
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2011

Multi-objective cultural algorithms
Dapeng Liu
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Liu, Dapeng, "Multi-objective cultural algorithms" (2011). Wayne State University Dissertations. Paper 318.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/318?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTI-OBJECTIVE CULTURAL ALGORITHMS

by

DAPENG LIU

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

 MAJOR: COMPUTER SCIENCE

 Approved by:

 Advisor Date

ii

DEDICATION

To my family I dedicate this work.

iii

ACKNOWLEDGEMENTS

First I would like to thank the members of my committee for their interest and insights. My

thanks especially go to Dr. Robert G. Reynolds, my advisor, for all of his efforts and guidance along my

road to completing the thesis. I would also like to thank Dr. Farshad Fotouhi, who has supported me for

many years with his trust. Also, Dr. Weisong Shi, has always helped me without hesitation. Finally,

thanks to Dr. Ratna Babu Chinnam who has always been kind and considerate even though we had

never met in person before.

Secondly I would like to thanks current and previous members of the Artificial Intelligence

Laboratory for their efforts. They include Dr. Xiangdong Che, Chris Best, Dr. Bin Peng, and Dr. Mostafa

Ali. My work is based on their previous achievements.

iv

TABLE OF CONTENTS

Dedication ... ii

Acknowledgements .. iii

List of Tables ... vii

List of Figures .. xii

CHAPTER 1 Introduction and Motivation.. 1

1.1 Particle Swarm Optimization (PSO) and Multi-objective PSO .. 3

1.2 Ant Colony Optimization (ACO) and Multi-objective ACO (MOACO) 5

1.3 Predator-prey co-evolution .. 6

1.4 Cultural Algorithms (CA) and Multi-objective CAs .. 7

1.5 Organization of the dissertation ... 10

CHAPTER 2 Literature view of MOEAs .. 11

2.1 Non-socially-motivated Optimization algorithms ... 12

2.2 Socially motivated optimization algorithms ... 13

CHAPTER 3 Introduction to the Cultural Algorithm .. 29

3.1 History of the CA Implementation .. 30

3.2 The Cultural Algorithm Framework .. 34

3.3 Effectiveness of MOCA and weakness .. 49

3.4 Expansion of the CA for Multi-objective Optimization ... 54

3.5 Conclusions ... 57

CHAPTER 4 The MOCAT 1.0 System Design .. 59

4.1 System Framework ... 60

4.2 Knowledge sources ... 65

4.3 The accept() function .. 71

4.4 The update() function ... 73

4.5 The population space .. 75

4.6 The influence() function .. 81

4.7 Summary ... 88

CHAPTER 5 An Example MOCAT Run .. 90

5.1 Start MOCAT 1.0 ... 90

v

5.2 Control the evolution .. 95

5.3 Collected data ... 98

CHAPTER 6 Experimental Framework ... 102

6.1 ZDT 1 ... 103

6.2 ZDT 2 ... 104

6.3 ZDT 3 ... 106

6.4 ZDT 4 ... 107

6.5 ZDT 5 ... 109

6.6 ZDT 6 ... 110

6.7 Summaries .. 112

6.8 Hardware and software configurations .. 114

6.9 MOCAT initialization ... 114

6.10 Definition of fitness error ... 115

6.11 Hypotheses ... 116

6.12 Collection of data .. 117

CHAPTER 7 Solving Problems with Convex Pareto fronts using MOCAT: ZDT1 .. 118

7.1 The ZDT 1 Function Specification .. 119

7.2 Performance of the Cultural Algorithm Using a Spread Metric on ZDT1 with 30
Dimensions... 120

7.3 Using Hyper Volume to Guide MOCAT for ZDT1 in 30 dimensions 129

7.4 Solving ZDT1 with dimension 30 using the combined metrics 133

7.5 Summary of ZDT1 .. 141

CHAPTER 8 The performance of mocat on problems with concave pareto fronts: dtz2 143

8.1 Using MOCAT To Find Optimal Pareto Front for Concave Problems: ZDT 2 with 30
dimensions ... 143

8.2 Solving ZDT 2 30 with Homogeneous Hyper-Volume Metric Performance Function 154

8.3 ZDT 2 30 with combined metrics .. 158

8.4 Summary of ZDT2 .. 165

CHAPTER 9 solving Experiment Results of ZDT3 ... 167

9.1 ZDT 3 30 with homogeneous Spread metrics ... 167

9.2 Performance of MOCAT using the spread metric for zdt3 30 .. 169

9.3 ZDT 3 30 with homogeneous Hyper-volume metrics ... 179

vi

9.4 ZDT 3 30 with combined metrics .. 184

9.5 Summary of ZDT3 .. 190

CHAPTER 10 Using MOCAT to Solve Multi-Modal Problems: ZDT4 .. 192

10.1 ZDT 4 10 with homogeneous Spread metrics ... 192

10.2 ZDT 4 10 with homogeneous Hyper-volume metric ... 204

10.3 ZDT 4 10 with combined metrics .. 208

10.4 Summary of ZDT4 .. 215

CHAPTER 11 Experimental Results for mocat on decpetive problems: ZDT5 .. 217

11.1 An Example of the Evolution of ZDT5 Optimal Curve ... 218

11.2 ZDT 511 with homogeneous Hyper-volume metrics .. 229

11.3 ZDT 511 with combined metrics ... 234

11.4 Summary of the MOCAT performance for ZDT5 .. 241

CHAPTER 12 Experiment Results of ZDT6 ... 243

12.1 ZDT 6 ... 243

12.2 ZDT 610 with homogeneous Spread metrics .. 252

12.3 ZDT 610 with homogeneous Hyper-volume metrics .. 256

12.4 ZDT 610 with combined metrics ... 261

12.5 Summary of ZDT6 .. 267

CHAPTER 13 Conclusion And Future Work ... 268

Appendix—System Implementation ... 272

References .. 307

Abstract ... 320

Autobiographical Statement ... 323

vii

LIST OF TABLES

Table 3-1 Pareto fronts at year 40 for DTLZ1 ... 50

Table 3-2 Pareto fronts at the end of evolution .. 52

Table 4-1 The Pseudo Code and Execution Flow Chart of MOCAT .. 61

Table 4-2 Pseudo code of non-domination Pareto ranking ... 72

Table 4-3 Pseudo code of function accept() .. 72

Table 4-4 Pseudo code of selecting a knowledge source from the roulette wheel 74

Table 4-5 Pseudo code of selecting a topology from the roulette wheel .. 83

Table 4-6 neighbors voting for knowledge source to use on an individual Ind ... 84

Table 4-7 Pseudo code of influence of normative knowledge source ... 84

Table 4-8 Pseudo code of influence of topographical knowledge source ... 85

Table 4-9 Pseudo code of influence of situational knowledge source .. 86

Table 4-10 Pseudo code of influence of historical knowledge source ... 86

Table 4-11 Pseudo code of influence of domain knowledge source ... 87

Table 6-1 Existing benchmark results I .. 112

Table 6-2 Existing benchmark results II ... 112

Table 7-1 Statistics for the fitness errors of ending solutions .. 124

Table 7-2 Use Count of Topologies of each run .. 125

Table 7-3 The number of Individuals influenced by KS using the Spread Metric 126

Table 7-4 The total number of non-dominated solutions generated over all 20 runs for each KS Topology
pairing. .. 128

Table 7-5 Variability of Topology-Knowledge tuple Production. ... 128

Table 7-6 Statistics for the fitness errors of ending solutions ... 129

Table 7-7 Use Count of Topologies of each run ... 130

Table 7-8 Using Hyper-volume metric #Individuals influenced by KS ... 131

Table 7-9 Overall Statistics of Topology-Knowledge tuple .. 133

viii

Table 7-10 Variability of Non-Dominated Solutions by Topology-Knowledge tuple 133

Table 7-11 Statistics for the fitness errors of ending solutions ... 134

Table 7-12 Use Count of Topologies using spread metric of each run .. 135

Table 7-13 Use Count of Topologies using hyper-volume metric of each run .. 136

Table 7-14 Using Spread metric #Individuals influenced by KS ... 137

Table 7-15 Using Hyper-volume metric #Individuals influenced by KS ... 138

Table 7-16 Overall Statistics of Topology-Knowledge tuple .. 139

Table 7-17 Randomness of Topology-Knowledge tuple .. 140

Table 8-1 Statistics for the fitness errors of ending solutions ... 148

Table 8-2 Use Count of Topologies of each run ... 150

Table 8-3 The Number of Individuals Influenced by the Spread Metric for Each Knowledge Source. 152

Table 8-4 Overall Statistics of Topology-Knowledge tuple .. 153

Table 8-5 Randomness of Topology-Knowledge tuple, Standard deviation divided by the mean 153

Table 8-6 Statistics for the fitness errors of ending solutions ... 154

Table 8-7 Use Count of Topologies of each run for the Hyper-Volume ... 155

Table 8-8 Using Spread metric #Individuals influenced by KS ... 156

Table 8-9 Overall Statistics of Topology-Knowledge tuple .. 157

Table 8-10 Randomness of Topology-Knowledge tuple .. 158

Table 8-11 Statistics for the fitness errors of ending solutions ... 158

Table 8-12 Use Count of Topologies using spread metric of each run .. 159

Table 8-13 Use Count of Topologies using hyper-volume metric of each run .. 160

Table 8-14 Using Spread metric #Individuals influenced by KS ... 162

Table 8-15 Using Hyper-volume metric #Individuals influenced by KS ... 162

Table 8-16 Overall Statistics of Topology-Knowledge tuple .. 164

Table 8-17 Randomness of Topology-Knowledge tuple .. 164

Table 9-1 Statistics for the fitness errors of ending solutions ... 176

Table 9-2 Use Count of Topologies of each run ... 176

ix

Table 9-3 Using Spread metric #Individuals influenced by KS. .. 178

Table 9-4 Overall Statistics of Topology-Knowledge tuple .. 179

Table 9-5 Randomness of Topology-Knowledge tuple .. 179

Table 9-6 Statistics for the fitness errors of ending solutions ... 180

Table 9-7 Use Count of Topologies of each run ... 180

Table 9-8 Using Hyper-volume metric #Individuals influenced by KS ... 181

Table 9-9 Overall Statistics of Topology-Knowledge tuple .. 183

Table 9-10 Randomness of Topology-Knowledge tuple .. 183

Table 9-11 Ratios on the Belief Space roulette wheel before generation 20 .. 185

Table 9-12 Use Count of Topologies using spread metric of each run .. 186

Table 9-13 Use Count of Topologies using hyper-volume metric of each run .. 186

Table 9-14 Using Spread metric #Individuals influenced by KS ... 187

Table 9-15 Using Hyper-volume metric #Individuals influenced by KS ... 188

Table 9-16 Overall Statistics of Topology-Knowledge tuple .. 189

Table 9-17 Randomness of Topology-Knowledge tuple .. 190

Table 10-1 Statistics for the fitness errors of ending solutions ... 199

Table 10-2 Use Count of Topologies of each run ... 200

Table 10-3 Using Spread metric #Individuals influenced by KS ... 201

Table 10-4 Overall Statistics of Topology-Knowledge tuple .. 202

Table 10-5 Randomness of Topology-Knowledge tuple .. 203

Table 10-6 Statistics for the fitness errors of ending solutions ... 204

Table 10-7 Use Count of Topologies of each run ... 205

Table 10-8 Using hyper-volume metric #Individuals influenced by KS .. 206

Table 10-9 Number of non-dominated solutions generated by Topology-Knowledge tuples 207

Table 10-10 Randomness of Topology-Knowledge tuple .. 208

Table 10-11 Statistics for the fitness errors of ending solutions ... 209

Table 10-12 Use Count of Topologies using spread metric of each run .. 210

x

Table 10-13 Use Count of Topologies using hyper-volume metric of each run 211

Table 10-14 using Spread metric #Individuals influenced by KS .. 212

Table 10-15 Using Hyper-volume metric #Individuals influenced by KS ... 213

Table 10-16 generation of Non-Dominated Solutions using the Topology-Knowledge tuple 214

Table 10-17 Randomness of Topology-Knowledge tuple .. 214

Table 11-1 Statistics for the fitness errors of ending solutions ... 223

Table 11-2 Use Count of Topologies of each run ... 224

Table 11-3 Using Spread metric #Individuals influenced by KS ... 225

Table 11-4 The Generation of non-dominated solutions by Topology-Knowledge tuples 227

Table 11-5 Randomness of Topology-Knowledge tuple .. 227

Table 11-6 Statistics for the fitness errors of ending solutions ... 229

Table 11-7 Use Count of Topologies of each run ... 230

Table 11-8 Using Hyper-volume metric #Individuals influenced by KS ... 231

Table 11-9 Production of non-dominated solution by Topology-Knowledge tuple 232

Table 11-10 Randomness of Topology-Knowledge tuple .. 233

Table 11-11 Statistics for the fitness errors of ending solutions ... 234

Table 11-12 Use Count of Topologies using spread metric of each run .. 235

Table 11-13 Use Count of Topologies using hyper-volume metric of each run 236

Table 11-14 Using Spread metric #Individuals influenced by KS ... 237

Table 11-15 Using Hyper-volume metric #Individuals influenced by KS ... 238

Table 11-16 Generation of non-dominated solutions by Topology-Knowledge tuples 239

Table 11-17 Randomness of Topology-Knowledge tuple .. 239

Table 12-1Statistics for the fitness errors of ending solutions ... 252

Table 12-2 Use Count of Topologies of each run ... 253

Table 12-3 Using Spread metric #Individuals influenced by KS ... 254

Table 12-4 Number of non-dominated solutions produced by Topology-Knowledge tuples 255

Table 12-5 Randomness of Topology-Knowledge tuple .. 256

xi

Table 12-6 Statistics for the fitness errors of ending solutions ... 256

Table 12-7 Use Count of Topologies of each run ... 257

Table 12-8 Using Hyper-volume metric #Individuals influenced by KS ... 258

Table 12-9 Generation of non-dominated individuals by Topology-Knowledge tuples 259

Table 12-10 Randomness of Topology-Knowledge tuple .. 260

Table 12-11 Statistics for the fitness errors of ending solutions ... 261

Table 12-12 Use Count of Topologies using spread metric of each run .. 262

Table 12-13 Use Count of Topologies using hyper-volume metric of each run 263

Table 12-14 Using Spread metric #Individuals influenced by KS ... 264

Table 12-15 Using Hyper-volume metric #Individuals influenced by KS ... 264

Table 12-16 Non-dominated solutions produced by Topology-Knowledge tuple 266

Table 12-17 Randomness of Topology-Knowledge tuple .. 266

xii

LIST OF FIGURES

Figure 1.1 Temporal and Spatial Scales of MOEAs... 3

Figure 1.2 Basic Framework of the Cultural Algorithm .. 8

Figure 2.1 Pseudo code of the classic PSO ... 15

Figure 2.2 Graphical representation of the hyper-plane distribution of EMOPSO 21

Figure 2.3 Pseudo code of classic ACO ... 25

Figure 3.1 Structure of the Belief Space of CADE... 31

Figure 3.2 Pseudo code of classic CA ... 35

Figure 3.3 Topology of lbest ... 39

Figure 3.4 Topology of global ... 40

Figure 3.5 Topology of square.. 41

Figure 3.6 Topology of star ... 42

Figure 3.7 Topology of circle .. 43

Figure 3.8 Structure of Topographical Knowledge: different space volumes .. 46

Figure 3.9 Normative Knowledge... 47

Figure 3.10 Data structure of Historical Knowledge .. 49

Figure 3.11 Representative illustration of partial aggregation in population ... 53

Figure 3.12 Illustration of calculation of performance of knowledge sources .. 56

Figure 4.1 MOCAT System .. 61

Figure 4.2 Object diagram of MOCAT .. 64

Figure 4.3 The structure of Normative Knowledge .. 66

Figure 4.4 The structure of situational knowledge .. 66

Figure 4.5 The structure of historical knowledge .. 68

Figure 4.6 Topographical knowledge source provides a mosaic view of Pareto front 69

Figure 4.7 The structure of topographical knowledge ... 70

xiii

Figure 4.8 Network of Knowledge sources .. 71

Figure 4.9 Class of Agent .. 76

Figure 4.10 Cuboid metric for Pareto front .. 78

Figure 4.11 Illustration of calculation of IGD .. 79

Figure 4.12 Hyper-volume of Pareto fronts ... 81

Figure 4.13 Execution of MOCAT ... 89

Figure 5.1 To run MOCAT model .. 91

Figure 5.2 Startup of MOCAT ... 92

Figure 5.3 Parameters of ZDT1 .. 94

Figure 5.4 MOCAT is ready to run .. 95

Figure 5.5 Step run of MOCAT ... 96

Figure 5.6 Run of MOCAT ... 97

Figure 5.7 MOCAT finishes on run ... 98

Figure 5.8 Data collected for one single run .. 100

Figure 5.9 Data files after several experiment runs ... 101

Figure 6.1 ZDT1 Pareto front .. 104

Figure 6.2 ZDT2 Pareto front .. 105

Figure 6.3 ZDT3 Pareto front .. 107

Figure 6.4 ZDT4 Pareto front .. 108

Figure 6.5 ZDT5 Pareto front .. 110

Figure 6.6 ZDT6 Pareto front .. 111

Figure 6.7 Fitness error vs. minimal distance to real Pareto front .. 116

Figure 7.7.1 ZDT1 Pareto front ... 120

Figure 7.2 ZDT1 population at generation 4. ... 121

Figure 7.3 ZDT1 at generation 10 ... 122

Figure 7.4 ZDT1 at generation 20 ... 123

Figure 7.5 Overall found Pareto front .. 124

xiv

Figure 7.6 Overall found Pareto front .. 140

Figure 8.1 ZDT2 Pareto front .. 144

Figure 8.2 (a-d). A series of screen shot s showing how the Pareto front is constructed over time. 148

Figure 8.3 Overall Computed Pareto front .. 150

Figure 8.4 Overall found Pareto front .. 165

Figure 9.1 ZDT3 Pareto front .. 169

Figure 9.2 (a,b,c,d,e) A series of screen copies showing the evolution of the front under the guidance of
the spread metric. ... 174

Figure 9.3 Overall found Pareto front .. 175

Figure 9.4 Overall found Pareto front .. 184

Figure 9.5 Overall found Pareto front .. 190

Figure 10.1 ZDT4 Pareto front .. 193

Figure 10.2 A series of screen copies along evolution (a-e) .. 199

Figure 10.3 Overall found Pareto front .. 203

Figure 10.4 Overall found Pareto front .. 208

Figure 10.5 Overall found Pareto front .. 215

Figure 11.1 The sequence for Pareto front produced through cultural evolution. 223

Figure 11.2 Overall found Pareto front .. 228

Figure 11.3 Overall found Pareto front .. 233

Figure 11.4 Overall found Pareto front .. 241

Figure 12.1 ZDT6 Pareto front .. 244

Figure 12.2 A series of screen copies along evolution (a-g) ... 251

Figure 12.3 Overall found Pareto front .. 252

Figure 12.4 Overall found Pareto front .. 260

Figure 12.5 Overall found Pareto front .. 266

Figure 0.1 Screen copies of MOCAT’s 3D visualization ... 274

Figure 0.2 Context, Projection, and agents in Repast Simphony .. 278

Figure 0.3 Splash window of the Repast Simphony ... 280

xv

Figure 0.4 IDE of Repast Simphony ... 280

Figure 0.5 Model score .. 284

Figure 0.6 Setup Context loader in the runtime environment .. 289

Figure 0.7 Creating a Data set by extracting fields from agent class ... 290

Figure 0.8 Creating Outputter upon Data Set .. 293

Figure 0.9 Creating a 3D display (Projection) for agents ... 296

Figure 0.10 Double click an agent and show its properties ... 301

Figure 0.11 Choose Chart type ... 302

Figure 0.12 Select Data Serial for X and Y Axes .. 303

Figure 0.13 Configuration of the Chart .. 304

Figure 0.14 Chart is created completely .. 305

Figure 0.15 Real-time display of the Chart .. 306

1

CHAPTER 1 INTRODUCTION AND MOTIVATION

Optimization is defined as the process of “finding and comparing feasible solutions until no

better solution can be found” (Deb and Kalyanmoy 2001). Solutions are evaluated based upon solution

objectives and other criteria such as constraints. Evolutionary algorithms, including the Cultural

Algorithm (Reynolds 1986; Reynolds 1994), and other bio-inspired approaches are frequently used to

solve problems that are not tractable for traditional approaches. The application of these new

computation genres are motivated by the following facts: they can find multiple solutions in one

simulation run because of their population based approach; and they can identify satisfying solutions

using limited resources for problems that traditional approaches take prohibitive amounts of effort to

solve, etc. .

Previously, research in the field of evolutionary optimization has focused on single-objective

problems. On the contrary, most real-world problems involve more than one objective where these

objectives may conflict with each other. For example in manufacturing the criteria of lowering

production costs may be at odds with a goal of improving product quality. If multiple objectives can be

unified into one for a given problem, such a problem can be viewed as single-objective in nature.

However, this can be problematic if the goals are conflicting.

The first real application of evolutionary algorithms to find multiple trade-off solutions in one

single simulation run was presented by Schaffer in his doctoral dissertation (Schaffer 1984). In this work,

a simply modified single-objective genetic algorithm was able to capture multiple weighted solutions;

however, after a large number of iterations the algorithm tended to converge to individual optimal

solutions. The next work on MOEAs came from Goldberg (Goldberg 1989) who introduced the concept

2

of domination. Domination is a partial order relationship in which a dominating solution is superior to

dominated solutions in terms of all objectives. Ever since then, a number of researchers have developed

different implementations of MOEAs using this important concept.

Fonseca and Fleming (Fonseca and Fleming 1995) proposed a multi-objective GA and identified

some issues that were raised by MOEAs, such as how they affected the fitness landscape. Srinivas and

Deb proposed a non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994). Later, Deb

and others proposed a fast and elitist MOEVA, NSGA II (Deb et al. 2000). Horn, Nafploitis and Goldberg

also proposed a niched Pareto-GA (Horn, Nafpliotis, and Goldberg 1994).

All of the approaches described above assumed a population-based approach where there was

little or no interaction between individual solutions in the population. Since then, several socially

motivated approaches have been proposed to solve multi-objective optimization problems. In these

approaches knowledge can be explicitly exchanged between problem solvers in the solution of an

optimization problem. Since multi-objective problems are particularly characteristic of complex social

systems these approaches may provide insights into how such problems are dealt with in social situation.

While the socially motivated approaches will be discussed in the next section in detail, several of the

most popular ones are presented in the concise Figure 1.1 below in terms of the scales (spatial and

temporal) of the original social system from which the approach was taken. We can see that while Ant

Colony and Particle Swarm approaches focus on evolution over a short period in a limited space, the

Cultural Algorithm is inherently able to address large-scale problems that spread large temporal and

spatial scales, such as the evolution of human civilization. We will briefly discuss the work done on the

multi-objective version for each.

3

Cultural

Algorithm

Particle Swarm

Chimps &

hominids
Ants

Spatial Scale

Temporal

Scale

day

minute

meter

100 years

global

Figure 1.1 Temporal and Spatial Scales of MOEAs

1.1 Particle Swarm Optimization (PSO) and Multi-objective PSO

At the smallest conceptual scale is Particle Swarm Optimization. Particle Swarm Optimization

(PSO) is a population-based socially motivated optimization technique (Eberhart and Kennedy, 1995),

inspired by social behavior of bird flocking or fish schooling (Kennedy, 1998). Similar to genetic

algorithms, PSO is initialized with a population of random individuals and searches for optima by

updating generations. However, unlike GA, PSO has no evolutionary operators such as crossover and

mutation. Instead, in each generation, each particle may change its velocity and move to a local best

solution or a global one. Particles move through the problem space by following the information

derived from the best of their neighbor particles. There are just a few parameters to adjust for PSO to

4

work. Particle swarm optimization can be used across a wide range of applications. In some cases it

consumed a fraction of resources that traditional approaches might use (Shi and Eberhart, 1998).

Adopting PSO for multi-objective problems follows the success of its original version. One of the

efforts was MOPSO (Coell-Coello and Salazar 2002) which borrowed the concept of Pareto dominance

and used a secondary population to store the non-dominated solutions that had been found so far

which helped the flock to aggregate around good solutions. In a sense, the secondary population serves

the same role as of Situational knowledge in the Cultural Algorithm as we will discuss later. Later, in an

improved version EMOPSO (Toscano-Pulido etc, 2007) a turbulence operator was added to further

spread the flock and prevent premature convergence. Its experiments showed EMOPSO was able to

depict reasonably good approximations of the Pareto front of problems with up to 30 decision variables

with the by-then the least computing load. A thorough survey of multi-objective PSOs can be found in

(Reyes-Sierra 2006), which suggested that in order to solve multi-objective problems, PSOs have to “1.

Maximize the number of elements of the Pareto optimal set found. 2. Minimize the distance of the

Pareto front produced by our algorithm with respect to the true (global) Pareto front (assuming we know

its location). 3. Maximize the spread of solutions found, so that we can have a distribution of vectors as

smooth and uniform as possible”, which actually represent the pursuing of all MOEAs at large.

Multi-objective PSOs have been widely used to solve various problems, such as designing planar

multilayered electromagnetic absorbers in engineering (Chammani 2007); reducing harmonic current

and mitigating noise on electrical utility grid (Sharaf 2009); and designing automobile transmission (Wu

2010), among others.

5

1.2 Ant Colony Optimization (ACO) and Multi-objective ACO (MOACO)

Another socially motivated evolutionary system is Ant Colony Optimization (ACO) (Dorigo, 1992).

It is based on stigmergy, a mechanism of indirect coordination between agents or actions, where the

trace left in the environment by an action stimulates, positively or negatively, the performance of a

subsequent action, either by the same or a different agent.

While stigmergy occurs in many social animal societies, a typical example is that ants exchange

information indirectly by depositing pheromones during their food exploitation. In this scenario, ants

initially wander randomly and will return to their colony while laying down pheromone trails right after

finding food. If other ants find such a path, they prefer following it to travelling at random directions. As

new ants find food at the end of the trail, they will return to colony and deposit pheromone along their

traces too.

If there are multiple trails to the food (which was found by multiple ants), the shortest one has

greater chance to become the preference of all ants because of the phenomenon explained below.

Over time, the pheromone trail starts to evaporate and its attractive strength is reduced. The more time

it takes for an ant to travel down the path and back again, the more time the pheromones has to

evaporate. A shortest path, by comparison, gets marched over more frequently, and thus the

pheromone density remains high as it is laid on the path as fast as it can evaporate. Pheromone

evaporation has also the advantage of avoiding the convergence to a locally optimal solution. If there

was no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to

the following ones. In that case, the exploration of the solution space would be constrained. Thus,

when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely

to follow that path, and positive feedback eventually leads all the ants following a single path. The idea

6

of the ant colony algorithm is to mimic this behavior by simulating ants generating paths through a

graph from an origin to a destination.

There are many variations of ACOs (Dorigo and Gambardella, 1997, Stützle and Hoos, 2000)

which share the general framework of optimization by canonical ant colonies (COA). In general, any

algorithm containing an exchange of information between agents via the environment, i.e., stigmergy,

can be deemed an ACO. A thorough survey of ACOs can be found in (Dorigo 2006).

The first approaches to using ACO to handle multiple objectives were based on the ordering or

weighting the objectives according to their relative importance (Gambardella et al 1999, T’kindt et al

2002, Doerner 2003). However, when preferences or weights cannot be given, the goal is to find a set

of non-dominated solutions that are optimal in the Pareto sense. The first ACO algorithm for finding

non-dominated solutions was proposed in (Iredi et al, 2001) for the bi-objective scheduling problem, in

which heterogeneous multiple colonies were used. The ants differ in their preferences to either of the

two criteria; and every colony uses two pheromone matrices, each suitable for one optimization

criterion, so that ants were able to find different solutions along the Pareto front. Later, this approach

evolved into a hybrid one (Häckel 2008) by merging Dynamic Programming and Look-Ahead Heuristic.

Multi-objective ACOs have had successful applications such as portfolio selection (Doerner 2006), and

the quadratic assignment problem (Ibanez 2004).

1.3 Predator-prey co-evolution

Another socially motivated approach is predator prey models. They take their cue from

population biology where predator movement is based on information that is not only dynamic

temporarily as in ant colony optimization but spatially as well. It is based upon the assumption that a

7

predator will remain in an area until the calories extracted from prey drop below a certain point relative

to the calories that will be expended travelling to another location (Charnov, 1976). Adoption of

predator-prey co-evolutionary models in solving MOPs is sparse. However, in one existing work

Drezewski (2007) concluded that “the tendency to lose population diversity appeared” during the

solution process. This often led to premature convergence.

1.4 Cultural Algorithms (CA) and Multi-objective CAs

The next socially motivated evolutionary learning system is the Cultural Algorithms (CA)

(Reynolds 1979, Reynolds 1994), which may be popularly considered as an extension of Genetic

Algorithms (GA) (Goldberg 1989). However, the CA includes much more than the GA. While the former

simulates the process of population evolution, additionally, the CA recognizes interaction between

individuals form a culture. In other words, the CA is a functional model of the process by which human

fitness is improved through knowledge sharing in a population.

Culture is dynamic and always evolving. Human activities continuously reshape the culture,

inject new material into it, and promote new stages while we are reversely defined and constrained by

the extra-natural "culture" or "society" (Schwimmer 1996). This bidirectional interaction that pushes

forward the cultural evolution process has a straightforward mapping in the CA. The major components

of a Cultural Algorithm are the population space, the belief space, and the communication protocols,

including acceptance and influence functions, through which the first two components interact. The

population space can support any population-based computational model, such as Genetic Algorithms,

Evolutionary Programming, etc. The primitive framework is shown in Figure 1.2.

8

Figure 1.2 Basic Framework of the Cultural Algorithm

The Cultural Algorithm has been applied to solve a variety of problems in business, science,

industry, and society. With its ability to step across a larger range of time and space, the CA was used to

model the evolution of agriculture (Reynolds 1979) and to assess how humans have solved MOPs

relative to the different criteria for ancient site location in the Valley of Oaxaca, Mexico (Reynolds and

Nazzal 1997). These criteria related to defensive location on the one hand to accessing resources and

trade routes on the other hand. As a system characterized by human activities, it provides a flexible

framework (Reynolds 1994) in which to study the emergence of organizational complexity in a multi-

agent system (MAS). Additionally, CA has been used to solve benchmark optimization problems (Chung

and Reynolds 1998) and to solve real-valued function optimization (Jin and Reynolds1999, Reynolds and

Saleem 2005). Recently the Cultural Algorithm was applied to the study of optimization problems of

varying complexity, from simple to chaotic in a “cones world environment” (Peng 2004, Che 2009).

As a result of its successful applications to single objective problems, CA has been adopted in

solving MOPs. The first application was done by Nazzal (1997). His approach echoed that of Schaeffer in

9

that the different objectives were weighted as part of a single objective function. The goal was to

determine what objectives were most important in driving the settlement observed in an ancient

civilization in the Valley of Oaxaca, Mexico (Reynolds and Nazzal 1997). More recently, Coello-Coello

(Coello-Coello and Becerra 2003) developed a CA for multi-objective problems in which they saved the

non-dominated agents into an external memory, which was similar to the Cultural Algorithm’s

Situational knowledge and considered as a belief space. They located these non-dominated agents in

the objective space, and if the external memory was full but new non-dominated agents were found,

one individual who had a crowded neighborhood would be replaced. . This was thought to reduce the

likelihood of premature convergence. Most recently, the original CA implementation has been

expanded for MOPs (Best et al. 2009) using a wider variety of Cultural Knowledge and it was concluded

that “Cultural Algorithms are a promising technique for solving multi-objective problems” (Best, 2009).

Even with this promising early-stage success, the multi-objective CA has still many more

opportunities for improvement. Here we have developed a design for a full-fledged multi-objective

Cultural Algorithm optimization engine, MOCA. The key is to investigate how the different knowledge

sources present in the Cultural Algorithm can be used to guide the solution process. Specifically we will

inquire about what additional information needs to be added to the knowledge sources to enable

efficient searches to take place.

In this thesis, we will investigate the extent to which the Cultural Evolution process can fully

support the multi-criteria optimization process. Since the spatial and temporal scale of CA encompasses

all of the other approaches, multi-objective techniques used with them can in fact be applied within the

cultural algorithm framework. We begin in chapter 2 by summarizing the existing achievements of

multi-objective CAs’ and analyzing how to take advantage of merits of the features of other MOEAs in

10

order to enhance the performance of a CA for multi-objective problems. Some of the features used by

other MOEAs that we will exploit here will be spread and volume. We will examine in our experiments

how these different features are exploited by the CA during the problem solving process.

1.5 Organization of the dissertation

The organization of the dissertation is as follows. Chapter 2 explores the literature of multi-

objective algorithms, including a very brief introduction to CA. Chapter 3 then enumerates the details of

previous enrichments to CAT, including the latest version, MOCAT, which is able to handle MOPs.

Chapter 4 describes the design of the improved MOCAT, which is to a large-extent self-adapting, by

choosing a specific network configuration that most effectively helps propagating knowledge among

populations. Chapter 5 presents the concrete implementation of MOCAT which can also serve as a

simple user manual. Chapter 6 introduces the experimental framework with demonstrations of various

system output. Chapter 7 discusses and analyzes the experiment results on ZDT1, which has a

continuous concave Pareto front and may be considered as easy for some MOEAs. Chapter 8 focuses on

experiment results on ZDT2, which is similar to ZDT1 but has a convex Pareto front. Chapter 9 analyzes

the experiment results on ZDT3, whose Pareto front consists of five separate segments. Chapter 10

discusses the experiment results on ZDT4, whose Pareto front has a similar shape with ZDT1 but is

discrete. Chapter 11 presents experiment results on ZDT5, which has string encoding for individuals

instead of normal numeric representation and was missed in some related literature. Chapter 12

discusses about experiment results on ZDT6 whose Pareto front does not cross the whole objective

space. Each of the ZDT benchmark problems has special characteristics which are discussed in details in

corresponding chapter. Finally, Chapter 13 summarizes all experiment results and concludes the

dissertation.

11

CHAPTER 2 LITERATURE VIEW OF MOEAS

Most initial research in the optimization field focused on single-objective problems. Since there

is only one objective, all solutions can be compared based on one criterion, naturally, the solutions

together compose a totally ordered set. As a consequence, making a choice between two solutions is

generally uncontested.

If multiple objectives can be unified into one objective function, i.e., the objectives are not

conflicting with each other, such a problem is a single-objective one in nature because the minimum

solution corresponding to any objective function is the same (Deb, 2001). And, certainly single-objective

algorithms can solve them by combining multiple objectives into one. Those problems that contain no

solutions that are optimal for all objectives are commonly named well-formed (wiki 2010, Beheshti and

Rahmani 2009) and are the focus of interest in this study. Traditional single-objective optimization

algorithms cannot be adopted for well-formed MOPs without some modification. In other words,

single-objective optimization is not a degenerate case of multi-objective optimization but rather the

latter is not merely a simple extension of the former.

Among optimization algorithms, Evolutionary Algorithms (EAs) (Deb, 2001) mimic nature’s

evolutionary process in order to direct its search towards optimal solutions: reproduction, mutation,

recombination, and selection. Candidate solutions to the optimization problem play the role of

individuals in a population, and the fitness is determined in the environment within which the solutions

live. Evolution of the population takes place after the repeated application of the above operations.

Since in each round of evolution a population exists and is processed, the outcome of an EA is the

existence of a set of solutions. The ability of EAs to produce multiple optimal solutions in one single

12

simulation run makes them ideal in solving MOPs, especially while classical optimization methods can at

best find one solution in one simulation run. Such EAs are called Multi-Objective Evolutionary

Algorithms (MOEAs).

Based upon the type of interaction between agents, MOEAs are divided into two genres, non-

socially-motivated, and socially-motivated. In the latter genre, knowledge can be explicitly exchanged,

either directly or indirectly, or both, between problem solvers in the solution of an optimization problem.

It is a common occurrence within social systems to have agents deciding between numerous conflicting

objectives. In fact, we argue that for cultures to survive they must support mechanisms for the solution

of such multiple objective problems. As a result, socially-motivated MOEAs are prominently pervasive

and successful in solving MOPs, and thereafter in this thesis they are of our special focus. However, to

complete this section, non-socially-motivated MOEAs are introduced as well.

There are a few popular MOEA approaches, among which are PSO, ACO, and the Cultural

Algorithms. In the rest of this chapter we will go through each optimization approach by describing their

unique characteristics and how they are proposed to handle MOPs.

2.1 Non-socially-motivated Optimization algorithms

The first real application of evolutionary algorithm was a non-socially motivated one which tried

to find multiple trade-off solutions in one single simulation run (Schaffer 1984). In fact, this work was a

modified single-objective genetic algorithm that had the ability to capture multiple weighted solutions.

As the first exploration into multi-objective optimization, the algorithm tended to converge to individual

optimal solutions after a large number of iterations. The next work on MOEAs (Goldberg 1989)

successfully brought up the concept of domination in its simple 10-line code draft. Ever since then, a

13

number of researchers have developed different implementations of MOEAs using this important

concept. Domination is a partial order relationship in which a dominating solution is superior to

dominated solutions in terms of all objectives. In his book Goldberg (Goldberg 1989) pointed out that

while traditional numerical calculation algorithms were efficient to some specific problems, they were

not as robust as evolutionary algorithms.

Fonseca and Fleming (Fonseca and Fleming 1995) proposed a multi-objective GA and identified

some issues that were raised by MOEAs, such as how they affected the fitness landscape. Srinivas and

Deb proposed a non-dominated sorting genetic algorithm (NSGA) (Srinivas and Deb 1994). Later, Deb

and other proposed a fast and elitist MOEVA, NSGA II (Deb et al. 2000). Horn, Nafploitis and Goldberg

presented niched Pareto-GA (Horn, Nafpliotis, and Goldberg 1994). It was very soon verified that

domination-based MOEAs could be reliably used to find good solutions. At the same time, other

different versions of EAs were successful in solving MOPs as well. For example, Kursawe used diploidy

approach (Kursawe 1991) which tried to gain insight into the structure of the Pareto set by computing a

finite number of efficient solutions. Osyczka and Kundu proposed a distance-based GA (Osyczka and

Kundu 1995). Hajela and Lin proposed weight-based approach (Hajela and Lin 1992) for designs of

structural systems with a mix of continuous, integer and discrete design variables.

2.2 Socially motivated optimization algorithms

Socially motivated evolutionary approaches support the explicit interaction of individuals. These

approaches are a good fit with the multi-objective approach since they will allow sub-groups of the

population to work on different objectives. In the Figure 1.1 several of the most popular socially

motivated approaches are presented in terms of the scales (spatial and temporal) of the original social

14

system from which the approach was taken. We can see that various socially motivated algorithms scale

remarkably different in the two dimensions. Admittedly, the difference originated from the social

system that they tried to emulate. Each of these original versions was extended to deal with multi-

objective problems. In the rest of this chapter we will discuss the original work, MOP versions, and

improvements done for the change for PSO, Any Colony Optimization, and Predator-Prey models. We

will discuss Cultural algorithms separately in the next chapter.

2.2.1 PSOs and MO PSOs

PSO (Kennedy and Eberhart, 1995), a population based stochastic optimization technique, was

first inspired by the social behavior of bird flocking or fish schooling (Kennedy, 1998) with some add-ons

to simulate human social behavior.

To emulate intelligent behaviors, a small piece of memory of each agent —the best position it

has been—is retained and implemented in code as an array of PBEST. Conceptually, each individual

remembers its own experience and the velocity adjustment associated with PBEST has been called

“simply nostalgia” since the individual tends to return to the place that most satisfied it in the past.

While birds and fish adjust their physical movement to avoid predators and seek food, humans

adjust not only their physical movement, but also cognitive or experiential factors as well. To emulate

intelligent behaviors at this level, each agent senses the globally best position, marked as GBEST, that

one member of the flock had found. Obviously, GBEST is conceptually similar to publicized knowledge

which all individuals seek to attain.

The pseudo code of classic PSO taken from (Eberhart et al, 2001) is shown below:

15

For each particle:

 Initialize particle

End For

Do:

 For each particle POP[i]:

 Calculate fitness value

 If the fitness value is better than the best fitness value (PBEST[i]) in history

 Set current value as the new PBEST[i]

 End For

 For each particle POP[i]:

 Find in the particle neighborhood, the particle with the best fitness

 Calculate particle velocity according to the velocity equation

 Apply the velocity constriction

 Update particle position according to the position equation

 Apply the position constriction

 End For

While maximum iterations or minimum error criteria is not attained

Figure 2.1 Pseudo code of the classic PSO

In general PSO is similar to GA in that it is initialized with a population of random individuals and

searches for the optima by updating generations. However, unlike the GA, PSO has no evolutionary

operators such as crossover and mutation. Instead, in each generation every particle may change its

velocity and move towards a local best solution or a global one. As a result, the PSO requires only

primitive mathematical operators, and is computationally inexpensive in terms of both memory

16

requirements and speed. The side effect is that it is mainly used for problems in which only limited

communication is needed between individuals; which is why in Figure 1.1 it is located near to origin

point. Another problem is that in emulation, the flock can quickly settle on a unanimous, unchanging

direction. Therefore, a stochastic variable called craziness was introduced (Eberhart et al, 2001), which

was reflected as the random coefficients in the formula calculating the individual velocity. The formula

used in the original PSO is described as:

In this formula, POP represents the population. Therefore, POP[i] is an agent while superscripts

T and T+1 indicate the generation number and P_INCREMENT is a constant that specifies how agile an

agent is when moved to a position that is guided by both its own memory and the global optimum. In

the original paper P_INCREMENT was set to 2.

Among multi-objective versions of PSO, one of the first efforts was MOPSO (Coello-Coello and

Salazar 2002) which borrowed the concept of Pareto dominance to better rank the fitness of individuals

and used a secondary population to store the non-dominated solutions that had been found so far to

guide the flock to good solutions. The motivation of proposing MOPSO was described as “The use of

global attraction mechanism combined with a historical archive of previously found nondominated

vectors would motivate convergence towards globally nondominated solutions.” In some sense, the

secondary population served the same role as Situational knowledge does in Cultural Algorithm as we

will discuss later. As in the original PSO, in MOPSO each agent still retains its own memory of the best

position that it has explored by-far. However, the MOPSO maintains multiple non-dominated agents in

its global memory and adopted a complex calculating process to choose one of them to affect the agent

17

during evolution. Such global information became effective through a geographically-based approach

with the intention to maintain population diversity. This corresponds to topographic knowledge in the

basic cultural algorithm. The whole evolution process will be explained in detail below.

At the beginning of the evolution of MOPSO, every particle is initialized to be stationary. For

each particle POP[i] a memory is maintained in PBESTS[i]. During the evolution of T+1th round, the

following formula was used:

In this formula which mainly derives from the original single-objective one, W was the inertia

weight and takes a value of 0.4 (while in PSO 1 was taken for granted).R1 and R2 are two random

numbers in the range [0, 1] that depict the craziness of this individual. PBESTS is an array saving the best

memory for each agent, which may be updated only when a new non-dominated agent is found,

While the whole formula is straightforward to understand, which replaced the single-

value GBEST in the original formula, needs extra explanation: It is a value take from the repository and is

selected in the following way in each generation:

Divide the objective space into hyper-cubes (which is a multiple dimensional analog of a cube)

and assign values to them that are calculated by the underneath formula:

Hyper-cubes containing no particles are assigned 0;

Hyper-cubes containing one particle are assigned the particle's fitness value;

Hyper-cubes containing multiple particles are assigned a fitness equal to the result of

, where x>1 and is an any number, in the original paper, x=10.

18

This is named fitness sharing by giving crowded hyper-cubes small values proportional to its

particle density

Apply roulette-wheel selection on these fitness values to select one hyper-cube;

Select one particle (randomly if there are more than one particle) from the selected hyper-cube,

its position will be .

During this step of evolution, particles will be updated while avoiding moving particles out of the

search space:

Then, for each agent, will be updated if its new position dominates the previous best

ones in the memory.

By doing this MOPSO tried to improve the speed in which particles are moved towards the

Pareto fronts and enlarge the diversity by fitness sharing. Later, an improved version EMOPSO

(Toscano-Pulido etc, 2007) used a list of methods to improve its original algorithm by distributing non-

dominated solutions.

First, EMOPSO used an adaptive grid (Knowles and Corne, 2000) which was a space formed by

adjacent hyper-cubes that have as many coordinates as objective functions. Each hyper-cube

represents a geographical region that contains some number of individuals. The adaptive grid allows us

to store non-dominated solutions and to redistribute them when the maximum capacity of the hyper-

cube is reached. When each solution is generated, its grid location in objective space is determined. As

the individual appears in one hyper-cube, the edges of this hyper-cube may be bisected in the middle so

19

that a smaller hyper-cube containing the individual is produced. One normal cause for this further

division is that the number of agents in the hyper-cube exceeds some threshold. Creating a classic

hyper-cube grid can be memory prohibitive because, there are totally d dimensions and if we repeatedly

bisect the range in each objective l times, there will be 2lxd hyper-cubes generated. For example, for a 4-

objective problem with l=5, the objective space is divided into 1,048,576hyper-cubes. To remedy this

exponential worst-case memory usage, the adaptive grid just divides the crowded hyper-cube as needed.

Two other benefits come with this adaptation. First, there is a smaller computational cost at the

beginning and second, there is no pre-defined cube size is needed. The concept is exactly the same with

Topographic knowledge in the Cultural Algorithms (Jin and Reynolds, 1999).

In EMOPSO, to both prevent being crowded in one hyper-cube and further reduce the load of

calculation, a note of ε-dominance was used.ε-dominance is a relaxed form of dominance in which the

so-called ε-Pareto set is an archiving strategy that maintains a subset of generated solutions. The

general idea of this mechanism is to divide the objective function space into subspaces of size ε but no

further. In other words, no edge of any hyper-cube can be smaller than this fixed value. Inside each

hyper-cube, the contained agents can be interpreted as a geographical region that contains a single

solution. The approach accepts a new solution into the ε-Pareto set if: 1) it is the only solution in the

box which it belongs to; 2) it dominates other(s) solution(s); or 3) it competes against other non-

dominated solutions inside the subspace, but it is closer to the origin vertex of the box. In both theory

and practice, it guarantees convergence and diversity according to the value of the ε parameter, which

defines the resolution of the grid to be adopted for the secondary population. This mechanism prevents

the infinite division of the adaptive grid when the fitness is evaluated in terms of real numbers. One

20

practical challenge of using ε-dominance is the unknown box size, i.e., the ε parameter which is

problem-dependent and normally not known before executing a MOEA.

Additionally, EMOPSO tried to distribute non-dominated solutions using so called Hyper-plane

distributions. The motivation was to create a series of individuals that are well distributed and a

reasonable representation of the objective hyperspace and use them to guide evolution. The algorithm

divided hyperspace into n−1 regions. A perpendicular line to the hyper-plane was computed for each

regional vertex. Then only the solutions which were closest to each line could be selected for

population during evolution. While the above description is abstract, the concrete example that was

given in the proposal of EMOPSO is actually easy to follow, which is copied here in Figure 2.2. In those

figures, black dots represent agents that are located at the current Pareto front while the dotted line

depicts the real Pareto front, shown in the top right figure. In order to efficiently guide the search to

evenly cover the real Pareto front, five representative solutions, including both end points of the Pareto

front, and their corresponding normal lines (lines perpendicular to the tangent planes) are marked out,

as shown in the bottom left figure. An agent with the closest distance to any normal lines has priority to

be propagated into the next generation over others with larger distance, which is shown in the bottom

right figure. There, three agents are selected in this case while others are eliminated according to this

policy.

21

Figure 2.2 Graphical representation of the hyper-plane distribution of EMOPSO

Experiments comparing EMOPSO and NSGA-II showed that EMOPSO was able to depict

reasonably good approximations of the Pareto front of problems with up to 30 decision variables with

less computing load than NSGA-II. With limited computation, EMOPSO was superior to NSGA-II

regarding spread on Pareto front. However, the paper also indicated that “if allowed to perform a

higher number of fitness function evaluations, the NSGA-II would be able to converge to the true Pareto

front of most of these test functions”; in other words, EMOPSO performs better only with limited

computing.

22

In addition to the above approaches to maintaining a set of well-distributed non-dominated

solutions, the turbulence operator was introduced that avoids premature convergence, which was not

reflected in the above formula.

This turbulence operator alters the flight velocity of a particle in all dimensions so that the

particle can move to completely isolated regions. From the formula we can see that the probability of

turbulence becomes smaller along generations, i.e., the extent to which the modification caused by

turbulence attenuated along with the evolution progress. This change is desired because at the

beginning of the search there should be higher probability to perturb the flight of the particles so that

they intend to explore unknown spaces, and at the end the particles should move slowly so that they are

easy to converge to Pareto front.

As to constraint handling, EMOPSO inherited the approach proposed in (Pulido and Coello,

2004). The idea was to punish the particle that was infeasible under the constraints in selecting a leader.

When comparing two particles, if both of them are feasible, the one with higher fitness value wins. If

one is feasible while the other is not, the feasible one wins. If neither is feasible, the particle that has

the lowest value in terms of its total violation of constraints (normalized with respect to the largest

violation of each constraint achieved by any particle in the current population) wins.

So, in total, EMOPSO has the following improvements MOPSO: 1. Using norms of the evenly

distributed positions along the real Pareto front to help distribute solutions obtained by the algorithm, 2.

Adding a turbulence operator to spread the flock and prevent premature convergence especially at the

23

early stage of evolution, 3. Contronlling the number of sub-swarms by using ε-dominance; 4. Handling

constraints by punishing violating agents.

A summary of multi-objective PSOs can be found in (Reyes-Sierra 2006). There, the authors

suggested that to solve multi-objective problems, PSOs have to “1. Maximize the number of elements of

the Pareto optimal set found. 2. Minimize the distance of the Pareto front produced by our algorithm

with respect to the true (global) Pareto front (assuming we know its location). 3. Maximize the spread of

solutions found, so that we can have a distribution of vectors as smooth and uniform as possible”

(page291). One thing worth pointing out is that in different variations of multi-objective PSOs different

neighborhood topologies are used, among which there are two popular ones: fully connected and ring;

which have been applied in the CAT system as well.

Recently, metrics, such as spacing and maximum spread combined, have been used to evaluate

the evolution of Pareto fronts. During evolution the metrics were used to determine the switching rules

between the operation modes and it was found that the combination of multiple metrics outperformed

other algorithms that used only one metric (Bastos-Filho and Miranda, 2011).

2.2.2 ACO and MO ACOs

It has been long known that ants were capable of finding the shortest path from a food source

to the nest without using visual cues (Hölldobler and Wilson, 1990). Ants were also observed to be

capable of adapting to changes in the environment, for example, finding a new shortest path once the

old one is no longer feasible due to a new obstacle. Ant Colony Optimization (ACO) (Dorigo et. Al, 1996)

was inspired by the observation of laboratory ant colonies (Beckers, Deneubourg, and Goss, 1992).

24

It is well known that the primary means for ants to form and maintain the line is a pheromone

trail. In the Ant Colony Optimization Algorithms, an ant is defined to be a simple computational agent,

which iteratively constructs a solution to a problem, frequently a path planning problem. In the model,

ants deposit a certain amount of pheromone, a chemical substance, while walking, and each ant

probabilistically prefers to follow a direction rich in pheromone. Thus, the pheromone and the density

of the pheromone along the trail is the knowledge that the ACO shares among its individual ants. Partial

problem solutions are seen as states and each ant moves from a state to another one corresponding to

a more complete partial solution. At each step, each ant computes a set of feasible expansions to its

current state, and moves to one of these according to a probability distribution.

Since the first ACO emerged in the 1990s, several other ACO algorithms have been proposed.

One thing worth pointing out is that there are many variations of ACOs (Dorigo and Gambardella, 1997,

Stützle and Hoos, 2000). In general, any algorithm containing the exchange of information between

agents via the environment, i.e., stigmergy, can be deemed an ACO. A thorough survey of ACOs can be

found in (Dorigo 2006), which observed that ACOs had been applied for NP-hard problems, dynamic

optimization problems, stochastic optimization problems, continuous-variable optimization problems,

etc.

The pseudo code of the classic ACO is available from (Mariezzo and Carbonaro, 1999).

Step 1. (Initialization)

 Initialize τιψ, ι, ψ

Step 2. (Construction)

25

For each ant k do

repeat

compute η ιψ, ι, ψ

choose the state to move into

append the chosen move to the k
th

 ant’s set tabuk

until ant k has completed its solution

carry the solution to its local optimum

End For

Step 3. (Trail upate)

For each ant move (ιψ) do

computer Δτιψ

update the trail matrix

End For

Step 4. (Terminating condition)

If not (end condition) go to step 2.

Figure 2.3 Pseudo code of classic ACO

The first approaches to using ACO to handle multiple objectives were based on the ordering or

weighting the objectives according to their relative importance (Mariano 1999, Gambardella et al 1999,

T’kindt et al 2002, Doerner 2003); their approach suggested that they were not working on well-formed

MOPs so that they are out of our concern in this thesis.

The first ACO algorithm for finding non-dominated solutions was proposed by Iredi et al (Iredi et

al, 2001) for the bi-objective scheduling problem. This paper pointed out one important fact that

multiple colony ant algorithms have been proposed before as parallel ACO algorithms, which were

26

different from multi-objective ACOs. Iredi worked on the Single Machine Total Tardiness Problem

(SMTTP), which is known to be NP-complete. In this problem there are two optimization objectives: one

is minimizing the sum of the waiting times of all jobs, while the other one is minimizing the changeover

costs that happened when the machine switched its service target. Both objectives needed to be

minimized and were intuitively conflicting with each other.

Heterogeneous multiple colonies were used Iredi. i.e., the ants differed in their preferences to

either of the two criteria; and every colony used two pheromone matrices while each suitable for one

optimization criterion, so that ants were able to find different solutions along the Pareto front. In the

extreme case, an ant considered only one objective while totally ignoring the other one. Obviously,

following this permutation patter, for n objectives, there are totally n2 configurations, in one of the n

colonies n different pheromone matrices are used. To update the pheromones, all ants in the non-

dominated front of the generation were allowed to update. An ant that updated would update both

pheromone matrices corresponding to the two objectives. However, Iredi pointed out that this strategy

made sense only when there were not too few ants in a colony, because otherwise no real competition

about best solutions could be expected to occur since the sparse ants would search in different regions

of the nondominated front. Nonetheless, it was not explicitly defined how many agents were enough to

avoid this problem.

Later, this approach evolved into a hybrid one (Häckel 2008) which combined dynamic

programming and a Look-Ahead Heuristic (LAH) into the implementation.

Dynamic Programming (Bellman, 1957) is a method for solving complex problems by dividing

them into simpler sub-steps. For example, Dijkstra’s shortest path algorithm in a graph can be viewed as

an instance of Dynamic Programming because in it the shortest path is the sum of the distances of the

27

source node to its neighbors and their neighbors to the target node, so that if we find the shortest path

from the neighbors to the target node, the original problem is solved.

Generally, when Dynamic Programming is applicable, the method is expected to take less time

than classical methods because solutions to the complex problem are built upon solutions to smaller

sub-problems which are easier to get and cached for reuse. Because Häckel chose a problem in which

all objective functions were separable and fulfilled the terms of Dynamic Programming, the algorithm

was applied. The intermediate results created by the Dynamic Programming were saved into a look-up

table to facilitate future search, which is called Look-Ahead Heuristic (LAH).

The test problem is a classic acyclic directed graph with three added objectives to be minimized:

1. Monetary value of cost, which was the result of summing up all weights along the certain path, 2. An

aggregated probability value, which was the product of all weights along the path that described the

possibility of local hazard events, 3. A value subject to the Min-Max aggregation method, which could be

used as a threshold for acceptability decisions.

For an ant at a specific location, heuristic information about local status is provided to depict the

length of a section or the attractiveness of a single alternative, respectively. The pheromone

information includes a global memory of the ants and therewith an experience about the global

attractiveness of alternatives. For the Traveling Salesman Problem (TSP) the available alternatives were

built from the total number of edges that go out from the current node without the edges leading to

already visited nodes. To reach higher performance, the known shortest distance from the current node

to the end node was used in calculating the heuristic value so that it was named the Look Ahead

Heuristic.

28

2.2.3 Prey-predator

Predator prey models were inspired from population biology where a predator is assumed to

remain in current area until the calories extracted from prey drop below a certain point relative to the

calories that will be expended travelling to another location (Charnov, 1976). Another term to describe

this scenario is co-evolution.

Adoption of predator-prey co-evolution model in solving MOPs is sparse. There is one existing

work (Drezewski 2007) that used the predator-prey approach without explaining why the formulas were

particularly suitable for MOPs in detail. Two problems were used to test the proposed approach,

CoEMAS. It turned out that on the easy problem CoEMAS was slightly better than the other two

algorithms, Predator Prey Evolutionary Strategy (PPES) (Laumanns 1998) and the Niched Pareto Genetic

Algorithm (NPGA) (Zitzler 1999), but on the hard problem CoEMAS clearly won out. Finally the paper

concluded that “the tendency to lose population diversity appeared” and extra effort was needed

“especially when we consider the stable maintaining of useful population diversity”.

In general, all such socially-motivated optimization algorithms have simple social structures and

strict evolutionary mechanisms. Nonetheless, they lack competitions between different evolutionary

propulsion and dynamics inside evolution. The Cultural Algorithms have such merits.

Add a conclusion section here saying what you did.

29

CHAPTER 3 INTRODUCTION TO THE CULTURAL ALGORITHM

In every society, some social structures have emerged as the efficient solution of problems that

the society must deal with. Miraglia (Miraglia 1999) stated that, “culture, as a body of learned behaviors

common to a given human society, acts rather like a template (i.e. it has predictable form and content),

shaping behavior and consciousness within a human society from generation to generation”. From this

perspective, culture is useful in guiding the problem solving activities and social interaction of individuals

in the population (Reynolds 1994). Since in reality people are always facing multiple conflicting

objectives and making decisions upon them, it has been conjectured that “Culture is an optimizing

process”. Based on principles of human social evolution, Reynolds (Reynolds 1978) developed the

Cultural Algorithm to model the evolution of cultural systems.

Culture is not static but evolving. The culture we have, even just a few years ago, is much

different from what we have now. Human activities continuously reshape it, inject new material into it,

and promote new stages. At the same time, we often find ourselves defined and constrained by the

extra-natural "culture" or "society"(Schwimmer 1997). This bi-directional interaction forms the cultural

evolution process which is reflected in the Cultural Algorithms.

At large, cultural evolution can be seen as an inheritance process that occurs at two levels: the

micro-evolutionary level—in the population, and the macro-evolutionary level—in the culture; both at

the same time and reciprocally (Melin etc, 2007). As a result of emulating cultural evolution, similarly,

the CA can also be viewed as running on two levels; in other words, it is deemed as a dual inheritance

system that characterizes evolution in human culture at both the macro-evolutionary level, which takes

place within the belief space, and at the micro-evolutionary level, which occurs in the population space.

30

Knowledge produced in the population space at the micro-evolutionary level is selectively accepted or

passed to the belief space and used to adjust the knowledge structures there. This knowledge can then

be used to influence the changes made by the population in the next generation.

3.1 History of the CA Implementation

Elaborations to the Cultural Algorithms were made in two areas: with the belief space and

within the population space. First in terms of the Belief Space Chung and Reynolds (Chung and Reynolds,

1998) began by using Situational and Normative knowledge. Situational knowledge reflects specific

examples of performance for a problem. Normative knowledge reflects ranges of acceptable behavior

by agents. Jin (Jin and Reynolds, 1999) added in topographic knowledge that describes aspects of the

performance landscape for the problem solvers.

Reynolds and Saleem (Reynolds and Saleem 2001, Saleem 2001) then amended these

Knowledge sources by introducing Domain and History Knowledge; Saleem first started integration of all

knowledge sources into the same Cultural Algorithm Framework while at the beginning knowledge

sources were randomly selected to affect the population. Saleem developed the Cultural Algorithms for

Dynamic Environment (CADE) to investigate how knowledge structures in Belief Space affect in tracking

changes in dynamic environments. The internal structure of the Belief Space is depicts in the figure

below.

31

Figure 3.1 Structure of the Belief Space of CADE

It is shown in Figure 3.1 that the information extracted from the population can update multiple

knowledge structures simultaneously; and two knowledge sources Historic and Situational will be

additionally updated if a different evolution trend is found. In their implementation, knowledge sources

were selected randomly to influence individuals. Saleem noticed that even with random selection

knowledge sources performed better in some contexts.

Peng (Peng 2004, Peng 2005) found that the similarities in social structures that emerged in

similar cultures were a result of the integration of different knowledge sources in the solving process. So

that she proposed a biologically motivated method to integrate the application of these knowledge

sources based upon the Marginal Value Theorem (Charnov 1976) to drive the problem solving process.

She demonstrated that certain social structures emerged from the Cultural System as a result of this

approach. Her system was implemented with Java and MATLAB was used for visualizing the

experimental results. In her system, each individual agent in the population was associated with a single

32

knowledge source that influenced it at each time step and there was no exchange of information

between agents in the population.

Up to this point individuals in the population were viewed as independent entities whose

communication was indirect through their contributions to the Belief Space. Next, Ali (Ali 2008)

expanded the ability of knowledge sources to influence a population through the notion of a “social

fabric”, i.e., networks connecting individuals in the population. He embedded the Cultural Algorithms

framework within the Recursive Porous Agent Simulation Tool (Repast) (North and Howe 2005) and

produced a toolkit called Cultural Algorithms Simulation Toolkit (CAT) (Reynolds and Ali 2008). The

network was called the “social fabric” because the connections between individuals were viewed to be

easily modified during problem solving. The term was derived from work at IBM in which they were

interested in building software to dynamically support interconnections between individuals in a

software development team (Cheng, etc. 2005). The social fabric enabled the spread of knowledge

through a population. In his system, knowledge sources in the Belief Space select individuals from the

population to directly influence. The actual decision as to which knowledge source was to influence

individual agents in the population was made by a majority vote based upon the direct influence for the

agent and that of their directly connected neighbors. While the network itself was static, he allows the

actual connections of the nodes in the network to be changed randomly at each time step, because Ali’s

purpose was to “investigate whether just having access to the Social Fabric is sufficient for the

Knowledge sources to improve the performance of the influence function as opposed to not having a

network to distribute their influence at all”. In these initial experiments, individuals were randomly

connected with others at each time step. So there was no persistent connection between any pair of

individuals. However, just having the ability to distribute successful influences through the population

33

space was sufficient to produce statistically significant improvement in performance for a set of

benchmark engineering problems.

Next, Che (2009) further investigated the effectiveness of various kinds of social fabrics in

complex systems in his thesis. In his research, networks of individuals had a memory, i.e., the network

organization was established before the evolution began and its topology was retained all along: the

connections between individuals remained fixed over the problem solving process while the individuals

move to various different positions in the domain space. Additionally, Che upgraded CAT into version 2.0.

CAT 2.0 embedding the Cultural Algorithm within an agent-based problem solving framework, Repast

2.0. The agents make up the population space in the CAT systems and are interconnected with each

other through a social network. With the consideration of the nature of MOPs, multiple agents are often

used. A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents that

can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. In the CAT system, the population component is made up of a population of Repast

agents.

Most recently, the CA has been expanded to handle MOPS (Best et al 2009) by introducing non-

domination sort into the implementation, which was named MOCA. Best compared MOCA to NSGA-II

using two performance metrics: hyper volume (HV) (Zitzler and Thiele 1999) and generational distance

(GD) (Valenzuela-Rendon, Uresti-charre, and Monterrey 1997) on the benchmark known as DTLZ (Deb,

etc, 2002). With comparably good experiment results, Best concluded that the Cultural Algorithms were

a promising technique for solving multi-objective problems. Meanwhile, some behaviors were observed

and correspondent future work was proposed, such as the gradient approximation that was used in

domain knowledge source is not always effective and more heuristics might be used; the situational and

34

historical knowledge sources can achieve an acceptable spread on simple problems but not on problems

with very uneven density and overall spread over the Pareto font sometimes can be improved. Such

proposals will be addressed in this thesis.

In the rest of this section, most introduced features of the CA have been implemented in CAT

2.0 and all multi-objective parts come from MOCA.

3.2 The Cultural Algorithm Framework

The basic CA framework is shown in Figure 1.2, from which it can be seen that the CA has three

major components: a population space, a belief space, and a protocol that describes how knowledge is

exchanged between the first two components, including accept process which extracts knowledge from

population space into belief space, an update process that the adjusts the knowledge sources based

upon this new information, and the influence function which enables specific knowledge sources to

influence the behavior of problem solvers in the population space.

While the CA is often viewed as an extension of GA, Cultural algorithms are additionally based

on some theories proposed in sociology and archaeology to model cultural evolution, but not only GA.

As a result, the population space of CA can support any population-based computational model, not

exclusively Genetic Algorithms, such as Evolutionary Programming. Similarly, there are no inherent

restraints for the concrete implementation of the belief space. The communication protocol can be

developed independently of both the Belief Space and the Population Space as well. Thus, over time

additional knowledge sources, population structures, update processes, and communication protocols

have been added into various versions of the system. Some example technologies that have been added

are swarm-based, predator-prey based among others.

35

The pseudo code of the classic CA implementation is shown in Figure 3.2 below.

Begin

 t = 0;

 initialize Bt, Pt

repeat

 evaluate Pt {objective()}

 update(Bt, accept(Pt))

 generate(Pt, influence(Bt))

 t = t + 1;

 select Pt from Pt-1

until (termination condition achieved)

End

Figure 3.2 Pseudo code of classic CA

In the pseudo code, Pt represents the Population at time t, and Bt for the Belief Space at the

same time. When the CA begins, both the Population and the Belief Space are initialized. In normal

implementations, population is initialized with randomly created individuals that distribute in the

domain space and belief space is initialized without knowledge or memory.

36

At each generation, individuals in the Population space are first evaluated with the objective

function so that the good-performing individuals are found. The acceptance function, accept(), is then

used to determine which individuals will be allowed to update the Belief space, which normally is an

elitist activity. Knowledge carried by those chosen individuals is then added to the Belief space via

function update(). Next, knowledge from the Belief Space is instilled into some chosen individuals

through the influence() function to produce new decision makers. By merging the old generation and

new individuals and filtering them to create the next generation, whose effect is expected to be

transferred into the Belief Space in the next generation, we expect the product to have better

performance than its precedents as a whole. The Cultural Algorithm repeats this process for each

generation until either a solution—for single-objective problems, or a good Pareto front—for multi-

objective problems is identified or a predefined iteration number is reached. From this description we

can see that the population and the Belief space interact with each other reciprocally in a way that is

analogous to the evolution of human culture (Barkow et al 1995, Johnson and Earle 2000, Richerson and

Boyd 2004).

In the rest of this section, details of these components of the basic CA will be introduced.

3.2.1 The Population Space

The Population space is the framework in which individuals contribute to the belief space,

assimilate new knowledge, and may be replaced by some descendants over time. Theoretically any

population model can be used for the population; however, Che selected an agent-based framework for

the Cultural Algorithm Toolkit. The agent based model was based on the Repast (North and Collier 2005,

Anon 2008a), an agent-based simulation environment. Agents can interact with other agents and with

the knowledge sources through networks.

37

Frequently we need to find individuals in the population space that perform better than other

peers. In single-objective problems, it is unambiguous to find the winner in terms of performance and

locate the top m individuals; however, in multi-objective problems, the concept of non-dominance takes

the place of simple ranking. As a general rule, if the CA wants a single good individual, it will be selected

randomly from the Pareto front; if the CA wants a list of good individuals for the situational knowledge

in the belief space then multiple agents are selected from the Pareto front; however, if there are not

enough agents, then agents on the next Pareto front will be taken into consideration. , This process will

be run until enough agents have been chosen.

3.2.1.1 Agents

There are multiple definitions of the concept of agent. A general view is that any type of

independent component can be viewed as an agent (Bonabeau 2001), no matter its behavior is a

primitive reaction or complex intelligent system. On the other hand, others require very specialized

behavior for an agent. Casti (1997) insisted that a component’s behavior must be adaptive in order for it

to be considered an agent. In other words, agents have to be able to learn from their environments and

change their behaviors in response. Some (Dowty 1991) claimed that an agent is only a proto-agent if it

maintains a set of properties and behaviors but does not exhibit learning behavior.

Though the agents in a multi-agent system could be robots, humans or human teams, here we

are mainly interested in software agents. One computer-science view (Jennings 2000) of agents

emphasized the essential characteristic of autonomous behavior. In other words, an agent is the

capability of the component to make independent decisions. This requires agents to be active rather

than purely passive.

38

Under this definition, the agents in a multi-agent system have several important characteristics:

Autonomy, the agents are at least partially autonomous; Local views, no agent have a full global view of

the system, or the global knowledge is too complex for an agent to make practical use; Decentralization,

there is no designated controlling agent.

3.2.1.2 Network Configuration (Social Fabrics)

In addition to being autonomous, individuals in CA are impacting each other through a network

of relations. The interconnections among individuals in the population are viewed as a social fabric in

which human culture which is created by the interactions between people. After a knowledge source in

the belief space selects individual from the population to influence, the candidate agent is affected by its

peers that are connected by it through the social fabric. As in human culture, the impact of knowledge is

distributed into the population through human interactions. Each individual is connected to a set of

neighbors and each individual is influence by a knowledge source. A given individual decides which

knowledge source to use in order to direct its decisions based on a weighted majority vote over itself

and its neighbors.

In order to emulate various social fabrics in human society multiple geometrical shapes of

different complexity are used. In this way, each agent has a particular position on the predefined and

fixed network. If we consider that the social fabric represents paths connecting agents, a specific

organization of social fabric is a configuration of the links in one network. Here, we use network

configuration to indicate a specific instance of the social fabric. The term that was used in previous CA

literature was that of a graph, which emphasized the geometric meaning other than the human-society

metaphor.

39

The network configurations that have been used so far are lbest (local best with connection

degree of two for each agent), square (degree of 4 for each agent), gbest (all individuals, degree of n-1

nodes for each agent), star (one hub agent is connected to all other agents which have no other

neighbors), and circle (agents are metaphorically arranged on circle and an arc centered at one agent

covers its neighbors). Such topologies are shown below.

Figure 3.3 Topology of lbest

For the lbest network configuration, an individual is only aware of its closest neighbors, here l

indicates local. As shown in the figure, the top agent only knows the neighbors that are painted in dark.

In lbest the information or influence flows in only one direction, left or right for a given structure. Ring

structure is less likely to converge to a sub-optimal point and require fewer computations than the

others.

40

Figure 3.4 Topology of global

For global topology, every individual is connected to all the rest. Admittedly, such a topology

required the most calculation during influence because each agent has the maximum number of

neighbors. Such topologies can produce premature convergence during the search process.

41

Figure 3.5 Topology of square

For a square topology, an individual is connected to a square. No the agent is connect to four

other neighbors. I have no idea what the thing above.

42

Figure 3.6 Topology of star

In the Star topology, the hub individual is connected to all others individuals, while every other

individual is only connected to the central one. The number of neighbors is then either 1 or n-1,

depending on the position of the individual.

43

Figure 3.7 Topology of circle

The topology Circle can be deemed as an extension of lbest. In the circle the information flows

in both directions from an individual. So each individual has two neighbors who can influence them

while in a ring it is just one.

In addition to those topologies that have been used in previous implementations, more ways of

constructing a neighborhood topology can be found in (Jin, Girvan, and Newman 2001, Pattison and

Robins 2002, Ebel, Davidsen, and Bornholdt 2002).

3.2.2 The Belief Space

Culture, as defined by Tylor in Primitive Culture(Tylor 1920), as “culture, or civilization, taken in

its broad, ethnographic sense, is that complex whole which includes knowledge, belief, art, law, morals,

44

custom, and any other capabilities and habits acquired by man as a member of society.” Certainly, a

culture is overwhelmingly complex for existing modeling approaches..

In order to deal with that, anthropologists such as Durham (1991) suggested that cultural

evolution can occur on both of two levels, the population level and the belief or knowledge level. In the

previous section we examined aspects of the population space. Here, we describe the knowledge

sources in the belief space and their interconnections.

While there are other socially-motivated evolutionary algorithms, Cultural Algorithms

distinguishes itself from the PSO and ACO algorithms in that the CA uses five basic knowledge types in

the problem solving process rather than just one or two locally transmitted value. It has been observed

in the field of cognitive science that each of these knowledge types is supported by various animal

species (Wynne 2001; Clayton, Griffiths etc, 2000) and it is assumed that human social systems at least

support each of these knowledge types as well. The knowledge sources include: normative knowledge

(ranges of acceptable behaviors); situational knowledge (exemplars or memories of successful and

unsuccessful solutions etc.); domain knowledge (knowledge of domain objects, their relationships, and

interactions); history knowledge (temporal patterns of behavior); and topographical knowledge (spatial

patterns of behavior). This set of categories is viewed as being complete for a given domain in the sense

that all available knowledge can be expressed in terms of a combination of one of these classifications.

In the rest of this section, all knowledge sources will be introduced in detail. Each knowledge

source will be described in terms of a simple data structure in order to describe the major relationships

supported within it. However, in any given application the exact implementation of each will vary.

45

3.2.2.1 Situational Knowledge

Situational Knowledge maintains a set of non-dominated individuals, which can be viewed as

exemplary cases, with the expectation of facilitating individual experiences. Obviously, situational

knowledge leads individuals to “move toward the exemplars”. This was the earliest knowledge source

used with Cultural Algorithms and was inspired by elitist approaches in Genetic Algorithm. This

mechanism has been extensively adopted by various MOEAS, such as the GBEST in PSO.

There is no specific data structure for this knowledge source. For example in MOCA during

update, non-dominated individuals are promoted into this knowledge source as exemplars. In single-

objective application, the CA will keep a list of elitists in situational knowledge. In multi-objective

optimization, the CA will randomly select from the Pareto front; and will go to the next Pareto front if

there are not enough individuals here until enough exemplars are found to fill the list.

3.2.2.2 Topographical Knowledge

Topographical knowledge was originally named “regional schema” (Jin and Reynolds 1999). It is

represented in terms of a multi-dimensional grid if there are more than one objectives or an array if

there is only one objective. While in CA the term grid cell has been used, some other literature uses

hyper-cube to depict the same concept. This mechanism has been used by other MOEAs such as the

hyper-cubes in MOPSO.

Topographical knowledge was motivated in conjunction with data mining problems where the

problem space was so large that a systematic way of partitioning the space during the search process

was needed so that search could focus on the promising areas. If we view a state as associated with a

46

region in the functional landscape then the topographic knowledge source is looking for new states.

Thus, the state space may vary dynamically as new sub-regions are discovered and added to the mix.

The topographical knowledge source is initialized by sampling a solution in every grid cell and

creating a list of best cells. The update occurs when a cell is divided into sub-cells when an accepted

individual’s fitness value is better than the best solution in that cell, or if the fitness value of the cell’s

best solution has increased after a change event is detected. In reality, topological knowledge is used to

distribute individuals potentially over the entire landscape.

Figure 3.8 Structure of Topographical Knowledge: different space volumes

Figure 3.8 presents a division of the gird, some cells are large, while some other have been

divided into smaller ones recursively because more non-dominated individuals have been found in them.

Conceptually, topographical knowledge is similar to adaptive grid that had been used in EMOPSO.

One of the important changes is that Topographical knowledge is implemented upon the idea of

belief cell [98] to answer the challenge given by high dimension. Previously, MOCA cut the whole

objective space into sub space and continue the process along with evolution. This method was similar

to adaptive grid [97] that had been used by many other MOEAs. However, one mere division on each of

47

30 dimensions will produce 230 sub spaces. This large number exerts heavy and unnecessary computing

burden to MOCA. To solve the explorative growth of power function, MOCA borrowed the concept of

belief cell in that the whole space is virtually divided into sub spaces in advance; and only those who

containing non-dominated individuals and thereafter look promising are deposited into the Topographic

knowledge. For example for a problem having 30 dimensions, if each dimension is divided into 10

segments, there are totally 1030 sub spaces.

At the beginning of evolution, population is randomly created. Since then on, the population

evolves in the same way of MOCA.

3.2.2.3 Normative Knowledge

Normative Knowledge retains a set of intervals for objectives that provide promising variable

ranges for good solutions, metaphorically, define standards for social individual behaviors. Such

intervals are named beacon. While use of norms is the key of human social intelligence (Clayton et al

2000), normative knowledge is expected to guide an individual to jump into a good range if it is not

already there. This mechanism is rarely seen in related literature.

The normative knowledge data structure for n objectives is shown underneath.

Object 1 Object 2 …… Object n

[L1, U1] [L2, U2] …… [Ln, Un]

Figure 3.9 Normative Knowledge

For each objective, there is a pair of number defining the lower and upper bond of the range in

which good individuals are expected to be found. During update procedure, beacons are updated

48

according to the current non-dominated individuals. During influence procedure, if the chosen

individual is outside of the good range, then one that is randomly produced in the good range will

replace it.

3.2.2.4 Domain Knowledge

As its name suggests, domain knowledge takes advantage of the knowledge of the problem

space to guide search into good areas in objective space efficiently. Say, for a continuously derivable

solution surface, we can use the maximum gradient of a give location to guide the individual to move

upwards quickly. When the CA dealt with the “Cones World” (Che 2009) to produce arbitrary real-

valued landscapes, such a strategy was used. This mechanism was adopted by some MOEAS and

deemed as a hybrid approach of accelerating search in local areas, such as the hill climbing using local

differentials in a hybrid evolutionary algorithm (Gong etc 2010).

3.2.2.5 Historical Knowledge

Historical knowledge, also known as temporal knowledge, monitors the search process and

records good Individuals that have been found historically. In order to reason about global dynamics

and to facilitate backtracking or the retracing of actions, it contains information about sequences of

environmental changes in terms of shifts in the distance and direction of the optimum in the search

space. This knowledge source does not only save the locations of the good individuals—which has been

done by situational knowledge—but also the direction for finding them. Therefore, history knowledge

can consult those recorded events for guidance in predicting a good move direction. While it is easy to

see avatars of situational knowledge in other MOEAs, historical knowledge is rarely seen in related

literature.

49

Its cognitive origin comes from episodic memory (both in humans and animals), which is a type

of event-based memory. It stores information about events, and temporal-spatial relations among those

(Heyes and Huber 2000).

History knowledge is expected to provide a global perspective regarding the change in solutions.

It computes the average change in parameter values within a region, the window size, and predicts the

direction of the shift in the optimum from the previous position. The knowledge data structure

representation is shown underneath.

Individual1

location: (x1, x2, … xn)

direction (d1, d2, …dn)

Individual1

location: (x1, x2, … xn)

direction (d1, d2, …dn)

... … Individual1

location: (x1, x2, … xn)

direction (d1, d2, …dn)

Figure 3.10 Data structure of Historical Knowledge

To help guide the optimization process, knowledge sources have been selected in order to

influence members of the population by sampling a dynamic probability distribution, which was

implemented as a roulette wheel in source code. As the optimization runs, we adjust the distribution of

knowledge sources in order to encourage knowledge sources that are producing promising individuals

by increasing their probability. Additionally, a mechanism for the preventing the starvation of any

knowledge source was implemented by giving each knowledge source a minimum quota of influencing,

with the intention of ensuring that all sources have the opportunity to affect the evolution.

3.3 Effectiveness of MOCA and weakness

Best’s MOCA confirmed CA’s ability for solving MOPs while bringing to light the fact that there

are still some aspects that can be improved. Best has pointed out that in his implementation the

50

situational and historical knowledge sources can achieve an acceptable spread on simple problems but

not on problems with very uneven density. In addition, the topographical knowledge source, which was

effective in previous CAT version to solve the Cones World problem, is less productive when considering

only one of the objective functions in the problem at a time. Best suggested modifying the topographical

influence function to divide the search space based on the Pareto rank of the individuals in the

population. Among all the concerns of improving MOCA, such as improving the computation efficiency

by adopting a more heuristic gradient calculation in domain knowledge, the assessment of spread

appear to the most prominent problem.

The insufficiency of population spread was caused by the fact that in SOPs, which CAT had been

designed for, there is no such a criterion for evaluating and guiding the evolutionary process. As an

initial extension of CAT to hand MOPs, MOCA can identify good individuals quickly. The following table

describes the Pareto fronts after non-domination sorting for the population of year 40 that was

produced by MOCA on DTLZ.

Table 3-1 Pareto fronts at year 40 for DTLZ1

Pareto# X Y Z

0 0.059093 0.144503 0.296429 2 2.57E-05 max 0.022237
min 1.84E-06
ave 0.005329

0 0.088483 0.186583 0.228858 3 0.003924

0 0.090181 0.023987 0.387014 3 0.001182

0 0.104606 0.33921 0.057196 3 0.001013

0 0.082192 0.155827 0.263213 4 0.001233

0 0.121097 0.071882 0.324418 2 0.017397

0 0.12114 0.147176 0.233667 2 0.001983

0 0.110408 0.174008 0.215586 2 1.84E-06

0 0.261906 0.194125 0.066206 4 0.022237

0 0.25402 0.118836 0.130343 4 0.003198

1 0.160917 0.106704 0.234819 2 0.00244 max 0.025982
min 6.08E-05 1 6.56E-04 0.021131 0.48082 2 0.002608

51

1 0.286969 0.188181 0.044658 4 0.019808 ave 0.010122

1 0.098354 0.16674 0.239664 4 0.004757

1 0.023299 0.034007 0.452065 5 0.009371

1 0.034693 0.130959 0.334456 3 0.000108

1 0.037244 0.066256 0.398099 2 0.001599

1 0.12833 0.143864 0.237547 4 0.00974

1 0.109934 0.107252 0.282874 1 6.08E-05

2 0.023484 0.244979 0.251207 4 0.01967 max 8.851882
min 0.000138
ave 0.50207

2 0.113673 0.31913 0.093179 4 0.025982

2 0.059151 0.207388 0.233876 2 0.000415

2 0.038543 0.133362 0.333718 2 0.005623

2 0.036419 0.226744 0.238054 4 0.001218

2 0.313544 0.1382 0.048394 2 0.000138

2 0.157233 0.029503 0.318062 2 0.004799

2 0.060426 0.107375 0.342032 4 0.009833

2 0.571029 3.95E-04 0.039593 2 0.111017

2 8.62E-04 0.186234 0.327298 3 0.014393

2 0.202133 0.183341 0.115779 2 0.001253

2 0.148676 0.048386 0.303354 4 0.000415

2 8.83E-05 0.003727 0.498384 2 0.002199

2 0.046358 0.064087 0.395163 4 0.005608

2 0.117267 0.290411 0.113012 2 0.020691

2 0.057488 2.36E-04 9.294158 5 8.851882

2 0.228741 0.023326 0.249054 3 0.001121

2 0.291634 0.142923 0.066475 4 0.001032

2 0.024447 0.071008 0.406476 2 0.001932

2 0.034435 0.400285 0.068967 2 0.003687

We can see clearly in the table that even those individuals that lie on rear fronts still have good

fitness values. This confirms the conclusion of insufficient Pareto front coverage because otherwise

solutions with good fitness value won’t be put on secondary fronts. In other words, aggregation of

individuals reduces the system’s computation power.

The statistics of Pareto fronts at the end of evolution 100 generations is shown in Table 3-2.

We can see that the phenomenon discussed in the above paragraph still presents. In addition, fitness of

52

best individuals doesn’t get considerably improved; which, on the other side, proved the efficiency of CA

to find good solutions.

Table 3-2 Pareto fronts at the end of evolution

 Max Min Average

Pareto 0 0.507109 1.31E-06 0.056808

Pareto 1 3.40E-02 7.49E-07 4.77E-03

Pareto 2 0.039243 1.75E-07 0.003916

Pareto 3 0.016857 2.51E-07 0.003903

Pareto 4 0.010412 1.82E-05 0.002896

Pareto 5 2.48492 2.16E-08 0.141828

Pareto 6 0.006206 0.000216 0.002372

The insufficiency of spread cannot be solved with the fitness evaluation alone; there must be

additional approaches. For example, in the popular Multi-Objective algorithm Non-dominant Sorting

Genetic Algorithm (NSGA), agents don't know the general layout of the population, and they just try to

reach the Pareto front and stay far away from neighbors. They don't care where the whole population

should go as a team, they don't know (or care) whether the Pareto varies along time, neither do they

know how crowded or spare one special sub area is. This strategy, though simple, had been proved to

be effective. However, in Cultural Algorithms we should be able to coordinate our mining of the Pareto

Front more efficiently.

The insufficiency of spread cannot be solved without amending other CA components either. In

the previous CAT version, the belief space has been tuned to speed up the search process, such as that

Domain knowledge was used to guide the search trend in some specific directions. While the

populations aggregate into small areas, even though some individuals have good fitness values, it is hard

to evaluate the solutions as good as a whole. Even though random deviation in evolutionary algorithms

cannot be fully eradicated because they are population-based, populations are guided by various

53

knowledge sources to aggregate to some small areas. Our investigation figured that after population

aggregated to some parts of the Pareto front, they had inertia to stay around but not energy to explore

new areas.

Figure 3.11 represents the X-Y projection of the domain space for DTLZ1 when year==60 for

previous MOCA, which is typical for our test. With the consideration that the optimal solution is a line of

x+y=1, we can see that most individuals lie close to the real solution line. However, those individuals are

aggregated into three sections while leaving two big empty areas unexplored. After our observation of

this figure, even when we extend evolution to year 200, most individuals still stay in the three areas.

Figure 3.11 Representative illustration of partial aggregation in population

54

Certainly, due to randomness of evolution, the aggregation pattern shown in the figure is not

the only one, though it is the representative one that appears frequently. In a few simulations we have

observed different aggregation patterns, such as aggregating at only the ends of the Pareto front. Best

had not pointed out the cause of such aggregations. Similarly, we are not interested in figuring out the

exact cause of such phenomenon though we primitively assume it was due to the dominance of

situational knowledge source over the other knowledge sources in the current implementation. Instead,

we generalize the phenomenon as the problem that the current implementation of CA cannot cover

sufficient spread of Pareto front. In this way, we hope that we can eradicate this problem.

One way of doing this is to make all knowledge sources stronger participants in the problem

solving process as we suggested earlier. As Che (2008) has confirmed in this thesis, different knowledge

sources fit different problems. As a reasonable extension, in front of a specific implementation of MOCA,

for different problems, there may be different knowledge sources that can contribute to the generation

of a more evenly distributed front.

In summary, CA is mature in increasing individual’s fitness, we can see how fast and efficiently it

finds a few good individual solutions; in addition, it has been confirmed that network configuration plays

an important role in distributing knowledge in a population and therefore increase the evolution

efficiency. In this thesis, we will add the consideration of spread of the whole generation into our

implementation and identify its usefulness with quantitative analysis.

3.4 Expansion of the CA for Multi-objective Optimization

During the expansion of CA into MOCA, the same framework, including the five knowledge

sources and the communication protocol between the population space and the belief space that has

55

been used in CAT were inherited. Certainly, there have been some modifications that are necessary for

tuning CAT to fit MOPs, and, some modifications are critical for turning the CA into MOCA and are worth

special attention. Most of the work that is introduced in this section was done by Best (Best, 2009);

First, as has been mentioned above, in the CA the highest performing individuals are frequently

needed. For a multi-objective problem, in which generally there is no such single individual because

populations are not a completely ordered set, MOCA used the Goldberg ranking scheme (Goldberg

1989), where all non-dominated solutions in the population are given rank 1; these solutions are

removed, and the non-dominated solutions in the remaining population are given rank 2, and so on.

Individuals laying at the same front are considered as being equally good. The total ordering on

solutions is replaced by a partial ordering of individuals into Pareto ranks. As a result, the concept of

“the best performing individual” in single-objective optimization is replaced by “an individual chosen

from the set of non-dominated individuals in the current population.” for multi-objective problems. This

choice is currently random, though for specific problems a heuristic can be used to suggest an auspicious

individual.

Another change in MOCA was related to how knowledge sources are chosen to influence

individuals. To help guide the optimization process, knowledge sources have been selected in order to

influence members of the population by sampling a dynamic probability distribution. Each knowledge

source, KSi, has an associated probability Pi of being chosen to influence a given individual. In the classic

CA, Pi is calculated by summing the fitness values of the individuals that were influenced by it. Here for

multi-objective optimization, Pi is derived from the Pareto ranks of the individuals in the current

population for which KSi is generated. The formula used to calculate the score of each knowledge source

to be used in roulette wheel selection is listed as follows.

56

In this formula, INDi represents the set of individuals in a population that were created by KSi

and INDi,j is the jth individual in it; PR() is the function to retrieve the Pareto ranking, and operation ||

gets the cardinality of the set.

For example, we see a population for a two-objective space in Figure 3.12. It shows eight

individuals from three arbitrary knowledge source marked by Δ, Ο, and □. The two axes represent

the two objectives, three curves marked by numbers are three Pareto fronts while the numbers are

their Pareto ranking.

Figure 3.12 Illustration of calculation of performance of knowledge sources

The individuals form three Pareto ranks. The scores for each knowledge source are as follows:

 Δ

57

 Ο

 □

Except for the new evaluation mechanism, the random selection of a knowledge source in the

belief space during the influence procedure is the same with CAT 2.0.

In addition, since the benchmark problem set DTLZ on which Best worked can easily scale to

have high dimensions, such as 10, Topographical knowledge source splits the domain space only as

needed. In his implementation, each hyper cube is called a cell; when individuals in the cell got crowded

the cell will be split in half along each dimension. At the end of evolution, some cells have tiny volume

because they are the results of multiple divisions while some others are big hyper cubes since there are

not many individuals contained inside.

After such modifications, Best was able to apply the Cultural Algorithms on DTLZ benchmark. He

compared MOCA to NSGA-II using two performance metrics: hypervolume (HV) (Zitzler and Thiele 1999)

and generational distance (GD) (Valenzuela-Rendon, Uresti-charre, and Monterrey 1997). With

comparably good experiment results, Best concluded that the Cultural Algorithms were a promising

technique for solving multi-objective problems.

3.5 Conclusions

In this section we began by providing an overview of the Cultural Algorithm framework with an

eye towards how they might be modified for Multi-Objective problem solving. We then discussed the

58

major changes made by Best in adopting the CAT 2.0 system to multi-objective problem solving. In his

approach he focused on only a reduced set of features available in the Cultural Algorithm.

 In general, the changes made to it to become MOCA were not complicated enough to hinder

those who have studied CA from understanding the system. This suggests that there is a natural fit

between Cultural Systems as modeled by the Cultural Algorithms and multi-objective problem solving.

59

CHAPTER 4 THE MOCAT 1.0 SYSTEM DESIGN

Previously MOCA has demonstrated the ability of Cultural Algorithms to handle MOPs.

However, the MOCA implementation does not take advantage of all of the available features in the

Cultural Algorithm Toolkit. In particular, as discussed earlier, it makes limited use of the available

knowledge sources to influence the problem solving. As Best indicated (Best 2009), the gradient

approximation that was used in domain knowledge source was not always effective and more heuristics

might be useful. Also, the situational and historical knowledge sources can achieve an acceptable

spread on simple problems but not on problems with very uneven density. As a result, overall spread

over the Pareto font sometimes can be improved by augmenting the data structures and connectivity of

existing knowledge sources in order to address a more general class of multi-objective optimization

problems. In other words, the system does not produce enough coverage on the Pareto front.

In addition, we need to take into consideration spread metrics used to guide the system. In this

thesis we employ modified versions of two different spread metrics, spread and hyper volume, in order

to provide more information to the knowledge sources. Neither metric had been used in conjunction

with each other in the past. It was felt that if they provided complementary information on spread then

more information would be available for the knowledge sources to generate solutions.

A third modification relates to how the influence of successful knowledge sources is spread

through the population. The spread of knowledge through the population takes place within the social

fabric. As the problem solving process progresses, especially for complex problems, it was felt that the

appropriate network structure would need to change as well.

60

In addition to the theoretical changes, to unify CAT 2.0 and MOCA and to take advantage of the

visualization power of Repast Simphony, a new multi-objective CA execution framework is designed and

implemented. This chapter discusses how each of the suggestions mentioned above are implemented

and proposes an improved toolkit framework. The concrete implementation, named MOCAT 1.0 is

presented in details in the next sub section.

Section 4.1 gives the overall architecture of the MOCAT system. Section 4.2 describes the

internal implementation of knowledge sources. Section 4.3 describes the acceptance function, including

how voters are selected from the population. Section 4.4 explains the update functions for the belief

space, especially how the slices in the roulette wheel are updated. Section 4.5 focuses on the influence

function which has two parts: One part describes using pseudo code how to select the topologies for a

generation and the other part of the section discusses how the knowledge sources are selected.

4.1 System Framework

MOCAT is implemented in Java as a stand-alone system as shown in Figure 4.1. Input is the

classes that implement the problem formulas. The CA engine will control the evolution in which a set of

individuals hopefully move to the Pareto front. Output of the MOCAT system includes both a visual

representation of the population and files that include information about the evolution. While the real-

time display give us a good chance of observing the progress of evolution, the files that are save on hard

disk contain all necessary information that is used to do detailed statistical analysis of the optimization.

MOCAT can easily work on other problems that have not been coded in the current

implementation if only the new problem is wrapped in an algorithm class following a specific format. At

61

this stage, MOCAT only handles numeric problems. In other words, the domain space and the objective

space of the problem have to be described in numbers.

Figure 4.1 MOCAT System

To render a brief image of the MOCAT, the pseudo code which shows the basic framework of

the implementation is given in Table 4-1.

Table 4-1 The Pseudo Code and Execution Flow Chart of MOCAT

Begin

 t = 0;

 initialize Bt, Pt

 initialize roulette wheel for network configurations

repeat

62

 accept()

 non-dominance sorting

 voting

 updating the belief space, including the roulette wheel and knowledge sources

 influence()

 choosing knowledge sources based on their performance

 guarantee no knowledge source die out: N/20 quota

 choosing a network configuration

 currently support: lbest, square, ring, star, global

 t = t + 1;

 select Pt from Pt- 1 by starting from better Pareto fronts

 keep record of the performance of the recently used network configuration

 updating the roulette wheel that is used to select network configurations

until (termination condition achieved)

End

The pseudo code reveals a similar frame that has existed in previous CAs. While the theory of

the Cultural Algorithms remains—therefore, we still claim that MOCAT 1.0 is a CA, but not an

application based on CA, though a lot of changes have been made into MOCAT 1.0 so that it encourages

63

beneficial competitions among knowledge sources and competitions among social fabrics, is able to

spread found solutions over real Pareto front, and is able to scale easily.

MOCAT was implemented upon object-oriented programming techniques and was designed to

embrace new algorithms without need of structural changes. Figure 4.2 depicts the system structure of

MCOAT using a format that is similar to UML class diagrams.

64

Figure 4.2 Object diagram of MOCAT

Figure 4.2 shows that there are clearly belief space and population space in MOCAT and they

interact through function accept() and influence(); those are the intrinsic characteristics of the CA. We

can see from Figure 4.2 that MOCAT 1.0 has specially tuned up for multi-objective optimization by

65

encouraging competition between knowledge sources and competition between social fabrics. While

parts of Figure 4.2 have been introduced in Chapter 3, in this chapter we specially focus on the

improvements that MOCAT brings to the traditional CA.

One programming progress is that each test problem is implemented as a separate class that is

used to describe the problem, calculate objective values, and explore derivatives around neighborhood.

While for any individual of given location, MOCAT is able to calculate its fitness, measure its fitness error,

and figure out the slopes in local area. However, MOCAT has no clue of what shape the real Pareto

front is or what kind of search strategy will be effective in exploring the objective space.

4.2 Knowledge sources

In Figure 4.2, we can tell that the belief space contains five concrete knowledge sources,

normative, situational, domain, historical, and topographical. Knowledge sources are updated by voters,

which are in turn selected from the population with the help of non-domination sort. This sub section

will discuss the internal data structure of every knowledge source, how they are updated by voters, and

what kind of effect through their influence.

4.2.1 Normative knowledge source

Normative knowledge source contains intervals which are used to mark the boundary of the

promising space. In MOCAT, there are separate intervals for each dimension. Figure 4.3 shows that for

a n-dimension problem, the interval for the second dimension defines the high and low values of this

dimension.

66

Figure 4.3 The structure of Normative Knowledge

It is updated according to the following formula when a voter is on the found Pareto front.

As a result, intervals for all dimensions delimit boundaries of one hyper cube in which the real

Pareto front exists. In function influence(), an individual is randomly created inside the hyper cube. It

provides coarse heuristics while allow big flexibility to evolution.

4.2.2 Situational knowledge source

Situational knowledge source records all exemplars that have been identified up to now.

Figure 4.4 The structure of situational knowledge

67

It is updated by merging the exiting exemplars with voters and then selecting the elitists among

them. In this procedure, some previous elitists may be discarded since they are dominated by some

new solutions.

In function influence(), an exemplar is randomly selected and a new individual is created by

dragging the parent individual to it. Obviously, it provides strong guidance to evolution while leaves

flexibility. However, when the objective space fluctuates violently, the new individual that is created by

situational knowledge source may have inferior fitness values because short distance in domain space

does not guarantee similar objective values.

4.2.3 Domain knowledge source

Different from other knowledge sources, domain knowledge source does not work upon its

persistent memory. Instead, it takes advantage of the limited but precise information that problem

class can give to any specific location in the problem space.

Since there is no way to exhaustively detect the maximum slope from a given location, and in

order to save computing resource, only the derivatives along axes are calculated. If one move produces

a new individual that is not dominated by the parent individual, this move is counted. Finally, the vector

sum of all counted move points to the direction that the new individual should be moved.

After the maximum slop is identified, we will move along that direction 20 times with equal step

length to find out 20 candidates of the new individual; then non-domination sort is used to select one

from the non-domination set. Now the step length is a random number smaller than 0.005.

68

4.2.4 Historical knowledge source

Historical knowledge source is used to record the evolution history. It consists of separate

memories for each objective dimension.

Figure 4.5 The structure of historical knowledge

The historical knowledge source is updated based on each objective dimension without

interference with each other:

where is predefined size limit of saved solutions and enew is an individual in the voters which

has the highest fitness value on dimension t. In function influence(), one memory is randomly selected

and then a saved individual is randomly selected out of it to sprout a new individual around its

neighborhood.

69

In this way, while we encourage the evolution to forage area that is only certainly good for one

objective, we will practically spread the found Pareto front along every dimension.

4.2.5 Topographical knowledge source

Topographical knowledge source contains belief cells (Jin 1999) which are used to indicate hyper

grid in problem space. Since we will handle high-dimension problems, traditional division of problem

space along each dimension will create large amount of child hyper cubes. For example, for 30

dimensions, one single division will split the current hyper cube into 230 ones. This exponential increase

makes topographical knowledge source stop working. Thereafter, we conceptually split the whole

problem space into hyper cubes in advance and only record those in which promising individuals exist.

Figure 4.6 Topographical knowledge source provides a mosaic view of Pareto front

From Figure 4.6, we can see that topographical knowledge marks a coarse-granularity record of

the found Pareto front. At this point, the domain space is cut to 10 segments along each dimension. In

this way, topographical knowledge source works like a group of normative knowledge sources. Its data

structure is shown in Figure 4.7.

70

Figure 4.7 The structure of topographical knowledge

A belief cell is added into topographical knowledge source if a non-dominated solution in the

voters appears in it. Topographical knowledge source provides guidance to evolution in a way that is

more flexible than domain knowledge source but stricter than normative knowledge source.

4.2.6 Interactions among Knolwege sources

All of the knowledge sources contribute to the optimization process. As in the real world,

different objectives can be more effectively viewed by different knowledge sources. The key is that

results elicited by individuals generated by one knowledge source can be distributed to other knowledge

sources in the belief space since both the population and the belief space have a network structure.

71

Figure 4.8 Network of Knowledge sources

In Figure 4.8 the network for the knowledge sources in the belief space is given. By allowing the

knowledge sources not only to compete but to share results of their explorations, the system is able to

exploit the dual inheritance feature of cultural algorithms to hone in on the solution quickly.

4.3 The accept() function

Not all of the populations are used to update the belief space, instead, only those who perform

not worse than others can be elected as voters to update the belief space. Non-domination sort is used

to evaluate and rank individuals.

4.3.1 Non-domination sorting solutions

Domination (Goldberg, 1989) is a partial order relationship in which a dominating solution is

superior to dominated solutions in terms of all objectives. Two solutions that do not dominate each

other are on the same Pareto front.

72

Table 4-2 Pseudo code of non-domination Pareto ranking

Set pr = 1

While(population is not empty)

 Identify the solutions that are not dominated by others, mark their Pareto rank = pr

 Remove the identified solutions

 Set pr = pr + 1

End While

4.3.2 Accept as voters

Based on non-domination sort, the function accept() prefers the solutions on anterior fronts.

Table 4-3 Pseudo code of function accept()

Set pr = 1

Set returnSet = empty set

While(wantedSolution# > 0)

 If #solutions on front pr <= wantedSolution#

 add front pr to returnSet

 Set wantedSolution# = wantedSolution# - #solutions on front pr

 Else

 Randomly select wantedSolution# solutions from front pr, put into returnSet

 Set wantedSolution# = 0

 End If

 Set pr = pr + 1

End While

73

return returnSet

In other words, the solutions that are able to push the found Pareto front forward will be

preferred to update the knowledge saved in the belief space. In this way, we expect the belief space to

have more efficient information to guide evolution.

4.4 The update() function

This function updates the knowledge saved in the belief space. How the five knowledge sources

are updated has been introduced in 4.3. Nonetheless, function update() additionally update the

roulette wheel in the belief space.

In the belief space, there is a roulette wheel to partially randomly pick up a knowledge source to

influence an individual. However, on the roulette wheel, the size of the slices for knowledge sources is

proportional to their moving average performance. The performance of a knowledge sources is defined

as average of the evaluations of all the individuals that have been influenced by it:

This evaluation formula was defined by Goldberg (1989). The roulette wheel remembers

performance values for each knowledge source; during the function of update(), performances of

knowledge sources that are calculated from voters will be taken into consideration to create

mathematical averages, which serve as the new performance values for the knowledge sources.

74

Then, sum of slices is normalized to 1.0 and the portion of each knowledge source is calculated.

Now, we can rotate the roulette wheel to partially randomly select a knowledge source.

Table 4-4 Pseudo code of selecting a knowledge source from the roulette wheel

Set sum = sum of slices

Set nsi = Slicei / sum

create random number r [0, 1.0);

Set splitter = 0.0

Set ksResult = 1

While(ksResult <= #Knowledge sources)

 Set splitter = spliter + nsksResult

 If (splitter > r)

 Return KSksResult

 Else

 Set ksResult = ksResult + 1

 End If

End While

return KSksResult-1

In this way, when a knowledge source fails to contribute to the evolution, other knowledge

sources have the change to take its position; but still every knowledge source has opportunities to

influence individuals.

In summary, the function update() updates both the knowledge sources and the roulette wheel

which is used to select a knowledge source for influence() with the consideration of their performances.

75

4.5 The population space

The population space accommodates the individuals and various topologies that are used to

connect the social fabric. While the topologies in the population has been introduced in 3.2.1, this sub

we will discuss about the data structure of individuals and the two metrics that are implemented in the

population space to evaluate the spread of the solutions over the real Pareto front.

4.5.1 Individuals

Individuals in socially motivated evolutionary algorithms represent locations in the domain

space. While their coordinates determine the objective values, individuals are also named solutions.

Additionally, since MOCAT uses Repast Simphony, individuals are also called agents according to the

terminology of Simphony. Thereafter, in this thesis, individuals, solutions, and agents indicate the same

concept and are inter-exchangeable.

An individual mainly holds its own information, such as its location, fitness values, and the

knowledge source under which it was created—the operator. At the beginning of evolution, individuals

have unknown operators. An individual object also provides storage for its Pareto rank after non-

domination sort for future use. To facilitate non-domination sort, two functions are provided to decide

whether another individual dominates or is dominated by this individual. The UML class diagram of an

individual is shown in Figure 4.9.

76

Figure 4.9 Class of Agent

4.5.2 Metrics to evaluate the spread over the Pareto front

As shown in Chapter 3.3, sometimes MOCA could not spread found solutions evenly over the

whole Pareto front. Thereafter, there is a need to encourage individuals to explore areas that are not

crowded. This sub section introduces existing spread metrics and then chooses two in our

implementation and explains why they are preferred to others.

4.5.2.1 Existing Metrics

There are a few ways to evaluate the performance of MOEAs, including the spread over Pareto

front. First, graphical plots serve as an intuitive way to compare the outcomes of MOEAs, especially

when different results have prominent discrepancies, such as in (Zitzler et al, 2000). The advantage is

that it is easy to evaluate the outcome and most times very helpful; the disadvantage is that it is hard to

quantify the visual evaluations and therefore incorporate into the heuristics in the CAT system.

Second, the distance from the known Pareto front to the true can be calculated. As shown in

Veldhuizen etc (Van Veldhuizen and G. B Lamont 2000), the distance metric is a value representing how

“far” the unknown Pareto front (PFknown) is from the true Pareto front (PFtrue) and is defined as:

77

where n is the number of vectors in PFknown , p = 2,and di is the Euclidean distance (in objective

space) between each vector and the nearest member of PFtrue . The idea is to calculate the shortest

distance of the points of the known Pareto front to the true one; the sum of all the distances shows how

good the known Pareto front is as a whole. The theoretical minimum result of 0 indicates PFtrue =

PFknown; any other value indicates PFknown deviates from PFtrue. In their paper, an example with a discrete

Pareto front is given as Figure 1 for illustration of the formula.

Third, the spread of the known Pareto front can be calculated. One representative example is

published by Deb etc (Deb et al. 2000). The idea is to get an evaluation of the density of solutions

surrounding a particular solution in the population by calculating the average distance of two points on

either side of this point along each of the objectives, which was called “crowding distance”.

As shown in Figure 4.10, for each solution located at i, this value roughly estimates the size of

the largest box, or cuboid, enclosing the point i without merely touching any other point in the

population. Here, the crowding distance of i-th solution in its front (represented as solid dots) is the

average side-length of the cuboid (shown as the dashed box).

78

Figure 4.10 Cuboid metric for Pareto front

Because they calculated the perimeters instead of the volumes of the cuboids, they were able to

design a linear algorithm to accumulate the distances along each domain after sorting solutions along it.

If we arrange all individuals in a linear way and then walk along either the x or y axes from one individual

to next, the walk length is a quarter of the crowding distance. While the true Pareto front is unknown,

such a metric cannot really describe the coverage of the known Pareto front over the real one. For

example, if we shift the known Pareto front in Figure 4.10 down, the calculated metric stays the same,

while this generation becomes farther away from the true Pareto front and intuitively it covers the true

Pareto front in a worse way. In this approach, the spread of the current Pareto front is calculated, while

the real coverage over the true Pareto front is unknown. To overcome this shortcoming, end points of

the problems were added in the result set (Deb et al, 2000) and the sum of the distances between them

was calculated.

Another such metric is (Schott 1995) in which the metric is a value measuring the spread

(distribution) of vectors throughout PFknown. While PFknown’s beginning and end are known by sorting the

solutions along dimensions, Schott proposed the following formula to calculate the range variance of

neighboring vectors in PFknown. In this metric, avalue of zero indicates all members of PFknown are equally

distributed. However, the true Pareto front is not necessarily uniformly spaced, similar to the above

metric. Certainly, adding end points into the solution set may improve the situation.

Forth, IGD (Inverted Generational Distance) (Van Veldhuizen and Gary B Lamont 1998) combines

both the second and the third metrics. In this approach, a single value tries to describe both the fitness

and the spread. Let P* be a set of uniformly distributed points along the Pareto front in the objective

space. Let A be an approximate set to the PF, the average distance from P* to A is defined as:

79

where d(v, A) is the minimum Euclidean distance between v and the points in A. If P* is large

enough to represent the Pareto front very well, IGD(A; P*) could measure both the diversity and

convergence of A in a sense. To have a low value of D(A; P*), The set A must be very close to the PF and

cannot miss any part of the whole PF. In the following figure, f1 and f2 indicate two coordinates in the

objective space.

Figure 4.11 Illustration of calculation of IGD

For CEC test problems, the data file and source code of computing IGD (Zhang n.d.) was created

in C and Matlab by Zhang and can be downloaded from online.

All the later three metrics have only one real number indicating the quality of the result, while

the later two are of our interest.

80

4.5.2.2 Chosen spread metric

Schott (1995) in his Ph.D thesis proposed spacing metric which estimates the diversity of the

found Pareto front. The metric value is evaluated by computing the relative distance between adjacent

solutions as:

where n is the number of non-dominated solutions, di is the distance between adjacent

solutions to the solution i, is the average distance between the adjacent solutions. Certainly, this

metric does not reflect complete information of whether the found Pareto fronts cover the real one

evenly; for example, if the individuals on the first Pareto front evenly cover only a small portion of the

real Pareto front, the metric values is zero, which is the best it achieves. Nonetheless, the metric is

chosen by us because of its merit that it does not require any knowledge about the real Pareto front.

In addition to the spread metric, one more metric is selected by us to increase competition and

dynamics in evolution, which will be introduced in the next sub section.

4.5.2.3 Chosen hyper-volume metrics

Zitzler (1999) in his Ph.D thesis proposed hyper-volume metric which was defined by the hyper

volume in the objective space covered by the found Pareto front. The formula is:

where (I = 1, 2, …) is a non-dominated solution of the Pareto front P*.

81

Figure 4.12 Hyper-volume of Pareto fronts

For each Pareto front, the metric value is the union of hyper volumes that are defined by the

individuals that are on this front. The meaning can be easily seen in Figure 4.12 which uses a two-

objective space to illustrate hyper-volume metric. There are three Pareto fronts identified in the

population and all individuals are marked with their Pareto ranking numbers, as shown in the left part.

The hyper volume covered by any single individual is the rectangle that is limited by axes f1 and f2, and

the two lines starting from the individual and perpendicular to either axis. Nonetheless, the overlapped

areas are not taken into account multiple times. Finally, the hyper-volume metric values are the areas

that are constrained by the serrated Pareto fronts—which is also named aliasing Pareto front since in

Computer Graphics describing a curve using serrated vertical and horizontal lines is called aliasing.

4.6 The influence() function

There are two steps during influence of each generation, first, metric roulette wheels are used

to choose a network configuration and then individuals under the influence will be affected by the

82

neighbors defined by this network. This former step of social fabric selection is transparent to the

knowledge sources.

4.6.1 Selection of topologies

The topologies in MOCAT include lbest (local best), square, octal, hex, and global. However, for

any given generation, there is only one social fabric in effect. The choice is made by a partially random

selection with the consideration of the performances of the topologies.

The performance of a social fabric is evaluated as the metric value of the new population that

has been created while this social fabric is enabled.

Since there are two metrics that are used in MOCAT, spread metric and hyper-volume metric,

practically there are two different sets of performances, depending on which metric is being enabled.

This implies that for each given generation only one metric is in effect.

There are two roulette wheels corresponding to the two metrics. On each of them, there are

five slices that are corresponding to the five topologies; and the size of a slice is represented as the

performance value of the topology.

For any new generation, when only one metric and one social fabric are enabled, the

corresponding roulette wheel will be updated for that used social fabric:

83

Then, sum of slices is normalized to 1.0 and the portion of each topology is calculated. Now, we

can rotate the roulette wheel to partially randomly select a topology for a new generation of evolution.

Table 4-5 Pseudo code of selecting a topology from the roulette wheel

Set sum = sum of slices

Set nsi = Slicei / sum

create random number r [0, 1.0);

Set splitter = 0.0

Set topoResult = 1

While(topoResult <= #Topologies)

 Set splitter = spliter + nstopoResult

 If (splitter > r)

 Return TopologytopoResult

 Else

 Set topoResult = topoResult + 1

 End If

End While

return TopologytopoResult-1

This social fabric selection procedure is transparent to the knowledge sources. However, when

a social fabric is selected for a generation, the influence of knowledge sources will infiltrate through

them to more efficiently distribute knowledge and enhance evolution (Ali 2008).

After a topology is selected, every individual has defined neighbors. Then, majority voting is

used to find out which knowledge source should be used for any given individual.

84

Table 4-6 neighbors voting for knowledge source to use on an individual Ind

Set IndSet = [Ind]

Add neighbors of Ind into IndSet

Create an array ksCount[#knowledgeSources]

Initialize ksCount to all 0s

For each individual idv in IndSet

 inc ksCount[knowledge source that created inv into IndSet]

End For

Find max value M of ksCount

Create a set S containing knowledge sources ks if ksCount[ks] ==M

randomly select a knowledge source R from S

Return R.

4.6.2 Influence of knowledge sources

First, a knowledge source should be selected to influence the population. The selection

algorithm has been presented in Table 4-4. After

Normative knowledge source tries to create a new individual with random location in its hyper

cube. It provides coarsest heuristics while allow big flexibility to evolution.

Table 4-7 Pseudo code of influence of normative knowledge source

Create a new individual Ind

For each dimension d

 Create a random number r [0, 1]

85

 Set Ind.location[d] = Interval[d].L + r * (Interval[d].H - Interval[d].L)

End For

If (parent individual dominates Ind)

 return parent individual

Else

 return Ind

End If

Topographical knowledge source influences a new individual with random location in one of the

belief spaces that it maintains.

Table 4-8 Pseudo code of influence of topographical knowledge source

Randomly select a belief cell C

Create a new individual Ind

For each dimension d

 Create a random number r [0, 1]

 Set Ind.location[d] = C.location[d].L + r * (C.location[d].H - C.location[d].L)

End For

If (parent individual dominates Ind)

 return parent individual

Else

 return Ind

End If

86

Situational knowledge source maintains exemplars that have been found up to now. It creates

new individual by dragging the parent individual to it.

Table 4-9 Pseudo code of influence of situational knowledge source

Create a new individual Ind

For each dimension d

 Create a random number r [0, 1]

 Set Ind.location[d] = Interval[d].L + r * (Interval[d].H - Interval[d].L)

End For

If (parent individual dominates Ind)

 return parent individual

Else

 return Ind

End If

Historical knowledge source maintains memories for every objective domain. During influence(),

one memory is randomly selected and then a saved individual is randomly selected out of it to sprout a

new individual around its neighborhood.

Table 4-10 Pseudo code of influence of historical knowledge source

Randomly select one individual Idv

Create a new individual Ind

For each dimension d

 Create a random number r [0, 0.1]

87

 Set Ind.location[d] = Idv.location[d] + r

End For

return Ind

Domain knowledge explores the objective space by move along each dimension to detect the

slope of it. After the maximum slop is identified, we will move along that direction 20 times with equal

step length to find out 20 candidates of the new individual; then non-domination sort is used to select

one from the non-domination set. Now the step length is a random number smaller than 0.005.In

function influence(), one memory is randomly selected and then a saved individual is randomly selected

out of it to sprout a new individual around its neighborhood.

Table 4-11 Pseudo code of influence of domain knowledge source

Set delta = 0.1

Create array maxSlop of #dimension elements

Initialize maxSlop to all 0s

For each dimension d

 Clone new individual Ind from Parent

 Set Ind.location[d] = Parent.lcoation[d] + delta

 If(Ind is not dominated by Parent)

 add delta to maxSlop[d]

 End If

 Set Ind.location[d] = Parent.lcoation[d] - delta

 If(Ind is not dominated by Parent)

 add -delta to maxSlop[d]

88

 End If

End For

Create random number step [0, 0.005]

Create newIndSet = empty set

For Iteration =1 to 20

 Create individual nId

 nId.location = Parent.location + step * maxSlop * Iteration

 add nId into newIndSet

End For

Non-domination sort newIndSet

return one individual from the first Pareto front

4.7 Summary

The execution of MOCAT is described in Figure 4.13, in which the top left element MOCAT is the

control class that drives the evolution and stops it when evolution is complete. The evolution is

completed upon the close collaboration of the population space and the belief space.

89

Figure 4.13 Execution of MOCAT

90

CHAPTER 5 AN EXAMPLE MOCAT RUN

In the previous chapter we described the MOCAT 1.0 system. In this chapter we focus on the

information needed to generate a MOCAT 1.0 run and the information produced by the system as a

result. We will select the ZDT1 problem described in chapter 7.0 as our example here.

This section will introduce a complete run of MOCAT on ZDT1, explain what data are created,

and how they are displayed. Since Repast Simphony supports both 2-D and 3-D real-time display of

evolutionary process, observing how MOCAT works is straightforward.

5.1 Start MOCAT 1.0

At the very beginning, when a project is created in Simphony, the integrated development

environment (IDE) automatically creates an executable program framework and an execution

configuration for it, so that both adding system behaviors and executing the evolution are easy.

Additionally, Simphony automatically creates a builder which will produce a single-file installer. After

the installation is done, MOCAT can run in the future without the Simphony’s IDE. Certainly,

programming details are not concern of this chapter while some of them can be found in Appendix I. In

this chapter, we will focus on how to run MOCAT 1.0, control the evolution procedure, understand its

user interface, and learn about the data that are produced along evolution.

To start running MOCAT, we click the button , Initially a menu is provided with the

different execution options presented. Here, we click on “Run MOCAT model”, as shown in Figure 5.1.

91

Figure 5.1 To run MOCAT model

Presentation of a Simphony project is configured at runtime. Features such as what kind of

display, 2D or 3D can be configured and setup. After setup is done, we can click the disk button

which is on the toolbar or select the menu “File | Save” to remember the configuration so that future

runs will automatically load the same configuration and represent the same interface to users in the

future. Again, in this chapter we only care about the interface that is ready to be sued. Figure 5.2

represents the interface that has been prepared for the experiments through these activities.

92

Figure 5.2 Startup of MOCAT

The parameters of MOCAT can be dynamically passed into the algorithm before evolution starts.

The parameters are shown in Figure 5.3. Some parameters are related to the graphical representation

or used by Simphony internally so that they are out of our interest.

 Continuous Space X Extent

 Continuous Space Y Extent

 Continuous Space Z Extent

 Default Random Seed

The parameters that are specified and used by MOCAT are:

93

 Dimension, dimension of the problem space, for ZDT1 it is 30; in real experiment we

additionally increase it to 60

 Elitist Ratio, defined the percentage of the individuals that will be selected as voters

 Generation To Switch Metric, if spread metric and hyper-volume metric are combined,

after how many generations the metric is alternated

 Number of Generation, after how man y generations the evolution stops

 Number of Population, how many individuals are there in each generation

 Problem Name, one of ZDT1, ZDT2, ZDT3, ZDT4, ZDT5, and ZDT6

At this point, MOCAT is prepared to run ZDT1 with domain dimension 30, generation 100,

population 100, and every 25 generations the spread or hyper-volume metrics will be switched.

94

Figure 5.3 Parameters of ZDT1

To start evolution, we click the power button on the toolbar or select the menu Run | init,

to make Simphony be ready to run. We can see from Figure 5.4 that setup of MOCAT is disabled at this

point.

95

Figure 5.4 MOCAT is ready to run

5.2 Control the evolution

After MOCAT is initialized, we can either step on the evolution by clicking so that we can

observe progress in details, as shown in Figure 5.5, or run MOCAT non-stop by clicking as shown in

Figure 5.6. Corresponding control buttons are disabled in either situation.

96

Figure 5.5 Step run of MOCAT

Along with the evolution, the generation number is told by the number shown in the top right

corner, such as .

97

Figure 5.6 Run of MOCAT

Along with evolution, the most interesting interface component is the 2D display, in which the

solutions in the objective space are shown. The displays dynamically refresh along with the evolution

and reflect the up-to-date information.

When the maximum generation number is reached, execution ceases as shown in Figure 5.7.

Termination of the evolution can be told by the still picture and the unchanged Tick Count that is located

at the top right corner.

At this point, we can visually tell who good this evolution run is by observing the figure shown in

the 2D display.

98

Figure 5.7 MOCAT finishes on run

5.3 Collected data

5.3.1 Information about a single run

Along with evolution, details about individual solutions from each generation are recorded in

files; and when evolution is finished, statistical information about this run is sent to summary files. To

facilitate the automation of date collecting and analyzing, such data files are specially named and

organized. Each run is assigned an exclusive id, RunID, which is generated according to the experiment

time and is different from other ids.

Evolutionary details are saved in a sub-folder in the data collection folder with the name format

ProblemName-GenerationNumber-PopulationNumber-Dimension-GenerationsToSwithcMetric_RunID. A

99

sample name is “ZDT1-100-100-30-200.43204”. This long name reveals how we organize saved data.

While the naming convention is easy to understand, GenerationToSwitchMetric needs special

explanation: number 200 indicates that the evolution only uses spread metric, number 300 indicates

that the evolution only uses hyper-volume metric, and all other numbers specify after how many

generations the metric will be switched in MOCAT.

Coordinates of individuals are recorded in a file named GenerationCounter.coord.txt and the

locations in objective space are saved in a file named GenerationCounter.obj.txt.

When the evolution is done, five other files are additionally saved. Files ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-topology.*.txt remember metric values and

their quotations on the roulette wheel of all generation in time order. Files ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-knowledge.*.txt record how every knowledge

source behaves along evolution under the influence of different metrics. The last file ProblemName-

GenerationNumber-PopulationNumber-Dimension-RunID-summaries.txt contains textual information

which is ready to be copied as an introduction to this test run, the text reads like,

“On ZDT1 with dimension 30 run #ZDT1-100-100-30-25.49768 finished in 35 (s).

In the last generation, the absolute range of fitness error is [0.000000000, 5.119815513].

In evolution, every 25 generations the metric for network configuration is switched.

In Spread roulete wheel, each network configuration (Topology) is used : 18 1 8 8 15 times

In Volume roulete wheel, each network configuration (Topology) is used : 12 9 8 14 7 times.”

100

Such information is high-level and intended to be read by human readers. Statistical

information, such as how knowledge sources change, how social fabrics are used, etc, is saved in

summary files which will be introduced next.

Figure 5.8 Data collected for one single run

5.3.2 Information about all runs on the same problem

In the data collection folder, there are a few summary files containing information about

evolution of all test runs that have been done up to now. Every test that has been done on the same

problem with the same generation, population, and dimension is collected in a single total summary file,

such as ZDT1-100-100-30-totalSummary.csv. These files record the status of the roulette wheel in the

belief space, performances of topologies, and the statistical information of the found solutions.

101

Figure 5.9 Data files after several experiment runs

Depending on how spread metric, hyper-volume metric, or combined metrics are used in

evolution, the other two sets of summary files record all solutions that have been found in test runs and

all relationships between knowledge sources and topologies.

Information saved in summary files will be used after test runs are completed to produce

various statistics about the experiments. To complete this thesis, Microsoft Excel is used because of its

general availability.

102

CHAPTER 6 EXPERIMENTAL FRAMEWORK

We want to check whether MOCAT can get competitive results fast enough, whether the

evolution is robust and stable, and whether it can handle scalable problems with stable performance. In

other words, we want to find out whether MOCAT can compete with other capable MOEAs. In addition,

in complex evolution, we want to observe interactions of metrics and problems—whether one metric

may work better on some kinds of problems than on others; interactions of metrics and dimensionality

—whether metrics behave differently while dimensionality rises up; how metrics select specific

topologies or whether they prefer any one; etc. Thereafter, we need a benchmark that contains a

variety of different kinds of optimization problems and has been popularly adopted in related

publications.

Based on the considerations listed above, ZDT test suite (Zitzler et al, 2000) was selected for

our experiments.

Realizing that “Two major problems must be addressed when an evolutionary algorithm is

applied to multi-objective optimization: 1. How to accomplish fitness assignment and selection,

respectively, in order to guide the search towards the Pareto-optimal set. 2. How to maintain a diverse

population in order to prevent premature convergence and achieve a well distributed trade-off front.”,

Zitzler etc. designed the benchmark problems with special consideration in mind.

Concerning the first issue, multi-modality, deception, and isolated optima—which indicates that

the Pareto front can be divided into separate areas each of which seems continuous—are normally

obstacles to evolution towards real Pareto front. As to the second issue, convex or non-convex Pareto

103

front shape, discreteness of Pareto front, and non-uniformity of density of Pareto front are obvious

challenges to MOEAs. Thereafter, Zitzler et al. designed six problems each of which was corresponding

to different considered factors. However, in fact, none of the problems has even density of Pareto front,

which is understandable since all of them are curves. In addition, they restricted the problems to only

two objectives in order to observe evolution easily while two objectives were still “sufficient to reflect

essential aspects of multi-objective optimization.”

Finally, following DTLZ benchmark problems that had been proposed earlier (Deb etc, 1999), all

test problems share the same mathematical formula format. Such a format allows domain modality to

be easily scaled up. Similar to DTLZ problems as well, ZDT benchmark was composed with the

consideration of including challenges to MOEAs so that they are abstraction of practical problems but

not direct derivatives of them. The motivation for composing a set of testing problems is to facilitate

the observation on the same problem while its modality changes but not compare the efficiency of

MOEAs upon different problems (Deb et al, 1999).

ZDT benchmark has been generally used in recent optimization venues ().

6.1 ZDT 1

104

where m=30 and . The Pareto-optimal front is formed with g(x) = 1.

The Pareto front is:

Figure 6.1 ZDT1 Pareto front

ZDT1 has a concave and continuous Pareto front and may be handled by most MOEAs efficiently.

6.2 ZDT 2

105

where m=30 and . The Pareto-optimal front is formed with g(x) = 1.

The Pareto front is:

Figure 6.2 ZDT2 Pareto front

106

ZDT2 has a continuous Pareto front but it is convex; which may be a challenge to some MOEs

(Deb, 2001) because they tried to reduce the area encircled by the found Pareto font and X and Y axes.

6.3 ZDT 3

The Pareto front is:

 where

107

Figure 6.3 ZDT3 Pareto front

Clearly, ZDT3 has an isolated Pareto front, which can be deemed as five separate sub-problems.

Intuitively, many spread metrics that evaluate whether the density of Pareto front is even will be

challenged by ZDT3.

6.4 ZDT 4

108

where m=30 and .

The Pareto front contains 219 local Pareto fronts and the overall curve is described as:

Figure 6.4 ZDT4 Pareto front

The Pareto front of ZDT4 looks like the one of ZDT1, however, they are fundamentally different:

while the Pareto front of ZDT1 is continuous, there the Pareto front of ZDT4 contains 219 local Pareto

109

fronts. This means that if an algorithm cannot jump out of local neighborhood it will be stuck in a small

area.

6.5 ZDT 5

where gives the number of ones in the bit vector (unitation).

and m=11, , an d for j =2, … m.

The Pareto front is formed with g(x)=10 while the best deceptive Pareto front is represented by

the solutions for which g(x)=11.

110

Figure 6.5 ZDT5 Pareto front

ZDT5 stands out with several special characteristics; first, its problem description does not use

mathematic formula directly; second, it Pareto front is not continuous; third, the area of domain space

that contributes to the Pareto front is a tiny portion of the whole domain space thereafter ZDT5 will

beat many MOEAs that solely depends on gradient exploration.

6.6 ZDT 6

111

where m=30 and .

The Pareto front is:

 while .

Figure 6.6 ZDT6 Pareto front

The Pareto front of ZDT6 does cross the whole objective space so that it is an extremity of

having uneven density of Pareto front.

For selected test problems, we will run MOCAT 20 times with population of 100, generation of

100, and may use Spread metric, Hyper-volume metric, and both of them alternatively after 25

generations. All results will be presented and summarized with statistical analyses.

112

6.7 Summaries

MOCAT runs on each problem of ZDT benchmark and execution processes are detailed recorded.

During one run, maybe only spread metric is effective, or only hyper-volume metric is effective, or both;

we try each configuration 20 runs. At the end of each run, statistics are made to present the

characteristics of the run. Finally, statistics of experiments are made to sum up. Additionally, to test the

scalability of MOCAT, we will double the standard dimensions of ZDT problems and redo the

experiments. Admittedly, doubling dimensions increase computation load and challenges to MOCAT.

A couple of result sets are extracted from related literature and used as a baseline to evaluate

the performance of MOCAT. The following table was taken from (Bastos-Filho and Miranda, 2011)

which only contained the performance values.

Table 6-1 Existing benchmark results I

Algorithms Metrics ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MOPSO
Spread 0.0046/5E-4 0.006/0.001 0.005/4E-4 0.006/0.0014 0.129/0.122

Hyper-volume 0.36/0.002 0.69/0.001 0.950/0.004 0.631/0.526 1.261/0.386

m-DNPSO
Spread 0.0457/0.014 0.054/0.017 0.045/0.016 0.04/0.037 0.126/0.108

Hyper-volume 0.713/0.053 0.94/0.06 1.296/0.088 2.157/0.935 1.279/0.506

MOPSO
CDLS

Spread 0.0042/6E-4 0.006/0.001 0.006/9E-4 0.005/9E-4 0.186/0.145

Hyper-volume 0.39/0.003 0.716/0.0035 1.006/0.009 4.82/2.174 1.717/0.519

CSS
MOPSO

Spread 0.0023/1E-4 0.0035/7E-4 0.003/7E-4 0.005/0.1112 0.234/0.153

Hyper-volume 0.34/0.002 0.674/0.001 0.953/0.008 5.38/2.54 2.051/0.697

MOPSO
CDR

Spread 0.0033/2E-4 0.0032/1E-4 0.003/2E-4 0.003/3E-4 0.088/0.056

Hyper-volume 0.33/3E-5 0.66/3E-5 0.92/1E-4 0.57/0.26 1.670/0.300

MOPSO
CDRS

Spread 0.0027/1E-4 0.0029/2E-5 0.0025/0.0 0.0025/2E-4 0.078/2E-3

Hyper-volume 0.31/2E-5 0.656/3E-5 0.94/6E-5 0.56/0.012 1.345/0.46

Tables borrowed from (Li et al, 2008). The performance values are listed in Table 6-2:

Table 6-2 Existing benchmark results II

 Algorithm ZDT1 ZDT2 ZDT3 ZDT4

113

NSGA2
mean 0.03348 0.07239 0.11450 0.51305

stdev 0.06892 0.177989 0.089107 0.34418

PESA2
mean 0.00105 0.00074 0.00789 9.98254

stdev 0.0000 0.00000 0.010488 4.487093

MOPSO
mean 0.00133 0.00089 0.00418 7.37429

stdev 0.00000 0.00000 0.00000 2.341551

AMOPSO
mean 0.00099 0.00074 0.00391 0.40311

stdev 0.00000 0.00000 0.00000 0.112205

ANMOPSO
mean 0.00005 0.00000 0.00006 0.04083

stdev 0.00000 0.00000 0.00000 0.039749

The original paper used variance in its tables, which have been calculated into standard

deviation, i.e., square root of their values. Calculation of our fitness error makes our error data look

bigger than the real values. For concave curve, we use the vertical distance from the individual to the

curve as the fitness values, for concave curve, we use the horizontal distance from the individual to the

curve, which can be much bigger than the distance from the individual to the curve. MOCAT runs in this

way without any problems.

We use double precision numbers in our emulation and use scientific representation in our

tables for them to avoid over large length.

At the end of evolution, only the individuals that have comparatively good performance and stay

at the first Pareto front will be evaluated for statistics. However, in the middle of evolution, all

individuals will be taken into count to calculate statistics. This is a reasonable computation method

because we want to introduce randomness into the evolutionary procedure.

For topologies, in each run we will use one concrete example to represent how they behave

during the whole evolution, whilst the statistical table renders a general picture of their behavior.

114

6.8 Hardware and software configurations

MOCAT was implemented in Java on top of Repast Simphony. The Java version is 1.6_20 and

had the default configuration.

The experiments were done on a computer with 2G memory, 5400 rpm 3.5-inch hard disk, and a

CPU of Intel Core 2 Duo T5270 that is running at 1.40GHz. This computer has an on-board video card.

The operating system is Windows XP Home edition with Service Pack 3 installed.

During experiments, only the evolution time is counted while the graphical interface

initialization time is ignored. As a fact we find that execution time is very stable for the same problem in

different runs. There were no performance data in terms of evolution time in related literature. Here

we recorded the average execution time in numbers with two decimal digits.

6.9 MOCAT initialization

To prepare MOCAT to run, the population solution is filled with randomly created individuals.

Then we calculate the performances for all social fabrics and update the population space roulette

wheel accordingly. Otherwise, after the first generation one social fabric on the wheel has non-zero

values while all others have zeros; that means the social fabric for the whole evolution has been fixed.

In the belief space, the roulette wheel for knowledge sources is initialized with performance

values of the knowledge sources after they temporarily influence the population. However, the new

created individuals are simply discarded instead of merged into the population and all knowledge

sources will clear their memory after the initialization. The motivation for us to test run one step is t

figure out the value range of the performances of the knowledge sources. For example, for one

115

problem the ranges may be [0.1, 1] while for another problem the rages may be [0.001, 0.1]; excessively

large or smaller initial values may lead evolution to wrong directions at the beginning. For example, if

we give over big initial values, after function update() is executed, the knowledge sources that

contribute to pushing the found Pareto front are punished because their performance values are

actually decreased.

6.10 Definition of fitness error

To evaluate how close the solutions approach the real Pareto front, the minimal distance of the

solution to the Pareto front is often used. In MOCAT, to save computation power, fitness error was

defined and used in measuring the closeness of the solutions to the real Pareto front.

Where
 is the fitness value on the second objective while is fixed. The graphical

representation of the meaning of the fitness error is shown in Figure 6.7, which the yellow curve depicts

the real Pareto front. As to ZDT problems, the fitness error for an individual is generally bigger than the

minimal distance from the individual to the real Pareto front.

116

Figure 6.7 Fitness error vs. minimal distance to real Pareto front

6.11 Hypotheses

At first, we want to test whether MOCAT can efficiently handle multi-objective optimization.

Second, we want to test whether MOCAT is scalable, i.e., whether it can handle higher-dimension

problems. In addition to these, we want to observe internal behaviors inside MOCAT; to be precise,

how knowledge sources and topologies interact with each to contribute to evolution.

There are a series of hypotheses that we want to test, and these null hypotheses are:

1. All knowledge sources contribute equally to solution finding;

2. All topologies contribute equally to solution finding;

3. Specific knowledge sources have no preference of topologies, and vice versa.

We will use statistical approaches to validate these null hypotheses.

117

6.12 Collection of data

During the experiment, some data are routinely collected, which include:

1. The sequence of screen copies of the first run, so that the evolution can be visually

presented;

2. For each run, the fitness errors of the ending solutions and statistics upon them for all runs;

at the end of evolution, only the non-dominated individuals are picked as solutions while

dominated individuals are discarded;

3. Under a specific metric, how many times the topologies are used for each run, and the

statistics upon them for all runs;

4. Under a specific metric, how many times the knowledge sources influence non-dominated

individuals for each run, and the statistics upon them for all runs;

5. Under a specific metric, how many times the knowledge sources influence non-dominated

individuals through different topologies for each run, and the statistics upon them for all

runs.

118

CHAPTER 7 SOLVING PROBLEMS WITH CONVEX PARETO FRONTS USING

MOCAT: ZDT1

In this chapter we begin a looking at how MOCAT deals with problems that generate a

traditional convex Pareto front. In terms of such problems we will investigate the following questions:

1. What is the relative effectiveness of the Homogeneous Spread metric, Homogeneous Hyper-

volume metric, and the combined metrics in directing the generation of the Pareto Front using

the Cultural Algorithm?

2. What are the relative contributions of the various knowledge sources to the generation of

convex Pareto fronts?

3. What social fabric topologies are most effective in spreading information through the

population during the generation process?

4. How are these relationships affected as the dimensionality of the problem is increased from 30

dimensions to 60?

5. How do these different configurations compare to the results produced for convex Pareto fronts

by other MOEAs?

We begin in section 7.1 by describing the ZDT1 problem.

119

7.1 The ZDT 1 Function Specification

There are several features that can cause problems for Evolutionary Algorithms in terms of

generating an optimal Pareto Front and maintaining diversity within the population.

One such situation can occur when the optimal front exhibits a convex curve which means that

the neighbors of a given non-dominated solution are non-linearly related to each other.

where m=30 and . The Pareto-optimal front is formed with g(x) = 1.

The Pareto front is:

120

Figure 7.7.1 ZDT1 Pareto front

Figure 7.1 gives the optimal Pareto front for this problem. ZDT1 has a convex and continuous

Pareto front and may be handled by most MOEAs efficiently. The continuity of the front will make it

relativity easy to generate diversity, whereas the non-linearity of the optimal front will provide a

challenge to MOEAs. Most MOEAs have been developed to handle this category of problems.

7.2 Performance of the Cultural Algorithm Using a Spread Metric on ZDT1

with 30 Dimensions

The runs were complete in an average of 33.54 seconds for 100 generation and 100 individuals

in each population.

121

7.2.1 The Evolution of the Found Pareto Front

In this section we provide a series of screen shots that describe the evolution of the Pareto front

over time using just the spread metric as a performance guide.

Figure 7.2 ZDT1 population at generation 4.

Figure 7.2 shows the population of solutions generated after just four generations. Notice that

the system has produced outcomes primarily on a secondary front which exhibits a fairly linear patterns

—patterns that are easy for EAs to pick up. There are a couple of points that appear to on or very near

the optimal front. Those points and the knowledge sources that generated them will be attractors for

the population in subsequent generations. As we will observe later, both normative and topographical

knowledge have a marked influence in these early stages, while all five knowledge sources play some

122

role. Traditionally these two are known for their exploratory activities. Once they have been able to find

attractive points, the other knowledge sources swarm to those areas and exploit them.

Figure 7.3 ZDT1 at generation 10

At generation 10, Figure 7.3, the population has produced a linear approximation of the optimal

Pareto front. In other words, the Normative and Topographic knowledge sources that typically are

exploratory in nature gradually make way for the Situational, Domain, and History knowledge sources

that exploit the detail around the linear curve. This detail will produce nonlinearities seen in the final

result. These relative roles have been observed in every version of the CAT system from Peng (2007)

through Che (2009).

123

Figure 7.4 ZDT1 at generation 20

By generation 20, Figure 7.4, the population has produced a more convex approximation of the

optimal Pareto front. What remains to be done is to fill in the gaps along the continuous curve. By this

time the exploitative knowledge sources, situational, Domain and History, are dominating the search

while the exploratory knowledge sources have moved on to search other less productive parts of the

space. While this might seem inefficient, if something happens to cause a shift in the Pareto front then

the exploratory knowledge sources will be in a good position to exploit them.

We can see that while each run left some gaps along the real Pareto frontwhich is unavoidable

because there are only limited number of individuals in the population (100) at each time step in our

configuration. Still the gaps are not uniformly spread out which suggests that additional information

may be useful in guiding the system. Note however, thatwhen we combine the points produced over all

20 runs we get the continuous curve shown in Figure 7.5 below.

124

Figure 7.5 Overall found Pareto front

7.2.2 Performance of MOCAT

In table 7.1 we give the statistics for the 20 runs that were conducted. The errors were

produced by comparing each point with the actual value on the known curve. The system was run for

just 100 generations and not until it converged so the errors are non-zero overall.

Table 7-1 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending solutions

 median mean min max stdev

Run #1 3.35E-05 8.76E-05 0.00E+00 6.31E-04 1.34E-04

Run #2 9.54E-06 2.59E-05 0.00E+00 2.36E-04 4.56E-05

Run #3 9.54E-06 2.59E-05 0.00E+00 2.36E-04 4.56E-05

Run #4 1.17E-05 1.39E-05 0.00E+00 7.28E-05 1.22E-05

Run #5 3.39E-05 4.30E-05 0.00E+00 1.53E-04 3.94E-05

Run #6 5.28E-05 9.12E-05 1.00E-09 5.63E-04 1.03E-04

Run #7 6.81E-05 6.86E-04 0.00E+00 3.69E-02 3.84E-03

Run #8 3.04E-05 4.02E-05 0.00E+00 1.69E-04 3.53E-05

Run #9 2.49E-05 3.69E-05 0.00E+00 2.39E-04 4.31E-05

Run #10 5.79E-06 7.52E-06 0.00E+00 2.74E-05 6.55E-06

125

Run #11 7.06E-05 1.24E-04 1.80E-08 7.51E-04 1.44E-04

Run #12 4.62E-05 5.16E-05 0.00E+00 1.83E-04 4.43E-05

Run #13 3.34E-05 3.39E-05 0.00E+00 1.37E-04 2.75E-05

Run #14 1.24E-05 2.38E-04 0.00E+00 1.40E-02 1.60E-03

Run #15 1.68E-04 2.40E-04 2.00E-09 1.11E-03 2.30E-04

Run #16 7.73E-06 8.66E-06 0.00E+00 2.76E-05 6.37E-06

Run #17 3.37E-05 2.67E-04 0.00E+00 2.02E-02 2.07E-03

Run #18 5.94E-05 1.33E-04 1.00E-09 2.78E-03 3.31E-04

Run #19 5.42E-06 7.72E-06 0.00E+00 4.20E-05 9.18E-06

Run #20 2.76E-04 3.37E-04 1.00E-09 1.69E-03 3.55E-04

mean 4.97E-05 1.25E-04 1.15E-09 4.01E-03 4.56E-04

stdev 6.33E-05 1.61E-04 3.90E-09 9.10E-03 9.43E-04

The performances are good; its median and standard deviation are both better than NSGA-II

shown in 6.7 More importantly, we can see that the performance of MOCAT is very stable and reliable.

7.2.3 Statistics of Topologies using Spread metric

In Figure 7.2 examines how the five homogeneous topologies affected the search process here.

It shows the number of times that each topology was used over the 100 generations used in each run.

T-Tests were conducted and appended to the table that tested whether a topology was used more

frequently for this convex problem than other topologies. The statistical significance of the tests is not

sufficiently high to reject the null hypothesis that there is no difference in usage here.

Table 7-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 13 20 26 15 26 0.847027419

Run #2 23 12 30 17 18 1.111389115

Run #3 10 19 21 21 29 1.119421394

Run #4 21 16 36 16 11 0.978107524

Run #5 28 14 13 19 25 1.086135314

Run #6 14 19 23 21 23 6.666230388

126

Run #7 21 23 16 21 19 1.287356055

Run #8 16 20 18 14 32 1.098285051

Run #9 21 23 17 27 12 0.964309758

Run #10 22 26 17 16 19 1.168181793

Run #11 23 20 14 19 24 6.535200529

Run #12 22 26 23 17 12 8.853087069

Run #13 20 14 14 24 28 6.822412532

Run #14 11 19 27 14 29 1.251946181

Run #15 22 22 19 19 18 1.077883337

Run #16 29 25 14 18 14 4.076536355

Run #17 15 13 23 27 22 1.129818909

Run #18 12 22 17 28 21 8.931720072

Run #19 19 25 12 27 17 1.030404928

Run #20 36 14 13 11 26 1.211594209

mean 19.9 19.6 19.65 19.55 21.25

stdev 6.512336 4.5002924 6.425893 4.925498 6.19741

t-test Lbest vs. 0.433213 0.451691 0.424538 0.252964

 Square vs. 0.488714 0.48672 0.170998

 Octal vs. 0.47813 0.213915

 Hex vs. 0.171623

7.2.4 Behaviors of Knowledge sources using the Spread Metric

In table 7-3 we see the number of individuals influenced by each knowledge source over time.

Notice that each of the two exploratory knowledge sources, normative and topographic, are both

relatively low in the number of agents controlled in comparison with the exploitative knowledge sources.

The t-tests given in the table show that there are indeed statistically significant differences, at alpha =.05,

between the influence of the different knowledge sources. Clearly the system spends most of its time

exploiting the early results of search over all runs.

Table 7-3 The number of Individuals influenced by KS using the Spread Metric

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 346 1453 1489 1075 187

127

Run #2 356 1395 1535 1159 168

Run #3 350 1464 1422 1167 172

Run #4 310 1381 1615 919 130

Run #5 335 1399 1523 1033 151

Run #6 324 1459 1503 1039 126

Run #7 317 1496 1537 805 81

Run #8 291 1434 1519 1003 122

Run #9 289 1402 1508 1051 160

Run #10 311 1400 1516 977 109

Run #11 344 1443 1548 1122 128

Run #12 292 1401 1557 1044 107

Run #13 279 1481 1415 1059 124

Run #14 330 1386 1526 1162 163

Run #15 317 1373 1617 872 128

Run #16 326 1415 1548 1008 171

Run #17 346 1475 1523 1120 168

Run #18 301 1428 1542 880 167

Run #19 343 1399 1532 1068 168

Run #20 282 1362 1456 1101 146

mean 319.45 1422.3 1521.55 1033.2 143.8

stdev 24.4 38.8 50.6 101.0 27.9

t-test KS-N vs. 8.22E-43 2.05E-36 2.25E-19 1.01E-22

 KS-S vs. 1.96E-08 7.94E-15 4.64E-47

 KS-D vs. 4.99E-18 4.33E-40

 KS-H vs. 9.09E-22

7.2.5 Statistics of Topology-Knowledge tuple

In Table 7-4 the total number of non-dominated solutions that are generated by each

knowledge source for a given topology on average over the 20 runs is given. The exploratory knowledge

sources, Normative and Topographic, generate the fewest non-dominated individuals per run but they

are critical to generating the first approximations that the three exploitative knowledge sources (history,

situational and domain) exploit. Notice that the hexagonal topology produces the most non-dominated

128

solutions over all of the topologies on average. In fact the most complex topologies, hex and global,

generate the most non-dominated solutions.

In Table 7-5 the ratio of the standard deviation to the mean is given. This ratio gives an estimate

of the variability in production of non-dominated solutions. Notice that the topologies that produce the

most non-dominated solutions are the most consistent. On the other hand, LBEST, which is the simplest

topology, is the most variable in the generation of non-dominated solutions from run to run. This

suggests that it is used in a more opportunistic sense than the other topologies here..

Table 7-4 The total number of non-dominated solutions generated over all 20 runs for
each KS Topology pairing.

 N S D H T

Lbest
mean 59.8 267.55 272.45 198.2 27.65

stdev 36.77327 127.2964 130.2578 95.18326 19.75981

Square
mean 65.95 290.25 305.75 216 29.3

stdev 33.80202 86.61401 98.94968 67.4412 12.86816

Octal
mean 67.45 284.95 291.8 217.95 32.45

stdev 24.7439 100.2625 101.2753 80.25058 15.54442

Hex
mean 66.4 303.9 319.1 229.1 30.9

stdev 23.27954 85.46769 85.82044 57.93363 12.0739

Global
mean 65.9 286.3 302.9 210.05 33.15

stdev 23.38218 102.2999 100.3326 78.35377 18.28222

Table 7-5 Variability of Topology-Knowledge tuple Production.

stdev/mean N S D H T

Lbest 0.614938 0.475785 0.478098 0.480238 0.71464

Square 0.51254 0.298412 0.323629 0.312228 0.439186

Octal 0.366848 0.35186 0.347071 0.368206 0.479027

Hex 0.350595 0.281236 0.268945 0.252875 0.390741

Global 0.354813 0.357317 0.33124 0.373024 0.5515

129

7.3 Using Hyper Volume to Guide MOCAT for ZDT1 in 30 dimensions

In this section we use the other spread metric, hyper-volume, to guide the search. The overall

Pareto front produced is similar to that for the spread metric and will not be given here. Each run was

completed in an average of 34.42 seconds.

7.3.1 Performance of MOCAT

The statistics shown in Table 7-6 give the overall error produced using the hyper-volume for the

20 runs. In general, the mean error and standard deviation is slightly higher than that for the spread

metric. This suggests that it is focused on a larger portion of the search space then for the spread metric

on average.

Table 7-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of endingsolutions

 median Mean Min max stdev

Run #1 3.79E-05 5.41E-05 1.00E-09 2.89E-04 5.50E-05

Run #2 3.74E-05 5.12E-05 0.00E+00 3.24E-04 5.23E-05

Run #3 2.46E-04 8.07E-04 2.00E-09 4.80E-02 4.93E-03

Run #4 4.60E-05 5.23E-05 0.00E+00 1.80E-04 4.17E-05

Run #5 1.43E-04 1.98E-04 0.00E+00 8.21E-04 1.74E-04

Run #6 2.23E-05 1.97E-04 0.00E+00 3.55E-03 5.92E-04

Run #7 9.99E-05 1.30E-04 0.00E+00 5.30E-04 1.15E-04

Run #8 2.29E-05 3.62E-05 0.00E+00 2.05E-04 4.12E-05

Run #9 1.25E-05 1.74E-05 0.00E+00 6.14E-05 1.66E-05

Run #10 1.70E-04 1.93E-04 0.00E+00 5.97E-04 1.25E-04

Run #11 1.97E-05 2.50E-05 1.00E-09 1.04E-04 2.02E-05

Run #12 1.37E-05 2.19E-05 0.00E+00 8.62E-05 2.20E-05

Run #13 1.11E-05 1.45E-05 0.00E+00 6.07E-05 1.37E-05

Run #14 1.23E-04 1.88E-04 1.00E-09 9.72E-04 2.23E-04

Run #15 2.81E-05 7.41E-05 0.00E+00 9.55E-04 1.50E-04

Run #16 2.33E-05 2.58E-05 0.00E+00 1.09E-04 2.07E-05

Run #17 5.56E-05 6.09E-05 0.00E+00 2.35E-04 5.60E-05

130

Run #18 2.57E-05 2.99E-05 0.00E+00 1.96E-04 2.73E-05

Run #19 8.19E-05 4.10E-04 0.00E+00 4.65E-03 8.00E-04

Run #20 7.18E-05 8.54E-05 0.00E+00 3.01E-04 6.69E-05

mean 6.46E-05 1.34E-04 2.50E-10 3.11E-03 3.77E-04

stdev 6.15E-05 1.81E-04 5.36E-10 1.04E-02 1.06E-03

7.3.2 Statistics of Topologies using Hyper-volume metric

In table 7-7 the number of times that each topology was selected during a given run is

presented. The t-test given in the table suggests that as with the spread metric there is no evidence for a

difference in the use of topologies to direct the search process for the convex problem here.

Table 7-7 Use Count of Topologies of each run

Using Hyper-volume metric

Hyper-volume
Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 28 17 14 19 22 0.737209538

Run #2 22 19 22 18 19 0.680990974

Run #3 16 23 17 19 25 0.532614128

Run #4 22 19 16 26 17 0.555647676

Run #5 18 30 19 23 10 0.626039696

Run #6 19 18 20 21 22 0.65271006

Run #7 17 16 27 17 23 0.694732545

Run #8 24 20 20 16 20 0.621438754

Run #9 17 28 16 23 16 0.682875636

Run #10 25 13 25 14 23 0.505261666

Run #11 22 18 14 26 20 0.574701695

Run #12 22 25 18 13 22 0.493580557

Run #13 15 20 24 17 24 0.582580069

Run #14 17 25 17 22 19 1.20564987

Run #15 19 22 18 20 21 0.725434879

Run #16 20 12 16 27 25 0.701219191

Run #17 25 18 25 23 9 0.675484116

Run #18 20 14 27 18 21 0.634895268

Run #19 21 19 20 19 21 0.938095568

Run #20 24 22 20 16 18 0.582703204

mean 20.65 19.9 19.75 19.85 19.85

131

stdev 3.468277 4.700504 4.063639 3.963983 4.295346

t-test Lbest vs. 0.284761 0.227989 0.250581 0.260512

 Square vs. 0.457303 0.485593 0.486086

 Octal vs. 0.468811 0.470055

 Hex vs. 0.5

7.3.3 Behaviors of Knowledge sources using Hyper-volume Metric

In table 7-8 we see the extent to which each of the knowledge sources can influence the

individuals in the population. As with the spread metric the exploratory knowledge sources are used less

frequently than the exploitative knowledge sources. The t-tests in the table indicate a significance

difference in the influence of the knowledge sources over the courses of the runs. This result is again

similar to that for the spread metric.

Table 7-8 Using Hyper-volume metric #Individuals influenced by KS

Using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 366 1416 1507 993 188

Run #2 331 1444 1518 907 176

Run #3 333 1432 1518 1146 155

Run #4 319 1454 1443 1179 144

Run #5 347 1425 1553 976 181

Run #6 332 1468 1541 929 142

Run #7 315 1471 1465 1181 169

Run #8 320 1451 1450 1059 155

Run #9 299 1389 1492 1026 133

Run #10 311 1406 1430 1231 127

Run #11 337 1464 1477 1127 180

Run #12 291 1475 1479 879 118

Run #13 318 1452 1513 963 142

Run #14 332 1456 1501 898 126

Run #15 284 1432 1492 928 90

Run #16 319 1417 1540 899 117

Run #17 332 1434 1509 1058 149

Run #18 276 1418 1548 934 128

132

Run #19 320 1464 1549 1093 175

Run #20 353 1439 1455 1068 183

mean 321.75 1440.35 1499 1023.7 148.9

stdev 22.4 23.6 37.5 109.0 27.0

t-test KS-N vs. 6.84E-55 2.7E-43 3.04E-18 4.4E-23

 KS-S vs. 6.85E-07 8.01E-14 5.53E-55

 KS-D vs. 9.35E-16 2.05E-48

 KS-H vs. 1.38E-20

7.3.4 Generation of non-dominated individuals by Knowledge Topology Tuple Using the

Hyper-Cube Performance Function

Table 7-9 gives the number of non-dominated solutions produced by each topology-knowledge

source pair. Notice that the global topology was the most effective at generating non-dominated

solutions in each of the knowledge sources for this problem. In terms of the knowledge sources, the

exploitative knowledge sources dominated the generation of non-dominated solutions, especially the

domain knowledge source. The latter is influential in driving the hill climbing activity of the Cultural

Algorithms. These results are similar to the spread metric version.

Table 7-10 examines the how each knowledge source topology pair varies in its production of

non-dominated solutions over the ten runs. The statistic is produced by taking the ratio of the standard

deviation for the runs and dividing by the mean of the runs. The values are taken from Table 7-9. The

larger the ratio the more diversity there is in the generation of the non-dominated solutions for each

pair. It is clear that the exploitative knowledge sources (history, domain, and situational) are more

consistent generators of non-dominated solutions across all runs. On the other hand, the exploitative

knowledge sources show more variability in the generation of the non-dominated solutions over the set

of runs. This indicates that more exploration may be needed in one run versus another based upon how

the search process begins.

133

Table 7-9 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 66.3 296.65 307.8 204.05 34.3

stdev 21.53357 70.33998 64.90852 50.27448 13.7462

Square
mean 61.65 268.15 281.6 191.5 25.85

stdev 22.47168 57.56852 63.87109 41.99311 9.560197

Octal
mean 58.7 265.7 281.7 200.65 29.25

stdev 19.855 70.57217 75.61962 59.27037 11.76021

Hex
mean 64.2 279.25 294.45 198.15 28.4

stdev 18.70997 53.16298 58.6304 46.66485 12.62579

Global
mean 71.15 318.15 337.85 223.65 34.6

stdev 21.0595 69.41278 72.35459 52.80578 14.8054

Table 7-10 Variability in the Production of Non-Dominated Solutions by Topology-
Knowledge tuple as given by the ratio of the standard deviation to the mean for each

knowledge topology pair.

stdev/mean N S D H T

Lbest 0.32479 0.237114 0.210879 0.246383 0.400764

Square 0.364504 0.214688 0.226815 0.219285 0.369834

Octal 0.338245 0.265608 0.26844 0.295392 0.402059

Hex 0.291433 0.190378 0.199118 0.235503 0.44457

Global 0.295987 0.218176 0.214162 0.236109 0.427902

7.4 Solving ZDT1 with dimension 30 using the combined metrics

In these 20 runs we combine the two metrics and observe their performance in guiding the

MOCAT search here. Each run was complete in an average of 36.18 seconds. Thus, the combined

metric version takes about two seconds more on average to generate a solution than the hyper-cube

volume metric controlled Cultural Algorithm. Recall that in the combined approach the metric took turns

guiding the search process, switching every 25 generations.

134

7.4.1 Performance of MOCAT with the Combined Metrics

The performance statistics for the MOCAT system guided by the combined metrics are given in

Table 7-11. Overall the combined system produces results that are similar to the two independent

metrics above. Of the three metric combinations used the spread metric by itself had the smallest mean

overall error but the largest standard deviation. The hyper-volume metric on its own produced a slightly

increased mean error term but reduced the standard deviation from that of the spread metric. However,

the overall mean error for the combined metrics is the highest of the three configurations, but it exhibits

the lowest standard deviation. This suggests that the combined metric controlled solution is more

focused than either of the two metric controlled Cultural Algorithms on their own.

Table 7-11 Statistics for the fitness errors of ending solutions

 Statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 3.39E-05 4.30E-05 0.00E+00 1.53E-04 3.94E-05

Run #2 1.86E-04 4.09E-04 0.00E+00 5.98E-03 7.71E-04

Run #3 2.16E-04 5.53E-04 0.00E+00 4.30E-03 7.43E-04

Run #4 1.61E-05 2.51E-05 1.00E-09 1.05E-04 2.56E-05

Run #5 5.25E-05 9.02E-05 0.00E+00 8.92E-04 1.24E-04

Run #6 1.42E-04 1.85E-04 1.10E-08 8.40E-04 1.67E-04

Run #7 9.99E-06 3.31E-05 0.00E+00 1.72E-03 1.75E-04

Run #8 2.06E-06 2.52E-06 3.00E-09 2.30E-05 3.31E-06

Run #9 9.75E-05 1.33E-04 9.10E-08 1.03E-03 1.54E-04

Run #10 4.84E-05 6.06E-05 1.00E-09 3.92E-04 6.30E-05

Run #11 2.97E-04 4.16E-04 3.00E-09 4.35E-03 5.45E-04

Run #12 1.15E-05 1.73E-05 1.00E-09 1.01E-04 1.76E-05

Run #13 9.24E-05 1.36E-04 4.00E-09 9.72E-04 1.48E-04

Run #14 3.83E-05 4.33E-05 9.00E-09 2.00E-04 3.70E-05

Run #15 9.65E-05 1.13E-04 0.00E+00 3.67E-04 8.48E-05

Run #16 2.73E-05 2.90E-04 0.00E+00 2.04E-03 4.60E-04

Run #17 2.56E-05 2.47E-05 0.00E+00 9.31E-05 1.83E-05

Run #18 1.15E-05 9.74E-05 4.30E-08 5.12E-03 5.58E-04

135

Run #19 3.32E-05 4.58E-05 0.00E+00 1.50E-04 3.89E-05

Run #20 2.29E-05 3.33E-04 0.00E+00 3.99E-03 6.85E-04

mean 7.30E-05 1.53E-04 8.35E-09 1.64E-03 2.43E-04

stdev 7.79E-05 1.56E-04 2.12E-08 1.90E-03 2.64E-04

7.4.2 Statistics of Topologies for both metrics

Given that the control was switched every 25 generations, each metric was observed for 50

generations in each run. Tables 7-12 and 7-13 give the topology usage for each of the two metric

components respectively over the 50 generations that they were used.

Table 7-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 9 18 10 9 4 1.030436212

Run #2 9 10 11 12 8 1.317797209

Run #3 8 10 9 8 15 1.02599956

Run #4 7 6 8 11 18 1.038701676

Run #5 6 18 6 14 6 7.19100245

Run #6 7 10 14 11 8 1.029884084

Run #7 7 3 15 11 14 1.068474789

Run #8 10 22 6 2 10 0.964449467

Run #9 13 10 8 6 13 4.142557897

Run #10 4 9 16 12 9 1.318180782

Run #11 13 7 13 4 13 1.038507953

Run #12 10 10 7 9 14 7.978955659

Run #13 8 12 14 10 6 1.17575409

Run #14 13 6 15 4 12 1.600382192

Run #15 4 6 9 21 10 1.115927844

Run #16 12 12 7 7 12 4.758465232

Run #17 8 4 12 20 6 1.178250946

Run #18 8 12 7 10 13 5.903779215

Run #19 7 11 9 12 11 6.744121779

Run #20 8 9 14 13 6 1.034601066

mean 8.666667 10.277778 10.38889 10.05556 10.61111

stdev 2.786522 5.0035935 3.415172 4.940496 3.775134

136

t-test Lbest vs. 0.086345 0.024465 0.080109 0.039653

 Square vs. 0.424235 0.486784 0.45601

 Octal vs. 0.439177 0.464632

 Hex vs. 0.470606

For the spread metric in Table7-12 there are t-tests showing whether there are statistical

differences between the pair of use of topologies when. Here we can see that topology Lbest has

obviously lower values of usage than the others for the spread metric. In fact, it is significantly lower

than Octal and Global topologies in use. This suggests that Lbest was not as effective in distributing

knowledge as the other more connected topologies with the spread metric in the combined case.

Table 7-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 10 7 14 11 8 0.487763434

Run #2 10 1 9 14 16 0.554713793

Run #3 8 17 6 10 9 0.580528462

Run #4 13 9 13 9 6 0.598461602

Run #5 7 8 13 12 10 0.600307753

Run #6 14 8 9 13 6 0.617521337

Run #7 11 12 9 8 10 0.581744843

Run #8 9 8 11 14 8 0.664396647

Run #9 13 11 12 5 9 0.710420946

Run #10 7 9 10 12 12 0.556012493

Run #11 5 9 10 13 13 0.515702789

Run #12 8 11 15 7 9 0.913295602

Run #13 11 9 12 11 7 0.853775975

Run #14 7 14 13 7 9 0.531787556

Run #15 10 9 12 11 8 0.716315639

Run #16 11 7 12 8 12 0.672850736

Run #17 15 8 5 11 11 0.659040005

Run #18 9 9 11 10 11 0.663649704

Run #19 12 7 7 8 16 0.669755857

Run #20 7 10 11 9 13 0.520502392

mean 9.85 9.15 10.7 10.15 10.15

stdev 2.680828623 3.133435982 2.617753155 2.49789385 2.870448342

137

t-test Lbest vs. 0.226282 0.158378 0.358147 0.367275

 Square vs. 0.048998 0.135884 0.149656

 Octal vs. 0.250384 0.265232

 Hex vs. 0.5

As shown in Table 7-13 the Octal topology is used most frequently on average under the control

of the hyper-cube metric, just as with the spread metric. It is used significantly more often than the

LBEST topology, similar to the spread metric. While both metrics did not exhibit statistical difference in

their usage of topologies on their own, when combined they make similar usage of the topologies. Octal

is used the most in both, and its usage is significantly more than that of LBEST for both the Spread

metric and Hyper-Volume phases of the combined approach.

7.4.3 Behaviors of Knowledge sources with the two metric phases.

Tables 7-14 and 7-15 give the relative use of the knowledge sources by both the spread metric

and the hyper-volume phases of the combined system respectively. As was exhibited by each metric

separately, the most influential knowledge source was the domain knowledge source which controlled

the hill climbing activities. It was used significantly more often than the other statistics in both phases of

the problem solving process. Also, we can see that knowledge sources N and T, the exploratory

knowledge sources, were chosen significantly less frequently than other knowledge sources.

Table 7-14 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 209 692 746 541 109

Run #2 216 726 766 490 124

Run #3 264 682 761 450 91

Run #4 229 723 743 438 76

138

Run #5 219 742 788 422 100

Run #6 220 702 766 494 109

Run #7 194 730 785 380 71

Run #8 205 735 787 515 124

Run #9 229 719 798 443 99

Run #10 215 717 747 584 94

Run #11 190 727 748 554 81

Run #12 182 759 709 467 76

Run #13 191 702 773 499 48

Run #14 234 697 808 439 79

Run #15 185 722 754 548 102

Run #16 215 708 802 380 67

Run #17 215 745 747 471 90

Run #18 208 722 754 420 54

Run #19 201 685 794 424 104

Run #20 230 696 748 487 68

mean 212.55 716.55 766.2 472.3 88.3

stdev 19.6 20.7 25.2 56.9 21.2

t-test KS-N vs. 6.1E-44 8.04E-42 3.33E-16 2.07E-21

 KS-S vs. 2.73E-08 9.37E-16 5.07E-47

 KS-D vs. 2.81E-18 1.57E-45

 KS-H vs. 2.38E-20

Table 7-15 Using Hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 145 711 781 603 95

Run #2 119 723 734 546 70

Run #3 120 714 759 559 64

Run #4 106 747 721 533 49

Run #5 124 696 761 566 52

Run #6 136 703 755 588 68

Run #7 146 742 739 437 47

Run #8 122 731 743 580 85

Run #9 106 678 750 505 56

Run #10 116 665 726 629 80

Run #11 117 708 730 638 70

Run #12 113 744 730 524 63

139

Run #13 127 709 744 509 60

Run #14 123 727 736 600 53

Run #15 97 702 724 535 50

Run #16 134 685 772 580 69

Run #17 120 731 696 584 59

Run #18 107 721 754 516 40

Run #19 131 773 734 497 48

Run #20 105 715 713 553 60

mean 120.7 716.25 740.1 554.1 61.9

stdev 13.2 25.4 20.3 48.9 13.8

t-test KS-N vs. 2.12E-37 1.9E-44 8.99E-22 1.27E-16

 KS-S vs. 0.001138 5.85E-14 3.47E-39

 KS-D vs. 6.84E-15 2.06E-46

 KS-H vs. 4.13E-23

7.4.4 The Generation of non-dominated solutions by Topology-Knowledge tuples.

Tables 7-18 and 7-19 give the productivity of each topology-knowledge source combination over

all of the runs in terms of non-dominated solutions. Whereas the most productive pairings were octal-

Domain and Hex-Domain for the spread metric and Global-Domain for the hyper-volume metric, the

combined metric system employs the hex-domain combination to produce the most non-dominated

solutions. This appears to be a blending of influences for the two different metric phases.

Also, in Table 7-16 we note that now the system is using the exploitative knowledge sources in a

more focused way, with less variation. This is the reason for a reduction in the overall variability in

performance over the 20 runs.

Table 7-16 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 60.2 283.85 303.75 211.6 26.1

stdev 22.7286 55.47429 68.24482 48.89559 7.05542

Square
mean 58.75 280.15 297.65 201.95 27.6

stdev 19.24325 54.02658 58.86941 39.5494 7.111148

140

Octal
mean 64.3 287.15 305.95 209.4 30.65

stdev 20.68842 49.95501 51.15968 45.22971 12.68764

Hex
mean 74 298.5 314.5 216.9 31.95

stdev 25.21487 72.89249 76.26236 53.4956 13.2207

Global
mean 61.25 274.6 295.25 203.8 28.1

stdev 27.44924 84.78418 90.13375 58.35337 12.61119

Table 7-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.377552 0.195435 0.224674 0.231076 0.270323

Square 0.327545 0.192849 0.197781 0.195838 0.25765

Octal 0.321748 0.173968 0.167216 0.215997 0.413953

Hex 0.340741 0.244196 0.242488 0.246637 0.413793

Global 0.448151 0.308755 0.305279 0.286327 0.448797

7.4.5 Analysis of found Pareto front

The Optimal Pareto front produced by the combination of the results from the 20 runs is given

below. The coverage of the optimal front is quite complete.

Figure 7.6 Overall found Pareto front

141

7.5 Summary of ZDT1

In summary, based upon the 20 runs the MOCAT system is able to perform better than other

existing systems such as NSGA_II on the convex problem .It’s performance is affected by the spread

metrics employed. Some conclusions that can be drawn from our experiments are:

1. MOCAT solves the problem by first generating a linear approximation to the curve via

exploration and then pushes out on the line using exploitation.

2. Exploratory knowledge sources are used less frequently than exploitation knowledge sources to

generate non-dominated solutions.

3. For 30 dimensions there is no statistically significance preference for one topology over another

for either of the metrics individually or combined. The combined use of the metrics produces a

system in 30 dimensions with a slightly increased performance error but decreased standard

deviation. This suggests a synergy between the two metrics since the spread metric is good at

supporting search and the hyper-volume metric good at exploitation.

4. There is also an apparent blending of behaviors between the two approaches when they are

used together. They focus in on a shared topology=knowledge source that is different that is

slightly different from the ones that were favored by each alone.

5. The complex topologies, hex and global, generate more non-dominated solutions here with the

simpler topologies generating fewer.

6. The exploratory generate fewer non-dominated solutions than the exploitative ones but their

contribution is more volatile reflecting the need to jump start the search process in certain

situations.

142

7. The combined metric system produced more focused search which means that there is less

variability in the productivity of the knowledge-source-topology pairs.

8. While this problem is relatively straightforward and can be handled by either metric on its own

with an emphasis on hill-climbing, the combined sytem does provided a more focused and

blended environment for problem solving. This will become more important as the problems to

be solved become more difficult.

143

CHAPTER 8 THE PERFORMANCE OF MOCAT ON PROBLEMS WITH

CONCAVE PARETO FRONTS: DTZ2

At the first glance, ZDT2 is very similar to ZDT1, especially in terms of the definition of the

problems. However, ZDT1 is a concave problem whereas ZDT2 is a convex. It will be interesting to

observe how the spread metrics perform in this case. Recall that the system first developed a linear

approximation and then proceeded to shift points to produce a curve. Here the direction of the curve,

and therefore movement of points will be in the opposite direction. The ability of MOCAT to move

individuals in both directions will be an indicator of its versatility. Thereafter, in this section we will

observe whether MOCAT can still perform well in presence of disturbance.

We will use homogeneous spread metric, homogeneous hyper-volume metric, and combined

two metrics to conduct experiments and try to observe and summarize the correspondence among

knowledge sources and topologies.

8.1 Using MOCAT To Find Optimal Pareto Front for Concave Problems: ZDT 2

with 30 dimensions

ZDT2 is a continuous function with an optimal Pareto Front that is concave. The mathematical

description of the problem is shown below and the optimal front is shown in Figure 8.1

144

where m=30 and . The Pareto-optimal front is formed with g(x) = 1.

The Pareto front is:

Figure 8.1 ZDT2 Pareto front

ZDT2 has a continuous Pareto front but it is convex; which may be a challenge to some MOEs

(Deb, 2001) because they tried to reduce the area encircled by the found Pareto font and X and Y axes.

145

The runs were complete in an average of 33.78 seconds for 100 generation and 100 individuals

in each population.

8.1.1 Performance of MOCAT Guided by the Spread metric

In Figure 8.2 (a-d) the evolution of the Pareto front over the 100 generations of an example run

is given. Notice that the optimal front is represented by a small but relatively linear sequence of points

that serve as attractors for the knowledge sources that exploit that pattern to create a more convex

curve. Since we use only 100 individuals and run for only 100 generations there will undoubtedly be

gaps in the curve for any run. At the end of the section, the individual points generated over each of the

20 runs are merged to produce a more refined curve.

(a) Generation 5.

146

Generation 10

147

(c)Generation 20

148

(d)Generation 100

Figure 8.2 (a-d). A series of screen shot s showing how the Pareto front is constructed over
time.

Table 8-1 gives the performance for the MOCAT system using the spread metric performance

function. What is interesting is that while the mean error is higher than that for the convex problem

(3.63E-4 vs. 1.25E-04) the standard deviation is now lower (4.56E-03 vs. 1.15E-03). These results

outperform all of the other benchmarked systems given in table 6.2.

Table 8-1 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 1.85E-05 5.61E-05 0.00E+00 5.06E-04 6.80E-05

Run #2 4.01E-05 2.21E-04 -5.55E-17 1.39E-03 3.00E-04

149

Run #3 4.80E-07 1.80E-05 4.07E-11 6.86E-04 9.62E-05

Run #4 2.95E-06 4.47E-04 9.96E-12 4.12E-02 4.20E-03

Run #5 2.29E-05 1.04E-04 -5.55E-17 6.86E-04 1.36E-04

Run #6 1.94E-04 6.35E-04 -5.55E-17 3.07E-03 6.40E-04

Run #7 1.46E-04 1.04E-03 3.55E-12 3.68E-02 3.76E-03

Run #8 3.10E-06 1.67E-05 4.97E-10 7.60E-05 2.09E-05

Run #9 1.70E-05 9.77E-05 1.20E-10 8.74E-04 1.36E-04

Run #10 6.54E-04 7.80E-04 1.08E-09 2.85E-03 6.42E-04

Run #11 2.41E-06 5.60E-06 -3.28E-17 1.90E-05 4.48E-06

Run #12 1.01E-04 3.11E-04 -5.55E-17 1.32E-03 3.04E-04

Run #13 1.31E-04 1.75E-04 3.46E-12 7.00E-04 1.69E-04

Run #14 2.71E-05 1.27E-04 8.98E-09 9.91E-04 1.67E-04

Run #15 3.20E-04 1.18E-03 3.51E-13 7.98E-03 1.39E-03

Run #16 8.50E-05 4.87E-04 8.89E-11 2.50E-03 6.02E-04

Run #17 3.27E-06 4.94E-05 -3.64E-17 3.00E-03 3.05E-04

Run #18 6.48E-06 1.41E-05 3.83E-13 4.94E-05 1.06E-05

Run #19 1.05E-06 7.31E-06 -2.78E-17 1.65E-04 2.33E-05

Run #20 4.91E-06 1.49E-03 2.47E-11 7.70E-02 1.00E-02

mean 8.90E-05 3.63E-04 5.43E-10 9.09E-03 1.15E-03

stdev 1.53E-04 4.31E-04 1.95E-09 1.93E-02 2.34E-03

Since we ran the system for only 100 generation, we pooled the results of the 20 runs to get the

Pareto front shown in Figure 8.3 below.

150

Figure 8.3 Overall Computed Pareto front

8.1.2 The Use of the Topologies in MOCAT with the Spread Metric

Table 8-2 gives the count of the topologies used under the spread performance metric. For the

Convex problem there were no significant differences in usage of the topologies by MOCAT with the

Spread Metric. Here, the use of the GLOBAL topology is significantly less than the others with the

exception of the Hexagonal topology.

Table 8-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 13 20 22 28 17 1.075076

Run #2 30 17 20 15 18 7.713442

Run #3 27 17 19 19 18 6.858578

Run #4 19 19 21 18 23 6.617002

Run #5 23 29 28 9 11 1.131607

Run #6 24 25 15 18 18 8.642619

Run #7 12 23 23 18 24 3.38353

Run #8 24 19 28 11 18 6.399448

151

Run #9 23 25 15 20 17 7.085921

Run #10 11 21 30 22 16 3.380326

Run #11 21 14 17 24 24 1.41518

Run #12 25 17 19 24 15 7.526634

Run #13 30 12 13 30 15 5.384621

Run #14 28 19 17 20 16 1.131752

Run #15 28 22 24 10 16 5.427405

Run #16 26 24 12 17 21 7.559107

Run #17 15 15 35 18 17 1.409467

Run #18 17 22 22 20 19 6.90993

Run #19 21 14 25 21 19 7.021774

Run #20 24 27 16 21 12 7.132664

mean 22.05 20.05 21.05 19.15 17.70

stdev 5.71 4.50 5.87 5.20 3.35

t-test Lbest vs. 0.119021 0.298726 0.054902 0.003716

 Square vs. 0.279661 0.285862 0.038157

 Octal vs. 0.148802 0.019375

 Hex vs. 0.157143

In the convex case the more complex topologies such as global were more active in the problem

solving process. For the concave case it is the other way around, LBEST is now used most frequently on

average. This suggests that too much communication with other individuals may have adverse effects on

the evolution for ZDT2. It may be that too much communication results in more individuals being

moved in the wrong direction from the concave front. Additionally, it suggests that the system is able to

adjust its search process to reflect changes in the Pareto front for a given problem.

8.1.3 Knowledge Source Usage with the Spread Metrics

In table 8-3 the number of individuals influenced by each knowledge source for each run is given.

Notice that as with the convex problem each knowledge source is used to a statistically different extent.

The system here has reduced the emphasis on exploration by reducing the usage of normative and

topographic knowledge and increased it use of domain and situational knowledge source, ones that

152

focus on exploitation in an area. This may be a way of reducing the number of attempts to move

individuals to the left of the linear approximation, so as to generate a concave one.

Table 8-3 The Number of Individuals Influenced by the Spread Metric for Each Knowledge
Source.

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 260 1487 1476 1020 99

Run #2 261 1337 1550 892 96

Run #3 295 1362 1616 863 93

Run #4 318 1344 1467 973 73

Run #5 277 1358 1501 983 101

Run #6 298 1375 1602 704 87

Run #7 285 1317 1662 674 101

Run #8 309 1442 1479 1026 89

Run #9 308 1390 1540 880 73

Run #10 252 1388 1514 925 60

Run #11 295 1444 1528 1013 92

Run #12 287 1410 1547 832 74

Run #13 299 1389 1523 918 75

Run #14 258 1398 1533 1033 91

Run #15 311 1309 1560 946 99

Run #16 310 1395 1562 918 86

Run #17 269 1396 1534 770 73

Run #18 266 1474 1485 945 64

Run #19 294 1390 1480 996 69

Run #20 291 1475 1519 807 85

mean 287.15 1394.00 1533.90 905.90 84.00

stdev 19.73 49.18 48.85 102.07 12.55

t-test KS-N vs. 2.58E-33 9.48E-35 2.07E-17 1.4E-28

 KS-S vs. 5.29E-11 1.81E-17 1.54E-31

 KS-D vs. 2.9E-20 1.39E-32

 KS-H vs. 2.2E-19

153

8.1.4 Combined Usage Frequency of Topology-Knowledge Tuple with the Spread

Performance Metric

In Table 8-4 the average number of non-dominated solutions produced by each knowledge

source topology pair is given. Although the most complex topologies dominated the generation of non-

dominated solutions for the convex problem, here the simplest topology dominates the generation of

non-dominated solutions. This suggests that in the concave problem much more local search is used. In

Table 8-5 the variability in production is now associated with the exploratory knowledge sources

regardless of topology. This means that exploratory knowledge sources will be invoked more frequently

when they have found a good region in the search space.

Table 8-4 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 65.65 308.3 343.1 196.95 21.2

stdev 31.01829 76.42065 98.05847 63.95432 11.53302

Square
mean 52.25 278.75 306.65 182.85 15.35

stdev 21.036 68.70139 75.46228 42.44907 8.36833

Octal
mean 64.5 288.05 325.5 190.4 17.55

stdev 29.18273 76.6856 87.49707 60.22624 10.41494

Hex
mean 55.3 268.4 291.5 177 17.95

stdev 22.06474 76.5736 76.91246 55.05595 10.92787

Global
mean 49.45 250.5 267.15 158.7 11.95

stdev 21.69034 52.93243 55.47429 35.55885 7.830272

Table 8-5 Randomness of Topology-Knowledge tuple, Standard deviation divided by the
mean

stdev/mean N S D H T

Lbest 0.47248 0.247878 0.285801 0.324724 0.54401

Square 0.402603 0.246462 0.246086 0.232152 0.545168

Octal 0.452445 0.266223 0.268808 0.316314 0.593444

Hex 0.399001 0.285297 0.263851 0.311051 0.608795

Global 0.438632 0.211307 0.207652 0.224063 0.655253

154

8.2 Solving ZDT 2 30 with Homogeneous Hyper-Volume Metric Performance

Function

For the convex problem the spread metric by itself was more effective in solving the problem

than the hyper- volume metric. For the concave problem it is the situation is reversed. The Hyper-

volume guided system outperforms the spread metric based system in terms of mean error and

standard deviation. In fact, it outperformed all of the other systems based upon their statistics in tables

6-2 and 6-3 using just 100 individuals over 100 generations.

The runs were complete in an average of 36.78 seconds.

8.2.1 Performance of MOCAT on ZDT2 Using the Hyper-Volume Metric

In Table 8-6 the mean error and standard deviation of the error is given. These values are both

improvements over that of the spread metric and better than any of the other benchmarked system

values given in Chapter 6. This suggests that while the spread metric is more effective in guiding MOCAT

search in convex situations, the Hyper-Volume metric does better in the concave situation.

Table 8-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median Mean min max stdev

Run #1 6.13E-06 1.95E-04 1.68E-12 1.55E-02 1.58E-03

Run #2 8.51E-05 2.39E-04 1.48E-09 9.13E-04 2.21E-04

Run #3 2.48E-04 2.86E-04 4.22E-15 1.02E-03 2.33E-04

Run #4 1.33E-05 3.21E-05 2.08E-09 1.92E-04 2.89E-05

Run #5 8.67E-06 3.65E-05 -5.55E-17 3.23E-04 5.27E-05

Run #6 6.74E-06 2.01E-05 -2.11E-17 9.06E-05 1.99E-05

Run #7 7.97E-07 2.41E-06 7.25E-13 1.34E-05 3.49E-06

Run #8 5.26E-08 2.15E-07 1.29E-12 1.55E-06 2.80E-07

Run #9 4.97E-06 2.74E-05 3.54E-09 1.98E-04 3.71E-05

155

Run #10 3.45E-05 2.64E-04 0.00E+00 2.53E-03 5.05E-04

Run #11 1.81E-04 6.57E-04 1.92E-11 3.61E-03 6.91E-04

Run #12 2.10E-06 5.80E-06 4.15E-11 2.45E-05 5.66E-06

Run #13 1.73E-05 4.39E-05 2.44E-09 2.32E-04 4.15E-05

Run #14 1.32E-05 1.62E-05 -2.78E-17 7.37E-05 1.45E-05

Run #15 3.44E-05 5.92E-05 1.85E-11 2.07E-04 6.15E-05

Run #16 5.67E-08 4.19E-05 2.44E-15 9.79E-04 1.69E-04

Run #17 1.98E-08 5.93E-08 -5.39E-17 3.22E-07 7.54E-08

Run #18 2.53E-05 9.09E-05 -4.16E-17 7.43E-04 1.25E-04

Run #19 2.21E-05 6.49E-05 1.04E-17 2.87E-04 6.53E-05

Run #20 1.06E-04 2.82E-04 1.25E-11 1.72E-03 2.90E-04

mean 4.05E-05 1.18E-04 4.81E-10 1.43E-03 2.07E-04

stdev 6.49E-05 1.58E-04 1.01E-09 3.35E-03 3.61E-04

8.2.2 Statistics of Topologies using Hyper-volume metric

Table 8-7 gives the number of times that each topology was used over the 20 runs. The

statistical tests in the extended table suggest that all topologies are used equally over the search. This is

in contrast with the Spread metric situation in which the global topology was used significantly less.

There was a slight tendency to use the simpler topologies such as square, but not a statistically

significant trend.

Table 8-7 Use Count of Topologies of each run for the Hyper-Volume

Using Hyper-volume metric

Hyper-volume
Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 23 19 24 16 18 1.011891

Run #2 14 15 23 21 27 1.304145

Run #3 20 21 24 14 21 1.531087

Run #4 27 17 17 20 19 1.185342

Run #5 23 13 21 20 23 1.214848

Run #6 18 30 17 19 16 1.37573

Run #7 24 15 25 16 20 1.138522

Run #8 23 19 15 25 18 0.900597

Run #9 20 22 17 18 23 1.044022

156

Run #10 24 21 13 28 14 1.734349

Run #11 22 19 20 16 23 1.32526

Run #12 22 19 24 23 12 0.949667

Run #13 18 31 15 20 16 1.17246

Run #14 20 28 18 17 17 1.351572

Run #15 17 18 29 12 24 1.152803

Run #16 24 26 20 14 16 1.055576

Run #17 17 21 24 19 19 0.907154

Run #18 19 12 25 24 20 1.401431

Run #19 7 27 18 25 23 0.963887

Run #20 17 11 17 30 25 1.135178

mean 19.95 20.20 20.30 19.85 19.70

stdev 4.32 5.64 4.16 4.68 3.82

t-test Lbest vs. 0.439501 0.400273 0.472902 0.425572

 Square vs. 0.475394 0.418181 0.375589

 Octal vs. 0.377955 0.323044

 Hex vs. 0.457227

Table 8-8 gives the number of individuals controlled by the knowledge sources over the 20 runs.

All five knowledge sources exhibited statistically different influences over the 20 runs. As with the

spread metric the two exploitative knowledge sources, situational and domain, were used the most

frequently. The two exploratory knowledge sources were used much less frequently.

Table 8-8 Using Spread metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 292 1353 1499 895 78

Run #2 278 1425 1601 743 89

Run #3 278 1455 1549 793 78

Run #4 334 1363 1561 989 97

Run #5 290 1423 1540 893 83

Run #6 293 1402 1510 822 77

Run #7 259 1480 1556 784 85

Run #8 311 1500 1471 957 72

Run #9 282 1347 1650 822 91

Run #10 254 1377 1568 787 89

157

Run #11 244 1397 1555 856 86

Run #12 279 1426 1508 992 97

Run #13 300 1401 1557 853 93

Run #14 286 1456 1470 922 90

Run #15 274 1375 1499 948 90

Run #16 346 1431 1464 883 71

Run #17 298 1392 1464 971 65

Run #18 267 1433 1542 861 72

Run #19 273 1441 1543 843 53

Run #20 247 1367 1634 840 73

mean 284.25 1412.20 1537.05 872.70 81.45

stdev 25.31 41.14 51.51 70.68 11.15

t-test KS-N vs. 1.26E-41 1.17E-36 4.94E-22 9.18E-23

 KS-S vs. 3.81E-10 5.53E-24 1.05E-33

 KS-D vs. 3.62E-28 2.46E-31

 KS-H vs. 2.02E-22

8.2.3 Number of Non-Dominated Solutions generated by Each Topology-Knowledge tuple

In table 8-9 the number of non-dominated solution produced by each topology-knowledge

source pair is given. While the Octal Domain tuple generates the most there is no dominant

configuration on display here. In Table 8-10 it is clear that while the topographic knowledge source

generates the fewest overall; that the number generated can increase if it finds a good region to search.

Table 8-9 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 53.9 283.65 302.05 174.95 14.85

stdev 14.54901 65.62916 65.20129 50.52928 7.095403

Square
mean 59.35 280.8 308.8 175.5 20.1

stdev 26.65624 82.59196 87.71161 51.30661 13.61462

Octal
mean 59.95 286.1 317.35 181.4 16.9

stdev 21.08498 59.855 68.68714 47.33242 10.73067

Hex
mean 56.65 282.85 304.55 171.6 14.85

stdev 20.23617 71.46974 81.9059 47.14412 8.863141

Global
mean 54.4 278.8 304.3 169.25 14.75

stdev 16.69352 55.82265 67.81872 37.88886 9.419325

158

Table 8-10 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.269926 0.231374 0.215863 0.288821 0.477805

Square 0.449136 0.294131 0.28404 0.292345 0.677344

Octal 0.351709 0.20921 0.21644 0.260928 0.634951

Hex 0.357214 0.252677 0.268941 0.274733 0.596844

Global 0.306866 0.200225 0.222868 0.223863 0.638598

8.3 ZDT 2 30 with combined metrics

For the convex problem the combined solution using both metric did not fare as well as the

spread metric on its own, although the combined approach had a slightly reduced error. The problem

was simple enough that the potential synergy provided by both metrics was not necessary. Here, the

combination of the two metrics produced an improvement over either on their own and changed how

each participated in the solution. Recall that in these runs the metrics took turns guiding the search for

25 generations each.

The runs were complete in an average of 35.78 seconds.

8.3.1 Performance of MOCAT

In Table 8-11 is clear that the combined system performance is an improvement over both

metrics on their own. While the Hyper-Volume metric was the better of the two, the combined system

outperforms that as well. The results outperform those for all of the benchmarked systems as described

in chapter 6.

Table 8-11 Statistics for the fitness errors of ending solutions

 Statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 1.79E-05 4.59E-05 2.50E-12 9.70E-04 1.15E-04

159

Run #2 7.33E-05 1.80E-04 -5.55E-17 7.07E-04 1.46E-04

Run #3 1.33E-05 1.43E-04 0.00E+00 1.06E-03 2.16E-04

Run #4 1.05E-05 2.57E-05 2.56E-09 7.83E-05 1.85E-05

Run #5 6.79E-09 1.93E-08 3.82E-17 7.29E-08 1.81E-08

Run #6 6.97E-06 3.14E-05 2.62E-12 2.44E-04 4.52E-05

Run #7 8.14E-06 1.17E-05 2.21E-15 5.55E-05 1.10E-05

Run #8 1.06E-05 5.27E-05 3.38E-17 4.29E-04 7.66E-05

Run #9 4.31E-05 5.27E-05 3.40E-11 2.02E-04 4.60E-05

Run #10 1.53E-05 3.92E-05 1.69E-12 2.62E-04 4.05E-05

Run #11 1.35E-06 5.66E-05 2.08E-16 1.98E-03 2.27E-04

Run #12 2.94E-05 7.65E-05 6.28E-13 3.71E-04 8.07E-05

Run #13 2.98E-05 1.04E-03 3.66E-13 8.95E-02 9.12E-03

Run #14 5.82E-05 1.50E-04 3.16E-08 4.70E-04 1.19E-04

Run #15 1.44E-06 5.07E-06 5.84E-13 2.68E-05 5.38E-06

Run #16 3.94E-06 1.24E-05 2.39E-13 5.31E-05 1.28E-05

Run #17 3.36E-06 9.83E-06 1.70E-11 5.70E-05 1.39E-05

Run #18 1.84E-06 4.27E-06 3.02E-09 1.15E-05 3.24E-06

Run #19 4.88E-05 2.38E-04 6.08E-13 1.95E-03 3.57E-04

Run #20 2.71E-05 1.06E-04 2.21E-09 5.88E-04 1.23E-04

mean 2.02E-05 1.14E-04 1.97E-09 4.95E-03 5.39E-04

stdev 2.05E-05 2.22E-04 6.87E-09 1.94E-02 1.97E-03

8.3.2 Statistics of Topologies for both metrics

Tables 8-12 and 8-13 give the number of times that each topology was used in the combined run.

Since each was used overall for just 50 generations the counts will have changed but what is important

is the differences in usage between the topologies. When used by itself the spread metric used

statistically fewer global topologies however there is no difference in usage. On the other hand the

spread metric now uses significantly more global topologies than before.

Table 8-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 10 7 8 19 6 6.991931

160

Run #2 12 9 7 12 10 6.648939

Run #3 9 8 4 21 8 6.661652

Run #4 17 8 7 11 7 1.329185

Run #5 2 10 14 6 18 6.378567

Run #6 12 13 10 9 6 6.691653

Run #7 9 9 6 12 14 4.612961

Run #8 4 7 13 16 10 7.144973

Run #9 9 10 9 14 8 7.232991

Run #10 13 5 14 9 9 5.881953

Run #11 8 8 6 5 23 1.124861

Run #12 12 11 11 9 7 1.352452

Run #13 9 7 11 3 20 1.37916

Run #14 9 9 9 13 10 0.9547

Run #15 12 14 11 6 7 1.152332

Run #16 7 13 9 13 8 4.821896

Run #17 11 10 12 9 8 6.209814

Run #18 11 11 3 9 16 1.275664

Run #19 16 11 10 9 4 1.259173

Run #20 13 5 13 8 11 7.114922
mean 10.25 9.25 9.35 10.65 10.50

stdev 3.45 2.43 3.09 4.41 4.96

t-test Lbest vs. 0.154232 0.200979 0.378583 0.429004

 Square vs. 0.456108 0.117393 0.166355

 Octal vs. 0.149865 0.198811

 Hex vs. 0.461037

Here we cannot see statistical difference between any pair of topologies.

Table 8-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 8 17 4 10 11 1.46096

Run #2 10 5 11 5 19 1.253579

Run #3 10 9 8 11 12 1.226193

Run #4 7 11 12 8 12 1.516897

Run #5 8 8 9 14 11 1.112439

Run #6 10 6 10 14 10 1.425319

Run #7 11 9 11 6 13 0.983411

Run #8 14 9 10 9 8 0.962264

161

Run #9 11 16 12 6 5 1.747168

Run #10 7 10 11 12 10 1.326611

Run #11 11 8 8 9 14 1.769225

Run #12 9 7 13 14 7 1.237062

Run #13 8 8 17 8 9 1.345778

Run #14 10 8 13 6 13 1.194311

Run #15 11 5 7 14 13 2.493285

Run #16 9 7 10 11 13 1.112412

Run #17 9 7 11 7 16 1.096588

Run #18 9 1 16 13 11 1.379982

Run #19 11 6 10 12 11 1.128648

Run #20 7 15 4 11 13 1.125405

mean 9.50 8.60 10.35 10.00 11.55

stdev 1.72 3.75 3.18 2.97 3.01

t-test Lbest vs. 0.174889 0.156994 0.264825 0.007496

 Square vs. 0.064624 0.104895 0.005553

 Octal vs. 0.363891 0.119852

 Hex vs. 0.059023

As shown in the above table, this time Square has a smaller mean than other topologies while

Global has the biggest mean. The difference between Lbest and Global and Square and Global are

statistically important.

8.3.3 Behaviors of Knowledge sources with the two metrics

Tables 8-14 and 8-15 give the number of individuals controlled by each knowledge source over

the 20 runs. As before, each knowledge source exhibits a significantly different control effect from the

others. The domain and situational knowledge sources still dominate, but now the history knowledge

source plays more of a role. This is because as control shifts between the two metrics the history

knowledge source is able to facilitate the shift in terms of the distribution of information from one

phase to the next. The results of the spread metric are now available for the Hyper-Volume metric

through the history knowledge source.

162

Table 8-14 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 197 684 771 498 66

Run #2 182 746 698 446 68

Run #3 183 697 758 446 47

Run #4 188 707 820 343 59

Run #5 166 655 763 454 45

Run #6 199 699 779 460 52

Run #7 187 684 767 411 68

Run #8 155 727 749 469 59

Run #9 186 748 794 343 73

Run #10 195 676 829 340 61

Run #11 222 658 756 423 63

Run #12 185 759 757 496 61

Run #13 208 700 766 411 57

Run #14 180 711 760 405 58

Run #15 183 704 799 404 43

Run #16 153 695 731 496 68

Run #17 200 718 787 367 55

Run #18 179 736 769 477 41

Run #19 162 660 753 464 60

Run #20 195 690 798 399 63

mean 185.25 702.70 770.20 427.60 58.35

stdev 16.68 29.07 28.87 50.17 8.69

t-test KS-N vs. 7.54E-35 1.23E-36 2.12E-16 3.18E-23

 KS-S vs. 7E-09 8.64E-20 1.04E-30

 KS-D vs. 1.68E-22 8.66E-32

 KS-H vs. 6.1E-19

Table 8-15 Using Hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 94 703 728 545 38

Run #2 77 658 732 501 36

Run #3 92 696 726 501 14

Run #4 96 717 780 422 25

163

Run #5 113 679 789 422 31

Run #6 88 699 784 433 31

Run #7 94 723 722 527 39

Run #8 96 699 754 479 36

Run #9 80 712 757 468 40

Run #10 104 709 776 385 33

Run #11 82 670 766 534 27

Run #12 91 673 734 599 36

Run #13 106 641 766 476 10

Run #14 85 718 794 442 22

Run #15 95 693 772 494 36

Run #16 98 701 754 533 33

Run #17 92 701 747 504 28

Run #18 93 719 762 513 44

Run #19 87 725 761 490 32

Run #20 98 692 783 503 43

mean 93.05 696.40 759.35 488.55 31.70

stdev 8.49 21.85 21.57 48.89 8.60

t-test KS-N vs. 3.67E-35 1.65E-36 9.32E-20 1.3E-23

 KS-S vs. 3.53E-11 5.86E-16 2.43E-36

 KS-D vs. 9.87E-19 1.31E-37

 KS-H vs. 5.09E-21

8.3.4 The Generation of non-dominated solutions by Topology-Knowledge tuple

Tables 8-16 and 8-17 give the number of non-dominated solutions produced by each tuple on

the one hand, and the variability in that production on the other. Recall that for the spread metric the

LBEST topology was the most productive. Now the global topology has become the dominant one. In

addition, the ability of history knowledge to produce non-dominated solutions has increased markedly

as well.

Thus, in the combined system increased performance is produced by increasing the connectivity

within the topology on the one hand and between the metric segments using history knowledge on the

other.

164

Table 8-16 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 59.25 272.8 303.25 180.4 14.2

stdev 23.48544 52.60038 57.56449 34.90498 7.338435

Square
mean 46.35 247.7 272.25 167.15 16.85

stdev 15.8721 42.45505 55.50901 36.03401 9.033709

Octal
mean 51.05 277.6 303.95 174.4 21.2

stdev 15.73623 58.36131 65.78712 43.45887 10.90919

Hex
mean 61.9 291.4 311.15 191.85 18.15

stdev 18.18588 71.47351 75.3918 50.83852 10.40382

Global
mean 59.75 309.6 338.95 202.35 19.65

stdev 30.69695 82.78978 98.57376 52.70601 10.0644

Table 8-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.396379 0.192817 0.189825 0.193487 0.516791

Square 0.34244 0.171397 0.20389 0.215579 0.536125

Octal 0.308251 0.210235 0.216441 0.249191 0.514585

Hex 0.293795 0.245276 0.242301 0.264991 0.573213

Global 0.513756 0.267409 0.290821 0.26047 0.512183

8.3.5 Analysis of found Pareto front

The resultant Pareto front produced by merging the results of the 20 runs is given below for the

combined system.

165

Figure 8.4 Overall found Pareto front

8.4 Summary of ZDT2

ZDT2 has a convex Pareto front which is normally considered as a challenge for hyper-volume

metric. However, in our experiments, performance of hyper-volume metric cannot be considered

inferior. This has to do with the fact that in our system the hyper-volume is not just the only source of

knowledge in the search. Data collected in the knowledge sources is used to guide the search. As a result,

the hyper-volume metric outperforms the spread metric here as well as the other benchmarked

systems. In summary, the following conclusions can be drawn:

1. Of the two solo metrics, the hyper-volume metric is better as controlling the MOCAT search

for the problem than the spread metric.

2. Here the combined system outperforms either metric individually since both types of metric

knowledge are integrated together. The integration takes place through the increased use of

166

the global topology to distribute information and the history knowledge source to convey

information produced by the one metric for use by the other metric.

3. Unlike the other MOEP systems, the metrics are not the principle source of information here.

They are used as guides for the generation of knowledge and its spread through the social

fabric by MOCAT. MOCAT is able to adjust the configuration of the system in order to exploit

the different information provided by each.

167

CHAPTER 9 SOLVING EXPERIMENT RESULTS OF ZDT3

ZDT3 is not an easy problem for MOEAs because its real Pareto front consists of five segments

that are far from each other which may impair the effectiveness of both spread metric and hyper-

volume metric. In other words the front has been discretized into segments. We will still use

homogeneous spread metric, homogeneous hyper-volume metric, and the combined two metrics to

conduct experiments and try to observe and summarize the correspondence among knowledge sources

and topologies.

While such a problem can be hard for other MOEAs it is important to recall that those

approaches only use the metrics to guide the search. In MOCAT there are 5 other knowledge sources

that can contribute. It is clear from the discussion of the first two problems that the presence of these

five knowledge sources serves to enhance the performance of the MOCAT system over traditional ones.

9.1 ZDT 3 30 with homogeneous Spread metrics

ZDT3 is simply a modified version of ZDT1 where a sine function has been added to the equation

which results in the discretization of the front into segments. Although the front is now segmented, the

parameter space is still continuous. The optimal Pareto Front is given in Figure 8.3. This can pose a

problem to systems that just use spread metrics. However, MOCAT has other knowledge sources than

can generate knowledge for use in the search. The question then is, what knowledge sources will be

recruited here to deal this discretization issue?

168

The Pareto front is:

 where

169

Figure 9.1 ZDT3 Pareto front

9.2 Performance of MOCAT using the spread metric for zdt3 30

In the previous problems MOCAT started with a basic linear approximation of the curve and

then adjusted it using exploitation activities. The system works the same way here. It is illustrated in the

following section using the spread metric to guide the process.

The runs were complete in an average of 32.48 seconds for 100 generation and 100 individuals

in each population.

170

9.2.1 Using the spread metric to guide the solution of ZDT3 in 30 dimensions

The following sequence of figures 9(a-e) presents in one run how the population moves to the

Pareto front under the spread metric. As before, the system generates a linear approximation of the

curve and then proceeds to bend each segment successively to produce a more curved shape. There is a

clear preference for the system to modify the segments from left to right.

(a)

171

(b)

172

(c)

173

(d)

174

(e)

Figure 9.2 (a,b,c,d,e) A series of screen copies showing the evolution of the front under
the guidance of the spread metric.

Finally, in Figure 9.3 the addition of found Pareto front from each run is represented, which is a

much better approximation of the real Pareto front, compared to any single run.

175

Figure 9.3 Overall found Pareto front

We can see that while each run left some empty spots along the real Pareto front—which is

unavoidable because there are always only limited number of individuals and each was run for only 100

generations, in total the 20 runs covers the Pareto front. The overall found Pareto font does not have a

perfect shape and there are some outliers which reflect the fact that the last segment at the bottom still

needs exploration.

9.2.2 Performance of MOCAT Using the Spread Metric

Table 9-1 gives the run statistics for MOCAT using just the spread metric. The results are not as

good as for the first two problems since it is more difficult. On the other hand, the achieved mean error

and standard deviation exceeds all of the other benchmarked systems except ANMOPSO. However, this

is just with one metric on board. It will be interesting to see how the combined metric will fare.

176

Table 9-1 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 4.39E-03 1.25E-02 1.87E-04 8.76E-02 1.76E-02

Run #2 5.06E-03 2.25E-02 3.89E-05 8.98E-02 2.52E-02

Run #3 9.06E-03 2.13E-02 4.14E-05 9.28E-02 2.47E-02

Run #4 1.14E-02 2.02E-02 1.27E-04 9.90E-02 2.26E-02

Run #5 4.08E-03 1.35E-02 3.40E-05 6.18E-02 1.44E-02

Run #6 1.11E-02 1.85E-02 7.00E-04 9.84E-02 2.14E-02

Run #7 4.89E-03 2.26E-02 7.45E-04 8.89E-02 2.40E-02

Run #8 1.06E-02 2.01E-02 6.65E-05 9.48E-02 2.23E-02

Run #9 8.55E-03 1.62E-02 4.34E-04 9.05E-02 2.12E-02

Run #10 4.28E-03 1.39E-02 1.98E-04 8.61E-02 1.68E-02

Run #11 3.84E-03 1.57E-02 9.92E-04 8.28E-02 1.93E-02

Run #12 8.42E-03 1.63E-02 1.09E-04 7.70E-02 1.99E-02

Run #13 4.28E-03 1.66E-02 2.30E-04 9.92E-02 2.01E-02

Run #14 5.11E-03 2.06E-02 2.06E-04 9.52E-02 2.44E-02

Run #15 3.73E-03 1.49E-02 1.60E-04 8.61E-02 1.95E-02

Run #16 6.22E-03 1.68E-02 6.67E-04 9.32E-02 2.29E-02

Run #17 8.95E-03 1.54E-02 2.76E-04 8.63E-02 1.70E-02

Run #18 5.73E-03 1.01E-02 5.38E-04 9.72E-02 1.41E-02

Run #19 5.54E-03 9.78E-03 2.21E-04 6.36E-02 1.33E-02

Run #20 6.85E-03 1.57E-02 2.35E-04 8.40E-02 2.15E-02

mean 6.61E-03 1.67E-02 3.10E-04 8.77E-02 2.01E-02

stdev 2.51E-03 3.65E-03 2.68E-04 1.01E-02 3.52E-03

9.2.3 Statistics of Topologies using Spread metric

Table 9-2 give the usage of the topologies over the 20 runs. It can be seem that there is no

preference for one topology over another with the spread metric.

Table 9-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 20 19 21 14 26 1.833499

177

Run #2 25 23 21 16 15 1.153962

Run #3 1 31 27 19 22 0.952648

Run #4 25 19 10 29 17 1.472176

Run #5 22 14 24 19 21 1.26794

Run #6 8 26 26 27 13 2.036993

Run #7 21 28 21 14 16 1.754554

Run #8 19 16 22 22 21 1.362669

Run #9 27 18 12 28 15 1.363473

Run #10 21 25 16 13 25 1.883721

Run #11 25 19 15 15 26 1.856412

Run #12 28 21 19 21 11 1.766661

Run #13 20 21 21 22 16 1.377467

Run #14 27 25 11 19 18 1.028349

Run #15 16 16 19 28 21 1.503096

Run #16 28 15 15 22 20 1.407871

Run #17 26 17 18 18 21 1.538659

Run #18 16 17 24 24 19 1.926854

Run #19 24 21 17 17 21 1.499136

Run #20 22 18 21 19 20 1.372687

mean 21.05 20.45 19.00 20.30 19.20

stdev 6.63 4.48 4.65 4.82 3.99

t-test Lbest vs. 0.372882 0.138731 0.346197 0.152743

 Square vs. 0.166798 0.460668 0.184835

 Octal vs. 0.201287 0.443827

 Hex vs. 0.224252

9.2.4 Behaviors of Knowledge sources using Spread Metric

The number of individual influenced by each knowledge source is given in Table 9-3. What is

interesting is that while the knowledge sources are still exhibiting statistically significant differences in

influence, the role of the Knowledge Sources now different. The exploratory knowledge sources are now

being used much more frequently to explore the space. Also, domain knowledge is now the dominant

knowledge source for exploitation.

178

Table 9-3 Using Spread metric #Individuals influenced by KS.

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 463 1314 1588 718 198

Run #2 447 1260 1693 668 186

Run #3 446 1366 1574 793 149

Run #4 442 1280 1677 716 221

Run #5 391 1364 1615 799 175

Run #6 466 1257 1627 737 178

Run #7 428 1377 1585 635 176

Run #8 456 1340 1617 688 138

Run #9 399 1345 1570 745 203

Run #10 458 1247 1651 750 167

Run #11 440 1217 1656 695 205

Run #12 466 1284 1607 725 212

Run #13 478 1282 1614 817 216

Run #14 417 1213 1616 745 137

Run #15 456 1256 1604 805 190

Run #16 409 1352 1567 833 170

Run #17 476 1216 1676 682 177

Run #18 375 1371 1641 855 227

Run #19 475 1262 1589 801 223

Run #20 449 1291 1562 720 206

mean 441.85 1294.70 1616.45 746.35 187.70

stdev 28.92 53.66 37.89 58.04 26.51

t-test KS-N vs. 1.27E-32 1.54E-46 1.23E-18 2.83E-27

 KS-S vs. 1.22E-21 2.24E-28 9.31E-35

 KS-D vs. 4.86E-34 2.83E-48

 KS-H vs. 4.62E-25

9.2.5 Statistics of Topology-Knowledge tuple

Tables 9-4 and 9-5 give the number of non-dominated solutions generated by each topology

knowledge source tuple and the variability in their production respectively. It is clear that regardless of

the topology domain knowledge better at generating solutions than the other knowledge sources

179

overall for this problem. In terms of variability, it appears that the LBEST topology is the most able to

adjust to take advantage of new found areas.

Table 9-4 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 91.65 271.95 341.9 154.85 40.5

stdev 31.87686 90.01197 113.0346 52.70901 15.35372

Square
mean 83.9 265.35 324.8 155.6 40.85

stdev 23.27388 65.18014 72.44788 37.25926 13.15205

Octal
mean 89.7 245.9 309.95 138.8 34.6

stdev 29.64722 66.90205 80.58697 38.0714 13.82751

Hex
mean 84.85 260.45 334.95 153.75 36.9

stdev 25.46675 69.1965 84.01533 44.61045 13.67248

Global
mean 91.75 251.05 304.85 143.35 34.85

stdev 22.52922 50.1403 66.46826 34.12867 9.062793

Table 9-5 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.347811 0.330987 0.330607 0.340388 0.379104

Square 0.2774 0.245638 0.223054 0.239455 0.32196

Octal 0.330515 0.27207 0.26 0.27429 0.399639

Hex 0.300138 0.265681 0.250829 0.290149 0.370528

Global 0.24555 0.199722 0.218036 0.238079 0.260051

9.3 ZDT 3 30 with homogeneous Hyper-volume metrics

9.3.1 Performance of MOCAT Using the Hyper-Volume Metric

As shown in table 9-6 below, the hyper-volume metric guided system outperforms that of the

spread metric slightly in terms of both mean error and standard deviation of the error. In fact, it now

outperforms all of the other benchmarked functions including ANMOPSO.

The runs were complete in an average of 39.42 seconds.

180

Table 9-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median Mean min max stdev

Run #1 4.37E-03 1.84E-02 8.16E-04 8.89E-02 1.94E-02

Run #2 2.81E-03 1.63E-02 6.72E-04 9.89E-02 2.17E-02

Run #3 7.74E-03 1.11E-02 2.97E-05 6.24E-02 1.29E-02

Run #4 3.43E-03 1.46E-02 4.70E-05 6.94E-02 1.82E-02

Run #5 9.09E-03 1.69E-02 7.49E-05 9.61E-02 2.33E-02

Run #6 9.24E-03 1.69E-02 4.16E-06 8.96E-02 2.06E-02

Run #7 4.08E-03 1.29E-02 5.10E-05 7.90E-02 1.43E-02

Run #8 4.21E-03 1.88E-02 2.69E-04 9.99E-02 2.31E-02

Run #9 9.17E-03 1.34E-02 2.25E-04 9.74E-02 1.62E-02

Run #10 2.47E-03 1.06E-02 5.77E-04 8.98E-02 1.63E-02

Run #11 9.89E-03 2.08E-02 4.45E-04 9.82E-02 2.57E-02

Run #12 4.44E-03 1.97E-02 1.54E-04 8.86E-02 2.25E-02

Run #13 4.47E-03 1.49E-02 1.66E-04 9.59E-02 2.03E-02

Run #14 8.34E-03 2.19E-02 1.47E-04 9.70E-02 2.55E-02

Run #15 1.06E-02 1.66E-02 7.81E-04 9.12E-02 1.87E-02

Run #16 4.46E-03 1.79E-02 3.41E-06 9.49E-02 2.23E-02

Run #17 3.55E-03 1.48E-02 9.18E-04 9.34E-02 2.08E-02

Run #18 3.93E-03 1.66E-02 1.35E-04 8.89E-02 2.16E-02

Run #19 7.31E-03 1.36E-02 9.62E-04 8.47E-02 1.54E-02

Run #20 6.53E-03 1.13E-02 1.27E-03 8.35E-02 1.68E-02

mean 6.01E-03 1.59E-02 3.87E-04 8.94E-02 1.98E-02

stdev 2.58E-03 3.10E-03 3.78E-04 9.57E-03 3.52E-03

9.3.2 Statistics of Topologies using Hyper-volume metric

While there was no statistical difference in usage between topologies for the spread metric,

table 9-7 indicates that both the simplest (LBEST) and the most complex (Global) are the preferred

choices here. The former is to conduct local search and latter is to link the segments together in the

search.

Table 9-7 Use Count of Topologies of each run

Using Hyper-volume metric

Hyper-volume

181

Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 20 16 24 17 23 0.817267

Run #2 20 17 20 21 22 0.742551

Run #3 21 17 19 19 24 1.204697

Run #4 24 17 21 19 19 1.061088

Run #5 24 13 19 19 25 0.9809

Run #6 26 21 17 10 26 0.96152

Run #7 23 17 17 24 19 0.94163

Run #8 15 25 21 26 13 0.733853

Run #9 18 24 20 22 16 1.366974

Run #10 31 24 8 18 19 0.850537

Run #11 15 19 27 22 17 0.72768

Run #12 24 17 24 15 20 0.874815

Run #13 18 18 19 21 24 0.905912

Run #14 24 21 16 24 15 0.937269

Run #15 14 15 20 19 32 1.041747

Run #16 22 18 17 16 27 1.049134

Run #17 32 9 21 18 20 1.070652

Run #18 28 18 16 17 21 1.934245

Run #19 22 23 13 27 15 0.757881

Run #20 25 25 21 15 14 0.621279

mean 22.30 18.70 19.00 19.45 20.55

stdev 4.80 4.05 4.00 3.98 4.78

t-test Lbest vs. 0.008506 0.013514 0.026869 0.133521

 Square vs. 0.409779 0.284139 0.103039

 Octal vs. 0.365038 0.142704

 Hex vs. 0.222873

9.3.3 Behaviors of Knowledge sources using Hyper-volume Metric

As with the spread metric the hyper-volume system uses the exploratory knowledge sources in

the search more than in the previous problems. Also, domain knowledge controls the most individuals

over the 20 runs as with the spread metric.

Table 9-8 Using Hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

182

 KS-N KS-S KS-D KS-H KS-T

Run #1 437 1296 1547 738 189

Run #2 468 1288 1568 788 170

Run #3 423 1302 1571 782 167

Run #4 423 1373 1512 834 192

Run #5 420 1266 1598 840 214

Run #6 474 1318 1500 725 182

Run #7 363 1334 1555 847 166

Run #8 415 1336 1491 797 180

Run #9 500 1237 1605 776 199

Run #10 370 1359 1561 817 192

Run #11 417 1351 1523 834 197

Run #12 470 1275 1557 714 163

Run #13 455 1292 1646 757 225

Run #14 466 1345 1565 724 202

Run #15 447 1384 1526 815 241

Run #16 421 1286 1555 734 178

Run #17 434 1388 1517 697 203

Run #18 410 1346 1546 892 200

Run #19 445 1270 1568 784 191

Run #20 422 1366 1591 817 217

mean 434.00 1320.60 1555.10 785.60 193.40

stdev 32.62 42.47 36.80 50.99 19.99

t-test KS-N vs. 1.59E-40 2.73E-47 3.48E-23 7.52E-24

 KS-S vs. 2.02E-20 3.27E-30 4.21E-37

 KS-D vs. 4.31E-35 1.93E-43

 KS-H vs. 5.1E-26

The values are similar to those in ZDT3 30 using pure spread metric.

9.3.4 Statistics of Topology-Knowledge tuple

MOCAT using the hyper-volume metric is able to produce more non-dominated solution with

exploratory knowledge sources than the spread metric. Since the Pareto front is separated into

segments this gives it a strong competitive edge. Domain Knowledge is still the dominant method for

183

generating non-dominated solutions regardless of topology. As shown in Table 9-10, no one topology

exhibits the ability to vary its generation of non-dominated solutions markedly.

Table 9-9 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 94.35 294.55 350.55 177.7 40.1

stdev 28.19346 72.5574 74.29633 40.95967 11.1256

Square
mean 84.2 245.35 290.95 146.8 39.1

stdev 27.54441 54.24338 67.61071 33.30497 15.92053

Octal
mean 81.8 255 289.4 151 36.75

stdev 26.22895 56.43534 65.03311 36.39549 12.16066

Hex
mean 80 258.25 306.3 150.5 36

stdev 20.38059 58.49145 68.64255 33.63504 13.95104

Global
mean 93.65 267.45 317.9 159.6 41.45

stdev 26.97811 63.75981 76.07192 42.08563 18.96111

Table 9-10 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.298818 0.246333 0.211942 0.230499 0.277446

Square 0.327131 0.221086 0.232379 0.226873 0.407175

Octal 0.320647 0.221315 0.224717 0.24103 0.330902

Hex 0.254757 0.226492 0.224102 0.223489 0.387529

Global 0.288074 0.238399 0.239295 0.263694 0.457445

9.3.5 Analysis of found Pareto front

The found front below still favors segments to the left as did the spread metric, but now the

intervals are much more fleshed out with fewer gaps than before.

184

Figure 9.4 Overall found Pareto front

9.4 ZDT 3 30 with combined metrics

Configuration for this part of experiment is: population 100, generation 100, dimension 30, and

every 25 generations Topology metrics are switched.

The runs were complete in an average of 33.96 seconds.

9.4.1 Performance of MOCAT with the Combine Metrics

The combined metrics again outperform either one separately as shown in Table 9-11 in terms

of both mean error and standard deviation of the error. It again illustrates the synergy of combining the

two metrics together in terms of controlling the knowledge sources. The question is how does the

combination impact how each knowledge source conducts its segment?

185

Table 9-11 Ratios on the Belief Space roulette wheel before generation 20

 Statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 8.62E-03 1.85E-02 2.90E-06 9.17E-02 2.31E-02

Run #2 4.68E-03 1.71E-02 6.20E-04 9.59E-02 2.44E-02

Run #3 6.03E-03 1.98E-02 2.15E-03 8.63E-02 1.93E-02

Run #4 9.19E-03 1.32E-02 8.50E-04 6.47E-02 1.24E-02

Run #5 1.01E-02 1.63E-02 3.07E-05 8.19E-02 1.91E-02

Run #6 3.50E-03 1.07E-02 2.35E-06 9.05E-02 1.40E-02

Run #7 2.91E-03 8.32E-03 9.56E-05 6.64E-02 9.98E-03

Run #8 4.89E-03 1.72E-02 8.95E-05 9.67E-02 1.84E-02

Run #9 6.12E-03 1.19E-02 1.86E-04 9.07E-02 1.77E-02

Run #10 8.55E-03 2.18E-02 7.73E-05 9.28E-02 2.74E-02

Run #11 6.94E-03 1.50E-02 1.16E-04 9.31E-02 2.14E-02

Run #12 4.61E-03 1.82E-02 1.13E-03 8.49E-02 2.11E-02

Run #13 7.75E-03 1.60E-02 1.45E-04 9.84E-02 1.94E-02

Run #14 4.47E-03 1.52E-02 6.89E-04 8.96E-02 1.68E-02

Run #15 7.47E-03 1.45E-02 4.13E-04 9.38E-02 2.06E-02

Run #16 6.56E-03 9.44E-03 1.58E-04 8.13E-02 1.28E-02

Run #17 7.68E-03 1.41E-02 5.21E-06 9.18E-02 1.80E-02

Run #18 5.76E-03 1.01E-02 5.90E-04 6.87E-02 1.42E-02

Run #19 5.79E-03 1.91E-02 3.06E-04 9.69E-02 2.46E-02

Run #20 3.45E-03 1.32E-02 1.10E-04 8.32E-02 1.69E-02

mean 6.25E-03 1.50E-02 3.88E-04 8.70E-02 1.86E-02

stdev 1.97E-03 3.57E-03 5.09E-04 9.81E-03 4.37E-03

9.4.2 Statistics of Topologies using for Both Metrics

Tables 9-12 and 9-13 give the usage of topologies for both metrics during their 50 generations.

Recall that they take turns conducting the search every 26 generations. It is interesting to note that

LBEST and Octal are dominant for the spread portion but for the hyper-volume portion it is LBEST and

Square. In fact, Octal is significantly worse the LBEST there. This suggests that the two phases are

working in complementary ways.

186

Table 9-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 8 8 19 8 7 1.344107

Run #2 10 9 13 5 13 1.804859

Run #3 12 12 7 8 11 1.631843

Run #4 8 8 14 12 8 1.75174

Run #5 11 8 11 8 12 1.497024

Run #6 13 6 12 13 6 1.464572

Run #7 17 16 5 6 6 1.600356

Run #8 14 7 12 7 10 1.817861

Run #9 11 8 9 8 14 1.396507

Run #10 12 7 11 9 11 0.95383

Run #11 11 11 3 9 16 0.655216

Run #12 14 5 11 12 8 3.33157

Run #13 8 6 9 18 9 1.915242

Run #14 8 6 17 12 7 1.931795

Run #15 4 12 10 12 12 1.768109

Run #16 11 7 14 8 10 1.087823

Run #17 12 11 11 7 9 1.392345

Run #18 8 13 12 10 7 1.713928

Run #19 10 12 9 9 10 1.566155

Run #20 14 9 11 8 8 1.588173

mean 10.80 9.05 11.00 9.45 9.70

stdev 2.87 2.82 3.56 2.91 2.67

t-test Lbest vs. 0.032877 0.42502 0.079079 0.114448

 Square vs. 0.034765 0.334595 0.234894

 Octal vs. 0.075171 0.105656

 Hex vs. 0.391921

Table 9-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 10 13 14 7 6 1.449694

Run #2 10 11 6 8 15 1.112144

Run #3 13 6 5 10 16 0.886865

Run #4 12 9 8 10 11 0.860081

Run #5 12 9 10 10 9 2.258497

187

Run #6 15 9 5 9 12 0.860638

Run #7 10 7 7 14 12 1.5608

Run #8 16 10 12 10 2 0.905942

Run #9 9 10 5 16 10 1.323813

Run #10 10 10 9 14 7 0.705549

Run #11 8 12 11 8 11 0.82653

Run #12 12 8 13 9 8 1.083261

Run #13 15 14 3 10 8 0.75213

Run #14 9 6 11 13 11 0.780946

Run #15 9 17 13 5 6 0.805511

Run #16 10 10 5 12 13 0.811523

Run #17 7 9 10 14 10 1.440028

Run #18 9 10 10 9 12 0.828039

Run #19 11 10 10 8 11 0.995826

Run #20 8 12 9 14 7 0.855525

mean 10.75 10.10 8.80 10.50 9.85

stdev 2.43 2.57 3.09 2.80 3.23

t-test Lbest vs. 0.21375 0.018648 0.385191 0.169022

 Square vs. 0.083466 0.324494 0.396578

 Octal vs. 0.041915 0.156223

 Hex vs. 0.255794

9.4.3 Behavior of Knowledge sources with the two metrics

Again the complementary nature of the two phases is visible in tables 9-14 and 9-15 below. The

spread metric controls more individuals with the normative and topographic exploratory metrics than

does the hyper-volume metric. The hyper-volume makes more use of the history knowledge sources to

control search. As said earlier, this is a way of transferring learned knowledge from one phase to the

next.

Table 9-14 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 286 633 758 395 99

Run #2 237 626 852 355 98

188

Run #3 301 601 829 355 102

Run #4 254 644 788 357 104

Run #5 237 673 773 398 107

Run #6 261 567 876 301 86

Run #7 270 662 786 353 115

Run #8 296 587 837 290 93

Run #9 218 676 823 345 95

Run #10 263 623 766 344 96

Run #11 268 627 855 371 119

Run #12 298 628 846 307 109

Run #13 259 656 792 422 137

Run #14 307 575 852 310 110

Run #15 251 610 846 266 92

Run #16 254 600 849 409 114

Run #17 310 578 846 301 92

Run #18 249 572 917 283 88

Run #19 274 652 803 324 124

Run #20 251 676 783 367 94

mean 267.20 623.30 823.85 342.65 103.70

stdev 24.82 35.14 40.22 42.94 12.85

t-test KS-N vs. 4.29E-29 2.45E-32 1.13E-07 1.8E-21

 KS-S vs. 6.43E-19 5.16E-23 4.76E-28

 KS-D vs. 5.03E-31 4.76E-29

 KS-H vs. 1.84E-17

Table 9-15 Using Hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 160 639 783 394 68

Run #2 188 656 788 369 74

Run #3 209 610 771 414 92

Run #4 145 660 769 351 86

Run #5 173 687 747 427 89

Run #6 178 633 764 320 52

Run #7 148 690 739 424 89

Run #8 183 660 765 349 55

Run #9 161 670 782 445 92

Run #10 166 698 775 464 89

189

Run #11 140 691 762 400 83

Run #12 162 645 798 406 69

Run #13 179 672 782 444 106

Run #14 169 666 815 381 69

Run #15 159 673 779 304 59

Run #16 176 635 781 421 101

Run #17 170 624 824 367 98

Run #18 152 665 836 382 87

Run #19 169 666 790 394 117

Run #20 177 670 709 442 84

mean 168.20 660.50 777.95 394.90 82.95

stdev 15.66 22.88 27.90 41.66 16.66

t-test KS-N vs. 9.53E-40 3.2E-37 6.19E-18 5.82E-19

 KS-S vs. 9.39E-17 2.14E-21 7.3E-43

 KS-D vs. 2.19E-27 7.34E-40

 KS-H vs. 1.72E-21

9.4.4 Statistics of Topology-Knowledge tuple

As shown in Table 9-16 and 9-17 the dominant topology in producing non-dominated solutions

is LBEST. This is to be expected since both metrics on their own favored this topology.

The system demonstrates increased ability to generate new solutions in good areas for both of

the exploratory knowledge sources.

Table 9-16 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 91.4 272.45 345.05 160.65 40.65

stdev 27.51727 49.31368 62.73962 42.19164 11.95727

Square
mean 84.5 247.95 301.15 142.3 36.25

stdev 26.30889 53.9439 64.45747 32.20183 12.28124

Octal
mean 94.85 252 320.4 143.8 35.75

stdev 32.80609 63.05303 92.60067 43.33298 13.00152

Hex
mean 87.15 257.2 321 143.3 39.65

stdev 20.57151 51.1135 56.03007 38.52559 13.58899

Global
mean 77.5 254.2 314.2 147.5 34.35

stdev 19.50304 62.64738 75.2173 39.29979 8.579504

190

Table 9-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.301064 0.181001 0.181828 0.262631 0.294152

Square 0.311348 0.21756 0.214038 0.226295 0.338793

Octal 0.345873 0.25021 0.289016 0.301342 0.363679

Hex 0.236047 0.198731 0.174548 0.268846 0.342723

Global 0.251652 0.246449 0.239393 0.266439 0.249767

9.4.5 Analysis of found Pareto front

The found optimal front exhibits small gaps only in the last segment, much improved over either

metric separately.

Figure 9.5 Overall found Pareto front

9.5 Summary of ZDT3

ZDT3 has a special Pareto front which consists of five segments which are distant from each

other, which does impose big challenges to MOCAT in that fitness errors are much larger than those in

191

previous two sections. However, both the hyper-volume system and the combined systems outperform

all of the other benchmarked systems for this problem. The combined system out performs the hyper-

volume system as well. The curves produced by the combined system exhibit fewer gaps as well.

Some basic conclusions are:

1. For this problem there has emerged a clear distinction between local and global search.

Bothe the global and lbest topologies are favored by the combined system.

2. Also, there is an increased emphasis on the exploratory knowledge sources on the one hand

and the domain knowledge source on the other.

3. History knowledge again plays a fundamental role in connecting the activities of the two

metric together in the combined system.

192

CHAPTER 10 USING MOCAT TO SOLVE MULTI-MODAL PROBLEMS: ZDT4

At the first glance, ZDT4 is the same as ZDT1. However, they are fundamentally different. While

for ZDT1 the real Pareto front is a continuous curve, for ZDT4 the real one contains 219 local Pareto

fronts. This problem combines aspects of all three previous problems into one problem. It has been

observed previously that as the Pareto front has become more complex the MOCAT system has been

able to adjust how it uses the knowledge sources and distributes their influences using the topologies.

While the other approaches relied primarily on the spread metrics to control search, in MOCAT

knowledge from the search is digested into the knowledge sources and used to guide the search as well.

This provides a powerful mechanism for generating the Optimal Pareto front. Also, it is clear that the

combined metrics can combine their influences in order to produce an overall better result than either

metric by itself. It will be interesting to see whether this trend continues for this more complex problem.

We will still use homogeneous spread metric, homogeneous hyper-volume metric, and

combined two metrics to conduct experiments and try to observe and summarize the correspondence

among knowledge sources and topologies.

10.1 ZDT 4 10 with homogeneous Spread metrics

In ZDT4 the function is similar to ZDT1 but now there are a number of locally optimal fronts. In

order to achieve the global optimal front the system will need to connect together the various local

fronts.

193

where m=30 and .

The Pareto front contains 219 local Pareto fronts and the overall curve is described as:

Figure 10.1 ZDT4 Pareto front

194

The Pareto front shown in Figure 10.1 for ZDT4 looks like the one of ZDT1, however, they are

fundamentally different. While the Pareto front of ZDT1 is continuous, there the Pareto front of ZDT4

contains 219 local Pareto fronts. This means that if an algorithm cannot jump out of local neighborhood

it will be stuck in a small area. As such, it requires all of the knowledge needed to solve each of the first

three problems in order for this one to be effectively solved.

The runs were complete in an average of 14.38 seconds.

10.1.1 Evolving the Pareto Front

The following sequence of figures 10-a-e are taken from one run of the MOCAT system using the

spread metric by which we can see that the evolution is similar to ZDT1 but a remarkable difference is

that for ZDT4 at the beginning of evolution individuals do not spread to the far right bottom. Instead,

they are attracted there during the evolution process.

195

(a)

196

(b)

197

(c)

198

(d)

199

(e)

Figure 10.2 A series of screen copies along evolution (a-e)

10.1.2 Performance of MOCAT Using the Spread Metric

In Table 10-1 the performance statistics for MOCAT are given. The mean and standard deviation

for the MOCAT system with the spread metric outperforms the benchmark results for all of the other

systems. In fact, the mean error and the standard deviation are the least four all four problems that we

have examined so far.

Table 10-1 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 1.79E-06 1.26E-05 2.28E-14 1.87E-04 2.47E-05

200

Run #2 3.71E-07 1.49E-06 -5.55E-17 1.31E-05 2.38E-06

Run #3 3.14E-07 5.08E-06 0 6.51E-05 1.08E-05

Run #4 3.07E-06 2.57E-05 -3.47E-17 2.92E-04 4.67E-05

Run #5 1.18E-06 1.20E-05 -2.78E-17 1.95E-04 3.02E-05

Run #6 1.63E-07 3.34E-06 0 1.03E-04 1.35E-05

Run #7 3.25E-08 1.80E-04 0 0.003007 4.74E-04

Run #8 4.28E-07 6.91E-06 -3.47E-17 8.24E-05 1.31E-05

Run #9 1.09E-08 3.07E-08 1.14E-13 1.55E-07 3.10E-08

Run #10 1.57E-07 2.64E-06 0 6.34E-05 8.10E-06

Run #11 3.83E-06 2.03E-05 -5.55E-17 2.69E-04 3.98E-05

Run #12 7.17E-07 3.20E-06 -5.55E-17 2.16E-05 4.31E-06

Run #13 1.70E-09 8.04E-09 -3.82E-17 6.71E-08 1.29E-08

Run #14 6.77E-09 3.48E-08 0 4.85E-07 6.54E-08

Run #15 4.69E-07 7.99E-06 3.01E-14 1.24E-04 2.11E-05

Run #16 1.02E-06 4.30E-05 1.01E-13 0.001302 1.85E-04

Run #17 4.05E-07 1.72E-06 0 1.22E-05 2.34E-06

Run #18 4.31E-06 4.86E-05 -2.78E-17 8.52E-04 1.10E-04

Run #19 1.17E-06 4.53E-06 0 2.94E-05 5.82E-06

Run #20 5.94E-07 2.31E-05 -2.78E-17 5.94E-04 8.23E-05

mean 1.00E-06 2.01E-05 1.34E-14 3.61E-04 5.37E-05

Stdev 1.25E-06 3.91E-05 3.24E-14 6.89E-04 1.06E-04

10.1.3 Statistics of Topologies using Spread metric

In terms of the usage of topologies over the runs Table 10-2 indicates that there is no significant

difference in usage of the topologies with the spread metric.

Table 10-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 19 18 20 28 15 1.304667

Run #2 16 24 25 15 20 2.478954

Run #3 27 23 19 18 13 1.289089

Run #4 23 19 15 19 24 2.04255

Run #5 26 22 13 18 21 1.090334

Run #6 21 13 20 21 25 0.936189

201

Run #7 22 23 18 13 23 2.435693

Run #8 18 19 25 16 22 0.995736

Run #9 23 25 19 17 16 1.095636

Run #10 20 18 19 22 21 1.205241

Run #11 18 22 15 17 27 1.154544

Run #12 18 19 18 18 25 1.134337

Run #13 18 15 20 19 27 1.316264

Run #14 17 23 27 15 18 2.907291

Run #15 16 22 24 23 14 0.945172

Run #16 23 23 14 20 17 1.418885

Run #17 21 21 15 24 19 1.042119

Run #18 11 20 32 15 22 1.572977

Run #19 16 25 20 17 22 1.319642

Run #20 17 16 27 21 19 1.027526

mean 19.50 20.50 20.25 18.80 20.50

stdev 3.72 3.25 4.89 3.52 4.02

t-test Lbest vs. 0.191596 0.298962 0.277362 0.215554

 Square vs. 0.426909 0.064963 0.5

 Octal vs. 0.150554 0.432106

 Hex vs. 0.086712

10.1.4 Behaviors of Knowledge sources using Spread Metrics

Table 10-3 gives the extent to which the different knowledge sources control individuals in the

population. Notice that the MOCAT system uses the normative exploratory knowledge source more

than for previous problems. This is also true for history knowledge. It is suggested that these two

knowledge sources are necessary to make the leap between the different parts of the Pareto front

Table 10-3 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 293 1487 1420 1102 67

Run #2 261 1383 1434 1116 80

Run #3 278 1349 1502 975 60

Run #4 290 1395 1425 1148 68

Run #5 296 1465 1437 1102 58

202

Run #6 262 1317 1562 863 60

Run #7 296 1420 1464 898 86

Run #8 259 1379 1504 917 61

Run #9 303 1455 1445 1146 72

Run #10 283 1440 1439 1094 60

Run #11 290 1376 1493 875 75

Run #12 264 1407 1480 1039 61

Run #13 317 1393 1465 1171 67

Run #14 250 1439 1500 987 73

Run #15 270 1463 1433 1087 84

Run #16 256 1407 1518 1102 66

Run #17 283 1403 1412 1108 79

Run #18 284 1423 1494 976 77

Run #19 271 1404 1514 931 41

Run #20 308 1397 1421 1066 71

mean 280.70 1410.10 1468.10 1035.15 68.30

stdev 18.21 39.87 40.38 95.96 10.36

t-test KS-N vs. 1.95E-37 1.08E-37 1.23E-19 2.88E-29

 KS-S vs. 3.58E-05 6.77E-15 8.05E-34

 KS-D vs. 2.15E-16 5.03E-34

 KS-H vs. 3.55E-21

10.1.5 Statistics of Topology-Knowledge tuple

While there was no significant difference in the usage of the topologies it is clear from table 10-

4 that the Global topologies is clearly the best at generating non-dominated solutions over the 20 runs.

The global domain knowledge tuple is the most successful in generating non-dominated solutions here.

Topographic knowledge exhibits the most variability in the generation of the non-dominated solutions.

The found Pareto front is shown in Figure in 10-6.

Table 10-4 Overall Statistics of Topology-Knowledge tuple

 N S D H T

Lbest
mean 53.65 271.65 287.25 200.3 10.1

stdev 13.04355 54.8455 58.0534 50.79484 6.835665

Square mean 56.3 286.95 298.1 210.15 11.35

203

stdev 16.86822 54.39086 52.3439 41.22375 6.037384

Octal
mean 50.8 292.65 294.65 206.7 10.55

stdev 16.456 69.04634 80.26946 47.55728 6.492708

Hex
mean 55.45 260.7 274.55 201.05 13.35

stdev 18.17886 51.99706 62.30103 46.43102 8.934116

Global
mean 64.5 298.15 313.55 216.95 22.95

stdev 22.38773 59.87291 66.46366 46.09884 13.70929

Table 10-5 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.243123 0.201898 0.202101 0.253594 0.676799

Square 0.299613 0.189548 0.175592 0.196163 0.531928

Octal 0.323937 0.235935 0.272423 0.230079 0.615423

Hex 0.327842 0.199452 0.226921 0.230943 0.669222

Global 0.347097 0.200815 0.211971 0.212486 0.597355

Figure 10.3 Overall found Pareto front

204

10.2 ZDT 4 10 with homogeneous Hyper-volume metric

 This problem is similar to ZDT1 some similarities can be noticed. The spread metric tends to do

well with problems of convex search. So it is not surprising that it outperforms the hyper-volume metric

controlled MOCAT here.

The runs were complete in an average of 15.12 seconds.

10.2.1 Performance of MOCAT with the Hyper-Volume Metric

The hyper-volume controlled MOCAT outperformed all of the benchmarked function for this

problem but still trailed the spread metric version in performance here. This confirms our previous

understanding that the spread metric provides better control in convex search problems than does the

hyper-volume metric. However, we will also find that as before, the hyper-volume metric excels at local

search, thereby reducing the standard deviation of the error. This suggests that again their combined

system will exhibit the best of both.

Table 10-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median Mean min max Stdev

Run #1 4.79E-06 9.23E-06 0 7.06E-05 1.24E-05

Run #2 1.71E-06 1.80E-05 2.46E-14 3.17E-04 3.93E-05

Run #3 5.72E-10 4.21E-04 -5.55E-17 0.027293 0.002928

Run #4 7.95E-07 9.20E-06 -4.16E-17 3.00E-04 3.23E-05

Run #5 1.55E-05 6.62E-05 8.10E-12 6.18E-04 1.03E-04

Run #6 2.51E-06 1.79E-05 0 2.20E-04 3.06E-05

Run #7 1.45E-07 8.30E-07 0 9.97E-06 1.44E-06

Run #8 4.38E-08 2.26E-07 -5.20E-17 2.46E-06 3.62E-07

Run #9 1.81E-06 1.98E-05 -4.16E-17 1.80E-04 3.50E-05

Run #10 3.60E-08 1.32E-07 -5.55E-17 9.37E-07 1.80E-07

Run #11 1.55E-05 7.39E-05 0 4.95E-04 9.89E-05

205

Run #12 3.86E-06 1.24E-05 2.24E-11 7.43E-05 1.56E-05

Run #13 3.05E-08 6.90E-07 1.65E-14 2.87E-05 3.16E-06

Run #14 1.37E-08 2.93E-07 -2.78E-17 6.47E-06 8.02E-07

Run #15 2.77E-06 8.08E-05 5.63E-14 0.001074 1.71E-04

Run #16 1.18E-05 2.93E-05 0 1.48E-04 3.66E-05

Run #17 1.55E-08 2.54E-06 -5.07E-17 5.15E-05 8.67E-06

Run #18 4.87E-07 1.53E-06 -2.78E-17 1.10E-05 1.83E-06

Run #19 2.96E-10 1.59E-09 0 1.16E-08 2.06E-09

Run #20 1.50E-06 7.61E-06 0 6.93E-05 1.19E-05

mean 3.17E-06 3.86E-05 1.53E-12 1.55E-03 1.77E-04

stdev 4.91E-06 9.12E-05 5.11E-12 5.91E-03 6.33E-04

10.2.2 Statistics of Topologies using Hyper-volume metric

Table 10-7 Use Count of Topologies of each run

Using Hyper-volume metric

Hyper-volume
Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 34 25 14 19 8 2.59969

Run #2 7 35 34 21 3 2.816862

Run #3 22 23 13 12 30 1.153938

Run #4 25 6 6 33 30 2.16683

Run #5 16 9 23 16 36 2.807655

Run #6 9 41 1 25 24 1.311071

Run #7 26 21 17 27 9 2.625014

Run #8 13 23 27 25 12 1.103295

Run #9 36 4 19 13 28 2.732501

Run #10 35 31 10 20 4 4.489101

Run #11 19 2 18 14 47 2.723188

Run #12 10 19 48 14 9 1.870899

Run #13 16 8 23 19 34 2.631353

Run #14 16 22 8 27 27 2.565681

Run #15 5 18 30 35 12 14.05727

Run #16 30 13 19 18 20 3.435748

Run #17 20 12 24 15 29 1.944189

Run #18 38 10 23 22 7 3.322236

Run #19 7 35 1 22 35 7.289603

Run #20 30 22 6 19 23 4.763994

206

mean 20.70 18.95 18.20 20.80 21.35

stdev 10.34 10.73 11.33 6.21 12.28

t-test Lbest vs. 0.305805 0.240853 0.485701 0.43044

 Square vs. 0.417557 0.260079 0.262534

 Octal vs. 0.193667 0.208148

 Hex vs. 0.431476

No statistical difference between any pair of topologies can be found. Once again, different

topologies were selected with similar possibilities. The cause may be the high standard deviation: the

highest and lowest means are corresponding to the two highest standard deviations.

10.2.3 Behaviors of Knowledge sources using Hyper-volume Metric

As with the spread metric , the system favors an increase in the use of exploratory knowledge

sources, particularly the normative knowledge source. At the same time the history knowledge source is

used extensively as a means to link the the parts of the global curve.

Table 10-8 Using hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 282 1380 1474 1057 62

Run #2 299 1406 1460 1317 88

Run #3 279 1407 1462 1083 69

Run #4 273 1418 1506 1031 76

Run #5 278 1475 1458 1017 80

Run #6 265 1437 1391 1042 69

Run #7 270 1447 1442 1169 84

Run #8 315 1436 1461 1115 72

Run #9 294 1418 1432 1142 73

Run #10 261 1445 1438 1105 64

Run #11 296 1410 1490 953 87

Run #12 299 1462 1447 1181 63

Run #13 259 1412 1428 1192 83

Run #14 330 1464 1373 953 58

207

Run #15 328 1350 1544 1083 64

Run #16 299 1371 1479 1150 55

Run #17 263 1378 1517 1105 57

Run #18 313 1405 1428 1191 81

Run #19 304 1410 1391 1153 88

Run #20 272 1402 1541 975 79

mean 288.95 1416.65 1458.10 1100.70 72.60

stdev 21.41 31.82 45.43 89.10 10.59

t-test KS-N vs. 1.02E-46 9.4E-37 2E-21 3.02E-26

 KS-S vs. 0.001275 1.23E-13 6.11E-38

 KS-D vs. 1.06E-15 2.42E-32

 KS-H vs. 2.21E-22

10.2.4 Statistics of Topology-Knowledge tuple

Here in Table 10-9 the Hexagonal Social fabric is best at generating non-dominated solutions for

the exploitative knowledge sources (situational, domain, and history) where the global topology does

best at generating non-dominated solution for the exploratory knowledge sources. Again, this indicates

the ability of the MOCAT system to conduct search at different levels of granularity, both the local and

global level. Table 10-10 indicates that system is most variable in generating topographic solutions.

Table 10-9 Number of non-dominated solutions generated by Topology-Knowledge tuples

 N S D H T

Lbest
mean 57.55 288.9 304.85 225.1 15.75

stdev 44.4942 142.3328 162.934 98.7852 16.16649

Square
mean 57.35 274.2 269.15 218.7 13.15

stdev 40.49987 156.8075 156.4334 118.9118 13.6122

Octal
mean 50.15 272.6 271.4 212.4 13.25

stdev 39.67005 162.8672 169.0803 126.9627 13.81409

Hex
mean 60.6 301.05 309.6 235.05 12.7

stdev 36.0882 87.87699 105.1247 54.49334 9.841373

Global
mean 64 282.85 298.9 211.2 17.5

stdev 54.67223 187.8609 204.828 123.1151 17.82813

208

Table 10-10 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.77314 0.492671 0.534473 0.43885 1.026444

Square 0.706188 0.571873 0.581213 0.543721 1.035149

Octal 0.791028 0.597459 0.622993 0.597753 1.042572

Hex 0.595515 0.291902 0.33955 0.231837 0.774911

Global 0.854254 0.664171 0.685273 0.582931 1.01875

10.2.5 Analysis of found Pareto front

The overall found pareto front does not contain any major gaps for this problem.

Figure 10.4 Overall found Pareto front

10.3 ZDT 4 10 with combined metrics

Although for the first convex function that we looked at the spread metric by itself performed

well, here the performance of the combined system far exceeds the perform of either system. This is

because as mentioned earlier it is able to integrate both local and global search and to exchange that

information between control segments during the search process.

209

The runs were complete in an average of 16.12 seconds.

10.3.1 Performance of MOCAT with the Combined metric

As shown in Table 10-11 the performance of the combined system far exceeds that of either

single metric guided system. In addition, it outperforms the benchmarked systems as well.

While we have seen the advantage of the combined metric approach for every problem so far,

as the problems have increased in complexity from ZDT1 through ZDT4 the relative performance of the

combined system have increased dramatically. Not only is it a better solution than the other systems, it

is actually the most accurate of all solved fronts so far.

Table 10-11 Statistics for the fitness errors of ending solutions

 Statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 1.57E-07 1.46E-06 0 2.12E-05 3.63E-06

Run #2 7.36E-07 6.41E-06 0 7.19E-05 1.27E-05

Run #3 3.45E-07 6.22E-06 -6.94E-18 1.54E-04 2.16E-05

Run #4 9.14E-07 4.64E-06 0 8.37E-05 9.45E-06

Run #5 1.37E-07 5.31E-07 0 4.80E-06 8.87E-07

Run #6 1.05E-07 3.21E-07 -2.78E-17 3.87E-06 6.15E-07

Run #7 1.59E-06 7.26E-06 -5.55E-17 4.54E-05 9.58E-06

Run #8 7.14E-07 2.54E-06 -5.55E-17 2.39E-05 3.52E-06

Run #9 2.37E-07 1.59E-06 -5.55E-17 2.97E-05 4.22E-06

Run #10 2.08E-06 1.05E-05 3.10E-13 1.03E-04 1.80E-05

Run #11 2.94E-06 8.58E-06 7.49E-13 5.01E-05 8.79E-06

Run #12 1.06E-07 2.59E-07 -5.55E-17 3.57E-06 5.34E-07

Run #13 8.22E-08 9.49E-07 8.73E-14 9.66E-06 1.95E-06

Run #14 8.78E-07 5.10E-06 -2.78E-17 5.01E-05 8.75E-06

Run #15 2.14E-08 4.70E-07 1.04E-13 9.22E-06 1.30E-06

Run #16 5.98E-07 2.94E-06 1.96E-11 2.99E-05 4.46E-06

Run #17 2.74E-08 1.36E-07 1.85E-13 1.07E-06 1.92E-07

Run #18 9.22E-07 2.40E-05 1.48E-14 3.35E-04 5.99E-05

Run #19 1.09E-08 5.90E-08 2.72E-14 4.55E-07 8.68E-08

210

Run #20 1.22E-06 5.43E-05 2.57E-10 0.001952 2.57E-04

mean 6.91E-07 6.92E-06 1.39E-11 1.49E-04 2.14E-05

stdev 7.60E-07 1.22E-05 5.60E-11 4.20E-04 5.57E-05

10.3.2 Statistics of Topologies for the Two Metrics

The usage of the topologies in each of the two phases of the combined metric system is given in

Figures 10-12 and 10-13. For the spread metric, there is no significant different in the amount of usage

among them. For the hyper-volume metric the usage of the square topology is significantly more

frequent than that of LBEST or HEX. This suggests a more mid-grained knowledge distribution strategy,

one that values between very local and global.

Table 10-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 9 9 13 5 14 1.004007

Run #2 3 12 11 10 14 7.554531

Run #3 11 10 11 5 13 1.207365

Run #4 13 10 9 11 7 1.181344

Run #5 12 3 7 8 20 1.116746

Run #6 2 7 14 11 16 0.916237

Run #7 13 3 8 18 8 1.154282

Run #8 1 8 25 12 4 5.225867

Run #9 5 10 15 11 9 4.892349

Run #10 12 15 7 6 10 1.097043

Run #11 10 9 17 6 8 1.050697

Run #12 8 12 3 8 19 7.583102

Run #13 14 14 11 6 5 1.066084

Run #14 9 3 9 18 11 1.245117

Run #15 14 15 4 14 3 1.062168

Run #16 14 10 6 7 13 7.774937

Run #17 15 15 8 6 6 1.072286

Run #18 9 10 10 8 13 1.857044

Run #19 15 2 13 8 12 2.155665

211

Run #20 8 13 14 7 8 0.996331

mean 9.85 9.50 10.75 9.25 10.65

stdev 4.21 4.06 4.85 3.79 4.59

t-test Lbest vs. 0.397767 0.272431 0.323549 0.289345

 Square vs. 0.197083 0.422738 0.209035

 Octal vs. 0.14757 0.474127

 Hex vs. 0.155932

Table 10-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 10 13 7 14 6 2.47357

Run #2 16 11 13 1 9 11.75539

Run #3 5 6 12 15 12 17.14695

Run #4 3 13 3 8 23 9.25986

Run #5 6 14 21 8 1 25.66597

Run #6 11 12 16 5 6 4.45085

Run #7 14 19 11 1 5 5.19906

Run #8 4 11 10 11 14 6.69113

Run #9 5 16 18 5 6 27.42015

Run #10 6 6 15 13 10 3.15135

Run #11 5 17 3 14 11 2.68119

Run #12 12 16 1 11 10 5.90485

Run #13 4 5 12 12 17 1.51482

Run #14 15 13 1 9 12 7.70107

Run #15 13 7 22 2 6 1.14883

Run #16 11 21 3 9 6 4.37885

Run #17 13 9 16 10 2 8.92897

Run #18 8 4 9 9 20 1.98441

Run #19 14 18 14 3 1 6.834429

Run #20 12 10 6 4 18 2.994

mean 9.35 12.05 10.65 8.20 9.75

stdev 4.15 4.77 6.27 4.35 6.07

t-test Lbest vs. 0.03529 0.228248 0.204951 0.407042

 Square vs. 0.221871 0.006643 0.101233

 Octal vs. 0.085483 0.327862

 Hex vs. 0.186116

212

10.3.3 Behaviors of Knowledge sources for the combined metrics

The extent to which the knowledge sources control the population in each phase of the search

process is given in tables 10-14 and 10-15. As was to be expected both spread metrics maintain

significant differences in knowledge source control in their specific phases of the problem solving

process. What is interesting is the complementarity that is displayed there. The spread metric phase

makes more use of the exploratory knowledge sources than the hyper-volume phases. On the other

hand, the hyper-volume phase makes more use of history knowledge. This again makes sense because it

is the vehicle used to pass information from one phase of the process to the next.

Table 10-14 using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 159 728 730 448 33

Run #2 178 681 757 466 53

Run #3 177 696 731 514 48

Run #4 202 711 757 506 53

Run #5 144 726 768 480 40

Run #6 143 669 770 475 49

Run #7 149 650 753 486 45

Run #8 149 760 646 562 40

Run #9 187 714 695 503 42

Run #10 146 667 799 353 51

Run #11 149 687 783 386 38

Run #12 200 733 770 470 56

Run #13 194 692 700 462 59

Run #14 180 668 753 498 41

Run #15 180 678 737 491 42

Run #16 203 711 714 511 46

Run #17 176 642 776 509 65

Run #18 190 731 730 527 63

Run #19 202 670 759 454 60

Run #20 174 698 751 597 42

213

mean 174.10 695.60 743.95 484.90 48.30

stdev 20.92 30.08 34.44 52.01 8.73

t-test KS-N vs. 8.66E-37 1.39E-34 3.76E-19 2.27E-19

 KS-S vs. 2.31E-05 3.99E-16 3.06E-30

 KS-D vs. 5.35E-19 6.2E-29

 KS-H vs. 4.96E-20

Table 10-15 Using Hyper-volume metric #Individuals influenced by KS

using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 105 730 667 593 19

Run #2 123 700 750 618 10

Run #3 97 737 734 580 32

Run #4 101 698 690 616 15

Run #5 104 680 681 579 20

Run #6 112 717 682 624 21

Run #7 97 753 728 552 26

Run #8 102 677 645 653 10

Run #9 112 746 705 607 31

Run #10 131 706 716 527 23

Run #11 120 724 743 577 11

Run #12 93 749 704 638 27

Run #13 116 714 710 595 16

Run #14 109 698 714 681 22

Run #15 89 750 703 619 31

Run #16 97 697 718 589 27

Run #17 114 726 674 595 37

Run #18 101 739 699 591 35

Run #19 107 718 691 614 25

Run #20 101 724 708 599 16

mean 106.55 719.15 703.10 602.35 22.70

stdev 10.36 22.25 25.24 32.99 7.96

t-test KS-N vs. 2.23E-37 4.36E-34 3.2E-27 3.83E-26

 KS-S vs. 0.022256 1.04E-14 1.3E-35

 KS-D vs. 7.98E-13 5.41E-33

 KS-H vs. 1.95E-27

214

10.3.4 Statistics of Topology-Knowledge tuples

In tables 10-16 and 10-17 the generation of non-dominated solutions by the topology-

knowledge sources tuples is presented. It is clear that the Octal topology is best at generating non-

dominated solutions using the exploitation knowledge sources. It is also is the best at generating non-

dominated solutions with topographic knowledge. In general, there is much more variability in the

generation of non-dominated solutions across all combinations of topology knowledge source tuples.

This is an indication of the difficulty of the problem and the need to maintain and exploit diversity within

the system.

Table 10-16 generation of Non-Dominated Solutions using the Topology-Knowledge tuple

 N S D H T

Lbest
mean 56.35 275.25 286.65 207.45 16.7

stdev 27.08714 86.0348 95.26267 70.52097 11.98727

Square
mean 60.5 308.15 314.1 246.1 15.8

stdev 18.16156 70.74214 70.40028 56.56938 9.666001

Octal
mean 58.65 301.8 303.45 227.65 16.1

stdev 22.89628 124.052 106.937 93.62258 8.686953

Hex
mean 51.6 246.1 251.95 192.7 11.95

stdev 19.04676 56.29986 54.06962 46.055 7.708335

Global
mean 53.15 284.05 292.75 207.6 12.75

stdev 25.70536 93.50343 96.20585 77.2422 7.510519

Table 10-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.480695 0.31257 0.332331 0.339942 0.717801

Square 0.300191 0.22957 0.224133 0.229863 0.611772

Octal 0.390388 0.411041 0.352404 0.411257 0.539562

Hex 0.369123 0.228768 0.214605 0.238998 0.645049

Global 0.483638 0.329179 0.328628 0.372072 0.58906

215

10.3.5 Analysis of found Pareto front

The found Pareto front is given below for the combined system.

Figure 10.5 Overall found Pareto front

10.4 Summary of ZDT4

At the first glance, ZDT4 is the same as ZDT1; however they are fundamentally different. While

for ZDT1 the real Pareto front is a continuous curve, for ZDT4 the real one contains 219 local Pareto

fronts. This difference is not represented in figures due to the high density; but does bring changes of

evolution internally.

In fact, as to experiment results, ZDT4 has many special exclusive features. MOCAT runs on

ZDT4 as well as on the first two problems while some other evolutionary algorithms have much worse

performance on ZDT4 than on ZDT1 and ZDT2. In fact, using MOCAT, evolution for ZDT4 is similar to it

216

on ZDT1 and ZDT2, with exception that for ZDT4 at the beginning of evolution individuals do not spread

to the far right bottom. Instead, they are attracted there along with evolution.

What is particularly interesting is that while each single metric version has it own style of

problem solving, when they are combined there are changes in the usage of the knowledge sources and

topologies in each. This ability to adapt the nature and flow of information to the nature of the problem

is very important here. Some specific highlights are:

1. Certain topologies begin to favor the generation of individuals for exploratory knowledge

sources and other for exploitative knowledge sources.

2. The different metric takes different roles in guiding the system during their respective

phases. The spread metric focuses on exploration while the hyper-volume metric

concentrates on exploitation. This distinction was only slight in ZDT1 but now is very

pronounced as the problem has become more complex.

3. History knowledge takes an active role in translating the results from the one phase to the

next during the problem solving process.

217

CHAPTER 11 EXPERIMENTAL RESULTS FOR MOCAT ON DECPETIVE

PROBLEMS: ZDT5

This test function was described as “a deceptive problem” (Zitzler et al, 2000).The original

meaning of the description referred to the fact thatZDt5 “distinguishes itself from the other test

functions in that represents a binary string”. This is an important distinction since most MOEAs rely on

hill climbing to solve problems. Such a representation is not at all conducive to that directly and was

able to deceive several MOEAs.

While our belief space currently saves only numerical information, there is a need to map binary

strings to numbers. In fact, in the definition of ZDT5, function u provides a mapping from strings to

integers. In addition, the integers need to be mapped back to binary strings if we want to keep

numerical encoding in our current implementation. Fortunately, this requirement can be easily satisfied

because for any given integer that is legitimate for the dimension, we are able to create a string that

produces such an integer value. Though this integer-to-string mapping is not injective, it does not

impair the correctness of the encoding. Thereafter, in our implementation we directly evolve on u

values instead of physical binary strings.

Again, we will use homogeneous spread metric, homogeneous Hyper-volume metric, and

combined two metrics to conduct experiments and try to observe and summarize the correspondence

among knowledge sources and topologies.

218

ZDT5 is special also in that it does not have the same range for all dimensions. According to its

definition, the first dimension has a data range of [0, 30] while all the rest have range [1, 5]. The

standard ZDT5 has dimension of 11 (1 + 10) ZDT 5 11 with homogeneous Spread metrics.

11.1 An Example of the Evolution of ZDT5 Optimal Curve

The runs were complete in an average of 11.78 seconds.

Figure 11-1 (a-f) illustrates how the MOCAT system as guided by the spread metric solves the

ZDT5 problem. The problem, like ZDT1 and ZDT4, is essentially convex with a steep initial part and a

relatively flat final portion. As with ZDT4 the system generated solutions to the left and then as the

number of generations proceeds they begin to move to the portion with the least change.

219

a. Generation 1

b. Generation 5

220

c. Generation 20

221

d. Generation 50

222

e. Generation 80

223

f. Generation 100

Figure 11.1 The sequence for Pareto front produced through cultural evolution.

11.1.1 Performance of MOCAT with the spread metric

For ZDT5 we lack public available existing experiment data to evaluate our performance.

However, the performance shown in Table 11-1 below exhibits the least precision of all problems

worked on so far.

Table 11-1 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 1.00E+00 3.34E+00 -2.22E-16 3.50E+01 6.11E+00

Run #2 1.28E+00 3.98E+00 -2.22E-16 3.60E+01 5.94E+00

Run #3 1.00E+00 3.67E+00 -2.22E-16 3.30E+01 5.70E+00

224

Run #4 1.00E+00 3.70E+00 -4.44E-16 3.60E+01 6.31E+00

Run #5 1.00E+00 3.68E+00 -2.22E-16 4.20E+01 7.16E+00

Run #6 1.00E+00 3.93E+00 -4.44E-16 3.40E+01 6.27E+00

Run #7 1.00E+00 3.04E+00 -4.44E-16 3.10E+01 5.43E+00

Run #8 1.00E+00 3.15E+00 -4.44E-16 2.90E+01 5.23E+00

Run #9 1.22E+00 2.84E+00 -2.22E-16 2.70E+01 4.12E+00

Run #10 1.00E+00 3.25E+00 -2.22E-16 3.60E+01 5.47E+00

Run #11 1.00E+00 3.42E+00 -2.22E-16 3.30E+01 5.51E+00

Run #12 1.00E+00 2.93E+00 -4.44E-16 3.10E+01 5.33E+00

Run #13 1.00E+00 3.83E+00 -2.22E-16 3.80E+01 7.38E+00

Run #14 1.00E+00 3.42E+00 -2.22E-16 4.00E+01 6.10E+00

Run #15 1.00E+00 3.11E+00 -4.44E-16 3.60E+01 5.72E+00

Run #16 1.00E+00 2.93E+00 -4.44E-16 3.50E+01 5.45E+00

Run #17 1.00E+00 2.98E+00 -2.22E-16 3.20E+01 5.10E+00

Run #18 1.23E+00 3.83E+00 -4.44E-16 4.40E+01 6.58E+00

Run #19 1.00E+00 2.97E+00 -2.22E-16 3.30E+01 5.60E+00

Run #20 1.00E+00 3.05E+00 -4.44E-16 4.20E+01 6.32E+00

mean 1.04E+00 3.35E+00 -3.22E-16 3.52E+01 5.84E+00

stdev 8.58E-02 3.69E-01 1.10E-16 4.30E+00 7.15E-01

11.1.2 Statistics of Topologies using Spread metric

In terms of the usage of topologies Table 11-2 indicates that there is no statistical difference in

the usage here between the topologies. However, the spread metric typically uses the global topology

to facilitate search.

Table 11-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 20 14 25 22 19 4.478448

Run #2 26 13 21 20 20 5.500802

Run #3 30 16 17 16 21 3.1204

Run #4 16 13 33 22 16 3.187408

Run #5 19 15 27 18 21 8.980074

Run #6 19 16 19 17 29 13.11974

225

Run #7 23 15 21 24 17 8.58566

Run #8 14 18 20 29 19 4.238895

Run #9 15 17 26 22 20 7.039125

Run #10 20 15 17 23 25 5.491045

Run #11 27 20 13 18 22 5.966925

Run #12 22 16 26 16 20 5.519773

Run #13 26 17 31 14 12 3.321442

Run #14 15 25 19 12 29 3.000329

Run #15 14 16 25 17 28 4.242641

Run #16 29 39 16 9 7 16.37494

Run #17 19 23 12 20 26 9.896835

Run #18 17 26 11 31 15 6.550872

Run #19 26 14 25 20 15 3.122606

Run #20 18 17 15 20 30 6.987281

mean 20.75 18.25 20.95 19.50 20.55

stdev 4.97 5.96 6.02 5.06 5.90

t-test Lbest vs. 0.084234 0.455843 0.223628 0.455327

 Square vs. 0.086377 0.245127 0.119666

 Octal vs. 0.213456 0.418641

 Hex vs. 0.279901

11.1.3 Behaviors of Knowledge sources using Spread Metric

What is interesting here is that for the first time the MOCAT system has shifted to emphasizing

exploration over exploitation. This suggests that due to the fact that hill climbing is less productive here

there is more emphasis placed on systematic search. More individuals are controlled by exploratory

knowledge sources than exploitative ones due to the reduced ability to do local hill climbing for this

problem. All knowledge source usages are, as usual, statistically different from each other.

Table 11-3 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 1592 207 51 752 407

Run #2 952 223 15 832 388

Run #3 1325 229 67 1081 303

226

Run #4 1137 260 15 662 285

Run #5 1288 296 94 1022 320

Run #6 1555 277 74 822 460

Run #7 1577 277 51 648 406

Run #8 1465 259 61 865 516

Run #9 859 250 32 612 423

Run #10 1344 229 78 1085 305

Run #11 922 210 39 855 379

Run #12 1445 251 34 777 455

Run #13 1380 247 50 996 340

Run #14 441 161 8 459 291

Run #15 390 170 4 382 253

Run #16 1513 233 48 765 436

Run #17 1406 231 26 658 434

Run #18 1537 296 86 802 390

Run #19 422 186 3 443 275

Run #20 1089 221 22 543 341

mean 1181.95 235.65 42.90 753.05 370.35

stdev 386.32 36.56 27.02 199.85 70.89

t-test KS-N vs. 8.06E-10 3.69E-11 9.12E-05 7.91E-09

 KS-S vs. 6.22E-20 2.28E-10 2.33E-08

 KS-D vs. 1.02E-12 2.45E-16

 KS-H vs. 2.31E-08

The table shows a phenomenon that is not seen in other problems. Individuals influenced by

situational knowledge source had better chance to contribute to the evolution than those influenced by

domain knowledge source. At first glance, this is contrary to being intuitive while situational knowledge

source will choose a random location in near neighborhood but domain knowledge source will probe the

adjacent positions on each dimension. Nonetheless, a deep analysis finds that situational knowledge

may influence an individual to jump to a new position that is much farther than the distance that can be

got under the influence of domain knowledge source. Using the situational knowledge source, on each

dimension a random offset is moved so that sum of such offsets can be big upon accumulation. Using

domain knowledge source, the new individual is chosen from a pool of candidates whose locations are

227

different from the parent on only one dimension (Che, 2008) and the difference is only one since ZDT5

has discrete domain space. It looks like walking around inside a small neighborhood does not bring the

evolution any progress for ZDT5. If this conjecture is true, ZDT5 will impose unconquerable challenges

to the evolutionary algorithms that heavily depend on local exploration.

11.1.4 Statistics of Topology-Knowledge tuple

Here it is clear the exploratory knowledge source tuples are doing the best at generating non-

dominated solutions. Of the exploitative knowledge sources history is best at exploring areas around

existing solutions. All of the tuples exhibit variability in the generation process.

Table 11-4 The Generation of non-dominated solutions by Topology-Knowledge tuples

 N S D H T

Lbest
mean 186.15 1.15 5 161.7 67.3

stdev 96.3187 1.531253 6.488857 65.54637 30.87343

Square
mean 190.85 0.55 6.1 164.15 66.3

stdev 91.41823 0.759155 6.896986 80.09815 27.8683

Octal
mean 167.05 0.65 4.85 148.25 54.7

stdev 66.09919 0.933302 4.319783 71.83891 22.66948

Hex
mean 167.15 0.9 6 148.9 59.8

stdev 77.0183 1.372665 6.844129 65.72823 20.45946

Global
mean 173.4 0.8 4.25 154.5 65.8

stdev 65.34475 1.361114 3.739899 54.58697 22.83949

Table 11-5 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.517425 1.331525 1.297771 0.405358 0.458743

Square 0.479006 1.380281 1.130654 0.487957 0.420336

Octal 0.395685 1.435849 0.890677 0.484579 0.414433

Hex 0.460774 1.525184 1.140688 0.441425 0.342131

Global 0.376844 1.701393 0.879976 0.353314 0.347105

228

11.1.5 Analysisof found Pareto front

Finally, the addition of found Pareto front of each run is represented.

Figure 11.2 Overall found Pareto front

For ZDT5, the explored Pareto front consists of a series of discrete locations. For f1= 1, f2 should

be 10, however, in our final result set 20 is also presented. There is one location (4, 4) which is far from

the real Pareto front. This indicates that in one run we have missed locations (3, 3,333) and (4, 2.5). And

229

we can see some overlap at locations (6, 1.667), (8, 1.25), etc. Nonetheless, in total, the Pareto front

that MOCAT has identified is a good representation of the ideal.

11.2 ZDT 511 with homogeneous Hyper-volume metrics

The runs were complete in an average of 12.12 seconds.

11.2.1 Performance of MOCAT with Hyper-volume

The performance of the MOCAT system with hyper-volume is slightly better than with the

spread metric in terms of both mean error and standard deviation of the error. This is consistent with

ZDT2, ZDT3, and ZDT4.

Table 11-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median Mean min max stdev

Run #1 1.00E+00 3.34E+00 -4.44E-16 3.00E+01 5.72E+00

Run #2 8.00E-01 2.94E+00 -4.44E-16 3.20E+01 5.41E+00

Run #3 1.32E+00 4.34E+00 -2.22E-16 3.60E+01 6.79E+00

Run #4 1.35E+00 3.79E+00 -4.44E-16 3.20E+01 5.46E+00

Run #5 1.00E+00 3.25E+00 -2.22E-16 3.40E+01 5.13E+00

Run #6 9.52E-01 3.01E+00 -4.44E-16 3.30E+01 5.47E+00

Run #7 1.00E+00 3.13E+00 -2.22E-16 3.50E+01 5.29E+00

Run #8 1.00E+00 3.48E+00 -2.22E-16 3.60E+01 6.69E+00

Run #9 8.57E-01 2.96E+00 -2.22E-16 3.60E+01 5.53E+00

Run #10 1.00E+00 3.40E+00 -2.22E-16 3.90E+01 5.64E+00

Run #11 1.00E+00 3.06E+00 -4.44E-16 3.20E+01 4.83E+00

Run #12 1.00E+00 3.18E+00 -4.44E-16 3.10E+01 5.32E+00

Run #13 1.00E+00 3.37E+00 -2.22E-16 3.70E+01 6.25E+00

Run #14 1.00E+00 3.24E+00 -2.22E-16 3.30E+01 5.55E+00

Run #15 1.13E+00 3.75E+00 -2.22E-16 3.60E+01 5.96E+00

Run #16 6.63E-01 3.30E+00 -2.22E-16 4.20E+01 7.12E+00

Run #17 1.00E+00 3.95E+00 -4.44E-16 4.10E+01 6.73E+00

230

Run #18 1.00E+00 3.37E+00 -2.22E-16 2.70E+01 4.83E+00

Run #19 1.18E+00 3.50E+00 -4.44E-16 3.80E+01 5.96E+00

Run #20 6.90E-01 2.34E+00 -4.44E-16 3.20E+01 4.55E+00

mean 9.97E-01 3.34E+00 -3.22E-16 3.46E+01 5.71E+00

stdev 1.64E-01 4.11E-01 1.10E-16 3.64E+00 6.86E-01

11.2.2 Statistics of Topologies using Hyper-volume metric

Unlike the spread metric MOCAT system, favored certain topologies during the runs. The hyper-

volume version used the square topology significantly more often than LBEST, HEX, and Global as shown

in Table 11-7.

Table 11-7 Use Count of Topologies of each run

Using Hyper-volume metric

Hyper-volume
Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 19 22 18 20 21 100.8287

Run #2 23 17 15 24 21 101.062

Run #3 23 17 26 19 15 96.44014

Run #4 20 26 23 15 16 120.8224

Run #5 16 24 18 24 18 113.3882

Run #6 21 21 18 21 19 137.8363

Run #7 19 19 21 16 25 154.6373

Run #8 22 15 25 18 20 113.098

Run #9 24 18 23 12 23 104.3497

Run #10 22 29 15 16 18 105.062

Run #11 21 20 20 20 19 105.8229

Run #12 16 21 19 26 18 137.3104

Run #13 18 18 18 28 18 126.496

Run #14 18 23 22 14 23 118.1137

Run #15 21 19 23 20 17 129.9446

Run #16 14 27 17 21 21 119.7099

Run #17 20 24 24 14 18 112.0656

Run #18 16 21 31 10 22 119.8202

Run #19 18 24 19 21 18 113.6576

Run #20 20 26 13 25 16 96.44519

mean 19.55 21.55 20.40 19.20 19.30

231

stdev 2.64 3.68 4.20 4.72 2.57

t-test Lbest vs. 0.031218 0.230202 0.389835 0.384438

 Square vs. 0.187573 0.047782 0.017963

 Octal vs. 0.206433 0.16882

 Hex vs. 0.467947

11.2.3 Behaviors of Knowledge sources using Hyper-volume Metric

Table 11-8 describes the extent of control over the population by each of the knowledge sources.

Given the local hill climbing is effectively disabled search control has moved over to the exploratory

knowledge sources as we saw with the spread metric version earlier. While both exploratory knowledge

sources are used frequently, the hyper-volume metric increases its use of situational history knowledge

to replace the hill climbing activities of the domain knowledge. This is reasonable since the hyper-

volume metric is more supportive of exploitative search than the spread metric, so it tries to identify

other ways to improve it.

Table 11-8 Using Hyper-volume metric #Individuals influenced by KS

usingHyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 1685 283 69 753 582

Run #2 1702 315 99 887 510

Run #3 1414 263 25 968 497

Run #4 1330 245 34 1243 428

Run #5 1225 292 36 772 358

Run #6 1714 280 36 732 504

Run #7 513 261 4 354 244

Run #8 1421 257 36 806 303

Run #9 1445 252 58 785 385

Run #10 1185 266 51 836 317

Run #11 1499 277 67 712 370

Run #12 1605 291 63 903 542

Run #13 1659 265 59 877 322

Run #14 639 157 15 557 314

232

Run #15 1293 248 94 1165 448

Run #16 1441 270 45 884 370

Run #17 1549 235 39 1080 321

Run #18 1727 260 34 775 374

Run #19 1267 262 15 664 327

Run #20 1323 248 37 472 250

mean 1381.80 261.35 45.80 811.25 388.30

stdev 316.19 30.16 24.04 208.12 94.50

t-test KS-N vs. 1.32E-12 5.97E-14 9.29E-08 2.75E-12

 KS-S vs. 2.38E-24 1.89E-10 5.77E-06

 KS-D vs. 6.1E-13 2.52E-13

 KS-H vs. 6.57E-09

11.2.4 Statistics of Topology-Knowledge tuple

As shown in Table 11-9, the only exploitative knowledge source that is produce with the hyper-

volume measure is History. However, with the hyper-volume performance metric it is much more

productive then with the spread metric. Both situational and domain knowledge are ineffective in

generating non-dominated solution for this problem because of the reliance on local improvements.

Another interesting note, is that the variability of domain knowledge is high which means that if it did

find something in a region it would do some limited hill climbing.

Table 11-9 Production of non-dominated solution by Topology-Knowledge tuple

 N S D H T

Lbest
mean 190.9 0.6 6.3 170.4 71.3

stdev 59.45356 0.680557 4.117996 54.24545 23.53519

Square
mean 169.25 0.55 6.25 148.7 58.3

stdev 78.04646 0.944513 5.552382 52.68087 18.53617

Octal
mean 183.95 0.5 6.65 181.3 66.7

stdev 42.44188 0.888523 5.314083 53.9845 24.07904

Hex
mean 214 0.55 6.4 186.85 69.95

stdev 83.90408 1.145931 5.255573 74.07768 26.77877

Global
mean 204.55 0.6 6.8 176.7 70.5

stdev 63.82829 0.88258 5.084548 41.05978 18.53446

233

Table 11-10 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.311438 1.134262 0.65365 0.318342 0.330087

Square 0.461131 1.717297 0.888381 0.354276 0.317945

Octal 0.230725 1.777047 0.79911 0.297763 0.361005

Hex 0.392075 2.083511 0.821183 0.396455 0.382827

Global 0.312042 1.470967 0.747728 0.23237 0.2629

11.2.5 Analysis of found Pareto front

Figure 11.3 Overall found Pareto front

234

The system produced a good approximation. Notcie that the only flaw is in the transitional point

point between the steep part of the curve and the flatter part. It will be interesting to see how the

combined metric approach deals with this situation.

11.3 ZDT 511 with combined metrics

In this section MOCAT system that uses the combined metric is examined. The key problem with

the deceptive function is the removal of hill climbing as a search option. Thus, a critical issue is to how to

replace the search power lost.

The runs were complete in an average of 12. 89 seconds.

11.3.1 Performance of MOCAT with the Combined Metrics

The performance of MOCA with the combined metrics is slightly worse than that of the hyper-

volume system on its own. The system synergy is best when both exploration and exploitation can take

place together. In ZDT1 the emphasis was on exploitation and here the emphasis was on exploration. In

both situations a single performance metric approach dominated rather than a combination. As will be

demonstrated the two subsystems perform in very similar ways for the problem, so there is little

opportunity for synergy. Both focus on the extreme topologies (lbest or square, and global) and on the

exploratory knowledge sources along with a single exploitative knowledge source, history.

Table 11-11 Statistics for the fitness errors of ending solutions

 Statistics for the fitness errors of ending generation

 median mean Min max stdev

Run #1 7.50E-01 2.76E+00 -4.44E-16 2.70E+01 4.14E+00

Run #2 1.13E+00 4.13E+00 -4.44E-16 3.70E+01 7.01E+00

Run #3 1.00E+00 3.71E+00 -4.44E-16 3.70E+01 6.61E+00

235

Run #4 6.90E-01 3.04E+00 -2.22E-16 3.80E+01 6.60E+00

Run #5 2.00E+00 4.10E+00 -2.22E-16 3.60E+01 6.18E+00

Run #6 1.00E+00 3.18E+00 -2.22E-16 3.70E+01 6.12E+00

Run #7 1.00E+00 2.76E+00 -2.22E-16 2.10E+01 3.91E+00

Run #8 1.00E+00 3.13E+00 -2.22E-16 3.70E+01 5.59E+00

Run #9 8.97E-01 2.79E+00 -2.22E-16 3.60E+01 5.18E+00

Run #10 1.00E+00 3.55E+00 -2.22E-16 3.60E+01 6.04E+00

Run #11 1.00E+00 3.50E+00 -2.22E-16 3.70E+01 6.95E+00

Run #12 1.00E+00 3.20E+00 -4.44E-16 2.10E+01 4.02E+00

Run #13 9.17E-01 3.00E+00 -2.22E-16 3.30E+01 5.37E+00

Run #14 1.10E+00 3.13E+00 -2.22E-16 3.60E+01 4.67E+00

Run #15 9.41E-01 3.26E+00 -4.44E-16 3.60E+01 5.51E+00

Run #16 1.00E+00 3.76E+00 -2.22E-16 3.60E+01 6.64E+00

Run #17 1.42E+00 3.98E+00 -2.22E-16 3.70E+01 6.31E+00

Run #18 1.00E+00 3.40E+00 -2.22E-16 3.60E+01 5.76E+00

Run #19 1.35E+00 3.66E+00 -4.44E-16 3.10E+01 5.58E+00

Run #20 9.69E-01 3.35E+00 -2.22E-16 3.70E+01 6.25E+00

mean 1.06E+00 3.37E+00 -2.89E-16 3.41E+01 5.72E+00

stdev 2.68E-01 4.13E-01 1.02E-16 5.02E+00 9.20E-01

11.3.2 Statistics of Topologies for the combined Metrics

There is no statistically significant difference in usage between the topologies for the spread

metric in the combined system similar to how it performed on its own. It tends to favor use of the

simplest and most complex topologies as shown in Table 11-12. On the other hand, on its own the

hyper-volume favored the square topology whereas in the combined system it favored the LBEST

topology over the others.

Table 11-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 6 14 11 8 11 6.468369

Run #2 12 10 16 8 4 4.636591

Run #3 7 11 13 8 11 4.385989

236

Run #4 8 6 10 11 15 11.40611

Run #5 9 10 12 7 12 6.889167

Run #6 10 9 7 6 18 9.806533

Run #7 10 4 10 8 18 8.092147

Run #8 13 20 1 2 14 3.141398

Run #9 6 11 7 16 10 12.70618

Run #10 12 14 13 4 7 8.430844

Run #11 7 5 16 9 13 13.95457

Run #12 11 3 6 14 16 5.968624

Run #13 8 10 9 11 12 3.754187

Run #14 15 12 7 9 7 9.377765

Run #15 14 15 8 7 6 3.800018

Run #16 13 5 10 10 12 5.581133

Run #17 12 14 8 12 4 3.642426

Run #18 9 4 16 11 10 8.796178

Run #19 8 10 3 16 13 11.01232

Run #20 10 17 1 12 10 17.39656

mean 10.00 10.20 9.20 9.45 11.15

stdev 2.61 4.56 4.37 3.50 3.98

t-test Lbest vs. 0.434607 0.248988 0.293133 0.149841

 Square vs. 0.246962 0.286454 0.248914

 Octal vs. 0.423335 0.079196

 Hex vs. 0.0851

Table 11-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 12 10 14 7 7 96.96355

Run #2 13 8 11 7 11 134.6014

Run #3 9 7 17 6 11 119.1882

Run #4 11 10 8 9 12 105.3409

Run #5 14 9 6 11 10 100.9886

Run #6 16 5 14 9 6 117.065

Run #7 8 7 15 11 9 110.8687

Run #8 10 12 9 10 9 106.9506

Run #9 9 13 6 11 11 117.0063

Run #10 9 6 11 13 11 107.2813

Run #11 10 12 11 7 10 123.9455

Run #12 14 10 12 9 5 102.2482

237

Run #13 9 5 12 12 12 131.5261

Run #14 11 10 6 10 13 136.8117

Run #15 11 9 9 11 10 93.67658

Run #16 15 12 9 8 6 105.1895

Run #17 14 6 8 15 7 120.1524

Run #18 10 4 13 14 9 103.1443

Run #19 13 7 6 14 10 101.5949

Run #20 14 13 7 7 9 90.30836

mean 11.60 8.75 10.20 10.05 9.40

stdev 2.31 2.74 3.23 2.58 2.15

t-test Lbest vs. 0.000673 0.066938 0.02925 0.002165

 Square vs. 0.072102 0.070028 0.210614

 Octal vs. 0.437636 0.187999

 Hex vs. 0.202247

11.3.3 Behaviors of Knowledge sources in the combined system

The different in influence of the knowledge sources over individuals in the population is given in

Figures 11-14 and 11-15. Both exhibit statistically different influence values for all knowledge sources.

Both emphasize the two exploratory knowledge sources and the exploitative history knowledge source.

Table 11-14 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 681 156 9 333 163

Run #2 492 137 13 578 156

Run #3 594 143 19 432 242

Run #4 551 121 23 356 176

Run #5 516 135 32 527 232

Run #6 555 156 35 413 355

Run #7 631 140 3 337 216

Run #8 619 128 18 446 253

Run #9 609 155 23 528 172

Run #10 567 144 18 403 247

Run #11 606 129 18 323 179

Run #12 225 129 4 380 135

238

Run #13 625 131 33 393 277

Run #14 583 155 7 527 182

Run #15 609 172 18 325 150

Run #16 517 117 10 468 160

Run #17 441 142 38 701 230

Run #18 629 133 15 341 200

Run #19 505 125 13 518 165

Run #20 563 144 14 357 218

mean 555.90 139.60 18.15 434.30 205.40

stdev 94.45 13.59 9.80 99.24 51.79

t-test KS-N vs. 1.76E-14 1.99E-16 0.000208 5.26E-15

 KS-S vs. 2.18E-27 2.54E-11 1.18E-05

 KS-D vs. 6.12E-14 4.93E-13

 KS-H vs. 4.7E-10

Table 11-15 Using Hyper-volume metric #Individuals influenced by KS

usingHyper-volume metric #Individuals influenced by KS

 778 132 14 275 107

Run #1 807 141 27 602 167

Run #2 787 132 28 496 248

Run #3 807 86 41 295 112

Run #4 747 113 65 528 227

Run #5 840 134 51 357 263

Run #6 969 139 5 386 163

Run #7 916 102 38 435 197

Run #8 849 126 30 506 199

Run #9 800 113 35 438 196

Run #10 951 111 41 361 169

Run #11 500 118 6 277 100

Run #12 939 119 40 371 238

Run #13 949 147 20 477 187

Run #14 737 131 22 306 125

Run #15 870 119 39 492 201

Run #16 605 114 49 721 158

Run #17 984 109 20 363 199

Run #18 784 118 14 531 172

Run #19 703 108 21 297 132

Run #20 816.10 120.60 30.30 425.70 178.00

239

mean 120.24 14.38 15.18 115.91 45.59

stdev 778 132 14 275 107

t-test KS-N vs. 1.28E-16 1.17E-17 1.03E-12 1.04E-17

 KS-S vs. 3.97E-21 2.19E-10 1.35E-05

 KS-D vs. 2.19E-12 1.07E-12

 KS-H vs. 2.88E-09

11.3.4 Production of non-dominated solutions by Topology-Knowledge tuples

As with the previous statistics there is little difference in the behavior of the spread metric

controlled phase of the combined system with that of the hyper-volume controlled phase. In each case

the three most productive knowledge sources are normative, topographic, and history. The octal metric

is the most productive topology with the octal normative pair being the most productive overall. In the

standalone systems the most productive topologies tended towards the extremes. Here, the

combination has reduced the complexity of the social fabric.

Table 11-16 Generation of non-dominated solutions by Topology-Knowledge tuples

 N S D H T

Lbest
mean 197.75 0.55 7.95 180 67.05

stdev 53.9199 1.099043 4.978639 51.33686 21.57112

Square
mean 194.5 0.5 8.25 178 70.45

stdev 50.5595 0.688247 4.982865 59.35797 26.64676

Octal
mean 223.5 0.6 8.25 196.35 81.1

stdev 67.4689 0.940325 3.537394 51.40784 26.27166

Hex
mean 209.55 0.7 8.8 191.05 78.3

stdev 63.54814 1.080935 5.818301 55.67242 29.53161

Global
mean 179.5 0.65 6 168.3 67.1

stdev 71.35346 1.268028 4.768316 48.934 22.82865

Once again, variations for S are always bigger than one.

Table 11-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.272667 1.998259 0.626244 0.285205 0.321717

Square 0.259946 1.376494 0.603984 0.333472 0.378237

240

Octal 0.301874 1.567208 0.428775 0.261817 0.323942

Hex 0.30326 1.544193 0.661171 0.291402 0.37716

Global 0.397512 1.950812 0.794719 0.290755 0.340218

11.3.5 Analysis of found Pareto front

While the system performs slightly less well than the hyper-volume system on its own, it has

done a slightly better job at the interface between the steep curve and the gradual one. That was the

improvement that we had hoped for in the combined metric.

241

Figure 11.4 Overall found Pareto front

11.4 Summary of the MOCAT performance for ZDT5

The deceptive nature of the problem means that the knowledge sources that utilize hill climbing

as a vehicle for exploitation in problem solving will be less effective. In fact, it was the first problem

where the exploratory knowledge sources dominated the exploitative ones in usage. As a result the

options for each were limited to the remaining three knowledge sources. Both the spread and hyper-

242

volume versions were forced to exploit the same knowledge sources and as a result there were only

minor differences between the two stand-along metric systems and the combined system although the

hyper-volume system was slightly better.

The two phased combined system is less effective when the phases are inherently the same.

There were some adjustments in the knowledge and topology usage in the combined system but

nothing that made a strong impact on overall performance. However, since history knowledge was still

the primary vehicle for the exchange of information between phases there was some opportunity for

interaction. The result of that interaction showed up in the transitional portion of the convex curve

between the steep and the shallow portions.

In summary, the combined system can serve to blend the results of both phases. When there is

sufficiently different activity in both phases then the combined system is worth more likely to perform

better than the individual ones. In both ZDT1 and ZDT5, there was less need for both exploratory and

exploitation activities so that there was less benefit from the interaction. Yet, even in such cases we did

notice some smoothing of the curves and overall reduction in standard error deviation.

243

CHAPTER 12 EXPERIMENT RESULTS OF ZDT6

ZDT6 looks similar to ZDT2 but its structure is the most complicated of the set for two reasons.

First the Pareto optimal solutions are not uniformly distributed along the concave front and they are

more dense near certain regions where f(x) =1. Also, there are fewer solutions near the optimal curve

than away from it. So there are features from ZDT2, ZDT3, and ZDT4 combined in the problem.

We will use homogeneous spread metric, homogeneous hyper-volume metric, and combined

two metrics to conduct experiments and try to observe and summarize the correspondence among

knowledge sources and topologies.

12.1 ZDT 6

This problem combines features from problems ZDT2 through ZDT4. As such it is likely to be best

solved using the combined system.

where m=30 and .

The Pareto front is:

244

 while .

Figure 12.1 ZDT6 Pareto front

For selected test problems, we will run MOCAT 20 times with population of 100, generation of

100, and may use Spread metric, Hyper-volume metric, and both of them alternatively after 25

generations. All results will be presented and summarized with statistical analyses.

12.1.1 Analysisof found Pareto front

From the following sequence of found Pareto front along with evolution, we can see that

MOCAT approximates the real Pareto front slower than it does in ZDT1, 2, and 4. For ZDT6, the

individuals on the first front still could not compose a smooth curve at generation 30 which is done at

245

generation 40, while in other similar problems the curve has become smooth at generation 20;

thereafter the evolution is twice slower. In fact, since ZDT4 has only 10 dimensions, while ZDT1 and 2

have 30, the curve is seen at generation 12 but does not reach far right corner yet.

(a)

246

(b)

247

(c)

248

(d)

249

(e)

250

(f)

251

(g)

Figure 12.2 A series of screen copies along evolution (a-g)

Finally, the addition of found Pareto front of each run is represented. It is a close match to the

real Pareto front.

252

Figure 12.3 Overall found Pareto front

12.2 ZDT 610 with homogeneous Spread metrics

The runs were complete in an average of 16.31 seconds.

12.2.1 Performance of MOCAT

In table 12-1 the performance results for the 20 runs are given. The results in terms of mean

error and standard deviation of the error are much better than any of the other benchmarked function

performances. In addition, some individuals lay on top of the real Pareto front within the tolerance of

floating precision. Once again, this may be due to the low dimension.

Table 12-1Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 7.18E-05 1.30E-04 0 7.92E-04 1.79E-04

Run #2 4.57E-06 3.32E-05 0 5.19E-04 9.48E-05

253

Run #3 5.17E-04 4.86E-04 -5.55E-17 0.001019 1.86E-04

Run #4 5.17E-04 0.001485 -2.78E-17 0.011747 0.001672

Run #5 1.07E-04 2.52E-04 3.54E-06 7.87E-04 2.12E-04

Run #6 1.02E-07 6.31E-06 3.77E-09 4.90E-04 5.10E-05

Run #7 7.04E-04 0.001079 0 0.00888 0.001709

Run #8 3.49E-07 1.47E-06 1.66E-08 1.10E-05 2.62E-06

Run #9 2.88E-04 3.10E-04 -5.55E-17 8.05E-04 1.66E-04

Run #10 2.43E-05 6.89E-05 -2.78E-17 7.49E-04 1.43E-04

Run #11 3.22E-05 2.95E-04 0 0.002017 4.57E-04

Run #12 3.68E-04 3.60E-04 -5.55E-17 8.82E-04 2.30E-04

Run #13 1.89E-05 2.66E-05 -5.55E-17 1.11E-04 2.47E-05

Run #14 3.27E-06 5.01E-06 0 1.38E-04 1.44E-05

Run #15 3.17E-06 1.78E-04 0 0.008146 0.001113

Run #16 6.25E-06 6.35E-05 -5.55E-17 3.23E-04 9.30E-05

Run #17 4.10E-07 2.87E-06 0 3.58E-05 6.56E-06

Run #18 7.99E-07 1.16E-05 0 1.19E-04 2.45E-05

Run #19 6.49E-05 1.38E-04 0 9.02E-04 9.33E-05

Run #20 1.99E-08 4.36E-05 0 9.80E-04 1.84E-04

mean 1.37E-04 2.49E-04 1.78E-07 1.97E-03 3.33E-04

stdev 2.12E-04 3.76E-04 7.72E-07 3.29E-03 5.11E-04

12.2.2 Statistics of Topologies using Spread metric

For the system there is no real difference in usage of the topologies based upon the 20 runs

displayed in Table 12-2.

Table 12-2 Use Count of Topologies of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 21 20 23 15 21 13.83631

Run #2 20 14 23 30 13 13.45325

Run #3 17 18 29 17 19 12.8008

Run #4 20 19 24 11 26 13.39179

Run #5 31 22 18 11 18 12.68232

Run #6 20 25 17 23 15 13.9696

Run #7 18 23 13 24 22 17.74052

254

Run #8 15 14 25 26 20 13.94492

Run #9 24 23 12 17 24 6.847155

Run #10 26 20 22 20 12 5.605137

Run #11 27 20 24 15 14 6.30135

Run #12 21 14 22 23 20 11.98244

Run #13 18 15 26 21 20 12.4234

Run #14 17 25 18 21 19 14.96249

Run #15 27 15 17 15 26 14.27985

Run #16 19 20 24 19 18 12.91152

Run #17 24 19 13 20 24 15.33948

Run #18 22 12 21 27 18 10.4571

Run #19 13 29 19 18 21 8.703409

Run #20 12 17 25 22 24 6.017679
mean 20.60 19.20 20.75 19.75 19.70

stdev 4.75 4.34 4.58 4.92 3.95

t-test Lbest vs. 0.174476 0.460789 0.295489 0.264633

 Square vs. 0.145626 0.358436 0.356278

 Octal vs. 0.260282 0.227041

 Hex vs. 0.486315

12.2.3 Behaviors of Knowledge Sources using Spread Metrics

While in ZDT5 the exploratory knowledge sources dominate search, here the exploitative

knowledge sources again control the most individual agents over the course of the runs. However, the

normative exploratory knowledge sources are still an important contributor. The relative counts of use

are all significantly different from each other. However, we notice that the contribution of H is much

worse than those in ZDT1, ZDT2, and ZDT4. This indicates that historical information does not bring as

much contribution as it does in other three problems.

Table 12-3 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 253 1037 1726 541 88

Run #2 195 1118 1631 541 80

255

Run #3 180 1125 1625 609 75

Run #4 195 1010 1815 280 64

Run #5 296 1115 1682 606 77

Run #6 316 1024 1761 414 69

Run #7 229 995 1737 437 72

Run #8 257 1058 1737 499 83

Run #9 222 1040 1679 489 74

Run #10 187 960 1700 464 76

Run #11 224 999 1610 463 69

Run #12 206 1113 1602 558 69

Run #13 241 1075 1630 587 70

Run #14 249 990 1625 473 84

Run #15 265 942 1704 440 79

Run #16 201 1019 1633 483 54

Run #17 263 952 1712 474 70

Run #18 269 1022 1669 479 67

Run #19 169 999 1804 413 72

Run #20 190 1084 1266 552 84

mean 230.35 1033.85 1667.40 490.10 73.80

stdev 39.35 55.03 110.29 75.50 7.79

t-test KS-N vs. 1.58E-34 1.41E-26 4.48E-14 7.37E-14

 KS-S vs. 1.11E-19 2.62E-24 4.45E-26

 KS-D vs. 1.21E-29 5.49E-24

 KS-H vs. 3.66E-16

12.2.4 Statistics of Non-Dominated solution production

In 12-4 it is clear that the LBEST topology is the best generator of non-dominated solutions

across all knowledge sources. The LBEST domain knowledge tuple is the most effective combination

here. Topographic knowledge varies most dramatically in effectiveness from run to run.

Table 12-4 Number of non-dominated solutions produced by Topology-Knowledge tuples

 N S D H T

Lbest
mean 47.2 212.8 340.45 106.55 17.85

stdev 24.14343 48.49482 90.61746 33.59429 9.702279

Square mean 48.55 195.8 325 92.1 12.75

256

stdev 18.15569 46.99115 80.26207 24.7001 7.032818

Octal
mean 45.4 218.8 340 102.65 15.15

stdev 16.35269 58.13741 78.31515 32.84297 7.617673

Hex
mean 46.9 201.85 330.45 95.8 14.5

stdev 19.19128 55.82612 82.2272 30.67246 7.823716

Global
mean 42.3 204.6 331.5 93 13.55

stdev 16.67996 44.71359 74.50998 22.31356 8.738752

Table 12-5 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.511513 0.227889 0.26617 0.315291 0.543545

Square 0.373959 0.239996 0.24696 0.268188 0.551594

Octal 0.360191 0.26571 0.230339 0.319951 0.502817

Hex 0.409196 0.276572 0.248834 0.320172 0.539567

Global 0.394325 0.218542 0.224766 0.239931 0.644926

12.3 ZDT 610 with homogeneous Hyper-volume metrics

The runs were complete in an average of 15.32 seconds.

12.3.1 Performance of MOCAT

Table 12-6 gives the performance statistic for the hyper-volume MOCAT system. The results are

an improvement over the spread metric system. In addition, they outperform all of the benchmarked

MOEAs given in chapter 6 on both the mean and standard deviation of the error.

Table 12-6 Statistics for the fitness errors of ending solutions

statistics for the fitness errors of ending generation

 median Mean min max stdev

Run #1 5.58E-07 2.59E-05 0 4.22E-04 8.03E-05

Run #2 8.29E-07 5.56E-06 0 9.41E-05 1.22E-05

Run #3 1.58E-05 3.27E-05 -2.78E-17 6.89E-05 1.75E-05

Run #4 5.52E-07 4.91E-06 -5.55E-17 3.89E-04 4.02E-05

Run #5 2.30E-06 1.00E-05 9.73E-08 1.75E-04 2.92E-05

Run #6 1.10E-06 3.57E-06 0 5.95E-05 7.72E-06

257

Run #7 1.13E-04 1.83E-04 0 5.70E-04 1.90E-04

Run #8 3.58E-07 3.76E-06 -4.16E-17 7.73E-05 9.28E-06

Run #9 3.35E-06 2.65E-05 -2.78E-17 1.04E-03 1.52E-04

Run #10 1.87E-06 6.34E-06 -2.78E-17 5.89E-05 1.37E-05

Run #11 3.92E-05 7.70E-05 0 1.54E-04 3.89E-05

Run #12 8.12E-06 8.12E-05 -4.16E-17 0.002913 3.12E-04

Run #13 7.93E-06 1.46E-05 -5.55E-17 3.36E-05 9.27E-06

Run #14 4.75E-04 9.59E-04 -5.55E-17 0.003248 8.37E-04

Run #15 7.02E-06 2.75E-05 -5.55E-17 2.41E-04 4.77E-05

Run #16 3.85E-04 7.38E-04 0 1.69E-03 3.57E-04

Run #17 3.10E-07 5.26E-06 -5.55E-17 1.33E-04 2.47E-05

Run #18 5.93E-04 1.29E-03 0 1.02E-02 9.93E-04

Run #19 5.10E-06 3.19E-05 6.09E-07 4.48E-04 7.22E-05

Run #20 1.64E-05 5.99E-05 -5.55E-17 9.07E-04 1.49E-04

mean 8.38E-05 1.79E-04 3.53E-08 1.15E-03 1.70E-04

stdev 1.73E-04 3.57E-04 1.33E-07 2.28E-03 2.68E-04

12.3.2 Statistics of Topologies using Hyper-volume metric

While the spread metric system did not exhibit any statistical differences in topology usage, the

hyper-volume system does as shown in Table 12-7. The Octal topology is used significantly more often

the both the square ad LBEST topologies.

Table 12-7 Use Count of Topologies of each run

Using Hyper-volume metric

Hyper-volume
Metric Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 13 28 31 11 17 2.829497

Run #2 15 16 24 22 23 4.037976

Run #3 19 24 19 15 23 3.842902

Run #4 20 21 24 22 13 5.142704

Run #5 18 21 18 15 28 4.617802

Run #6 22 23 19 19 17 12.46701

Run #7 21 21 23 15 20 4.124842

Run #8 17 16 28 22 17 10.75945

Run #9 22 13 18 27 20 11.05558

258

Run #10 17 16 18 22 27 4.095092

Run #11 25 18 20 20 17 3.616337

Run #12 17 16 13 33 21 4.194218

Run #13 19 12 28 18 23 4.135767

Run #14 29 19 25 11 16 4.509909

Run #15 16 12 22 27 23 9.179675

Run #16 20 12 32 19 17 2.066416

Run #17 25 15 19 19 22 4.888691

Run #18 13 29 21 21 16 5.238227

Run #19 19 21 22 11 27 4.694531

Run #20 20 19 16 20 25 4.038914

mean 19.35 18.60 22.00 19.45 20.60

stdev 3.90 4.85 4.84 5.49 4.16

t-test Lbest vs. 0.301368 0.035599 0.474391 0.172879

 Square vs. 0.018443 0.30803 0.090468

 Octal vs. 0.06859 0.172604

 Hex vs. 0.235875

12.3.3 Behaviors of Knowledge sources using Hyper-volume Metric

As with the spread metric system all influence counts are significantly different from each other.

Also, the emphasis is on exploitation knowledge source even though the use of the history knowledge

source is down while the normative exploratory knowledge source usage is up.

Table 12-8 Using Hyper-volume metric #Individuals influenced by KS

Using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 249 1052 1588 483 110

Run #2 244 1054 1676 452 88

Run #3 200 1067 1595 543 62

Run #4 224 1021 1678 471 78

Run #5 293 1103 1634 499 74

Run #6 282 1007 1709 399 75

Run #7 214 990 1695 475 64

Run #8 229 1105 1638 581 68

Run #9 253 990 1669 491 76

259

Run #10 230 1147 1602 580 93

Run #11 194 1054 1654 457 86

Run #12 240 1016 1565 483 74

Run #13 215 1066 1615 461 75

Run #14 194 1042 1694 466 85

Run #15 206 1136 1563 478 63

Run #16 267 1073 1624 637 65

Run #17 197 1095 1259 555 88

Run #18 203 1143 1739 448 74

Run #19 241 1033 1684 564 89

Run #20 195 985 1681 383 68

mean 228.50 1058.95 1628.10 495.30 77.75

stdev 29.10 49.22 97.18 61.76 11.83

t-test KS-N vs. 1.62E-34 1.51E-26 2.77E-16 1.04E-17

 KS-S vs. 5.64E-20 5.12E-28 1.39E-28

 KS-D vs. 2.79E-30 3.87E-25

 KS-H vs. 2.44E-18

12.3.4 Statistics of Topology-Knowledge tuple

In the spread metric version of MOCAT the most productive topology was the LBEST. Here the

most productive topology is that of the OCTAL. The octal domain tuple is the best performer as shown in

table 12-9. Also, in table 12-10 it is clear that topographic knowledge varies the most between runs as

with the spread metric. However, the other exploratory knowledge source, normative, exhibits more

variability here than for the spread system.

Table 12-9 Generation of non-dominated individuals by Topology-Knowledge tuples

 N S D H T

Lbest
mean 45.15 205.25 316.6 89.85 15.05

stdev 19.43755 45.06122 59.73661 26.19014 9.659874

Square
mean 36.05 197.8 303.95 89.85 12.6

stdev 16.9441 56.07382 87.70613 27.62584 9.005262

Octal
mean 58 232.15 357.5 110 19.55

stdev 24.06789 54.09278 79.006 39.4915 10.51553

Hex mean 48.15 208 311.35 99.1 16.35

260

stdev 21.73591 64.12898 87.61776 33.33388 10.36327

Global
mean 41.15 215.75 338.7 106.5 14.2

stdev 17.97447 51.9087 73.04368 30.42938 7.487533

Still, MOCAT is really dynamic because the data have high variation.

Table 12-10 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.430511 0.219543 0.188682 0.291487 0.641852

Square 0.470017 0.283487 0.288554 0.307466 0.714703

Octal 0.414964 0.233008 0.220996 0.359014 0.537879

Hex 0.451421 0.308312 0.281412 0.336366 0.633839

Global 0.436804 0.240597 0.215659 0.285722 0.527291

12.3.5 Analysis of found Pareto front

Figure 12.4 Overall found Pareto front

The result is close to the one that in ZDT6 10 using pure spread metric.

261

12.4 ZDT 610 with combined metrics

The runs were complete in an average of 15.42 seconds.

12.4.1 Performance of MOCAT using the combined metrics.

The performance of the combined system exceeds that of either single metric system. In fact the

mean error is one full magnitude better than the hyper-volume case. Also, it clearly outperforms all

other benchmarked functions for this problem.

Table 12-11 Statistics for the fitness errors of ending solutions

 Statistics for the fitness errors of ending generation

 median mean min max stdev

Run #1 3.44E-05 5.53E-05 -4.16E-17 3.59E-04 6.82E-05

Run #2 4.56E-08 1.50E-04 -5.55E-17 0.001742 3.61E-04

Run #3 1.82E-08 7.84E-07 3.67E-10 9.74E-06 2.25E-06

Run #4 5.53E-06 7.15E-06 -4.16E-17 3.80E-05 7.61E-06

Run #5 9.04E-08 1.63E-05 3.40E-09 3.73E-04 6.12E-05

Run #6 4.92E-06 7.06E-05 -2.78E-17 8.18E-04 1.18E-04

Run #7 2.19E-05 1.04E-04 -4.16E-17 0.001001 1.65E-04

Run #8 4.23E-07 1.67E-06 1.33E-08 9.90E-06 2.23E-06

Run #9 6.56E-05 6.12E-05 -2.78E-17 1.10E-04 2.60E-05

Run #10 1.82E-08 4.03E-05 -2.78E-17 0.00165 2.39E-04

Run #11 4.69E-08 3.70E-07 1.86E-09 2.87E-06 5.74E-07

Run #12 7.71E-06 2.28E-05 -2.78E-17 2.75E-04 3.95E-05

Run #13 4.56E-08 7.73E-05 -4.16E-17 0.001024 2.49E-04

Run #14 4.54E-06 4.94E-05 -5.55E-17 8.76E-04 1.48E-04

Run #15 1.91E-05 1.77E-04 -5.55E-17 0.002931 4.83E-04

Run #16 8.14E-06 3.30E-05 -5.55E-17 5.91E-04 9.77E-05

Run #17 4.56E-08 1.81E-07 7.68E-09 1.09E-05 1.12E-06

Run #18 1.82E-08 2.28E-06 -2.78E-17 1.48E-04 1.66E-05

Run #19 3.57E-07 2.32E-05 -5.55E-17 5.01E-04 9.75E-05

Run #20 2.37E-05 8.97E-05 -4.16E-17 0.001395 2.17E-04

mean 9.83E-06 4.91E-05 1.33E-09 6.93E-04 1.20E-04

stdev 1.61E-05 4.93E-05 3.28E-09 7.47E-04 1.29E-04

262

12.4.2 Statistics of Topologies using Spread Metrics

From table 12-12 the square topology is used significantly more than the LBEST topology in the

spread metric phase of the solution process. When the spread metric was use alone there was no

difference in the usage of topologies. Likewise, the Sqare metric significantly outperforms LBEST in the

hyper-volume phase..

Table 12-12 Use Count of Topologies using spread metric of each run

Using Spread metric

Spread Metric
Value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 6 9 5 11 19 15.08273

Run #2 5 8 19 6 12 6.585798

Run #3 8 13 11 12 6 15.04582

Run #4 11 14 7 7 11 10.67421

Run #5 10 12 9 11 8 13.0653

Run #6 10 8 16 10 6 14.5444

Run #7 10 12 9 12 7 1.660286

Run #8 14 14 6 9 7 14.66218

Run #9 7 12 4 12 15 10.88384

Run #10 12 14 5 8 11 7.123939

Run #11 8 12 12 12 6 2.022871

Run #12 7 6 14 12 11 6.633822

Run #13 10 11 11 11 7 25.05995

Run #14 10 9 13 12 6 1.874203

Run #15 11 10 9 8 12 12.82533

Run #16 8 7 11 11 13 14.72305

Run #17 10 11 11 7 11 14.75448

Run #18 6 13 10 7 14 24.43156

Run #19 8 9 11 11 11 7.037685

Run #20 10 10 11 5 14 12.00201

mean 9.05 10.70 10.20 9.70 10.35

stdev 2.18 2.35 3.64 2.28 3.55

t-test Lbest vs. 0.015328 0.123232 0.18746 0.091829

 Square vs. 0.309161 0.095513 0.361231

 Octal vs. 0.307776 0.449213

263

 Hex vs. 0.253537

Table 12-13 Use Count of Topologies using hyper-volume metric of each run

Hyper-volume metric Hyper-volume metric value

 T-LBEST T-SQUARE T-OCTAL T-HEX T-GLOBAL
 Run #1 4 8 11 8 19 4.070232

Run #2 13 5 9 14 9 3.166685

Run #3 10 9 11 14 6 5.157879

Run #4 9 16 7 11 7 5.310816

Run #5 9 13 11 9 8 9.433638

Run #6 9 13 7 7 14 5.412966

Run #7 11 10 7 12 10 2.594558

Run #8 9 11 11 8 11 9.331143

Run #9 6 16 19 1 8 3.465811

Run #10 9 14 10 8 9 3.911616

Run #11 7 16 8 10 9 4.277458

Run #12 11 12 9 7 11 3.189111

Run #13 11 10 9 9 11 5.876553

Run #14 8 14 8 12 8 3.576724

Run #15 13 9 9 11 8 3.234325

Run #16 5 9 11 14 11 3.613724

Run #17 14 7 17 6 6 5.67747

Run #18 7 13 8 12 10 3.845922

Run #19 6 11 14 16 3 4.918367

Run #20 9 3 8 15 15 3.75549
mean 9.00 10.95 10.20 10.20 9.65

stdev 2.63 3.50 3.14 3.54 3.41

t-test Lbest vs. 0.030051 0.104677 0.121854 0.257306

 Square vs. 0.245575 0.257772 0.126704

 Octal vs. 0.5 0.304022

 Hex vs. 0.314367

12.4.3 Behaviors of Knowledge sources with combined metrics

Tables 12-14 and 12-15 give the number of individuals controlled by each of the knowledge

sources during the problem solving process. The usage of all knowledge sources in both phases is

264

statistically significant. Notice that the exploratory knowledge sources are used more often with the

spread metric phase than with the hyper-volume metric as we expected.

Table 12-14 Using Spread metric #Individuals influenced by KS

using Spread metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

Run #1 187 566 814 318 44

Run #2 127 533 833 250 69

Run #3 160 545 802 277 55

Run #4 193 505 846 230 43

Run #5 141 553 828 258 52

Run #6 149 527 816 274 43

Run #7 152 548 778 319 48

Run #8 190 532 820 227 61

Run #9 120 511 764 245 53

Run #10 127 526 793 237 60

Run #11 189 529 845 244 57

Run #12 129 578 812 274 50

Run #13 174 513 860 253 58

Run #14 129 462 829 267 55

Run #15 175 510 836 198 50

Run #16 141 522 794 303 45

Run #17 180 555 799 271 49

Run #18 135 585 682 256 56

Run #19 174 476 822 309 53

Run #20 168 533 800 303 63

mean 157.00 530.45 808.65 265.65 53.20

stdev 24.18 29.71 37.10 31.76 6.82

t-test KS-N vs. 5.52E-33 3E-36 3.29E-14 5.85E-15

 KS-S vs. 4.6E-25 2.32E-26 1.92E-26

 KS-D vs. 1.82E-35 6.56E-28

 KS-H vs. 2E-18

Table 12-15 Using Hyper-volume metric #Individuals influenced by KS

Using Hyper-volume metric #Individuals influenced by KS

 KS-N KS-S KS-D KS-H KS-T

265

Run #1 28 493 765 316 23

Run #2 57 529 808 157 30

Run #3 110 496 894 271 28

Run #4 77 531 832 215 31

Run #5 103 473 880 220 27

Run #6 89 495 890 276 35

Run #7 66 503 874 225 31

Run #8 71 440 884 297 26

Run #9 35 561 864 260 29

Run #10 62 497 684 235 33

Run #11 111 456 866 222 24

Run #12 95 503 835 245 19

Run #13 66 482 708 238 31

Run #14 82 456 836 217 33

Run #15 62 492 847 195 18

Run #16 19 458 796 312 35

Run #17 100 508 868 283 38

Run #18 79 561 492 307 49

Run #19 63 470 857 240 32

Run #20 85 530 831 275 27

mean 73.00 496.70 815.55 250.30 29.95

stdev 25.04 32.68 92.78 40.85 6.67

t-test KS-N vs. 3.2E-33 1.46E-20 4.42E-17 1.62E-07

 KS-S vs. 2.54E-13 7.47E-22 4.9E-25

 KS-D vs. 9.39E-20 1.42E-19

 KS-H vs. 3.07E-16

With no exception, all topologies are listed at 5 levels: D, S, H, N, and T.

12.4.4 Statistics of Topology-Knowledge tuple non-domination production

For the combined system the most productive topology is Square. This is interesting since the

most productive one for the hyper-volume system was Octal, and that for the spread metric system was

LBest. Square represents a middle ground between the two. The combined system produces less

variability in the generation of non-dominated solution from run to run which attests for its stability.

266

Table 12-16 Non-dominated solutions produced by Topology-Knowledge tuple

 N S D H T

Lbest
mean 40.4 185.15 300.75 96.95 15.05

stdev 11.59583 39.35302 80.77185 20.96984 7.937088

Square
mean 53.9 221.8 342.4 112 20.6

stdev 20.98596 51.04343 89.26035 25.42481 8.5557

Octal
mean 44.7 211.9 329.8 105.95 16.7

stdev 14.6327 47.61236 70.83755 29.9868 8.118206

Hex
mean 47 198.45 325.1 102.45 16.35

stdev 17.82665 38.62025 79.25236 26.79645 7.321741

Global
mean 44 209.85 326.15 98.6 14.45

stdev 16.52749 67.59265 93.45208 37.57995 6.047836

Table 12-17 Randomness of Topology-Knowledge tuple

stdev/mean N S D H T

Lbest 0.287025 0.212547 0.268568 0.216295 0.527381

Square 0.38935 0.230133 0.26069 0.227007 0.415325

Octal 0.327353 0.224693 0.214789 0.283028 0.48612

Hex 0.37929 0.194609 0.243778 0.261556 0.447813

Global 0.375625 0.3221 0.286531 0.381135 0.418535

12.4.5 Analysis of found Pareto front

Figure 12.5 Overall found Pareto front

267

Still, 20 runs closely cover the real Pareto front.

12.5 Summary of ZDT6

In term of the Pareto front, ZDT6 is similar to ZDT1, 2, and 4. The combined system outperforms

each of the individual ones. The problem combines most of the problem features together and is

challenging for MOEAs. In the detailed example it is clear that our system takes more time to form the

approximation and then attract solutions to the area via the knowledge sources. There is now sufficient

complexity in the problem to generate the synergy between the two phases of the problem solving

process. The combined system clearly outperforms all of the other MOEAs as a result.

268

CHAPTER 13 CONCLUSION AND FUTURE WORK

The basic premise of the thesis is that Cultural Systems deal with multi-objective problems on a

daily basis. So there should be some inner mechanisms that allow then to effectively solve such

problems over time. Our goal is to extend the basic Cultural Algorithm framework to incorporate multi-

objective problem solving into it. Then, the system was applied to a variety of benchmark problems that

posed problems for various other multi-objective evolutionary optimizers. The goal was to identify the

computational features that make cultural systems so effective in this regard.

The key aspect to a successful solution for any multi-objective problem is the maintenance of

diversity within the populations so as to provide a search that was broad enough to identify the Optimal

Pareto front for a given problem. There were two different performance metrics in the literature

(Bastos-Filho and Miranda 2011) that were used to assess the spread of solutions along the curve, the

spread metric and the hyper-cube metric.

In our Cultural systems, MOCAT, knowledge sources determined the location of points in the

search space. The knowledge source performances were assessed in terms of the quality of spread that

they produced. If a knowledge source was successful in influencing the positioning of an agent in the

space, then agents that are connected to it within the social network, the social fabric, were more likely

to use it as well. That way influential knowledge sources can spread through the social network and

influence the direction of the search process.

The action of one set of knowledge sources can set the stage for the action of others. From this

perspective there are two categories of knowledge sources that were previously identified relative to

optimization problem solving, exploratory and exploitative knowledge sources. It was conjectured that

269

the different spread metrics might be more likely to selectively reward different knowledge sources and

social networks that connected the problem solving agents together.

In the MOCAT system, the goal was to allow it to learn the frequency with which to apply the

various knowledge source along with the social fabric through which the knowledge sources directed

their influences. The goal was to identify certain problem features that posed problems for multi-

objective systems and to observe how the MOCAT system configured itself relative to those problems.

The results were then compared with well-known benchmark performance data on these problems.

While in a traditional MOEA the spread metrics provided the main source of information in the

search process, the situation was different for the MOCAT system. Here the metrics were used to

evaluate the ability of the knowledge sources to generate and distribute solutions within the problem

space. The key is that the knowledge sources collected information from the search activity that was

done independently of the spread metric assessment.

The system was run against a benchmark set of problems that represented categories of hard

problems. These categories include convex and concave optimal Pareto Fronts, multi-modality,

discretization of the curve, uneven distribution of points along the front, and uneven distribution

between the optimal front and sub-optimal ones.

Some basic results that were produced are as follows:

1. The MOCAT system was very effective in the generation of an appropriate configuration for

solving problems with different combinations of these features. Even for a given problem,

as information was added to the knowledge sources, adjustments in the topologies could be

made effectively.

270

2. As the complexity of the problems increased in terms of the number of problem features,

the MOCAT system’s relative performance increased.

3. A problem with just a single problem feature, such as ZDT1 and ZDT5, was often effectively

solved by just using one metric guide the solution process. However, if there were multiple

problems, combining the two metrics together produced a synergy that outperformed each

single metric based system.

4. This synergy resulted from the fact that they rewarded spread production in different ways.

The spread metric focused on global distribution while the hyper-volume tended to support

local optimization.

5. The configuration of the top performing MOCAT system varied markedly from one problem

to the next.

The results suggest three possible directions for future work:

1. The structure of a social system may reflect the nature of the problems that are presented to it.

This can be a useful tool in comparing and contrasting cultural systems in terms of the

properties of the multi-objective decision-problems that they are likely to face.

2. Also, by characterizing real-world problem in terms of these problem properties we may be able

to prescribe a particular Cultural Algorithm system that is best suited to solve the problem.

3. Also, we can observe how slight changes in problem constraints can impact the social fabric anf

knowledge sources used to solve the problem.

4. The population may have an adaptive size according to how many Pareto fronts have been

found so that the population increases while just a few Pareto fronts are found but decreases

while too many Pareto fronts are found.

271

5. MOCAT should be tested on real-world problems to test its potentials.

272

APPENDIX—SYSTEM IMPLEMENTATION

In this chapter we begin by describing the Repast Simphony software that will represent the

population space and upon which the rest of the MOCAT system is built. Next we provide a description

of the MOCAT interface. Finally, we will demonstrate how MOCAT displays the results of the problem

solving process.

As mentioned above, multiple agent systems (MAS) are often used in solving MOPs. A multi-

agent system (MAS) is a system composed of multiple interacting intelligent agents who have only local

views but is unaware of full global view of the system. While in the CA knowledge is stored in the belief

space, the population space of CA can be implemented as a Multi-Agent System. In all of our previous

implementations, all individuals are autonomous and there is no hierarchical structure among them

here although there could be.

In this work we took advantage of a mature MA framework, Repast Simphony (Argonne National

Laboratory 2010), in our latest CAT implementation. Repast Simphony, as an integrated environment

for building special purpose simulation tools for modeling organizational systems, provides various

services that enable the developer to easily control different behaviors as simulating behaviors,

graphical representation, statistics, and animation. Such facilitates provide the building blocks that we

need to create simulation models for different problem solving domains.

For Repast, there were several concrete implementations of its conceptual specification. While

all of them share the same core services, such as Repast.NET which is used with the Microsoft.Net

framework and Repast Py which uses Python Scripting. Repast J is the concrete specification used here

because it was the reference implementation that defines the core services used in MOCA and the

273

earlier CAT systems. In this text Repast J and Repast are used interchangeable unless Repast Simphony

specifically refers to a latest version that is used in our newest CAT implementation. In terms of

implementation, both CA and Repast use a timer to evolve the populations; with the consideration of

improving computing efficiency by combining autonomous agents and high-level guidance of CA.

One of the advantages of Repast is its ability to support real-time dynamic visualization of the

population space and the belief space, to query for details of specific individuals, and to produce a real-

time display of knowledge source performance.

Repast Simphony, while containing all the core services that Repast J has supplied, provides

various services that enable the developer to easily control different behaviors relating to simulation,

graphical representation, statistics, and animation. In addition, by taking advantage of the 3D

interaction ability of Repast Simphony, it is very straightforward to use the mouse to drag and rotate the

graphical representation in MOCAT. Such facilitates provide the building blocks that we need to create

simulation models for different problem solving domains.

The following series of screen shots shows the 3D pictures obtained when the objective

coordinate system is rotated so that it is easier to observe the flat surface in the objective space. Figure

0.1 shows two coordinates in domain space and one value in objective space for generation 36 when

MOCAT is evolving DTLZ1. Certainly, we are able to represent any combinations of coordinates in both

domain space and objective space for individuals. In this figure, we are able to visually check the

solution surface, i.e., the current Pareto front and we can easily tell that the solutions are good in terms

of individual’s performance.

274

In the figure, colors are used to display the Pareto fronts discovered during the problem solving

process. The magenta points indicate that the representing individual is on Pareto front 1; the color

blue indicates Pareto front 2, etc. Please note that in this implementation we represent all individuals in

the cube whose edges are shown in white lines and outliers are dragged back into the cube and

therefore stick to boundary edges. In addition, in this figure the three coordinates are normalized for

convenience of observation.

Figure 0.1 Screen copies of MOCAT’s 3D visualization

275

To take advantage of the facilitates that Repast Simphony provides in addition to normal Repast

functionalities, some specific programming techniques have to be implemented. For example, in the

new system, individuals, i.e., agents, provide a consistent programming interface for the Simphony

system to query it is internal status.

Moreover, in the concrete system design, system performance was focused since evolution

algorithms are calculation-intense and consume much more computation power. For example, to select

an individual with a good performance for single-objective evolution, a linear array sort is sufficient.

However, in order to arrange individuals onto a Pareto front, comparisons have to been done on each

dimension so that sort needs more time.

Therefore, in this section, the concrete implementation details are explained with the intention

to be a self-contained programming guide and user manual. First, specific programming concept of

Repast Simphony is introduced. Second, its concrete programming environment explained. Third,

particular implementation details of new MOCAT are explained. Finally, a simple how-to-use guide is

supplied for MOCAT since Repast Simphony has crowded interface which, though efficient, may pose a

challenge to first-time users.

13.1 Introduction to Repast Simphony

Repast Simphony is an open source, agent-based modeling toolkit. It has the following features

that facilitate our new implementation.

 Ready-to-use dynamic and interactive visualization

 Point-and-click to show properties of any agent

276

 Charts showing data series

Additionally, there are potentials that make our future work easier.

 Logging of data series so that we can remove messy hard coding in the source code to record

data in specific format;

 Automated connections to a variety of optional external tools including Matlab;

 A range of data storage "freeze dryers" for model check pointing and restoration including XML

file storage, text file storage, and database storage; so that we are able to pause experiment at

one time and resume it later;

 A fully concurrent multi-threaded discrete event scheduler;

 Libraries for genetic algorithms, neural networks, regression, random number generation, and

specialized mathematics that makes the comparison of MOCAT and other evolutionary

algorithms practical;

 An automated Monte Carlo simulation framework which supports multiple modes of model

results. However, we have already implemented a high-quality random number generator

which will be used in its place.

 In the model execution environment a mouse click on an agent will reveal all of its properties to

the public. No coding is needed.

There are two options to install Repast Simphony: as a plug-in of Eclipse or as a stand-alone

application which actually is a subset of Eclipse. While the former needs fine and detailed work though

the download volume is smaller, the latter installation approach is suggested for its convenience. The

installer at the website is for the newest version 1.2.0; an installation guide can be found online (Anon.

2008b).

277

The core data structure in Repast Simphony is called a Context. The Context is a simple

container based on set semantics that means that it provides the basic infrastructure to define a

population and the interactions of that population. In reality, Context does not exert such interaction

constraints over its content. In other words, any population can be added into a Context.

The particular structure of populations, i.e., how agents are connected to and interact with each

other, is defined by a Projection. Projections are data structures designed to define and enforce

relationships between agents within a given Context. Context and Projection are the two most

important concepts in Repast Simphony.

Each Context can have an arbitrary number of Projections associated with it which means that

within each Context, the agents can create an arbitrary number of types of relationships with each other.

This ability is intended to release the constraint of writing agents that are designed to work with grids or

networks specifically.

Projection is designed to work with arbitrary objects and switching between projections does

not require any changes of objects so that it is easy to be done. In terms of coding, this means that no

code changes are required to allow a projection to work with a particular agent.

In reality, in Repast Simphony, a context can be complex. For example, a context can contain

sub-Contexts. As an example, a farming village consists of multiple families; in this case each family is a

sub-Context of the larger village. Membership in a Context is inherited by definition. This hierarchical

structure allows for the model designer to consciously define the granularity of the model. In CA, there

is no hierarchy in population space, (nor in belief space,) therefore we can practically skip this note.

Membership in a Context is designed to be fluid. As a result, agents that are designed to engage in a

278

behavior on the basis of their environment can switch behaviors very easily when they migrate into

another context.

An illustration of the relationships among Context, Projection, and agents are shown in Figure

0.2, taken from Repast Simphony’s online document (Anon. 2008a).

Figure 0.2 Context, Projection, and agents in Repast Simphony

A Context will be initialized by Repast Simphony automatically at the very beginning of startup

and will stay there for the whole execution session. During the initialization, all setup is expected to be

done, including creating and setup of Projections, which is not indispensable for a Repast Simphony

application to run. In order to visualize agents, either a grid or a continuous space is needed to be

created and all agents have to be added into them to be processed.

279

In addition to charts, we can consider using other multi-dimensional visualization. There are

two kinds of visualization interfaces, 2D and 3D. Creating 2D visualization, which is called space here, is

generally easy to do. However, creating 3D spaces requires an explicit mapping layer between the

concrete data and objects that are used by the spaces. For example, 3D spaces require a literal

definition of three dimensions when an agent is added into it; otherwise, in runtime Java exceptions

complaining about non-affine operations will be thrown out when the matrix calculations are in fact

affine. The development environment created by the installer does not support runtime debugging well

in addition to the fact that JNI is used in 3D visualization which further prevents step debug; thereafter

the mechanism causing the exceptions is unclear.

13.2 Introduction to Repast IDE

There are two ways to set up the Repast Simphony Integrated Development Environment (IDE).

One is to download the plug-in from the update site to an existing Eclipse IDE; another one, which is

easier for beginners, is to download Repast Simphony IDE which embeds an Eclipse IDE inside. The IDE

plugin from the update site provides the same functionality of the stand-alone installers, while

permitting the flexibility to add Repast Simphony to an existing Eclipse installation. This is useful for

advanced programmers who already have additional Eclipse components and do not want to use the

Eclipse framework that is included with the installers.

In spite of the same core functionality of two configurations, the plug-in configuration does not

require the development environment components or source code from the repository, whereas the

installer configuration needs the development environment components and comes with the source

code from the repository. Therefore, the installer configuration is recommended for our purpose.

280

Figure 0.3 Splash window of the Repast Simphony

The integrated development environment (IDE) is a classic Eclipse.

Figure 0.4 IDE of Repast Simphony

281

From Figure 0.3 and Figure 0.4 we can verify that Repast Simphony is basically an extension of

Eclipse, though much auxiliary functionality are added. To get familiar with the IDE, please refer to

Eclipse’s official website for detailed and updated documents. With the consideration that Eclipse is a

popular development tool that has been extensively used in Java, C/C++, web development; further

introduction of how to use the IDE is eliminated here.

One point worth once more mentioning is that Repast J and Repast S work in totally different

ways. For Repast J, there is no dedicated IDE. Repast Simphony IDE cannot support Repast J projects or

provide more help on normal Java projects. To make Repast J code fit into Repast Simphony, a lot of

code, especially which related to interface stuff, should be modified.

13.3 Building MOCAT in Repast Simphony

In this section, at first how to create a Repast Simphony for MOCAT is explained. At the end, the

calculation of spread metric that is specific to MOCAT is introduced.

In a nutshell, the procedures below been followed in migrating MOCA into Repast Simphony:

1. Create a blank Repast Simphony project with the name MOCAT and copy the source code of

previous CA implementation into the project folder; an alternative is to import MOCA into the

IDE and add Repast Nature to it. There are no technical differences of the results. In either way,

a few files and folders that are critical to Repast Simphony are automatically created.

2. Groovy code can be deleted since pure Java is used in this implementation. Existence of it does

not harm the integrity or hinder the execution of the project.

282

3. Remove all Repast Java code from the project. Such code is used to step evolution and now

should be consigned to Repast Simphony.

4. Some files are essential to Repast S, especially model.score, which records the system’s

parameters. Work on it and fill all necessary parts. Details will be given underneath right after

this brief introduction.

5. After coding to satisfy Simphony specifications, other code units were added that created

system properties as global parameters, such as maximum number of generations. Repast

Simphony code uses a lot of Java Annotation which is similar to compiler instructions, and a

feature that came with Java 1.5. (As of this thesis writing, the newest Java version is 1.6.)

6. When coding is done, click the little green triangle at the toolbar and locate and click “Run

Repast MOCAT”, which will bring us a primitive Repast Simphony runtime interface that is

bound to MOCAT and wait to be further setup.

7. In the loaded execution program, setup for correct visualization, including display, loggers, and

charts. In other words, we have to configure the score, write the code, and setup the execution

program correspondingly and sync them manually.

8. Additionally, to spread and deploy MOCAT on a machine on which an execution environment is

not ready, click the little green triangle and select Build MOCAT Installer. A single-file installer

which contains all necessary components to run will be created.

If a copy of Repast Simphony project is ready, then import source file into the IDE and the later

will automatically create a Run Configuration "Repast Project MOCAT". Click it and a Repast Simphony

MOCAT will run.

283

Figure 0.5 shows the essential model.score in bulletin format, in which the system attribute

(parameter) number of population is highlighted. This file has to be located under the folder moca.rs, in

which rs is an abbreviation of resources. In Eclipse, in the menu popped out after right click on top of

the score file, choosing Open With | Text Editor will bring us the XML file describing the content. The

score files configures the system’s runtime parameters.

In order to guarantee visibility of details of the score, the tab Properties has to be brought up by

selecting the menu item Show Properties in the popup menu trigger by right click in any place in the

score window. Double click on a visible item won’t make the Properties tab appear.

284

Figure 0.5 Model score

There are a few things that can be inserted into the project: agent, Context, and a variety of

Projections. Agent must be registered here so that the runtime system can recognize it. In registering

available agent, source code and compiled class have to be specified. In reality, it was found that deep

package levels will prevent the runtime system from locating the agent Java class. However, there is on

open document related to this requirement. In fact, shallow package levels are suggested for all classes

285

that are critical to Repast Simphony implementation. Context is not set here but configured in source

code. Projections, here named as Spaces, have to be set both here and in source code. There are a few

Space types; continuous space, grid, network, geography, and scalar, in which the first two are of our

concern.

In a score, Attributes indicate system global parameters, whose type can be integer, float, string,

Boolean, file etc. Parameters set here will be automatically shown by the runtime program for users to

check and set values to; new parameter values can be read by source code easily through runtime

access object.

In the current implementation of MOCAT, evolution is controlled in Context as a global event,

while all individuals (agents) are in charge of their visualization. In this way, minimum code change is

requested without hurting the system execution. After each step of evolution, the display needs to be

updated. All agents have to be added into the projection to be able to get shown. We specify a set of

eternal individuals in favor of display, which is named Display Set, because in CA populations are born

and die all the time, as what happens in nature. Thereafter, after each step of evolution, information of

the current population will be copied into the display set; the concrete update of graphical drawing is

handled by Repast Simphony.

An adder—which is used by Repast Simphony to add an agent into the display—was created to

explicitly match the dimensionality of individuals in display set and the displays should they are 3D;

otherwise, a non-affine exception is thrown before the display is really about to show even though

emulation calculations can be executed normally. With the consideration that Java 3D is actually

delegated to JNI and finally reaches Java3D.dll, we suspect that strict declaration check is exerted and

286

causes this exception; however, we were unable to verify the conjecture and have not found any related

documents.

In new MOCAT, another big modification is the addition of spread metric and its impact on

evolution. Most of the code aggregates in Java class NetworkConfigurationRouletteWheel. As its name

suggests, similar to the selection of knowledge sources, a roulette wheel is dedicated to selecting

network configurations with the concern of randomness while we mainly focus on the spur of expanding

spread. In this version of MOCAT, all available network configurations will be test run on top of the

initial population to gain primitive evaluations of their performance in terms of spread; such primitive

evaluations serve as the initial values for the quote in the roulette wheel. To promise fairness of

comparison, the population space and belief space are all rolled back to the original status after test

runs. During our test it was found that the initial spread metrics collected this way, though obviously

bigger than the peers in later generations, are comparable to the later values. Thereafter, there is no

need to enforce a minimum chance for any network configuration to be selected, unlike what had been

done in the roulette wheel for knowledge sources where in each generation a minimum of five new

individuals are guaranteed to be propagated underneath.

Concrete calculations of the spread metric happen in the method processOneGeneraion of class

MOCulturalAlgorihtm, in which the spread value is calculated upon the current generation and the

network configuration which has been selected for it is thereafter updated accordingly. In other words,

in the network configuration roulette wheel, a moving average is maintained for network configurations

for a past period. In current implementation, the math average of the stored spread value and the new

spread value is saved.

287

13.4 How to Run MOCAT

To enable a Repast Simphony project to run, three peers have to be guaranteed to match each

other, the Java source code, the score file, and the runtime configurations. In this section, all necessary

setup in the runtime environment will be explained step by step. Without these correct setups, CA can

evolve its emulation but no data will be collected or shown visually.

When first starting up MOCAT, after the model is loaded into the execution environment, we

have to specify the data loader; even though it has been setup in the score file.

To create a start point of the evolution, in the left pane, right click “Data Loader” and then click

“Set Data Loader” in the popup menu, choose “A Specific Java Class” in the next dialog and then select

the correct context builder class. Please note here the context builder has to be located at the root of

the project; otherwise it cannot be correctly located by the execution environment.

288

289

Figure 0.6 Setup Context loader in the runtime environment

After setting of the context builder, data sets can be set too thought it is not indispensable for

the core implementation of MOCAT. A data set is a series of fields that are extracted from a specific

agent class and can be used to create logs.

Right click “Data Sets” and then click “Add Data Set”, in the next dialog set up as follows, in

which name and id can be arbitrary. Methods getXPosition() and getYPosition() belong to class

Individual and can be automatically recognized by Repast Simphony.

290

Figure 0.7 Creating a Data set by extracting fields from agent class

Click the button “Add” or select “Add Simple Mapping” precisely; a default item named “Tick”

will show in the mapping table.

291

Click the right column and select a wanted method; and th left column will change to the name

according to Java Bean’s naming convention. Double click on the left column make it possibe to modify

the name.

292

Outputters can be built upon data sets. Right click it and select “Add File Outputter” and give an

arbitrary name and select an available data set, which in this case is “Date Set 1”. Then add any field of

interest from the left list into the right one by pressing the green right arrow in the middle.

293

Figure 0.8 Creating Outputter upon Data Set

The next dialog is self-explanatory, in which the log file is given a file and format is specified. In

this way, we don’t have to manually set up and maintain any log files in the source code; instead, we

have the freedom to create them in runtime and change the data series to record.

294

The last step is to setup schedule parameters, where no particular attention is required, except

that frequency has to be repeat instead of the other choise: one_time. In this way, those data will be

updated automatically along evolution.

295

Additionally, displays have to be set too. We may think that displays we created in source and in

the score file are possible choices and in the runtime environment they are nominated to show.

Right click “Display” and select “Add Display” in the popup menu, give an arbitrary name, here

we choose “3D display”, in the following dialog and add “Continuous Space” into the right list by clicking

the green right arrow in the middle which is disabled since there are no further possible choices. Recall

that “Continuous Space” has been added in the score file so that it can be recognized and listed by the

runtime environment. In the source code the continuous space has been created and configured as well;

296

however, the matching between the source code and the setup here will not be exerted until the

execution of the evolution.

Figure 0.9 Creating a 3D display (Projection) for agents

A display has to be filled with agents in this setup though in source code agents have already

added themselves into Projections. In the next dialog, SimpleAgent is the display name that is created in

the source code by Java annotation for the class MOCAAgent that is used in the display set. Be sure to

select an appropriate style class that inherits a suitable Style class of Repast Simphony is in charge of

select visual elements for agents to show in the display. In our implementation, colors are used to mark

297

the order of the pareto front at which the agent is located. Otherwise, a pure white ball is shown for an

agent thereafter other information is lost.

The last two screens for creating a display is simple, as shown in the following figures.

298

299

Similarly, be sure to selection repeat for the frequency option so that the display is updated

along each step of evolution.

Finally, we get a ready-to-go MOCAT execution environment as shown underneath. Press the

floppy disk icon to remember the current configuration and reuse it later. From now on, any

subsequent use of MOCAT will return this interface.

300

The power button will call source code to create the Context and initialize, date set, outputter,

and display that have been created during the previous setup. The Start button will notify CA to run

until in the source code calls repast.simphony.essentials.RepastEssentials.EndSimulationRun() to stop.

The Step Run button will make evolution step forward and the pause.

All such buttons have hints that will show when mouse is hovering over; and the functionalities

are easy to get understood.

301

In the ready interface, after an evolution is paused, double click an agent will make its

properties to be shown in a dedicated panel, as illustrated in the bottom left tab of the underneath

screen copy. Here we can not only observe it is current information but are able to see its history. In

this screen copy, we can see that the agent had moved to the second Pareto front three times.

Figure 0.10 Double click an agent and show its properties

In addition to the necessary visualization, other straightforward representation can be added to

MOCAT. For example, we can thereafter observer the number of pareto fronts by viewing the maximum

pareto front rank. To do this, right click the category Charts and selected Add Chart in the popup menu.

302

Figure 0.11 Choose Chart type

Select the chart type in need. In this example, please select the second one, i.e., XY Line.

303

Figure 0.12 Select Data Serial for X and Y Axes

XY Line chart is not complex; here we select Tick, i.e., number of generation. For Y axis, we use

the aggregate Max value of front ranks which is come predefined data set 1.

The rest is the detailed setup of the appearance of the chart.

304

Figure 0.13 Configuration of the Chart

The last screen is a notification of the completion of the creation of the chart.

305

Figure 0.14 Chart is created completely

306

Figure 0.15 Real-time display of the Chart

After execution, a chart will be automatically created and adjacent to our main display. The

content will be updated along execution so that it is convenient for us to observe the fluctuation of the

generations. From this sample screen copy, we can see that evolution stay stable after generation 50.

In the first 50 generations, there are three ones in which individuals aggregated into crowded areas so

that the maximum pareto front ranks were large, either 17 or 18. With the reference to this figure, we

may get a hint of when to stop evolution.

307

REFERENCES

Ali, M., Using cultural algorithms to solve optimization problems with a social

fabric approach, Ph.D. thesis. Wayne State University. Detroit, MI. 2008.

Argonne National Laboratory. Repast Agent Simulation Toolkit. Argonne National Laboratory,

retrieved June 10, 2010. http://repast.sourceforge.net/index.html.

Barkow, H. Jerome, Cosmides, Leda , and Tooby, John . The Adapted Mind: Evolutionary

Psychology and the Generation of Culture, Oxford University Press, Huntington Beach,

1995.

Bastos-Filho, Carmelo, J. A. and Miranda, B.C. Pericles. Multi-Objective Particle Swarm

Optimization using Speciation, in Proceedings of 2011 IEEE Symposium on Swarm

Intelligence, Paris, France, April 11-15, 2011.

Beckers, R., Deneubourg, J. L , and Goss, S. Trails and u-turns in the selection of a path by the

ant Lasius Niger, JOURNAL OF THEORETICAL BIOLOGY , 1992. pp 397-415.

Beheshti, R. and Rahmani, A. T. A Multi-Objective Genetic Algorithm Method to Support Multi-

Agent Negotiations. In the proceedings of Second International Conference on Future

Information Technology and Management Engineering, 2009.

Bellman, E. Richard. Dynamic Programming. Princeton University Press, Princeton, 1957.

Best, Christopher. Multi-objective Cultural Algorithms. Master thesis, Wayne State University.

Detroit, MI. 2009.

Best, Christophe, Che, Xiandong, Reynolds, G. Robert, and Liu, Dapeng. Multi-objective Cultural

308

Algorithms, in Proceedings of 2010 IEEE Congress on Evolutionary Computation,

Barcelona, 2010. pp 1-9.

Bonabeau, Eric, Theraulaz, Guy, and Dorigo, Marco. Swarm intelligence: from Natural to

Artificial Systems, Oxford University Press, Huntington Beach , 1999.

Casti, L. John, Would-be Worlds: How Simulation is Changing the World of Science, Wiley, New

York, 1998.

Chamaani, S. and Mirtaheri, S. A. and Teshnehlab, M. and Shoorehdeli, M. A. and Seydi, V.

Modified Multi-objective Particle Swarm Optimization for electromagnetic absorber

design. in Proceedings of Asia-Pacific Conference on Applied Electromagnetics, 2007

(APACE'07)., Melaka, Malaysia, 4-6 Dec, 2007. pp 1-5.

Charnov, E. "Optimal Foraging: the Marginal Value Theorem", Theoretical Population Biology, 9,

no. 2 (April), 1976. pp. 129-136.

Che, Xiangdong, Weaving the Social Fabric: Optimization Problem Solving in Cultural

Algorithms Using Cultural Engine, Ph.D. thesis, Wayne State University, Detroit, 2009.

Cheng , Li-Te, Patterson, John, Rohall, L. Steven, Hupfer, Susanne, and Ross, Steven, Weaving a

Social Fabric into Existing Software, in Proceedings of the 4th international conference

on Aspect-oriented software development (AOSD’05), Chicago, USA, March 14-18, 2005.

pp 147-158,

Chung, Chan-Jin and Reynolds, G. Robert. CAEP: An Evolution-based Tool for Real-Valued

function Optimization Using Cultural Algorithms, International Journal on Artificial

Intelligence Tools, Vol. 7, No. 3, 1998. pp 239-291.

309

Clayton, S. Nicola, Griffiths, P. Daniel, and Dickinson, Anthony, Declarative and Episodic-like

Memory in Animals: Personal Musings of a Scrub Jay, in The Evolution of Cognition, the

MIT Press, Cambridge, 2000. pp 273-288.

Coello-Coello, A. Carlos and Ricardo L. Becerra. Evolutionary Multi-objective Optimization

Using a Cultural Algorithm, IEEE Swarm Intelligence Symposium, Piscataway, 2003. pp 6-

13.

Coello-Coello, A. Carlos, David A. Van Veldhuizen, and Lamont, B. Gary, Evolutionary

Algorithms for Solving Multi-Objective Problems. 1st ed. Springer, June 30, 2002.

Coello-Coello, A. Carlos and Maximino Salazar Lechuga, MOPSO: A Proposal for Multiple

Objective Particle Swarm Optimization, proceedings of 2002 Congress on Evolutionary

Computation. Vol. 2, Honolulu, 2002. pp 1051–1056.

Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithms, Wiley, New York,

2001.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elitist Multi-

Objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation,

Vol. 6, No. 2, 2000. pp 182-197.

Deb, Kalyanmoy, Pratap, A., Agarwal, S., Meyarivan, T. A Fast and Elitist Multi-objective Genetic

Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2) 2002. pp 182–

197.

Deb, Kalyanmoy, Thiele, Lothar, Laumanns, Marco, and Zitzler, Eckart. Scalable Multi-Objective

Optimization Test Problems. In Proceedings of the 2002 Congress on Evolutionary

310

Computation, Honolulu, HI, USA, May 12-17, 2002. pp 825–830.

Doerner, K., Hartl, R.F., and Reimann, M. CompetAnts for problem solving—the case of full

truckload transportation. Central European Journal for Operations Research and

Economics. vol. 11, no. 2, 2003. pp. 115–141.

Doerner, K., Gutjahr, W. J., Hartl, R. F., Strauss, C., and Stummer, C. Pareto ant colony

optimization in multi-objective project portfolio selection with ILP preprocessing.

European Journal of Operational Research, vol. 171, no. 3, 2006. pp. 830–841.

Dorigo, M., Birattari, M., and Stutzle, T. Ant colony optimization, IEEE Computational

Intelligence Magazine, Vol. 1, No. 4. 2006. pp 28-39.

Dorigo, Marco. Learning and Natural Algorithms, Ph.D. Thesis. Italy: Politecnico di Milano, 1992.

Dorigo, Marco and Gambardella, Maria Luca. Ant Colony System: A cooperative learning

approach to the traveling salesman problem, IEEE Transactions on Evolutinary

Computation 1997.

Dorigo, Marco , Maniezzo, Vittorio , and Colorni, Alberto. Ant System: Optimization by a Colony

of Cooperating Agents, IEEE Transactions on Systems, Man, and Cybernetics—Part B, Vol.

26, No. 1, 1996. pp 29-41.

Dowty, David. Thematic proto-roles and argument selection, Language, Vol. 67, No. 3, 1991. pp

547-619.

Drezewski, Rafał, and Siwik, Leszek. The Application of Agent-Based Co-Evolutionary System

with Predator-Prey Interactions to Solving Multi-Objective Optimization. in Proceedings

of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision

311

Making (MCDM 2007). Honolulu, HI, USA. 1-5 April 2007. pp 294-301.

Durham, William. Coevolution: Genes, Culture, and Human Diversity , Stanford University Press,

Palo Alto, 1992.

Ebel, Holger, Davidsen, Jörn, and Bornholdt, Stefan. Dynamics of social networks. Complexity,

vol 8, no. 2 (11), 2002. pp 24-27

Eberhart, Russell C., Shi, Yuhui, and Kennedy, James. Swarm Intelligence, Morgan Kaufmann

Press, 2001.

Fonseca, Carlos M, and Fleming, J. Peter. An Overview of Evolutionary Algorithms in

Multiobjective Optimization. Evolutionary Computation vol 3, 1995. pp 1--16.

Gambardella, L. M., Taillard, E.D., and Agazzi, G. MACS-VRPTW: A multiple ant colony system

for vehicle routing problems with time windows. in New Ideas in Optimization. McGraw

Hill, London, UK, 1999. pp. 63–76.

Goldberg, E. David. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional, Boston, 1989.

Gong, Maoguo, Chao Liu, Licheng Jiao, and Gang Cheng. Hybrid immune algorithm with

Lamarckian local search for multi-objective optimization, Memetic Computing,Vol. 2, No.

1, 2010. pp 47-67.

Hajela, P., and Lin, C. Y. Genetic search strategies in multicriterion optimal design. Structural

and Multidisciplinary Optimization, vol 4, no. 2, June 1, 1992. pp 99-107.

Häckel, Sascha, Fischer, Marco, Teich, Tobias, and Zechel, David. A Multi-objective Ant Colony

Approach for Pareto-optimization Using Dynamic Programming, in Proceedings of the

312

10th Annual Conference on Genetic and Evolutionary Computation. Atlanta, 2008. pp

33-40.

Heyes, Cecilia and Huber, Ludwig. The evolution of cognition, The MIT Press, Cambridge, 2000.

Holldobler, Bert and Wilson, O. Edward. The Ants, 1st ed. Belknap Press of Harvard University

Press, 1990.

Horn, Jeffrey, Nafpliotis, Nicholas , and Goldberg, E. David. A Niched Pareto Genetic Algorithm

for Multiobjective Optimization, in Proceedings of the first IEEE Conference on

Evolutionary Computation, IEEE World Congress on Computational Intelligence,

Piscataway, 1994. pp 82-87.

Ibanez, M.L., Paquete, L., and Stutzle, T. On the design of ACO for the biobjective

quadraticassignment problem. in Proceedings of6th International Symposium on

Algorithmic Number Theory, (ANTS’2004), Springer-Verlag, vol. 3172, 2004. pp. 214–225.

Iredi, Steffen, Merkle, Daniel, and Middendorf, Martin. Bi-criterion optimization with multi

colony ant algorithms, in Proceedings of First International Conference on Evolutionary

Multi-Criterion Optimization, Zurich, 2001. pp 359-372.

Jennings, R. Nicholas and Michael Wooldridge. On Agent-based Software Engineering, Artificial

Intelligence, vol. 117, no. 1, 2000. pp 277-296.

Jin, Emily, Girvan, Michelle, and Newman, M. Structure of growing social networks. Physical

Review E vol 4, no. 9, 2001.

Jin, Xidong and Reynolds, G. Robert. Using Knowledge-based Evolutionary Computation to

Solve Nonlinear constraint Optimization Problems: a Cultural Algorithm Approach, in

313

Proceedings of the 1999 Congress on Evolutionary Computation, Washington D.C., 1999.

pp 1672-1678.

Johnson, Allen and Earle, Timothy. The Evolution of Human Societies: From Foraging Group to

Agrarian State, Stanford University Press, Palo Alto, 2000.

Kennedy, James and Eberhart, Russell, Particle Swarm Optimization, in Proceedings of IEEE

International Conference on Neural Networks. Perth, 1995. pp 1942-1948.

Kennedy, James. The particle swarm: social adaptation of knowledge, in IEEE International

Conference on Evolutionary Computation, 1998. pp 303-308.

Knowles, Joshua and Corne, David, Approximating the Nondominated Front Using the Pareto

Archived Evolution Strategy, Evolutionary Computation, vol. 8, no. 2, 2000. Pp 149-172.

Kursawe, Frank. 1991. A Variant of Evolution Strategies for Vector Optimization. Parallel

Problem Solving From Nature, vol 496, 1991. pp 193--197.

Langton, Christopher. Life at the edge of chaos. Artificial Life, vol 10, 1992. pp 41-91.

Laumanns, M., Rudolph, G., and Schwefel, H.-P. A spatial predatorprey approach to multi-

objective optimization: A preliminary study, in Parallel Problem Solving from Nature, vol.

1498. Springer-Verlag, 1998.

Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining Convergence and Diversity in

Evolutionary Multi-objective Optimization. Evolutionary Computation, vol 10 no. 3, 2002.

pp 263–282.

Li, Yinghai, Zhou, Jianzhong, Qin, Hui, Lu, Youlin, Yang, Junjie, Adaptive Niche Multi-objective

Particle Swarm Optimization Algorithm, in Proceedings of International Conference on

314

Natural Computation, Jinan, China, August 25-27, 2008. pp 418-422.

Macal, C.M. ; North, M.J. Tutorial on agent-based modeling and simulation part 2: how to

model with agents. Association for Computing Machinery, Winter Simulation

Conference, Monterey, CA, 2006. pp 73 – 83.

Mariano, C. E. and Morales, E. MOAQ an ant-Q algorithm for multiple objective optimization

problems. In Proceedings of the Genetic and Evolutionary Computation Conference,

Orlando, Florida, USA, 13-17 July 1999. pp 894.

Maniezzo, Vittorio and Carbonaro, Antonella. Ant Colony Optimization: An Overview, Essays

and Surveys in Metaheuristics, 1999. pp 21--44.

Melin, Patricia, Castillo, Oscar, Ramírez, G. Eduardo, Kacprzyk, Janusz, and Pedrycz, Witold.

Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Springer,

1st edition. July, 2007

Miraglia, E., Law, R., and Collins, P. What is culture?

http://www.wsu.edu:8001/vcwsu/commons/topics/culture/culture-index.html,

retrieved Nov 16, 2010.

Multiobject optimization, http://en.wikipedia.org/wiki/Multiobjective_optimization retrieved

Nov 16, 2010.

North, J. M. and T. R. Howe. The Repast Simphony Development Environment, Proceedings of

the Agent 2005 Conference on Generative Social Processes, Models, and Mechanisms,

Chicago, 2005. pp 159-166.

Osyczka, A., and S. Kundu. A New Method to Solve Generalized Multicriteria Optimization

315

Problems Using the Simple Genetic Algorithm. Structural Optimization vol 10, no. 2,

1995. pp 94-99.

Pattison, Philippa, and Robins, Garry. Neighborhood-Based Models For Social Networks.

Sociological Methodology vol 32, no. 1, 2002. pp 301-337.

Peng, Bin. Cultural algorithms: Knowledge learning in dynamic environments. Ph.D. thesis.

Wayne State University, Detroit, 2004.

Peng, Bin. Knowledge Swarms in Cultural Algorithms for Dynamic Environment presented at the

University Microfilms International, Ann Arbor, MI. 2005.

Pulido, Gregorio Toscano and Coello Coello, A. Carlos, Using Clustering Techniques to Improve

the Performance of a Particle Swarm Optimizer, Proceedings of the 2004 Genetic and

Evolutionary Computation Conference, Part I, Seattle, 2004. pp 225-237.

Pulido, Gregorio Toscano, Luis Vicente Santana-quintero, and Carlos A. Coello Coello. EMOPSO:

a Multi-objective Particle Swarm Optimizer with Emphasis on Efficiency, in Proceedings

of the 4th international conference on Evolutionary Multi-criterion Optimization,

Matsushima, Japan, 2007. pp 272-285.

Pulido, Toscano Gregorio. Coello-Coello, A. C. A constraint-handling mechanism for particle

swarm optimization. IEEE Congress on Evolutionary Computation, 2004 (CEC2004). vol.2,

19-23 June 2004. pp 1396 – 1403.

Repast Simphony a. Introduction to Repast Simphony, http://repast.sourceforge.net/docs/

tutorial/SIM, Extracted on March 23, 2011. 2008a.

Repast Simphony b. Repast Simphony Installation Guide. July 24.

316

http://repast.sourceforge.net/docs/tutorial/SIM/1%20Installation.html. 2008b.

Reyes-sierra, Margarita and Coello-Coello, A. Carlos. Multi-Objective Particle Swarm Optimizers:

A Survey of the State-of-the-art, International Journal of Computational Intelligence

Research, Vol. 2, No. 1, 2006. pp 287-308.

Reynolds, G. Robert and Dapeng Liu. Multi-objective Cultural Algorithms, Proceedings of 2011

IEEE Congress on Evolutionary Computation, to appear.

Reynolds, G. Robert. An Adaptive Computer Model of the Evolution of Agriculture in the Valley

of Oaxaca, Mexico. Ph.D. thesis, University of Michigan, Ann Arbor, 1979.

Reynolds, G. Robert. An introduction to cultural algorithms, Proceedings of the Third Annual

Conference on Evolutionary Programming, San Diego, 1994. pp 131-139.

Reynolds, G. Robert. An Adaptive Computer Model for the Evolution of Plant Collecting and

Early Agriculture in the Eastern Valley of Oaxaca, Guila Naquitz: Archaic Foraging and

Early Agriculture in Oaxaca, Mexico, 1986. pp 439-500.

Reynolds, G. Robert and Saleem, Saleh. The impact of environmental dynamics on cultural

emergence, Perspectives on Adaptation in Natural and Artificial Systems, 2001. pp 253–

280.

Reynolds, G. Robert and Saleem, Saleh. The impact of environmental dynamics on cultural

emergence, Perspectives on Adaptation in Natural and Artificial Systems. 2005. pp 253–

280.

Reynolds, G. Robert and Ali, M. Computing with the social fabric: The evolution of

social intelligence within a cultural framework. IEEE Computational Intelligence

317

Magazine. 2008.

Reynolds, G. Robert and Ayman, Nazzal. Using Cultural Algorithms with Evolutionary

Computing to Extract Site Location Decisions from Spatio-Temporal Databases,

Proceedings of the 6th International Conference on Evolutionary Programming, 1997.

pp 443-456.

Reynolds, G. Robert, Whallon, R., Ali, M. , and Zadegan, B. Agent Based Modeling of Early

Cultural Evolution, in Proceedings of the IEEE World Congress on Computational

Intelligence, Vancouver, B.C., July 16-21, 2006.

Richerson, Peter J., and Boyd, Robert. Not By Genes Alone: How Culture Transformed Human

Evolution. 1st ed. University Of Chicago Press, December 31, 2004.

Saleem, Saleh. Knowledge-based Solution to Dynamic Optimization Problems Using Cultural

Algorithms, University Microfilms International, P. O. Box 1764, Ann Arbor, MI,48106,

USA. 2001.

Schaffer, David James. Some experiments in machine learning using vector evaluated genetic

algorithms. Ph.D. thesis. Vanderbilt University, Nashville, 1984.

Schott, J. R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization,

Ph.D. thesis, Department of Aeronautics and Astronautics, MIT, Cambridge,

Massachusetts, 1995.

Schwimmer, B. Anthropology on the internet: a review and evaluation ofnetworked resources.

Current anthropology. 1996. pp 561-568.

Sharaf, A.M. El-Gammal, A. A novel discrete multi-objective Particle Swarm Optimization

318

(MOPSO) of optimal shunt power filter, Proceeding of Power Systems Conference and

Exposition, 2009 (PSCE '09). Seattle, WA, USA. 15-18 March 2009. pp 1-7.

Shi, Y and Eberhart, R. A Modified Particle Swarm Optimizer, in Evolutionary Computation

Proceedings, IEEE World Congress on Computational Intelligence. Anchorage, AK, USA,

1998. pp 69-73.

Srinivas, N. and Kalyanmoy Deb, “Multiobjective Optimization Using Nondominated Sorting in

Genetic Algorithms, Evolutionary Computation, Vol. 2, No. 1, 1994. pp 221-248.

Stützle, Thomas and Holger H. Hoos. MAX-MIN Ant system, Future Gener. Comput. Syst. 16, no.

9, 2000. pp 889-914.

T’kindt, V., Monmarche, N., Tercinet, F., and Laugt, D. An ant colony optimization algorithm to

solve a 2-machine bicriteria flowshop scheduling problem. European Journal of

Operational Research, vol. 142, no. 2, 2002. pp. 250–257.

Tylor, Sir Edward Burnett. Primitive culture: researches into the development of mythology,

philosophy, religion, language, art, and custom. Gordon Press. 1920.

Valenzuela-Rendon, Manuel, Eduardo Uresti-charre, and Itesm Monterrey. A Non-Generational

Genetic Algorithm for Multiobjective Optimization, Proceeings of the Seventh

International Conference on Genetic Algorithms, 1997, pp 658--665.

Van Veldhuizen, David A, and Lamont , B. Gary. Multiobjective Evolutionary Algorithm

Research: A History and Analysis. 1998.

Van Veldhuizen, David A, and G. B Lamont. On Measuring Multiobjective Evolutionary

Algorithm Performance, Congress on Evolutionary Computation, vol 1, 2000. pp 204--

319

211.

Wu, Yong-hai, Fan, Qin-man, and Wang Feng. Application of Multi-objective Particle Swarm

Optimization in Automobile Transmission Design. in Proceedings of Third International

Conference on Information and Computing 2010 (ICIC'10). Vol 1, Wuxi, Jiang Su, China.

4-6 June 2010. pp 215-218.

Wynne, C. D., Animal Cognition - The Mental Lives of Animals. Palgrave Macmillan, Great

Britain. 2001.

Zhang, Qingfu. n.d. Special Session on Performance Assessment of Multiobjective Optimization

Algorithms/CEC 09 MOEA Competition. 2009.

Zitzler, E. Evolutionary algorithms for multiobjective optimization: methods and applications,

Ph.D. dissertation, Swiss Federal Institute of Technology, Zurich, 1999.

Zitzler, Eckart, Deb, Kalyanmoy, Thiele, Lothar. Comparison of Multi-objective Evolutionary

Algorithms: Empirical Results, Evolutionary Computation, Vol. 8, No. 1, 2000. pp 173-

195.

Zitzler, Eckart, and Thiele, Lothar. Multiobjective Evolutionary Algorithms: A Comparative Case

Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary

Computation, 1999. pp 257-271.

320

ABSTRACT

Multi-Objective Cultural Algorithms

by

DAPENG LIU

August 2011

Advisor: Dr. Robert G. Reynolds

Major: Computer Science

Degree: Doctor of Philosophy

Evolutionary algorithms, including the Cultural Algorithms and other bio-inspired approaches

are frequently used to solve problems that are not tractable for traditional approaches. Previously,

research in the field of evolutionary optimization has focused on single-objective problems. On the

contrary, most real-world problems involve more than one objective where these objectives may

conflict with each other.

The newest implementation of the Cultural Algorithms to solve multi-objective optimization is

named MOCAT. It is not the first time that the Cultural Algorithms have been used to solve multi-

objective problems. Nonetheless, it is the first time that the Cultural Algorithms systematically merge

techniques that have been popular in other evolutionary algorithms, such as non-domination sorting

and spacing metrics, among other features. The goal of the thesis is to test whether MOCAT can

321

efficiently handle multi-objective optimization. In addition to that, we want to observe how the

knowledge sources and agent topologies within a Cultural Algorithm interact with each other during the

problem solving process.

The MOCA system was evaluated against the ZDT test set proposed by Zitzler (2000). Some basic

results that were produced are as follows:

1. The MOCAT system was very effective in the generation of an appropriate configuration for

solving problems with different combinations of these features. Even for a given problem,

as information was added to the knowledge sources, adjustments in the topologies could be

made effectively.

2. As the complexity of the problems increased in terms of the number of problem features,

the MOCAT system’s relative performance increased.

3. A problem with just a single problem feature, such as ZDT1 and ZDT5, was often effectively

solved by just using one metric guide the solution process. However, if there were multiple

problems, combining the two metrics together produced a synergy that outperformed each

single metric based system.

4. This synergy resulted from the fact that they rewarded spread production in different ways.

The spread metric focused on global distribution while the hyper-volume tended to support

local optimization.

5. The configuration of the top performing MOCAT system varied markedly from one problem

to the next.

322

Our experiments proved the potential of applying the Cultural Algorithms on multi-objective

problems and open a gate to observing internal behaviors of various knowledge sources and social

fabrics.

323

AUTOBIOGRAPHICAL STATEMENT

DAPENG LIU

Dapeng Liu entered the Department of Computer Science in 2003. He has worked in the

database, software engineering, and Artificial Intelligence laboratories. At present, he is a software

developer in “TheBrain” Technologies Corporation located in Los Angeles California. There he employs

techniques he has acquired from his research experiences at Wayne State. Dapeng is in charge of

addressing bugs in the Personal versions of the “Brain” software product. In his spare time he enjoys

reading and looking deep inside software code.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2011

	Multi-objective cultural algorithms
	Dapeng Liu
	Recommended Citation

