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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Problem Statement 

 Mobile robots, or Unmanned Ground Vehicles (UGVs), play an increasing 

role in both the defense and security of our nation and in the ability to respond to 

emergency situations.  Robots have been used in Iraq and Afghanistan for bomb 

disposal.  They also played a key role in searching for victims of the World Trade 

Center attack.  They were created to keep our soldiers, or warfighters, out of 

harm’s way. 

 The current method of UGV control is rate control teleoperation, is 

burdensome.  Figure 1 depicts the current way the robots are controlled.  There 

is a high workload that requires constant attention and limits situational 

awareness [1].  A dedicated operator is not able to perform multiple tasks and 

control of the UGV can be difficult when the terrain is rough or communications 

are degraded.   

These robots are currently being used in countries where there is an 

ongoing war.  Those who have attempted to view a laptop’s display while out on 

a sunny day can attest to how difficult it can be to view the contents of the 

screen.  Add to that scenario a stressful situation of using the laptop trying to find 

a bomb buried in the soil and that paints a vivid portrait of why this research is 

needed and important to the Army.  If all the warfighter has to do is designate a 

 



2 
 

point for the robot to go to and they know that it will go to that point reliably, then 

their job becomes easier. 

 

Figure 1: The current method of controlling the military robots is with the operator 

looking at a laptop while driving the robot using a gamepad. 

 

Robots have been in the news in recent months due to the BP oil spill in 

the Gulf of Mexico [2].  The robots were remotely controlled by BP personnel to 

try to cap the damaged oil well.  BP ran into a setback to their containment efforts 

when a saw blade the robot was using became stuck [3]. 

The motivation behind this work was to provide a level of autonomy to 

existing robots used in the field so that operating a robot does not require 

constant supervision.  The costs associated with developing fully autonomous 
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systems may potentially outweigh the benefits [4].  The recent series of DARPA 

Grand Challenges prove that fully autonomous robotic systems are indeed 

possible but technology that creates autonomous systems has at the same time 

also created unwelcome “automation surprises” [5].  DARPA is the military’s 

research organization.  It stands for Defense Advanced Research Projects 

Agency.   

The Three Mile Island disaster in 1979 was caused by a system 

functioning on its own, attempting to compensate for a stuck valve.   The 

operators of the nuclear power plant did not have sufficient time to act before the 

automated system transferred control to them in order to avert the disaster.  The 

same problem occurs in the auto-pilot control in airplanes.  If there are any 

problems with the system, they are often not communicated to their human 

operators in sufficient time to take proper action prior to system failure. 

Situational awareness (SA) is also an important area of study, and 

although it isn’t studied in-depth in this research, the work developed here 

provides a framework to study the effects that the semi-autonomous algorithms 

described in this thesis have on situational awareness.  In [6, 7], Endsley broke 

SA into three levels: 1) being able to perceive elements in the environment, 2) 

understanding what all of the elements mean, and 3) being able to project their 

status in the future. 

The two semi-autonomous algorithms that are the focus of this 

dissertation are visual servoing and visual dead reckoning.  They are both 

explained in more detail in Chapter 2 but in succinct terms for now, visual 
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servoing means using image data obtained from a camera to control a robot and 

visual dead reckoning uses internal properties of the camera combined with 

sensor data that tells the robot its current position based on its previous position. 

The main research question of this work has been to determine if reliable 

goal-based semi-autonomous algorithms are able to improve remote operator 

performance.  The main research questions are: 

1) Can a semi-autonomous algorithm be developed that improves 

performance in a measurable way? 

2) Which tracking algorithms for visual servoing have the best 

performance? 

3) Can these algorithms be implemented on an existing military 

robot? 

4) Once implemented, does the use of the algorithms improve the 

operator’s performance and if so, by how much? 

Beyond the research questions of this work, in order for this to have wide 

acceptance by warfighters in the field, the system has to be easy to use and easy 

to learn.  It should require less mental workload with it than without it.  It should 

not require constant attention.  It should be able to be given a destination and the 

operator knows that it will go there without fail.  If it is burdensome to use, it will 

not be an acceptable form of control. 

1.2 Research Objective and Specific Aims 

The research objectives in this dissertation were developed to try and 

determine if goal-based visual servoing improves operator performance.  To 
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support that research question, three aims were formulated:  The first aim was 

the development and analysis of a tracking algorithm that reliably tracks features 

in real-time; the second aim was the development of a testbed in order to run 

experiments; the third, and final, aim was the development and execution of a 

robust subject test.  Each aim and how it relates to the research objective are 

described later in this dissertation.  Figure 2 shows the broad overview of the 

aims that are a part of this research.  The overall goal was to create a method of 

semi-autonomously controlling a robot and determining if the developed method 

improves operator performance or not. 

 

Figure 2: The main research question and the three specific aims of this 

dissertation. 
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1.3 Outline of this Dissertation 

The second chapter of this dissertation provides background information 

on the hardware used and the software that was developed in creating a testbed 

system for evaluating user performance.  The third chapter details the algorithms 

used for the visual servoing algorithm development.  The fourth chapter specifies 

the implementation of the control algorithms that result in moving the robot based 

on inputs from the user.  The fifth chapter describes the human-in-the-loop 

testing that was performed and the results of the user study that were used to 

determine the tradeoffs between semi-autonomous algorithms and full 

teleoperation perform better than teleoperation.  The sixth chapter concludes with 

a summary of the key contributions of this work and the applications that have 

successfully used the algorithms developed in this research along with an 

analysis of future directions and extensions that would enhance this system. 
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CHAPTER 2 

BACKGROUND 

2.1 Introduction 

This chapter is meant to give a brief overview and literature survey of the 

robots, semi-autonomous algorithms, and typical sensors that form the basis of 

the development of this work.  Section 2.2 describes military robots in more 

detail.  Section 2.3 describes what sensors they are typically equipped with: 

cameras, encoders, and Inertial Measurement Units (IMUs).  Finally, Section 2.4 

gives a brief overview of the algorithms that are used in this work.   

2.2 Military Robots 

 The military has been embracing the use of robotics in recent years to 

help keep warfighters out of harm’s way.  In 2007, the Department of Defense 

released a roadmap [8] for the next 25 years, detailing its paradigm shift in 

fighting wars with robots.  The roadmap report also elaborated on a series of 

goals that the Department of Defense wants to achieve for its unmanned 

systems.  These goals include: 

• Improving  the overall effectiveness of the unmanned systems through 

collaboration 

• Achieving greater commonality and interoperability of unmanned systems  

• Developing standards that support the safe operation and integration with 

the manned systems 
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• Using rapid prototyping and deployment to get the technology out to the 

warfighters as quickly as possible 

In 2007, iRobot was awarded a contract by the US Army to deliver up to 

3,000 unmanned ground vehicles for wide-scale deployment [9].  This marked a 

major change in how the Army had typically purchased robots.  The contract 

award was given the generically named “xBot” but what iRobot delivered were 

PackBot 510s, the same chassis that was the focus of this research. 

Robots in the military are used in reconnaissance and surveillance, target 

identification and designation, counter-mine warfare, and detection of chemical, 

biological, nuclear, and explosive agents.  These robots may either be 

Unmanned Aerial Vehicles (UAVs) or Unmanned Ground Vehicles (UGVs).  The 

focus of this dissertation is on UGVs, specifically, a class known as Man-

Transportable Robotics Systems (MTRS). 

Teleoperation is the current method of control for the MTRS platform.  In 

teleoperation, the operator controls the translation and rotation rates using a 

joystick.  The operator remains in the control loop at all times, which requires 

constant attention.  If there are degraded communications, due to interference, 

jamming, or non-line of sight, teleoperation performance may become impaired 

and increase the difficulty for the operator. 

2.3 Robotic Sensors 

This section gives a brief overview of the sensors that are typically used 

on UGVs.  Most robots manufactured already have the sensors next described 
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built in.  These sensors are described now because the work described in this 

dissertation makes use of each of the following. 

2.3.1 Cameras 

Robots typically are equipped with one or more cameras that transmit the 

video feed back to the human operator.  Typically the video feed that is received 

at the Operator Control Unit (OCU) is compressed and may appear degraded 

because of blocking artifacts.  A blocking, or compression artifact, is the 

noticeable distortion that images can take when the compression algorithm 

discards data to reduce the amount of space it occupies.  In the case of robots, 

the video feed is compressed to reduce its size and the required bandwidth to 

transmit it as it goes over the chosen communications protocol.   

The effect of blocking artifacts is Figure 3.  The left image shows an image 

that was captured from an NTSC camera.  An NTSC camera is analog and in 

order for it to be processed on a computer, the signal has to be converted to 

digital.  This is usually done with a device called a “framegrabber”. The right 

image in Figure 3 is the same image but with 90% JPEG compression applied.   

Figure 4 shows the histograms of the images in Figure 3.  There is a 

measureable loss of detail between the uncompressed and compressed images 

that is able to be seen in the histograms.  This is an extreme example of 

compression for illustration purposes but this highlights the fact that many details 

are lost with compression.  This lack of variation between the two images is 

problematic when trying to track features from frame to frame. 
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Figure 3: The image on the left is an image obtained directly from an analog 

camera.  The image on the right is the same image with 90% JPEG compression applied. 

 

 

Figure 4: These are the histograms of the same two images in Figure 3. 

 

There are two important internal properties of cameras that will become 

significant later on, when describing the algorithms that were implemented.  The 

first is the Field of View (FOV).  The FOV is the angular extent that the world may 

be seen at any given time.  The FOV is calculated both in vertical and horizontal 

directions.  The Instantaneous Field of View (IFOV) is defined as “the angle 
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subtended by a single detector element on the axis of the optical system” [10], or 

in simpler terms, it is the radians per pixel. 

2.3.2 Encoders 

Encoders are sensors that measure rotation.  The measurement of 

rotation allows the calculation of displacement, velocity, and acceleration of the 

object they are on, such as a wheel or a motor.  Typically, encoders use optical 

sensors along with a special reflector that provide electrical pulses to a 

microcontroller. 

Assuming a differentially steered robot, the calculation to find the robot’s 

location is a simple calculation [11].  First, the current distance the robot has 

travelled and its current heading are calculated.  The equation to calculate 

distance travelled is shown in (2.1), where l is the left encoder and r is the right 

encoder.   The equation to calculate θ, or the robot’s heading is shown in (2.2), l 

is the left encoder, r is the right encoder, and w is the wheel base. 

 
2

rl +  (2.1) 

w
rl +  (2.2) 

Using the distance and heading calculations, the robot’s position in 2D 

Cartesian space may also be easily found.  The robot’s X position is given by 

(2.3) and the robot’s Y position is given by (2.4).  In each equation, d is the 

distance travelled. 
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  (2.3) )sin(* ϑdx =

  (2.4) )cos(* ϑdy =

As the robot moves through its environment, its calculated position using 

odometry drifts over time due to wheel slippage and uneven terrain.  This is 

exactly what happens when a car is suck in the snow, for example, the wheels 

are turning but the vehicle is not moving.  The largest error is typically with theta, 

or the heading of the robot.  The equation to find the error in heading is shown in 

(2.5), where l and r are the left and right encoder values and b is the wheel base.  

Figure 5 depicts such an error in theta.  If the robot’s goal point was initially 

designated as the green dot and either slippage or rough terrain caused the 

odometry to be off, then it is easy for the robot to get off course and end up at the 

red dot’s location.   

 

b
rl − 

 (2.5)
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Figure 5: A visualization of small errors in theta that result in large errors in X and 

Y.  The green dot is where the robot would go if no slippage occurs and the red dot is 

where it could end up if odometry is incorrect. 

2.3.3 Inertial Measurement Units 

An Inertial Measurement Unit (IMU) is a sensor that is able to collect and 

report the angular velocity and acceleration of a moving object.  It is able to do 

this by using two separate sensors. The first sensor is a group of three 

accelerometers, one for each axis.  The second sensor is a group of three 

angular rate sensors called gyroscopes.  This configuration is able to report the 

six degrees-of-freedom of the object it is placed on.  In this work, the heading 

from the IMU was integrated with the existing encoder feedback from the robot.  
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This was as simple as reading the value from the IMU, scaling it, and substituting 

the theta value as calculated from the encoders.  This will be discussed in more 

detail in Chapter 4. 

2.4 Semi-Autonomous Algorithms 

Visual servoing [12] is simply the name given for using data captured from 

a camera to control the motion of a robot using computer vision techniques.  The 

first papers published on visual servoing date back to the 1970s [13].  This has 

grown into a very large field of study [14] with many papers published.  The 

papers have traditionally fallen into two broad categories: 2D, or image based 

(IB) [15], and 3D, or position based (PB) [16]. 

In position based control, image features are extracted and a model of the 

scene image features is used to estimate the pose of the target with respect to 

the camera using a geometric model of the target [17].  This approach is typically 

referred to as 3D visual servoing in literature. This method requires precise 

calibration of the camera for it to be accurate.   

Camera calibration [16] is the process of finding the camera parameters 

that affect the imaging process.  Intrinsic camera parameters do not change for a 

particular camera-lens combination.  Intrinsic camera parameters include the 

exact center of the image, the focal length, the lens distortion, and the scaling 

factors that are used for row and column pixels.  The extrinsic camera 

parameters describe the camera’s pose, or its position and orientation, in the 

world coordinate system.  In [18], a methodology was published for 

autonomously calibrating a camera.  Once the intrinsic and extrinsic camera 
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parameters have been found, the pose of the camera in the workspace is able to 

be computed. 

The second class of visual servoing algorithms is image-based [19].  In 

image-based visual servoing, the pose estimate is omitted [20] and the motion 

control is done solely in image space.  There has also been work published on 

“2-1/2D” visual servoing [21] that bridges the two groups by trying to minimize the 

errors in the image and pose space. 

 Dead reckoning [22] has its roots outside the realm of robotics but it is 

basically estimating one’s current position based on a previously determined 

position and advancing that position based on known speeds over time.  Dead 

reckoning has been shown to be used in nature [23].  Dead reckoning has also 

been shown to be used in marine, air, and automotive navigation and it has even 

been proven to be successful in predicting latency and reducing its impact on 

networked games [24].  Dead reckoning has been used to control the Mars rover 

robots [25, 26].  The implementation of “visual dead reckoning” as it pertains to 

this research is described in more detail in Chapter 4. 
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CHAPTER 3 

IMPLEMENTATION AND TESTING OF TRACKING ALGORITHMS 

3.1 Introduction 

This chapter focuses on tracking algorithms.  It starts by giving a broad 

overview of computer vision and also a literature survey is presented describing 

past work in detecting and tracking features.  The approach used to track a goal 

point anywhere in the image using any tracking algorithm is discussed along with 

the approach used to determine which algorithms performed the best using 

defined metrics. 

3.2 Literature Review 

The literature on tracking a point, or multiple points, through a series of 

images is vast because there are as nearly as many different approaches to 

tracking as there are applications.  The basic component of almost any tracking 

algorithm is feature detection and matching.  There is, however, no universal 

definition of what constitutes a feature and beyond that, a feature that works well 

in one algorithm might not work well in another.  Applying a filter, either in the 

spatial or frequency domain, to the input image may help one algorithm while not 

having any effect on another or may possibly render the algorithm ineffective.   

A feature may be loosely defined as an “interesting” part of an image; 

something able to be located from frame to frame.  This definition is intentionally 

vague because there are an abundance of feature detectors that have been 

published over the years.  That language is also intentionally vague because the 
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feature depends on the algorithm and the algorithm’s purpose.  The most 

common types of features found in the literature are edges, corners, and blobs.  

These three types are the focus of the algorithms discussed in this chapter. 

Edge detection is a method used in image processing to detect 

discontinuities in intensity and literature dates back to the 1970s [27].  The two 

main areas of study to find edges that have been apparent over this time period 

are template matching and the differential gradient approach.  The goal of either 

approach is to locate where the gradient magnitude g is sufficiently large to 

indicate an edge. 

Both the template matching and differential gradient approaches locate 

the intensity gradients using convolution masks.  Convolution is a mathematical 

operation that is fundamental to image processing and computer vision as well 

as other areas of science. It is a way to multiply two arrays of numbers, which 

typically have different sizes but the same dimensionality, to output an array of 

the same dimensionality.  Figure 6 shows a small example image on the left and 

an example convolution kernel on the right.  When a convolution is used, it is 

typically done by sliding the convolution kernel, or mask, over the image, usually 

starting at the top left corner and moving it where to where it fits within the image 

boundaries.  For example, the output of the image at pixel location I35 convolved 

by the mask would be: O35 = I35K11 + I36K12 + I37K13 + I45K21 + I46K22 + I47K23. 
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Figure 6: A small example image (left) and a convolution kernel (right). 

 

Both the differential gradient and template matching algorithms make use 

of convolution masks.  The differential gradient algorithm uses two masks, one 

for the x direction and another for the y direction.  The template matching 

algorithms can use up to 12.  The Sobel operator [28] is a well-known template 

matching algorithm for edge detection.  The convolution masks for a 3x3 Sobel 

operator for x and y are shown in (3.1) and (3.2).  Figure 7 shows the results of 

the Sobel operator running on an input image. 
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Figure 7: The results of the Sobel operator running on an image. 

 

Many trackable features tend to be corners.  A commonly used corner 

detection was developed by Harris [29].  The basic idea used in this method is to 

locate points where the surrounding neighborhood shows edges in more than 

one direction.  

In [30], Shi and Tomasi published an enhancement to the work done by 

Harris. They determined that a feature was good as long as the smaller of the 

two eigenvalues was greater than a minimum threshold [31].  OpenCV [32] is an 

open source computer vision library initially developed by Intel.  It contains an 

implementation of both the Shi and Tomasi algorithm and the Harris corner 

detector.   Figure 8 shows the results of running Shi and Tomasi algorithm on an 

image taken from within the lab. 
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Figure 8: The "good features" to track that were found running OpenCV's 

implementation of Shi and Tomasi's algorithm. 

 

In [33], the authors assumed that a corner looks like a blurred wedge and 

then computed attributes of the wedge (the amplitude, angle, and blur).  In [34], 

the authors generalized that work and they proposed calculating corner strength 

by looking at pixel values within a disc.  They calculated the proportion of pixels 

whose intensity value is within the disc’s center, or nucleus.  The pixels that have 

a value closer to the nucleus receive a higher score.  They called this measure 

the USAN, or Univalue Segment Assimilating Nucleus.  If the USAN has a low 

value, then it is indicative that the USAN is a corner because it is different from 

its surroundings.  These candidates are then run through another test to winnow 

out bad candidates and the resulting USANs make up the SUSAN, or Smallest 

USAN. 
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FAST [35], or Features from Accelerated Segment Test, considers the 

pixels inside a Bresenham circle (midpoint circle algorithm) with a radius r, 

around a candidate point.  If there are n contiguous pixels that are all brighter 

than the nucleus by threshold value t, then the nucleus is considered to be a 

feature.  The authors did testing to determine the optimal parameter values.  If r 

has a value of 3, then the circle created using the Bresenham algorithm contains 

16 pixels and when they set n to equal 3, they found that the algorithm did not 

detect lines and found only corners. 

In [36], the authors took a unique approach of finding image features 

though the use of genetic programming.  They were looking for points that had 

global separability, high information content, and were stable under “illumination 

change, rotation, scale change, and affine transformations”.  They noted their 

future work will construct image filters that adapt to the environment, meaning 

that different filters would run for an indoor environment as opposed to outdoors. 

Once features have been found, the next step is to track them from frame 

to frame.  The review of literature in this field has primarily been limited to optical 

flow, blob, and correlation tracking because these three areas seem to be the 

most active areas of research. Each area is next described in detail. 

The first class of tracking algorithms to be considered is optical flow.  

Optical flow is a method of estimating motion from frame to frame.  Optical flow 

algorithms fall into two categories, sparse and dense.  Sparse optical flow 

specifies a set of points to track from frame to frame, while dense optical flow 

looks at every pixel. 
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The Kanade-Lucas-Tomasi (KLT) algorithm [37] attempts to produce 

dense results, but their algorithm can easily be applied to a subset of points so it 

has become a popular sparse method.  The KLT algorithm relies on local 

information derived from a small window surrounding each point of interest.  The 

use of a small window size leads to problems detecting large motions.  This led 

to the development of the KLT “pyramidal” algorithm [38].  This algorithm creates 

an image pyramid [39], which is a way to represent an image as a collection 

where the resolution changes at each level.  The KLT pyramidal algorithm starts 

tracking from the highest level of the pyramid (the level that contains the least 

amount of detail) to the lowest level (the level that contains the most amount of 

detail).  This tracking over a pyramid allows for larger motions to be caught by 

the larger spatial scales. 

There are also several implementations of dense optical flow.  A popular 

one from Horn and Schunck [40] was the first to use brightness constancy 

assumption to derive the basic brightness constancy equations.  There are other 

methods to fall into the category of block matching, where algorithms divide the 

image into regions and match on those regions.  More recent work published by 

Farnebäck [41] implemented dense optical flow by using polynomial expansion.  

He did this by fitting data in an image in a neighborhood to a quadratic 

polynomial model I(x) = xTAx+bTx+c. 

The problem with these versions of optical flow is they make certain 

assumptions that fail with the target application of the research proposed here.  

One assumption is that brightness in small regions will remain the same, 
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although the location will change.  This may be true in data collected in a 

controlled environment, but in real-world use, the illumination frequently changes.  

It also assumes spatial and temporal persistence, but this assumption fails in this 

context because on a moving platform, the amount of motion is not always 

consistent.  Optical flow also suffers from the aperture problem which is usually 

illustrated with a picture of a barber’s pole.  The actual motion of stripes on a 

barber’s pole move horizontally but if the optical flow algorithms ran on that 

scene, they would all sense that the motion is vertical. 

In [38], the authors used the KLT algorithm with modifications to process 

color images [42] along with accounting for changes in pixel brightness and 

contrast [43].  As features are lost from too much motion, they are replaced, 

keeping the number of features they track at a constant number.   They also 

estimated the inter-frame motion to assist the tracking algorithm in a process 

they called “guided tracking”.   

Blob detection refers to algorithms to detect points or regions in an image 

that are either brighter or darker than their surroundings.  Scale-Invariant Feature 

Transform (SIFT) [44], was developed to be invariant to scale.  SIFT is also 

invariant to rotation because it detects the dominant gradient orientation at its 

location and records its local gradient histogram results with respect to this 

orientation.  SIFT is also invariant to small affine transformations.  

The algorithm first performs a Difference of Gaussian (DoG) operation.  

The DoG is an image filter that subtracts a blurred version of an original image 

from another, less blurred image.  The blurring is done by convolving the input 
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image with Gaussian kernels that have differing standard deviations.  This filter is 

capable of suppressing high-frequency spatial information.  The subtraction of 

one image from another image preserves spatial information that is contained in 

the two blurred images.  The second step in the SIFT algorithm performs 

keypoint localization where keypoints are selected based on their stability.  The 

third step assigns orientations to each keypoint location based on local image 

gradient direction.  The final step assigns a descriptor to each keypoint and the 

goal is to assign a descriptor (feature vector) that is highly distinctive.  The 

feature vector contains a set of orientation histograms that are relative to the 

orientation of the keypoint.  Each histogram contains 8 bins and each descriptor 

contains an array of 4 histograms around the keypoint, which leads to a 128 

element feature vector.   

Speeded-Up Robust Features  (SURF) [45], is another type of blob 

detection.  It was developed to be faster than SIFT and more robust against 

different image transformations.  The speed improvement in the SURF algorithm 

comes from its use of an “integral image” [46].  The integral image, also known 

as a summed area table, is calculated by the sum of the values above and to the 

left of a point (x,y).  The integral image was first described in 1984 [47].  The 

SURF algorithm makes use of several rectangular regions and each region is 

calculated using the integral image algorithm. 

Although SIFT and SURF operate differently, they both output a descriptor 

vector that can be matched to descriptor vectors from other images.  There have 

been different methods of matching descriptors proposed.  In [48], Lowe 
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proposed computing the nearest neighbor of a feature and then checking to see 

if the second closest neighbor is further away from a given threshold.  In [49], the 

authors considered only the nearest neighbor or if the distance is smaller than a 

threshold.  Another method later proposed by Beis and Lowe [48] computed only 

the approximate nearest neighbor using a kd-tree, which is an extension of a 

binary search tree. 

SURF does have several descriptors types of varying length.  The regular 

version of SURF has a length of 64 but there is also a version where they double 

the descriptor length to 128.  U-SURF is another version where the rotation 

invariance is left out, which makes the calculation faster. 

There are two methods that have been published using SIFT features to 

track points from frame to frame which could also be extended to SURF features.  

One is to track the SIFT feature from frame to frame, as was used in [50].  This 

method was tried and was not found to be reliable.  The SIFT features were not 

able to be reliably found from one frame to the next, especially in large, open 

areas such as grass and sky. 

Another method that has been used is to find all SIFT features from frame 

to frame, and then find the affine transformation (using the putative matches 

between the two images using either robust least squares or Random Sample 

Consensus (RANSAC) [51]).  An affine transformation preserves collinearity and 

relative distancing.  They allow for repositioning, scaling, skewing, and rotation.  

In [52], the authors used the affine transformation to obtain the angle to the target 

location for controlling an Unmanned Aerial Vehicle (UAV).   

 



26 
 

Correlation tracking is a well-studied method and was first published in the 

1970s [53-58].  Correlation is used to measure how a given quantity changes.  

Correlation can be used in image processing to calculate how feature points from 

one frame to the next change over time.  The correlation tracker that was used in 

this analysis will be described in more detail later. 

All of the above approaches to tracking have many different parameters 

that can be changed.  This means that an approach that works well for one 

algorithm dataset may not work well for another.  The goal of this aim was to 

determine which tracking algorithms are robust and perform well in real-time with 

real-world conditions. 

In related work, Matchmoving is a technique used in cinematography that 

deals with seamlessly inserting virtual objects into a real-world scene.  There are 

several commercial products available [59-61] that all track a point through a 

series of input images and figure out the 3D representation.  There is an open-

source project [62] that has been started and currently implements the KLT 

optical flow and SURF algorithms.   

Although the goal of matchmoving is working with one scene at a time, 

they do use many of the same algorithms as this work does.  The reliability of the 

algorithms developed in this research may also be of interest in this community 

because this aim produced a software environment (described in more detail 

later) that implemented a large number of tracking algorithms. 
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3.3 Methods 

This section describes the tracking algorithms that were developed for this 

research.   The methodology used to track a goal point using each algorithm is 

detailed is discussed.   Finally, a testbed that was created for this research is 

described. 

3.3.1 Implemented Tracking Algorithms 

This research used algorithms from each of the three main classes 

described above to see how they compare.  The three classes of tracking 

algorithms were correlation, optical flow, and blob.    This section explains each 

algorithm’s implementation in more detail.  Figure 9 depicts the overall goal of 

this aim.  It was to analyze tracking algorithms and determine how they compare 

in their accuracy of tracking a goal point and how efficient they are. 

. 
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Figure 9: The overview of the three classes of tracking algorithms analyzed. 

 

3.3.1.1 Correlation 

The correlation tracker that was used in this research was developed by 

Turing Associates, Inc. as part of a research grant from the US Army.  The 

algorithm finds the location of the goal point in the new frame that best correlates 

to the interest point in the reference frame.  The novel approach that was used 

was a virtual large kernel “Multi-Resolution Progressive Alignment” search 

(MRPA).  The unique attribute of this algorithm is that it is able to track a goal 

point without nearby features.  A point on a blank white wall will obviously not 

track very well but the correlation tracker is the only method that can directly 
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track a goal point.  It is able to do this because uses a foveal kernel that tracks 

interest points without nearby features.   

Figure 10An example foveal kernel is shown in .  The effect of using the 

MRPA is that it is sampled less densely at the periphery and more densely 

towards the center.  It uses a large search space with a large kernel.    The 

“progressive alignment” part of the algorithm accumulates data across resolution 

levels. 

 

Figure 10: An example foveal kernel that the correlation tracker uses to track a 

point. 

This tracking algorithm has undergone several revisions since the contract 

was awarded a number of years ago.  One of the more recent modifications was 

done was to use a uniform kernel that had two parameters, the spacing in pixels 

and the number of points in the kernel.  The geometry of this kernel is useful 

when going through a doorway, for example, because there are generally no 

features at the center of the doorway and the navigation is with respect to the 

features at the side. 
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The spacing in the uniform kernel allowed utilization use of Nyquist’s 

theorem that states that a signal must be sampled at least twice as fast as the 

bandwidth of the signal.  In the kernel spacing, this meant that the spacing could 

measure signals with a wavelength of 2S, where S is the spacing in pixels.   

Another enhancement that was done to the correlation tracker was in 

making the algorithm more robust.  In order to have robust tracking, there are two 

important considerations that apply to all of the tracking algorithms.  The first is to 

recognize accurate tracking.  The second is to be able to recognize point drift.  

The approach used for the correlation tracker is shown in Figure 11.  This 

approach automatically skips corrupted frames due to motion blur or 

communication errors. This is also more stable because of the multiple tracks 

and the added median filtering. 
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Figure 11: This is the process developed to make the correlation tracker robust. 
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3.3.1.2 Tracking a Goal Point 

 The next two classes of tracking algorithms, optical flow and blob, do not 

directly support tracking a goal point because the features they track depend on 

what each algorithm defines as a feature point.  Tracking a goal point that is 

anywhere in the image is important for the visual servoing application because 

an operator will want to direct the robot to go anywhere in the camera’s field of 

view and not be limited to only features that can easily be tracked by a particular 

algorithm.  The image in Figure 12 shows an outdoor scene of a path with woods 

and vegetation on each side.  The green points indicate the corners that were 

found in the first step of the KLT algorithm.  If a robot moves straight through this 

scene, the points contained in the two yellow ellipses would move more than the 

points contained in the red ellipse.   
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Figure 12: An image of wooded path.  The green points were found using Shi and 

Tomasi’s corner detector.  The points contained in the yellow ellipses have greater motion 

as the robot moves forward than the points in the red ellipse. 

 

In the study of plane geometry, there are affine and projective 

transformations.  An affine transformation preserves colinearity between points 

and the ratio of distances of collinear points.  A projective transformation keeps 

straight lines straight but it does not preserve the angles between the lines 

because the warping cannot be defined as an affine transformation.   

In the example of moving through the wooded scene, an affine 

transformation is not sufficient to describe the changes in the scene as a robot 

drives through it.  There are actually multiple projective transformations that are 

occurring, one for each surface facet.   

 



34 
 

Make3D [63] is an open-source project that takes a single image still and 

produces a 3D model that can then be used to virtually “fly-through” the scene.  

The author did this by using supervised learning to predict the depth map as a 

function of the input image.  The use of Make3D is described later in this chapter 

but for now, Figure 13 illustrates this point of multiple projective transformations.  

This is the same scene that was shown in Figure 12 but with the 3D facets, as 

found by Make3D, overlaid on the scene.  As the camera moves through the 

scene, each of those facets undergoes a transformation.   

 

Figure 13: This is the same wooded scene shown earlier but with the 3D facets 

found using Make3D shown. 

 

The approach developed to track a goal point makes use of an affine 

transformation but it was limited to a specific region, which is described later.  
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Going back to the affine transformation, there are six values that specify that 

transformation [64].  Those six values, A, B, C, D, E, F, have to satisfy the 

formula in (3.3).  In (3.3), the X and Y are the old coordinates and X’ and Y’ are 

the new coordinates.  The equation may also be written in matrix notation as 

shown in (3.4), where T is a 3x3 matrix of coefficients shown in (3.3). 
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A general affine transformation from 2D to 2D [65] is shown in (3.6) and 

requires six parameters that can come from three pairs of points.   
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Figure 14 shows a simple example of using three pairs of points (blue points)  to 

track the goal point (red point) from frame to frame.  The three input points (blue) 

are fed into the equation in (3.6) and the resulting affine transformation is used to 

calculate how the points moved and the motion is applied to the goal point (red).   

This approach in (3.6) is simple and if there are any errors in the input 

coordinates, the calculated transformation will be wrong.  Those errors 

accumulate over time and it doesn’t take long for tracking a goal point to be 
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significantly off.  In order to reduce the amount of error, a better approach is to 

use many pairs of points and find a method of rejecting outliers.  One method is 

the RANSAC algorithm described earlier.  Another is similar to the least squares 

approach of fitting a straight line [65]. 

 

 

Figure 14: A simple example of tracking a goal point (the red point) from frame to 

frame using three non-collinear points (blue points). 

 

The approach used in this research uses an affine transformation 

combined with limiting the points to a specific region.  That region is found using 

image segmentation.  Image segmentation is another popular area of computer 

vision research and there have been a large number of papers published on the 
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topic.  The goal is to partition an image into a set of regions.  The image 

segmentation algorithm used in this research is a graph-based approach [66].  

This method was chosen because the authors were kind enough to release a 

C++ implementation of their algorithm and it was fast enough for the needs of 

this research and it was able to be easily implemented into the code base.    

The algorithm looks for similar regions based on color and texture and 

attempts to group like pixels together.  Figure 15 shows an example image taken 

from within the laboratory.  The image on the left is the segmented image using 

the graph-based algorithm.  The pseudo-color image is created by randomly 

drawing an RGB color for each detection region.  The image on the right is the 

input image with the detected regions drawn in green.   

 

 

Figure 15: A scene from inside the laboratory.  The image on the left is after the 

image was segmented using the graph-based algorithm.  The image on the right is the 

input image with the detected regions overlaid in green. 

 

There are several input parameters to the segmentation algorithm.  Sigma 

controls how much smoothing to apply to the image prior to doing the 
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segmentation.  This is important so that the algorithm doesn’t detect too many 

regions.  There is a constant, K, used for a thresholding function, and, c, that 

controls a post-processing step that will merge smaller regions together to 

attempt and meet minimum number of regions specified.   

In this research, if the segmented image does not contain the minimum 

number of regions that were specified, the image is segmented again with the 

next set of parameters.  In the first set of parameters, sigma was 0.5, K was 500, 

and the c, minimum number of regions, was 50.  In the second set, sigma was 

0.5, K was 750, and c was 100.  In the third set, sigma was 0.5, K was 1000, and 

c was 100   These values were all empirically found and in the datasets that were 

worked with. 

The segmented image is used in the developed tracking algorithm by 

making the assumption that regions belong to objects and that the operator 

wants to go to an object.  After the region has been found, points located on that 

region are tracked and the affine transformation is calculated from frame to 

frame.  There must be at least three non-collinear points for this algorithm to 

work.   

3.3.1.3 Optical Flow 

 Three optical flow algorithms, Horn-Schunck, Farnebäck, and KLT, were 

analyzed for this class of algorithms.  Horn-Schunck and Farnebäck are 

classified as dense because nearly every pixel’s movement is calculated from 

frame to frame.  The KLT sparse optical flow algorithm, on the other hand, tracks 

corners from frame to frame.   
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The optical flow algorithms typically operate by searching a fixed size 

window, from frame to frame, normally using the sum of squared differences 

metric to determine the position of the corner in the new frame.  This method is 

fast but can be unreliable because a spiral search is typically used.  A spiral 

search continues to find the next corner using Euclidean distance and once a 

match that meets a threshold value has been met, the search stops.  This 

method can output many incorrect matches. 

A method that has been shown in literature to successfully identify and 

reject the outliers, or bad matches, is the RANSAC algorithm [51].  Figure 16 

shows an example of using several different methods to fit a line to noisy data 

[67].  RANSAC is good at rejecting outliers but because it is iterative, it can be 

resource-intensive to find an acceptable solution.   
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Figure 16: An example of fitting a line using several different methods, including 

RANSAC.  The data points, containing outliers, are represented by black dots.  The exact 

system is indicated by the green line, a linear fit is denoted by the red line, and the line 

that was found using the RANSAC algorithm is shown in blue. 

 

The more accurate that the corner points can be tracked, the more 

accurate the calculated location of the goal point will be from frame to frame.  In 

this research, a descriptor was added to the KLT optical flow algorithm to 

increase its reliability.  Several different shapes, or “patches” around a corner 

point were implemented including a rectangle, a disc, and an annulus.  The disc 

construction used Bresenham’s circle algorithm [68].  An example of the annulus 

patch is shown in Figure 17.  There are two parameters to the annulus, the outer 

and inner radii.  Even though circular descriptors are computationally intensive 

compared to rectangular ones, they were chosen to be robust to roll. 
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Once corners have been found in the reference and test frames, a match 

can be found using several different ways.  One method is to use a descriptor of 

some sort and then use the nearest neighbors approach.  The kd-tree algorithm 

[69] continues to be popular in literature to match descriptors.  The methodology 

of the kd-tree is relatively simple.  At each node, the points are recursively 

partitioned into two sets by splitting along one dimension of the data, until some 

criteria to stop has been met [70].  The Approximate Nearest Neighbor [71] 

(ANN), is a kd-tree implementation.  The author of Bundler [72], a project to build 

a 3D model from an unordered collection of images, converted the ANN 

algorithm to search a vector of unsigned bytes.  The FLANN algorithm [73] uses 

different tree structures and automatically chooses the best one based on the 

data.  There are also PCA trees [74], Ball trees, [75], and k-means [76].  .   

 

Figure 17: Example annulus descriptor used for adding a descriptor to the KLT 

algorithm.  There are two parameters to an annulus, the inner and outer radii. 

 

 The idea behind a histogram-based approach is another way to compare 

images.  This is highlighted in Figure 18.  The image in the figure was first 

converted to the HSV (hue, saturation, and value) colorspace and then a patch 

was extracted around each interest point, and the histogram of the value, or 

intensity, plane is displayed. 
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Figure 18:  An image from the SUV dataset where three patches were extracted, 

converted to the HSV (hue, saturation, and value) colorspace, and the histogram of each 

patch was calculated using the value plane. 

 

There are several algorithms already implemented in OpenCV [32] that 

were used to perform histogram matching.  In the equations listed below, H1 and 

H2 are two histograms that are being compared.  The first histogram matching 

algorithm is a measure of correlation, the equation for which is shown in (3.7).  A 

perfect match is when the correlation equals 1.  A total mismatch is when the 

correlation is 0.   
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 1, 2 ∑

∑  
 (3.7) 

 

The Bhattacharyya matching algorithm is shown in (3.8).  A perfect match occurs 

when the value returned is 0 and a mismatch is when the value is 1. 

 

 1, 2  1  ∑  
∑  ∑

 (3.8) 

  

Another method of matching two images of the same size is by calculating 

the 2D correlation coefficient.  The equation for calculating the 2D correlation 

coefficient is shown in (3.9). 

  

  ∑ ∑   

∑ ∑  ∑ ∑  
 (3.9) 

   

The Sum of Squared Distances (SSD) is another approach already used by the 

optical flow algorithms.  The equation for the SSD metric is shown in (3.10).  

∑ ++−=
),(

2)),(2),(1(
ji

jyixIjiISSD  (3.10)  

The importance of choosing a circular descriptor able to handle roll is 

shown in Figure 19.  The input shape was rotated clockwise 45, 90, 135, and 180 

degrees and then the 2D correlation coefficient was calculated at each rotation, 
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comparing the input image to the rotated image.  The correlation coefficient 

dropped considerably with the introduced roll. 

 

 

Figure 19: The computed 2D correlation coefficient of an input shape compared 

with the shape being rotated. 

 

Before comparing two patches, it is important to line the two corners up.  

The approach taken in the experiment was to first find the SIFT features in both 

the reference and test frames and use that to calculate the global affine 

transformation.  The calculated affine transformation was then applied to the test 

image prior to using the Harris corner finder algorithm.  There are other methods 

to this.  One approach would be to take square bounding the region and rotate 

the detected corner in both the reference and test frames so that the corner was 

vertical, as depicted in Figure 20. 
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Figure 20: A possible configuration (12:00 position) of aligning each corner in 

order to calculate the match. 

 

An experiment was conducted to determine the accuracy of the various 

descriptors and the most accurate method to match them.  The shapes of the 

descriptors around a feature point used were: a 30 pixel x30 pixel rectangle, a 

disc with a radius of 15 pixels, and an annulus with an outer radius of 15 and an 

inner radius of 5.  The descriptor matching methods were the 2D correlation 

coefficient, the Sum of Squared Differences, a kd-tree, and the two described 

histogram matching algorithms.  The SSD method ran an exhaustive search on 

all corners and did not use the spiral search described above. 

 In the histogram methods, the image was converted to HSV and the 

values were separated into 32 bins using the intensity plane.  For the kd-tree 

algorithm, the 2D vector had to be converted to 1D.  The rectangle was 

converted in a row-wise manner to a 1D vector.  The process for the disc and 

annulus shapes started at the innermost edge and went in a clockwise direction, 

listing the values. 

Table 1 summarizes the steps in the experiment.  The first step was to 

randomly draw 50 reference images from a collection of approximately 2,000 

images. This collection of images is described in more detail later in this chapter. 
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They are composed of four different scenes with a camera on a robot recording 

the video as it drove towards an object in each scene.   

The test frames were the next sequential images in the dataset, meaning 

they were the next frame taken after the reference frame when the data were 

collected.  Next, SIFT features were calculated in both the reference and test 

frames and the global affine transformation was found to align the two images.  

This was done to ensure the corners lined up.   

Next, the Harris corner detector algorithm was run on the reference frame 

and found corners that had a minimum distance to 20 pixels to the next closest 

corner.  This was done because the verification step of this algorithm was done 

visually and by having the features spread apart, it made it easier to check.  

Next, the Harris corner detector was run on the test and found all corners and no 

minimum distance was specified.  The next step applied each of the descriptors 

(rectangle, disc, and annulus) to each point in both frames and matched them 

using one of the four metrics. 
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KLT Descriptor Experiment  

1) Randomly sample 50 pairs of image from a collection of 
approximately 2,000 images.  

2) Find the SIFT features, match them, and calculate the global 
affine transformation for the reference and test frames, warp 
test frame to align images. 

3) Find all Harris corners in the reference frame (time t), a 
minimum of 20 pixels apart.  

4) Find all Harris corners in the test frame (time t+1). 

5) Visually inspect and determine the number of correct 
matches 
 

Table 1: Methodology used to test the accuracy of various KLT descriptors. 

 

The results were visually inspected and the number of correct matches 

was recorded.  A total of 1,000 points were used for this test.  The results of the 

experiment are shown in Table 2.  This does pave the way for future work with 

this descriptor and because this functionality is within TACTCIAL, it allows for 

further experimentation.   
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kd‐
tree 

Histogram 
(Bhattacharyya) 

Histogram 
(corr)    2D Corr  SSD 

Rectangle  0.887  0.823 0.822 0.819  0.777
Disc  0.922  0.835 0.833 0.823  0.789
Annulus  0.878  0.812 0.789 0.813  0.735
Mean  0.90  0.82 0.81 0.82  0.77

 

Table 2: The results of the experiment conducted to add a descriptor to KLT optical 

flow. 

The 2D correlation coefficient with the disc-shaped descriptor had the best 

performance with 92% of the corners matched correctly between the two frames.  

This descriptor shape and matching method was also used in determining which 

tracking algorithm performed the best, which is described later. 

3.3.1.4 Blob Trackers 

The approach to tracking a goal point for the two blob trackers is 

essentially the same as the optical flow algorithms.  The image is first segmented 

to find the region that corresponds to where the operator clicked and the 

keypoints are matched from frame to frame.  Next, the non-collinear points are 

used to calculate the affine transformation of the goal point from frame to frame. 

This matching step in each of the blob trackers is susceptible to incorrect 

matches.  Figure 21 shows an example of matching SIFT features from two 

consecutive frames in the “wood pile” dataset.  The algorithm appears to match 

the majority of the points successfully but there are several by the tree, 

highlighted by the yellow ellipses, on the right side that it fails to match correctly.  

One method of eliminating incorrect matches is to use the RANSAC algorithm, as 

described earlier.   
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Figure 21: An example of matching SIFT features from two Images from the “wood 

pile” dataset.  The yellow ellipses show where the SIFT algorithms made obvious 

mismatches. 
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3.3.2 Tracking in 3D 

After developing a method to track a goal point using any algorithm, the 

next step was to see which one performed best.  The first method that was tried 

for analyzing the tracking algorithms was to use a virtual 3D world.  Make3D, 

described earlier, was used to create a 3D VRML model of a single image.  

Figure 22 shows the view from within MATLAB of tracking a point while the 

model is flown through in azimuth at each timestep. 

 

Figure 22: Tracking in 3D within MATLAB using a model generated by Make3D, an 

open-source project that takes an image still and produces a 3D model.  The scene is 

rotated programmatically by a script. 
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 MATLAB’s Virtual Reality Toolbox was used to test if the idea was 

feasible.  The scene in Figure 22 was programmatically moved a set amount by 

the program while the tracking algorithm tracked the goal point.  Several of the 

tracking algorithms were already able to be called from within MATLAB as a 

proof of concept.  Once it was established as possible, an open source project, 

“view3dscene” [77] was used because it is written in C++.  This made it easy to 

implement with the existing codebase.   

 Figure 23 shows the same wooded scene as before, created using 

Make3D, but this time it is being “walked through”.  It is difficult to easily show but 

the camera’s perspective is able to be change programmatically to simulate 

walking through the scene.  The goal point is shown as a while dot, far off in the 

background, and the facet it is on is shown by the white triangle. 
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Figure 23: The same wooded scene shown before but it was converted to a  3D 

“fly-through” scene using Make3D.  It is able to be programmatically “walked-through” 

using a modified open source project, “view3dscene”. 

 

Although this approach was demonstrated to be feasible, it didn’t give 

accurate enough ground truth data.  The 3D facet that the tracked point was on 

could be obtained programmatically but the facets were sometimes large.  Being 

able to reliably calculate ground truth was a problem.. 

This approach also did not give the same motion that an actual robot 

driving in a real scene would give.  The real-world conditions of a robot driving 

through a scene and the associated motion blur is difficult to simulate.  As a 

result of the simulation environment not being accurate enough, data were 
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collected using a robot used that for the analysis of tracking algorithms.  The next 

section details the data that were collected and the method used. 

3.3.3 Data Collection 

In order to prepare for the analysis of which tracking algorithm performed 

the best, data were collected using a robot to capture real-world movement along 

with the inherent imperfections such as motion blur.  The data used for the 

analysis of the tracking algorithms were collected using the Intelligent Ground 

Vehicle Competition (IGVC) platform.  It was equipped with a Sony NTSC 

camera, GPS, and an Inertial Measurement Unit (IMU) and is shown in Figure 

24.   

The platform was also equipped with encoders able to read data from the 

motor controller.  Data were collected with an on-board computer while the robot 

was being driven with a joystick.  The input commands from the joystick, along 

with the motion commands sent to the robot, were also recorded.  In each 

dataset, the task was to drive towards a target and record the data along the 

way.  The data collection was done around Wayne State University’s campus 

and in a typical park.   
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Figure 24: The IGVC platform that was equipped with a camera, GPS, and an IMU 

for data collection. 

 

Figure 25 shows the four datasets used for the analysis of tracking 

algorithms.  The “Sign” dataset contains 241 frames.  The “Silver Car” dataset 

contains 943 frames.  The “SUV” dataset contains 562 frames and the 

“Woodpile” dataset contains 228 frames. These scenes were picked because the 

target stayed in the camera’s field of view for the entire duration and there were a 

substantial number of frames that could be used for the analysis.  More details 

on the dataset are contained in Appendix B. 
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Figure 25: An image still from each of the four datasets used in the tracking 

algorithm analysis. 

3.3.4 Software Development Environment (TACTICAL) 

TACTICAL, Tracking Algorithm Comparison Testbed for Comprehensive 

Analysis and Learning, was developed as part of this research in order to have a 

common method of evaluating the implemented algorithms and to have a single 

environment for all image operations.  The “Learning” in TACTICAL’s name 

implies the user is able to learn which filters and features work best for a given 

dataset and does not currently implement any machine learning algorithms.  It 

allows the user to load a video file or a series of sequentially numbered images, 

change the parameters of the desired tracking algorithm, click on a point to track, 
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and observe how well the algorithm does at tracking the goal point.  Figure 26 

shows a screen capture of one of the tabs within TACTCIAL.  The source code 

for TACTICAL, along with the datasets mentioned earlier, have been released to 

the open source community [78].  It was developed and released as open source 

in the hopes that other researchers in this field find it useful. 

 

Figure 26: Screenshot of TACTICAL, the software testbed used for the tracking 

algorithm analysis 

  

TACTICAL has the ability to apply various image operations on the video 

stream before the tracking algorithms are called. The tracking algorithms used in 

this research all operate on grayscale images.  There are different algorithms 

that have been developed to convert an image to grayscale but there is a tradeoff 

in the quality of the converted image with the time that takes.  In TACTICAL, 

there are several algorithms implemented.  The first, and fastest, takes only the 

green plane and discards the red and blue.  The second is the lightness method, 
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which takes the mean of the maximum and minimum RGB value for each pixel.  

The third algorithm is the average method which takes the mean of RGB pixel 

values.  The fourth algorithm implemented is the luminosity method which applies 

a weighted average to each red, green, and blue pixel.  The weight is adjustable 

within the software environment. 

There is also the ability to use different color models.  The Hue, 

Saturation, and Value (Intensity) color model (HSV) was implemented.  In this 

color model, the intensity, or gray-level value, is decomposed into two color-

carrying components, hue and saturation [79].  The Lab color model was also 

implemented, where L is the luminance value and a and b represent the two 

color channels.  This is the color space that most represents human vision. 

A large number of filters both in the spatial and frequency domains were 

developed over the course of several years.  In the spatial domain, smoothing 

filters such as order-statistic and lowpass filters were implemented.  Laplacian 

and gradient sharpening filters in the spatial domain were also implemented.  On 

the frequency domain side, several lowpass and highpass filters were developed. 

This collection of filters has been in development over several years.  The 

development of TACTICAL allowed for a common place to use them all.  This 

was useful because the effect of using a filter with a tracking algorithm isn’t 

known until it has been tried. 

  A good example of this is with the SIFT algorithm.  The literature does 

not mention it but it was found that by applying a high-pass filter to the frame 

prior to finding SIFT features, it improves the algorithm’s performance.  These 
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interactions are not able to be found without experimentation.  The main goal of 

TACTICAL was to have everything easily accessible so an analysis could be 

quickly and easily performed. 

The ability to add compression to the datasets within TACTICAL was also 

significant.  JPEG and MPEG compression were added into order to degrade 

each dataset to determine how each tracking algorithm performs.  This simulated 

the real-world conditions at the OCU. 

Another important component added to TACTICAL was the ability to 

manually add ground truth to a dataset.  This was a simple annotation tool that 

allowed a user to click through the video and designate the goal point in each 

frame.  The output is simply a text file with the X and Y coordinates input by the 

user at each frame of the input video.  There is also a method to click through, 

verify, and change the goal point’s location, if needed.   

This addition was significant because it addressed the problems 

experienced with tracking in 3D, which were the inability to simulate the motion of 

a robot moving through an environment and with the 3D facets not providing 

precise ground truth data.  Although the location of the tracking could be 

obtained programmatically, the area the facet covered could be small or large.  

This annotation tool is not perfect because the ground truth is only as accurate 

as the user’s ability to click on the goal point from frame to frame.  It is also a 

very time consuming process, especially when labeling multiple points in the 

scene because the entire dataset has to be processed for each goal point.  In 

hindsight, a better way to handle this would have been to program a method of 
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inputting how many goal points were going to be labeled for that particular 

dataset and allowing the user to click on all of the goal points before moving on 

to the next frame. 

A popular method mentioned in the literature of tracking algorithm is the 

use of synthetic images to know ground truth [80].  While this approach is 

certainly valid for some problem domains, this was not the case with this 

research.  This method captured real-world conditions so the tracking algorithms 

could be made to perform as robustly as possible and the algorithms could be 

validated as working properly before implementing on an actual system.   

3.4 Results 

This section details the results of the experiments run to measure which 

tracking algorithms performed the best.  The metrics used included 

computational speed, overhead, accuracy, and the effect added compression 

had on the algorithm’s ability to track the goal point.  The eight algorithms used in 

this analysis are summarized in Table 3.  The KLT with descriptor was the disc-

shaped region with the 2D correlation coefficient as the metric. 
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Table 3: The eight algorithms compared in this analysis. 

 

All development of the tracking algorithms and experiments detailed below 

were run on an Intel Core Duo processor with 2 GB memory.  The computer ran 

Ubuntu version 8.04.  The code was all written in C++. 

3.4.1 Speed 

The first metric run was solely on execution time.  All algorithms were run 

within TACTICAL and as such, were all coded in C++.  Figure 27 shows the eight 

algorithms.  The mean execution time across all four datasets is shown.  The 

correlation and versions of KLT were orders of magnitude faster than the dense 

optical flow and blob algorithms.  Figure 28 shows the same data as Figure 27 

but with the correlation and KLT algorithms pulled out. 
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Figure 27: Execution time (in milliseconds) of the eight algorithms compared 
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Figure 28: Execution time of the correlation tracker and KLT versions. 

 

The dense optical flow algorithms and blob trackers could conceivably 

process data at 1-2 Hz.  The correlation and KLT algorithms are capable of 

processing in the realm of 10-15 Hz on the typical OCU hardware that normally 

 



62 
 

ships with the PackBot.  There have been recent advances in using the GPU for 

processing that could possibly increase the speed of the slower algorithms. 

3.4.2 Memory Consumption 

The amount of memory consumed was another metric looked at for each 

of the algorithms.  After each algorithm executed on a frame, the system state 

was queried for the amount of memory being consumed.  Figure 29 shows the 

mean memory used across all four datasets. 

0
5
10
15
20
25
30
35

Memory Used (% total)

Memory Used (% total)

 

Figure 29: The mean memory consumption over all four datasets. 

The results for memory consumption were consistent with what was found 

for the mean time.  The correlation and KLT optical flow algorithms occupied the 

least amount of memory. 

3.4.3 Accuracy 

As discussed earlier, the data for the tracking algorithm analysis were 

collected in such a way that a specific object was designated as the goal point 
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and the robot was driven towards the object.  Each of the four datasets had a 

visible target.  Five different people were asked to click on the object in each of 

the four datasets.  These goal points were then used as the goal point in each of 

the datasets.  The ground truth data were then established for each of the five 

points using the addition to TACTICAL.  Figure 30-31 show the aggregated mean 

Euclidean distance of the tracked goal point from the ground truth for each of the 

four datasets. 
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Figure 30: The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the Sign dataset. 
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Figure 31: The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the Woodpile dataset 
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Figure 32: The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the Silver Car dataset 
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Figure 33: The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the SUV dataset 

 

 

Figure 34 is the aggregated mean of the Euclidean distance compared 

with the ground truth.  The correlation and KLT (with a descriptor) performed the 

best.   
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Figure 34: The aggregated mean of all four datasets compared with the ground 

truth data. 

3.4.4 Effect of Accuracy with Image Compression Added 

This metric is essentially the same as the accuracy metric described 

above except that each frame of the dataset was encoded with MPEG1 

compression.  This was chosen because it is typically the compression method 

used in transmitting a wireless video feed and is most like the video feed from the 

PackBot.  Figure 35-38 shows the mean Euclidean distance from the ground 

truth of each of the four datasets with the added compression. 
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Figure 35:  The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the Sign dataset with added MPEG1 compression. 
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Figure 36: The mean Euclidean distance from the ground truth for each of the 

tracking algorithms for the Woodpile dataset with added MPEG1 compression. 
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Figure 37: Ground Truth vs. the Eight Tracking Algorithms for the Silver Car 

dataset with Added MPEG1 Compression 
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Figure 38: Ground Truth vs. the Eight Tracking Algorithms for the SUV dataset with 

Added MPEG1 Compression 
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Finally, Figure 39 shows the aggregate means of the Euclidean distance 

of the calculated goal point from the ground truth dataset. As can be seen, 

adding compression causes nearly every tracking algorithm to perform slightly 

worse than when using an uncompressed dataset. 
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Figure 39: The aggregate mean of the Euclidean distance away from the ground 

truth dataset over the uncompressed and compressed datasets. 

3.4.5 Determination of Winners 

 The algorithms were ranked according to the results in each of the above 

categories: speed, memory usage, accuracy, and how the accuracy of each 

algorithm was affected by compression.  The results of which algorithm 

performed the best are shown in Table 4.  The main concern for the visual 

servoing application was the ability of each algorithm to run in real-time and 

because of that, it was given a weight of 0.40 in the ranking calculation.  Memory 
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usage and accuracy were each given a weight of 0.20 and how each algorithm 

handled compression was given a weight of 0.10;   
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100)

00

Table 4: The ranking of each algorithm on how they ranked in terms of speed, 

memory usage, accuracy, and the effect of compression on accuracy. 

3.5 Discussion and Summary 

This chapter presented the analysis of the tracking algorithms that were 

chosen in this study to find out which were robust enough to implement as the 

visual servoing method for this research.  The work done by the creators of 

Make3D was extended by adding the ability to track feature points while virtually 

flying though the scene.  Although this approach was a good start, it did not offer 

the ability to easily model real-world conditions.  A large amount of data was 

collected by driving the robot, equipped with sensors and a camera, to create 

datasets used for offline analysis of the tracking algorithms.  The large datasets 

were then carved into smaller subsets which were used in the final analysis.   
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This chapter also looks at a correlation tracker, optical flow, and blob 

tracking algorithms.  Each algorithm has its own set of input parameters.  A 

common test environment, TACTICAL, was developed that exposed each 

algorithm’s variables in order to easily modify and see the results in real-time. 

The metrics chosen included the computation time, the amount of memory 

used, and the accuracy of each algorithm compared to ground truth data.  

Compression was added to each dataset to simulate the video as if it had been 

received at the OCU of current military robots. 

In the end, the accuracy among the tracking algorithms studied turned out 

to be within a few pixels of accuracy when aggregated across the datasets.  The 

best KLT tracker had an average accuracy of 5.75 pixels compared to ground 

truth.   The correlation had an average accuracy of 7.18 pixels compared to 

ground truth.  The largest difference between the algorithms was their ability to 

execute in real time.  It can be argued that with enough computational power, 

virtually any algorithm can be made to run faster.  This is true to an extent, but in 

order for this technology to be adopted by the military the ability for it to run on 

existing hardware is an important consideration.  Because of this, the two 

algorithms able to operate in real-time, correlation, and the KLT variants were 

chosen to be implemented on the PackBot.  The next chapter describes the 

testbed creation for implementing the visual servoing and visual dead reckoning 

algorithms. 

The most useful contribution of this aim was TACTICAL, the tracking 

algorithm environment.  This environment consolidated many years of work in 

 



72 
 

computer vision into one environment.  It was built with modularity in mind and 

can continue to be built upon in the years ahead.   
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CHAPTER 4 

TESTBED CREATION 

4.1 Introduction 

This chapter describes implementing the tracking algorithms, along with 

several other algorithms, on the robot, creating the testbed to evaluate the 

hypothesis of this research.  Section 4.2 explains the robotic platform used and 

the development GUI used to fine-tune the parameters of the system.  Section 

4.3 details the control methods that were implemented.  Section 4.4 addresses 

the motion control algorithms used and Section 4.5 summarizes the contributions 

made in this work. 

Figure 40 shows a broad overview of the two main components that 

encompass this aim.  The first is the robot hardware, which in this case is an 

iRobot PackBot, and the second is the Operator Control Unit software  developed 

to support the tracking algorithms. 

It is important to note that although iRobot’s PackBot was used in this 

dissertation, the implementation described in this chapter is to be regarded as 

fundamental research able to be applied to any robotic platform.  The robot 

needs to be equipped with the sensors described in Chapter 2, namely a camera, 

an IMU, and a method of reliably calculating odometry.  The exact details of how 

the robot operates, considered to be iRobot’s proprietary information and 

protected under the International Traffic and Arms regulations, ITAR, and will not 

be discussed in this dissertation. 
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Figure 40: The two main components of the second aim. 

4.2 Platform and Development GUI 

The implementation of this system was done on an iRobot PackBot 510.  

A picture of it is shown in Figure 41.  It was purchased under a Defense 

University Research Instrumentation Program (DURIP) grant.  The PackBot is a 

fielded MTRS robot.  By focusing on this platform, it ensured that the work 

remained relevant to the Army. 
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Figure 41: The iRobot PackBot 510 EOD that was used to implement this research. 

 

Figure 42 shows a screen capture of the GUI developed to implement the 

supervisory control algorithms on the PackBot.  Every parameter deemed 

important to either the tracking or motion control algorithm was placed on the 

GUI to expedite the implementation and allowed refinement of the parameters 

that worked best in the laboratory environment.  The GUI displayed the current 

status of the computer, memory and process usage that the program was 

occupying.  This allowed a quick visual inspection of what the current parameters 

did and allowed for tweaking to make tracking perform as well as possible.  The 

developed GUI contained a large number of fields because every parameter 

important to either the semi-autonomous algorithms or to the motion control 

algorithm was added to the display.  Figure 43 shows a larger view of the options 

for the KLT algorithm. 
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Figure 42: The development GUI that exposed all of the tracking and motion 

control algorithm's parameters. 

 

Figure 43: The options for KLT on the development GUI shown in more detail. 

4.3 Control Methods 

The control methods implemented and tested on the PackBot were rate-

control teleoperation, displacement control, visual dead reckoning, and two 
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supervisory control methods, one based on the correlation tracker and the other 

on the KLT.  In the following sections, each method is described in more detail.  

4.3.1 Teleoperation 

The rate-controlled teleoperation was implemented using an off-the-shelf 

game controller.  Rotation and translation were controlled using one of the 

analog sticks.  Rotation was controlled by the analog stick’s x-axis and 

translation was controlled by the y-axis.   

4.3.2 Displacement Control 

Displacement control uses odometry to move the robot.  Odometry 

feedback from the PackBot was used in this work.  There were several 

implementations of displacement control developed.  The first used four buttons 

on the gamepad.   Rotation was a set amount, either two degrees to the left or 

right.  Translation, also a set amount, and was either two feet forward or reverse.  

These values were determined empirically from the pilot testing, based on 

navigating to the target locations, which is explained in more detail in the next 

chapter. 

The second version of displacement control used a GUI with a dial for 

rotation and sliders for translation control.  Figure 44 shows the GUI designed for 

the second version.  The dial enabled the subject to rotate the robot up to 180 

degrees in either direction.  The sliders allowed translation control in small, 

medium, or large increments.  The left-hand slider moved the robot up to 2 
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meters for finer control, the middle slider moved the robot up to 8 meters, and the 

right-hand slider moved the robot up to 32 meters.   

 

 

Figure 44: The GUI used for displacement control.  The dial controlled rotation and 

the three sliders controlled translation. 

4.3.3 Visual Dead Reckoning 

Visual dead reckoning uses the odometry data in the PackBot, coupled 

with internal properties of the drive camera, along with kinematics of the arm, to 

go to the user specified location without the need of tracking features.  Visual 

dead reckoning first rotates and then translates to the goal point.   

First, for rotation, if the initial goal point designation is defined as C0, and 

Cm denotes the middle of the image, then the pixel distance to rotate is given in 
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(4.1).  Next, if s is the horizontal IFOV, then how far the robot has to rotate is 

given by (4.2). 

CmC −0  (4.1) 

  (4.2) )0(* CmCs −

 

Once the robot has finished rotating, it begins translating to the goal.  The 

angle between vertical and the bottom of the image is given as Ab and may be 

calculated by (4.3), where s is the vertical IFOV.  Next, if the row position of the 

initial goal point is given as R0, the stopping row is given as Rm, and H equals 

the height of the camera as determined by the forward kinematics, then the initial 

distance remaining is given by (4.4).  Once this value has been found, the 

odometry is read from the robot and once the distance travelled exceeds this 

estimate, the goal point has been reached. 

 

2
* rowss  (4.3) 

  (4.4) ))*tan()0*tan((* RmsAbRsAbH +−+

4.3.3.1 IMU Correction  

Chapter 2 discussed the error associated with using odometry.  The error 

for translation is usually negligible but can be substantially off for rotation.  Two 

versions of visual dead reckoning were implemented.  One version had IMU 

correction and the other did not. 
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The first version used only odometry and the other used the IMU to correct 

heading.  The developed algorithm uses an offset that allows the global theta to 

be rotated into the coordinate system of the robot instead of a coordinate system 

based on true north.  If the IMU readings became unstable due to 

communications dropout, which did occur due to interference problems with other 

wireless networks, the algorithm went back to calculating heading from odometry. 

4.3.4 Visual Servoing 

The two algorithms used for testing visual servoing were correlation and 

KLT.  These two algorithms were selected for implementation because they 

could run in real-time on the OCU computer.  The other algorithms discussed in 

the previous chapter could not run in real time, which was the heaviest weighted 

component in the decision of which algorithms to implement for visual servoing. 

Tracking was done using the video received at the OCU after the image 

was compressed and transmitted over the network.   The blocking artifacts in the 

video feed were noticeable and as a result, tracking was negatively impacted.  A 

method was developed to grab the uncompressed frame directly from the 

PackBot and run the visual servoing algorithm on-board.  In this version, the 

OCU sent the x and y coordinates of the goal point the user clicked on to the on-

board computer and then only status messages of the visual servoing algorithm 

were relayed back to the OCU.  This method did not end up working because of 

a hardware problem with the PackBot unable to be resolved.  Because of this, 

the visual servoing algorithms continued to run on the OCU. 
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The basic control loop for the visual servoing algorithms is shown in 

Figure 45.  At a very high level, the control is very simple.  The robot remains 

stationary until a goal point is designated by the operator.  Once the goal point 

has been entered using the mouse, tracking is initialized and the goal point is 

tracked from frame to frame.  If tracking is stable, motion commands are sent to 

the robot to control its steering and throttle.  The goal point is kept in the center of 

the screen until the robot has advanced to a stopping point in the scene, which is 

shown as the blue line in Figure 46.  Figure 46 also shows the simplified interface 

developed for subject testing.  The only methods the subject had to move the 

robot, when using the visual servoing or visual dead reckoning algorithms, were 

the video feed window and the mouse.  Please note from this point forward, if a 

figure is shown that uses the video feed from the PackBot’s camera, it is 

degraded slightly in an abundance of caution over ITAR restrictions and iRobot’s 

intellectual property rights. 
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Figure 45: The basic control loop for visual servoing. 
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Figure 46: This is interface for visual servoing.  The blue line indicates the 

stopping row.  Once the tracked point meets the blue line, the robot stops moving. 

4.4 Motion Control 

The rate commands for rotation and translation were driven by the 

estimation of distance and speed.  The conceptual profile was a constant 

acceleration up to either a maximum rate or a minimum distance, whichever 

came first, followed by a constant deceleration to the goal point. 

In the implemented system, Ap was the maximum rate increment in one 

time cycle.  The nominal rate decrement in one time cycle was given as An and 

Vmax was the maximum rate command.  The threshold distance to start 

decelerating was given as Dn, and calculated by (4.5).   

An
v

*2
max2

 (4.5)  
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Table 5 shows the four possible states of the motion control algorithm.  In 

these equations, d is the current estimate of the distance and r is the current 

estimate of the rate.    Case A is when the robot is still far from the goal but is 

travelling too fast.  Case B is when the robot is far from goal but needs to speed 

up.  Case C is when the robot is close but going too slow and Case D is when 

the robot is close but going too fast. 

 

Table 5: The four possible cases in the implemented motion control algorithm. 

 

The motion control algorithm was developed so the robot would accelerate 

when the goal point was far away and decelerate as the goal point became 

closer.  If the goal point was far off in the scene and the robot was only capable 

of going one speed, it would take the robot longer to reach its destination. 

4.5 Discussion and Summary 

This chapter has detailed the software testbed developed to implement 

visual servoing and visual dead reckoning.  Again, the work developed here was 

significant because it can be applied to any robot.  In this research, the 

 



85 
 

algorithms were implemented on a PackBot.  The result of this aim produced a 

working system.  The development GUI was used to easily find the best 

parameters for each algorithm and allowed moving forward with the human-in-

the-loop experiments, which are described in more detail in the next chapter. 
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CHAPTER 5 

HUMAN-IN-THE-LOOP TESTING 

5.1 Introduction 

The goal of the human-in-the-loop test was to see how the supervisory 

control algorithms performed relative to teleoperation at different levels of 

dropout.  Section 5.2 discusses the materials and methods used in the human-in-

the-loop testing, Section 5.3 presents the results, and Section 5.4 ends with 

discussions and conclusions that can be drawn from the conducted experiment. 

Figure 47 shows the goal of the third and final aim to be discussed in this 

chapter.  This aim deals with the human-in-the-loop testing done to determine if 

there was any measureable difference in using the supervisory control 

algorithms, compared to teleoperation.  Artificial degradation was added to the 

video stream, which is described in more detail later.  This chapter also describes 

the independent variables used for the experiments and describes the metrics 

used for the presented results. 
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Figure 47: This aim determined if the developed semi-autonomous algorithms 

performed better than teleoperation. 

5.2 Methods 

This section describes all of the details of the experiment. It describes the 

participants, the design of the course, and what the assigned task was.  The 

design of the experiment is described along with the dependent and independent 

variables.  The trial procedures and how the data were verified and finally, the 

results are presented and discussed. 
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5.2.1 Participants 

There were six participants, all students at Wayne State.  All of the 

participants had normal/corrected vision.  No subject had any cognitive 

impairment.  All subjects had prior experience using a computer and playing 

video games. 

5.2.2 Course Design 

Three courses were constructed that looked similar to what is shown in 

Figure 48.  The first course was made out of masking tape applied to the floor.  

The second course was designed to simulate small bumps and was made out of 

1x2s as the bumps, with 2x4 as the rails.  The third course simulated large 

bumps and was made out of 2x4s as the bumps and 2x4s as the rails.  The total 

length of the course was forty-five feet. 

 

Figure 48: The layout of the courses with the five inspection targets. 

 

The course was designed to have the robot traverse and come back.  

There were four stops on the down portion of the track.  The four stops on the 

down portion of the track were approximately 22, 11, 5, and 2 feet apart.  The 

fifth stop, going back to the starting position, had a distance of 45 feet.  Figure 49 
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shows an overhead view of the three courses that were created in the laboratory.  

Figure 50 is another view of the PackBot going over the 2x4 course. 

 

Figure 49: The overhead view of the three courses: flat (with tape), 1x2s, and 2x4s. 
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Figure 50: The PackBot going over the 2x4 course during subject testing. 

5.2.3 Inspection Tasks 

Each participant was asked to move the robot to each of the five targets, 

using each of the different control methods, while keeping the robot inside the 

rails.  Once the participant felt the robot was positioned correctly, they were 

instructed to take a snapshot.  A running count of how many snapshots had been 

taken was shown in the upper-left corner of the screen, as shown in Figure 51.  

This was done in order to provide an easy method of analyzing the data after the 

experiments were done.  The post-processing process looked at the timestamp 

of when the subject took the picture to break each run up into the different 

segments.  There were several occasions in the data files where this did not 

happen and the subject took too many snapshots by accident.  In these cases, 
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the odometry data were used to determine when the robot started to move, 

indicating a new goal point was issued. 

For the supervisory control algorithms, the participant was told that they 

could issue an emergency stop to the robot at any time by pressing the space 

bar on the keyboard, but the goal was not to rely on it because ideally, both 

visual servoing and visual dead reckoning should go exactly where the subject 

clicked.  If the subject had to press the emergency stop many times, it indicated 

that the semi-autonomous algorithms were not performing well.  This is a metric 

that was used later on and will be discussed in more detail. 

5.2.4 Dropout Rates 

 Simulated degraded communications were introduced by corrupting data 

packets.  A corrupted data packet is one that cannot be decoded.  The data 

containing control messages, from the OCU to the PackBot, and data packets 

containing the video feed, from the PackBot to the OCU were both artificially 

corrupted.  In the current fielded system, when a corrupted video packet is 

received, a black frame is shown.  In this implementation, the last good frame 

was displayed.  The data corruption was modeled as a Bernoulli process, i.e. all 

of the packets had an equal probability of being corrupted.  There were four 

levels of communication degradation implemented: 0, 3/8, 9/16, and 3/4 seconds. 
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5.2.5 Pilot Testing 

Several rounds of pilot testing were conducted to find the best settings to 

use.  The objective of the pilot test was to make sure all of the control methods 

were working properly along with the display dropout function.   The data logging 

software was verified to be working and the data captured were scrutinized to 

ensure they would be sufficient for processing and analysis later.  Also during the 

pilot testing, the procedures were double checked to make sure they were clear. 

The development GUI was used to find the proper acceleration and deceleration 

rates to use for each control method.  This made sure that the visual servoing 

algorithms performed with the optimal parameters.  The other important outcome 

of the pilot studies were to verify dropout rates picked were difficult enough to the 

subject that there could definitively be a point where the semi-autonomous 

algorithms performed better than teleoperation. 

The GUI used in the first round of pilot testing was a plain video feed that 

required the user to designate two points.  The first click designated the row and 

column of the goal point and the second click designated the stopping row.  It 

was determined this confused the subjects and the interface was changed to 

accept a single click for the row and column of the goal point and the stopping 

row was shown with a blue line, as shown in Figure 51.  The stopping row was 

adjustable by using the up and down arrows on the OCU’s keyboard.  A visual 

cue was added to indicate how many images the subjects had taken. 
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Figure 51: The simple GUI used in pilot and subject testing. 

5.2.6 Trial Procedure 

Prior to beginning, each subject was given the same presentation detailing 

the objectives of the study.  A graphic of the course was first used to explain 

where the target locations were and the course was also walked with the subject 

to show where each target was located.  The subject was given ample time to 

use each control method before the actual test and indicated to the test proctor 

when they were comfortable enough to proceed. 

The subject was positioned in an area having no direct line of sight to the 

robot, as shown in Figure 52.  Each subject was instructed not to turn around and 

look at the PackBot while they were controlling it.  At the end of a course run, 

each subject was asked to enter a difficulty rating on a scale from one to ten, 

where one meant easy and ten meant difficult.  This provided the examiner with a 

difficulty rating for each control method, dropout rate, and course roughness.  
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There were times when the PackBot would become unresponsive due to 

communication interference or it would stop because of discharged batteries.  If 

this occurred during a trial run, the trial was repeated. 

 

Figure 52: Another view of the experiment in the highbay.  Each participant was 

positioned in such a way that the PackBot could not be seen. 

 

 The subjects were asked to complete a task, namely to drive to a target on 

the ground and stop the PackBot when the target is still visible in the display and 

is within reach of the PackBot’s arm.  An example of a “good” stopping point is 

shown in Figure 53.  This position was chosen because the target was in reach 

of the grippers on the PackBot’s arm.  In a realistic setting, this would be similar 

to driving up to something buried in the ground that a warfighter wants to 

examine with the robot. 
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Figure 53: The "good" stopping distance from a target that each subject was 

trained to stop at. 

 

The courses constructed from 1x2s and 2x4s introduced motion blur to the 

PackBot’s camera.  Figure 54 shows an example image taken from the 

PackBot’s camera as it traversed the 2x4 course.   The image containing the 

motion blur, combined with the compression artifacts, were input into the visual 

servoing algorithms that relied on tracking features from frame to frame. 
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Figure 54: The view from going over the 2x4 course. 

5.2.7 Experimental Design 

The experiment was run with six subjects.  For each subject, the test was 

blocked by control method: teleoperation, visual dead reckoning, visual servoing 

using the correlation tracker, and visual servoing using the KLT tracker.  Each of 

these blocks was then subdivided into four blocks by the dropout rate.  Each of 

these blocks consisted of runs on each of the three courses.  Each subject ran a 

total of 48 courses for a total of 288 course runs over each of the six subjects.  

Each subject took between 4 and 6 hours to complete all runs and each subject 

completed the test in a single block of time, i.e. no one came back at a later date 

to complete the test. 
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5.2.8 Data Validation 

The first pass of the data occurred before the subject left.  This test made 

sure that the data files had all been properly recorded.  The data parsing 

program used the timestamps from when the operator took the picture based on 

when they felt the robot was positioned correctly.  The operator would sometimes 

accidentally press the button too many times.  If the data reduction program ran 

into this scenario, it would automatically try to combine the timestamps based on 

movement of the robot.  There was a field in the reduced file that indicated when 

this happened so the result could be manually verified to make sure nothing was 

lost. 

The difficulty scores from of each of the runs were stored separately from 

data collected from the robot.  These had to be combined at data reduction time.  

An inspection was made of each record to make sure the difficulty ratings from 

the database were brought over correctly in the final file.  The reduced file was 

also visually inspected to make sure all of the fields were within the normal 

range, i.e. the angles from the IMU readings were all between 0 and 360 

degrees.   

5.2.9 Aggregation and Analysis 

This section presents the aggregation and analysis of the data collected 

from the subject testing.  The items examined include the difficulty rating that 

each participant gave, the number of seconds it to took to reach each target, and 

the number of emergency stops.  This is a within-subject design with subjects 

used as replicates.  The rest of section 5.2.9 contains two-way ANOVAs.  The 
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values for the course roughness in the supplemental figures and tables are: 0 = 

flat, 1 = 1x2 course, and 2 = 2x4 course.  The values for control method are: 0 = 

teleoperation, 4 = visual dead reckoning, 5 = correlation, and 6 = KLT.  The 

values for the dropout rate are: 0 = no delay, 1 = 3/8, 2 = 9/16, and 3 = ¾ 

seconds. 

5.2.9.1 Difficulty Rating 

 After each run, the participant was asked to rank the difficulty on a scale 

from 1 to 10, where 1 meant easy and 10 meant difficult.  Table 6 shows the 

results of a two-way ANOVA of difficulty rating as a function of dropout and 

course roughness (F2,1716 = 24.73, p=0.0000).  The difficulty rating increased as 

the roughness of the terrain increased.  The difficulty rating increased as the 

dropout rate increased as well.  There was no significance in the interaction 

between dropout rate and course roughness.  Figure 55 shows the box plot of 

the two-way ANOVA results.  Figure 56 shows the mean values of the difficulty 

ratings by dropout rate and course roughness.  The 3/4 dropout rate had the 

highest average difficulty rating at 5.229 and the 2x4 course had the highest 

average difficulty rating at 5.339. 
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Table 6: Two-way ANOVA results of difficulty rating as a function of course 

roughness and dropout rate. 
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Figure 55: Box plot of difficulty rating as a function of dropout rate and course 

roughness. 
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Figure 56: The mean difficulty ratings for course roughness and dropout rates. 

Table 7 shows the results of a two-way ANOVA of difficulty rating as a 

function of course roughness and control method (F2,1716 = 26.46, p=0.0000).    

There was significance in the interaction between control method and course 

roughness.  The mean difficulty rating for visual dead reckoning was the lowest 

of all control methods at 4.03.  Figure 57 shows the box plot of the two-way 

ANOVA results.   Figure 58 shows the mean values of the difficulty ratings by 

course roughness and control method.  The mean value of the difficulty rating 

increased as the course became rougher.   

 

Table 7: Two-way ANOVA results of difficulty rating as a function of course 

roughness and control method. 
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Figure 57: Box plot of difficulty rating as a function of control method and course 

roughness. 
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Figure 58: The mean difficulty ratings for course roughness and control method. 

Table 8 shows the results of a two-way ANOVA of difficulty rating as a 

function of control method and dropout rate (F3,1712 = 39.04, p=0.0000).  The 

difficulty rating for visual dead reckoning was the lowest across all courses and 

control methods.  There was significance in the interaction between control 

method and dropout rate.  Figure 59 shows the box plot of the two-way ANOVA 

results.  .Figure 60 shows the mean values of the difficulty ratings by control 

method and dropout rate.   

 

Table 8: Two-way ANOVA results of difficulty rating as a function of dropout rate 

and control method. 

 



103 
 

Control Method

Dropout Rate

KLT
Co

rr
VD

R

Te
leo

p

3/49/1
63/803/49/1

63/803/49/1
63/803/49/1

63/80

10

8

6

4

2

0

D
iff

ic
ul

ty
 R

at
in

g

Difficulty Rating

 

Figure 59: Box plot of difficulty rating as a function of dropout rate and control 

method. 
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Figure 60: The mean difficulty ratings for control method and dropout rate. 

5.2.9.2 Inspection Time  

The inspection time was the time it took the operator to navigate the robot 

to the target position.  All times are in seconds.  As noted before, sometimes the 

robot would become stuck on the wooden courses.  If that happened, the 

particular segment was redone.   

Table 9 shows the results of a two-way ANOVA of inspection time as a 

function of course roughness and dropout rate (F2,1716 = 23.48, p=0.0000).  There 

was significance in the interaction between course roughness and dropout rate.  

The mean inspection time increased as the level of course roughness increased.  

The dropout rate did not affect the mean inspection time as much as the course 

roughness did.  Figure 61 shows the box plot of the two-way ANOVA results.  

Figure 62 shows the mean values of the inspection time by course roughness 

and dropout rate. 
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Table 9: Two-way ANOVA results of inspection time as a function of course 

roughness and dropout rate. 

 

Course
Dropout Rate

2x41x2Flat
3/49/163/803/49/163/803/49/163/80

300

250

200

150

100

50

0

In
sp

ec
ti

on
 T

im
e

Inspection Time

 

Figure 61: Two-way ANOVA of inspection time as a function of dropout rate and 

course roughness. 
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Figure 62: The mean inspection time for course roughness and dropout rate. 

 

Table 10 shows the results of a two-way ANOVA of inspection time as a 

function of course roughness and control method (F2,1716 = 25.22, p=0.0000).  

There was no significance in the interaction between course roughness and 

control method.  Teleoperation had the lowest average inspection time of the 

control methods at 22.89 seconds with visual dead reckoning having the second 

lowest at 30.05 seconds.  Figure 63 shows the box plot of the two-way ANOVA 

results.  Figure 64 shows the mean values of the inspection time by course 

roughness and control method. 
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Table 10: Two-way ANOVA results of inspection time as a function of course 

roughness and control method. 
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Figure 63: Inspection time as a function of control method and course roughness. 
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Figure 64: The mean inspection time for course roughness and control method. 

 

Table 11 shows the results of a two-way ANOVA of inspection time as a 

function of control method and dropout rate (F3,1712 = 39.40, p=0.0000).  There 

was significance in the interaction between control method and dropout rate.  

Teleoperation had the lowest average inspection time of the control methods, 

with visual dead reckoning having the second lowest, followed by KLT.  Figure 65 

shows the box plot of the two-way ANOVA results.  Figure 66 shows the mean 

values of the inspection time by control method and dropout rate. 

 

Table 11: Two-way ANOVA results of inspection time as a function of control 

method and dropout rate. 
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Figure 65: Inspection time as a function of dropout rate and control method. 

 

 

Figure 66: The mean inspection time for control method and dropout rate. 
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5.2.9.3 Number of Times Stopped 

The final metric analyzed was the number of times stopped.  In 

teleoperation, if the operator allowed the x and y axes on the gamepad to both go 

to zero, it was counted as a stop.  In the semi-autonomous algorithms, the 

operator designated a stop by pressing the space bar on the laptop’s keyboard.   

Table 12 shows the results of a two-way ANOVA of number of times 

stopped as a function of course roughness and dropout rate (F2,1716 = 152.80, 

p=0.0000).  There was significance in the interaction between course roughness 

and dropout rate.  The mean number of times stopped increased as both the 

level of course roughness and dropout rate increased.  Figure 67 shows the box 

plot of the two-way ANOVA results.   Figure 68 shows the mean values of 

number of times stopped by course roughness and dropout rate. 

 

Table 12: Two-way ANOVA results of the number of times stopped as a function of 

course roughness and dropout rate. 
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Figure 67: The number of times stopped as a function of dropout rate and course 

roughness. 

 

Figure 68: The mean number of times stopped for course roughness and dropout 

rate. 
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Table 13 shows the results of a two-way ANOVA of number of times 

stopped as a function of course roughness and control method (F2,1716 = 164.62, 

p=0.0000).  There was significance in the interaction between course roughness 

and dropout rate.  The control method with the least number of stops was KLT, 

followed by correlation, teleoperation.  Visual dead reckoning had the most.  

Figure 69 shows the box plot of the two-way ANOVA results.  Figure 70 shows 

the mean values of the inspection time by course roughness and control method. 

 

Table 13: Two-way ANOVA results of the number of times stopped as a function of 

course roughness and control method. 
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Figure 69: The number of times stopped as a function of control method and 

course roughness. 

 

 

Figure 70: The mean number of times stopped for course roughness and control 

method. 
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Table 14 shows the results of a two-way ANOVA of number of times 

stopped as a function of control method and dropout rate (F3,1712 = 31.47, 

p=0.0000).  There was significance in the interaction between control method 

and dropout rate.  Figure 71 shows the box plot of the two-way ANOVA results.   

Figure 72 shows the mean values of the inspection time by control method and 

dropout rate. 

 

Table 14 : Two-way ANOVA results of the number of times stopped as a function of 

control method and dropout rate. 
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Figure 71: The number of times stopped as a function of dropout rate and control 

method. 

 

Figure 72: The mean number of times stopped for control method and dropout 

rate. 
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5.3 Results 

The most significant factor found was the difficulty rating.  The mean 

difficulty rating for visual dead reckoning was less than every other control 

method, which indicates that the subjects found it to be easier than teleoperation.  

The difficulty rating of the visual servoing methods were close and teleoperation 

was last, especially as the difficulty of terrain and dropout rates increased. 

The completion time and number of emergency stops were similar enough 

so a clear winner was not able to be detected.  Overall, teleoperation proved to 

take the least amount of time and visual dead reckoning was second.  The two 

supervisory control methods also had the lowest number of emergency stops.  It 

was interesting to find that visual dead reckoning had the highest average of 

stops.  This may be due to the fact it did accelerate faster than the visual 

servoing algorithms because it did not have to track features. 

5.4 Discussion and Summary 

The subject testing took an average of four to five hours to complete.  All 

participants were able to complete the test in one block of time.  Generally 

speaking, the r2 values were all low.  This indicated there was noise that was not 

accounted for.  This may be due to the fact that participants served as replicates.  

This could also be due to the operators not feeling comfortable with the control 

methods.  The lighting in the laboratory could not be controlled and it may have 

caused the visual servoing algorithms to not perform as well as they could.   

The sound of the PackBot when it is operating was very loud in the 

laboratory setup.  Although the subject was positioned in such a way that the 
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robot was not visible at any time during the test, it would be a different 

experience if the subject was operating the robot in another room where the 

robot could not be easily heard. 

This did prove that visual dead reckoning was the preferred and most 

robust of the semi-autonomous algorithms.  This also proved that visual servoing 

algorithms, as implemented in this research, may not be robust enough for 

adoption by the Army.  The laboratory setting was a benign environment 

compared to the missions these robots are required to operate in.  If they do not 

perform well in this setting, it is logical to conclude they won’t perform well in Iraq 

and Afghanistan.  

Displacement control, described in the previous chapter, did not end up 

making it to the final subject testing.  At the time, it was felt that visual dead 

reckoning was superior to displacement control because it could do both rotation 

and translation with one mouse click.  In hindsight, displacement control should 

have been included because it allows the operator to rotate larger amounts much 

easier than visual dead reckoning.  This is because visual dead reckoning is 

constrained by the field of the view of the camera.  If an operator wishes to rotate 

more than thirty degrees at any given time, it takes several mouse clicks. 

It had also been considered to add one more trial to the subject testing, 

allowing the operator to dynamically select which control method they wanted to 

use at any given time.  This would have created another dataset to analyze to 

determine which control method was preferred as a function of dropout rates.  

However, as the experiment stands, there is a wealth of information that has 
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been collected that can be used to extract how people drive, and more 

importantly, a testbed was established along with a method of collecting data that 

has since been used for other work that focused on the effect of latency on 

operator performance. 
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CHAPTER 6 

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 

6.1 Summary 

In very broad terms, the research covered in this dissertation implemented 

a novel method of tracking points in a video feed, used the developed tracking 

algorithm to issue rotation and translation commands for semi-autonomous 

operations of a military robot, and finally performed an experiment to determine if 

the new method of control enhanced operator performance or not.  The 

developed algorithms also have broader impact and application that are outside 

of being used to control a robot.  This chapter will first summarize the key 

contributions of this work and will then discuss the additional applications of this 

research. 

It is also important to note the Department of Defense maintains a 

Technology Readiness Level (TRL) to describe how ready hardware and 

software is for transition to the field, where 1 is the lowest level and 9 means that 

the system has been proven to successfully work in a mission. The work 

performed in this test would possibly be classified at TRL 4 or 5.  All of the testing 

so far has been performed only in the lab setting.  It would be interesting to 

perform the same experiment outside on real terrain and see if there is a 

measureable change in operator performance. 
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6.2 Key Novel Contributions 

There were several contributions of this research.  First and foremost, a 

novel method to control any unmanned ground vehicle was developed.  The rest 

of the contributions were all in support of the new control method.  Key 

contributions are highlighted in Table 15.   

One contribution was the extension to Make3D, allowing tracking of a goal 

point in a virtual environment by flying through the scene.  Although this method 

was not ultimately used for the analysis, the capability has been developed and 

this is a viable method to use for testing tracking algorithms.  Another key 

contribution was the large dataset collected using the IGVC platform that was 

made freely available.  This dataset contains video, GPS, IMU, encoder, and 

joystick command data.   

Another contribution was the ability to track a goal point using any 

algorithm that is able to track features from frame to frame.  As described earlier, 

there have been many algorithms developed over the years that track features.  

This research provides a methodology to track a goal point using any algorithm 

for purposes of visual servoing. 

TACTICAL was another important contribution.  This software provided 

the method to perform a comprehensive analysis of the three classes of tracking 

algorithms described in this work.  It has also been released as open source and 

is freely available.  The ground truth annotation tool that was added allowed for a 

precise measurement of accuracy of each tracking algorithm.  The ability to add 

compression was also a key development.  This allowed compressing each 

frame of the dataset using several different algorithms including JPEG and 
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MPEG.  This allowed the dataset used to be degraded in a real-world way to test 

the resiliency of the tracking algorithms. 

Another contribution was adding a descriptor to the KLT optical flow 

algorithm, improving the tracking algorithm.  Several shapes around the corner 

feature were experimented with: a rectangle, a disc, and an annulus.  Multiple 

matching metrics were implemented included histogram matching and 2d 

correlation.  In the experiments conducted, the disc shape with a 2D correlation 

metric proved to be the best method. 

This work has also produced a dataset of how people operating a robot 

drive to an inspection point.  It could be used for further research in the human 

factors arena.  The work developed in this research can be used in future 

experiments. 

 

Table 15: Summary of the major contributions of this research. 
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The improved corner tracker has applications to other areas such as 

image stabilization and stereo matching.  Image stabilization using features is 

done by finding the overall motion from frame to frame.  If features can be 

reliably and quickly matched from frame to frame, then stabilization becomes 

easier.  This has already been used in another project being developed in the 

lab.  It is a “persistent stare” application where a stationary camera is watching a 

scene looking for any changes.   

Figure 73 shows two images from a dataset taken with a camera on a 

tripod overlooking a parking lot and street from a parking garage.  The images on 

the left are with the change detection algorithm run on the data as it was.  The 

images on the right are the same, but image stabilization, using the KLT 

algorithm with histogram corner matching, was run first.  As can be seen, the 

algorithm was able to ignore the small camera motion and detect only items of 

interest in the scene.  This technology may, at some point, be employed on a 

MTRS robot with a camera on a mast, watching scenes of interest and reporting 

back items of interest.  
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Figure 73: The "persistent stare" application that uses a stationary camera to look 

at a scene.  The images on the left are the output of the algorithm without image 

stabilization and the images on the right are the output of the algorithm with image 

stabilization using the KLT tracker with the descriptor to match features from frame to 

frame. 

 

Another important contribution to the lab where this work was performed 

was the development of a workaround to the ITAR (International Traffic and Arms 

Regulations) restrictions on the PackBot.  Every detail about the PackBot is 

protected both by iRobot’s Intellectual Property rights and also by ITAR.  This 

means only approved United States citizens are able to operate, and more 
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importantly, develop applications for it.  This can be a problematic a large 

number of the graduate student population is comprised of foreign nationals.   

The developed OCU is not only able to operate any robot that has the 

sensors discussed, but it is also able to act as a server communicating with the 

PackBot in its native format.  The OCU shares the communication cloud with the 

PackBot but it is capable of accepting and relaying messages from any computer 

using a non-ITAR restricted protocol.   

Figure 74 depicts what the network topology looks like.  The PackBot and 

its ITAR OCU are connected over a wireless network.  The non-ITAR OCU is 

connected to the ITAR OCU using Ethernet and there is a firewall between the 

two exposing one port that passes only data from the developed protocol.  This is 

done entirely in software and requires no special hardware.  Although there have 

not been any projects that have made use of this yet, it will be an important piece 

of software that could allow the lab to follow ITAR restrictions while allowing the 

students interested in robotics, a chance to work on a production robot. 
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Figure 74: The developed OCU is able to function as a proxy to the any ITAR-

restricted robot. 

6.3 Future Work 

The work performed so far does not include any path planning or obstacle 

avoidance.  There are multiple forward-facing cameras on the PackBot.  One 

approach to obstacle avoidance might be to use those cameras in an 

uncalibrated stereo application that could be used for obstacle detection.  

Another possibility might be to build up a 3D model of the environment from the 

video frames as the robot drives to the goal point.  The path planning algorithm 

could then take an approach similar to Make3D and allow the operator to virtually 

zoom into the scene to plan the path out for the robot.   
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One interesting addition to this work might be to add a hands-free 

interface to the GUI instead of using the mouse.  A simple approach would be to 

add a course grid, such as shown in Figure 75.  The OCU would have to be able 

to recognize a small set of verbal commands, such as “Go to F6”, and “Stop”.   

 

 

Figure 75: An example of a grid overlay that the supervisory control algorithms 

could extend to. 

Another approach may be to utilize content-based image retrieval 

algorithms trained to recognize objects in the environment.  If the algorithm could 

preprocess the scene and indicate it recognizes a door or a window, the interface 

could display to the operator what it recognizes in the current scene and the 

operator could instruct the robot to go to a location instead of a grid location. 

The subject testing for the visual servoing algorithms were limited to the 

two methods that ran in real-time, correlation and KLT.  This work could also be 
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extended to dynamically change the parameters of each algorithm depending 

upon how well the tracking is performing.  It could look at whether the operator is 

frequently pressing the emergency stop button or designating a new goal point 

and use that feedback to either change the parameters of the tracking algorithm 

or try a different algorithm. 

The work developed in this dissertation has been used in a contract 

awarded to Signature Research, Inc. in early 2010.  The research conducted in 

accordance to that contract was to study the effect latency has on operator 

performance.  During successful completion of this contract, a fixed amount of 

latency was simulated and studied.  The visual dead reckoning algorithm was 

transferred to this work and it was enhanced slightly.  The new method of 

selecting a point is shown in Figure 76.  This was a slight modification to show 

the blue ray as the operator moves the mouse.  Once the user releases the 

mouse, the display changes to what is shown in Figure 77 with the goal point 

showing as a green dot.  The robot stops when the green dot reaches the red 

line. 
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Figure 76: The revised interface for visual dead reckoning.  The blue ray traces the 

mouse as the operator moves. 
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Figure 77: Once the mouse is released in visual dead reckoning, the greet dot 

shows the goal point. 

 

Fulfilling the terms of the contract required developing augmented and 

virtual reality displays that took the queue of latent commands and showed the 

calculated position and orientation of the robot after the queue of commands had 

been processed.  Figure 78 shows the augmented reality display and Figure 79 

show the virtual reality display. 
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Figure 78: Augmented reality predictive display (ARPD). 

 

 

Figure 79: Virtual reality predictive display (VRPD). 

 

This work may also be extended to more autonomous behaviors and 

could be done by having an algorithm designate new goal points to the 
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supervisory control algorithm.  The autonomous algorithm could determine path 

planning and determine if the path is clear or not. 

There is no reason why the “point-and-go” algorithm has to apply only to 

the chassis.  The same idea can also apply to controlling the arm.  In this work, 

the forward kinematics of the arm were calculated to obtain the angle of the 

camera but arm control would require the inverse kinematics.  There are open 

source libraries available that are solve the inverse kinematics that could be used 

for this purpose. 

The research described in this dissertation proved that the concept of a 

“point-and-go” controlled robot works and that the operators expressed a 

preference for point-and-go over teleoperation.  This is fundamental research 

that can be easily ported to run on any ground vehicle.   
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Appendix A 

HIC Approval 
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Appendix B 

Dataset Details 

Although a complete dataset was collected, the only data used for 

analyzing the performance of the tracking algorithms were the images recorded 

from the camera.  The dataset contains: 

• Video frames 

• GPS 

• IMU data 

• Encoder feedback 

• Motor controller feedback 

• Joystick commands 

The dataset is available at: http://gbvs.sourceforge.net/ 

 

 

http://gbvs.sourceforge.net/
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The focus of this research was to determine if reliable goal-based semi-

autonomous algorithms are able to improve remote operator performance or not.  

Two semi-autonomous algorithms were examined: visual servoing and visual 

dead reckoning.  Visual servoing uses computer vision techniques to generate 

movement commands while using internal properties of the camera combined 

with sensor data that tell the robot its current position based on its previous 

position.  This research shows that the semi-autonomous algorithms developed 

increased performance in a measurable way.  An analysis of tracking algorithms 

for visual servoing was conducted and tracking algorithms were enhanced to 

make them as robust as possible.  The developed algorithms were implemented 

on a currently fielded military robot and a human-in-the-loop experiment was 

conducted to measure performance. 
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