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CHAPTER 1 

INTRODUCTION 

Since the first recorded motor vehicle fatality in 1869 (World Health 

Organization), motor vehicle fatalities and injuries have proven to be a lasting concern.  

In 2006, motor vehicle traffic crashes in the United States were the leading cause of 

death for individuals aged 3-34 years, while heart disease was the leading cause of 

death for ages 64 and above (Traffic Safety Facts: NHTSA, 2008).  Motor vehicle traffic 

crashes ranked third overall in terms of the years of life lost, behind only cancers and 

heart diseases (Traffic Safety Facts: NHTSA, 2008).  The societal cost associated with 

vehicle crash-related injuries in the United States was estimated at over 260 billion 

dollars (NHTSA, 2008).  In 2009, 33,808 people lost their lives in motor vehicle crashes 

and another two and one half million were injured (Fatality and Injury Rates per 

population and Vehicle Miles Traveled, 1994-2009).  In 2009, the fatality rate per 100 

million vehicle miles of travel (VMT) fell to a historic low of 1.13 as compared to 1.73 in 

1994.  Accordingly, it has become increasingly important to reduce the number and 

severity of these injuries instead of focusing only on the number of fatality.  In recent 

years, the trend towards accident mitigation and prevention has augmented.   

Traumatic rupture of the aorta (TRA) remains the second most common cause of 

death associated with motor vehicle crashes after brain injury (Smith and Chang, 1986; 

Sauaia et al. 1995).  On an average, nearly 8,000 people die annually in the United 

States due to blunt injury to the aorta (Mattox, 1989).  It is observed that more than 80% 

of occupants who suffer an aortic injury die at the scene due to exsanguination into the 

chest cavity.  The probability of an occupant surviving the injury depends on the nature 
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of emergency care taken within the first one hour of injury causation (Primm et al. 1979; 

Wilson and Hutchins, 1982).  Data published by the National Automotive Sampling 

System (NASS) show that more than 58% of crashes are frontal crashes and nearly 

28% are lateral impacts (left and right inclusive).  

According to Sailer (1942), Vesalius made the first reference to traumatic rupture 

of the thoracic aorta in 1557.  However, aortic injury was rare until the advent of high-

speed motor vehicle crashes in the mid 1900’s.  TRA and blunt aortic injury (BAI) are 

leading causes of death in high-speed blunt impact trauma.  More specific injuries that 

fall under these classifications include myocardial contusion (MC), traumatic aortic 

disruption (TAD), sternal fracture (SF), flail chest (FC) and tracheobronchial disruption 

(TBD) (Swan et al. 2001).   

 

1.1  Epidemiology 

Reference to aortic injury and aortic disease has existed from as early as 

1500 B.C.  Archaeologists have found evidence that the ancient Egyptians suffered 

from aortic injury and aortic disease; signs of atherosclerosis have been found in 

Egyptian mummies (Willerson and Teaff, 1996).  Over the last four decades, closed 

chest trauma concerning ruptures of the thoracic organs and blood vessels have 

caused 25-40% of all automotive fatalities in which 10-20% of those fatalities were due 

to aortic trauma (Viano, 2011).  In side impacts (left and right inclusive), the incidence 

was higher at 2.4% than those in frontal impacts at 1.1% (Siegel et al. 2004; 2006).   

Bertrand et al. (2008) reviewed in-depth crash data for TRA from 1998 to 2006 

from the Co-operative Crash Injury Study (CCIS) database and concluded that although 
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TRA victims accounted for only 1.2% of all injured occupants, these victims accounted 

for 21.4% of all fatalities.  The injury risk increased with impact velocity, occupant 

compartment intrusion, and age.  It was also noted that almost 79.1% of the injured had 

multiple rib fractures, mostly from the second to the seventh ribs.  Bertrand et al. (2008) 

concluded that the mechanism of aortic injury was primarily due to a direct chest impact 

or compression.   

In a similar study, Franklyn et al. (2003) reviewed NASS database cases from 

1993 to 2000 and the CCIS database from 1983 to 2001 and concluded that, in near 

side crashes, the risk of aortic injury was greater on the left side of the body than that on 

the right regardless of seating position.  Further, the average change in collision speed, 

delta-v of crashes with aortic injury was higher than crashes where occupants did not 

sustain aortic injuries.  Burkhart et al. (2001) reviewed 242 autopsy cases with fatal BAI 

and concluded that in most cases aortic injury was accompanied by head injury, rib 

fractures, and/or hepatic trauma. 

Augenstein et al. (1997) reported that AIS 3+ injuries inflicted to the heart were 

due to seatbelts in frontal crashes.  Approximately 90% of those injuries were to the 

aortic isthmus, 5-10% to the ascending aorta, and 1-3% to the descending aorta at the 

level of the diaphragmatic hiatus and 98% of them died at the scene.  A number of 

researchers have reported transverse or circumferential tears to the longitudinal axis of 

the aorta, distal to the subclavian artery known as the peri-isthmic region or isthmus, as 

the primary site of aortic laceration (Greendyke, 1966; Symbas, 1973; Sevitt, 1977; 

Viano, 1983; Katyal et al. 1997).  The location presents an evolution from a relatively 

mobile arch to a tethered descending portion (at the level of the third and fourth thoracic 
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vertebral body) with posterior intercostal arteries that lead off.  Cahill (1997) revealed 

that the aorta has a natural coarctation at the side of attachment of the ligamentum 

arteriosum (remnants of the ductus arteriosus). 

Aortic tears can range from partial tears of the inner wall, typically the intima and 

medial layers to complete transection involving the adventitia (Strassmann, 1947; 

Cammack et al., 1959; Symbas, 1977; Sevitt, 1977; Viano, 1983; Hardy et al. 2006).  

The tears usually occur on the intervascular surface of the isthmus that has the shortest 

curvature and is vulnerable to longitudinal stretch (Sevitt, 1977; Hardy et al. 2006).  

Tears have also been seen to occur at the aortic root, attachment to the heart and the 

aortic hiatus at the diaphragm (Sevitt, 1977). 

 

1.2 Aims of the study 

To augment the knowledge of aortic injury biomechanics, following objectives are 

achieved in this dissertation:  

 

(A) Accident Injury Reconstruction (AIR) 

Finite element accident reconstruction of eight near side left lateral real world Crash 

Injury Research Engineering Network (CIREN) cases with FE vehicle models and 

the second version of the Wayne State Human Body FE model to accurately predict 

aortic injury. 

 

(B) Sensitivity study of factors 
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Sensitivity study utilizing the Wayne State Human Body Model – II (WSHBM) with 

respect to the impact velocity, impact position, impact height, and PDOF of the 

striking vehicle along with occupant position in the struck vehicle was conducted to 

access causation factors and their effect on aortic strain, aortic pressure, and 

compartmental intrusion in left lateral cases. 

 

(C)  Mechanisms for TRA 

Qualitative validation of data from WSHBM with existing experimental data and 

compare existing mechanisms of TRA with CIREN reconstruction simulations 

 

(D)  Aorta mechanics in high-speed racing crashes 

Drivers in high-speed crashes (Indycar, NASCAR, Formula One) are typically 

involved in severe crashes but survive through with minimal injuries.  An Indycar 

buck with WSHBM is simulated to study the effect of the seat, six-point harness and 

shoulder support pads. 

 

(E) Conceptual Countermeasures to reduce aortic str ain in nearside left lateral 

impacts 

Simulations using design of computer experiments (DOCE) method of the left side 

door structure with the introduction of a B-pillar beam, increased dimensions of the 

beam, elevated yield strength of the beam, introduction of a cross-beam, increased 

thickness of the side sheet metal structures and introduction of an “overall” side 
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airbag to study their effect on aortic strain, pressure in the aorta and compartmental 

intrusion.  

Chapter 2 reviews the relevant anatomy of aorta associated with the current 

study while Chapter 3 consolidates the Literature Review.  Real world crash data used 

in the study are described in Chapter 4 with the methodology of accident reconstruction 

in Chapter 5.  Methods used to reconstruct cases with aortic injuries (Aim A)  are 

provided in Chapter 6 while Chapter 7 describes the sensitivity study (Aim B)  to analyze 

factors affecting the maximum principal strain and maximum pressure in the aorta.  

Chapter 8 summarizes the numerous injury mechanism hypothesized in the literature 

(AIM C) and compares the data from the left lateral reconstructions performed with 

existing literature.  Chapter 9 compares the strains in three Indycar simulations with the 

WSHBM (AIM D) and establishes the usefulness of protecting the shoulder and thoracic 

cavity in side impacts.  Chapter 10 describes the DOCE study to reduce compartmental 

intrusion thus reducing thoracic deformation, which is deemed as a precursor to aortic 

strain (AIM E) along with other measures to reduce aortic strain.  Chapter 11 provides 

the scope of the current study and looks at future directions for TRA mitigation.  
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CHAPTER 2 

REVIEW OF THE ANATOMY 

The cardio-vascular (CV) system consists primarily of the heart (cardio pump) 

and blood vessels (vascular system).  The primary function of the CV system is to 

circulate blood via the artery-capillary-vein network and back.  The aorta is the most 

proximal artery of the heart and serves as a conduit and an elastic chamber (Kassab, 

2006).  The aorta’s elasticity serves to convert the heart’s pulsatile flow to near steady 

flow in the peripheral vessels.  Basile and Ventura in 2006 reported that in 1733, the 

English Reverend Stephen Hales concluded from his experiments on horses that the 

aorta expands to accommodate a large fraction of the stroke volume.   

 

2.1 Clinical Anatomy of the Human Aorta 

 

Figure 2.1 illustrates the various anatomical components and their respective 

positions of the human mediastinum contents except the left lung.  The aorta is the 

primary artery among the great vessels, which carries oxygenated blood purified in the 

lungs to the rest of the body.   
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Figure 2.1: Anatomical components and their respect ive positions of the human 
mediastinum contents except the left lung [ Gray, H. (1918) Anatomy of the Human 

Body ] 
 

 

According to Sundt and Clingman (2008), the normal human aorta is defined 

anatomically by the origins of the brachiocephalic vessels.  The three main branches: 

the innominate or the brachiocephalic trunk, left common carotid artery, and the left 

subclavian artery collectively called the superior vasculature arise in that order from the 

arch of the aorta.  The remnants of the fetal arterial circulation (ductus arteriosus), 

ligamentum arteriosum (Botallo’s ligament), arises from the pulmonary trunk and 
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connects to the aorta, distal to the left subclavian artery.  The aortic arch begins 

proximal to the origin of the innominate artery and ends distal to the left subclavian 

artery.  The normal aorta is greatest in diameter at its origin, where it averages to about 

30 mm and narrows to about 20 mm at the isthmus.  However, it is recorded that the 

diameter and the stiffness of the aorta increases with normal aging (Sundt and 

Clingman, 2008). 

The Oxford English dictionary refers to an isthmus as “A constriction or narrow 

passage connecting two larger parts of an organ or other anatomical structure.”  

According to Sundt and Clingman (2008), the isthmus is defined as “the region of the 

distal arch lying just between the origin of the subclavian artery and the ductus 

arteriosus (or ligamentum arteriosum in the adult) may have a mild narrowing which is a 

normal variant.” 

 

Figure 2.2: The normal aortic arch and its regions (Modified with permission from 
Shah et al. 2007) 
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From Figure 2.2, the ascending aorta begins at the aortic valve at the base of the 

left ventricle and ascends to about the second right sternocostal joint.  The aortic arch 

begins at the second right sternocostal joint and further arches superiorly to the left, 

anterior to the right pulmonary artery and bifurcation of the trachea, passes over the 

root of the right lung and then begins its descend at the body of the fourth thoracic 

vertebra.  The descending aorta descends on the left side of the bodies of T5 to T12 

vertebrae, posterior to the root of the left lung and the pericardium, enters the abdomen 

through the aortic hiatus at the level of the twelfth thoracic vertebral body (Netter, 2006).   

Another important aspect is the attachment of the descending aorta to the spine.  

This attachment is through the parietal pleura, paravertebral fascia, and intercostal 

arteries.  These structures hold the descending aorta fixed to the spine rendering it less 

vulnerable to injuries.  The fixation increases the risk of injury to the peri-isthmic region, 

which is attached to the relatively mobile arch at its proximal margin.   

 

2.2 Micro-Anatomy of the Aorta  

The aortic wall is divided into three layers, from the innermost, the tunica intima, 

tunica media, and the tunica adventitia (Soloman and Phillips 1987).  The intima is 

comprised primarily of endothelial cells, while the media and adventitia are comprised of 

elastic tissue and interconnecting muscle fibers.  These fibers allow the aorta to stretch 

to prevent over-expansion due to the pressure that is exerted on the walls by blood flow 

(Feneis, 1994).  Figure 2.3 shows the three layers of the aortic wall obtained using 

staining techniques. 
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Figure 2.3: The three layers of the aorta (Feneis, 1994) 
 

Studies have been performed to investigate injuries to specific regions of the 

aorta in order to determine if there is some region-related correlation to injury risk.  As 

mentioned in Chapter 1, Augenstein et al. (1997) reported that, for AIS 3+ injuries 

inflicted to the aorta, 90% were to the aortic isthmus, 5-10% to the ascending aorta, and 

1-3% to the descending aorta at the level of the diaphragmatic hiatus.  Additionally, the 

group reported that 98% of injured with aortic AIS 3+ injuries died at the scene.  

According to Katyal et al. (1997), 94% of all TRA’s involved the isthmic region of the 
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aorta, distal to the attachment of the left subclavian artery.  They also suggested from 

crash data that nearly all complete transections of the aorta were transverse about the 

longitudinal axis, and 94% of those occurred near the isthmic region.  In a pathological 

stand, the lesion to the aortic wall is a “Tear” and not a “Dissection.”  Typically, the tear 

is through the intima and media, with the thin but tough adventitia containing the blood 

volume as a pseudo aneurysm. 

 

2.3 Peculiarities and Aortic Variations 

Between the origin of the left subclavian artery and the attachment of the 

ligamentum arteriosum, the lumen of the aorta is considerably narrowed, forming what 

is termed the aortic isthmus .  Immediately beyond the ductus arteriosus, the vessel 

presents a fusiform dilation called the aortic spindle, the point of junction of the two 

parts being marked in the concavity of the arch by an indentation or angle (Moore and 

Persaud, 1998).  Distinct from this diffuse and moderate stenosis at the isthmus is the 

condition known as coarctation of the aorta, or marked stenosis occurring a little below 

the insertion of the ligamentum arteriosum into the aorta (Figure 2.4).   
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Figure 2.4: Coarctation of the aorta (Cahill, 1997)  
 

According to Bonnet et al. (1996), this coarctation is never found in the fetus or at 

birth, and is due to an abnormal extension of the peculiar tissue of the ductus into the 

aortic wall, which gives rise to a simultaneous stenosis of both vessels as it contracts 

after birth.  While this may not be relevant to the current study, it is worthy a note here, 

that the nature of injury gets further complicated with the fact there could be as many as 

15 different possible variations of the aortic arch and its branches.  Based on a study on 

1000 cadavers, Liechty et al. (1957) concluded that only 64.9% of the general 

population had a normal aortic anatomy (Figure 2.5). 
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Figure 2.5: Fifteen different possible variations o f the normal human aorta 
(Liechty et al. 1957) 

 

2.4 Atherosclerosis 

Atherosclerosis  (also known as Arteriosclerotic Vascular Disease  or ASVD) 

is the condition in which an artery wall thickens as the result of a build-up of fatty 

materials such as cholesterol.  It is a syndrome affecting arterial blood vessels, a 

chronic inflammatory response in the walls of arteries, in large part due to the 

accumulation of macrophage white blood cells and promoted by low-density lipoproteins 

(LDL) without adequate removal of fats and cholesterol from the macrophages by 

functional high-density lipoproteins (HDL).  Figure 2.6 shows the progression of plaque 
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build-up in an artery.  The atheromatous plaque is divided into three distinct 

components: 

1. The atheroma, which is the nodular accumulation of a soft, flaky, yellowish 

material at the center of large plaques, composed of macrophages  

2. Underlying areas of cholesterol crystals 

3. Calcification at the outer base of older/more advanced lesions 

 

Figure 2.6: Schedule of plaque build-up in an arter y (American Heart Association, 
1998) 
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CHAPTER 3 

LITERATURE REVIEW 

3.1 Injury Mechanisms for TRA 

There are numerous mechanisms hypothesized for aortic injury in the literature.  

Table 3.1 briefly summarizes 30 different publications, which speculated such 

mechanisms.  More descriptions of these studies are provided in the sections followed.  

 

Table 3.1: List of the various injury mechanisms hy pothesized for TRA published 
in the literature 

 
 

No. Author and Year  Mechanism  

 

Inertia based 

 

1 Letterer, 1924 
Downward traction of the heart as a result of falling is 

responsible for aortic root avulsion 

2 Hass, 1944 
Differential acceleration (jerk) of the structures within the 

mediastinum 

3 Roberts et al., 1966 Inertia component not primarily required for rupture 

4 Creasy et al., 1997 
High rate of deceleration along with chest compression might 

cause aortic injuries 

5 Forman et al., 2008 
Acceleration alone cannot cause TRA.  Thoracic deformation 

is essential for TRA 

 

Pressure based 

 

6 Oppenheim, 1918 Overpressure – 400 kPa  

7 
Klotz and Simpson, 

1932 

Overpressure due to hemodynamic effect of acceleration – 

explosive 
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8 Taylor, 1962 
Shock waves could initiate a retrograde aortic bulge causing 

a localized weakness 

9 Lundevall, 1964 Water hammer effect due to over pressure 

10 Roberts et al., 1966 
Transverse tear from pressure to occur if  ratio of ultimate 

transverse stress to ultimate long.  Stress > 2 

11 
Carson and Roach, 

1990 
Intimal tears at 79 kPa 

12 Siegel et al., 2004 Archimedes Lever Hypothesis 

 

Others 

 

No. Author and Year  Mechanism  

13 Marshall, 1958 Squeezing of the aorta by the parietal pleura 

14 Cammack et al., 1959 Torsion of the aorta due to deceleration 

15 Zehnder, 1960 
Hyper flexion displacement of the aortic arch with the hilum 

of the lungs acting as a fulcrum 

16 
Hossack, 1980 

Non-circumferential tears as a result of laceration from the 

ribcage 

17 Crass et al., 1990 Osseous pinch mechanism 

18 
Sevitt, 1977 

Discussed multiple mechanisms of injury  - ligamentum 

arteriosum 

19 

Voigt and Wilfert, 1969 

Traction of the superior vasculature  - aorta is subjected to 

tension via the carotid arteries as a result of rapid rearward 

pitch of the head – involves a dorso-cranial motion of the 

heart in response to frontal impact to the abdomen and 

thorax – Shoveling mechanism: where compression of the 

sternum forces the heart upward causing tension in the aorta 

at the isthmus. 

20 

Cavanaugh et al. 

(1990,1993) 

Inertial forces exerted by laterally accelerating heart and 

vessels may pulled on the descending thoracic aorta, which 

is firmly anchored to the posterior chest wall, causing aortic 

tears between the aortic arch and the descending thoracic 

aorta 
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21 

Melvin et al., (1998) 

Anterior motion of the sternum away from the spine is limited 

substantially – Passenger car occupants, the sternum is 

driven away from the spine anteriorly due to medial motion of 

the shoulder complex and the deforming ribcage – Sternal 

popping 

22 
Cavanaugh et al. (2005) 

Suggested the importance of anterior motion of the sternum 

in side impacts 

23 
Shah et al., 2007 

Sternal popping may not be a mechanism of injury.  Hilum of 

the lung may play a role in TRA 

 

Stretch based 

 

No. Author and Year  Mechanism  

24 Rindfleisch, 1893 Stretch deformation was a significant component of TRA 

25 
Mohan and Melvin, 

1982 

Ratio of ultimate transverse stress to ultimate longitudinal 

axis Stress = 1.2~2.12 

26 Hardy et al., 2006 

No pulmonary artery injury – motion of aortic arch and heart 

relative to the fixed descending aorta which straightens the 

inferior aortic arch 

27 Shah et al. 2007 Longitudinal stretch of the aorta 

28 Hardy et al., 2008 Tethering of the aorta to the parietal pleura 

29 
Belwadi et al. 2011 

Longitudinal stretch of the thoracic aorta from FE CIREN 

reconstructions 

30 

King et al. 2011 

Summarized the tests from Hardy et al. (2008) - Longitudinal 

stretch of the thoracic aorta and tethering of the aorta to the 

parietal pleura 

 
 

3.1.1 Inertia based hypotheses 

In 1966, Roberts et al. contradicted earlier studies published by Letterer (1924) 

and Hass (1944) on inertia based theories, and hypothesized that both inertia and 

pressure were not primarily responsible for aortic rupture.  Colonel John Stapp (1957) 
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withstood more than 45 g’s without significant injury in a frontal sled system.  It is also 

evident that drivers in racecars experience far more accelerations in both frontal and 

side crashes (Melvin et al. 1998).  Further, Forman et al. in 2008 tested nine cadaveric 

thoraces in an impact-sled configuration, placed in drums filled with beads to limit chest 

compression.  In most cases, the sled tests resulted in spinal accelerations of up to 80 g 

for 20 ms.  A maximum chest compression of 7.0±3.1% of the total chest depth, and 

maximum-recorded increases in intra-aortic, tracheal, and esophageal pressure of 177, 

112, and 156 kPa, respectively were reported.  No macroscopic injuries to the thoracic 

aorta resulted from these tests, though other limited visceral injury was observed.  They 

concluded that posteriorly directed acceleration alone was not sufficient to cause gross 

aortic injury.  Hardy et al. (2006) carried out four quasi-static tests and one dynamic test 

on cadavers to failure and concluded that intraluminal pressure and whole-body 

acceleration was not required for TRA to occur. 

 

3.1.2 Pressure based hypotheses 

There have been numerous hypotheses published arguing about pressure being 

the primary mechanism of TRA.  As early as 1918, Oppenheim concluded that 

overpressure in the aorta (400 kPa) was the primary reason for aortic tears.  Klotz and 

Simpson (1932) and Taylor (1962) conjectured that pressure changes due to 

acceleration could cause shock waves to propagate within the aorta leading to failure 

due to burst or explosion, while Lundevall (1964) called this a “Water hammer” effect.  

In 1966, Roberts et al. negated earlier inertia and pressure based theories, 

hypothesized that both inertia and pressure were not primarily responsible for aortic 
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rupture, and concluded that if the aorta has to fail due to pressure alone then the ratio of 

ultimate stress in the transverse direction to ultimate stress in the longitudinal direction 

must be more than two.  Mohan and Melvin (1982) found the ratio of ultimate transverse 

stress to ultimate longitudinal stress to be in the range of 1.2 to 2.12 in quasi-static 

uniaxial tests of human aorta.  Bass et al. in 2001 pressurized human cadaveric aortas 

at an average rate of 730 kPa/s during in vivo and in situ experiments.  More than half 

of these tests had longitudinal tears and reported a 50% risk of tear to the aorta at 101 

kPa and raised it to 120 kPa for occupants 68 years of age.  Siegel et al. (2004) 

reviewed 876 motor vehicle crashes (MVC) involving adult drivers or front-seat 

passengers whose injuries were evaluated by one of ten Level 1 Crash Injury Research 

Engineering Network (CIREN) centers for Injury trauma.  It was concluded that 

pressure, along with torsional strain, was responsible for isthmus failure.  In 2006, 

Siegel et al. proposed the “Archimedes Lever Hypothesis,” where the thoracic aorta, 

super-pressurized by the thoracic impact force, functions as a rigid lever system.  The 

long arm of the lever is the proximal aorta (i.e., the aortic arch), and the short arm would 

be the aortic isthmus fixed distally at the descending aorta.  The fulcrum of the system 

is at the left subclavian artery junction with the aorta.  In contrast, Viano (1983) argued 

that pressure alone was not sufficient to cause injury.  Shah et al. (2006) and Hardy et 

al. (2006) argued that clinical data had shown that the primary failure pattern was a 

transverse tear and not a longitudinal tear, indicating that it may be more likely that 

aortic tears are due to longitudinal stretch than burst failure.  Although at this point, the 

direction of failure may not be the best predictor for failure, since studies such as Bass 

et al. (2001) have obtained both longitudinal and transverse tears.  In the current FE 
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CIREN reconstructions (Belwadi et al. 2011), data has shown that elements fail in both 

longitudinal and circumferential axes.  It is also to be noted that due to the inherent 

curvature of the aorta, it can be quite a challenge to accurately identify the direction of 

failure.  Hence, it is highly unlikely that hemodynamic pressure alone can produce aortic 

tears, although it is a contributing factor to rupture, and particularly to tears of the intima. 

 

3.1.3 Other factors 

In one of the earlier studies, Marshall (1958) proposed an alternative method of 

failure mechanism for TRA; hypothesized that during an impact the parietal pleura may 

squeeze the aorta leading to rupture.  Cammack et al. (1959) theorized torsional forces 

on the aorta while Zehnder (1960) said that hyperflexion of the aortic arch with the 

fulcrum at the hilum of the lung acted as a lever leading to failure of the aorta.  Hossack 

(1980) hypothesized that lacerations to the aorta were due to the penetrating ribcage, 

while Crass et al. (1990) proposed the “The Osseous Pinch.”  The authors hypothesized 

that pinching of the aorta between the posterior thoracic spine and the anterior bony 

(osseous) thorax (manubrium, clavicle, and first ribs) during chest compression because 

of sudden deceleration was responsible for aortic isthmus tears.  Sevitt (1977) reviewed 

multiple injury mechanisms published at that time and concluded from literature that the 

ligamentum arteriosum (remnants of ductus arteriosum from the fetal circulation system) 

might play a crucial role in the mechanism of TRA.  Shah et al. (2006) and Hardy et al. 

(2006) argued that since there were no injuries to the pulmonary artery in a typical 

crash, the ligamentum arteriosum may not be as significant as previous thought to 

cause injury.  However, it is important to note that the aorta can have a natural 
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coarctation at the site of ligamentum arteriosum attachment (Cahill, 1997).  Voigt and 

Wilfert (1969) proposed the “Shoveling” mechanism for TRA.  Compression of the 

sternum resulted in the heart moving upward causing a tensile force acting on the aorta 

in the region of the isthmus of the aorta causing a tear.  Cavanaugh et al. (1990, 1993) 

concluded from 17 cadaveric tests in a Heidelberg-type seat fixture at speeds of 6.7 to 

10.5 m/s (five aortic tears) that the inertial forces exerted by laterally accelerating heart 

and vessels may have pulled on the descending thoracic aorta, which is firmly anchored 

to the posterior chest wall, causing aortic tears between the aortic arch and the 

descending thoracic aorta.  Melvin et al. (1998) in their study showed that Indycar 

drivers can sustain very high accelerations (50.7 g in 13 frontal crashes and 53.3 g in 

143 side impacts) with no aortic laceration.  Further, there were no serious thoracic 

injuries reported.  It is to be noted that in most cases, peak accelerations sustained 

were usually within a time window of 3 to 10 ms.  It was hypothesized that the six-point 

restraint system worn by the drivers limited chest deformation.  They proposed the 

“Sternal Popping” as a mechanism of failure.  In passenger car occupants, the sternum 

moved away from the spine anteriorly due to medial motion of the shoulder complex 

and the deforming ribcage.  Cavanaugh et al. (2005) reanalyzed their earlier findings 

and suggested the importance of anterior motion of the sternum in side impacts.  Shah 

et al. (2007) concluded from a combination of cadaveric tests and FE simulations that 

the sternum moved about 20 mm anteriorly and might not be responsible for aortic 

tears.  They instead hypothesized that the hilum of the lung might play a role in the 

injury.  It is to be noted that they measured only anterior displacement of the sternum 
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and not the deformation of the thoracic cavity, which may be a better predictor for 

sternal motion. 

Calcified aortic plaques changes the elastic properties of the aorta making it 

inextensible in the region of calcification (Sherebrin et al. 1994).  Viano (1983) 

suggested that the presence of atherosclerotic plaque is the weakest link in any 

traumatic aortic rupture.  More recently in their cadaveric test setups, Hardy et al. (2006, 

2008) found that in cases with atherosclerotic plaques the aorta failed in regions with 

plaque. 

 

3.1.4 Strain based hypotheses 

At the end of the 19th century, Rindfleisch (1893) utilizing data of riders falling 

from horses concluded that stretch deformation was a significant component for aortic 

injury.  No major study has been published since then on stretch mechanism for TRA 

due to lack of sophisticated cadaveric testing and high speed imaging techniques.  In 

1983, Mohan and Melvin were able to produce rupture stresses in the human aortic 

tissues at an average inflation pressure (not the aortic pressure) of 800 kPa in biaxial 

loading experiments producing spherical tissue deformation.  In 2006, Hardy et al. 

investigated TRA mechanisms using in situ human cadavers loaded in four quasi-static 

and one dynamic configurations.  The tests were carried out by perturbing the 

mediastinal structures of the cadavers.  All injuries occurred in the isthmic region.  The 

authors concluded that intraluminal pressure and whole-body acceleration were not 

required to induce a TRA.  Tethering of the descending aorta to the parietal pleura was 

deemed the principal aspect of injury.  Shah et al. (2007) tested six whole aortas (from 
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root to thoracic) in a tensile loading configuration at 1 and 5 m/s until failure.  They 

concluded that longitudinal tensile stretch caused rupture of the aorta, more so in the 

transverse direction, similar to tears found from autopsy data.  Further, Hardy et al. 

(2008) tested eight unembalmed human cadavers in various dynamic blunt loading 

modes using a high-speed biplane x-ray to visualize aortic motion within the 

mediastinum.  The cadavers were inverted during testing to ensure accurate placement 

of the aorta and the mediastinal contents during testing.  Clinically relevant TRA was 

observed in seven of those eight tests.  However, the authors did not validate if inverting 

the cadavers indeed resulted in a realistically positioned aorta, analogous to in vivo 

conditions.  Tensile stretch along the longitudinal axis of the aorta, caused by thoracic 

deformation was found to be the principal component of injury causation.  More 

recently, Viano (2011) reanalyzed their pendulum impact studies carried out in 1986 on 

11 unembalmed cadavers.  They concluded that the absence of TRA (except in one 

cadaver), in spite of using higher impact energies, was attributed to the fact that the 

cadavers were not inverted as in Hardy et al. (2008), causing inaccurate placement of 

the cadaveric aorta and the mediastinal contents.  Unfortunately, no further test data or 

clarification was provided to support the theory.  It might be possible that the invertion of 

the cadaver can cause artificial loading via the superior vasculature, which can load the 

aorta prior to testing.  King et al. (2011) summarized cadaveric test data from Hardy et 

al. (2008) and deemed longitudinal stretch of the aorta to be the main source of TRA.  

They also hypothesized that attachment of the parietal pleura to the thoracic aorta may 

play a role in the injury mechanics. 
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3.2 Whole Body Cadaveric Studies 

Numerous whole body cadaveric impact testing have been conducted to 

reproduce TRA in a laboratory setting.  Kroell et al. (1974) impacted 23 unembalmed 

cadavers midsternal with a saline pressurized aorta using an impactor with a mass of 

19.5 kg or 23.1 kg at speeds ranging from 4.0 to 10.0 m/s.  Although the pressure 

generated was 210 kPa, only two aortic tears were generated.  Shatsky et al. (1974) 

observed TRA after impacting primate chests with a pendulum at a speed of 5 m/s.  

Using flash X-ray cinematography, they observed high compression of the intra-thoracic 

organs.  Entrapment of the aorta between the heart and spine was deemed as the 

probable cause of aortic tears.  Nusholtz et al. (1985) carried out experiments on live 

anesthetized canine using a 10 kg hydraulic ram at speeds of up to 14 m/s.  Aortic 

injuries at the aorta-heart junction and at the junctions between the aorta and its 

superior branches were generated.  It was concluded that aortic trauma was only 

possible if subjects were frontally impacted above the sternum, causing compression of 

the chest followed by downward motion of the heart.   

Viano (1989) reported on 14 unembalmed human cadavers subjected to a total 

of 44 blunt lateral impacts to the chest and abdomen.  The impacts were delivered using 

a 150 mm diameter and 23.4 kg mass pendulum launched at nominal a speed of 4.5, 

6.7, or 9.4 m/s.  The objective of this study was to develop response corridors for the 

chest and abdomen subjected to blunt side impact.  No aortic ruptures occurred during 

those tests.  Cavanaugh et al. (1990, 1993) were able to produce five aortic tears 

among 17 tests performed using a horizontally accelerated sled and a Heidelberg-type 

seat fixture at speeds of 6.7 to 10.5 m/s.  The arterial system was pressurized to 100 
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mmHg before the crash.  It was hypothesized that the inertial forces exerted by laterally 

accelerating heart and vessels might have pulled on the descending thoracic aorta, 

which was firmly anchored to the posterior chest wall, causing aortic tears between the 

aortic arch and the descending thoracic aorta.  Cavanaugh et al. in 2005 re-analyzed 

their earlier sled test data to examine potential injury parameters and their relative 

predictive abilities.  From multivariate analysis, it was concluded that combining the 

upper sternum postero-anterior acceleration with Average Spine Acceleration (ASA) 

(Cavanaugh et al. 1993) and T12 vertical acceleration with V*Cmax (Lau and Viano 

1986), resulted in the best predictors for TRA.   

Hardy et al. further validated this thinking in 2006 and in 2008 with their 

cadaveric studies.  Hardy et al. in (2006) investigated TRA mechanisms using in situ 

human cadavers loaded in four quasi-static and one dynamic configurations.  The tests 

were carried out by perturbing the mediastinal structures of the cadavers.  All injuries 

occurred in the isthmic region.  The authors concluded that intraluminal pressure and 

whole-body acceleration were not required to induce a TRA.  Tethering of the 

descending aorta to the parietal pleura was deemed the principal aspect of injury.  

Forman et al. (2008) conducted nine sled tests using partial cadavers placed in drums 

filled with beads to limit chest compression.  The tests examined the inertial mechanism 

for aortic rupture.  Peak accelerations averaging 169 g’s did not result in aortic rupture 

with 7% chest compression and 177 kPa aortic pressure.  The authors concluded that 

chest compression was required for injury.  Further, Hardy et al. (2008) tested eight 

unembalmed human cadavers in various dynamic blunt loading modes using a high-

speed biplane x-ray to visualize aortic motion within the mediastinum.  The cadavers 
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were inverted during testing to ensure accurate placement of the aorta and the 

mediastinal contents during testing.  Clinically relevant TRA was observed in seven of 

those eight tests despite that the authors did not validate if indeed this inverted posture 

more realistically positioned the aorta in in vivo conditions.  Tensile stretch along the 

longitudinal axis of the aorta, caused by thoracic deformation was found to be the 

principal component of injury causation.  It is to be noted here that very few authors 

distinguished the injury mechanism based on impact direction, a vast majority focused 

on a mechanism based on frontal loading to the body.  More recently, Viano (2011) 

reanalyzed their pendulum impact studies carried out in 1986 on 11 unembalmed 

cadavers and concluded that the absence of TRA (except in one cadaver), in spite of 

higher impact energies were used, was due to the fact that the cadavers were not 

inverted as in Hardy et al. (2008) leading to inaccurate placement of the cadaveric aorta 

and the mediastinal contents.  Unfortunately, no further test data or explanation was 

provided was provided to validate the theory.  It might be possible that the invertion of 

the cadaver can cause artificial loading via the superior vasculature, which can load the 

aorta prior to testing leading to TRA.  

 

3.3 Material Properties of Aortic Tissue 

Material properties of the aorta are crucial for the development of accurate finite 

element models.  Lundevall (1964) concluded that the strength of the isthmus and the 

descending aorta were 63% and 80% of baseline strength (ascending aorta), 

respectively.  He concluded that the aortic tissue was non-linear, anisotropic, and rate 

sensitive.  Viano (1983) reported that the Young’s modulus of the human aorta ranged 
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from 360 to 400 kPa in the circumferential direction and 220 to 300 kPa in the 

longitudinal direction.  Mohan and Melvin (1982; 1983) studied the failure stress of the 

human aorta under uniaxial and biaxial tensile loads and found that the average stress 

at failure was 3.53 and 5.07 MPa for specimens loaded in the longitudinal and 

transverse directions, respectively.  

Bass et al. (2001) tested 11 whole cadaveric aortas and established a 50% risk 

of failure to be 852 kPa in the circumferential direction and 426 kPa in the longitudinal 

direction.  They concluded from three in-situ tests that the internal thoracic boundary 

conditions might not be important in the stress/strain levels for aortic failure.  Shah et al. 

(2007) performed biaxial tissue tests on cruciate-shaped samples and longitudinal 

stretch tests on whole aortas at a strain rate of 85 s-1, which was proportionate with 

loading rates seen in an automotive crash environment.  Three regions of the aorta: 

ascending, descending, and peri-isthmus were tested to investigate regional differences 

of the aorta.  Structural response of the aorta was obtained by longitudinal stretch test 

at a rate of 1 m/s.  The circumferential direction (Young’s modulus 11.37±7.50 MPa) of 

the aortic tissue was stiffer than the longitudinal direction (Young’s modulus 7.79±3.63 

MPa).  Further, they found that most of the tears to occur in the peri-isthmic region of 

the aorta at an axial strain of 22.1%. 

 

3.5 Finite Element (FE) Human Body Models 

With the advent of more accurate and established human body FE models, FE 

crash reconstruction methods have become a valuable tool when assessing crash 

scenarios and occupant injury mechanisms (Shah et al. 2005; Guan et al. 2010).  In a 
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typical vehicular crash reconstruction, software packages based on rigid body dynamics 

methods fed data from physical evidence, such as tire marks, measurements of the 

deformed vehicles, and photographs of the accident scene determine the crash energy, 

impact velocity, and principal direction of force (PDOF), as per SAE J224.  However, 

accurate determination of these parameters requires more sophisticated numerical 

methods, such as finite element analysis since rigid body dynamics methods cannot be 

used to account for parameters such as the extent of deformation and the location of 

the impact.  Hence, it becomes imperative to reconstruct real world crash data utilizing 

FE models and then use vehicle kinematics with human body FE models to further 

understand the mechanism of aortic injury. 

Roberts and Chen (1970) developed one of the first FE human thoracic skeleton 

models for investigating biomechanical responses of the human chest.  Later, utilizing a 

beam element approach, Sudaram and Feng (1977) developed another three-

dimensional model.  The bony ribcage, sternum and musculature were represented by 

beam, plate and membrane elements, respectively.  Plank and Eppinger (1991) 

developed a more realistic model of the human thorax, while Huang et al. (1994) 

developed a simplified human torso model to predict side impact injury parameters.  

Wang (1995) developed a side impact finite element human thoracic model using 

geometry data from Schneider et al. (1983) for a mid-sized seated male in a driving 

position.  The model consisted of 4,333 solid elements and 11,075 shell elements.  

Lizee et al. (1998) developed a whole-body human model with a limited number of 

elements to study a wide variety of impact conditions.  More recently Toyota Central 

R&D Lab., Inc. developed the Total Human Model for Safety (THUMS) representing a 
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50th percentile adult male (Iwamoto et al. 2002).  None of the reviewed whole body 

models has enough anatomical details in the thoracic cavity or a sufficiently accurate 

aortic model to predict TRA. 

In 2001, Shah et al. modified the thorax model developed by Wang (1995) to 

create a detailed FE model of the thorax appropriate for the study of aortic injuries.  The 

new model was comprised of a detailed skeletal structure and internal organs in the 

thoracic cavity representing the thorax of a 50th percentile male.  In 2004, Shah et al. 

integrated three detailed, validated models, ,the thorax model by Shah et al. (2001), the 

abdomen model by Lee and Yang (2001), and the shoulder model by Iwamoto et al. 

(2000), to create the Wayne State Human Body Model (WSHBM-I).  During integration, 

the model was further improved to include blood in the aorta.  This was achieved by 

using the *AIRBAG_LINEAR_FLUID airbag option available in the LS-DYNA (LSTC, 

Livermore, CA) airbag library.  Additionally, the aortic mesh was refined in order to 

predict stress distribution more accurately.  In this model, the major internal organs, the 

heart and lungs, were modeled using nonlinear solid elements while the blood vessels 

within the mediastinum, including the aorta, pulmonary trunk, pulmonary veins, and 

superior and inferior vena cava, were modeled using linear elastic shell elements.  The 

esophagus, trachea, diaphragm and intercostal muscles were modeled with linear 

elastic shell elements as well.  All twelve pairs of rib, the sternum, costal cartilage, and 

the spinal column from C1 to S1 (with intervertebral discs) were modeled using solid 

elements to represent trabecular bone.  The completed thoracic model was validated 

against chest deformation data reported by Kroell et al. (1974) and Viano et al. (1989).  

Additional thoracic modeling and validation information can be found in Wang (1995) 



31 
 

 

and Shah et al. (2001).  In 2005, Shah et al. combined this improved thorax model with 

the first version of the WSHBM to develop the WSHBM-II (Figures 3.1a, 3.1b and 3.1c).  

For several connections in the model, tied interfaces were used.  The pericardial sac 

surrounding the heart, the reflections of which attach to the aorta and pulmonary artery, 

was modeled and connected to the central tendon of the diaphragm by direct nodal 

connections.  Three airbags representing the hollow abdominal organs in the abdomen 

subcomponent model developed by Lee and Yang (2001) were replaced by one airbag 

to represent the peritoneum.  This airbag was reflected on the liver, spleen, and kidneys 

to represent visceral part of the peritoneum.  Additional WSHBM-II modeling and 

validation information can be found in Shah et al. (2007).  The WSHBM-II has a total of 

79,471 nodes and 94,484 elements with a mass of 75.6 kilograms.  Throughout the 

remainder of this thesis, WSHBM will refer to the second version of the model.  Table 

A1 in Appendix A lists the material properties of the second version of the Wayne State 

Human Body Model. 
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         (a)                                          (b)                                          (c)  

Figure 3.1: (a) The Wayne State Human Body Model – II (WSHBM) Shah et al. 
(2007) (b) WSHBM upper torso (c) Sagittal section o f the Thorax with the 

shoulder, ribcage and the left lung removed to view  the mediastinum contents 
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CHAPTER 4 

REAL-WORLD CIREN CRASH DATA 

4.1 Introduction 

With the advent of sophisticated finite element (FE) vehicle models and human 

body models that are highly representative of human anthropometry and anatomy, it is 

imperative that these models can be used to assist the understanding of the mechanism 

of aorta injury.  As described in Chapter 3, real world incidence data provide a unique 

platform to investigate aortic injury in live person instead of cadavers more realistically 

than laboratory created aortic ruptures.  On the other hand, conditions in real world 

accidents are not well controlled and the accuracy of reconstruction could greatly be 

affected for lack of engineering measurements for model validation.   

 

4.2 Materials and Methods 

The case materials for this study consisted of detailed analyses of 15 real life 

cases of crash-induced aortic rupture taken from a previous study in which 80 Motor 

Vehicle Crashes (MVCs) induced Aortic Injuries (AIs) were reported (Siegel et al. 2004).  

Victims of all these cases were either admitted alive to a Level I Trauma Center, or if 

fatalities, were immediately subjected to a complete post mortem examination with 

detailed photographs of the injuries documented by the Regional Medical Examiner 

associated with the institution associated with CIREN.  In each case, transported alive 

or scene fatal, a team of NHTSA approved crash investigators examined the scene and 

the vehicle to make quantitative estimates of the nature of the crash, and recorded the 

type and weight of the case vehicle, if the crash involved a fixed object, or both the 
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bullet and target cars.  On the case vehicles, the investigators calculated the principal 

direction of force (PDOF), the delta-v, the impact energy (IE) dissipation on the struck 

vehicle, and evidences of specific sites to which the crash victim might have come to 

contact.  They also determined whether the subject was wearing a seatbelt and/or 

whether a frontal or side airbag had deployed.  After all the data and photographs of the 

vehicle and the patient medical records had been acquired, a confirmation conference 

was held on each case to resolve any disparities and to validate all of the case data 

(Siegel et al. 2004).  Of the 80 cases of MVC-induced AI studied, there were 34 

occupants who were injured or killed in a lateral impact MVC (LMVC).  From these 34 

LMVC cases, eight left lateral MVC-induced AI cases and two right lateral cases were 

chosen for FE simulations.  These cases all had their aortic rupture in the most frequent 

location, the aortic Isthmus that represented the site of AI in 91% of the 34 LMVCs in 

this series.  Five frontal AI cases were chosen from 46 cases of frontal MVC for FE 

simulations.   

To protect the privacy of the patient and their families wherever necessary, any 

pictures with identifiable features have been hidden.   

 
 

4.3 Left Lateral CIREN data 

 
11 near-side left lateral CIREN cases used in the FE reconstruction processes 

are presented.  They are identified as Case numbers 4, 5, 6, 7, 8, 15, 16, 17, T1, T2, 

and T3 discussed in some degrees of detail along with injuries sustained by these 

victims in the next section.   
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4.3.1 Case #4 descriptions 

The patient was a 29 years old Hispanic male driver  (Height = 1.83 m; weight 

= 100 kg) of a 1992 Volkswagen Jetta sedan (V1) (Vehicle weight = 1,046 kg) impacted 

in a left lateral MVC by a nearly identical 1992 Volkswagen Jetta sedan (V2) (Vehicle 

weight = 1,046 kg) which entered the intersection.  V2 struck V1 on the left side (Scene 

Diagram, Figure 4.1) just at the junction of the driver’s side door with the body.  The 

WinSMASH software program estimated speed for V1 at 62 km/hr, with an Impact 

Energy of 313,502 joules.  The Collision Deformation Classification (CDC) was 

10YEW5, with a Principal Direction of Force (PDOF) of 310 degrees (Figure 4.2).   

 

Figure 4.1: Accident scene for case #4 
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Figure 4.2: Deformation pattern of the struck vehic le, case #4 
 

The patient had a brief loss of consciousness, but showed no neurologic injury 

on recovery (GCS 15).  He was normotensive, [Blood Pressure (BP) = 160/80 mmHg; 

Pulse (P) = 94; Respiratory Rate (RR) = 15], but complained of mild shortness of 

breath, left anterior chest pain and left scapular pain.  Admission chest radiograph 

showed a widened mediastinum; Computed Tomography (CT) of thorax demonstrated a 

probable aortic injury at the level of the aortic isthmus (Figure 4.3) which was confirmed 

by an angiography, a 50% aortic transection of the inner surface of the aorta at the level 

of the aortic isthmus that was contained within the tissues of the posterior mediastinum.  

There was also a small splenic contusion and mildly widened pubic symphysis.  The 

patient was hemodynamically stable and was taken to the Operating Room (OR) where 

under left heart bypass, the transection was completed and a #16 Hemashield Dacron 



37 
 

 

woven graft was sewn in place.  The patients’ post-operative course was uneventful and 

he was discharged from the hospital alive. 

 

Figure 4.3: Case #4, partial aortic transection at the level of the isthmus 
 

4.3.2 Case #5 descriptions 

The patient was a 24 years old Caucasian male driver  (Height = 1.71 m; weight 

= 91.6 kg) of a 2001 Honda Prelude coupe (V1) (Vehicle weight = 1,340 kg) which lost 

control and struck a tree (Figure 4.4) on the left front side at the driver’s side door.  
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There was some secondary deformation of the left front end at the level of the left 

headlight and the frontal airbag was deployed (Figure 4.5).   

 

Figure 4.4: Accident scene for case #5 
 

 WinSMASH calculated delta-v was 27.5 km/hr with an Impact Energy of 

46,051 Joules with a CDC of 1OLYAW3.  The PDOF was 310 degrees.  
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Figure 4.5: Deformation pattern of the case vehicle , case #5 
 

 The autopsy showed a complete transection of the thoracic aorta four 

centimeters distal to the left subclavian artery in the area of the aortic isthmus, which 

was fatal (Figure 4.6).  The thoracic mediastinum was also ruptured in the region of the 

aortic tear, permitting a massive left hemothorax to occur.    
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Figure 4.6: Case #5, Aortic transection at the leve l of the isthmus 
 

4.3.3 Case #6 descriptions 

The case involved a 28 years old African-American male driver  (Height = 1.85 

m; weight = 84 kg) of a 2000 Mazda 626 (V1) (Weight = 1299 kg) struck broadside by a 

2000 Honda CRV (V2) (Weight = 1,452 kg) (Figure 4.7).  The subject vehicle was 

equipped with a three-point restraint system that was not in use while the supplemental 

frontal airbag restraint system deployed on impact.  The major impact occurred at the 

left front door, centered at the B-pillar (Figure 4.8). 
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Figure 4.7: Accident scene for case #6 
 

The delta-v on impact calculated by WinSMASH for the subject vehicle was 55 

km/hr, with an energy dissipation of 163,692 Joules, at a PDOF of 280 degrees and the 

CDC was 09LYAW5. 
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Figure 4.8: Deformation pattern of the struck vehic le, case#6 

 

The patient sustained fatal injuries including an aortic rupture and was found 

dead at the scene (Figure 4.9).  The patient also sustained a bilateral subdural 

hemorrhage and multiple rib fractures. 
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Figure 4.9: Case 6, Aortic transection at the level  of the isthmus 
 

4.3.4 Case #7 descriptions 

The case involved a 34 years old African-American male driver  (Height = 1.63 

m; weight = 83 kg) of a 1993 Toyota Corolla (V1) (Weight = 1,085 kg) struck broadside 

by a 1996 Dodge Caravan (V2) (Weight = 1,612 kg) (Figure 4.10).  The subject was 

utilizing a three-point belt system and the frontal air bag deployed at the time of impact. 
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Figure 4.10: Accident scene for case #7 
 

The delta-v on impact for the V1 vehicle calculated by WinSMASH was 59 km/hr 

with an impact energy dissipation of 229,599 Joules, delivered at a PDOF of 280 

degrees at a CDC of 09LYAW5 (Figure 4.11).  
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Figure 4.11: Deformation pattern of the struck vehi cle, case#7 
 

The patient sustained fatal injuries including a three-centimeter transverse 

laceration of the aortic isthmus on the posterior right side of the isthmus, located three 

and one half centimeters distal to the left subclavian artery orifice (Figure 4.12).  There 

was an associated aortic dissection and mediastinal hemorrhage.  There was a second 

fatal injury involving a basilar skull fracture of the “hinge” type with atlanto-occipital 

dislocation.  The driver was dead at the scene. 
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Figure 4.12: Case #7, Aortic transection at the lev el of the isthmus 
 

4.3.5 Case #8 descriptions 

The case involved a 65 years old Caucasian male driver  (Height = 1.81 m; weight = 

101 kg).  He was the driver of a 1994 Honda Accord EX (Weight = 1,469 kg) which lost 

control in a snowstorm and struck a utility pole with the maximum impact at the left 

lateral driver’s side front door.  The seat belt was in use by the driver and the driver’s 

side frontal air bag deployed on impact (Figure 4.13).   



Figure 4.13: Accident scene for case #8

 

The delta-v on impact calculated by WinSMASH was 27.6 km/hr with an Impact 

Energy Dissipation of 52,024 Joules; delivered at a PDOF of 320 Degrees.  The CDC 

was 11LPAW3 (Figure 4.14).  
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igure 4.13: Accident scene for case #8  

v on impact calculated by WinSMASH was 27.6 km/hr with an Impact 

Energy Dissipation of 52,024 Joules; delivered at a PDOF of 320 Degrees.  The CDC 

was 11LPAW3 (Figure 4.14).   

 

v on impact calculated by WinSMASH was 27.6 km/hr with an Impact 

Energy Dissipation of 52,024 Joules; delivered at a PDOF of 320 Degrees.  The CDC 



48 
 

 

 

Figure 4.14: Deformation pattern of the struck vehi cle, case#8 
 

The subject sustained two fatal injuries: a transverse 45 mm transecting 

laceration of the aortic isthmus distal to the left subclavian artery orifice (Figure 4.15) 

and an atlanto-occipital disarticulation with proximal cord transection.  The occupant 

also suffered a left diaphragmatic laceration with the stomach and a splenic herniation 

into left chest.  
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Figure 4.15: Case #8, Aortic transection at the lev el of the isthmus 
 

4.3.6 Case #15 descriptions 

The case involves a 35 years old African-American female driver  (Height = 

1.75 m; weight = 99 kg).  She was the unrestrained driver of 1985 Oldsmobile Cutlass 

Ciera four-door sedan (V1) (Weight = 1,257 kg), which was struck by a 1994 Nissan 

Pathfinder SUV (V2) (Weight = 1,812 kg).  The Pathfinder driver went through a red light 

and struck the Oldsmobile at 47 km/hr with its full frontal plane, impacting the driver-side 

door and B-Pillar.  Post-crash the subject vehicle rotated 90 degrees in the 

counterclockwise direction and came to rest facing in a direction 180 degrees from 
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which the vehicle entered the intersection (Figure 4.16).  The subject driver was found 

dead at the scene. 

 

 

Figure 4.16: Accident scene for case #15 
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The PDOF was 270 degrees at a delta-v of 47 km/hr (WinSMASH) with an 

Energy Dissipation of 158,221 Joules at a CDC of 09LYAWS (Figure 4.17).   

 

 

Figure 4.17: Deformation pattern of the struck vehi cle, case#15 
 

At impact, the driver of the Oldsmobile was thrown against the intruding B-Pillar 

and left front door panel.  Her neck appears to have impacted the roof rail.  She 

sustained a complete aortic transection at the aortic isthmus 20 mm distal to the left 

subclavian artery take-off (Figure 4.18).  In addition, there was a soft tissue hemorrhage 

at the atlanto-axial ligament, but no consequent spinal cord injury and no brain injury, 

but some small patchy subarachnoid hemorrhages over the surface of the brain and a 
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small epidural hemorrhage at the level of the cervical spinal cord.  There was a splenic 

laceration and a laceration of the left shoulder. 

 

 

Figure 4.18: Case #15, Aortic transection at the le vel of the isthmus 
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4.3.7 Case #16 Descriptions 

The case involved a 27 years old African-American male driver  (Height = 1.72 

m; weight  = 87 kg) of a 1997 Mazda 626 four door sedan (V1) (Weight = 1,320 kg) who 

lost control of the vehicle on a narrow two-lane bridge and rotated, so that the driver’s 

side of the vehicle was approximately at a 90-degree obstruction to the driver of a 1998 

Toyota RAV 4 SUV (V3) (Weight = 1,356 kg) which was traveling in the opposite 

direction lane (Figure 4.19).  The Toyota struck the Mazda on the driver’s side with a 

PDOF of 270 degrees, impacting the driver’s side front door, the B-Pillar and the 

anterior portion of the rear door.  The frontal airbag did not deploy on this side impact 

crash.  The B-Pillar appears to have been a major component of the intrusion into the 

driver’s side compartment.  The driver of the Mazda was dead at the scene. 

From Figure 4.19, it is evident that a 1990 Lincoln Towncar (V2) initially impacts 

the 1997 Mazda 626 (V1) on the right front side.  This might not have caused any major 

structural damage, as it has not been reported in the CIREN case data.  However, it 

might have aided in positioning the Mazda for impact with the 1998 Toyota Rav 4 (V3). 
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Figure 4.19: Accident scene for case #16 
 

The PDOF was 270 degrees, at a delta-v of 54.4 km/hr (WinSMASH) with an 

Energy Dissipation of 273,856 Joules at a CDC of 09LZEW5 (Figure 4.20). 
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Figure 4.20: Deformation pattern of the struck vehi cle, case#16 
 

On impact, the driver of the Mazda was struck by the B-Pillar and upper 

doorframe.  There was a complete transection of the upper portion of the descending 

aorta just below the isthmus 40 mm distal to the orifice of the left subclavian artery 

(Figure 4.21).  A second laceration of the isthmus area occurred 20 mm below the 

subclavian take-off.  There was a traumatic rupture of the left diaphragm with herniation 

of the left lobe of the liver, the cardia and fundus of the stomach and the spleen into the 

left pleural space. 
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Figure 4.21: Case #16, aortic transection at the le vel of the isthmus 
 

4.3.8 Case #17 Descriptions 

This case involves a 55 years old Caucasian male driver  (Height = 1.63 m; 

weight = 100 kg) of a 2002 Dodge Stratus Sedan (V1) (Weight = 1,432 kg) who was 

struck by a Ford Econoline 350 van (V2) (Weight = 2,547 kg) while making a turn from a 

service road across a major divided highway (Figure 4.22).  The driver’s side door and 

the B-Pillar appear to have been the main sources of body impact at the time of the 

crash. 
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Figure 4.22: Accident scene for case #17 
 

The PDOF was 260 degrees, at a delta-v 41 km/hr (WinSMASH) with an Energy 

Dissipation of 110,087 Joules at a CDC of 09LYAW3 (Figure 4.23). 
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Figure 4.23: Deformation pattern of the struck vehi cle, case#17 
 

Because the aortic isthmus laceration and its resulting large pulsatile hematoma 

were contained in the posterior mediastinal tissues, the patient was taken to the OR 

where the isthmus disruption was repaired using a #24 Hemashield tube graft.  The 

patient tolerated the procedure well and survived his aortic disruption injury (Figure 

4.24). 

At the time of the crash, the patient sustained a left maxilla fracture and a left 

clavicle fracture as well as left rib fractures 3-12 postero-laterally, all appeared to be 

secondary to the impact with the B-Pillar.  This contact also produced a left pulmonary 

contusion.  B-Pillar contact was also implicated in the small aortic isthmus disruption.  

The patient also sustained a splenic laceration secondary to the lateral impact with the 

intruded left frontal door structures.  
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Figure 4.24: Case #17, aortic disruption at the lev el of the isthmus 
 

 

4.3.9 Case #T1 Descriptions 

This case involves a 42 years old African-American female driver  (Height = 

1.60 m; weight = 86 kg) of a 1993 Mercedes Benz 190E (V1) (Weight = 1,318 kg) who 

was struck by a 1993 Mazda Navajo SUV (V2) (Weight = 1,760 kg) while making a U-

turn from the middle lane of a three lane highway (Figure 4.25).  The drivers’ seat 

deformed severely and appears to have been the main source of body contact at the 

time of the crash. 
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Figure 4.25: Accident scene for case #T1 

 

The PDOF was 255 degrees, at a delta-v 33.6 km/hr (WinSMASH) with an 

Energy Dissipation of 37, 835 Joules at a CDC of 08LYAW4 (Figure 4.26). 
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Figure 4.26: Deformation pattern of the struck vehi cle, case# T1 
 

There was no aortic injury observed.  The driver sustained a brief loss of 

consciousness.  Impact to the center console caused a grade 1 liver contusion while the 

rapidly deforming seat caused a splenic contusion. 

 

 
4.3.10 Case #T2 Descriptions 

This case involves a 26 years old Caucasian female driver  (Height = 1.65 m; 

weight = 61 kg) of a 1997 Honda Civic four door (V1) (Weight = 1,098 kg) who was 

struck by a 1991 Ford E-250 Van (V2) (Weight = 2,165 kg) while making a left turn at an 

intersection (Figure 4.27).   
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Figure 4.27: Accident scene for case #T2 
 

The PDOF was 285 degrees, at a delta-v 29.1 km/hr (WinSMASH) with an 

Energy Dissipation of 24, 799 Joules at a CDC of 10LYEW2 (Figure 4.28). 



63 
 

 

 

Figure 4.28: Deformation pattern of the struck vehi cle, case# T2 
 

There was no aortic injury observed.  The driver sustained left rib fractures from 

the intruding side door structures.  Further, she suffered a liver laceration due to contact 

with the center console and a splenic laceration from the B-pillar. 

  

4.3.11 Case #T3 Descriptions 

This case involves an 82 years old Caucasian female driver  (Height = 1.55 m; 

weight = 50 kg) of a 1996 Chevrolet Cavalier four door (V1) (Weight = 1,162 kg) who 

was struck by a 1994 Ford Ranger SUV (V2) (Weight = 1,350 kg) when she passed a 

stop sign and was struck broadside (Figure 4.29).   
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Figure 4.29: Accident scene for case #T3 
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The PDOF was 300 degrees, at a delta-v 22.0 km/hr (WinSMASH) with an 

Energy Dissipation of 24, 799 Joules at a CDC of 10LYEW2 (Figure 4.30). 

 

 

Figure 4.30: Deformation pattern of the struck vehi cle, case# T3 
 

There was no aortic injury observed.  The driver sustained left anterior rib 

fractures with pneumothorax, left forearm contusion along with bilateral interior and left 

superior pubic rami fractures from the intruding side door structures. 
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CHAPTER 5 

FINITE ELEMENT ACCIDENT RECONSTRUCTION METHODOLOGY  

 

5.1 FE Reconstruction Introduction 

Cases selected from the Crash Investigation Research Engineering Network 

(CIREN) were reconstructed in two stages as described in Sections 5.2 and 5.3.  In 

Stage I reconstruction, validated FE models were scaled to match the case vehicles and 

actual deformation pattern matched simulation results while in Stage II, the WSHBM 

along with vehicle structures, which intruded into the occupant compartmental space, 

were used to predict the maximum principal strain and pressure in the aorta. 

 

5.2 Stage I Methodology 

In Stage I, vehicle models obtained from NCAC FE model archives were selected 

to best match the vehicle type as those of the actual case, since not all vehicle models 

were available.  The Federal Highway Administration (FHWA) and the National Highway 

Traffic Safety Administration (NHTSA), through the NCAC, have put in a great deal of 

resources to build and validate these FE vehicle models.  Further details on the 

validation of these models are reported on the NCAC website 

(http://www.ncac.gwu.edu/vml/models.html).  The same vehicle type models were 

scaled to match with the overall dimensions, such as the wheelbase, width, and height, 

of the case vehicle(s).  The vehicle mass was adjusted by either adding a lumped mass 

at the center of gravity of the vehicle or by removing a few unnecessary components, 

such as the rear bumper, which would typically not be involved in a left-lateral crash.  
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The driver’s weight was compensated for by adding a known weight (from the case 

data) to the center of gravity of the driver’s seat.  Care was taken to ensure that the 

overall center of gravity and total mass were not altered.  Similarly, the striking vehicle 

(or the fixed object) was scaled and the two vehicles (or the vehicle and fixed object) 

positioned and given an initial velocity (as a vector based on the PDOF) as documented 

by the crash investigation data.  

The simulations were set to run for 120 milliseconds.  All simulations were 

carried out using Hypermesh 10.0 (Altair Corporation, Troy, MI) as the pre-processor, a 

Massively Parallel Platform (MPP) version of LS-DYNA 970 on a four-node cluster (two 

processors/node) as the solver, and LS-PREPOST 3.1 (LSTC Corporation, Livermore, 

CA) as the post-processor.  Structural deformation patterns of the struck vehicle 

obtained in the simulations were compared with the CIREN data at six different points, 

C1 to C6, measured as per SAE J2433 (Equidistant Crush Measurement Techniques).  

SAE J2433 was referenced to compare the deformations from the simulation to the 

actual case (Figures 5.1).  Table 5.1 lists the left lateral crush profiles. 
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Figure 5.1: Lateral crush profile measurement (SAE J2433) 
 
 

Table 5.1: Crush profiles for the eight left latera l CIREN cases 
 

Deformation 
in mm  

Case 
4 

Case 
5 

Case 
6 

Case 
7 

Case 
8 

Case 
15 

Case 
16 

Case 
17 

C1 0 60 0 0 0 0 0 30 

C2 120 180 470 500 230 540 290 270 

C3 640 250 700 730 380 890 920 450 

C4 620 350 510 620 310 730 520 340 

C5 500 310 320 370 150 240 590 240 

C6 120 220 0 0 20 0 0 80 

 

A local coordinate system was established on a rigid plate with its origin on the 

right side B-pillar of the case vehicle (for left lateral cases), where deflection was seen 

to be negligible, to obtain the deformation in local coordinates.  The Stage I FE 

simulations were repeated while tuning the impact position of the striking vehicle model 
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until a reasonable match was obtained for the struck vehicle data.  For fixed object 

crash cases with either a tree or a pole, the object was created as per dimensions 

specified in the CIREN case report using solid elements and assigned a rigid material 

property.   

For the struck vehicles, the structures that came into contact with the occupant 

were grouped and their motions recorded in separate binary interface files.  These 

interface files were used as inputs for the Stage II simulations.   

 

5.3 Stage II Reconstruction  

In Stage II, the interface file and the sub-model (structures of interest) of the 

struck vehicle, which consisted of the nodal kinematic histories of the structures that 

might interact with the occupant, were used as inputs to load the occupant model 

WSHBM.  The occupant model was positioned in a seated posture estimated from post-

crash photographs of the interior structures and seat position.  A contact interface was 

created between the interior structures of the sub-model and the occupant model.  A 

mean arterial pressure of 13.33 kPa or 100 mmHg was initialized to simulate average 

resting blood pressure in the aorta (Presola et al. 2001).  The overall occupant 

kinematics at the time of peak vehicle deformation was observed, the average 

maximum principal strain (AMPS) and maximum pressures in several regions of the 

aorta were recorded, and the region with highest AMPS and pressure were tabulated.   
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CHAPTER 6 

AIM A: FINITE ELEMENT ACCIDENT RECONSTRUCTION OF LE FT-LATERAL 
CIREN ACCIDENT DATA 

6.1 Introduction 

Examination of the epidemiology of traumatic rupture of aorta (TRA) began near 

the time of World War II, but speculation regarding the etiology of TRA began much 

earlier, near the end of the nineteenth century (Sailer, 1942).  Because experimental 

efforts to reproduce clinically relevant TRA in the laboratory have had little success 

(Hardy et al. 2006, Hardy et al. 2008), little is known about the true mechanisms of TRA.  

Lumped parameter and FE models of the human thorax and its contents have been 

developed in an effort to gain insight into potential injury mechanisms.  However, 

findings from these models must be considered conjectural.  Some preliminary work by 

Shah et al. (2007) using accident reconstruction data has proven to be an effective 

method to investigate the mechanism of aortic injury.  Study of the injury mechanisms 

by reconstructing the accident plays a vital role in aortic injury mitigation. 

Scene inspections and data recovery involves visiting the scene of the accident 

and investigating all of the vehicles involved in the collision.  Investigations involve 

collecting evidences such as scene photographs, video of the collision, measurements 

of the scene, eyewitness testimony, and legal depositions.  Additional factors include 

steering angles, braking, use of restraint systems, lights, turn signals, speed, 

acceleration, engine rpm, cruise control, and anti-lock brakes.  Witnesses are 

interviewed prior or during accident reconstruction and physical evidence such as tire 

marks are examined.  Vehicle speed is frequently under-estimated or under-reported by 
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the case driver, so an independent estimate of speed is often essential in accident 

reconstruction.  Inspection of the road surface is also vital, especially when traction has 

been lost due to black ice, diesel fuel contamination, or obstacles such as road debris.  

Data from an event data recorder also provide valuable information such as the speed 

of the vehicle a few seconds before a collision.  

Vehicular accident reconstruction analysis includes processing data collected, 

evaluating possible hypotheses, creating numerical models, recreating accidents, 

testing, and utilizing software simulations.  Accident reconstruction has been 

revolutionized by the use of powerful, inexpensive computers, and specialty software.  

Various types of accident reconstruction software are used to recreate crash and crime 

scenes and to perform other useful tasks involved in reconstructing collisions.   

6.2 NASS-CDS Database Review 

An analysis of the National Automotive Sampling System Crashworthiness Data 

System (NASS–CDS) database was performed from survey years 1993 through 2008 to 

get an estimate of the number of thoracic aortic injuries and the primary structures in the 

automobile coded to be responsible for injury.  All data was taken post 1993 because it 

was the first year that the then newly established AIS 90 coding system, which was 

useful to pinpoint the exact location of injury within the occupant’s body, were required 

by NASS.  The NASS–CDS database survey performed is only a measure to 

understand possible patterns of thoracic aortic injury.  The non-weighted data cannot be 

used directly to ascertain a specific injury source but is helpful in confirming a proposed 

trend. 



From Figures 6.1, for left lateral impacts, it is observed that the interior hardware 

followed by armrest and B-pillar intrusion are top notab

aorta. 

  

Figure 6.1: Left lateral thoracic aortic injuries b y source (1993

 

6.3 Reconstruction of Lateral CIREN Cases

Eight left lateral reported in the CIREN database were obtained from 

University of Medicine and Dentistry of New Jersey (UMDNJ) and reconstructed using 

the finite element vehicle models 

(NCAC) at the George Washington University vehicle model archives as previously 

described in Chapter 5.  For the struck vehicles, the driver or passenger side structures 

(based off data from NASS-CDS survey), including the front and rear doorframe, door 

armrest, and left/right B-pillar nodes respectively, were grouped and their kinematics 
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From Figures 6.1, for left lateral impacts, it is observed that the interior hardware 

pillar intrusion are top notable coded injury sources to the 

Figure 6.1: Left lateral thoracic aortic injuries b y source (1993
 

6.3 Reconstruction of Lateral CIREN Cases  

reported in the CIREN database were obtained from 

University of Medicine and Dentistry of New Jersey (UMDNJ) and reconstructed using 

the finite element vehicle models obtained from the National Crash Analysis Center 

(NCAC) at the George Washington University vehicle model archives as previously 

bed in Chapter 5.  For the struck vehicles, the driver or passenger side structures 

CDS survey), including the front and rear doorframe, door 

pillar nodes respectively, were grouped and their kinematics 

From Figures 6.1, for left lateral impacts, it is observed that the interior hardware 

le coded injury sources to the 

 

Figure 6.1: Left lateral thoracic aortic injuries b y source (1993 -2008) 

reported in the CIREN database were obtained from The 

University of Medicine and Dentistry of New Jersey (UMDNJ) and reconstructed using 

National Crash Analysis Center 

(NCAC) at the George Washington University vehicle model archives as previously 

bed in Chapter 5.  For the struck vehicles, the driver or passenger side structures 

CDS survey), including the front and rear doorframe, door 

pillar nodes respectively, were grouped and their kinematics 
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were recorded in separate binary interface files which were used as inputs for the 

second stage.  

In Stage II, the interface file and the sub-model (left door structures) of the struck 

vehicle were used as inputs to calculate the occupant impact responses from the 

occupant model WSHBM.  Tables 6.1 summarizes the eight case histories and 

occupant injury details while Table 6.2 details the struck and striking vehicle models 

involved along with their respective FE models used for each in reconstruction. 

For Cases 5 and 8 where the impact was with a tree and pole respectively, fixed 

objects were modeled as rigid, and the velocity calculated from the accident 

reconstruction program (WinSMASH) were applied to the case vehicle.   

Table 6.3 lists the details of these car models in their unaltered states.  Tables 

A2 and A3 in Appendix A list the material properties of the left side door structures of 

the 2001 Ford Taurus FE model used as the case vehicle in all simulations and the 

material properties for the front bumpers and hoods of all striking vehicles.  As 

described in Chapter 5, the WSHBM was used to calculate the parameters associated 

with aortic injury in Stage II based on kinematics data of the case vehicle obtained from 

Stage I. 

The occupant model provided the overall occupant kinematics and predicted the 

average maximum principal strain (AMPS) and maximum pressures in the aorta.  
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Table 6.1: Summary of left lateral cases used in th e crash reconstruction process 
 

Parameter  Case 4 Case 5 Case 6 Case 7 Case 8 Case 15 Case 16 Case 17 
Crash details  

Impact 
Object Car-Car Car-Tree Car-SUV Car-Car Car-Pole Car-SUV Car-SUV Car-Van 

Delta V 
(km/hr) 62 27.5 55 59 27.6 47 54.4 41 

Energy 
(Joule) 313,502 46,051 163,692 229,599 52,024 158,221 273,856 110,087 

PDOF 
(Degree) 310  310 280 280 320 270 270 260 

Collision 
Deformation 

Classification 
(CDC) 

10YEW5 10LYAW3 09LYAW5 09LYAW5 11LPAW3 09LYAWS 09LZEW5 09LYAW3 

Seat Belt 
Usage 

Two-point 
shoulder belt, 

no lap belt 

Three-point 
belt 

Three-point 
belt, not in 

use 

Three-point 
belt 

Three-point 
belt No belt No belt 

 
Three-point 

belt 

Airbag Usage No airbag 
Driver side 

frontal airbags 
deployed 

Driver side 
frontal 
airbags 

deployed 

Driver side 
frontal 
airbags 

deployed 

Driver side 
frontal 
airbags 

deployed 

No airbag No airbag No airbag 
deployed 

Parameter  Case 4 Case 5 Case 6 Case 7 Case 8 Case 15 Case 16 Case 17 
Occupant and injury details  

Status  Survived Fatal Fatal Fatal Fatal Fatal Fatal Survived 
Age (Years)  

(37±15) 29 24 28 34 65 35 27 55 

Race Hispanic Caucasian African-
American 

African-
American Caucasian Caucasian African-

American Caucasian 

Gender  Male Male Male Male Male Female Male Male 
Height (cm)  
(174.1±8.5) 183 171 185 163 181 175 172 163 

Weight (kg) 
(93.1±7.7) 100 91 84 83 101 99 87 100 

Aortic injury 
details 

50% aortic 
transection of 
the intimal 
surface at the 
level of the 
aortic isthmus 
which was 
contained within 

Complete 
transection of 
the thoracic 
aorta, 4 
centimeters 
distal to the 
left subclavian 
artery at the 

Aortic 
transection 4 
centimeters in 
length, 1.5 
centimeters  
distal to left 
subclavian 
artery 

Transverse 
laceration of 
the aortic 
isthmus, 3 
centimeters 
in length on 
the posterior 
right side of 

Transverse 
laceration 
of the aortic 
isthmus, 
4.5 
centimeters 
in length 
just distal to 

Complete 
aortic 
transection 
at the level 
of the 
isthmus, 2 
centimeters 
distal to the 

A second 
laceration of 
the isthmus 
occurred, 2 
centimeter 
below the 
left 
subclavian 

Aortic 
isthmus 
disruption 
which was 
contained 
within the 
posterior 
mediastinal 
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the tissues of 
the posterior 
mediastinum 

level of the 
isthmus 

 the isthmus, 
located 3.5 
centimeters 
distal to the 
left 
subclavian 
artery 

the left 
subclavian 
artery 
orifice 

left 
subclavian 
artery orifice 

orifice tissues 

Other Injuries 
by Body 
Region 
 
Head 

  
 

• Bilateral 
subdural 
hemorrhages        
• Right 
mandible 
fracture 

• Bilateral 
skull 
Fractures 
with intra-
ventricular 
hemorrhage 
and 
cerebellar 
brain 
laceration          
• Atlanto-
occipital 
dislocation 
secondary to 
“hinge” 
fracture 

• Atlanto-
occipital 
disarticulati
on with 
proximal 
cord 
transection 
• Left  
fronto-
temporal 
scalp 
laceration     
• Left 
frontal 
basilar skull 
fracture           
• Atlanto-
occipital 
cervical 
vertebrae 
dislocation 

 • Basilar 
skull 
fracture, 
extending 
from the left 
middle 
cranial fossa 
through the 
petrous 
portion of 
the left 
temporal 
bone, 
across the 
basal 
portion of 
the occipital 
bone to the 
right middle 
cranial fossa 

 
 

Parameter  Case 4 Case 5 Case 6 Case 7 Case 8 Case 15 Case 16 Case 17 

Thorax and 
Upper 
Extremities 

 • Left Rib 
fractures (6th 
and 7th rib)  
• Rupture of 
the thoracic 
mediastinum 
leading to a 
massive left 
hemothorax 
• Left 
humerus 
fracture 

• Left superior 
pulmonary 
vein rupture 
and left 
hemothorax           
• Multiple rib 
fractures 

• Bilateral rib 
fractures           
•  Left lung 
contusion          
• Laceration 
of left 
diaphragm 
with 
protrusion of 
stomach into 
left pleural 
cavity 

• Bilateral 
rib fractures 

• Left 1st  
through 12th 
ribs fractures    
• Bilateral 
hemothorac
es 

• Anterior 
fractures of 
the left 1st  
through 5th  
ribs and 
posterior 
fractures of 
the left 5th , 
8th & 10th  
ribs            • 
Multiple  
lacerations 
on the left 
lung 

• Left maxilla 
and left 
clavicle 
fracture 
 

Abdomen  • Splenic  • Left • Laceration • Left • Splenic  • Splenic 
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contusion and 
mildly widened 
pubis 
symphysis 

diaphragm 
tear 
• Left pleural 
rupture                
• Posterior 
mediastinal 
hemorrhage        
• Splenic 
tears 

of left 
diaphragm 
with 
protrusion of 
spleen into 
left  pleural 
cavity 

diaphragm 
laceration 
with 
stomach 
and splenic 
herniation 
into left 
chest 

laceration laceration 

Pelvis and 
Lower 
Extremities 

  • Symphysis 
and left pubic 
ramus 
fracture               
• Left femoral 
fracture 

• Left pelvic 
fracture             
• Left 
tibia/fibula 
fracture 

   • Acetabular 
fracture and 
the left 
superior and 
inferior pubic 
rami 
fractures 
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Table 6.2: Summary of vehicle models and their init ial setup (after scaling) used 
in the left lateral crash reconstruction process 

 
Parameter  Case 4 Case 5 Case 6 Case 7 Case 8 Case 15 Case 16 Case 17 

Case Vehicle 
(Year, Make 
and Model) 

1992 
Volkswagen 
Jetta sedan 

2001 Honda 
Prelude 
coupe 

2000 Mazda 
626  

sedan 

1993 Toyota 
Corolla  
sedan 

1994 
Honda 
Accord 
sedan 

1985 
Oldsmobile 

Cutlass 
Ciera 
sedan 

1997 
Mazda 

626 sedan 
 

2002 Dodge 
Stratus  
sedan 

Case Vehicle 
Weight (kg) 1,046 1,467 1,299 1,085 1,469 1,257 1,320 1,432 

FE Vehicle  
Model Used 
(Year, Make 
and Model) 

2001 Ford 
Taurus  
sedan 

2001 Ford 
Taurus  
Sedan 

2001 Ford 
Taurus  
sedan 

2001 Ford 
Taurus  
sedan 

2001 Ford 
Taurus 
sedan 

2001 Ford 
Taurus 
sedan 

2001 Ford 
Taurus 
sedan 

2001 Ford 
Taurus  
sedan 

Striking 
Vehicle 

(Year, Make 
and Model) 

1992 
Volkswagen 
Jetta sedan 

Tree 
2000 Honda 

CRV 
SUV 

1996 Dodge 
Caravan 
mini-van 

Pole 

1994 
Nissan 

Pathfinder 
SUV 

1998 
Toyota 
RAV 4 
SUV 

1998 Ford 
Econoline 
350 van 

 
Striking 
Vehicle 

Weight or 
Fixed Object 

Diameter 

1,046 kg 46 cm 1,452 kg 1,612 kg 46 cm 1,812 kg 1,356 kg 2,547 kg 

FE Vehicle 
Model Used 
(Year, Make 
and Model) 

2001 Ford 
Taurus 
sedan 

Solid 
Elements 

1998 Ford 
Explorer  

SUV 

2002 Dodge 
Caravan 
mini-van 

Solid 
Elements 

1998 Ford 
Explorer 

SUV 

1998 Ford 
Explorer 

SUV 

1998 Ford 
Econoline 
350 van 

 
 

Initial Model 
Setup in the 
Simulation 

 
(km/hr) 

 
 
 

 

 

  

 

   

        

 

Table 6.3: Details of the vehicle FE models used in  the reconstruction 

FE Car Make and Model 
Total 

number of 
parts 

Total number of 
Elements 

Width 
(mm) 

Height 
(mm) 

Wheel Base 
(mm) 

Weight 
(kg) 

2001 Ford Taurus  790 1,057,113 1,856 1,471 2,755 1,665 

1998 Ford Explorer 755 619,161 1,841 1,765 2,855 2,240 

2002 Dodge Caravan 510 333,455 1,897 1,760 3,030 2,043 

1998 Ford Econoline 350 400 300,066 2,045 2,189 3,523 2,131 
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The response variables were the AMPS and instantaneous peak pressure in the 

aorta.  For maximum principal strain, four adjacent elements in the region with the 

highest inner surface maximum principal strain were selected and averaged; while for 

pressure, the maximum value obtained during the entire simulation was tabulated.  

6.4 Results  

Table 6.4 compares the measured vehicle deformation values at C1 to C6 to the 

FE model predicted vehicular deformations at the same locations as defined in the 

CIREN case.  As shown in Figure 6.2, the maximum resting deformation was compared 

with the CIREN data in order to account for elastic-plastic rebound.     

 

Figure 6.2: C1-C6 deformation-time histories 
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Table 6.4: Comparison of actual deformations obtain ed from CIREN versus  
the deformations predicted by the FE reconstruction  – Stage I 

 
 

Deformation 
in 

Centimeters*  

Case 4 Case 5 Case 6 Case 7 Case 8 Case 15 Case 16 Case 17 

Actual  FE Actual  FE Actual  FE Actual  FE Actual  FE Actual  FE Actual  FE Actual  FE 

C1 0 2 6 5 0 2 0 2 0 2 0 3 0 5 3 2 

C2 12 11 18 16 47 45 50 45 23 25 54 50 29 35 27 30 

C3 64 57 25 27 70 74 73 66 38 41 89 81 92 85 45 42 

C4 62 54 35 39 51 55 62 59 31 34 73 78 52 56 34 33 

C5 50 32 31 29 32 26 37 45 15 17 24 28 59 55 24 20 

C6 12 8 22 20 0 4 0 5 2 1 0 4 0 8 8 6 

Average 
Difference 

(%) 
16.91 10.45 6.09 7.67 14.93 6.65 7.12 15.96 

*Note: Deformation numbers are the final resting va lues  

79 
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It was found from the simulations that, in all cases, the maximum aortic strain 

was located in the region distal to the left subclavian artery, i.e. in the peri-isthmic 

region.  Table 6.5 lists the maximum principal strain averaged from four elements in the 

isthmus region and the maximum pressure in the aorta for the eight CIREN cases 

simulated.  Figures B1 through B8 in Appendix C compares the actual versus model 

predicted deformation pattern for the scaled vehicles used in Stage I of the 

reconstruction, while Figures B9 through B16 compares the deformation of WSHBM 

and AMPS fringes of the aorta for the eight cases reconstructed in Stage II. 

Table 6.5: Output details for the FE reconstruction s – Stage II 
 

CIREN 
Case 
No. 

PDOF 
(Deg) 

Delta 
‘V’ 

(km/hr) 

Occupant 
Status 

Left Side 
Door 

Structure 
Impact 

Time with 
Occupant 

(ms) 

Average 
Maximum 
Principal 
Strain at 

the Isthmus 
(AMPS)* 

Time 
at 

AMPS 
(ms) 

Maximum 
Pressure 

(kPa) 

Time at 
Maximum 
Pressure 

(ms) 

4 310 62 Survived 14 0.1452 38 114.8 48 

5 310 27.5 Fatal 34 0.1658 54 108.7 60 

6 280 55 Fatal 16 0.2767 33 134.0 30 

7 280 59 Fatal 22 0.2823 42 132.2 36 

8 320 27.6 Fatal 30 0.1851 50 104.6 50 

15 270 47 Fatal 26 0.1921 42 102.0 47 

16 270 54.4 Fatal 22 0.2955 36 136.0 35 

17 260 41 Survived 33 0.1941 38 103.8 52 

Average 0.217±0.059  117.013±14.676  

 
*AMPS: Average maximum principal strain at the leve l of the isthmus calculated from four elements in t he 
isthmus region 
* The highlighted boxes (dotted) list the minimum a nd maximum AMPS recorded in the simulations and the  
highlighted boxed (solid) list the minimum and maxi mum pressure recorded in the simulation 
 



Figure 6.3 : Average maximum principal strain

 

Table 6.6 compares the aortic injury location detailed from the CIREN case 

reports with the WSHBM predicted regions of strain

time histories for the eight CIREN cases reconstructed
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: Average maximum principal strain -time histories for the right CIREN 
cases reconstructed 

compares the aortic injury location detailed from the CIREN case 

reports with the WSHBM predicted regions of strain while Figure 6.3 plots the AMPS

time histories for the eight CIREN cases reconstructed.  

 

the right CIREN 

compares the aortic injury location detailed from the CIREN case 

plots the AMPS-



Table 6.6: Comparison of aortic injury l ocations between real world CIREN data and WSHBM pr edicted regions of 

Case #4 

CIREN data WSHBM Predicted CIREN data

Case #8 Case 

CIREN data WSHBM Predicted CIREN data
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ocations between real world CIREN data and WSHBM pr edicted regions of 
strain 

 
Case #5 Case #6 

CIREN data 
WSHBM 

Predicted 
CIREN data WSHBM Predicted 

 

Case #15 Case #16 

CIREN data 
WSHBM 

Predicted 
CIREN data WSHBM Predicted 

 
 

 

 

ocations between real world CIREN data and WSHBM pr edicted regions of 

Case #7 

CIREN data 
WSHBM 

Predicted 

Case #17 

CIREN data 
WSHBM 

Predicted 
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6.5 Discussion 

Traumatic rupture of the aorta has been identified as the second most common 

cause of early death following MVC, only surpassed by brain injury (Sauaia et al. 1995).  

Because of the high mortality rate of aortic injury, 59% deaths at the scene of crash and 

in some studies up to half of the scene survivors dying in transport or in the ER of the 

receiving hospital according to Demetriades et al. (2008).  Considerable experimental 

efforts have been expended to define the causative factors that produce this injury.   

The maximum principal strains ranged from 14.5% to 29.6% and the pressures 

ranged from 102 kPa to 136 kPa for the eight near side left lateral CIREN cases 

reconstructed.  For the two victims who sustained aortic injury but survived the crashes 

(Cases 4 and 17), the average AMPS was 17% and the average maximum pressure 

was 109 kPa.  On the other hand, for the six cases with a fatal crash, the average 

AMPS was 23.3% and the average maximum pressure was 120 kPa.  As shown in 

Table 6.1, the average crash energy for the two survival cases was 212 kJ compared to 

that of 154 kJ for the six fatal cases of aortic injury.  Thus, crash energy may not be a 

good predictor of survivability.   

A one-way ANOVA was performed using Minitab 16.1 (Minitab Inc., PA), on the 

average maximum principal strain obtained between the cases where the occupant 

survived the crash versus a fatal crash in left lateral crashes.  In these cases the sample 

size was insufficient to reach statistical significance (p=0.243).  Although in Case #4 the 

average maximum principal strain was low at 14.5% with a maximum pressure of 115 

kPa in the aorta, no conclusion can be drawn (due to insufficient number of cases) as to 
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why the occupant survived the crash when in Case #5 the occupant suffered a fatality at 

16.6% strain and 109 kPa of pressure in the aorta. 

Lundevall (1964) reported that the isthmus of the aorta was only 63% as strong 

as that of the ascending aorta.  Numerous other studies by Viano (1983), Mohan and 

Melvin (1982; 1983), and Fung (1993) have characterized the failure stress of the aorta 

under uniaxial and biaxial loading conditions.  Shah et al. (2006) concluded from biaxial 

tensile tests on cruciate shaped specimens that the average longitudinal failure strain to 

be 27.7% in the ascending region, 24.4% in the descending region and 21.7% in the 

peri-isthmic region, with an overall average failure strain of 24.4%.  In a second series 

of tests, high-speed longitudinal stretch tests were conducted by Shah et al. (2007b) on 

whole aortas until failure (1 m/s), and an average failure strain of 22.1% was reported.  

It should be noted that the strain data published in both series of tests were based on 

isolated aortic specimens and few specimens failed around the region of atherosclerotic 

plaque deposition.  From FE reconstructions, an average maximum principal strain of 

0.22±0.06 and 0.16±0.09 report in % to be consistent respectively in the isthmus of the 

aorta is recorded.  Cases #6, #7 and #16 reported strains higher than those reported by 

Shah et al. (2007b) where each case ended in a fatal aortic isthmus tear.  It is 

interesting to note that, Cases #5, #8, and #15 reported strains lower than those from 

Shah et al. (2007b) are and still ended in fatal aortic tears. 

Overall, the peak maximum pressure predicted by the FE model was lower than 

400 kPa, the threshold for aortic rupture as reported by Oppenheim et al. (1918) and 

800 kPa obtained by Mohan and Melvin in 1983 in biaxial loading experiments 

producing spherical tissue deformation.  Bass et al. (2001) reported that there was a 
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50% risk of aortic tears at nearly 101 kPa, increasing to 120 kPa for subjects below 68 

years of age.  In the CIREN cases, the average age for the occupants was 37±15 years, 

and the average maximum pressure was 117±15 kPa.  Although the average maximum 

pressures predicted by the simulations were less than those reported by Bass et al. 

(2001), three of the eight simulations were fatal and predicted pressures greater than 

120 kPa (Cases #6, #7 and #16).  Further, except for Case #16 the maximum pressure 

and maximum AMPS did not correlate with each other.  Forman et al. (2008) conducted 

nine sled tests using partial cadavers placed in drums filled with beads to limit chest 

compression.  The tests examined the inertial mechanism for aortic rupture.  Peak 

accelerations averaging 169 g’s did not result in aortic rupture with 7% chest 

compression and 177 kPa of peak intra-aortic pressure.  The authors concluded that 

thoracic deformation was required for aortic trauma.  Although, they reported no aortic 

injuries three out of the nine cadavers reported higher aortic pressures than those 

reported by Bass et al. in 2001.  It is also interesting to note that all the nine cadavers 

had moderate to severe atherosclerosis.   

A review of published data reported in the literature concluded that a transverse 

tear of the thoracic aorta at the isthmus, distal to the takeoff point of the left subclavian 

artery, is the principal site of aortic laceration (Greendyke, 1966; Sevitt, 1977; Viano, 

1983; Shah et al. 2007; Hardy et al. 2008).  The isthmus/peri-isthmic region is situated 

near the distal aspect of the aortic arch and represents a transition from a relatively 

mobile arch to a tethered descending portion, beginning at the third and fourth thoracic 

vertebrae.  Katyal et al. (1997) showed that 94% of aortic ruptures involved the isthmus.   
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Aortic tears are primarily circumferential or transverse to the long axis of the 

vessel (Viano, 1983).  In some cases, the aortic injury involves a partial tear of the 

vessel wall, typically the intimal and medial layer so that an intact adventitia and 

surrounding pleura may limit blood loss (Strassmann, 1947; Cammack et al., 1959; 

Symbas, 1977).  From the NASS-CDS database survey described above and the 

CIREN data listed in Table 6.1, it can be seen that the most common injury source is 

typically the side interior structure and/or B-pillar intrusion into the occupant 

compartment.  From Stage I and Stage II simulation runs performed in this study, a 

trend in the location with the highest AMPS in the aorta was evident.  All the 

reconstructions had high strains in the isthmus region, distal to the left subclavian artery 

(Figure 6.4a), the source being the side door structures including the arm rest, door 

interior structures, and the B-pillar (Figure 6.4b). 
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(a)                                                                         (b)   

Figure 6.4: (a) Average maximum principal strain lo cation – Isthmus of the aorta, 
(b) Left side door intrusion pattern (Red mesh indi cates higher AMPS) 

 

Zehnder et al. (1960) and Katyal et al. (1997) reported from field data that aortic 

tears were predominantly in the transverse direction perpendicular to the longitudinal 

axis of the aorta.  Bass et al. (2001) reported longitudinal tears from their over-

pressurization of in vitro and in situ human aorta specimens.  Shah et al. (2007b) 

argued that this was expected only if the aorta was viewed as a thin-walled cylindrical 

vessel, but did not reflect injuries seen in the field.  Shah et al. (2007b) in their tests on 

longitudinal stretch of the cadaveric aorta reported failure tears in the traverse direction.  

In their inverted cadaveric tests, Hardy et al. (2008) reported transverse tears in six of 

the eight cadavers tested with pressurized aortas.  In the current FE reconstructions 

carried out, all the eight cases reconstructed had high AMPS in the transverse direction 

(elements that lined up with maximum principal strain).  It is important to note that at the 
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region of the isthmus, there is an inherent concave curvature of the artery and a 

coarctation due to the presence of the ligamentum arteriosum (Bonnet et al., 1996). 

It is to be noted that in all cases except Case #4, aorta injuries were 

accompanied with multiple left rib fractures (from CIREN data), which corresponded 

with regions of high strain and deformation in the WSHBM’s ribs.  Similarly, in except 

Case #5 and Case #16, all cases were accompanied with splenic contusions that 

correlated to regions of severe compression and strain in the WSHBM.   

 

Figure 6.5: Maximum principal strain profile of the  spleen, liver, and left ribs 
 

From Figure 6.5, it is evident that the intruding left side B-pillar primarily caused 

strains in the left rib and spleen, which is a successor to severe thoracic deformation.  
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Since no failure threshold has been defined for either the spleen or the ribs in the 

WSHBM, the comparison is purely to augment the CIREN data.  

6.5.1 Limitations of the current study 

Several FE models of the human thorax have been reported in the literature.  

Roberts and Chen (1970) developed one of the first FE human thoracic skeleton models 

for investigating biomechanical responses of the human chest.  Later, utilizing a beam 

element approach, Sudaram and Feng (1977) developed another three-dimensional 

chest model.  The bony ribcage, sternum, and musculature were represented by beam, 

plate, and membrane elements, respectively.  Plank and Eppinger (1991) developed a 

more realistic model of the human thorax, while Huang et al. (1994) developed a 

simplified human torso model to predict side impact injury parameters.  Wang (1995) 

developed a side impact FE human thoracic model using geometry data from Schneider 

et al. (1983) for a mid-sized seated male in a driving position.  The model consisted of 

4,333 solid elements and 11,075 shell elements.  Lizee et al. (1998) developed a whole-

body human model with a limited number of elements to study a wide variety of impact 

conditions.  More recently Toyota Central R&D Labs., Inc. developed the Total Human 

Model for Safety (THUMS) representing a 50th percentile adult male (Iwamoto et al. 

2002).  None of the reviewed whole body models has enough anatomical details in the 

thoracic cavity or a sufficiently accurate aortic model to predict TRA. 

The current version of the WSHBM represents a 50th percentile model with a 

detailed thoracic cavity and has an anatomically accurate aorta model (Shah et al. 

2001).  However, it should be noted that in the current study, the WSHBM has been 

simulated without any scaling or personalized aorta model based on the CIREN data.  
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Even though the vehicle models were accurately scaled to match the size and weight of 

the struck and striking vehicles, the stiffness and interior compartment details did not 

simulate the actual vehicles involved.  The bumper profiles of each striking vehicle and 

the status of pre-crash braking were different, thus generating varying crush patterns, 

which may explain the discrepancies in matching the measured physical deformations 

reported in Table 6.4.   

Further, Niehoff et al. (2006) evaluated 121 NASS-CDS 2000-2003 cases and 

concluded that the WinSmash program underestimated the delta-v of the striking 

vehicle by an average of 23%.  Further, if the striking vehicle is a front wheel drive, the 

underestimation of delta-v is up to 31%.  In this study, only the 2002 Dodge Caravan FE 

model was a front wheel drive.  It is also important to observe that measured external 

deformations may not correspond to similar occupant compartment intrusions and 

contact forces due to differences in elastic and plastic moduli of various interior 

components.  This problem is exacerbated by the fact that deformation profiles were 

measured at only individual points on the external surface leading to localized variations 

in the actual and simulated profiles. 

It is extremely challenging to truly recreate the intricacies of real world crashes 

due to inaccuracies in field measurement and the accident reconstruction software, 

which is typically based on rigid body dynamics.  More importantly, variations in general 

anatomy and health status of the aorta in the human population are largely unknown.  

Heart disease, typically atherosclerotic cardiovascular disease remains the primary 

cause of death and disability in the United States (American Heart Association, 2008).  

Calcified aortic plaques change the elastic properties of the aorta, making it inextensible 
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in the region of calcification (Holzapfel et al. 2004).  Viano (1983) suggested that the 

presence of atherosclerotic plaque is the weakest link in any traumatic aortic rupture.  

More recently, Hardy et al. (2008) agreed with Viano’s conclusion in their cadaver tests 

and suggested that diseased aortas may have reduced failure strengths given that most 

failures occur in the region surrounding the diseased tissue.  This could play a vital role 

in determining the failure threshold as well as a possible reason for occupant-specific 

aortic failure, which was not considered in the WSHBM model. 

6.6 AIM A: Conclusions 

The aortic injury reconstructions provide a unique insight using a combination of 

real world CIREN data and FE models in the realm of TRA.  From the NASS-CDS 

review, the CIREN cases, and the FE aortic reconstructions, it was seen that in near 

side left lateral crashes the B-pillar followed by the interior door structures were 

primarily responsible for thoracic deformation leading to high aortic strains.  Eight near 

side left lateral CIREN cases were reconstructed using a combination of FE vehicle 

models and the second version of the WSUBM.   

1. The average AMPS were recorded to be 0.22±0.06 use % and the average 

maximum pressure in the aorta was recorded to be 117±15 kPa.   

2. Although there was an increase in aortic pressure in the simulations, it may not be 

solely responsible for aortic failure.  

3. The peak maximum principal strains primarily occurred in the isthmus of the aorta, 

distal to the left subclavian artery.   

4. A large percentage of the cases (87.5%) reconstructed had multiple left rib fractures, 

predominantly from the fourth to the ninth rib.   
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5. A great number of the cases (75%) reconstructed showed high strains in the spleen 

due to rapid caudo-medial motion of the rib cage induced from the intruding B-pillar. 
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CHAPTER 7 

AIM B: IDENTIFICATION OF KEY PARAMETERS RESPONSIBLE  FOR INJURY 
MECHANISM IN LATERAL IMPACTS – DESIGN OF COMPUTER E XPERIMENTS 

STUDY (DOCE) 

 
7.1 Introduction 

Traumatic rupture of the aorta is one of the leading causes of death in high-

speed impact trauma.  Smith and Chang (1986) reported on 387 cases of blunt 

traumatic death in vehicular crashes and found that aortic injury was second only to 

head injury as the leading cause of death.  They also reported that nearly 85% of the 

victims who sustained an aortic tear died at the scene.  Further, most cases of aortic 

injury are accompanied by head injury, rib fractures and/or hepatic trauma (Burkhart et 

al. 2001). 

The mechanism of injury and the threshold for injury in these cases may be 

related to the particular anatomy and physiology of the aorta and the surrounding 

tissues.  Aortic strain, which has been considered a primary factor for aortic tears, is 

primarily regionalized in the peri-isthmic region, distal to the origin of the left subclavian 

artery as reported in the literature (Greendyke, 1966; Sevitt, 1977; Viano, 1983; Katyal 

et al. 1997; Hardy et al. 2006; Shah et al. 2007; Siegel et al. 2010).  Further, data from 

literature has shown that, in lateral impacts, B-pillar intrusion combined with lateral 

sliding of the occupant into the intruding B-pillar and associated structures are mainly 

responsible for aortic injury (Shah et al. 2007; Siegel et al. 2010).  From Chapter 6, it is 

imperative that the intruding B-pillar and associated structures is mainly responsible for 
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TRA.  Further, higher aortic strain is primarily regionalized in the isthmus area, distal to 

the origin of the left subclavian artery.   

 

7.2 Methods and Materials 

To further understand the factors affecting aortic strain, a design of computer 

experiments (DOCE) study was performed on 16 different combinations of five design 

factors generated using a Latin Square method in modeFRONTIER 4.0 (ESTECO North 

America).  The FE reconstructions were carried out in two stages as outlined in Chapter 

5.  In Stage I, the vehicle-to-vehicle crash kinematics and deformation patterns were 

reconstructed from accident reports obtained from the Crash Injury Research and 

Engineering Network (CIREN) database using scaled FE vehicle models downloaded 

from the National Crash Analysis Center (NCAC) model database.  In Stage II, 

occupant impacts (WSHBM) with isolated vehicle structures were considered for 16 

cases.   

Five design factors were chosen, each with two to four levels of variation: impact 

height, impact position/bumper profile, PDOF, and initial velocity of the bullet vehicle 

along with varying occupant-seating positions in the case vehicle.  Table 7.1 lists the 

design factors and ranges simulated, while Figures 7.1(a) and 7.1(b) graphically 

demonstrate these locations.  The range for each design factor was chosen to include 

the eight near side left lateral cases reconstructed in Chapter 6. 
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Table 7.1: Range of values for the five design fact ors chosen for the DOCE study 

No. Design Factor Range 

1 
Striking 
Vehicle 

Impact Height / Bumper Profile Low High - - 
2 Impact Position (mm)* - 300 0 + 300 - 
3 PDOF (degrees) 250 270 290 310 
4 Initial velocity (km/hr) 30 38.3 46.6 54.9 

5 Struck 
Vehicle Occupant Position (mm)* -125 0 + 125 - 

*Note: Impact Position and Occupant Position are de termined from the center of the case vehicles’ B-pi llar 

 

 

Figure 7.1: (a) Position of the impact on the vehic le, height of impact and 
occupant seating position (b) Range of PDOF in the simulations 

 

The baseline case vehicle, a 2001 FE Ford Taurus model similar to the struck 

vehicle in the selected cases described in Chapter 6, was used as the target vehicle for 

the DOCE study.  For the striking vehicle, FE models of a 2002 Dodge Caravan, which 

has a low bumper profile similar to a sedan, and a 2002 Ford Explorer, which has a 

higher bumper profile than a sedan, were used for the simulations.  Impact positions 

were chosen to be the center, 300 mm forward or 300 mm backward of the case 

vehicle’s B-pillar.  The PDOF and initial velocity were chosen to cover the range of 

values in previous CIREN cases.  Finally, the occupant seating position selected 

covered the range of fore-aft range of the seat (250 mm) for a 2001 Ford Taurus with 
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the angle of seat back at 110 degrees.  That is, the occupant was positioned mid-track, 

125 mm forward of mid-track or 125 mm backward of mid-track.   

The response variables were the average maximum principal strain (AMPS) and 

maximum pressure in the aorta.  For AMPS, four adjacent elements in the region with 

the highest maximum principal strains were selected and averaged; while for pressure, 

the maximum value in a single aortic element obtained during the entire simulation were 

tabulated. 

7.3 Results and Discussion 

Table 7.2 lists the DOCE simulation matrix derived using Latin Square Sampling 

in modeFRONTIER 4.0 (ESTECO North America), an optimization software, and the 

response variables.  Maximum simulation time for each case run has been tabulated to 

establish a standardized time scale for comparison of maximum values.  Some 

simulations terminated earlier due to ‘negative volume’ based on LS-DYNA terminology. 
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Table 7.2: Latin Square sampling for DOCE and outpu t response variables: AMPS 
and maximum pressure in the aorta 

 

Run 
# 

Bumper 
Profile 
Height 

Impact 
Position 

(mm) 

PDOF 
(Degrees) 

Velocity 
(km/hr) 

Occupant 
Position 

(mm) 

Maximum 
Simulation 
Time (ms) 

AMPS* 
Time at 
AMPS 
(ms) 

Maximum 
Pressure 

(kPa) 

Time at 
Maximum 
Pressure 

(ms) 

1 Low -300 290 30 +125 56 0.1180 55 105.8 50 

2 Low -300 270 38.3 0 65 0.2240 44 113.5 46 

3 High -300 250 46.6 -125 54 0.1650 54 148.0 48 

4 High -300 310 54.9 0 33 0.0540 33 109.0 33 

5 Low 0 270 54.9 0 52 0.3240 40 135.0 36 

6 Low 0 290 46.6 +125 46 0.1580 44 119.6 36 

7 High 0 310 30 0 78 0.0675 78 104.4 70 

8 High 0 250 38.3 -125 64 0.1650 56 120.0 50 

9 Low 0 310 46.6 -125 80 0.2100 60 127.6 50 

10 Low 0 250 54.9 0 44 0.2580 43 117.7 42 

11 High 0 290 38.3 0 44 0.0330 43 104.3 42 

12 High 0 270 30 +125 70 0.1520 54 110.8 54 

13 Low +300 250 38.3 0 72 0.2300 44 113.2 48 

14 Low +300 310 30 -125 80 0.0250 78 90.1 78 

15 High +300 270 54.9 +125 36 0.2350 34 149.0 34 

16 High +300 290 46.6 0 76 0.1600 54 123.7 52 

Average  0.16± 
0.08  118.23± 

15.82 
 

* Average Maximum Principal Strain (%) = Lower Surf ace Average Maximum Tensile Principal Strain in the  longitudinal 
axis of the aorta 
* AMPS and Maximum pressure curves for each run are  presented in Appendix C, Figures C1 and C2 

 

It was observed from the simulation that the maximum principal strain occurred 

near the isthmus of the aorta, distal to the orifice of the left subclavian artery, in all runs.  

A maximum strain of 32.4% was recorded in Run #5, which was a sedan impacting the 

B-pillar (270 degrees) at 55 km/hr with the occupant seated at the B-pillar.  The lowest 

strain of 2.5% was observed in Run #14, which was a sedan impacting 300 mm to the 
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left of B-pillar at an angle of 310 degrees and a velocity of 30 km/hr with the occupant 

seated 125 mm in front of the B-pillar.   

In order to determine the critical factors, main effects analysis was performed in 

Minitab 16.1 (Minitab Inc., PA) based on the FE model predicted results listed in Table 

7.2.  The following figures summarize the relationships between selected design factors 

and AMPS in the isthmus (Figures 7.2) or peak pressure in the aorta (Figures 7.3) 

predicted by the WSHBM.  

 

Figure 7.2: Main effects chart for AMPS in the isth mus of aorta  

 

It is noted that a PDOF of 270 degrees resulted in the highest average AMPS 

(Figure 7.2a) among all factors and levels studied.  An increase in impact velocity had a 

direct correlation with the increase in maximum principal strain (Figure 7.2b), while an 
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occupant seated at the B-pillar with an impact directed to the B-pillar seemed to 

generate higher strain in the isthmus region (Figures 7.2c and 7.2d).  Bumper height 

yeilded results in contrast to intutive thinking, impacts from the lower profile Dodge 

caravan generated a higher isthmus strain compared to a higher profile SUV 

represented here by a Ford Explorer model (Figure 7.2e).   

 

Figure 7.3: Main effects chart for maximum pressure  (kPa) in the aorta  

 

From Figure 7.3a, a PDOF of 270 degrees resulted in the highest aortic pressure 

among all four PDOF’s simulated.  As the impact velocity increased, the aortic pressure 

also increased and seemed to vary negligibly after a velocity of 46.6 km/hr (Figure 

7.3b).  In contrast to the findings for maximum principal strain, an impact position 

centered on the B-pillar (Figure 7.3c) or an occupant seated at the B-pillar (Figure 7.3d) 
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generated the lowest aortic pressures, and a higher bumper profile generated a higher 

aortic pressure (Figure 7.3e). 

Table 7.3: Significance of each design factor for a n p=0.05: AMPS and maximum 
pressure in the aorta 

Significance 
Order Design Factor AMPS  Design Factor Maximum 

Pressure 
1 PDOF 0.001  Impact Velocity 0.002 
2 Impact Velocity 0.055  PDOF 0.028 

3 Impact Height 0.068  Occupant 
Position 

0.185 

4 Impact Position 0.295  Impact Height 0.283 

5 
Occupant 
Position 0.304  Impact Position 0.475 

 

Based on a Student’s t-test performed using modeFRONTIER 4.0 (Table 7.3), it 

was found that PDOF had a significant negative effect on strain, i.e. as PDOF increased 

the average AMPS in the aorta decreased, while impact velocity had a marginally 

significant positive effect, impact height had a marginally significant negative effect on 

FE model predicted average maximum principal strain.  In terms of FE model predicted 

peak aortic pressure, impact velocity had a significant positive effect while PDOF had a 

significant negative effect.   

The effects for coupled variables were analyzed using Pareto charts.  In a Pareto 

chart, the length of the bars indicates absolute value of each individual and coupled 

variable’s effect.  The Lenth method based on at-distribution was specially designed to 

study the effect of computer experiments by assuming that only small shares of 

variables are significant (Lenth, 1989).  From Figure 7.4, we observe that a combination 

of PDOF (C) and occupant seating position (E) followed by bumper profile height (A) 

with occupant position (E) have a significant impact on the AMPS while a combination 
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of PDOF (C) and occupant seating position (E) followed by bumper profile height (A) 

with occupant seating position (E) had a significant impact on the maximum pressure 

generated in the aorta in the 16 simulations (Figure 7.5). 
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Figure 7.4: Pareto chart of effects for isthmus AMP S 
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Figure 7.5: Pareto chart of effects for maximum pre ssure (kPa) in the aorta  

 

From Figures 7.4 and 7.5, we observe that no individual factor is significant 

enough to affect AMPS and Maximum Pressure in the aorta.  Although from Figure 7.4, 

we observe that Bumper Profile Height (A) is borderline significant for AMPS.   
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Figure 7.6: Plot of AMPS vs. maximum pressure (kPa)  

 

A plot of AMPS vs. maximum pressure (Figure 7.6) revealed an ‘R’ square value 

of 0.4348 with no significant correlation between aortic failure with strain and pressure 

combined, except in Cases #5, 9 and 15.  This was also supported by data from Table 

7.2 where no correlation was found between times of occurrence of maximum AMPS 

and maximum pressure in the aorta for a particular run. 

Although there were no significant differences in impact velocity, PDOF, or 

maximum pressure; it is interesting to note that the runs with high aortic strains had a 

striking vehicle with a low bumper profile (sedan).  It was observed, that in runs with 

lower bumper profile, the armrest gets pushed into the thorax, which does not occur 

with a higher bumper profile.  Further, because of the mass difference of 488.5 

kilograms between the Dodge Caravan (2,028.1 kg) and the Ford Explorer (1,539.6 kg) 
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FE models, the difference in momentum between the two impacts might have had an 

effect on the intrusion pattern.  A one-way ANOVA performed between the two FE 

models for average maximum principal strain (p=0.136) and maximum pressure in the 

aorta (p=0.58) did not show statistical significance.   

Several limitations of the current study are noted.  Even though the vehicle 

models were accurately scaled to match the size and weight of the case vehicles, the 

stiffness and interior compartment details were not compensated.  It is also important to 

observe that measured external deformation may not correspond to similar occupant 

compartment intrusion and contact force due to differences in elastic modulus of various 

interior components.  This problem is exacerbated by the fact that deformation profiles 

are measured at individual points on the external surface leading to variations in actual 

and simulated profiles. 

 

7.4 AIM B: Conclusions 

Sixteen DOCE runs were carried out using FE vehicle models and the second 

version of the Wayne State Human Body Model.  In simulated near side left lateral 

crashes, the following conclusions can be drawn: 

1. Of the four PDOFs simulated, a PDOF of 270 degrees generated the highest 

average maximum principal strain in the aorta.  

2. Peak average maximum principal strain primarily occurred in the isthmus of the 

aorta, distal to the orifice of the left subclavian artery.   
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3. PDOF and occupant seating position combined together were significant for both 

AMPS and maximum pressure in the aorta followed by a combination of bumper 

profile height and occupant seating position. 

4. Although not significant as individual factors, results of design of computer 

experiments concluded that occupant-seating position, bumper profile height, and 

PDOF of impact, in that order, play crucial roles in the generation of strain and 

pressure in the aorta, a potential injury mechanism responsible for traumatic rupture 

of the aorta in automobile crashes. 

5. Velocity and impact position were not significant for either AMPS or maximum 

pressure in the aorta. 
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CHAPTER 08 

AIM C: INJURY MECHANISMS FOR TRA 

8.1 Introduction 

 Aortic injury and related mechanisms have been discussed in the literature for 

more than a century now.  Over the last 40 years, ruptures to the thoracic organs and 

blood vessels have caused more than 40% of all automotive traumas with 20% of them 

originating from aortic ruptures (Viano, 2011).  From AIM A (Chapter 06), it was 

observed that in nearside left lateral impacts, CIREN data showed regions of tear in the 

isthmus of the aorta, which correlated with FE reconstruction data, in which regions of 

high strain were located in the isthmic / peri-isthmic region of the aorta, distal to the 

takeoff point of the left subclavian artery.  Further, B-pillar intrusion combined with 

lateral sliding of the occupant into the intruding structures were mainly responsible for 

thoracic deformation leading to TRA.  From AIM B (Chapter 07), it was observed that a 

PDOF of impact of 270 degrees yielded the highest strain and pressure in the aorta, 

while a combination of PDOF and occupant-seating position was crucial to the 

mechanism of TRA.  Further, as the PDOF of impact increased from 250 degrees to 

310 degrees, the mechanism of strain generated varied. 

 

8.2 Injury Mechanisms for TRA 

Chapter 3, Section 3.2 described and listed the various hypotheses published on 

TRA.  For the sake of completeness and in order to aid the reader into continuation on 

the mechanisms of TRA, Table 8.1 summarizes the mechanisms tabulated in Table 3.1. 
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There have been numerous hypotheses made on injury mechanisms for TRA as 

described in Chapter 3.  Briefly, these hypothesis were based on: inertia (Letterer, 

1924; Hass, 1944; Roberts et al., 1966; Creasy et al., 1997), pressure (Oppenheim, 

1918; Klotz and Simpson, 1932; Taylor, 1962; Lundevall, 1964; Roberts et al., 1966; 

Mohan and Melvin, 1982; Carson and Roach, 1990; Siegel et al., 2004), strain 

(Rindfleisch, 1893; Hardy et al., 2006; Shah et al., 2006; Hardy et al., 2008), 

atherosclerosis (Strassmann, 1947; Lundevall, 1964; Greendyke, 1966; Vande Geest, 

2002), and other factors (Marshall, 1958; Cammack et al., 1959; Zehnder, 1960; 

Hossack, 1980; Crass et al., 1990; Sevitt, 1977; Voigt and Wilfert, 1969; Melvin et al., 

1998; Ben-Menachem, 1993).  The advent of finite element human models along with 

sophisticated testing methodology has significantly helped the understanding of TRA.  

Unfortunately, most data published in the literature lack the usage of real world crash 

data and reconstruction methodology.   

 
 

Table 8.1: List of the various injury mechanisms hy pothesized for TRA published 
in the literature 

 
 

No. Author and Year  Mechanism  

 

Inertia based 

 

1 Letterer, 1924 
Downward traction of the heart as a result of falling is 

responsible for aortic root avulsion 

2 Hass, 1944 
Differential acceleration (jerk) of the structures within the 

mediastinum 

3 Roberts et al., 1966 Inertia component not primarily required for rupture 

4 Creasy et al., 1997 High rate of deceleration along with chest compression might 
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cause aortic injuries 

5 Forman et al., 2008 
Acceleration alone cannot cause TRA.  Thoracic deformation 

is essential for TRA 

 

Pressure based 

 

6 Oppenheim, 1918 Overpressure – 400 kPa  

7 
Klotz and Simpson, 

1932 

Overpressure due to hemodynamic effect of acceleration – 

explosive 

8 Taylor, 1962 
Shock waves could initiate a retrograde aortic bulge causing 

a localized weakness 

9 Lundevall, 1964 Water hammer effect due to over pressure 

10 Roberts et al., 1966 
Transverse tear from pressure to occur if  ratio of ultimate 

transverse stress to ultimate long.  Stress > 2 

11 
Carson and Roach, 

1990 
Intimal tears at 79 kPa 

12 Siegel et al., 2004 Archimedes Lever Hypothesis 

 

Others 

 

No. Author and Year  Mechanism  

13 Marshall, 1958 Squeezing of the aorta by the parietal pleura 

14 Cammack et al., 1959 Torsion of the aorta due to deceleration 

15 Zehnder, 1960 
Hyper flexion displacement of the aortic arch with the hilum 

of the lungs acting as a fulcrum 

16 
Hossack, 1980 

Non-circumferential tears as a result of laceration from the 

ribcage 

17 Crass et al., 1990 Osseous pinch mechanism 

18 
Sevitt, 1977 

Discussed multiple mechanisms of injury  - ligamentum 

arteriosum 

19 

Voigt and Wilfert, 1969 

Traction of the superior vasculature  - aorta is subjected to 

tension via the carotid arteries as a result of rapid rearward 

pitch of the head – involves a dorso-cranial motion of the 
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heart in response to frontal impact to the abdomen and 

thorax – Shoveling mechanism: where compression of the 

sternum forces the heart upward causing tension in the aorta 

at the isthmus. 

20 

Cavanaugh et al. 

(1990,1993) 

Inertial forces exerted by laterally accelerating heart and 

vessels may pulled on the descending thoracic aorta, which 

is firmly anchored to the posterior chest wall, causing aortic 

tears between the aortic arch and the descending thoracic 

aorta 

21 

Melvin et al., (1998) 

Anterior motion of the sternum away from the spine is limited 

substantially – Passenger car occupants, the sternum is 

driven away from the spine anteriorly due to medial motion of 

the shoulder complex and the deforming ribcage – Sternal 

popping 

22 
Cavanaugh et al. (2005) 

Suggested the importance of anterior motion of the sternum 

in side impacts 

23 
Shah et al., 2007 

Sternal popping may not be a mechanism of injury.  Hilum of 

the lung may play a role in TRA 

 

Stretch based 

 

No. Author and Year  Mechanism  

24 Rindfleisch, 1893 Stretch deformation was a significant component of TRA 

25 
Mohan and Melvin, 

1982 

Ratio of ultimate transverse stress to ultimate longitudinal 

axis Stress = 1.2~2.12 

26 Hardy et al., 2006 

No pulmonary artery injury – motion of aortic arch and heart 

relative to the fixed descending aorta which straightens the 

inferior aortic arch 

27 Shah et al. 2007 Longitudinal stretch of the aorta 

28 Hardy et al., 2008 Tethering of the aorta to the parietal pleura 

29 
Belwadi et al. 2011 

Longitudinal stretch of the thoracic aorta from FE CIREN 

reconstructions 

30 King et al. 2011 Summarized the tests from Hardy et al. (2008) - Longitudinal 
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stretch of the thoracic aorta and tethering of the aorta to the 

parietal pleura 

 
 

From Table 8.1, it is seen that there are 30 different hypotheses for mechanism 

of TRA.  Strain, pressure, inertia, and other factors (including atherosclerosis); in that 

order of importance based on real world data (Viano, 1998; Shah et al. 2007; Belwadi et 

al. 2011a), FE data (Shah et al. 2008; Belwadi et al. 2011b), and cadaveric test data 

(Hardy et al. 2008, Viano, 2011, King, 2011) play a crucial role in TRA. 

Summarizing data from Chapters 6, 7 and 8 along with data from literature, it is 

evident that one of the factors listed below is essential for TRA to occur: 

• Thoracic deformation is essential for TRA 

• Acceleration/ inertia alone cannot generate TRA 

• In nearside left lateral impacts, B-pillar plays a significant role in TRA 

• PDOF and seating position is crucial to TRA 

• Longitudinal stretch of the aorta is the primary mechanism for TRA 

• Pressure may not be a primary factor, but aids in the generation of TRA 

• Although transverse tears are more significant with clinical data, they cannot be 

used to differentiate between pressure versus strain based failure hypotheses 
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8.3 Materials and Methods 

 In order to delineate the mechanism of injury for TRA, the following additional 

simulations were carried out: 

1) Three nearside left lateral CIREN cases without a aortic injury was reconstructed 

using a combination of scaled FE vehicle models and WSHBM in two stages as 

described in Chapter 5.  

2) Eight additional cases were simulated in order to perform a paired sensitivity 

comparison. 

Based on literature data and the CIREN reconstructions, the objective of this study 

was to compare the kinematics of the aorta with published cadaveric data and to look 

into the hypothesis of “Sternal Popping” due to loading via the shoulder in lateral 

impacts. 

  

8.3.1 CIREN Case Details 

Table 8.1 summarizes the details of the three nearside left lateral cases.  Letter 

‘T’ is denoted for these three cases to signify no aortic injury.  Table 8.2 summarizes the 

vehicle specifications while Table 8.3 details the FE models used in the reconstruction 

process. 
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Table 8.1: Summary of left lateral cases used in th e crash reconstruction process  
 

Parameter  Case T1 Case T2 Case T3 

Accident Details  

Impact Object  Car-SUV Car-Van Car-SUV 

Delta V (km/hr)  33.6 29.1 22.0 

Energy (Joule)  37,835 59,879 24,799 

PDOF (Degree)  255 285 300 

Collision 

Deformation 

Classification (CDC) 

08LYAW4 10LZAW4 10LYEW2 

Seat Belt Usage Three-point belt, not in use 
Three-point belt, in 

use 

Three-point belt, not in 

use 

Airbag Usage  No airbag deployed No airbag deployed No airbag deployed 

Occupant / Injury Details  

Parameter  Case T1 Case T2 Case T3 

Status  Survived Survived Survived 

Age (Years)  

(50±28) 
42 26 82 

Race African-American Caucasian Caucasian 

Gender  Female Female Female 

Height (cm)  

(160±5) 
160 165 155 

Weight (kg)  

(65.6±18.4) 
86 61 50 

Aortic injury details No aortic injury reported 
No aortic injury 

reported 
No aortic injury reported 

Other Injuries by 

Body Region 

 

Head 

Loss of consciousness 

Loss of 

consciousness, 

forehead laceration, 

left eyelid laceration 

Loss of consciousness, 

left corneal abrasion 

Thorax and Upper 

Extremities 
Right hemothorax 

Left rib fractures 

 

Left anterior rib fractures 

with pneumothorax, left 

forearm contusion 

Abdomen 
Grade 1 liver contusion and 

splenic contusion 

Right liver laceration 

Spleen laceration 
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Pelvis and Lower 

Extremities 
Pelvic fracture Left hip contusion 

Bilateral inferior and left 

superior pubic rami 

fractures 

 
 

Table 8.2: Summary of vehicle models and their init ial setup (after scaling) used 
in the left lateral crash reconstruction process 

 
Parameter  Case T1 Case T2 Case T3 

Case / Struck Vehicle  

 (Year, Make and Model) 

1993 Mercedes Benz 

190E 

1997 Honda Civic  4-

Dr 

1996 Chevrolet 

Cavalier 4-Dr 

Case / Struck Vehicle 

Weight (kg) 
1,318 1,098 1,162 

FE Vehicle Model Used  

(Year, Make and Model) 
2001 Ford Taurus 2001 Ford Taurus 2001 Ford Taurus 

Striking Vehicle  

(Year, Make and Model) 

1993 Mazda Navajo 

SUV 
1991 Ford E-250 Van 

1994 Ford Ranger 

SUV 

Striking Vehicle Weight  1,760 2,165 1,350 

FE Vehicle Model Used  

(Year, Make and Model) 

1998 Ford Explorer 

SUV 

1998 Ford Explorer 

SUV 

1998 Ford Explorer 

SUV 

Initial Model Setup in the 

Simulation 

(km/hr) 

 

 

   

 

Table 8.3: Details of the vehicle FE models used in  the reconstruction 

FE Car Make and Model 

Total 

number of 

parts 

Total number of 

Elements 

Width 

(mm) 

Height 

(mm) 

Wheel Base 

(mm) 

Weight 

(kg) 

2001 Ford Taurus  790 1,057,113 1,856 1,471 2,755 1,665 

1998 Ford Explorer 755 619,161 1,841 1,765 2,855 2,240 
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The response variables were the AMPS and instantaneous peak pressure in the 

aorta.  For maximum principal strain, four adjacent elements in the region with the 

highest inner surface maximum principal strain were selected and averaged; while for 

pressure, the maximum value obtained during the entire simulation was reported.  

 

8.3.2 Sensitivity study details 

Data from Chapter 7 showed that a PDOF of 270 degrees generated the highest 

AMPS and pressure in the aorta.  Further, AMPS and pressure generated in the aorta 

decreased as the PDOF increased (from 260 degrees).  Further, a combination of 

PDOF and occupant seating position was a significant factor for both AMPS and 

maximum pressure in the aorta.  It was interesting to note that occupants who survived 

the crash (from CIREN data) were mostly females and averaged at 160±5 centimeters 

in height.  Schneider et al. (1994) concluded in their review that occupant-seating 

position might play a role in overall injury thresholds.  In order to understand the 

mechanism of strain generation in the aorta and to compare the kinematics (qualitative) 

with published data, a paired sensitivity comparison was performed by varying the 

PDOF and occupant seating position while the other factors remained constant.  

Highest AMPS was generated in conditions when an occupant was seated in front of 

the B-pillar (0 mm) or at a delta-v of 54.9 km/hr or when the striking vehicle has a low 

bumper profile (sedan) or an impact positioned at the B-pillar (0 mm).   
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Table 8.4: Paired sensitivity table to access the m echanism of injury based on 
PDOF 

Run 
# 

PDOF 
(Degrees)  

Occupant 
Position 

(mm) 

Impact 
Position 

(mm) 

Delta-v 
(km/hr) 

Bumper 
Profile 
Height 

a 260 -125 0 54.9 Low / Sedan 
b 270 -125 0 54.9 Low / Sedan 
      
c 250 0 0 54.9 Low / Sedan 
d 270 0 0 54.9 Low / Sedan 
      

e 310 125 0 54.9 Low / Sedan 
f 270 125 0 54.9 Low / Sedan 
      

g 310 0 0 54.9 Low / Sedan 
h 260 0 0 54.9 Low / Sedan 

 

As shown in Table 8.4, runs a and b aimed at depicting the difference between 

260 and 270 degrees PDOF when the occupant is seated 125 mm behind the B-pillar; 

runs c and d aimed at comparing a PDOF of 250 and 270 degrees with the occupant 

seated in front of the B-pillar; runs e and f aimed at comparing a PDOF of 310 and 270 

degrees with the occupant seated 125 mm ahead of the B-pillar and runs g and h aimed 

at comparing a PDOF of 310 and 260 degrees with the occupant seated in front of the 

B-pillar.  Impact position was centered at the B-pillar (0 mm), delta-v was 54.9 km/hr 

and a low bumper profile height was selected for all of the runs. 

 

8.4 Results  

 Three nearside-left lateral CIREN reconstructions and eight sensitivity runs and 

were carried out using a combination of FE vehicle models and WSHBM.  Table 8.5 lists 

and compares the deformation profiles for C1-C6 points measured in the CIREN case 

history versus FE simulated results.  Table 8.6 lists the human model predicted AMPS 
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in the isthmus region and the maximum pressure in the aorta for the three new CIREN 

and the eight CIREN cases (Cases #4, #5, #6, #7, #8, #15, #16, and #17) previously 

simulated (Chapter 6). 

 
 

Table 8.5: Comparison of actual deformations obtain ed from CIREN versus the 
deformations predicted by the FE reconstruction – S tage I 

 
 

Deformation in 

Centimeters 

Case T1 Case T2 Case T3 

Actual  FE Actual  FE Actual  FE 

C1 0 8 56 60 0 2 

C2 10 15 74 80 17 20 

C3 33 36 55 57 35 36 

C4 46 44 51 48 30 32 

C5 39 36 31 28 27 30 

C6 0 2 0 5 0 2 

Average 

Variation  
6.1% 5.8% 5.3% 
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Table 8.6: Output details for the FE reconstruction s – Stage II 

CIREN 
Case 
No. 

PDOF 
(Deg.) 

Delta ‘V’ 
(km/hr) 

Occupant 
Status 

Left Side 
Door 

Structure 
Impact 

Time with 
Occupant 

(ms) 

Average 
Maximum 
Principal 

Strain at the 
Isthmus 
(AMPS)* 

Time at 
AMPS 
(ms) 

Maximum 
Pressure 

(kPa) 

Time at 
Maximum 
Pressure 

(ms) 

T1 255 33.6 Survived 46 0.0981 62 74.2 60 

T2 285 29.1 Survived 38 0.0812 58 67.9 58 

T3 300 22.0 Survived 50 0.1233 66 59.8 64 

Average  0.100±0.021  67.31±7.21  

4 310 62 Survived 14 0.1452 56 114.8 48 

5 310 27.5 Fatal 34 0.1658 54 108.7 60 

6 280 55 Fatal 16 0.2767 30 134.0 30 

7 280 59 Fatal 22 0.2823 40 132.2 36 

8 320 27.6 Fatal 30 0.1851 50 104.6 50 

15 270 47 Fatal 26 0.1921 42 102.0 47 

16 270 54.4 Fatal 22 0.2955 36 136.0 35 

17 260 41 Survived 33 0.1941 42 103.8 52 

Average (Case #4 through Case #17)  0.217±0.059  117.01±14.67  

Overall Average  0.1854±0.074  103.45±26.47  

*AMPS: Average maximum principal strain at the leve l of the isthmus calculated from four elements in t he 
isthmus region 
 

 From Table 8.6, for the three new CIREN reconstructions the average AMPS 

was 0.100±0.021 and the average maximum pressure was 67.31±7.21 kPa.  Separating 

the survival versus fatal cases, for the survival cases (Cases #T1, #T2, #T3, #4, and 

#17), the average AMPS were 0.1238±0.044, and the average maximum pressure was 

84.10±23.88 kPa.  For the CIREN cases with fatality due to aortic rupture (Cases #5, 

#6, #7, #8, #15, and #16); the average AMPS were 0.2329±0.057 and the average 

maximum pressure was 119.58±16.05 kPa.   

 Table 8.7 lists the AMPS and maximum pressure for the eight sensitivity runs 

along with paired comparisons. 
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Table 8.7: Paired sensitivity table to access the m echanism of injury based on PDOF 

Run 

# 

Maximum 

Simulation 

Time (ms) 

AMPS 
Time at 

AMPS (ms) 

Maximum 

Pressure (kPa)  

Time at 

Maximum 

Pressure (ms) 

a 42 0.162 42 127.1 40 

b 49 0.281 40 126.3 40 

c 44 0.258 43 117.7 42 

d 52 0.324 40 135.1 36 

e 80 0.054 74 108.5 72 

f 70 0.152 54 110.8 54 

g 78 0.067 78 104.4 70 

h 100 0.204 54 115.2 54 

 

8.5 Discussion 

For the three CIREN survival cases (T1, T2, and T3) reconstructed, the AMPS 

ranged from 8.12% to 12.33% and the maximum pressure ranged from 67.9 to 74.2 

kPa.  For the 11 CIREN cases, the overall average AMPS was 0.1854±0.074 and the 

overall average maximum pressure was 103.45±26.47 kPa.  It is interesting to note that 

for the two victims who sustained an aortic injury but survived the crashes (Cases 4 and 

17), the average AMPS was 17% and the average maximum pressure was 109 kPa.  

On the other hand, for the three CIREN cases (T1, T2, and T3) where the occupant 

survived, with no aortic injury reported, the average AMPS was 10% and the average 

maximum pressure was 67.31 kPa.   

It is interesting to note that in Cases T1 through T3, the AMPS and pressure 

were significantly lower than the first eight CIREN cases reconstructed.  Further, the 

average delta-v for Case #T1, #T2, and #T3 was 28.23±5.84 km/hr  while for the original 

CIREN cases it was 46.68±13.52 km/hr which might have played a crucial role in the 
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reduced AMPS.  It was also seen from FE simulations and crash photographs, than 

when the PDOF was 255 degrees (Case #T1), the seat deformed significantly 

thereby preventing direct thoracic contact from the  intruding B-pillar and side-

door structures.  

A logistic regression was performed on AMPS (Figure 8.1) and maximum 

pressure (Figure 8.2) for the eight CIREN cases reconstructed in Chapter 6 along with 

the three new survival CIREN cases.  A 50% risk of aortic failure was 17.1% strain 

based on AMPS and 102 kPa based on maximum pressure in the aorta.  Alternatively, a 

90% risk of failure for AMPS was 21.2% strain and 125 kPa for maximum pressure in 

the aorta.  A Chi-Square Goodness-of-Fit Test revealed insignificant Pearson’s 

coefficient (6.066 for AMPS (p=0.733) and 7.202 for maximum pressure (p=0.616)). 
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Figure 8.1: Logistic Regression plot with 50 th and 90 th percent probability of 
failure for AMPS 
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Figure 8.2: Logistic Regression plot with 50 th and 90 th percent probability of 
failure for maximum pressure 

 

 

Bass et al. (2001) reported a 50% risk of tear to the aorta at 120 kPa for 

occupants 68 years of age based on aortic pressurization tests on 13 cadaveric aortas 

(10 in vitro, 3 in situ).  Hardy et al. (2008) tested eight unembalmed pressurized 

cadavers in an inverted configuration and subjected them to a battery of pendulum (32-

kg impactor with a 152 mm face) impact tests.  The average intraluminal pressure in the 

aorta ranged from 33.5 to 165.0 kPa with an average of 67.5 kPa.  These 
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experimentally obtained values are of the same order of magnitude with the current 

study in which a 50% and 90% risk of aortic rupture was 102 and 125 kPa, respectively.   

Shah et al. (2006) concluded from in vitro biaxial tensile tests at 1 m/s on cruciate 

shaped specimens that the average longitudinal failure strain to be 23.2% in the 

ascending region, 27.3% in the descending region and 25.1% in the peri-isthmic region, 

with an overall average failure strain of 24.4%.  In a second series, longitudinal stretch 

tests conducted by Shah et al. (2007) on whole aortas until failure (1 m/s); an average 

failure strain of 22.1% was reported.  It should be noted that the strain data published in 

both series of tests were based on isolated aortic specimens and few specimens failed 

around the region of atherosclerotic plaque deposition.  Hardy et al. (2008) in their tests 

of eight unembalmed cadavers reported an average aortic failure strain of 0.208±0.216.  

It is also important to note the large standard deviation reported in the study, owing to 

biomechanical variability.  In the current study, 21.2% AMPS represents a 90% risk of 

aortic rupture, which falls within the range of values reported.  Based on statistical 

probability, the number of non-failure cases (n=5) might be insufficient for statistical 

significance.  For the three CIREN cases (T1, T2, and T3) without any reported aortic 

injury, the average AMPS was 0.100±0.021 which was significantly lower than the 

thresholds for failure defined by Shah et al. (2006) and Hardy et al. (2008).  Further, the 

average maximum pressure of 67.3±7.2 kPa was lower than those reported by Bass et 

al. (2001) and Hardy et al. (2008) as well.  It is interesting to note that the AMPS and 

maximum pressure recorded for Case #T1 through Case #T3 was lower than those 

reported for the two victims who sustained an aortic injury but survived the crashes 

(Cases #4 and #17), the average AMPS and maximum pressure being 17% and 109 
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kPa respectively.  For CIREN cases with no fatality the average AMPS was 

0.1238±0.044 and the average maximum pressure was 84.10±23.88 kPa while for the 

CIREN cases with fatality due to aortic rupture, the average AMPS was 0.2329±0.057 

and the average maximum pressure was 119.58±16.05 kPa. 

 

8.5.1 Comparison of kinematics data 

Summarizing the hypothesis listed in Table 8.1, it is observed that the premise 

for TRA generation is based on thoracic deformation (Melvin et al. 1998) combined with 

longitudinal stretch of the thoracic aorta (Hardy et al. 2008).   

In order to compare the kinematics of the aortic arch with the published literature, 

Figures 8.3 through 8.6 tracks the motion of 18 nodes on the sternum, heart, aortic root, 

ascending, arch, isthmus and descending aorta along with the thoracic vertebrae for the 

entire duration of the simulation.  To ensure consistency, the exact same nodes were 

tracked in all the runs.  Appendix D, Figures D1 through D4 plots the X, Y, and Z 

displacement of the sternum (measured mid-sternum) and the spine (measured at the 

level of the fourth vertebral body).   
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(i)                                                                            (ii) 

Figure 8.3: i) Run #a: PDOF=260 degrees ii) Run #b:  PDOF=270 degrees 
 

 

 

(i) 

 

(ii) 

Fig. 8.4: (i) Run #c: PDOF=250 degrees (ii) Run #d:  PDOF=270 degrees 
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(i)  

 

(ii) 

Figure 8.5: (i) Run #f: PDOF=270 degrees (ii) Run # e: PDOF=310 degrees 
 

 

(i) 

 

(ii) 

Figure 8.6: (i) Run #h: PDOF=260 degrees (ii) Run # g: PDOF=310 degrees 
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Table 8.8 tabulates the X, Y, and Z displacements of the sternum, tracked for 

Runs #a through #h. ‘X’ describes the anterior motion; ‘Y’ describes the lateral motion 

and ‘Z’ describes the superior motion of the sternum and T4 vertebral body. 

 

Table 8.8: X, Y, and Z displacements of the sternum  and spine 
Run # PDOF AMPS Mid-sternum displacement (mm)  T4 vertebral body displacement (mm)  

X  
(Anterior) 

Y 
(Lateral) 

+ve = left side 

Z 
(Superior) 

X  
(Anterior) 

Y 
(Lateral) 

+ve = left side 

Z 
(Superior) 

a 260 0.162 1.5 -9.44 3.4 -3.19 -14.99 -1.30 
b 270 0.281 8.2 -90.4 -62.1 -4.28 -126.50 -59.32 
         

c 250 0.258 39.2 -88.2 -5.25 13.10 -90.78 1.37 

d 270 0.324 62.4 -254.89 -20.1 37.09 -278.42 -19.41 
         

e 310 0.054 -20.7 -64.1 -13.1 42.10 -155.47 -5.46 
f 270 0.152 47.4 -154.2 -11.6 -12.69 -46.42 -15.08 
         

g 310 0.067 -2.9 -21.2 1.9 14.93 -450.73 -16.89 
h 260 0.204 21.2 -438.3 -20.3 -1.93 -6.07 1.82 

Absolute average (mm)  25.41±22.22 140.13±143.64 17.22±19.57 16.16±15.33 146.17±151.45 15.08±19.36 

 

Melvin et al. (1998) proposed the “Sternal Popping” mechanism as a hypothesis 

to TRA.  From Table 8.8 it is observed that the average sternum displacement in the 

anterior direction is 25.4±22.2 mm, 140.1±143.6 mm in the medial direction and 

17.2±19.5 mm in the superior direction for nearside left lateral impacts.  It was seen that 

as the PDOF increased (from 250 degrees), isthmic strain due to longitudinal stretch of 

the thoracic aorta transitioned from caudomedial motion of the thoracic spine relative to 

the sternum (owing to thoracic deformation from the B-pillar) to posterior-anterior motion 

of the thoracic aorta relative to the ascending aorta (310 degree impact).  Kinematics 

data from the simulations showed that the isthmus of the aorta moved medially and 

anteriorly during nearside left lateral impacts and transitioned to a dorsocranial motion.  

From Figures 8.3 through 8.6 it is seen that thoracic deformation pattern may play a 

significant role than mere sternum motion.  
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In order to compare the kinematics of simulation with cadaveric motion data 

published (Hardy et al. 2008); where the motions of the aorta were tracked using high-

speed biplanar radiographic method using perfused inverted cadavers, impacts similar 

to the condition used in Hardy et al. (2008) were chosen for comparison.  Figures 8.7 

and 8.10 show the initial (Dark mesh) and deformed final position (Shaded colored 

mesh) for nearside left lateral impacts at a PDOF of 270 degrees, in Sagittal and 

Coronal sections respectively. 

 

(a) 
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                                                                   (b) 

Note: Dark mesh – Initial position: Shaded color me sh – Deformed final position 
 

8.7: Sagittal View (a) WSHBM with the door structur es (b) Isolated aorta 
highlighted with the nodes being tracked (red)  
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8.8: Motion of the aorta tracked, sagittal view – a rrow indicates direction of 
impact 

 

Figures 8.8 and 8.11 plot the motion of the aorta in the sagittal and coronal views 

respectively while comparing it with data published by Hardy et al. (2008), as in Figures 

8.9 and 8.12.  The arrow indicates the direction of impact with respect with Anterior (A) 

and Superior (S) view of WSHBM.  
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8.9: Hardy et al. (2008) Motion of the aorta tracke d, sagittal view – arrow indicates 
direction of impact 

 

 



131 
 

 

 

(a) 
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(a)                                                           (b) 
Note: Dark mesh – Initial position: Color shaded me sh – Deformed position 

 
8.10: Coronal view of (a) WSHBM contacts with the d oor structures (b) Isolated 

aorta highlighted with the nodes being tracked (red )  
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8.11: Motion of the aorta tracked, coronal view – a rrow indicates direction of 
impact 
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8.12: Hardy et al. (2008) Motion of the aorta track ed, coronal view – arrow 
indicates direction of impact 

 

Sagittal view (Figures 8.8 and 8.9) demonstrates the anterior motion of the aorta, 

with slight cranial motion (in comparison with Hardy et al. (2008)) while the coronal 

section (Figures 8.11 and 8.12) indicates the lateral displacement of the aorta along the 

line of impact, moving away from the point of impact.  The primary motion of the aorta, 

was lateral (medial deflection of the thoracic structures) and anterior which matched 

well with the kinematics from Hardy et al. (2008).   
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Further, four nearside left lateral cases were simulated by varying only the PDOF 

from 250 degrees to 310 degrees in steps of 20 degrees; to compare the relative motion 

between the spine (at the level of T4) and sternum(mid).  Figures 8.13 through 8.16, 

each shows the contours of resultant displacement of the thoracic cage during 250, 270, 

290, and 310 degrees of impact. 

 

 

(a) 

 

(b) 

  

(c) 

Figure 8.13: Run #10: (a) PDOF = 250 degrees :  
Contours of resultant displacement (mm) – (b) 35 ms  (c) 38 ms 
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(a) 

 

(b) 

 
 

(c) 

Figure  8.14: Run #5: (a) PDOF = 270 degrees :  
Contours of resultant displacement (mm) – (b) 30 ms  (c) 34 ms 
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(a) 

 

(b)  

 

(c) 

Figure  8.15: Run #11: (a) PDOF = 290 degrees :  
Contours of resultant displacement (mm) – (b) 52 ms  (c) 58 ms 
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(a) 

 

(b) 

  

(c) 

Figure 8.16: Run #7: (a) PDOF = 310 degrees :  
Contours of resultant displacement (mm) – (b) 70 ms  (c) 78 ms 

 

From Figures 8.13 through 8.16 it is evident that as the PDOF increases from 

250 degrees, the relative displacement of the sternum and spine increases.  For the 

purpose of comparison, Figure 8.17 and Figure 8.18 compare the average y-

displacement of the two resultant PDOF’s (260 and 300 degrees). 



Figure 8.17: Average Y- Displacement (mm) of the 

 

From Figures 8.17 and 8.18 it is seen that as the average PDOF increases from 

260 degrees to 300 degrees, the average relative displacement between t

and the spine increases.  This is attributed to the fact that in impacts of PDOF from 250 

to 270 degrees that B-pillar and the side structures engages the entire thoracic cage 

while in PDOF greater than 270 degrees (up to 310 degrees, in this st

structures engages the sternum first and then the spine.

durations for each case; 450 mm of displacement at 100 ms for a PDOF of 260 degrees 

while for a PDOF of 310 degrees the displacements are in opp
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Displacement (mm) of the sternum and s pine for a PDOF 
of 260 degrees 

Figures 8.17 and 8.18 it is seen that as the average PDOF increases from 

260 degrees to 300 degrees, the average relative displacement between t

and the spine increases.  This is attributed to the fact that in impacts of PDOF from 250 

pillar and the side structures engages the entire thoracic cage 

while in PDOF greater than 270 degrees (up to 310 degrees, in this study) the side door 

structures engages the sternum first and then the spine.  It is also interesting to note the 

durations for each case; 450 mm of displacement at 100 ms for a PDOF of 260 degrees 

while for a PDOF of 310 degrees the displacements are in opposite directions. 

 

pine for a PDOF 

Figures 8.17 and 8.18 it is seen that as the average PDOF increases from 

260 degrees to 300 degrees, the average relative displacement between the sternum 

and the spine increases.  This is attributed to the fact that in impacts of PDOF from 250 

pillar and the side structures engages the entire thoracic cage 

udy) the side door 

It is also interesting to note the 

durations for each case; 450 mm of displacement at 100 ms for a PDOF of 260 degrees 

osite directions.  



Figure 8.18: Average Y- Displacement (mm) of the 

 

 

Figure 8.19 compares the average relative y

and spine for an average PDOF of 260 and 300 degrees of impact.

indicates that the displacement of the spine is greater than that of the sternum.
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Displacement (mm) of the sternum and s pine for a PDOF 
of 300 degrees 

Figure 8.19 compares the average relative y-displacement between the sternum 

and spine for an average PDOF of 260 and 300 degrees of impact.  

indicates that the displacement of the spine is greater than that of the sternum.

 

pine for a PDOF 

displacement between the sternum 

  A positive shift 

indicates that the displacement of the spine is greater than that of the sternum. 



Figure 8.1 9: Average relative Y
 

Figures 8.20 and 8.21 plots the mid

ascending aorta, isthmus of the aorta and T4 vertebral body motion averaged for 260 

degrees and 300 degrees of impact respectively.  It is seen that in both cases the aortic 

isthmus rides along with the T4 vertebral body

superior aspect of the heart and ascending aorta pair along

However, for a 300-degree impact, the relative displacement between the 

and sternal complex is greater than a 260

(260 and 300 degree) that at an average of 62.1±

spinal complex catch up with each other.
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9: Average relative Y -Displacement (mm) of the sternum and spine

Figures 8.20 and 8.21 plots the mid-sternum, superior aspect of the heart, 

ascending aorta, isthmus of the aorta and T4 vertebral body motion averaged for 260 

degrees and 300 degrees of impact respectively.  It is seen that in both cases the aortic 

isthmus rides along with the T4 vertebral body (spinal complex) while the mid

superior aspect of the heart and ascending aorta pair along (mediastinal

degree impact, the relative displacement between the 

is greater than a 260-degree impact.  It is seen that in both cases

that at an average of 62.1±4.5 ms, the mediastinal 

spinal complex catch up with each other.  The highest AMPS were seen to occur at 

 

Displacement (mm) of the sternum and spine  

sternum, superior aspect of the heart, 

ascending aorta, isthmus of the aorta and T4 vertebral body motion averaged for 260 

degrees and 300 degrees of impact respectively.  It is seen that in both cases the aortic 

while the mid-sternum, 

mediastinal complex).  

degree impact, the relative displacement between the mediastinal 

seen that in both cases 

mediastinal complex and 

seen to occur at 



maximum separation between the two complexes; 55.1±5.6 ms for 

and 72.6±6.3 ms for a 300-degree

Figure 8.20: Average relative Y
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maximum separation between the two complexes; 55.1±5.6 ms for 260

degree impact. 

Figure 8.20: Average relative Y -Displacement (mm)  - 260 degrees

260-degree impact 

 

260 degrees  



Figure 8. 21: Average relative Y
 

 

8.6: AIM C: Conclusions 

Three additional CIREN reconstructions 

eight runs for a sensitivity analysis was carried out using a combination of WSHBM and 

scaled FE vehicle models.  Kinematics of the aorta and sternum displacements were 

tracked and compared with published data.  In 

• For CIREN cases with no fatality the average AMPS was 0.1238±0.044 and the 

average maximum pressure was 84.10±23.88 kPa.
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21: Average relative Y -Displacement (mm)  - 300 degrees

Three additional CIREN reconstructions (without any reported aortic injury) and 

eight runs for a sensitivity analysis was carried out using a combination of WSHBM and 

scaled FE vehicle models.  Kinematics of the aorta and sternum displacements were 

tracked and compared with published data.  In conclusion, 

For CIREN cases with no fatality the average AMPS was 0.1238±0.044 and the 

average maximum pressure was 84.10±23.88 kPa. 

 

300 degrees  

(without any reported aortic injury) and 

eight runs for a sensitivity analysis was carried out using a combination of WSHBM and 

scaled FE vehicle models.  Kinematics of the aorta and sternum displacements were 

For CIREN cases with no fatality the average AMPS was 0.1238±0.044 and the 
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• For the CIREN cases with fatality due to aortic rupture, the average AMPS was 

0.2329±0.057 and the average maximum pressure was 119.58±16.05 kPa. 

• A 50 percent probability of failure for AMPS was 17.1% and a 90 percent 

probability of failure for AMPS was 21.2%. 

• A 50 percent probability of failure for maximum pressure was 102 kPa and a 90 

percent probability of failure for pressure was 125 kPa. 

• Sternum displacement alone may not be sufficient to quantify the risk of TRA. 

• Thoracic deformation pattern might play a role in TRA. 

• PDOF of 270 degrees generates the highest AMPS and pressure in the aorta. 

• Longitudinal stretch of the thoracic aorta is the primary cause of TRA. 

• In nearside left lateral impacts, It was seen that as the PDOF increased (from 270 

degrees), isthmic strain due to longitudinal stretch of the thoracic aorta transitioned 

from caudomedial motion of the thoracic spine relative to the sternum (owing to 

thoracic deformation from the B-pillar) to posterior-anterior motion of the thoracic 

aorta relative to the ascending aorta (310 degree impact).   

• Kinematics data from the FE simulations matched well with experimental data 

reported by Hardy et al. (2008) and showed that the isthmus of the aorta moved 

medially and anteriorly during nearside left lateral impacts and transitioned to a 

dorsocranial motion.   
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CHAPTER 9 

AIM D: KINEMATICS OF THE AORTA IN HIGH-SPEED RACING  CRASHES 

 

9.1 Introduction 

Auto racing has been in vogue from the time automobiles were first built.  Since 

the world’s first race in 1894 from Paris to Rouen, auto racing has been plagued with 

injuries and fatalities (Paolozzi, 2003).  With the dawn of modern cars came higher 

engine capacities; the speeds involved in these races and crashes increased as well.  

However, the advent of passive restraint systems such as the helmet, HANS (Head and 

Neck Support device), multi-point harness system, roll cage, side and frontal crush 

zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved 

the survivability of the drivers in high-speed crashes.  In a majority of these high-speed 

crashes, the driver walks out with minor or no injuries (Melvin et al. 1998).  Melvin et al. 

(1998) noted that it was like a laboratory setting to study racing crashes as they adhere 

to strict protocols on the type and shape of car (mandated by the governing body), 

restraint system usage (5-point or 6-point harness), and driver demographics (mostly 

males less than 50 years of age in prime fitness).  While passenger cars come in all 

shapes and sizes and a whole lot of variability in terms of restraint system usage and 

occupant anthropometries, it is interesting to note that a significant number of these 

racing safety innovations have transitioned into passenger cars with suitable 

modifications to aid passenger ergonomics and comfort (Melvin et al. 1998). 

Figure 9.1 shows a typical Indianapolis type racecar (Indy car), which is usually a 

single seat, open-cockpit with a carbon fiber/aluminum body.  Melvin et al. (1998) noted 
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that the driver is seated in a “tight fitting tunnel” and the sides of the car are wide 

structures housing the radiator and cooling systems.  They also serve as protective 

structures in side impacts by forming a crush zone between the driver and the impacting 

structures.  Drivers are usually fitted with double shoulder belts, lap belt along with anti-

submarining straps.  Although there is very little padding on the side of the driver, a 

head restraint pad reinforced by the chassis is used to stabilize the head during impacts 

Melvin et al. (1998). 

 

 

Figure 9.1: Typical Indy car configuration [Adapted  from Melvin et al. 1998] 
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Melvin et al. (1998) in their study showed that Indy racecar drivers could sustain 

very high accelerations (average of 53.3 g in 143 side impacts) with no aortic laceration.  

Further, there were no serious thoracic injuries reported.  It was hypothesized that the 

restraint system worn by the drivers limited chest deformation which in turn eliminate 

the risk of aorta rupture.  In 2002, Begeman and Melvin simulated a racing car using 

nine MADYMO models driven by 3-D accelerations obtained from data recorders on the 

cars to evaluate Injury Assessment Reference Values (IARVs) for side and frontal 

impacts.  They concluded that the Hybrid-III dummy might have a stiff shoulder, which 

may affect the simulation results in side impact.  Further, Melvin et al. (2006) employed 

concepts from their earlier study (2002) and extrapolated the data to stock car racing 

such as National Association for Stock Car Auto Racing, Inc. (NASCAR).  More 

recently, Smith et al. (2011) utilized the Total Human Model for Safety (THUMS) finite 

element model to simulate high-speed right-lateral impacts of stock car auto racing.  

They concluded that by using energy absorbing foam padding prevented force 

concentration on the ribs and reduced the shoulder and clavicle forces. 

 

9.2 Materials and Methods 

In order to understand aorta biomechanics in racing car drivers, three left side 

impact cases reported in Begeman and Melvin (2002), Case #LAS12, #IND14 and 

#99TX were used as inputs to WSHBM with a simulated racing buck.  Melvin and 

Gideon in 2004 concluded from sled tests that in side impacts, the belt-system was 

ineffective and the primary means of injury prevention to the thorax was the seat design.  

The driver in each case had no major injuries reported.     
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Table 9.1 lists the three lateral impact cases selected from Begeman and Melvin 

(2002) and the case histories along with the driver injuries. 

 

Table 9.1: Cases selected from Begeman and Melvin ( 2002) 
 

Case # Impact 
location 

Peak Vehicle 
Deceleration 

(g’s) 

Delta-v 
(km/hr)  Occupant Status 

LAS12 Left rear/side 127 86.9 
Hairline fracture of the left clavicle and 

pubic symphysis – treated conservatively 

99TX Left rear/side 130 96.6 
Slight concussion and minor leg fracture 

– treated conservatively 

IND14 Left rear/side 120 104.6 Concussion for five minutes 

 

  

The acceleration pulses for the cases are described in Figure 9.2, Figure 9.3, 

and Figure 9.4 respectively for Case #LAS12, #99TX, and #IND14. 
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Figure 9.2: Acceleration-time history for Case #LAS 12 (Begeman and Melvin 
(2002)) 
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Figure 9.3: Acceleration-time history for Case #99T X (Begeman and Melvin (2002)) 
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Figure 9.4: Acceleration-time history for Case #IND 14 (Begeman and Melvin 
(2002)) 

 

 

Figure 9.5 shows the FE models developed to represent the seat, six-point 

harness system, shoulder pads, and head support padding while Figure 9.6 shows the 

WSHBM seated in the racing buck.   
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Figure 9.5: Seat, six-point harness system, shoulde r support pads, and head 
support 
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Figure 9.6: Initial position of WSHBM in the racing  buck 
 

In order to understand the effectiveness of the belt system and shoulder pad, 12 

cases were simulated as part of a design of computer experiments study.  Table 9.2 

describes the simulation matrix for the runs generated using a Latin Square sampling 

algorithm in modeFRONTIER 4.1 (ESTECO, North America) with delta-v (km/hr), six-

point harness and shoulder pad as input design factors. 
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Table 9.2: Simulation matrix generated using a Lati n Square Algorithm in 
modeFRONTIER 4.1 

 

Run # 
Delta-v 

(km/hr) 

Peak Vehicle  

Deceleration 

(g’s) 

Seatbelt  

(Six-Point 

harness) 

Shoulder Pad 

 

1 (LAS 12)  86.9 127 Modeled Modeled 

2 86.9 127 Not Modeled Not Modeled 

3 86.9 127 Modeled Not Modeled 

4 86.9 127 Not Modeled Modeled 

5 (99TX) 96.6 130 Modeled Modeled 

6 96.6 130 Not Modeled Not Modeled 

7 96.6 130 Modeled Not Modeled 

8 96.6 130 Not Modeled Modeled 

9 (IND 14) 104.6 120 Modeled Modeled 

10 104.6 120 Not Modeled Not Modeled 

11 104.6 120 Modeled Not Modeled 

12 104.6 120 Not Modeled Modeled 

 

 The simulations were set to run for 15 milliseconds.  All simulations were carried 

out using Hypermesh 10.0 (Altair Corporation, Troy, MI) as the pre-processor, a 

Massively Parallel Platform (MPP) version of LS-DYNA 970 on a two-node cluster (two 

processors/node) as the solver, and LS-PREPOST 3.1 (LSTC Corporation, Livermore, 

CA) as the post-processor.  AMPS and maximum pressure along with the motions of 

the aorta were tracked with deformation of the thoracic cavity. 

 

9.3 Results and Discussion 

Table 9.3 lists the AMPS and maximum pressure recorded in these runs. 
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Table 9.3: AMPS and maximum pressure in the aorta r ecorded for the cases with the WSHBM in a racing bu ck 
 

Run # 
(Case #)* 

Delta-v 
(km/hr)  

Seatbelt 
(Six-Point 
harness) 

Shoulder Pad 
 

Time at 
AMPS (ms) AMPS 

AMPS 
(at 6.6 
ms)** 

Time at 
maximum 

pressure(ms) 

Maximum 
Pressure 

(kPa) 

Maximum 
Pressure 

(kPa) at 3.0 
ms 

1 (LAS12)  86.9 Modeled  Modeled  12.0 0.1621 0.0341 12.0 106.2 26.5 

2 86.9 Not Modeled Not Modeled 6.6 0.0626 0.0626 3.4 41.5 36.6 

3 86.9 Modeled Not Modeled 6.6 0.0446 0.0446 3.2 37.4 35.1 

4 86.9 Not Modeled Modeled 10.0 0.1358 0.0322 3.0 28.3 28.3 

5 (99TX) 96.6 Modeled  Modeled  8.0 0.1358 0.0459 12.0 110.6 31.2 

6 96.6 Not Modeled Not Modeled 12.0 0.1494 0.0771 11.8 153.1 38.9 

7 96.6 Modeled Not Modeled 6.8 0.1118 0.1101 3.3 42.1 38.2 

8 96.6 Not Modeled Modeled 8.4 0.1419 0.0458 3.0 33.0 33 

9 (IND14) 104.6 Modeled  Modeled  9.2 0.1673 0.0869 9.2 114.7 37.4 

10 104.6 Not Modeled Not Modeled 6.8 0.1838 0.1822 3.1 49.8 48.2 

11 104.6 Modeled Not Modeled 8.8 0.1579 0.1001 8.7 135.7 46.8 

12 104.6 Not Modeled Modeled 9.3 0.1855 0.1255 2.7 34.3 38.1 

Average of cases from Begeman and Melvin (2002); Ru n #1, #5, and #9  0.1551±0.0172   110.50±4.25  

* Case numbers in parenthesis depict the input para meters reported in Begeman and Melvin (2002) 
** AMPS at 6.6 ms is the average AMPS at that time stamp and at those same four elements and not the s caled data 
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 It was observed from simulations that cases with no shoulder support underwent 

severe shoulder and upper thoracic deformation leading to early termination due to 

negative volume (Figure 9.7).   

 

Figure 9.7: Maximum principal strain -  Severe shou lder deformation in the 
absence of shoulder support pads – Dots show the ot herwise location of 

shoulder support pads 
 

  From Table 9.3 it is seen that cases without shoulder support (Runs #2, #3, #6, 

#7, #10, and #11) terminated early and hence any direct comparison of AMPS and 

maximum pressure with cases having a longer termination time would lead to a bias in 

the statistics.  Hence, AMPS values were tabulated for the lowest termination time, 
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which was 6.6 ms, and then averaged while maximum pressure was tabulated for 3.0 

ms and then averaged.  It is important to note that, although the simulations terminated 

early, the accelerations still represented the prescribed curves from Begeman and 

Melvin (2002).  The curves were trimmed to apply the acceleration-history at the 

beginning of the simulation using *BOUNDARY_PRESCRIBED_MOTION card in LS-

DYNA version 970.  However, the AMPS and maximum pressure for cases from 

Begeman and Melvin (2002) were averaged separately (Runs #1, #5, and #9) since the 

rest of the matrix was generated to study the effect of the six-point harness system and 

shoulder support pads in racing crashes.  

 

 

(a)                                                                                    (b) 

Figure 9.8: Case #99TX: (a) WSHBM kinematics with t he racing buck (b) Contours 
of lower surface maximum principal strain in the ao rta 

 

Figure 9.8a shows the kinematics of WSHBM with the racing buck while Figure 

9.8b shows the contours of lower surface maximum principal strain in the aorta.  It is 

noted that the average AMPS for the three high-speed racing crashes was 

0.1551±0.0172 with a six-point harness system and shoulder support pads while the 
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overall maximum pressure was 110.50±4.25 kPa.  It is interesting to note that the 

average AMPS and the average maximum pressure recorded were significantly lower 

than those reported from the CIREN reconstructions in Chapter 8, Table 8.6.  For 

CIREN cases with no fatality, the average AMPS was 0.1238±0.044 and the average 

maximum pressure was 84.10±23.88 kPa.  For the CIREN cases with fatality due to 

aortic rupture, the average AMPS was 0.2329±0.057 and the average maximum 

pressure was 119.58±16.05 kPa.  Figure 9.9 compares the average AMPS while Figure 

9.10 compares the average maximum pressure in the aorta with published data.  

Similarly, the average maximum pressure for simulated high speed racing crashes was 

110.50±4.25, which was lesser than the values reported for fatality by Bass et al. 

(2001).  However, the pressure was higher than those reported for rupture by Hardy et 

al. (2008). 



Figure 9.9: Comparison of average AMPS with publish ed 
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Figure 9.9: Comparison of average AMPS with publish ed data

 

data 



Figure 9.10: Comparison of average maximum pressure  with published data
 

A main effects analysis was performed using Minitab 16.1 (Minitab Inc., State 

College, PA) to characterize the effect of six

on AMPS and maximum pressure in the aorta for high

9.11 and 9.12 depict the main effects plot and combined Pareto diagram for AMPS 

while Figures 9.13 and 9.14 depict the effects plot and combined Pareto diagram for 

maximum pressure generated in the aorta.
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Figure 9.10: Comparison of average maximum pressure  with published data

A main effects analysis was performed using Minitab 16.1 (Minitab Inc., State 

College, PA) to characterize the effect of six-point seat belt and shoulder support pads 

and maximum pressure in the aorta for high-speed racing crashes.  Figures 

9.11 and 9.12 depict the main effects plot and combined Pareto diagram for AMPS 

while Figures 9.13 and 9.14 depict the effects plot and combined Pareto diagram for 

enerated in the aorta. 

 

Figure 9.10: Comparison of average maximum pressure  with published data  

A main effects analysis was performed using Minitab 16.1 (Minitab Inc., State 

point seat belt and shoulder support pads 

speed racing crashes.  Figures 

9.11 and 9.12 depict the main effects plot and combined Pareto diagram for AMPS 

while Figures 9.13 and 9.14 depict the effects plot and combined Pareto diagram for 
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Figure 9.11: Main effects plot for AMPS 
 

From Figure 9.11 it is observed that as the delta-v increased the average AMPS 

increased as well; which is rather intuitive.  However, it was interesting to note that the 

six-point harness was still effective, just not significant in these high-speed side impacts 

in reducing the strain generated in the aorta.  A Pareto chart of effects (Figure 9.12) 

revealed that delta-v was the only significant factor for AMPS, followed by shoulder 

support. 
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Figure 9.12: Pareto chart of effects for AMPS 

 

A main effects plot for maximum pressure (Figure 9.13) revealed similar findings 

as that of AMPS.  There was no statistical significance indicating the ineffectiveness of 

the seatbelt in side belt as hypothesized by Melvin and Gideon in 2004.  However, the 

shoulder support pads seemed effective in decreasing the maximum pressure in the 

aorta. 
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Figure 9.13: Main effects plot for maximum pressure  
 

A Pareto chart of effects for maximum pressure revealed (Figure 9.14) the delta-

v and shoulder support pads being significant for reduction of maximum pressure in the 

aorta. 
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Figure 9.14: Pareto chart of effects for maximum pr essure 
 

Figure 9.15 shows the deformation pattern of the thoracic cavity, at 0 ms, 30 ms, 

and 60 ms into the simulation.  The figure shows the lateral (L) and anterior (A) views in 

the coronal plane.  It is interesting to note that in spite of higher delta-v than those for 

the CIREN reconstruction outlined in Chapter 5, it was seen that there was significantly 

reduced thoracic deformation owing to the presence of the seat and shoulder support 

pads.  
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Figure 9.15: Initial (0 ms) and deformed (30 ms and  60 ms) thoracic cavity - 
Coronal section 

 

9.4 AIM D Conclusions 

Twelve simulations were carried out using a combination of WSHBM and a 

racing buck, with and without a six-point harness.  Simulations results indicate the 

following: 

• The average AMPS for the high speed crashes (Begeman and Melvin (2002)) 

were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa. 

• The average AMPS reported was significantly less than reported for fatality in the 

CIREN reconstructions in Chapter 6; for rupture by Shah et al. (2006) and Hardy et 

al. (2008). 

• The maximum pressure were significantly less than those reported for fatality as 

reported by the CIREN reconstructions in Chapter 6; for rupture by Bass et al. 

(2001) and Hardy et al. (2008). 
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• Thoracic deformation was significantly less as compared to the CIREN cases in 

Chapters 6, 7, and 8. 

• Thoracic deformation is absolutely necessary for TRA. 

• The seat and shoulder support pads plays a crucial role in injury mitigation to the 

thorax in high speed racing crashes. 

• Delta-v had a significant effect on both AMPS and maximum pressure in the aorta 

while shoulder-harness had a significant effect in reducing maximum pressure in 

the aorta. 
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CHAPTER 10 

AIM E: CONCEPTUAL COUNTERMEASURES IN NEARSIDE LEFT LATERAL 
IMPACTS TO REDUCE AORTIC STRAIN  

 
 
10.1 Introduction  

Recent advances involving the use of endovascular stent grafts have resulted in 

major improvements in the survival of patients with TRA who reach the hospital alive 

(Demetriades et al. 2008).  The fact remains that more than 60% of MVC related AI 

victims are dead at the scene (Siegel et al. 2004) and between 31% and 57% of the 

crash survivors have been reported to die either in the emergency room or in the 

operation room after admission.  Hence, it is evident that effective means of 

substantially improving the outcome of MVC-induced TRAs is to prevent the 

injury in the first place . 

 

From Chapters 8 and 9, the factors essential for TRA are 

• Thoracic deformation  

• Significant relative motion between the sternum and spine were also seen 

• B-pillar and side structure intrusion 

• The seat can be play a crucial role in TRA mitigation, as seen in Chapter 9, shoulder 

supports seems to provide a crucial element in aortic AMPS reduction. 
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In an effort to provide countermeasures to reduce aortic AMPS, which is 

precursor to TRA, two strategies were employed: 

AIM E1:  Providing strategies to reduce B-pillar and side door structure intrusion in 

nearside left lateral impacts 

AIM E2: To improve on existing seat designs; by incorporating structures to engage the 

shoulder and reduce thoracic deformation  in nearside left lateral impacts in 

passenger cars 

 

10.2 AIM E1 - Methods and Materials 

 
 

As shown in Cases 7 and 25 (from Aim A in Chapter 6), the major injury 

mechanism producing aortic isthmus disruption appears to be a lateral thoracic impact 

by the crash-induced B-Pillar intrusion.  A PDOF of 270 degrees generated the highest 

average maximum principal strain in the aorta.  
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Figure 10.1: Case 7 CIREN data with A) Rib fracture  B) aortic rupture C) skull 
fracture and D) hinge fracture 

 
 

Brain injury was the most common associated major injury found in 80 cases of 

TRA reported by Siegel et al. 2004.  A secondary but often additional serious injury 

mechanism appears to be an impact with the head, producing a severe brain injury 

frequently associated with a skull fracture (Figure 10.1(C) and Figure 10.1 (D)).  To 

explore possible strategies for reducing the incidence of TRA as well as the frequently 

associated lateral head injuries (or vice versa), a series of simulations were carried out 
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using Case 7 as the baseline case.  If a strategy for reducing aortic isthmus strain 

characteristics could be shown to be effective by using a FE based model in this impact 

case, then new vehicle safety measures could be devised to reduce the incidence of 

TRA with its high likelihood of scene death.  In a similar fashion, devising a mechanism 

for preventing head and chest impact with the B-Pillar would be expected to reduce the 

incidence of brain injury as well. 

The baseline case was reconstructed numerically using scaled FE vehicle 

models and the WSHBM FE model.  The reconstructions were carried out in two stages 

as described in Chapter 5.  In Stage I, the “Ford Taurus” FE vehicle model was obtained 

from vehicle model archives’ at the National Crash Analysis Center (NCAC) and was 

adjusted for overall dimensions such as the wheelbase, width, and height by scaling the 

model to match the actual vehicle (1993 Toyota Corolla) dimensions.  The principal 

other vehicle (POV) was modeled using the “Dodge Caravan” FE vehicle model.  The 

FE Caravan model was positioned as reported by crash investigation data and given an 

initial velocity of 59 km/h.  For the case vehicle, the driver side structures including the 

front and rear doorframe, door armrest, and left B-pillar nodes, were grouped and their 

motions were recorded in separate binary interface files.  These interface files were 

used in the Stage II simulations.  Figure 10.2 shows qualitative comparison of the 

deformations of FE vehicle model against the actual vehicle.  Table 10.1 compares the 

actual versus simulation deformations.   
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(a) 

 

 
(b) 

 
Figure 10.2: (a) Vehicle deformation patterns of th e actual case vehicle (b) FE 

simulation using the scaled FE vehicle model 
 
 

Table 10.1: Deformation comparison of the simulatio n with the actual vehicle  
 

Deformation Point (cm)  C1 C2 C3 C4 C5 C6 
Actual  0 50 73 62 37 0 
FE simulation  2 45 66 59 32 5 
 

 In Stage II, the kinematics time histories of the sub-model, which consisted of 

structures that might interact with the integrated human model, were used to determine 

the human responses.  The integrated human FE model was imported into the case 



172 
 

 
 

vehicle model and was positioned in a seated posture.  This posture was estimated 

based on post-crash photographs of the interior structures and seat.  A contact interface 

was created between the vehicle structures and the occupant.  The nodal kinematics of 

the vehicle structures saved in the interface file was applied to the combined model.  

The average maximum principal strains (AMPS) were found to be in the range of 18% 

to 23% in the isthmus region of the aorta.  

 

10.2.2 DOCE Simulations 

Six design factors comprising of: (1) introduction of a B-pillar beam; (2) changing 

the dimensions of the beam; (3) increasing the yield strength of the side door structures; 

(4) increasing the thickness of the side door-structures; (5) adding a cross-beam across 

the door and (6) an addition of a large side ‘overall’ airbag spanning the roof to the 

rocker arm were considered for the DOCE study.  18 DOCE cases (shown in Table 

10.1) were generated using a Latin Square Sampling method available in 

modeFRONTIER 4.1 (ESTECO, Novi).  Simulations were carried in two Stages in a 

manner similar to that described in Chapter 5.  For the B-pillar beam, a solid structure, 

attached to the rocker arm at the top and the bottom of the B-pillar, was created in the 

B-pillar space to increase the stiffness of the structure, as shown in Figure 10.3(a).  

Further, a cross-beam was modeled in the door structure to increase the bending 

strength of the door (Figure 10.3(b)).  The cross-beam was modeled as shell elements 

with an initial thickness of 0.5 mm.  A non-production conceptual single inflator overall 

airbag was modeled and deployed on the left interior door structure in an unfolded state 

6 ms after initial door contact (Figure 10.4).  This conceptual “blanket” or “overall” airbag 

was created to represent both a torso and a curtain bag to cover the entire body from 
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impacting into the lateral structure (B-pillar) in the event of a left lateral impact.  It is to 

be noted in current production vehicles, side impact protection typically includes a side-

curtain bag with or without a torso bag.  A blanket airbag usually can encounter issues 

with inflator design and inflation pressure.  In the current simulations, it is assume that 

the inflators can indeed inflate the airbag. 

 

 
 

(a) 
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(b) 

 
Figure 10.3: Exploded View of structures involved i n the DOCE (a) Exterior View 

and (b) Interior View 
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Figure 10.4: Left side door structures, WSHBM along  with a conceptual unfolded 
blanket airbag 
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Table 10.1: DOCE Matrix generated using modeFRONTIE R 4.1 for the simulation 
runs 

 

Case 
# 

B-
pillar 
Beam  

Cross-
Beam 

Side 
Airbag  

Thickness* 
factor 

Yield 
Strength 

(MPa) 

B-pillar 
Beam 

Dimensions 
(mm) 

I 0 0 1 2 

300 

10 by 60 

II 0 1 1 4 
III 0 1 0 1 
IV 0 0 1 1 
V 1 1 0 2 
VI 1 1 1 4 
VII 1 0 0 4 
VIII 1 1 1 1 
IX 1 1 1 2 
X 1 1 1 4 

20 by 60 
 

XI 0 0 1 1 
XII 1 1 0 1 
XIII 1 1 1 1 
XIV 1 1 0 1 400 
XV 1 1 0 1 500 
XVI 1 1 1 1 400 
XVII 1 1 1 1 500 
XVIII 1 1 1 4 600 

 
Note: 
*Thickness factor as the multiple of the original t hickness of the sheet metal components in the door.   For 
example, 2 indicates twice the thickness of the ori ginal model.  Table E1 in Appendix E lists the actu al 
thickness of the structures simulated) 

 

10.3 Results and Discussion 

 
Table 10.2 lists the AMPS in the isthmus, maximum pressure in the aorta, and B-

pillar intrusion obtained for each run.  B-pillar intrusion is the maximum recorded 

intrusion and not the resting deformation. 
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Table 10.2: AMPS (%), Maximum Pressure (kPa) in the  aorta and B-pillar Intrusion (mm) 
 

Parameter                                            
Run # 

B-
pillar 
Beam  

Cross-
Beam 

Side 
Airbag  

Thickness 
factor 

Yield 
Strength 

(MPa) 

B-pillar 
Beam 

Dimensions 
(mm) 

Isthmus 
AMPS 

(%) 

Maximum 
Aortic 

Pressure 
(kPa) 

Maximum 
B-Pillar 

Intrusion 
(mm) 

I 0 0 1 2 

300 

10 by 60 

17.2 126.4 225 
II 0 1 1 4 17.6 128.5 165 
III 0 1 0 1 25.2 127.2 278 
IV 0 0 1 1 20.1 132.7 212 
V 1 1 0 2 19.8 120.8 63 
VI 1 1 1 4 13.8 113.3 81 
VII 1 0 0 4 15.5 113.7 289 
VIII 1 1 1 1 20.1 135.1 213 
IX 1 1 1 2 19.2 123.2 227 
X 1 1 1 4 

20 by 60 

14.4 117.5 85 
XI 0 0 1 1 15.8 128.7 250 
XII 1 1 0 1 17.2 126.7 319 
XIII 1 1 1 1 19.9 124.9 319 
XIV 1 1 0 1 400 19.4 127.8 314 
XV 1 1 0 1 500 18.6 126.8 298 
XVI 1 1 1 1 400 18.5 133.4 314 
XVII 1 1 1 1 500 17.5 133.7 298 
XVIII 1 1 1 4 600 12.5 111.2 78 

Note: B-pillar intrusion reported is the maximum in trusion and not the intrusion at the end of the sim ulation, to accommodate elastic-
plastic deformation of the structure (rebound)  
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Run number XVIII, which is simulates the B-pillar beam, cross-beam, blanket 

side airbag, and a thickness of four times the baseline thickness of the door structure, 

has the lowest AMPS of 12.5% in the isthmus of the aorta at a B-pillar intrusion of 78 

mm.  On the other hand, Runs VI and X have a significantly lower maximum principal 

strain of 13.8% and 14.4% respectively.  Both runs simulate all six design-factors with 

four times the thickness of the baseline door structure.  However, in Run X, the B-pillar 

beam dimensions were 20 by 60 mm instead of 10 by 20 mm simulated in Run VI.  Run 

VI has a maximum intrusion of 81 mm and a maximum aortic pressure of 113.3 kPa 

while Run X has a maximum intrusion of 85 mm and a maximum pressure of 117.5 kPa.  

Figure 10.5(a) shows the overall kinematics of Run VI while Figure 10.5(b) shows the 

regions of the maximum principal strain around the region of the isthmus, distal to the 

left subclavian artery.  A One-way ANOVA performed on runs VI, X, and XVIII versus 

rest of the simulations revealed statistical significance for AMPS (p=0.002); maximum 

pressure (p=0.001), and B-pillar intrusion (p=0.001). 

 
(a) 
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(b) 

 
Figure 10.5: (a) Occupant kinematics and (b) Maximu m principal strain pattern at 

the time of maximum vehicle deformation for Run VI 
 

 

A main effects analysis was carried out on Minitab 15 (Minitab Inc., State 

College, PA) to estimate the effectiveness of each design factor on aortic strain and the 

compartmental intrusion.  Figure 10.6 shows that adding a crossbeam had a negative 

effect on the AMPS of the aorta (i.e. increased the aortic strain) while the other three 

factors had a positive effect (decreased the aortic strain).  In addition, B-pillar intrusion 

decreased with the presence of a B-pillar beam and an increase in thickness while the 

presence of a side airbag and crossbeam did not significantly change the amount of 

intrusion.  This can be attributed to the fact that neither a side airbag nor a crossbeam 

can significantly alter the stiffness of the door structure thereby changing the intrusion. 
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Figure 10.6: Main effects analysis plot – AMPS  
 

From Figure 10.7, it is seen that the maximum pressure in the aorta decreases 

with the addition of a B-pillar beam and an increase in thickness of the door structures.  

However, it does not seem to change significantly with the addition of a cross-beam and 

the blanket side airbag.  There is a significant pressure decrease with the change in the 

yield strength from 500 MPa to 600 MPa, while it increases when changed from 300 

MPa to 400 MPa. 
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Figure 10.7: Main effects analysis plot - Maximum A ortic Pressure (kPa) 
 

Figure 10.8 shows that addition of a crossbeam, the conceptual blanket side 

airbag; thickness and change in yield strength have a positive effect (reduced intrusion) 

on the B-pillar compartmental intrusion.  However, changing the dimension of the B-

pillar beam from 10 by 60 to 20 by 60 mm has a negative effect on intrusion.  
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Figure 10.8: Main effects analysis plot – Maximum B -pillar intrusion (mm)  
 

 Figure 10.9 through Figure 10.11 plot the Pareto chart of effects for AMPS, 

maximum pressure, and maximum intrusion respectively.  It is seen that none of the 

combined parameters were significant for AMPS or maximum pressure.  However, the 

additional of a cross beam seemed to make a significant contribution in reducing B-pillar 

intrusion.  Although not significant, a combination of a B-pillar beam and cross beam 

played a role in reducing intrusion. 
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Figure 10.9: Pareto chart of effects for AMPS  
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Figure 10.10: Pareto chart of effects for maximum p ressure  
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Figure 10.11: Pareto chart of effects for maximum B -pillar intrusion  
 

 

10.4 AIM E1 - Conclusions 

Comparing data from actual scene photographs and FE simulation data, it is 

strongly evident that the vehicle B-Pillar is the site most likely to be the major causative 

factor in initiating maximum aortic strain and chest forces.  The current study suggest 

that the protective effects of an improved side-construction standard can be enhanced 

further by the more rational placement of an airbag-like structure, to buffer head and 

chest contact with the B-Pillar along its entire length from car seat to roof.  It is 

suggested that the combination of these two safety measures, B-pillar beam and 

thickness is likely to result in a significant reduction in both head and aortic Isthmus 
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injury and thus to substantially reduce mortality subsequent to lateral motor vehicle 

crashes.  It is to be noted that the current study did neither consider the effect of 

increase of weight on the fuel efficiency of the car. 

 

10.5 AIM E2 - Materials and Methods 

From Chapter 9, it was seen from high-speed FE simulations of race car 

accidents that the AMPS and maximum pressure in the aorta were significantly lower 

than those reported in either of the survival or fatal CIREN reconstructions.  The seat 

played a crucial role in reducing the thoracic deformation leading to reduced AMPS in 

the aorta.   

In the current study, 11 simulations were carried out using the WSHBM and 

scaled FE vehicle models with a New redesigned seat  called Advanced Bilateral 

Protection Seat © (ABPS©) with an objective 

a. Prevent / reduce direct thoracic contact with the intruding B-pillar and door 

structures 

b. Engage the shoulder thereby preventing / reducing a load path to the clavicle 

and the spine, thus reducing relative motion between the spine and sternum 

Figure 10.9 shows the structure of the redesigned seat with shoulder and head 

padding with the WSHBM.  It is to be noted that a patent filing has been ini tiated for 

the Advanced Bilateral Protection Seat © (ABPS©).  Table 10.3 outlines the material 

properties and LS-DYNA material models used in the simulations. 
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Figure 10.9: Shows the WSHBM with the new redesigne d contoured seat, 
shoulder support pads and head padding – Advanced B ilateral Protection Seat © 

(ABPS©) 
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Table 10.3: Material properties and LS-DYNA materia l models used for the New 
Redesigned Seat 

 

Component 
LS-DYNA  

Material Model 

Material Property 

Young’s 

Modulus, 

E (GPa) 

Density, 

ρ (kg/mm 3) 

Poisson’s 

Ratio, 

µ 

Seat *MAT_ELASTIC 210 7.85 X 10-6 0.3 

Shoulder Pad *MAT_ELASTIC 210 7.85 X 10-6 0.3 

Shoulder and 

head Pad 
*MAT_SOIL_AND_FOAM 7.901 X 10-1 1.228 X 10-7  

 
 

Table 10.4 outlines the simulation parameters, which were chosen to compare 

with the initial CIREN reconstructions outlined in Chapters 6 and 8. 
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Table 10.4: Input design factors for the seat based  countermeasure 

Run # PDOF 
(Degrees) 

Delta ‘V’ 
(km/hr) 

Comparison 
CIREN Case # 

Vehicle / Object 
History Occupant Status 

1 255 33.6 T1 Car-SUV Survived 

2 285 29.1 T2 Car-Van Survived 

3 300 22.0 T3 Car-SUV Survived 

4 310 62 4 Car-Car Survived 

5 260 41 17 Car-Van Survived 

6 310 27.5 5 Car-Tree Fatality 

7 280 55 6 Car-SUV Fatality 

8 280 59 7 Car-Car Fatality 

9 320 27.6 8 Car-Pole Fatality 

10 270 47 15 Car-SUV Fatality 

11 270 54.4 16 Car-SUV Fatality 

 

The simulations were carried out in two stages as described in Chapter 5.  In 

Stage I, scaled vehicle FE models were positioned as per the PDOF described in the 

CIREN case report and velocities applied as resolved vectors.  The deformation 

patterns (C1 through C6) were matched closely to those reported from the actual crash 

scene.  Only those structures, which encountered the occupant, were isolated and their 

motions recorded in binary interface files.  In Stage II, the WSHBM along with the new 

redesigned contoured seat, shoulder padding and head support pads along with the 

side isolated structures from Stage I were simulated with the interface files as inputs to 

the model.  The interface files provided the transition between the two stages.  AMPS, 
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maximum pressure, and compartmental intrusion were recorded and compared with 

those reported from 11 CIREN cases previously reconstructed (Chapters 6 and 8). 

 

10.6 Results 

11 simulations were carried out using a combination of WSHBM, new redesigned 

contoured seat (ABPS©) which has an integrated shoulder padding and head padding 

with scaled FE vehicle models.  The objective of the study was to reduce aortic strain 

and pressure, and compare the data to the original CIREN reconstructions.  Table 10.5 

lists the AMPS and maximum aortic pressure recorded in the cases with ABPS© and 

compares them to the original CIREN reconstructions.  Figures 10.10 and 10.11 plots 

the AMPS and maximum pressure respectively and compares with cases with and 

without the ABPS©.  In order to compare the data with earlier CIREN reconstructions 

(Chapter 6 and Chapter 8), the left side of the table has been repeated for consistency. 
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Table 10.5: AMPS and maximum pressure for the cases  with and without ABPS© 

Original CIREN Reconstructions   CIREN Reconstructions with ABPS © 

PDOF 
(Deg.) 

Delta ‘V’ 
(km/hr) 

CIREN 
Case # 

Vehicle / 
Object 
History 

Occupant 
Status Isthmus AMPS 

Maximum 
Pressure 

(kPa) 

 

Run 
# Isthmus AMPS 

Percentage 
Reduction of 

AMPS (%) 

Maximum 
Pressure 

(kPa) 

Percentage 
Reduction of 

maximum 
pressure (%) 

255 33.6 T1 Car-SUV Survived 0.0981 74.2 1 0.0522 46.78 66.9 9.83 

285 29.1 T2 Car-Van Survived 0.0812 67.9 2 0.0430 47.04 57.3 15.611 

300 22.0 T3 Car-SUV Survived 0.1233 59.8 3 0.0387 68.61 45.9 23.24 

310 62 4 Car-Car Survived 0.1452 114.8 4 0.0859 40.84 73.0 36.41 

260 41 17 Car-Van Survived 0.1941 103.8 5 0.1144 41.06 89.2 14.06 

Average  0.1284±0.044 84.10±23.88  0.0668±0.032 48.87±11.43 66.46±16.33 19.83±10.45 

310 27.5 5 Car-Tree Fatality 0.1658 108.7 6 0.0461 72.19 90.2 17.01 

280 55 6 Car-SUV Fatality 0.2767 134.0 7 0.2422 12.46 105.7 21.11 

280 59 7 Car-Car Fatality 0.2823 132.2 8 0.0351 87.56 66.9 49.39 

320 27.6 8 Car-Pole Fatality 0.1851 104.6 9 0.0753 59.31 44.3 57.64 

270 47 15 Car-SUV Fatality 0.1921 102.0 10 0.1365 28.94 96.8 5.09 

270 54.4 16 Car-SUV Fatality 0.2955 136.0 11 0.2045 30.79 110.2 18.97 

Avera ge 0.2329±0.057 119.58±16.05  0.1233±0.085 48.54±28.97 85.68±25.34 28.21±20.54 

Overall Average  0.1854±0.074 103.45±26.47  0.0977±0.071 48.69±21.73 76.95±22.99 24.41±16.55 
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Figure 10.10: AMPS 
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Figure 10.10: AMPS - With and without ABPS © 
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Figure 10.11: Maximum Pressure (kPa) in the aorta -  With and without ABPS © 
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For the CIREN cases reconstructed with ABPS©, the average AMPS was 

0.0977±0.071 and the average maximum pressure was 76.95±22.99 kPa.  A One-Way 

Analysis of Variance (ANOVA) was performed; both AMPS (p=0.01) and maximum 

pressure (p=0.021) were found to be significantly lower than the initial CIREN 

reconstructions.  

 

 

Figure 10.12: Box-plot of AMPS for cases with and w ithout ABPS © 
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Figure 10.13: Box-plot of maximum pressure for case s with and without ABPS © 
 

Figures 10.12 and 10.13 are box-plots of AMPS and maximum pressure 

respectively.  The horizontal line indicates the median of the population.  It is seen that 

there is an average of 47% decrease in AMPS and an average of 28% decrease in 

maximum pressure in the aorta with the usage of ABPS©.  It is to be noted that the 

current study did not account for the increase/change in weight and how it affects the 

fuel economy and performance of the car.   
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10.7 AIM E2 - Conclusions 

Eleven CIREN cases (from Chapters 6 and 8) were reconstructed with a newly 

redesigned contoured seat with shoulder and head support pads; called the Lateral 

Impact Protection Seat System (ABPS©).  In conclusion,  

• Overall average AMPS was 0.0977±0.071 as compared to the 0.1854±0.074 for the 

original CIREN reconstructions  

• There was a 47% reduction in AMPS  with ABPS © 

• Overall average maximum pressure was 76.95±22.99 kPa as compared to the 

103.45±26.47 kPa for the original CIREN reconstructions 

• There was a 28% reduction in maximum pressure with ABPS © 
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CHAPTER 11 

CONCLUSIONS, LIMITATIONS, AND SCOPE FOR FUTURE WORK  

 

11.1 Conclusions 

The current study delves further into understanding the mechanism of aortic 

trauma from real world CIREN data by using a combination of validated FE human body 

model consists of detailed geometry and organ placement along with validated vehicle 

models.  Figure 11.1 summarizes the conclusions for each objective, aimed at 

understanding and reducing the trauma associated TRA. 
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Figure 11.1: Aims and Conclusions - Summary
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The aortic injury reconstructions provide a unique insight, using a combination of 

real world CIREN data and validated FE models in the realm of TRA.  From the NASS-

CDS review, the CIREN cases, and the FE aortic reconstructions, it was seen that in 

near side left lateral crashes, the B-pillar followed by the interior door structures were 

primarily responsible for thoracic deformation leading to high aortic strains (Chapter 6). 

 

11.11 CIREN Reconstructions 

• The average AMPS were calculated to be 0.22±0.06 and the average maximum 

pressure in the aorta was predicted to be 117±15 kPa (fatal and survival cases). 

• For CIREN cases with no fatality, the average AMPS was 0.12±0.04 and the 

average maximum pressure was 84.10±23.88 kPa. 

• For the CIREN cases with fatality due to aortic rupture, the average AMPS was 

0.23±0.05 and the average maximum pressure was 119.58±16.05 kPa. 

• A 50 percent probability of aortic failure based on model-predicted AMPS was 

17.1% and a 90 percent probability of failure for AMPS was 21.2%. 

• A 50 percent probability of aortic failure based on model-predicted maximum 

pressure was 102 kPa and a 90 percent probability of failure based on model-

predicted maximum pressure was 125 kPa. 

• Although there was an increase in aortic pressure in the simulations, it may not 

be solely responsible for aortic failure.  

• The peak maximum principal strains primarily occurred in the isthmus of the 

aorta, distal to the left subclavian artery.   
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• A large percentage of the cases (87.5%) reconstructed had multiple left rib 

fractures, predominantly from the fourth to the ninth rib.   

• A great number of the cases (75%) reconstructed showed high strains in the 

spleen due to rapid caudo-medial motion of the rib cage induced from the 

intruding B-pillar. 

• Sternum displacement alone may not be sufficient to be responsible for TRA. 

• Thoracic deformation pattern plays a role in TRA. 

• Longitudinal stretch of the thoracic aorta is the primary cause of TRA. 

• In nearside left lateral impacts, It was seen that as the PDOF increased (from 

270 degrees), isthmic strain due to longitudinal stretch of the thoracic aorta 

transitioned from caudomedial motion of the thoracic spine relative to the 

sternum owing to thoracic deformation from the B-pillar; to posterior-anterior 

motion of the thoracic aorta relative to the ascending aorta (310 degree impact).   

• Kinematics data from the FE simulations matched well with data reported by 

Hardy et al. (2008) and showed that the isthmus of the aorta moved medially and 

anteriorly during nearside left lateral impacts and transitioned to a dorsocranial 

motion.   

11.12 DOCE Simulations 

• Of the four PDOFs simulated, a PDOF of 270 degrees generated the highest 

average maximum principal strain in the aorta.  
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• PDOF and occupant seating position combined together were significant for the 

high magnitude of AMPS and maximum pressure in the aorta followed by a 

combination of bumper profile height and occupant seating position. 

• Although not significant as individual factors, results of DOCE concluded that 

occupant-seating position, bumper profile height, and PDOF of impact, in that 

order, play crucial roles in the generation of strain and pressure in the aorta, a 

potential injury mechanism responsible for traumatic rupture of the aorta in 

automobile crashes. 

11.13 High-speed racings simulations 

• The average AMPS for the high-speed crashes (Begeman and Melvin (2002)) 

were 0.15±0.01 while the average maximum pressure was 110.50±4.25 kPa. 

• The average model-predicted AMPS was significantly less than that calculated for 

fatality in the CIREN reconstructions in Chapter 6; for rupture reported by Shah et 

al. (2006) and Hardy et al. (2008). 

• The maximum pressure were significantly less than those calculated for fatality as 

reported by the CIREN reconstructions in Chapter 6; for rupture experimentally 

measured by Bass et al. (2001) and Hardy et al. (2008). 

• Six-point restraint system does not have significant effect of what in high-speed 

lateral racing crashes. 

• Thoracic deformation was significantly less as compared to the CIREN cases in 

Chapters 6, 7, and 8. 
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• Thoracic deformation is absolutely necessary for TRA 

• Acceleration alone cannot produce TRA 

• The seat and shoulder support pads plays a crucial role in injury mitigation to the 

thorax in high speed racing crashes 

11.14 Conceptual countermeasures 

• Rational placements of an airbag like structure (blanket airbag); to buffer head and 

chest contact with the B-Pillar along its entire length from car seat to roof is seen to 

reduce aortic strain.   

• A combination of B-pillar beam and increase in beam thickness is likely to result in a 

significant reduction in both head and aortic isthmus injury and thus to substantially 

reduce mortality subsequent to lateral motor vehicle crashes. 

• A newly redesigned seat and shoulder support called Advanced Bilateral 

Protection Seat © (ABPS©) was utilized to compare AMPS and maximum pressure 

in the aorta with the original CIREN reconstructions  

• With ABPS, the overall average AMPS was 0.09±0.07 as compared to 0.18±0.07 for 

the original CIREN reconstructions 

• There was a 48% reduction in AMPS  with ABPS © 

• Overall With ABPS, the overall average maximum pressure was 76.95±22.99 kPa as 

compared to the 103.45±26.47 kPa for the original CIREN reconstructions 

• There was a 24% reduction in maximum pressure with ABPS © 
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11.2 Limitations and commendations for future work 

The current version of the WSHBM represents a 50th percentile adult male model 

with a detailed descriptions within the thoracic cavity and has an anatomically accurate 

aorta model (Shah et al. 2001).  However, it should be noted that in the current study, 

the WSHBM has been simulated without any scaling or personalized aorta model for the 

CIREN reconstructions.  Further, the superior vasculature from the aorta 

(Brachiocephalic trunk, left common carotid artery, and left subclavian artery) did not 

lead all the way up to the head (Figure 11.2); which have been hypothesized to cause 

stretching of the aortic arch during head/neck excursion (Viano, 1983). 

 

 

Figure 11.2: Attachment of the superior vasculature  in the WSHBM 
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A detailed neck model with placement of the superior vasculature beyond the 

level of the clavicle would be useful in validation of the hypothesis of aortic arch motion 

due to rapid flexion/extension in frontal impacts and medial/lateral rotation in side 

impacts.   

Even though the vehicle models were accurately scaled to match the size and 

weight of the struck and striking vehicles, the stiffness and interior compartment details 

did not simulate the actual vehicles involved.  The bumper profiles of each striking 

vehicle and the status of pre-crash braking were different, thus generating varying crush 

patterns, which may explain the discrepancies in matching the measured physical 

deformations reported in Chapter 6, Table 6.4.   

Further, Niehoff et al. (2006) evaluated 121 NASS-CDS 2000-2003 cases and 

concluded that the WinSmash program underestimated the delta-v of the striking 

vehicle by an average of 23%.  Additionally, if the striking vehicle is a front wheel drive, 

the underestimation of delta-v is up to 31%.  In this study, only the 2002 Dodge Caravan 

FE model was a front wheel drive.  It is also important to observe that measured 

external deformations of the vehicle may not correspond to similar occupant 

compartment intrusions and contact forces due to differences in elastic and plastic 

moduli of various interior components.  This problem is exacerbated by the fact that 

deformation profiles were measured at only individual points on the external surface 

leading to localized variations in the actual and simulated profiles. 

It is extremely challenging to truly recreate the intricacies of real world crashes 

due to inaccuracies in field measurement and the accident reconstruction software, 
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which is typically based on rigid body dynamics.  More importantly, variations in general 

anatomy and health status of the aorta in the human population are largely unknown.   

 

11.2.1 Atherosclerosis 

Heart disease, typically atherosclerotic cardiovascular disease remains the 

primary cause of death and disability in the United States (American Heart Association, 

2008).  Atherosclerosis is a vascular disease associated with the accumulation of lipids 

leading to incursion of leucocytes and smooth muscle cells into the intima, which 

typically leads to the formation of atheroma.  Plaque is typically fibrous tissue of varying 

density and cellularity, primarily consisting of calcium, extracellular lipid, and lipid-laden 

foam cells (Holzapfel et al. 2006).  Data from the literature have shown that during 

automotive crashes, there is a very high incidence of aortic laceration and embolism 

leading to death and disability (Holzapfel et al. 2006; Sommer et al. 2008).  Hence, it is 

important to develop a constitutive model by characterizing the material properties of 

these plaques to be used for FE applications.   

It is seen that calcified aortic plaques changes the elastic properties of the aorta 

making it inextensible in the region of calcification (Holzapfel et al. 2004).  Viano (1983) 

suggested that the presence of atherosclerotic plaque is the weakest link in any 

traumatic aortic rupture.  More recently, Hardy et al. (2008) agreed with Viano’s 

conclusion in their cadaver tests and suggested that diseased aortas may have reduced 

failure strengths and most failures occur in the region surrounding the diseased tissue.  

This could play a vital role in determining the failure threshold as well as a possible 
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reason for occupant-specific aortic failure, which was not considered in the WSHBM 

model.  

The aorta in the current WSHBM is modeled using isotropic linear elastic 

membrane elements.  The Young’s modulus was approximated from the uniaxial 

experiments on the human aortic tissue reported by Mohan and Melvin (1982).  

Constitutive modeling of the aortic tissue is crucial to any FE modeling efforts aimed at 

investigating the mechanisms of aortic rupture.  Shah et al. (2006) in their previous 

studies have attempted to model the non-calcified aortic tissue to simulate their high-

speed bi-axial tissue testing.  As an initial attempt, the aorta was considered 

transversely orthotropic for simplicity of analysis.   

Several published FE modeling efforts by other researchers have used variety of 

constitutive models for the aortic tissue.  Richens et al. (2004) used the Blatz-Ko rubber 

material model to represent an isotropic finite element aorta model with a Poisson’s 

ratio of 0.463.  Their attempt to use the isotropic linear elastic, orthotropic linear elastic, 

and Ogden material models resulted in numerical instabilities beyond 10% stretch.  The 

basis for selection of Blatz-Ko rubber was that it performed stably up to 80% strain.  

Darvish et al. (2004) assumed a second order Mooney-Rivlin rubber to model isotropic 

aortic tissue.  The FE aorta model response was compared against quasi-static and 

dynamic uniaxial tensile tests reported by Mohan and Melvin (1982).  Similarly, Delfino 

et al. (1997) used a hyperelastic material model to study residual stresses in the human 

carotid artery bifurcation.   
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For future aorta model developments, it is suggested that the model should 

include:  

• Three-layer aorta model (Holzapfel et al. 2006) 

• Non-linear orthotropic material model (*MAT_OPTIONTROPIC_ELASTIC material 

model in LS-DYNA 971) 

• Blood flow modeling (ALE material modeling in LS-DYNA 971) 

• Atherosclerotic plaque deposits (Holzapfel et al. (2004)) 

It should be noted that the response of the aorta is largely dependent on the 

material properties, element quality, and boundary conditions of all the structures 

encompassing it.  Hence, a detailed validation with improved material models, mesh 

refinement would be essential to improve the response of the aorta. 
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APPENDIX A 

Table A1: Material Properties of the Wayne State Hu man Body Model – II: 
Thoracic Cavity (Shah et al. 2007) 

 
Linear Elastic Model  

Vessel/Organ 
Young’s 

Modulus, ‘E’ 
(GPa) 

Density, ‘ ρ’, 
(kg/mm 3) 

Poisson’s 
Ratio, ‘ ν’ 

Aorta and other blood 
vessels 10.0 2.0 E-06 0.40 

Esophagus  3.0 2.0 E-06 0.40 
Trachea  15.0 1.0 E-06 0.40 

Diaphragm  65.5 1.0 E-06 0.40 
Pleura  5.0 1.0 E-06 0.35 

Pericardium  25.0 1.0 E-06 0.30 
Intercostal Muscles  10.0 1.0 E-06 0.40 

Peritoneum  40.0 1.0 E-06 0.40 
 

Table A2: Material Properties of the left side door  structure of a 2001 Ford Taurus 
FE model 

 

Sl. 
No. Component Name 

LS-DYNA 
Material 
Model 

Density, 
‘ρ’, 

(kg/mm 3) 

Young’s 
Modulus, 
‘E’ (GPa)  

Poisson’s 
Ratio, ‘ ν’ 

Yield 
Strength 

(GPa) 
Thickness (mm) 

2001 Ford Taurus Left Lateral Door 

1 Door Middle MAT L-24 7.89 E-06 210 0.3 0.30 1.4 

2 Outer Door MAT L-24 7.89 E-06 210 0.3 0.24 1.1 

3 
Inner Panel 

Reinforcement MAT L-24 1.20 E-06 2.8 0.3 0.045 4.8 

4 Detail Door Panel MAT L-24 1.20 E-06 2.8 0.3 0.045 2.31 

5 Lower Left B-Pillar MAT L-24 1.20 E-06 2.8 0.3 0.045 3.1 

6 Upper Left B-Pillar MAT L-24 1.20 E-06 2.8 0.3 0.045 3.1 

7 Door Middle Rear MAT L-24 7.89 E-06 210 0.3 0.270 1.4 

8 Outer Door Rear MAT L-24 7.89 E-06 210 0.3 0.210 0.9 

9 
Inner Panel 

Reinforcement Rear 
MAT L-24 1.20 E-06 2.8 0.3 0.045 4.5 

10 Detail Door Panel Rear MAT L-24 1.20 E-06 2.8 0.3 0.045 2.7 

11 Door Side Impact Bar MAT L-24 7.89 E-06 210 0.3 0.800 1.56 

12 
Rear Door Side Impact 

Bar MAT L-24 7.89 E-06 210 0.3 0.800 1.4 
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Table A3: Material Properties of the front bumper a nd hood structures of the 
striking vehicles used in Phase A of the reconstruc tion 

 

Sl. 
No. Name of Component 

LS-DYNA 
Material 
Model 

Density, 
‘ρ’, 

(kg/mm 3) 

Young’s 
Modulus, 
‘E’ (GPa)  

Poisson’s 
Ratio, ‘ ν’ 

Yield 
Strength 

(GPa) 

Thickness 
(mm) 

2002 Ford Explorer 

1 Inner Hood MAT-L24 7.89 E-06 210 0.3 0.24 0.67 

2 Outer Hood MAT-L24 7.89 E-06 210 0.3 0.20 0.94 

3 Left Side Fender MAT-L24 7.89 E-06 210 0.3 0.20 1.10 

4 
Left Side Upper Front 

Outer Rail MAT-L24 7.89 E-06 210 0.3 0.20 1.10 

5 Tie-Bar Module MAT-L24 9.00 E-07 2.8 0.3 0.05 2.80 

6 Bumper MAT-L24 1.20 E-06 2.8 0.3 0.05 2.70 

7 Right Side Fender MAT-L24 7.89 E-06 210 0.3 0.20 1.10 

8 
Right Side Upper Front 

Outer Rail MAT-L24 7.89 E-06 210 0.3 0.20 1.10 

9 Front Body Back MAT-L24 7.89 E-06 210 0.3 0.20 0.92 

10 Front Body Top MAT-L24 7.89 E-06 210 0.3 0.24 1.21 

11 Bumper Foam Front Null MAT-L09 1.20 E-06 X X X 0.50 

12 
Front Bumper 
Reinforcement MAT-L24 7.89 E-06 210 0.3 0.30 2.10 

13 Bumper Foam Front MAT-L63 9.13 E-08 0.0306 0.3 X SOLID 
SECTION 

2002 Dodge Caravan 

1 Inner Hood MAT-L24 7.89 E-06 210 0.3 0.19 0.62 

2 Outer Hood MAT-L24 1.29 E-05 210 0.3 0.22 0.73 

3 Left Side Fender MAT-L24 7.89 E-06 210 0.3 0.19 0.75 

4 Fender Reinforcement MAT-L24 7.89 E-06 210 0.3 0.37 1.67 

5 Bumper MAT-L24 1.20 E-06 2.8 0.3 0.05 3.55 

6 Bumper Beam MAT-L24 7.89 E-06 210 0.3 0.46 2.04 

7 Right Side Fender MAT-L24 7.89 E-06 210 0.3 0.19 0.75 

8 Hood Inner Reinforcement MAT-L24 7.89 E-06 210 0.3 0.22 0.75 

9 Radiator Core MAT-L26 1.47 E-07 2.07 0.3 0.14 SOLID 
SECTION 

10 Bumper Foam MAT-L01 7.89 E-08 0.21 0.3 X SOLID 
SECTION 

11 Radiator Lower Support MAT-L24 7.89 E-06 210 0.3 0.16 1.87 

12 Radiator Core Skin MAT-L09 7.89 E-06 X X X 0.5 

13 Bumper Foam Skin MAT-L09 7.89 E-06 200 X X 1 

2002 Econoline 350 
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Sl. 
No. Name of Component 

LS-DYNA 
Material 
Model 

Density, 
‘ρ’, 

(kg/mm 3) 

Young’s 
Modulus, 
‘E’ (GPa)  

Poisson’s 
Ratio, ‘ ν’ 

Yield 
Strength 

(GPa) 

Thickness 
(mm) 

1 Inner Hood MAT-L01 8.20 E-07 2.34 0.3 X 2.62 

2 Outer Hood MAT-L01 8.20 E-07 2.34 0.3 X 2.62 

3 Left Side Fender MAT-L24 7.89 E-06 210 0.3 0.27 0.773 

4 Left Side Inner Wheel Well MAT-L24 7.89 E-06 210 0.3 0.21 1.24 

5 Left Side Front Engine Bay MAT-L24 7.89 E-06 210 0.3 0.27 0.96 

6 Bumper MAT-L24 7.89 E-06 210 0.3 0.27 2.37 

7 Right Side Fender MAT-L24 7.89 E-06 210 0.3 0.27 0.77 

8 
Right Side Inner Wheel 

Well MAT-L24 7.89 E-06 210 0.3 0.21 1.24 

9 Radiator-Mnt-Uppr MAT-L24 7.89 E-06 210 0.3 0.27 2.18 

10 Radiator-Mnt-Uppr-1 MAT-L24 7.89 E-06 210 0.3 0.27 1.58 

11 
Right Side Front Engine 

Bay MAT-L24 7.89 E-06 210 0.3 0.27 0.96 

12 Fender Grill Support MAT-L24 7.89 E-06 210 0.3 0.27 0.92 
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APPENDIX B 

 
 

Figure B1: Vehicle deformation comparison of simulated FE v ehicle against actual 
vehicle - CASE 4  

 

 

Figure B2: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 5  
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Figure B3: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 6  

 

 

 

 

 

Figure B4: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 7  
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Figure B5: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 8  

 

 

 

 

Figure B6: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 15  
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Figure B7: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 16  

 

 

 

 

Figure B8: Vehicle deformation comparison of simula ted FE vehicle against actual 
vehicle – CASE 17  
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Figure B9: (a) Occupant kinematics and (b) maximum principal strain pattern at 
the time of maximum vehicle deformation – CASE 4  

 

Figure B10: (a) Occupant kinematic and (b) Maximum principal strain pattern at 
the time of maximum vehicle deformation – CASE 5  
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Figure B11: (a) Occupant kinematics and (b) Maximum  principal strain pattern at 
the time of maximum vehicle deformation – CASE 6  

 

 

Figure B12: (a) Occupant kinematics and (b) Maximum  principal strain pattern at 
the time of maximum vehicle deformation – CASE 7  
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Figure B13: (a) Maximum principal strain pattern an d (b) occupant kinematics at 
the time of maximum vehicle deformation – CASE 8  

 

 

Figure B14: (a) Maximum principal strain pattern (b ) Occupant kinematics at the 
time of maximum vehicle deformation – CASE 15  
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Figure B15: (a) Occupant kinematics and (b) Maximum  principal strain pattern at 
the time of maximum vehicle deformation – CASE 16  

 

 

Figure B16: (a) Maximum principal strain pattern (b ) Occupant kinematics at the 
time of maximum vehicle deformation – CASE 17  

 



219 
 

 
 

 

APPENDIX C 

                         Pressure (kPa)                        Maximum Principal Strain 
 

 
Figure C1: Average Maximum Principal Strain in the Isthmus and maximum 

pressure in the aorta: Runs #01 through #08 
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                         Pressure (kPa)                        Maximum Principal Strain 

 
Figure C2: Average Maximum Principal Strain in the Isthmus and maximum 

pressure in the aorta: Runs #09 through #16 
 



 

 

 

Figure D1: Mid- Sternum vs. T4

Figure D2: Mid- Sternum vs. T4
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APPENDIX D 

Sternum vs. T4 -spine kinematics for Run #a
 

Sternum vs. T4 -spine kinematics for Run #b

 

spine kinematics for Run #a  

 

spine kinematics for Run #b  



 

 

 

Figure D3: Mid- Sternum vs. T4

Figure D4: Mid- Sternum vs. T4
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Sternum vs. T4 -spine kinematics for Run #c

Sternum vs. T4 -spine kinematics for Run #d

 
spine kinematics for Run #c  

 

spine kinematics for Run #d  



 

 

 

Figure D5: Mid- Sternum vs. T4

Figure D6: Mid- Sternum vs. T4
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Sternum vs. T4 -spine kinematics for Run #e

Sternum vs. T4 -spine kinematics for Run #f

 

spine kinematics for Run #e  

 

spine kinematics for Run #f  



 

 

 

Figure D7: Mid- Sternum vs. T4

Figure D8: Mid- Sternum vs.
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Sternum vs. T4 -spine kinematics for Run #g

 

Sternum vs.  T4-spine kinematics for Run #h

 

spine kinematics for Run #g  

 

spine kinematics for Run #h  
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APPENDIX E 

Table E1: Thickness of side door structures 
Part Name Thickness (mm) 

IN - LOWER B PILLAR TRIM - L 3.10 

IN - UPPER B PILLAR TRIM - L 3.10 

OB - DOR WIN MOTOR 2 - FT - L 1.97 

OB - DOR WIN MOTOR 3 - FT - L 1.94 

OB-DOR_WIN_SUPPORT_4-RR-L 1.60 

OB -DOOR SIDE IMPACT BAR- FT -.1 1.56 

BIW - B PILLAR REINFOR 3 - L - I 1.55 

BIW - ROCKER PANEL - L - O 1.50 

LEFT_REAR_DOOR-SIDE_IMPACT BAR 1.40 

BIW - ROCKER PANEL - L - I 1.25 

OB-DOR_WIN_SUPPORT_2-RR-L 1.22 

OB -DOR WIN REINFORCE-FT-L-I 1.20 

BIW - B - PILLAR - L - O 1.13 

BIW - B - PILLAR - L - I 1.06 

BIW - ROOF REINFORCEMENT - L - I 0.95 

BIW - ROOF REINFORCEMENT -L-O 0.90 

OB - DOOR - FT - L - O.1 0.71 

LEFT_REAR_DOOR 0.70 

OB - DOOR - FT - L - I.1 0.68 

OB - DOOR - RR - L - I 0.68 
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Traumatic rupture of the aorta (TRA) remains the second most common cause 

of death associated with motor vehicle crashes after brain injury.  On an average, 

nearly 8,000 people die annually in the United States due to blunt injury to the aorta.  It 

is observed that more than 80% of occupants who suffer an aortic injury die at the 

scene due to exsanguination into the chest.  With the advent of more accurate and 

established human body finite element (FE) models, FE crash reconstruction methods 

may become a valuable tool when assessing crash scenarios and occupant injury 

mechanisms. 

The current study is divided into five main aims, near side left lateral real world 

finite element reconstructions, sensitivity study, thresholds for TRA, aorta mechanics 

in racing crashes and conceptual countermeasures.  In the first study eight nearside 

left lateral impacts, in which a TRA occurred, were reconstructed using a combination 

of real world crash data reported in the Crash Injury Research and Engineering 
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Network (CIREN) database and FE models of vehicles and occupants.  The average 

maximum principal strain (AMPS) in the root, ascending, and the isthmus regions of 

the aorta were calculated and model predicted high strain areas were compared with 

real world injury reports.  In seven of the eight cases aortic failure occurred in the 

isthmus region and, the average peak tensile isthmic strain, 20±7 mm distal to the left 

subclavian artery, was 18±6%.   

To identify key parameters for injury causation, 16 Design of Computer 

Experiments (DOCE) runs, generated using a Latin square sampling technique on 

modeFRONTIER with FE models of vehicles and the WSHBM as described earlier 

were performed to evaluate the role of PDOF, impact velocity, impact position, impact 

height and occupant seating position on aortic strain, aortic pressure and 

compartmental intrusion.  The AMPS decreased significantly with an increase in the 

PDOF (from 270 degrees).  Of the four PDOFs simulated, a PDOF of 270 degrees 

generated the highest average maximum principal strain in the aorta.  Further, strain 

increased with increase in impact velocity while pressure in the aorta decreased with 

an increase in PDOF (from 270 degrees). 

The data obtained in the CIREN reconstructions were further compared with 

three CIREN cases without aortic injury to understand and delineate the mechanism 

for TRA.  A paired comparison based sensitivity study was carried out and data 

compared with literature.  It was seen that in nearside left lateral impacts the PDOF of 

impact played a crucial role in TRA.  Further, three Indy car based racing crashes 

were simulated as part of a comparison study involving nine other simulated cases.  It 
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was seen that for TRA to occur, acceleration along was not enough.  Thoracic 

deformation was essential and the shoulder-clavicle complex played a crucial role in 

TRA by causing relative motion of the sternum and the thoracic spine. 

Utilizing six design factors; B-pillar beam, crossbeam, side conceptual blanket 

airbag, thickness factor, yield strength and by varying the dimensions of the B-pillar 

beam, 18 DOCE simulations were carried out.  The current study suggest that the 

protective effects of an improved side-construction standard can be enhanced further 

by the more rational placement of an airbag-like structure, to buffer head and chest 

contact with the B-Pillar along its entire length from car seat to roof.  It is suggested 

that the combination of these two safety measures, B-pillar beam and thickness is 

likely to result in a significant reduction in both head and aortic Isthmus injury and thus 

to substantially reduce mortality subsequent to lateral motor vehicle crashes.   
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