990 1625 473 84 

Run #15 265 942 1704 440 79 

Run #16 201 1019 1633 483 54 

Run #17 263 952 1712 474 70 

Run #18 269 1022 1669 479 67 

Run #19 169 999 1804 413 72 

Run #20 190 1084 1266 552 84 

mean 230.35 1033.85 1667.40 490.10 73.80 

stdev 39.35 55.03 110.29 75.50 7.79 

t-test KS-N vs. 1.58E-34 1.41E-26 4.48E-14 7.37E-14 

 KS-S vs.  1.11E-19 2.62E-24 4.45E-26 

 KS-D vs.   1.21E-29 5.49E-24 

 KS-H vs.    3.66E-16 

12.2.4 Statistics of Non-Dominated solution production 

In 12-4 it is clear that the LBEST topology is the best generator of non-dominated solutions 

across all knowledge sources. The LBEST domain knowledge tuple is the most effective combination 

here. Topographic knowledge varies most dramatically in effectiveness from run to run. 

Table 12-4  Number of non-dominated solutions produced by Topology-Knowledge tuples 

  N S D H T 

Lbest 
mean 47.2 212.8 340.45 106.55 17.85 

stdev 24.14343 48.49482 90.61746 33.59429 9.702279 

Square mean 48.55 195.8 325 92.1 12.75 
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stdev 18.15569 46.99115 80.26207 24.7001 7.032818 

Octal 
mean 45.4 218.8 340 102.65 15.15 

stdev 16.35269 58.13741 78.31515 32.84297 7.617673 

Hex 
mean 46.9 201.85 330.45 95.8 14.5 

stdev 19.19128 55.82612 82.2272 30.67246 7.823716 

Global 
mean 42.3 204.6 331.5 93 13.55 

stdev 16.67996 44.71359 74.50998 22.31356 8.738752 

Table 12-5  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.511513 0.227889 0.26617 0.315291 0.543545 

Square 0.373959 0.239996 0.24696 0.268188 0.551594 

Octal 0.360191 0.26571 0.230339 0.319951 0.502817 

Hex 0.409196 0.276572 0.248834 0.320172 0.539567 

Global 0.394325 0.218542 0.224766 0.239931 0.644926 

12.3 ZDT 610 with homogeneous Hyper-volume metrics 

The runs were complete in an average of 15.32 seconds. 

12.3.1 Performance of MOCAT 

Table 12-6 gives the performance statistic for the hyper-volume MOCAT system. The results are 

an improvement over the spread metric system. In addition, they outperform all of the benchmarked 

MOEAs given in chapter 6 on both the mean and standard deviation of the error. 

Table 12-6  Statistics for the fitness errors of ending solutions 

statistics for the fitness errors of ending generation 

  median  Mean  min  max stdev 

Run #1 5.58E-07 2.59E-05 0 4.22E-04 8.03E-05 

Run #2 8.29E-07 5.56E-06 0 9.41E-05 1.22E-05 

Run #3 1.58E-05 3.27E-05 -2.78E-17 6.89E-05 1.75E-05 

Run #4 5.52E-07 4.91E-06 -5.55E-17 3.89E-04 4.02E-05 

Run #5 2.30E-06 1.00E-05 9.73E-08 1.75E-04 2.92E-05 

Run #6 1.10E-06 3.57E-06 0 5.95E-05 7.72E-06 
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Run #7 1.13E-04 1.83E-04 0 5.70E-04 1.90E-04 

Run #8 3.58E-07 3.76E-06 -4.16E-17 7.73E-05 9.28E-06 

Run #9 3.35E-06 2.65E-05 -2.78E-17 1.04E-03 1.52E-04 

Run #10 1.87E-06 6.34E-06 -2.78E-17 5.89E-05 1.37E-05 

Run #11 3.92E-05 7.70E-05 0 1.54E-04 3.89E-05 

Run #12 8.12E-06 8.12E-05 -4.16E-17 0.002913 3.12E-04 

Run #13 7.93E-06 1.46E-05 -5.55E-17 3.36E-05 9.27E-06 

Run #14 4.75E-04 9.59E-04 -5.55E-17 0.003248 8.37E-04 

Run #15 7.02E-06 2.75E-05 -5.55E-17 2.41E-04 4.77E-05 

Run #16 3.85E-04 7.38E-04 0 1.69E-03 3.57E-04 

Run #17 3.10E-07 5.26E-06 -5.55E-17 1.33E-04 2.47E-05 

Run #18 5.93E-04 1.29E-03 0 1.02E-02 9.93E-04 

Run #19 5.10E-06 3.19E-05 6.09E-07 4.48E-04 7.22E-05 

Run #20 1.64E-05 5.99E-05 -5.55E-17 9.07E-04 1.49E-04 

mean 8.38E-05 1.79E-04 3.53E-08 1.15E-03 1.70E-04 

stdev 1.73E-04 3.57E-04 1.33E-07 2.28E-03 2.68E-04 

12.3.2 Statistics of Topologies using Hyper-volume metric 

While the spread metric system did not exhibit any statistical differences in topology usage, the 

hyper-volume system does as shown in Table 12-7. The Octal topology is used significantly more often 

the both the square ad LBEST topologies. 

Table 12-7  Use Count of Topologies of each run 

 

 
Using Hyper-volume metric 

 

Hyper-volume 
Metric Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 13 28 31 11 17 2.829497 

Run #2 15 16 24 22 23 4.037976 

Run #3 19 24 19 15 23 3.842902 

Run #4 20 21 24 22 13 5.142704 

Run #5 18 21 18 15 28 4.617802 

Run #6 22 23 19 19 17 12.46701 

Run #7 21 21 23 15 20 4.124842 

Run #8 17 16 28 22 17 10.75945 

Run #9 22 13 18 27 20 11.05558 
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Run #10 17 16 18 22 27 4.095092 

Run #11 25 18 20 20 17 3.616337 

Run #12 17 16 13 33 21 4.194218 

Run #13 19 12 28 18 23 4.135767 

Run #14 29 19 25 11 16 4.509909 

Run #15 16 12 22 27 23 9.179675 

Run #16 20 12 32 19 17 2.066416 

Run #17 25 15 19 19 22 4.888691 

Run #18 13 29 21 21 16 5.238227 

Run #19 19 21 22 11 27 4.694531 

Run #20 20 19 16 20 25 4.038914 

mean 19.35 18.60 22.00 19.45 20.60  

stdev 3.90 4.85 4.84 5.49 4.16  

t-test Lbest vs. 0.301368 0.035599 0.474391 0.172879  

 Square vs.  0.018443 0.30803 0.090468  

 Octal vs.   0.06859 0.172604  

 Hex vs.    0.235875  

12.3.3 Behaviors of Knowledge sources using Hyper-volume Metric 

As with the spread metric system all influence counts are significantly different from each other.  

Also, the emphasis is on exploitation knowledge source even though the use of the history knowledge 

source is down while the normative exploratory knowledge source usage is up. 

Table 12-8  Using Hyper-volume metric #Individuals influenced by KS 

Using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 249 1052 1588 483 110 

Run #2 244 1054 1676 452 88 

Run #3 200 1067 1595 543 62 

Run #4 224 1021 1678 471 78 

Run #5 293 1103 1634 499 74 

Run #6 282 1007 1709 399 75 

Run #7 214 990 1695 475 64 

Run #8 229 1105 1638 581 68 

Run #9 253 990 1669 491 76 
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Run #10 230 1147 1602 580 93 

Run #11 194 1054 1654 457 86 

Run #12 240 1016 1565 483 74 

Run #13 215 1066 1615 461 75 

Run #14 194 1042 1694 466 85 

Run #15 206 1136 1563 478 63 

Run #16 267 1073 1624 637 65 

Run #17 197 1095 1259 555 88 

Run #18 203 1143 1739 448 74 

Run #19 241 1033 1684 564 89 

Run #20 195 985 1681 383 68 

mean 228.50 1058.95 1628.10 495.30 77.75 

stdev 29.10 49.22 97.18 61.76 11.83 

t-test KS-N vs. 1.62E-34 1.51E-26 2.77E-16 1.04E-17 

 KS-S vs.  5.64E-20 5.12E-28 1.39E-28 

 KS-D vs.   2.79E-30 3.87E-25 

 KS-H vs.    2.44E-18 

12.3.4 Statistics of Topology-Knowledge tuple 

In the spread metric version of MOCAT the most productive topology was the LBEST. Here the 

most productive topology is that of the OCTAL. The octal domain tuple is the best performer as shown in 

table 12-9. Also, in table 12-10 it is clear that topographic knowledge varies the most between runs as 

with the spread metric. However, the other exploratory knowledge source, normative, exhibits more 

variability here than for the spread system. 

Table 12-9  Generation of non-dominated individuals by Topology-Knowledge tuples 

  N S D H T 

Lbest 
mean 45.15 205.25 316.6 89.85 15.05 

stdev 19.43755 45.06122 59.73661 26.19014 9.659874 

Square 
mean 36.05 197.8 303.95 89.85 12.6 

stdev 16.9441 56.07382 87.70613 27.62584 9.005262 

Octal 
mean 58 232.15 357.5 110 19.55 

stdev 24.06789 54.09278 79.006 39.4915 10.51553 

Hex mean 48.15 208 311.35 99.1 16.35 
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stdev 21.73591 64.12898 87.61776 33.33388 10.36327 

Global 
mean 41.15 215.75 338.7 106.5 14.2 

stdev 17.97447 51.9087 73.04368 30.42938 7.487533 

Still, MOCAT is really dynamic because the data have high variation.   

Table 12-10  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.430511 0.219543 0.188682 0.291487 0.641852 

Square 0.470017 0.283487 0.288554 0.307466 0.714703 

Octal 0.414964 0.233008 0.220996 0.359014 0.537879 

Hex 0.451421 0.308312 0.281412 0.336366 0.633839 

Global 0.436804 0.240597 0.215659 0.285722 0.527291 

12.3.5 Analysis of found Pareto front  

 

Figure 12.4  Overall found Pareto front 

The result is close to the one that in ZDT6 10 using pure spread metric. 
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12.4 ZDT 610 with combined metrics 

The runs were complete in an average of 15.42 seconds. 

12.4.1 Performance of MOCAT using the combined metrics. 

The performance of the combined system exceeds that of either single metric system. In fact the 

mean error is one full magnitude better than the hyper-volume case. Also, it clearly outperforms all 

other benchmarked functions for this problem. 

Table 12-11  Statistics for the fitness errors of ending solutions 

 Statistics for the fitness errors of ending generation   

  median  mean  min  max stdev 

Run #1 3.44E-05 5.53E-05 -4.16E-17 3.59E-04 6.82E-05 

Run #2 4.56E-08 1.50E-04 -5.55E-17 0.001742 3.61E-04 

Run #3 1.82E-08 7.84E-07 3.67E-10 9.74E-06 2.25E-06 

Run #4 5.53E-06 7.15E-06 -4.16E-17 3.80E-05 7.61E-06 

Run #5 9.04E-08 1.63E-05 3.40E-09 3.73E-04 6.12E-05 

Run #6 4.92E-06 7.06E-05 -2.78E-17 8.18E-04 1.18E-04 

Run #7 2.19E-05 1.04E-04 -4.16E-17 0.001001 1.65E-04 

Run #8 4.23E-07 1.67E-06 1.33E-08 9.90E-06 2.23E-06 

Run #9 6.56E-05 6.12E-05 -2.78E-17 1.10E-04 2.60E-05 

Run #10 1.82E-08 4.03E-05 -2.78E-17 0.00165 2.39E-04 

Run #11 4.69E-08 3.70E-07 1.86E-09 2.87E-06 5.74E-07 

Run #12 7.71E-06 2.28E-05 -2.78E-17 2.75E-04 3.95E-05 

Run #13 4.56E-08 7.73E-05 -4.16E-17 0.001024 2.49E-04 

Run #14 4.54E-06 4.94E-05 -5.55E-17 8.76E-04 1.48E-04 

Run #15 1.91E-05 1.77E-04 -5.55E-17 0.002931 4.83E-04 

Run #16 8.14E-06 3.30E-05 -5.55E-17 5.91E-04 9.77E-05 

Run #17 4.56E-08 1.81E-07 7.68E-09 1.09E-05 1.12E-06 

Run #18 1.82E-08 2.28E-06 -2.78E-17 1.48E-04 1.66E-05 

Run #19 3.57E-07 2.32E-05 -5.55E-17 5.01E-04 9.75E-05 

Run #20 2.37E-05 8.97E-05 -4.16E-17 0.001395 2.17E-04 

mean 9.83E-06 4.91E-05 1.33E-09 6.93E-04 1.20E-04 

stdev 1.61E-05 4.93E-05 3.28E-09 7.47E-04 1.29E-04 
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12.4.2 Statistics of Topologies using Spread Metrics 

From table 12-12 the square topology is used significantly more than the LBEST topology in the 

spread metric phase of the solution process. When the spread metric was use alone there was no 

difference in the usage of topologies. Likewise, the Sqare metric significantly outperforms LBEST in the 

hyper-volume phase.. 

Table 12-12  Use Count of Topologies using spread metric of each run 

 

 
Using Spread metric 

 

Spread Metric 
Value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 6 9 5 11 19 15.08273 

Run #2 5 8 19 6 12 6.585798 

Run #3 8 13 11 12 6 15.04582 

Run #4 11 14 7 7 11 10.67421 

Run #5 10 12 9 11 8 13.0653 

Run #6 10 8 16 10 6 14.5444 

Run #7 10 12 9 12 7 1.660286 

Run #8 14 14 6 9 7 14.66218 

Run #9 7 12 4 12 15 10.88384 

Run #10 12 14 5 8 11 7.123939 

Run #11 8 12 12 12 6 2.022871 

Run #12 7 6 14 12 11 6.633822 

Run #13 10 11 11 11 7 25.05995 

Run #14 10 9 13 12 6 1.874203 

Run #15 11 10 9 8 12 12.82533 

Run #16 8 7 11 11 13 14.72305 

Run #17 10 11 11 7 11 14.75448 

Run #18 6 13 10 7 14 24.43156 

Run #19 8 9 11 11 11 7.037685 

Run #20 10 10 11 5 14 12.00201 

mean 9.05 10.70 10.20 9.70 10.35  

stdev 2.18 2.35 3.64 2.28 3.55  

t-test Lbest vs. 0.015328 0.123232 0.18746 0.091829  

 Square vs.  0.309161 0.095513 0.361231  

 Octal vs.   0.307776 0.449213  
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 Hex vs.    0.253537  

Table 12-13  Use Count of Topologies using hyper-volume metric of each run 

Hyper-volume metric Hyper-volume metric value 

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL 
 Run #1 4 8 11 8 19 4.070232 

Run #2 13 5 9 14 9 3.166685 

Run #3 10 9 11 14 6 5.157879 

Run #4 9 16 7 11 7 5.310816 

Run #5 9 13 11 9 8 9.433638 

Run #6 9 13 7 7 14 5.412966 

Run #7 11 10 7 12 10 2.594558 

Run #8 9 11 11 8 11 9.331143 

Run #9 6 16 19 1 8 3.465811 

Run #10 9 14 10 8 9 3.911616 

Run #11 7 16 8 10 9 4.277458 

Run #12 11 12 9 7 11 3.189111 

Run #13 11 10 9 9 11 5.876553 

Run #14 8 14 8 12 8 3.576724 

Run #15 13 9 9 11 8 3.234325 

Run #16 5 9 11 14 11 3.613724 

Run #17 14 7 17 6 6 5.67747 

Run #18 7 13 8 12 10 3.845922 

Run #19 6 11 14 16 3 4.918367 

Run #20 9 3 8 15 15 3.75549 
mean 9.00 10.95 10.20 10.20 9.65  

stdev 2.63 3.50 3.14 3.54 3.41  

t-test Lbest vs. 0.030051 0.104677 0.121854 0.257306  

 Square vs.  0.245575 0.257772 0.126704  

 Octal vs.   0.5 0.304022  

 Hex vs.    0.314367  

12.4.3 Behaviors of Knowledge sources with combined metrics 

Tables 12-14 and 12-15 give the number of individuals controlled by each of the knowledge 

sources during the problem solving process. The usage of all knowledge sources in both phases is 
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statistically significant. Notice that the exploratory knowledge sources are used more often with the 

spread metric phase than with the hyper-volume metric as we expected. 

Table 12-14  Using Spread metric #Individuals influenced by KS 

using Spread metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 

Run #1 187 566 814 318 44 

Run #2 127 533 833 250 69 

Run #3 160 545 802 277 55 

Run #4 193 505 846 230 43 

Run #5 141 553 828 258 52 

Run #6 149 527 816 274 43 

Run #7 152 548 778 319 48 

Run #8 190 532 820 227 61 

Run #9 120 511 764 245 53 

Run #10 127 526 793 237 60 

Run #11 189 529 845 244 57 

Run #12 129 578 812 274 50 

Run #13 174 513 860 253 58 

Run #14 129 462 829 267 55 

Run #15 175 510 836 198 50 

Run #16 141 522 794 303 45 

Run #17 180 555 799 271 49 

Run #18 135 585 682 256 56 

Run #19 174 476 822 309 53 

Run #20 168 533 800 303 63 

mean 157.00 530.45 808.65 265.65 53.20 

stdev 24.18 29.71 37.10 31.76 6.82 

t-test KS-N vs. 5.52E-33 3E-36 3.29E-14 5.85E-15 

 KS-S vs.  4.6E-25 2.32E-26 1.92E-26 

 KS-D vs.   1.82E-35 6.56E-28 

 KS-H vs.    2E-18 

Table 12-15  Using Hyper-volume metric #Individuals influenced by KS 

Using Hyper-volume metric #Individuals influenced by KS 

  KS-N  KS-S  KS-D  KS-H  KS-T 
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Run #1 28 493 765 316 23 

Run #2 57 529 808 157 30 

Run #3 110 496 894 271 28 

Run #4 77 531 832 215 31 

Run #5 103 473 880 220 27 

Run #6 89 495 890 276 35 

Run #7 66 503 874 225 31 

Run #8 71 440 884 297 26 

Run #9 35 561 864 260 29 

Run #10 62 497 684 235 33 

Run #11 111 456 866 222 24 

Run #12 95 503 835 245 19 

Run #13 66 482 708 238 31 

Run #14 82 456 836 217 33 

Run #15 62 492 847 195 18 

Run #16 19 458 796 312 35 

Run #17 100 508 868 283 38 

Run #18 79 561 492 307 49 

Run #19 63 470 857 240 32 

Run #20 85 530 831 275 27 

mean 73.00 496.70 815.55 250.30 29.95 

stdev 25.04 32.68 92.78 40.85 6.67 

t-test KS-N vs. 3.2E-33 1.46E-20 4.42E-17 1.62E-07 

 KS-S vs.  2.54E-13 7.47E-22 4.9E-25 

 KS-D vs.   9.39E-20 1.42E-19 

 KS-H vs.    3.07E-16 

With no exception, all topologies are listed at 5 levels: D, S, H, N, and T. 

12.4.4 Statistics of Topology-Knowledge tuple non-domination production 

For the combined system the most productive topology is Square. This is interesting since the 

most productive one for the hyper-volume system was Octal, and that for the spread metric system was 

LBest. Square represents a middle ground between the two. The combined system produces less 

variability in the generation of non-dominated solution from run to run which attests for its stability. 
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Table 12-16  Non-dominated solutions produced by Topology-Knowledge tuple 

  N S D H T 

Lbest 
mean 40.4 185.15 300.75 96.95 15.05 

stdev 11.59583 39.35302 80.77185 20.96984 7.937088 

Square 
mean 53.9 221.8 342.4 112 20.6 

stdev 20.98596 51.04343 89.26035 25.42481 8.5557 

Octal 
mean 44.7 211.9 329.8 105.95 16.7 

stdev 14.6327 47.61236 70.83755 29.9868 8.118206 

Hex 
mean 47 198.45 325.1 102.45 16.35 

stdev 17.82665 38.62025 79.25236 26.79645 7.321741 

Global 
mean 44 209.85 326.15 98.6 14.45 

stdev 16.52749 67.59265 93.45208 37.57995 6.047836 

Table 12-17  Randomness of Topology-Knowledge tuple 

stdev/mean N S D H T 

Lbest 0.287025 0.212547 0.268568 0.216295 0.527381 

Square 0.38935 0.230133 0.26069 0.227007 0.415325 

Octal 0.327353 0.224693 0.214789 0.283028 0.48612 

Hex 0.37929 0.194609 0.243778 0.261556 0.447813 

Global 0.375625 0.3221 0.286531 0.381135 0.418535 

12.4.5 Analysis of found Pareto front  

 

Figure 12.5  Overall found Pareto front 
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Still, 20 runs closely cover the real Pareto front. 

12.5 Summary of ZDT6 

In term of the Pareto front, ZDT6 is similar to ZDT1, 2, and 4.  The combined system outperforms 

each of the individual ones. The problem combines most of the problem features together and is 

challenging for MOEAs. In the detailed example it is clear that our system takes more time to form the 

approximation and then attract solutions to the area via the knowledge sources. There is now sufficient 

complexity in the problem to generate the synergy between the two phases of the problem solving 

process. The combined system clearly outperforms all of the other MOEAs as a result. 
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CHAPTER 13  CONCLUSION AND FUTURE WORK 

The basic premise of the thesis is that Cultural Systems deal with multi-objective problems on a 

daily basis. So there should be some inner mechanisms that allow then to effectively solve such 

problems over time. Our goal is to extend the basic Cultural Algorithm framework to incorporate multi-

objective problem solving into it. Then, the system was applied to a variety of benchmark problems that 

posed problems for various other multi-objective evolutionary optimizers. The goal was to identify the 

computational features that make cultural systems so effective in this regard. 

The key aspect to a successful solution for any multi-objective problem is the maintenance of 

diversity within the populations so as to provide a search that was broad enough to identify the Optimal 

Pareto front for a given problem. There were two different performance metrics in the literature 

(Bastos-Filho and Miranda 2011) that were used to assess the spread of solutions along the curve, the 

spread metric and the hyper-cube metric. 

In our Cultural systems, MOCAT, knowledge sources determined the location of points in the 

search space. The knowledge source performances were assessed in terms of the quality of spread that 

they produced. If a knowledge source was successful in influencing the positioning of an agent in the 

space, then agents that are connected to it within the social network, the social fabric, were more likely 

to use it as well. That way influential knowledge sources can spread through the social network and 

influence the direction of the search process.  

The action of one set of knowledge sources can set the stage for the action of others. From this 

perspective there are two categories of knowledge sources that were previously identified relative to 

optimization problem solving, exploratory and exploitative knowledge sources. It was conjectured that 
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the different spread metrics might be more likely to selectively reward different knowledge sources and 

social networks that connected the problem solving agents together. 

In the MOCAT system, the goal was to allow it to learn the frequency with which to apply the 

various knowledge source along with the social fabric through which the knowledge sources directed 

their influences. The goal was to identify certain problem features that posed problems for multi-

objective systems and to observe how the MOCAT system configured itself relative to those problems.  

The results were then compared with well-known benchmark performance data on these problems. 

While in a traditional MOEA the spread metrics provided the main source of information in the 

search process, the situation was different for the MOCAT system. Here the metrics were used to 

evaluate the ability of the knowledge sources to generate and distribute solutions within the problem 

space. The key is that the knowledge sources collected information from the search activity that was 

done independently of the spread metric assessment. 

The system was run against a benchmark set of problems that represented categories of hard 

problems. These categories include convex and concave optimal Pareto Fronts, multi-modality, 

discretization of the curve, uneven distribution of points along the front, and uneven distribution 

between the optimal front and sub-optimal ones. 

Some basic results that were produced are as follows: 

1. The MOCAT system was very effective in the generation of an appropriate configuration for 

solving problems with different combinations of these features.  Even for a given problem, 

as information was added to the knowledge sources, adjustments in the topologies could be 

made effectively. 
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2. As the complexity of the problems increased in terms of the number of problem features, 

the MOCAT system’s relative performance increased. 

3. A problem with just a single problem feature, such as ZDT1 and ZDT5, was often effectively 

solved by just using one metric guide the solution process. However, if there were multiple 

problems, combining the two metrics together produced a synergy that outperformed each 

single metric based system. 

4. This synergy resulted from the fact that they rewarded spread production in different ways. 

The spread metric focused on global distribution while the hyper-volume tended to support 

local optimization. 

5. The configuration of the top performing MOCAT system varied markedly from one problem 

to the next.  

The results suggest three possible directions for future work: 

1. The structure of a social system may reflect the nature of the problems that are presented to it. 

This can be a useful tool in comparing and contrasting cultural systems in terms of the 

properties of the multi-objective decision-problems that they are likely to face. 

2. Also, by characterizing real-world problem in terms of these problem properties we may be able 

to prescribe a particular Cultural Algorithm system that is best suited to solve the problem. 

3. Also, we can observe how slight changes in problem constraints can impact the social fabric anf 

knowledge sources used to solve the problem. 

4. The population may have an adaptive size according to how many Pareto fronts have been 

found so that the population increases while just a few Pareto fronts are found but decreases 

while too many Pareto fronts are found. 
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5. MOCAT should be tested on real-world problems to test its potentials. 
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APPENDIX—SYSTEM IMPLEMENTATION 

In this chapter we begin by describing the Repast Simphony software that will represent the 

population space and upon which the rest of the MOCAT system is built. Next we provide a description 

of the MOCAT interface. Finally, we will demonstrate how MOCAT displays the results of the problem 

solving process. 

As mentioned above, multiple agent systems (MAS) are often used in solving MOPs.  A multi-

agent system (MAS) is a system composed of multiple interacting intelligent agents who have only local 

views but is unaware of full global view of the system.  While in the CA knowledge is stored in the belief 

space, the population space of CA can be implemented as a Multi-Agent System.  In all of our previous 

implementations, all individuals are autonomous and there is no hierarchical structure among them 

here although there could be. 

In this work we took advantage of a mature MA framework, Repast Simphony (Argonne National 

Laboratory 2010), in our latest CAT implementation.  Repast Simphony, as an integrated environment 

for building special purpose simulation tools for modeling organizational systems, provides various 

services that enable the developer to easily control different behaviors as simulating behaviors, 

graphical representation, statistics, and animation.  Such facilitates provide the building blocks that we 

need to create simulation models for different problem solving domains.   

For Repast, there were several concrete implementations of its conceptual specification.  While 

all of them share the same core services, such as Repast.NET which is used with the Microsoft.Net 

framework and Repast Py which uses Python Scripting.  Repast J is the concrete specification used here 

because it was the reference implementation that defines the core services used in MOCA and the 
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earlier CAT systems.  In this text Repast J and Repast are used interchangeable unless Repast Simphony 

specifically refers to a latest version that is used in our newest CAT implementation.  In terms of 

implementation, both CA and Repast use a timer to evolve the populations; with the consideration of 

improving computing efficiency by combining autonomous agents and high-level guidance of CA. 

One of the advantages of Repast is its ability to support real-time dynamic visualization of the 

population space and the belief space, to query for details of specific individuals, and to produce a real-

time display of knowledge source performance.   

Repast Simphony, while containing all the core services that Repast J has supplied, provides 

various  services that enable the developer to easily control different behaviors relating to simulation, 

graphical representation, statistics, and animation.  In addition, by taking advantage of the 3D 

interaction ability of Repast Simphony, it is very straightforward to use the mouse to drag and rotate the 

graphical representation in MOCAT.  Such facilitates provide the building blocks that we need to create 

simulation models for different problem solving domains.   

The following series of screen shots shows the 3D pictures obtained when the objective 

coordinate system is rotated so that it is easier to observe the flat surface in the objective space.  Figure 

0.1 shows two coordinates in domain space and one value in objective space for generation 36 when 

MOCAT is evolving DTLZ1.  Certainly, we are able to represent any combinations of coordinates in both 

domain space and objective space for individuals.  In this figure, we are able to visually check the 

solution surface, i.e., the current Pareto front and we can easily tell that the solutions are good in terms 

of individual’s performance.   
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In the figure, colors are used to display the Pareto fronts discovered during the problem solving 

process.  The magenta points indicate that the representing individual is on Pareto front 1; the color 

blue indicates Pareto front 2, etc.  Please note that in this implementation we represent all individuals in 

the cube whose edges are shown in white lines and outliers are dragged back into the cube and 

therefore stick to boundary edges.  In addition, in this figure the three coordinates are normalized for 

convenience of observation.   

 

Figure 0.1 Screen copies of MOCAT’s 3D visualization 
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To take advantage of the facilitates that Repast Simphony provides in addition to normal Repast 

functionalities, some specific programming techniques have to be implemented.  For example, in the 

new system, individuals, i.e., agents, provide a consistent programming interface for the Simphony 

system to query it is internal status. 

Moreover, in the concrete system design, system performance was focused since evolution 

algorithms are calculation-intense and consume much more computation power.  For example, to select 

an individual with a good performance for single-objective evolution, a linear array sort is sufficient.  

However, in order to arrange individuals onto a Pareto front, comparisons have to been done on each 

dimension so that sort needs more time.   

Therefore, in this section, the concrete implementation details are explained with the intention 

to be a self-contained programming guide and user manual.  First, specific programming concept of 

Repast Simphony is introduced.  Second, its concrete programming environment explained.  Third, 

particular implementation details of new MOCAT are explained.  Finally, a simple how-to-use guide is 

supplied for MOCAT since Repast Simphony has crowded interface which, though efficient, may pose a 

challenge to first-time users. 

13.1 Introduction to Repast Simphony 

Repast Simphony is an open source, agent-based modeling toolkit.  It has the following features 

that facilitate our new implementation. 

 Ready-to-use dynamic and interactive visualization 

 Point-and-click to show properties of any agent 
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 Charts showing data series 

Additionally, there are potentials that make our future work easier. 

 Logging of data series so that we can remove messy hard coding in the source code to record 

data in specific format; 

 Automated connections to a variety of optional external tools including Matlab; 

 A range of data storage "freeze dryers" for model check pointing and restoration including XML 

file storage, text file storage, and database storage; so that we are able to pause experiment at 

one time and resume it later; 

 A fully concurrent multi-threaded discrete event scheduler;  

 Libraries for genetic algorithms, neural networks, regression, random number generation, and 

specialized mathematics that makes the comparison of MOCAT and other evolutionary 

algorithms practical; 

 An automated Monte Carlo simulation framework which supports multiple modes of model 

results.  However, we have already implemented a high-quality random number generator 

which will be used in its place. 

 In the model execution environment a mouse click on an agent will reveal all of its properties to 

the public.  No coding is needed. 

There are two options to install Repast Simphony: as a plug-in of Eclipse or as a stand-alone 

application which actually is a subset of Eclipse.  While the former needs fine and detailed work though 

the download volume is smaller, the latter installation approach is suggested for its convenience.  The 

installer at the website is for the newest version 1.2.0; an installation guide can be found online (Anon. 

2008b).   
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The core data structure in Repast Simphony is called a Context. The Context is a simple 

container based on set semantics that means that it provides the basic infrastructure to define a 

population and the interactions of that population.  In reality, Context does not exert such interaction 

constraints over its content.  In other words, any population can be added into a Context. 

The particular structure of populations, i.e., how agents are connected to and interact with each 

other, is defined by a Projection. Projections are data structures designed to define and enforce 

relationships between agents within a given Context.  Context and Projection are the two most 

important concepts in Repast Simphony. 

Each Context can have an arbitrary number of Projections associated with it which means that 

within each Context, the agents can create an arbitrary number of types of relationships with each other. 

This ability is intended to release the constraint of writing agents that are designed to work with grids or 

networks specifically.  

Projection is designed to work with arbitrary objects and switching between projections does 

not require any changes of objects so that it is easy to be done.  In terms of coding, this means that no 

code changes are required to allow a projection to work with a particular agent. 

In reality, in Repast Simphony, a context can be complex.  For example, a context can contain 

sub-Contexts.  As an example, a farming village consists of multiple families; in this case each family is a 

sub-Context of the larger village. Membership in a Context is inherited by definition.  This hierarchical 

structure allows for the model designer to consciously define the granularity of the model.  In CA, there 

is no hierarchy in population space, (nor in belief space,) therefore we can practically skip this note.  

Membership in a Context is designed to be fluid.  As a result, agents that are designed to engage in a 
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behavior on the basis of their environment can switch behaviors very easily when they migrate into 

another context.   

An illustration of the relationships among Context, Projection, and agents are shown in Figure 

0.2, taken from Repast Simphony’s online document (Anon. 2008a). 

 

Figure 0.2 Context, Projection, and agents in Repast Simphony 

A Context will be initialized by Repast Simphony automatically at the very beginning of startup 

and will stay there for the whole execution session.  During the initialization, all setup is expected to be 

done, including creating and setup of Projections, which is not indispensable for a Repast Simphony 

application to run.  In order to visualize agents, either a grid or a continuous space is needed to be 

created and all agents have to be added into them to be processed.   
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In addition to charts, we can consider using other multi-dimensional visualization.  There are 

two kinds of visualization interfaces, 2D and 3D.  Creating 2D visualization, which is called space here, is 

generally easy to do.  However, creating 3D spaces requires an explicit mapping layer between the 

concrete data and objects that are used by the spaces.  For example, 3D spaces require a literal 

definition of three dimensions when an agent is added into it; otherwise, in runtime Java exceptions 

complaining about non-affine operations will be thrown out when the matrix calculations are in fact 

affine.  The development environment created by the installer does not support runtime debugging well 

in addition to the fact that JNI is used in 3D visualization which further prevents step debug; thereafter 

the mechanism causing the exceptions is unclear.   

13.2 Introduction to Repast IDE 

There are two ways to set up the Repast Simphony Integrated Development Environment (IDE).  

One is to download the plug-in from the update site to an existing Eclipse IDE; another one, which is 

easier for beginners, is to download Repast Simphony IDE which embeds an Eclipse IDE inside.  The IDE 

plugin from the update site provides the same functionality of the stand-alone installers, while 

permitting the flexibility to add Repast Simphony to an existing Eclipse installation. This is useful for 

advanced programmers who already have additional Eclipse components and do not want to use the 

Eclipse framework that is included with the installers.  

In spite of the same core functionality of two configurations, the plug-in configuration does not 

require the development environment components or source code from the repository, whereas the 

installer configuration needs the development environment components and comes with the source 

code from the repository.  Therefore, the installer configuration is recommended for our purpose. 
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Figure 0.3  Splash window of the Repast Simphony 

The integrated development environment (IDE) is a classic Eclipse. 

 

Figure 0.4 IDE of Repast Simphony 
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From Figure 0.3 and Figure 0.4 we can verify that Repast Simphony is basically an extension of 

Eclipse, though much auxiliary functionality are added.  To get familiar with the IDE, please refer to 

Eclipse’s official website for detailed and updated documents.  With the consideration that Eclipse is a 

popular development tool that has been extensively used in Java, C/C++, web development; further 

introduction of how to use the IDE is eliminated here. 

One point worth once more mentioning is that Repast J and Repast S work in totally different 

ways.  For Repast J, there is no dedicated IDE.  Repast Simphony IDE cannot support Repast J projects or 

provide more help on normal Java projects.  To make Repast J code fit into Repast Simphony, a lot of 

code, especially which related to interface stuff, should be modified.   

 

13.3 Building MOCAT in Repast Simphony 

In this section, at first how to create a Repast Simphony for MOCAT is explained.  At the end, the 

calculation of spread metric that is specific to MOCAT is introduced. 

In a nutshell, the procedures below been followed in migrating MOCA into Repast Simphony: 

1. Create a blank Repast Simphony project with the name MOCAT and copy the source code of 

previous CA implementation into the project folder; an alternative is to import MOCA into the 

IDE and add Repast Nature to it.  There are no technical differences of the results.  In either way, 

a few files and folders that are critical to Repast Simphony are automatically created. 

2. Groovy code can be deleted since pure Java is used in this implementation.  Existence of it does 

not harm the integrity or hinder the execution of the project.   
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3. Remove all Repast Java code from the project. Such code is used to step evolution and now 

should be consigned to Repast Simphony. 

4. Some files are essential to Repast S, especially model.score, which records the system’s 

parameters.  Work on it and fill all necessary parts.  Details will be given underneath right after 

this brief introduction.   

5. After coding to satisfy Simphony specifications, other code units were added that created 

system properties as global parameters, such as maximum number of generations.  Repast 

Simphony code uses a lot of Java Annotation which is similar to compiler instructions, and a 

feature that came with Java 1.5. (As of this thesis writing, the newest Java version is 1.6.) 

6. When coding is done, click the little green triangle at the toolbar and locate and click “Run 

Repast MOCAT”, which will bring us a primitive Repast Simphony runtime interface that is 

bound to MOCAT and wait to be further setup. 

7. In the loaded execution program, setup for correct visualization, including display, loggers, and 

charts.  In other words, we have to configure the score, write the code, and setup the execution 

program correspondingly and sync them manually. 

8. Additionally, to spread and deploy MOCAT on a machine on which an execution environment is 

not ready, click the little green triangle and select Build MOCAT Installer.  A single-file installer 

which contains all necessary components to run will be created. 

If a copy of Repast Simphony project is ready, then import source file into the IDE and the later 

will automatically create a Run Configuration "Repast Project MOCAT".  Click it and a Repast Simphony 

MOCAT will run. 
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Figure 0.5  shows the essential model.score in bulletin format, in which the system attribute 

(parameter) number of population is highlighted.  This file has to be located under the folder moca.rs, in 

which rs is an abbreviation of resources.  In Eclipse, in the menu popped out after right click on top of 

the score file, choosing Open With | Text Editor will bring us the XML file describing the content.  The 

score files configures the system’s runtime parameters. 

In order to guarantee visibility of details of the score, the tab Properties has to be brought up by 

selecting the menu item Show Properties in the popup menu trigger by right click in any place in the 

score window.  Double click on a visible item won’t make the Properties tab appear. 
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Figure 0.5  Model score 

There are a few things that can be inserted into the project: agent, Context, and a variety of 

Projections.  Agent must be registered here so that the runtime system can recognize it.  In registering 

available agent, source code and compiled class have to be specified.  In reality, it was found that deep 

package levels will prevent the runtime system from locating the agent Java class.  However, there is on 

open document related to this requirement.  In fact, shallow package levels are suggested for all classes 
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that are critical to Repast Simphony implementation.  Context is not set here but configured in source 

code.  Projections, here named as Spaces, have to be set both here and in source code.  There are a few 

Space types; continuous space, grid, network, geography, and scalar, in which the first two are of our 

concern. 

In a score, Attributes indicate system global parameters, whose type can be integer, float, string, 

Boolean, file etc.  Parameters set here will be automatically shown by the runtime program for users to 

check and set values to; new parameter values can be read by source code easily through runtime 

access object. 

In the current implementation of MOCAT, evolution is controlled in Context as a global event, 

while all individuals (agents) are in charge of their visualization.  In this way, minimum code change is 

requested without hurting the system execution.  After each step of evolution, the display needs to be 

updated.  All agents have to be added into the projection to be able to get shown.  We specify a set of 

eternal individuals in favor of display, which is named Display Set, because in CA populations are born 

and die all the time, as what happens in nature.  Thereafter, after each step of evolution, information of 

the current population will be copied into the display set; the concrete update of graphical drawing is 

handled by Repast Simphony.   

An adder—which is used by Repast Simphony to add an agent into the display—was created to 

explicitly match the dimensionality of individuals in display set and the displays should they are 3D; 

otherwise, a non-affine exception is thrown before the display is really about to show even though 

emulation calculations can be executed normally.  With the consideration that Java 3D is actually 

delegated to JNI and finally reaches Java3D.dll, we suspect that strict declaration check is exerted and 
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causes this exception; however, we were unable to verify the conjecture and have not found any related 

documents.   

In new MOCAT, another big modification is the addition of spread metric and its impact on 

evolution.  Most of the code aggregates in Java class NetworkConfigurationRouletteWheel.  As its name 

suggests, similar to the selection of knowledge sources, a roulette wheel is dedicated to selecting 

network configurations with the concern of randomness while we mainly focus on the spur of expanding 

spread.  In this version of MOCAT, all available network configurations will be test run on top of the 

initial population to gain primitive evaluations of their performance in terms of spread; such primitive 

evaluations serve as the initial values for the quote in the roulette wheel.  To promise fairness of 

comparison, the population space and belief space are all rolled back to the original status after test 

runs.  During our test it was found that the initial spread metrics collected this way, though obviously 

bigger than the peers in later generations, are comparable to the later values.  Thereafter, there is no 

need to enforce a minimum chance for any network configuration to be selected, unlike what had been 

done in the roulette wheel for knowledge sources where in each generation a minimum of five new 

individuals are guaranteed to be propagated underneath. 

Concrete calculations of the spread metric happen in the method processOneGeneraion of class 

MOCulturalAlgorihtm, in which the spread value is calculated upon the current generation and the 

network configuration which has been selected for it is thereafter updated accordingly.  In other words, 

in the network configuration roulette wheel, a moving average is maintained for network configurations 

for a past period.  In current implementation, the math average of the stored spread value and the new 

spread value is saved.   
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13.4 How to Run MOCAT 

To enable a Repast Simphony project to run, three peers have to be guaranteed to match each 

other, the Java source code, the score file, and the runtime configurations.  In this section, all necessary 

setup in the runtime environment will be explained step by step.  Without these correct setups, CA can 

evolve its emulation but no data will be collected or shown visually. 

When first starting up MOCAT, after the model is loaded into the execution environment, we 

have to specify the data loader; even though it has been setup in the score file.   

To create a start point of the evolution, in the left pane, right click “Data Loader” and then click 

“Set Data Loader” in the popup menu, choose “A Specific Java Class” in the next dialog and then select 

the correct context builder class.  Please note here the context builder has to be located at the root of 

the project; otherwise it cannot be correctly located by the execution environment. 
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Figure 0.6  Setup Context loader in the runtime environment 

After setting of the context builder, data sets can be set too thought it is not indispensable for 

the core implementation of MOCAT.  A data set is a series of fields that are extracted from a specific 

agent class and can be used to create logs. 

Right click “Data Sets” and then click “Add Data Set”, in the next dialog set up as follows, in 

which name and id can be arbitrary.  Methods getXPosition() and getYPosition() belong to class 

Individual and can be automatically recognized by Repast Simphony.   
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Figure 0.7  Creating a Data set by extracting fields from agent class 

Click the button “Add” or select “Add Simple Mapping” precisely; a default item named “Tick” 

will show in the mapping table.   
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Click the right column and select a wanted method; and th left column will change to the name 

according to Java Bean’s naming convention.  Double click on the left column make it possibe to modify 

the name. 
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Outputters can be built upon data sets.  Right click it and select “Add File Outputter” and give an 

arbitrary name and select an available data set, which in this case is “Date Set 1”.  Then add any field of 

interest from the left list into the right one by pressing the green right arrow in the middle. 
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Figure 0.8  Creating Outputter upon Data Set 

The next dialog is self-explanatory, in which the log file is given a file and format is specified.  In 

this way, we don’t have to manually set up and maintain any log files in the source code; instead, we 

have the freedom to create them in runtime and change the data series to record. 
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The last step is to setup schedule parameters, where no particular attention is required, except 

that frequency has to be repeat instead of the other choise: one_time.  In this way, those data will be 

updated automatically along evolution. 
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Additionally, displays have to be set too.  We may think that displays we created in source and in 

the score file are possible choices and in the runtime environment they are nominated to show.   

Right click “Display” and select “Add Display” in the popup menu, give an arbitrary name, here 

we choose “3D display”, in the following dialog and add “Continuous Space” into the right list by clicking 

the green right arrow in the middle which is disabled since there are no further possible choices.  Recall 

that “Continuous Space” has been added in the score file so that it can be recognized and listed by the 

runtime environment.  In the source code the continuous space has been created and configured as well; 
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however, the matching between the source code and the setup here will not be exerted until the 

execution of the evolution. 

 

Figure 0.9  Creating a 3D display (Projection) for agents 

A display has to be filled with agents in this setup though in source code agents have already 

added themselves into Projections.  In the next dialog, SimpleAgent is the display name that is created in 

the source code by Java annotation for the class MOCAAgent that is used in the display set.  Be sure to 

select an appropriate style class that inherits a suitable Style class of Repast Simphony is in charge of 

select visual elements for agents to show in the display.  In our implementation, colors are used to mark 
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the order of the pareto front at which the agent is located.  Otherwise, a pure white ball is shown for an 

agent thereafter other information is lost.   

 

The last two screens for creating a display is simple, as shown in the following figures. 
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Similarly, be sure to selection repeat for the frequency option so that the display is updated 

along each step of evolution. 

Finally, we get a ready-to-go MOCAT execution environment as shown underneath.  Press the 

floppy disk icon to remember the current configuration and reuse it later.  From now on, any 

subsequent use of MOCAT will return this interface. 
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The power button will call source code to create the Context and initialize, date set, outputter, 

and display that have been created during the previous setup.  The Start button will notify CA to run 

until in the source code calls repast.simphony.essentials.RepastEssentials.EndSimulationRun() to stop.  

The Step Run button will make evolution step forward and the pause.   

All such buttons have hints that will show when mouse is hovering over; and the functionalities 

are easy to get understood.   
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In the ready interface, after an evolution is paused, double click an agent will make its 

properties to be shown in a dedicated panel, as illustrated in the bottom left tab of the underneath 

screen copy.  Here we can not only observe it is current information but are able to see its history.  In 

this screen copy, we can see that the agent had moved to the second Pareto front three times.   

 

Figure 0.10  Double click an agent and show its properties 

In addition to the necessary visualization, other straightforward representation can be added to 

MOCAT.  For example, we can thereafter observer the number of pareto fronts by viewing the maximum 

pareto front rank.  To do this, right click the category Charts and selected Add Chart in the popup menu. 
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Figure 0.11  Choose Chart type 

Select the chart type in need.  In this example, please select the second one, i.e., XY Line. 
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Figure 0.12  Select Data Serial for X and Y Axes 

XY Line chart is not complex; here we select Tick, i.e., number of generation.  For Y axis, we use 

the aggregate Max value of front ranks which is come predefined data set 1. 

The rest is the detailed setup of the appearance of the chart. 
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Figure 0.13  Configuration of the Chart 

The last screen is a notification of the completion of the creation of the chart. 



305 

 

 
 

 

Figure 0.14  Chart is created completely 
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Figure 0.15  Real-time display of the Chart 

After execution, a chart will be automatically created and adjacent to our main display.  The 

content will be updated along execution so that it is convenient for us to observe the fluctuation of the 

generations.  From this sample screen copy, we can see that evolution stay stable after generation 50.  

In the first 50 generations, there are three ones in which individuals aggregated into crowded areas so 

that the maximum pareto front ranks were large, either 17 or 18.  With the reference to this figure, we 

may get a hint of when to stop evolution. 
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Evolutionary algorithms, including the Cultural Algorithms and other bio-inspired approaches 

are frequently used to solve problems that are not tractable for traditional approaches.  Previously, 

research in the field of evolutionary optimization has focused on single-objective problems.  On the 

contrary, most real-world problems involve more than one objective where these objectives may 

conflict with each other.   

The newest implementation of the Cultural Algorithms to solve multi-objective optimization is 

named MOCAT.  It is not the first time that the Cultural Algorithms have been used to solve multi-

objective problems.  Nonetheless, it is the first time that the Cultural Algorithms systematically merge 

techniques that have been popular in other evolutionary algorithms, such as non-domination sorting 

and spacing metrics, among other features.  The goal of the thesis is to test whether MOCAT can 
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efficiently handle multi-objective optimization.  In addition to that, we want to observe  how the 

knowledge sources and agent topologies within a Cultural Algorithm interact with each other during the 

problem solving process. 

The MOCA system was evaluated against the ZDT test set proposed by Zitzler (2000). Some basic 

results that were produced are as follows: 

1. The MOCAT system was very effective in the generation of an appropriate configuration for 

solving problems with different combinations of these features.  Even for a given problem, 

as information was added to the knowledge sources, adjustments in the topologies could be 

made effectively. 

2. As the complexity of the problems increased in terms of the number of problem features, 

the MOCAT system’s relative performance increased. 

3. A problem with just a single problem feature, such as ZDT1 and ZDT5, was often effectively 

solved by just using one metric guide the solution process. However, if there were multiple 

problems, combining the two metrics together produced a synergy that outperformed each 

single metric based system. 

4. This synergy resulted from the fact that they rewarded spread production in different ways. 

The spread metric focused on global distribution while the hyper-volume tended to support 

local optimization. 

5. The configuration of the top performing MOCAT system varied markedly from one problem 

to the next.  
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Our experiments proved the potential of applying the Cultural Algorithms on multi-objective 

problems and open a gate to observing internal behaviors of various knowledge sources and social 

fabrics.    
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