
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2010

Robotic Goal-Based Semi-Autonomous
Algorithms Improve Remote Operator
Performance
Shawn Hunt
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Hunt, Shawn, "Robotic Goal-Based Semi-Autonomous Algorithms Improve Remote Operator Performance" (2010). Wayne State
University Dissertations. Paper 141.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/141?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages

ROBOTIC GOAL-BASED SEMI-AUTONOMOUS ALGORITHMS IMPROVE
REMOTE OPERATOR PERFORMANCE

by

SHAWN HUNT

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2010

 MAJOR: COMPUTER ENGINEERING

 Approved by:

 Advisor Date

© COPYRIGHT BY

SHAWN HUNT

2010

All Rights Reserved

Dedication

This is dedicated to my wife for supporting me for all of the years that I

have been in school.

ii

Acknowledgments

First and foremost, I owe a debt that I will never be able to repay to Dr.

Witus for giving me a chance to get started with military robots and supporting

me all of these years. This dissertation would not have been possible without the

thoughtful guidance from my co-advisors, Drs. Pandya and Ellis. This also would

not have been possible without funding in one form or another from TARDEC

and the US Army. I would also like to thank Dr. Auner for allowing me to be part

of the SSIM and CARES groups.

I would like to thank Lavie Goldenberg for his selfless work on making

sure the human-in-the-loop experiment was properly set up, his assistance in

reviewing this dissertation, and for his friendship these past years. The

contributions of my colleagues from the CARES lab and teammates from the

Intelligent Ground Vehicle Competition group must also be mentioned: Wilfred

Wheeler, Justin Ar-Rasheed, and Michael Jessie: thank you all very much for

helping in the pilot and subject testing. Ben Wojcik, thank you for your help in

getting the subject testing started and assisting me to work all of the kinks out.

Lynn DeTurk, thank you for all of your hard work and time spent reading

this dissertation catching all of my spelling and grammatical errors. Sam Lee,

thank you for your willingness to help me these past years. We would not have

had an IGVC team had it not been for your hard work and dedication. And last

but not least, Syed Ali, I doubt that I would have been able to get this done

iii

without your help. You were my study partner for qualifiers and the best possible

friend a guy could have these past years in graduate school.

iv

Table of Contents

Dedication .. ii

Acknowledgments .. iii

List of Tables ... vii

List of Figures ...ix

CHAPTER 1 INTRODUCTION ... 1

1.1 Motivation and Problem Statement ... 1

1.2 Research Objective and Specific Aims ... 4

1.3 Outline of this Dissertation .. 6

CHAPTER 2 BACKGROUND ... 7

2.1 Introduction ... 7

2.2 Military Robots .. 7

2.3 Robotic Sensors ... 8

2.4 Semi-Autonomous Algorithms .. 14

CHAPTER 3 IMPLEMENTATION AND TESTING OF TRACKING

ALGORITHMS .. 16

3.1 Introduction ... 16

3.2 Literature Review .. 16

3.3 Methods .. 27

3.4 Results .. 59

3.5 Discussion and Summary ... 70

CHAPTER 4 TESTBED CREATION .. 73

v

4.1 Introduction ... 73

4.2 Platform and Development GUI .. 74

4.3 Control Methods ... 76

4.4 Motion Control .. 83

4.5 Discussion and Summary ... 84

CHAPTER 5 HUMAN-IN-THE-LOOP TESTING ... 86

5.1 Introduction ... 86

5.2 Methods .. 87

5.3 Results .. 116

5.4 Discussion and Summary ... 116

CHAPTER 6 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK 119

6.1 Summary .. 119

6.2 Key Novel Contributions ... 120

6.3 Future Work .. 125

Appendix A HIC Approval ... 132

Appendix B Dataset Details .. 133

References ... 134

Abstract .. 142

Autobiographical Statement ... 143

vi

List of Tables

Table 1: Methodology used to test the accuracy of various KLT descriptors. 47

Table 2: The results of the experiment conducted to add a descriptor to KLT

optical flow. ... 48

Table 3: The eight algorithms compared in this analysis. 60

Table 4: The ranking of each algorithm on how they ranked in terms of speed,

memory usage, accuracy, and the effect of compression on accuracy. 70

Table 5: The four possible cases in the implemented motion control algorithm.. 84

Table 6: Two-way ANOVA results of difficulty rating as a function of course

roughness and dropout rate. .. 99

Table 7: Two-way ANOVA results of difficulty rating as a function of course

roughness and control method. .. 100

Table 8: Two-way ANOVA results of difficulty rating as a function of dropout rate

and control method. .. 102

Table 9: Two-way ANOVA results of inspection time as a function of course

roughness and dropout rate. .. 105

Table 10: Two-way ANOVA results of inspection time as a function of course

roughness and control method. .. 107

Table 11: Two-way ANOVA results of inspection time as a function of control

method and dropout rate. ... 108

Table 12: Two-way ANOVA results of the number of times stopped as a function

of course roughness and dropout rate. ... 110

vii

Table 13: Two-way ANOVA results of the number of times stopped as a function

of course roughness and control method. .. 112

Table 14 : Two-way ANOVA results of the number of times stopped as a function

of control method and dropout rate. .. 114

Table 15: Summary of the major contributions of this research. 121

viii

List of Figures

Figure 1: The current method of controlling the military robots is with the operator

looking at a laptop while driving the robot using a gamepad. 2

Figure 2: The main research question and the three specific aims of this

dissertation. .. 5

Figure 3: The image on the left is an image obtained directly from an analog

camera. The image on the right is the same image with 90% JPEG compression

applied. ... 10

Figure 4: These are the histograms of the same two images in Figure 3. 10

Figure 5: A visualization of small errors in theta that result in large errors in X and

Y. The green dot is where the robot would go if no slippage occurs and the red

dot is where it could end up if odometry is incorrect. .. 13

Figure 6: A small example image (left) and a convolution kernel (right). 18

Figure 7: The results of the Sobel operator running on an image. 19

Figure 8: The "good features" to track that were found running OpenCV's

implementation of Shi and Tomasi's algorithm. .. 20

Figure 9: The overview of the three classes of tracking algorithms analyzed. 28

Figure 10: An example foveal kernel that the correlation tracker uses to track a

point. ... 29

Figure 11: This is the process developed to make the correlation tracker robust.

 ... 31

ix

Figure 12: An image of wooded path. The green points were found using Shi

and Tomasi’s corner detector. The points contained in the yellow ellipses have

greater motion as the robot moves forward than the points in the red ellipse. 33

Figure 13: This is the same wooded scene shown earlier but with the 3D facets

found using Make3D shown. .. 34

Figure 14: A simple example of tracking a goal point (the red point) from frame to

frame using three non-collinear points (blue points). .. 36

Figure 15: A scene from inside the laboratory. The image on the left is after the

image was segmented using the graph-based algorithm. The image on the right

is the input image with the detected regions overlaid in green. 37

Figure 16: An example of fitting a line using several different methods, including

RANSAC. The data points, containing outliers, are represented by black dots.

The exact system is indicated by the green line, a linear fit is denoted by the red

line, and the line that was found using the RANSAC algorithm is shown in blue.

 ... 40

Figure 17: Example annulus descriptor used for adding a descriptor to the KLT

algorithm. There are two parameters to an annulus, the inner and outer radii. . 41

Figure 18: An image from the SUV dataset where three patches were extracted,

converted to the HSV (hue, saturation, and value) colorspace, and the histogram

of each patch was calculated using the value plane. .. 42

Figure 19: The computed 2D correlation coefficient of an input shape compared

with the shape being rotated. ... 44

x

Figure 20: A possible configuration (12:00 position) of aligning each corner in

order to calculate the match. .. 45

Figure 21: An example of matching SIFT features from two Images from the

“wood pile” dataset. The yellow ellipses show where the SIFT algorithms made

obvious mismatches. .. 49

Figure 22: Tracking in 3D within MATLAB using a model generated by Make3D,

an open-source project that takes an image still and produces a 3D model. The

scene is rotated programmatically by a script. .. 50

Figure 23: The same wooded scene shown before but it was converted to a 3D

“fly-through” scene using Make3D. It is able to be programmatically “walked-

through” using a modified open source project, “view3dscene”. 52

Figure 24: The IGVC platform that was equipped with a camera, GPS, and an

IMU for data collection. ... 54

Figure 25: An image still from each of the four datasets used in the tracking

algorithm analysis. .. 55

Figure 26: Screenshot of TACTICAL, the software testbed used for the tracking

algorithm analysis ... 56

Figure 27: Execution time (in milliseconds) of the eight algorithms compared ... 61

Figure 28: Execution time of the correlation tracker and KLT versions. 61

Figure 29: The mean memory consumption over all four datasets. 62

Figure 30: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Sign dataset. .. 63

xi

Figure 31: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Woodpile dataset .. 64

Figure 32: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Silver Car dataset ... 64

Figure 33: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the SUV dataset ... 65

Figure 34: The aggregated mean of all four datasets compared with the ground

truth data. ... 66

Figure 35: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Sign dataset with added MPEG1 compression. 67

Figure 36: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Woodpile dataset with added MPEG1 compression. 67

Figure 37: Ground Truth vs. the Eight Tracking Algorithms for the Silver Car

dataset with Added MPEG1 Compression ... 68

Figure 38: Ground Truth vs. the Eight Tracking Algorithms for the SUV dataset

with Added MPEG1 Compression .. 68

Figure 39: The aggregate mean of the Euclidean distance away from the ground

truth dataset over the uncompressed and compressed datasets. 69

Figure 40: The two main components of the second aim. 74

Figure 41: The iRobot PackBot 510 EOD that was used to implement this

research. .. 75

Figure 42: The development GUI that exposed all of the tracking and motion

control algorithm's parameters. .. 76

xii

Figure 43: The options for KLT on the development GUI shown in more detail. 76

Figure 44: The GUI used for displacement control. The dial controlled rotation

and the three sliders controlled translation. .. 78

Figure 45: The basic control loop for visual servoing. ... 82

Figure 46: This is interface for visual servoing. The blue line indicates the

stopping row. Once the tracked point meets the blue line, the robot stops

moving. ... 83

Figure 47: This aim determined if the developed semi-autonomous algorithms

performed better than teleoperation. .. 87

Figure 48: The layout of the courses with the five inspection targets. 88

Figure 49: The overhead view of the three courses: flat (with tape), 1x2s, and

2x4s. ... 89

Figure 50: The PackBot going over the 2x4 course during subject testing. 90

Figure 51: The simple GUI used in pilot and subject testing. 93

Figure 52: Another view of the experiment in the highbay. Each participant was

positioned in such a way that the PackBot could not be seen. 94

Figure 53: The "good" stopping distance from a target that each subject was

trained to stop at. .. 95

Figure 54: The view from going over the 2x4 course. ... 96

Figure 55: Box plot of difficulty rating as a function of dropout rate and course

roughness. .. 99

Figure 56: The mean difficulty ratings for course roughness and dropout rates.

 ... 100

xiii

Figure 57: Box plot of difficulty rating as a function of control method and course

roughness. .. 101

Figure 58: The mean difficulty ratings for course roughness and control method.

 ... 102

Figure 59: Box plot of difficulty rating as a function of dropout rate and control

method. .. 103

Figure 60: The mean difficulty ratings for control method and dropout rate. 104

Figure 61: Two-way ANOVA of inspection time as a function of dropout rate and

course roughness. .. 105

Figure 62: The mean inspection time for course roughness and dropout rate. . 106

Figure 63: Inspection time as a function of control method and course roughness.

 ... 107

Figure 64: The mean inspection time for course roughness and control method.

 ... 108

Figure 65: Inspection time as a function of dropout rate and control method. .. 109

Figure 66: The mean inspection time for control method and dropout rate. 109

Figure 67: The number of times stopped as a function of dropout rate and course

roughness. .. 111

Figure 68: The mean number of times stopped for course roughness and dropout

rate. .. 111

Figure 69: The number of times stopped as a function of control method and

course roughness. .. 113

xiv

xv

Figure 70: The mean number of times stopped for course roughness and control

method. .. 113

Figure 71: The number of times stopped as a function of dropout rate and control

method. .. 115

Figure 72: The mean number of times stopped for control method and dropout

rate. .. 115

Figure 73: The "persistent stare" application that uses a stationary camera to

look at a scene. The images on the left are the output of the algorithm without

image stabilization and the images on the right are the output of the algorithm

with image stabilization using the KLT tracker with the descriptor to match

features from frame to frame. ... 123

Figure 74: The developed OCU is able to function as a proxy to the any ITAR-

restricted robot. ... 125

Figure 75: An example of a grid overlay that the supervisory control algorithms

could extend to. .. 126

Figure 76: The revised interface for visual dead reckoning. The blue ray traces

the mouse as the operator moves. ... 128

Figure 77: Once the mouse is released in visual dead reckoning, the greet dot

shows the goal point. .. 129

Figure 78: Augmented reality predictive display (ARPD). 130

Figure 79: Virtual reality predictive display (VRPD). ... 130

1

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

 Mobile robots, or Unmanned Ground Vehicles (UGVs), play an increasing

role in both the defense and security of our nation and in the ability to respond to

emergency situations. Robots have been used in Iraq and Afghanistan for bomb

disposal. They also played a key role in searching for victims of the World Trade

Center attack. They were created to keep our soldiers, or warfighters, out of

harm’s way.

 The current method of UGV control is rate control teleoperation, is

burdensome. Figure 1 depicts the current way the robots are controlled. There

is a high workload that requires constant attention and limits situational

awareness [1]. A dedicated operator is not able to perform multiple tasks and

control of the UGV can be difficult when the terrain is rough or communications

are degraded.

These robots are currently being used in countries where there is an

ongoing war. Those who have attempted to view a laptop’s display while out on

a sunny day can attest to how difficult it can be to view the contents of the

screen. Add to that scenario a stressful situation of using the laptop trying to find

a bomb buried in the soil and that paints a vivid portrait of why this research is

needed and important to the Army. If all the warfighter has to do is designate a

2

point for the robot to go to and they know that it will go to that point reliably, then

their job becomes easier.

Figure 1: The current method of controlling the military robots is with the operator

looking at a laptop while driving the robot using a gamepad.

Robots have been in the news in recent months due to the BP oil spill in

the Gulf of Mexico [2]. The robots were remotely controlled by BP personnel to

try to cap the damaged oil well. BP ran into a setback to their containment efforts

when a saw blade the robot was using became stuck [3].

The motivation behind this work was to provide a level of autonomy to

existing robots used in the field so that operating a robot does not require

constant supervision. The costs associated with developing fully autonomous

3

systems may potentially outweigh the benefits [4]. The recent series of DARPA

Grand Challenges prove that fully autonomous robotic systems are indeed

possible but technology that creates autonomous systems has at the same time

also created unwelcome “automation surprises” [5]. DARPA is the military’s

research organization. It stands for Defense Advanced Research Projects

Agency.

The Three Mile Island disaster in 1979 was caused by a system

functioning on its own, attempting to compensate for a stuck valve. The

operators of the nuclear power plant did not have sufficient time to act before the

automated system transferred control to them in order to avert the disaster. The

same problem occurs in the auto-pilot control in airplanes. If there are any

problems with the system, they are often not communicated to their human

operators in sufficient time to take proper action prior to system failure.

Situational awareness (SA) is also an important area of study, and

although it isn’t studied in-depth in this research, the work developed here

provides a framework to study the effects that the semi-autonomous algorithms

described in this thesis have on situational awareness. In [6, 7], Endsley broke

SA into three levels: 1) being able to perceive elements in the environment, 2)

understanding what all of the elements mean, and 3) being able to project their

status in the future.

The two semi-autonomous algorithms that are the focus of this

dissertation are visual servoing and visual dead reckoning. They are both

explained in more detail in Chapter 2 but in succinct terms for now, visual

4

servoing means using image data obtained from a camera to control a robot and

visual dead reckoning uses internal properties of the camera combined with

sensor data that tells the robot its current position based on its previous position.

The main research question of this work has been to determine if reliable

goal-based semi-autonomous algorithms are able to improve remote operator

performance. The main research questions are:

1) Can a semi-autonomous algorithm be developed that improves

performance in a measurable way?

2) Which tracking algorithms for visual servoing have the best

performance?

3) Can these algorithms be implemented on an existing military

robot?

4) Once implemented, does the use of the algorithms improve the

operator’s performance and if so, by how much?

Beyond the research questions of this work, in order for this to have wide

acceptance by warfighters in the field, the system has to be easy to use and easy

to learn. It should require less mental workload with it than without it. It should

not require constant attention. It should be able to be given a destination and the

operator knows that it will go there without fail. If it is burdensome to use, it will

not be an acceptable form of control.

1.2 Research Objective and Specific Aims

The research objectives in this dissertation were developed to try and

determine if goal-based visual servoing improves operator performance. To

5

support that research question, three aims were formulated: The first aim was

the development and analysis of a tracking algorithm that reliably tracks features

in real-time; the second aim was the development of a testbed in order to run

experiments; the third, and final, aim was the development and execution of a

robust subject test. Each aim and how it relates to the research objective are

described later in this dissertation. Figure 2 shows the broad overview of the

aims that are a part of this research. The overall goal was to create a method of

semi-autonomously controlling a robot and determining if the developed method

improves operator performance or not.

Figure 2: The main research question and the three specific aims of this

dissertation.

6

1.3 Outline of this Dissertation

The second chapter of this dissertation provides background information

on the hardware used and the software that was developed in creating a testbed

system for evaluating user performance. The third chapter details the algorithms

used for the visual servoing algorithm development. The fourth chapter specifies

the implementation of the control algorithms that result in moving the robot based

on inputs from the user. The fifth chapter describes the human-in-the-loop

testing that was performed and the results of the user study that were used to

determine the tradeoffs between semi-autonomous algorithms and full

teleoperation perform better than teleoperation. The sixth chapter concludes with

a summary of the key contributions of this work and the applications that have

successfully used the algorithms developed in this research along with an

analysis of future directions and extensions that would enhance this system.

7

CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter is meant to give a brief overview and literature survey of the

robots, semi-autonomous algorithms, and typical sensors that form the basis of

the development of this work. Section 2.2 describes military robots in more

detail. Section 2.3 describes what sensors they are typically equipped with:

cameras, encoders, and Inertial Measurement Units (IMUs). Finally, Section 2.4

gives a brief overview of the algorithms that are used in this work.

2.2 Military Robots

 The military has been embracing the use of robotics in recent years to

help keep warfighters out of harm’s way. In 2007, the Department of Defense

released a roadmap [8] for the next 25 years, detailing its paradigm shift in

fighting wars with robots. The roadmap report also elaborated on a series of

goals that the Department of Defense wants to achieve for its unmanned

systems. These goals include:

• Improving the overall effectiveness of the unmanned systems through

collaboration

• Achieving greater commonality and interoperability of unmanned systems

• Developing standards that support the safe operation and integration with

the manned systems

8

• Using rapid prototyping and deployment to get the technology out to the

warfighters as quickly as possible

In 2007, iRobot was awarded a contract by the US Army to deliver up to

3,000 unmanned ground vehicles for wide-scale deployment [9]. This marked a

major change in how the Army had typically purchased robots. The contract

award was given the generically named “xBot” but what iRobot delivered were

PackBot 510s, the same chassis that was the focus of this research.

Robots in the military are used in reconnaissance and surveillance, target

identification and designation, counter-mine warfare, and detection of chemical,

biological, nuclear, and explosive agents. These robots may either be

Unmanned Aerial Vehicles (UAVs) or Unmanned Ground Vehicles (UGVs). The

focus of this dissertation is on UGVs, specifically, a class known as Man-

Transportable Robotics Systems (MTRS).

Teleoperation is the current method of control for the MTRS platform. In

teleoperation, the operator controls the translation and rotation rates using a

joystick. The operator remains in the control loop at all times, which requires

constant attention. If there are degraded communications, due to interference,

jamming, or non-line of sight, teleoperation performance may become impaired

and increase the difficulty for the operator.

2.3 Robotic Sensors

This section gives a brief overview of the sensors that are typically used

on UGVs. Most robots manufactured already have the sensors next described

9

built in. These sensors are described now because the work described in this

dissertation makes use of each of the following.

2.3.1 Cameras

Robots typically are equipped with one or more cameras that transmit the

video feed back to the human operator. Typically the video feed that is received

at the Operator Control Unit (OCU) is compressed and may appear degraded

because of blocking artifacts. A blocking, or compression artifact, is the

noticeable distortion that images can take when the compression algorithm

discards data to reduce the amount of space it occupies. In the case of robots,

the video feed is compressed to reduce its size and the required bandwidth to

transmit it as it goes over the chosen communications protocol.

The effect of blocking artifacts is Figure 3. The left image shows an image

that was captured from an NTSC camera. An NTSC camera is analog and in

order for it to be processed on a computer, the signal has to be converted to

digital. This is usually done with a device called a “framegrabber”. The right

image in Figure 3 is the same image but with 90% JPEG compression applied.

Figure 4 shows the histograms of the images in Figure 3. There is a

measureable loss of detail between the uncompressed and compressed images

that is able to be seen in the histograms. This is an extreme example of

compression for illustration purposes but this highlights the fact that many details

are lost with compression. This lack of variation between the two images is

problematic when trying to track features from frame to frame.

10

Figure 3: The image on the left is an image obtained directly from an analog

camera. The image on the right is the same image with 90% JPEG compression applied.

Figure 4: These are the histograms of the same two images in Figure 3.

There are two important internal properties of cameras that will become

significant later on, when describing the algorithms that were implemented. The

first is the Field of View (FOV). The FOV is the angular extent that the world may

be seen at any given time. The FOV is calculated both in vertical and horizontal

directions. The Instantaneous Field of View (IFOV) is defined as “the angle

11

subtended by a single detector element on the axis of the optical system” [10], or

in simpler terms, it is the radians per pixel.

2.3.2 Encoders

Encoders are sensors that measure rotation. The measurement of

rotation allows the calculation of displacement, velocity, and acceleration of the

object they are on, such as a wheel or a motor. Typically, encoders use optical

sensors along with a special reflector that provide electrical pulses to a

microcontroller.

Assuming a differentially steered robot, the calculation to find the robot’s

location is a simple calculation [11]. First, the current distance the robot has

travelled and its current heading are calculated. The equation to calculate

distance travelled is shown in (2.1), where l is the left encoder and r is the right

encoder. The equation to calculate θ, or the robot’s heading is shown in (2.2), l

is the left encoder, r is the right encoder, and w is the wheel base.

2

rl + (2.1)

w
rl + (2.2)

Using the distance and heading calculations, the robot’s position in 2D

Cartesian space may also be easily found. The robot’s X position is given by

(2.3) and the robot’s Y position is given by (2.4). In each equation, d is the

distance travelled.

12

 (2.3))sin(* ϑdx =

 (2.4))cos(* ϑdy =

As the robot moves through its environment, its calculated position using

odometry drifts over time due to wheel slippage and uneven terrain. This is

exactly what happens when a car is suck in the snow, for example, the wheels

are turning but the vehicle is not moving. The largest error is typically with theta,

or the heading of the robot. The equation to find the error in heading is shown in

(2.5), where l and r are the left and right encoder values and b is the wheel base.

Figure 5 depicts such an error in theta. If the robot’s goal point was initially

designated as the green dot and either slippage or rough terrain caused the

odometry to be off, then it is easy for the robot to get off course and end up at the

red dot’s location.

b
rl −

 (2.5)

13

Figure 5: A visualization of small errors in theta that result in large errors in X and

Y. The green dot is where the robot would go if no slippage occurs and the red dot is

where it could end up if odometry is incorrect.

2.3.3 Inertial Measurement Units

An Inertial Measurement Unit (IMU) is a sensor that is able to collect and

report the angular velocity and acceleration of a moving object. It is able to do

this by using two separate sensors. The first sensor is a group of three

accelerometers, one for each axis. The second sensor is a group of three

angular rate sensors called gyroscopes. This configuration is able to report the

six degrees-of-freedom of the object it is placed on. In this work, the heading

from the IMU was integrated with the existing encoder feedback from the robot.

14

This was as simple as reading the value from the IMU, scaling it, and substituting

the theta value as calculated from the encoders. This will be discussed in more

detail in Chapter 4.

2.4 Semi-Autonomous Algorithms

Visual servoing [12] is simply the name given for using data captured from

a camera to control the motion of a robot using computer vision techniques. The

first papers published on visual servoing date back to the 1970s [13]. This has

grown into a very large field of study [14] with many papers published. The

papers have traditionally fallen into two broad categories: 2D, or image based

(IB) [15], and 3D, or position based (PB) [16].

In position based control, image features are extracted and a model of the

scene image features is used to estimate the pose of the target with respect to

the camera using a geometric model of the target [17]. This approach is typically

referred to as 3D visual servoing in literature. This method requires precise

calibration of the camera for it to be accurate.

Camera calibration [16] is the process of finding the camera parameters

that affect the imaging process. Intrinsic camera parameters do not change for a

particular camera-lens combination. Intrinsic camera parameters include the

exact center of the image, the focal length, the lens distortion, and the scaling

factors that are used for row and column pixels. The extrinsic camera

parameters describe the camera’s pose, or its position and orientation, in the

world coordinate system. In [18], a methodology was published for

autonomously calibrating a camera. Once the intrinsic and extrinsic camera

15

parameters have been found, the pose of the camera in the workspace is able to

be computed.

The second class of visual servoing algorithms is image-based [19]. In

image-based visual servoing, the pose estimate is omitted [20] and the motion

control is done solely in image space. There has also been work published on

“2-1/2D” visual servoing [21] that bridges the two groups by trying to minimize the

errors in the image and pose space.

 Dead reckoning [22] has its roots outside the realm of robotics but it is

basically estimating one’s current position based on a previously determined

position and advancing that position based on known speeds over time. Dead

reckoning has been shown to be used in nature [23]. Dead reckoning has also

been shown to be used in marine, air, and automotive navigation and it has even

been proven to be successful in predicting latency and reducing its impact on

networked games [24]. Dead reckoning has been used to control the Mars rover

robots [25, 26]. The implementation of “visual dead reckoning” as it pertains to

this research is described in more detail in Chapter 4.

16

CHAPTER 3

IMPLEMENTATION AND TESTING OF TRACKING ALGORITHMS

3.1 Introduction

This chapter focuses on tracking algorithms. It starts by giving a broad

overview of computer vision and also a literature survey is presented describing

past work in detecting and tracking features. The approach used to track a goal

point anywhere in the image using any tracking algorithm is discussed along with

the approach used to determine which algorithms performed the best using

defined metrics.

3.2 Literature Review

The literature on tracking a point, or multiple points, through a series of

images is vast because there are as nearly as many different approaches to

tracking as there are applications. The basic component of almost any tracking

algorithm is feature detection and matching. There is, however, no universal

definition of what constitutes a feature and beyond that, a feature that works well

in one algorithm might not work well in another. Applying a filter, either in the

spatial or frequency domain, to the input image may help one algorithm while not

having any effect on another or may possibly render the algorithm ineffective.

A feature may be loosely defined as an “interesting” part of an image;

something able to be located from frame to frame. This definition is intentionally

vague because there are an abundance of feature detectors that have been

published over the years. That language is also intentionally vague because the

17

feature depends on the algorithm and the algorithm’s purpose. The most

common types of features found in the literature are edges, corners, and blobs.

These three types are the focus of the algorithms discussed in this chapter.

Edge detection is a method used in image processing to detect

discontinuities in intensity and literature dates back to the 1970s [27]. The two

main areas of study to find edges that have been apparent over this time period

are template matching and the differential gradient approach. The goal of either

approach is to locate where the gradient magnitude g is sufficiently large to

indicate an edge.

Both the template matching and differential gradient approaches locate

the intensity gradients using convolution masks. Convolution is a mathematical

operation that is fundamental to image processing and computer vision as well

as other areas of science. It is a way to multiply two arrays of numbers, which

typically have different sizes but the same dimensionality, to output an array of

the same dimensionality. Figure 6 shows a small example image on the left and

an example convolution kernel on the right. When a convolution is used, it is

typically done by sliding the convolution kernel, or mask, over the image, usually

starting at the top left corner and moving it where to where it fits within the image

boundaries. For example, the output of the image at pixel location I35 convolved

by the mask would be: O35 = I35K11 + I36K12 + I37K13 + I45K21 + I46K22 + I47K23.

18

Figure 6: A small example image (left) and a convolution kernel (right).

Both the differential gradient and template matching algorithms make use

of convolution masks. The differential gradient algorithm uses two masks, one

for the x direction and another for the y direction. The template matching

algorithms can use up to 12. The Sobel operator [28] is a well-known template

matching algorithm for edge detection. The convolution masks for a 3x3 Sobel

operator for x and y are shown in (3.1) and (3.2). Figure 7 shows the results of

the Sobel operator running on an input image.

 (3.1)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
202
101

 (3.2)
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−− 121
000
121

19

Figure 7: The results of the Sobel operator running on an image.

Many trackable features tend to be corners. A commonly used corner

detection was developed by Harris [29]. The basic idea used in this method is to

locate points where the surrounding neighborhood shows edges in more than

one direction.

In [30], Shi and Tomasi published an enhancement to the work done by

Harris. They determined that a feature was good as long as the smaller of the

two eigenvalues was greater than a minimum threshold [31]. OpenCV [32] is an

open source computer vision library initially developed by Intel. It contains an

implementation of both the Shi and Tomasi algorithm and the Harris corner

detector. Figure 8 shows the results of running Shi and Tomasi algorithm on an

image taken from within the lab.

20

Figure 8: The "good features" to track that were found running OpenCV's

implementation of Shi and Tomasi's algorithm.

In [33], the authors assumed that a corner looks like a blurred wedge and

then computed attributes of the wedge (the amplitude, angle, and blur). In [34],

the authors generalized that work and they proposed calculating corner strength

by looking at pixel values within a disc. They calculated the proportion of pixels

whose intensity value is within the disc’s center, or nucleus. The pixels that have

a value closer to the nucleus receive a higher score. They called this measure

the USAN, or Univalue Segment Assimilating Nucleus. If the USAN has a low

value, then it is indicative that the USAN is a corner because it is different from

its surroundings. These candidates are then run through another test to winnow

out bad candidates and the resulting USANs make up the SUSAN, or Smallest

USAN.

21

FAST [35], or Features from Accelerated Segment Test, considers the

pixels inside a Bresenham circle (midpoint circle algorithm) with a radius r,

around a candidate point. If there are n contiguous pixels that are all brighter

than the nucleus by threshold value t, then the nucleus is considered to be a

feature. The authors did testing to determine the optimal parameter values. If r

has a value of 3, then the circle created using the Bresenham algorithm contains

16 pixels and when they set n to equal 3, they found that the algorithm did not

detect lines and found only corners.

In [36], the authors took a unique approach of finding image features

though the use of genetic programming. They were looking for points that had

global separability, high information content, and were stable under “illumination

change, rotation, scale change, and affine transformations”. They noted their

future work will construct image filters that adapt to the environment, meaning

that different filters would run for an indoor environment as opposed to outdoors.

Once features have been found, the next step is to track them from frame

to frame. The review of literature in this field has primarily been limited to optical

flow, blob, and correlation tracking because these three areas seem to be the

most active areas of research. Each area is next described in detail.

The first class of tracking algorithms to be considered is optical flow.

Optical flow is a method of estimating motion from frame to frame. Optical flow

algorithms fall into two categories, sparse and dense. Sparse optical flow

specifies a set of points to track from frame to frame, while dense optical flow

looks at every pixel.

22

The Kanade-Lucas-Tomasi (KLT) algorithm [37] attempts to produce

dense results, but their algorithm can easily be applied to a subset of points so it

has become a popular sparse method. The KLT algorithm relies on local

information derived from a small window surrounding each point of interest. The

use of a small window size leads to problems detecting large motions. This led

to the development of the KLT “pyramidal” algorithm [38]. This algorithm creates

an image pyramid [39], which is a way to represent an image as a collection

where the resolution changes at each level. The KLT pyramidal algorithm starts

tracking from the highest level of the pyramid (the level that contains the least

amount of detail) to the lowest level (the level that contains the most amount of

detail). This tracking over a pyramid allows for larger motions to be caught by

the larger spatial scales.

There are also several implementations of dense optical flow. A popular

one from Horn and Schunck [40] was the first to use brightness constancy

assumption to derive the basic brightness constancy equations. There are other

methods to fall into the category of block matching, where algorithms divide the

image into regions and match on those regions. More recent work published by

Farnebäck [41] implemented dense optical flow by using polynomial expansion.

He did this by fitting data in an image in a neighborhood to a quadratic

polynomial model I(x) = xTAx+bTx+c.

The problem with these versions of optical flow is they make certain

assumptions that fail with the target application of the research proposed here.

One assumption is that brightness in small regions will remain the same,

23

although the location will change. This may be true in data collected in a

controlled environment, but in real-world use, the illumination frequently changes.

It also assumes spatial and temporal persistence, but this assumption fails in this

context because on a moving platform, the amount of motion is not always

consistent. Optical flow also suffers from the aperture problem which is usually

illustrated with a picture of a barber’s pole. The actual motion of stripes on a

barber’s pole move horizontally but if the optical flow algorithms ran on that

scene, they would all sense that the motion is vertical.

In [38], the authors used the KLT algorithm with modifications to process

color images [42] along with accounting for changes in pixel brightness and

contrast [43]. As features are lost from too much motion, they are replaced,

keeping the number of features they track at a constant number. They also

estimated the inter-frame motion to assist the tracking algorithm in a process

they called “guided tracking”.

Blob detection refers to algorithms to detect points or regions in an image

that are either brighter or darker than their surroundings. Scale-Invariant Feature

Transform (SIFT) [44], was developed to be invariant to scale. SIFT is also

invariant to rotation because it detects the dominant gradient orientation at its

location and records its local gradient histogram results with respect to this

orientation. SIFT is also invariant to small affine transformations.

The algorithm first performs a Difference of Gaussian (DoG) operation.

The DoG is an image filter that subtracts a blurred version of an original image

from another, less blurred image. The blurring is done by convolving the input

24

image with Gaussian kernels that have differing standard deviations. This filter is

capable of suppressing high-frequency spatial information. The subtraction of

one image from another image preserves spatial information that is contained in

the two blurred images. The second step in the SIFT algorithm performs

keypoint localization where keypoints are selected based on their stability. The

third step assigns orientations to each keypoint location based on local image

gradient direction. The final step assigns a descriptor to each keypoint and the

goal is to assign a descriptor (feature vector) that is highly distinctive. The

feature vector contains a set of orientation histograms that are relative to the

orientation of the keypoint. Each histogram contains 8 bins and each descriptor

contains an array of 4 histograms around the keypoint, which leads to a 128

element feature vector.

Speeded-Up Robust Features (SURF) [45], is another type of blob

detection. It was developed to be faster than SIFT and more robust against

different image transformations. The speed improvement in the SURF algorithm

comes from its use of an “integral image” [46]. The integral image, also known

as a summed area table, is calculated by the sum of the values above and to the

left of a point (x,y). The integral image was first described in 1984 [47]. The

SURF algorithm makes use of several rectangular regions and each region is

calculated using the integral image algorithm.

Although SIFT and SURF operate differently, they both output a descriptor

vector that can be matched to descriptor vectors from other images. There have

been different methods of matching descriptors proposed. In [48], Lowe

25

proposed computing the nearest neighbor of a feature and then checking to see

if the second closest neighbor is further away from a given threshold. In [49], the

authors considered only the nearest neighbor or if the distance is smaller than a

threshold. Another method later proposed by Beis and Lowe [48] computed only

the approximate nearest neighbor using a kd-tree, which is an extension of a

binary search tree.

SURF does have several descriptors types of varying length. The regular

version of SURF has a length of 64 but there is also a version where they double

the descriptor length to 128. U-SURF is another version where the rotation

invariance is left out, which makes the calculation faster.

There are two methods that have been published using SIFT features to

track points from frame to frame which could also be extended to SURF features.

One is to track the SIFT feature from frame to frame, as was used in [50]. This

method was tried and was not found to be reliable. The SIFT features were not

able to be reliably found from one frame to the next, especially in large, open

areas such as grass and sky.

Another method that has been used is to find all SIFT features from frame

to frame, and then find the affine transformation (using the putative matches

between the two images using either robust least squares or Random Sample

Consensus (RANSAC) [51]). An affine transformation preserves collinearity and

relative distancing. They allow for repositioning, scaling, skewing, and rotation.

In [52], the authors used the affine transformation to obtain the angle to the target

location for controlling an Unmanned Aerial Vehicle (UAV).

26

Correlation tracking is a well-studied method and was first published in the

1970s [53-58]. Correlation is used to measure how a given quantity changes.

Correlation can be used in image processing to calculate how feature points from

one frame to the next change over time. The correlation tracker that was used in

this analysis will be described in more detail later.

All of the above approaches to tracking have many different parameters

that can be changed. This means that an approach that works well for one

algorithm dataset may not work well for another. The goal of this aim was to

determine which tracking algorithms are robust and perform well in real-time with

real-world conditions.

In related work, Matchmoving is a technique used in cinematography that

deals with seamlessly inserting virtual objects into a real-world scene. There are

several commercial products available [59-61] that all track a point through a

series of input images and figure out the 3D representation. There is an open-

source project [62] that has been started and currently implements the KLT

optical flow and SURF algorithms.

Although the goal of matchmoving is working with one scene at a time,

they do use many of the same algorithms as this work does. The reliability of the

algorithms developed in this research may also be of interest in this community

because this aim produced a software environment (described in more detail

later) that implemented a large number of tracking algorithms.

27

3.3 Methods

This section describes the tracking algorithms that were developed for this

research. The methodology used to track a goal point using each algorithm is

detailed is discussed. Finally, a testbed that was created for this research is

described.

3.3.1 Implemented Tracking Algorithms

This research used algorithms from each of the three main classes

described above to see how they compare. The three classes of tracking

algorithms were correlation, optical flow, and blob. This section explains each

algorithm’s implementation in more detail. Figure 9 depicts the overall goal of

this aim. It was to analyze tracking algorithms and determine how they compare

in their accuracy of tracking a goal point and how efficient they are.

.

28

Figure 9: The overview of the three classes of tracking algorithms analyzed.

3.3.1.1 Correlation

The correlation tracker that was used in this research was developed by

Turing Associates, Inc. as part of a research grant from the US Army. The

algorithm finds the location of the goal point in the new frame that best correlates

to the interest point in the reference frame. The novel approach that was used

was a virtual large kernel “Multi-Resolution Progressive Alignment” search

(MRPA). The unique attribute of this algorithm is that it is able to track a goal

point without nearby features. A point on a blank white wall will obviously not

track very well but the correlation tracker is the only method that can directly

29

track a goal point. It is able to do this because uses a foveal kernel that tracks

interest points without nearby features.

Figure 10An example foveal kernel is shown in . The effect of using the

MRPA is that it is sampled less densely at the periphery and more densely

towards the center. It uses a large search space with a large kernel. The

“progressive alignment” part of the algorithm accumulates data across resolution

levels.

Figure 10: An example foveal kernel that the correlation tracker uses to track a

point.

This tracking algorithm has undergone several revisions since the contract

was awarded a number of years ago. One of the more recent modifications was

done was to use a uniform kernel that had two parameters, the spacing in pixels

and the number of points in the kernel. The geometry of this kernel is useful

when going through a doorway, for example, because there are generally no

features at the center of the doorway and the navigation is with respect to the

features at the side.

30

The spacing in the uniform kernel allowed utilization use of Nyquist’s

theorem that states that a signal must be sampled at least twice as fast as the

bandwidth of the signal. In the kernel spacing, this meant that the spacing could

measure signals with a wavelength of 2S, where S is the spacing in pixels.

Another enhancement that was done to the correlation tracker was in

making the algorithm more robust. In order to have robust tracking, there are two

important considerations that apply to all of the tracking algorithms. The first is to

recognize accurate tracking. The second is to be able to recognize point drift.

The approach used for the correlation tracker is shown in Figure 11. This

approach automatically skips corrupted frames due to motion blur or

communication errors. This is also more stable because of the multiple tracks

and the added median filtering.

31

Figure 11: This is the process developed to make the correlation tracker robust.

32

3.3.1.2 Tracking a Goal Point

 The next two classes of tracking algorithms, optical flow and blob, do not

directly support tracking a goal point because the features they track depend on

what each algorithm defines as a feature point. Tracking a goal point that is

anywhere in the image is important for the visual servoing application because

an operator will want to direct the robot to go anywhere in the camera’s field of

view and not be limited to only features that can easily be tracked by a particular

algorithm. The image in Figure 12 shows an outdoor scene of a path with woods

and vegetation on each side. The green points indicate the corners that were

found in the first step of the KLT algorithm. If a robot moves straight through this

scene, the points contained in the two yellow ellipses would move more than the

points contained in the red ellipse.

33

Figure 12: An image of wooded path. The green points were found using Shi and

Tomasi’s corner detector. The points contained in the yellow ellipses have greater motion

as the robot moves forward than the points in the red ellipse.

In the study of plane geometry, there are affine and projective

transformations. An affine transformation preserves colinearity between points

and the ratio of distances of collinear points. A projective transformation keeps

straight lines straight but it does not preserve the angles between the lines

because the warping cannot be defined as an affine transformation.

In the example of moving through the wooded scene, an affine

transformation is not sufficient to describe the changes in the scene as a robot

drives through it. There are actually multiple projective transformations that are

occurring, one for each surface facet.

34

Make3D [63] is an open-source project that takes a single image still and

produces a 3D model that can then be used to virtually “fly-through” the scene.

The author did this by using supervised learning to predict the depth map as a

function of the input image. The use of Make3D is described later in this chapter

but for now, Figure 13 illustrates this point of multiple projective transformations.

This is the same scene that was shown in Figure 12 but with the 3D facets, as

found by Make3D, overlaid on the scene. As the camera moves through the

scene, each of those facets undergoes a transformation.

Figure 13: This is the same wooded scene shown earlier but with the 3D facets

found using Make3D shown.

The approach developed to track a goal point makes use of an affine

transformation but it was limited to a specific region, which is described later.

35

Going back to the affine transformation, there are six values that specify that

transformation [64]. Those six values, A, B, C, D, E, F, have to satisfy the

formula in (3.3). In (3.3), the X and Y are the old coordinates and X’ and Y’ are

the new coordinates. The equation may also be written in matrix notation as

shown in (3.4), where T is a 3x3 matrix of coefficients shown in (3.3).

FEYDXY
CBYAXX

++=
++=

'
' (3.3)

Tyxyx]1[]''[= (3.4)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
fc
eb
da

T (3.5)

A general affine transformation from 2D to 2D [65] is shown in (3.6) and

requires six parameters that can come from three pairs of points.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
232221
131211

1
y
x

aaa
aaa

v
u

 (3.6)

Figure 14 shows a simple example of using three pairs of points (blue points) to

track the goal point (red point) from frame to frame. The three input points (blue)

are fed into the equation in (3.6) and the resulting affine transformation is used to

calculate how the points moved and the motion is applied to the goal point (red).

This approach in (3.6) is simple and if there are any errors in the input

coordinates, the calculated transformation will be wrong. Those errors

accumulate over time and it doesn’t take long for tracking a goal point to be

36

significantly off. In order to reduce the amount of error, a better approach is to

use many pairs of points and find a method of rejecting outliers. One method is

the RANSAC algorithm described earlier. Another is similar to the least squares

approach of fitting a straight line [65].

Figure 14: A simple example of tracking a goal point (the red point) from frame to

frame using three non-collinear points (blue points).

The approach used in this research uses an affine transformation

combined with limiting the points to a specific region. That region is found using

image segmentation. Image segmentation is another popular area of computer

vision research and there have been a large number of papers published on the

37

topic. The goal is to partition an image into a set of regions. The image

segmentation algorithm used in this research is a graph-based approach [66].

This method was chosen because the authors were kind enough to release a

C++ implementation of their algorithm and it was fast enough for the needs of

this research and it was able to be easily implemented into the code base.

The algorithm looks for similar regions based on color and texture and

attempts to group like pixels together. Figure 15 shows an example image taken

from within the laboratory. The image on the left is the segmented image using

the graph-based algorithm. The pseudo-color image is created by randomly

drawing an RGB color for each detection region. The image on the right is the

input image with the detected regions drawn in green.

Figure 15: A scene from inside the laboratory. The image on the left is after the

image was segmented using the graph-based algorithm. The image on the right is the

input image with the detected regions overlaid in green.

There are several input parameters to the segmentation algorithm. Sigma

controls how much smoothing to apply to the image prior to doing the

38

segmentation. This is important so that the algorithm doesn’t detect too many

regions. There is a constant, K, used for a thresholding function, and, c, that

controls a post-processing step that will merge smaller regions together to

attempt and meet minimum number of regions specified.

In this research, if the segmented image does not contain the minimum

number of regions that were specified, the image is segmented again with the

next set of parameters. In the first set of parameters, sigma was 0.5, K was 500,

and the c, minimum number of regions, was 50. In the second set, sigma was

0.5, K was 750, and c was 100. In the third set, sigma was 0.5, K was 1000, and

c was 100 These values were all empirically found and in the datasets that were

worked with.

The segmented image is used in the developed tracking algorithm by

making the assumption that regions belong to objects and that the operator

wants to go to an object. After the region has been found, points located on that

region are tracked and the affine transformation is calculated from frame to

frame. There must be at least three non-collinear points for this algorithm to

work.

3.3.1.3 Optical Flow

 Three optical flow algorithms, Horn-Schunck, Farnebäck, and KLT, were

analyzed for this class of algorithms. Horn-Schunck and Farnebäck are

classified as dense because nearly every pixel’s movement is calculated from

frame to frame. The KLT sparse optical flow algorithm, on the other hand, tracks

corners from frame to frame.

39

The optical flow algorithms typically operate by searching a fixed size

window, from frame to frame, normally using the sum of squared differences

metric to determine the position of the corner in the new frame. This method is

fast but can be unreliable because a spiral search is typically used. A spiral

search continues to find the next corner using Euclidean distance and once a

match that meets a threshold value has been met, the search stops. This

method can output many incorrect matches.

A method that has been shown in literature to successfully identify and

reject the outliers, or bad matches, is the RANSAC algorithm [51]. Figure 16

shows an example of using several different methods to fit a line to noisy data

[67]. RANSAC is good at rejecting outliers but because it is iterative, it can be

resource-intensive to find an acceptable solution.

40

Figure 16: An example of fitting a line using several different methods, including

RANSAC. The data points, containing outliers, are represented by black dots. The exact

system is indicated by the green line, a linear fit is denoted by the red line, and the line

that was found using the RANSAC algorithm is shown in blue.

The more accurate that the corner points can be tracked, the more

accurate the calculated location of the goal point will be from frame to frame. In

this research, a descriptor was added to the KLT optical flow algorithm to

increase its reliability. Several different shapes, or “patches” around a corner

point were implemented including a rectangle, a disc, and an annulus. The disc

construction used Bresenham’s circle algorithm [68]. An example of the annulus

patch is shown in Figure 17. There are two parameters to the annulus, the outer

and inner radii. Even though circular descriptors are computationally intensive

compared to rectangular ones, they were chosen to be robust to roll.

41

Once corners have been found in the reference and test frames, a match

can be found using several different ways. One method is to use a descriptor of

some sort and then use the nearest neighbors approach. The kd-tree algorithm

[69] continues to be popular in literature to match descriptors. The methodology

of the kd-tree is relatively simple. At each node, the points are recursively

partitioned into two sets by splitting along one dimension of the data, until some

criteria to stop has been met [70]. The Approximate Nearest Neighbor [71]

(ANN), is a kd-tree implementation. The author of Bundler [72], a project to build

a 3D model from an unordered collection of images, converted the ANN

algorithm to search a vector of unsigned bytes. The FLANN algorithm [73] uses

different tree structures and automatically chooses the best one based on the

data. There are also PCA trees [74], Ball trees, [75], and k-means [76]. .

Figure 17: Example annulus descriptor used for adding a descriptor to the KLT

algorithm. There are two parameters to an annulus, the inner and outer radii.

 The idea behind a histogram-based approach is another way to compare

images. This is highlighted in Figure 18. The image in the figure was first

converted to the HSV (hue, saturation, and value) colorspace and then a patch

was extracted around each interest point, and the histogram of the value, or

intensity, plane is displayed.

42

Figure 18: An image from the SUV dataset where three patches were extracted,

converted to the HSV (hue, saturation, and value) colorspace, and the histogram of each

patch was calculated using the value plane.

There are several algorithms already implemented in OpenCV [32] that

were used to perform histogram matching. In the equations listed below, H1 and

H2 are two histograms that are being compared. The first histogram matching

algorithm is a measure of correlation, the equation for which is shown in (3.7). A

perfect match is when the correlation equals 1. A total mismatch is when the

correlation is 0.

43

 1, 2 ∑

∑
 (3.7)

The Bhattacharyya matching algorithm is shown in (3.8). A perfect match occurs

when the value returned is 0 and a mismatch is when the value is 1.

 1, 2 1 ∑
∑ ∑

 (3.8)

Another method of matching two images of the same size is by calculating

the 2D correlation coefficient. The equation for calculating the 2D correlation

coefficient is shown in (3.9).

 ∑ ∑

∑ ∑ ∑ ∑
 (3.9)

The Sum of Squared Distances (SSD) is another approach already used by the

optical flow algorithms. The equation for the SSD metric is shown in (3.10).

∑ ++−=
),(

2)),(2),(1(
ji

jyixIjiISSD (3.10)

The importance of choosing a circular descriptor able to handle roll is

shown in Figure 19. The input shape was rotated clockwise 45, 90, 135, and 180

degrees and then the 2D correlation coefficient was calculated at each rotation,

44

comparing the input image to the rotated image. The correlation coefficient

dropped considerably with the introduced roll.

Figure 19: The computed 2D correlation coefficient of an input shape compared

with the shape being rotated.

Before comparing two patches, it is important to line the two corners up.

The approach taken in the experiment was to first find the SIFT features in both

the reference and test frames and use that to calculate the global affine

transformation. The calculated affine transformation was then applied to the test

image prior to using the Harris corner finder algorithm. There are other methods

to this. One approach would be to take square bounding the region and rotate

the detected corner in both the reference and test frames so that the corner was

vertical, as depicted in Figure 20.

45

Figure 20: A possible configuration (12:00 position) of aligning each corner in

order to calculate the match.

An experiment was conducted to determine the accuracy of the various

descriptors and the most accurate method to match them. The shapes of the

descriptors around a feature point used were: a 30 pixel x30 pixel rectangle, a

disc with a radius of 15 pixels, and an annulus with an outer radius of 15 and an

inner radius of 5. The descriptor matching methods were the 2D correlation

coefficient, the Sum of Squared Differences, a kd-tree, and the two described

histogram matching algorithms. The SSD method ran an exhaustive search on

all corners and did not use the spiral search described above.

 In the histogram methods, the image was converted to HSV and the

values were separated into 32 bins using the intensity plane. For the kd-tree

algorithm, the 2D vector had to be converted to 1D. The rectangle was

converted in a row-wise manner to a 1D vector. The process for the disc and

annulus shapes started at the innermost edge and went in a clockwise direction,

listing the values.

Table 1 summarizes the steps in the experiment. The first step was to

randomly draw 50 reference images from a collection of approximately 2,000

images. This collection of images is described in more detail later in this chapter.

46

They are composed of four different scenes with a camera on a robot recording

the video as it drove towards an object in each scene.

The test frames were the next sequential images in the dataset, meaning

they were the next frame taken after the reference frame when the data were

collected. Next, SIFT features were calculated in both the reference and test

frames and the global affine transformation was found to align the two images.

This was done to ensure the corners lined up.

Next, the Harris corner detector algorithm was run on the reference frame

and found corners that had a minimum distance to 20 pixels to the next closest

corner. This was done because the verification step of this algorithm was done

visually and by having the features spread apart, it made it easier to check.

Next, the Harris corner detector was run on the test and found all corners and no

minimum distance was specified. The next step applied each of the descriptors

(rectangle, disc, and annulus) to each point in both frames and matched them

using one of the four metrics.

47

KLT Descriptor Experiment

1) Randomly sample 50 pairs of image from a collection of
approximately 2,000 images.

2) Find the SIFT features, match them, and calculate the global
affine transformation for the reference and test frames, warp
test frame to align images.

3) Find all Harris corners in the reference frame (time t), a
minimum of 20 pixels apart.

4) Find all Harris corners in the test frame (time t+1).

5) Visually inspect and determine the number of correct
matches

Table 1: Methodology used to test the accuracy of various KLT descriptors.

The results were visually inspected and the number of correct matches

was recorded. A total of 1,000 points were used for this test. The results of the

experiment are shown in Table 2. This does pave the way for future work with

this descriptor and because this functionality is within TACTCIAL, it allows for

further experimentation.

48

kd‐
tree

Histogram
(Bhattacharyya)

Histogram
(corr) 2D Corr SSD

Rectangle 0.887 0.823 0.822 0.819 0.777
Disc 0.922 0.835 0.833 0.823 0.789
Annulus 0.878 0.812 0.789 0.813 0.735
Mean 0.90 0.82 0.81 0.82 0.77

Table 2: The results of the experiment conducted to add a descriptor to KLT optical

flow.

The 2D correlation coefficient with the disc-shaped descriptor had the best

performance with 92% of the corners matched correctly between the two frames.

This descriptor shape and matching method was also used in determining which

tracking algorithm performed the best, which is described later.

3.3.1.4 Blob Trackers

The approach to tracking a goal point for the two blob trackers is

essentially the same as the optical flow algorithms. The image is first segmented

to find the region that corresponds to where the operator clicked and the

keypoints are matched from frame to frame. Next, the non-collinear points are

used to calculate the affine transformation of the goal point from frame to frame.

This matching step in each of the blob trackers is susceptible to incorrect

matches. Figure 21 shows an example of matching SIFT features from two

consecutive frames in the “wood pile” dataset. The algorithm appears to match

the majority of the points successfully but there are several by the tree,

highlighted by the yellow ellipses, on the right side that it fails to match correctly.

One method of eliminating incorrect matches is to use the RANSAC algorithm, as

described earlier.

49

Figure 21: An example of matching SIFT features from two Images from the “wood

pile” dataset. The yellow ellipses show where the SIFT algorithms made obvious

mismatches.

50

3.3.2 Tracking in 3D

After developing a method to track a goal point using any algorithm, the

next step was to see which one performed best. The first method that was tried

for analyzing the tracking algorithms was to use a virtual 3D world. Make3D,

described earlier, was used to create a 3D VRML model of a single image.

Figure 22 shows the view from within MATLAB of tracking a point while the

model is flown through in azimuth at each timestep.

Figure 22: Tracking in 3D within MATLAB using a model generated by Make3D, an

open-source project that takes an image still and produces a 3D model. The scene is

rotated programmatically by a script.

51

 MATLAB’s Virtual Reality Toolbox was used to test if the idea was

feasible. The scene in Figure 22 was programmatically moved a set amount by

the program while the tracking algorithm tracked the goal point. Several of the

tracking algorithms were already able to be called from within MATLAB as a

proof of concept. Once it was established as possible, an open source project,

“view3dscene” [77] was used because it is written in C++. This made it easy to

implement with the existing codebase.

 Figure 23 shows the same wooded scene as before, created using

Make3D, but this time it is being “walked through”. It is difficult to easily show but

the camera’s perspective is able to be change programmatically to simulate

walking through the scene. The goal point is shown as a while dot, far off in the

background, and the facet it is on is shown by the white triangle.

52

Figure 23: The same wooded scene shown before but it was converted to a 3D

“fly-through” scene using Make3D. It is able to be programmatically “walked-through”

using a modified open source project, “view3dscene”.

Although this approach was demonstrated to be feasible, it didn’t give

accurate enough ground truth data. The 3D facet that the tracked point was on

could be obtained programmatically but the facets were sometimes large. Being

able to reliably calculate ground truth was a problem..

This approach also did not give the same motion that an actual robot

driving in a real scene would give. The real-world conditions of a robot driving

through a scene and the associated motion blur is difficult to simulate. As a

result of the simulation environment not being accurate enough, data were

53

collected using a robot used that for the analysis of tracking algorithms. The next

section details the data that were collected and the method used.

3.3.3 Data Collection

In order to prepare for the analysis of which tracking algorithm performed

the best, data were collected using a robot to capture real-world movement along

with the inherent imperfections such as motion blur. The data used for the

analysis of the tracking algorithms were collected using the Intelligent Ground

Vehicle Competition (IGVC) platform. It was equipped with a Sony NTSC

camera, GPS, and an Inertial Measurement Unit (IMU) and is shown in Figure

24.

The platform was also equipped with encoders able to read data from the

motor controller. Data were collected with an on-board computer while the robot

was being driven with a joystick. The input commands from the joystick, along

with the motion commands sent to the robot, were also recorded. In each

dataset, the task was to drive towards a target and record the data along the

way. The data collection was done around Wayne State University’s campus

and in a typical park.

54

Figure 24: The IGVC platform that was equipped with a camera, GPS, and an IMU

for data collection.

Figure 25 shows the four datasets used for the analysis of tracking

algorithms. The “Sign” dataset contains 241 frames. The “Silver Car” dataset

contains 943 frames. The “SUV” dataset contains 562 frames and the

“Woodpile” dataset contains 228 frames. These scenes were picked because the

target stayed in the camera’s field of view for the entire duration and there were a

substantial number of frames that could be used for the analysis. More details

on the dataset are contained in Appendix B.

55

Figure 25: An image still from each of the four datasets used in the tracking

algorithm analysis.

3.3.4 Software Development Environment (TACTICAL)

TACTICAL, Tracking Algorithm Comparison Testbed for Comprehensive

Analysis and Learning, was developed as part of this research in order to have a

common method of evaluating the implemented algorithms and to have a single

environment for all image operations. The “Learning” in TACTICAL’s name

implies the user is able to learn which filters and features work best for a given

dataset and does not currently implement any machine learning algorithms. It

allows the user to load a video file or a series of sequentially numbered images,

change the parameters of the desired tracking algorithm, click on a point to track,

56

and observe how well the algorithm does at tracking the goal point. Figure 26

shows a screen capture of one of the tabs within TACTCIAL. The source code

for TACTICAL, along with the datasets mentioned earlier, have been released to

the open source community [78]. It was developed and released as open source

in the hopes that other researchers in this field find it useful.

Figure 26: Screenshot of TACTICAL, the software testbed used for the tracking

algorithm analysis

TACTICAL has the ability to apply various image operations on the video

stream before the tracking algorithms are called. The tracking algorithms used in

this research all operate on grayscale images. There are different algorithms

that have been developed to convert an image to grayscale but there is a tradeoff

in the quality of the converted image with the time that takes. In TACTICAL,

there are several algorithms implemented. The first, and fastest, takes only the

green plane and discards the red and blue. The second is the lightness method,

57

which takes the mean of the maximum and minimum RGB value for each pixel.

The third algorithm is the average method which takes the mean of RGB pixel

values. The fourth algorithm implemented is the luminosity method which applies

a weighted average to each red, green, and blue pixel. The weight is adjustable

within the software environment.

There is also the ability to use different color models. The Hue,

Saturation, and Value (Intensity) color model (HSV) was implemented. In this

color model, the intensity, or gray-level value, is decomposed into two color-

carrying components, hue and saturation [79]. The Lab color model was also

implemented, where L is the luminance value and a and b represent the two

color channels. This is the color space that most represents human vision.

A large number of filters both in the spatial and frequency domains were

developed over the course of several years. In the spatial domain, smoothing

filters such as order-statistic and lowpass filters were implemented. Laplacian

and gradient sharpening filters in the spatial domain were also implemented. On

the frequency domain side, several lowpass and highpass filters were developed.

This collection of filters has been in development over several years. The

development of TACTICAL allowed for a common place to use them all. This

was useful because the effect of using a filter with a tracking algorithm isn’t

known until it has been tried.

 A good example of this is with the SIFT algorithm. The literature does

not mention it but it was found that by applying a high-pass filter to the frame

prior to finding SIFT features, it improves the algorithm’s performance. These

58

interactions are not able to be found without experimentation. The main goal of

TACTICAL was to have everything easily accessible so an analysis could be

quickly and easily performed.

The ability to add compression to the datasets within TACTICAL was also

significant. JPEG and MPEG compression were added into order to degrade

each dataset to determine how each tracking algorithm performs. This simulated

the real-world conditions at the OCU.

Another important component added to TACTICAL was the ability to

manually add ground truth to a dataset. This was a simple annotation tool that

allowed a user to click through the video and designate the goal point in each

frame. The output is simply a text file with the X and Y coordinates input by the

user at each frame of the input video. There is also a method to click through,

verify, and change the goal point’s location, if needed.

This addition was significant because it addressed the problems

experienced with tracking in 3D, which were the inability to simulate the motion of

a robot moving through an environment and with the 3D facets not providing

precise ground truth data. Although the location of the tracking could be

obtained programmatically, the area the facet covered could be small or large.

This annotation tool is not perfect because the ground truth is only as accurate

as the user’s ability to click on the goal point from frame to frame. It is also a

very time consuming process, especially when labeling multiple points in the

scene because the entire dataset has to be processed for each goal point. In

hindsight, a better way to handle this would have been to program a method of

59

inputting how many goal points were going to be labeled for that particular

dataset and allowing the user to click on all of the goal points before moving on

to the next frame.

A popular method mentioned in the literature of tracking algorithm is the

use of synthetic images to know ground truth [80]. While this approach is

certainly valid for some problem domains, this was not the case with this

research. This method captured real-world conditions so the tracking algorithms

could be made to perform as robustly as possible and the algorithms could be

validated as working properly before implementing on an actual system.

3.4 Results

This section details the results of the experiments run to measure which

tracking algorithms performed the best. The metrics used included

computational speed, overhead, accuracy, and the effect added compression

had on the algorithm’s ability to track the goal point. The eight algorithms used in

this analysis are summarized in Table 3. The KLT with descriptor was the disc-

shaped region with the 2D correlation coefficient as the metric.

60

Table 3: The eight algorithms compared in this analysis.

All development of the tracking algorithms and experiments detailed below

were run on an Intel Core Duo processor with 2 GB memory. The computer ran

Ubuntu version 8.04. The code was all written in C++.

3.4.1 Speed

The first metric run was solely on execution time. All algorithms were run

within TACTICAL and as such, were all coded in C++. Figure 27 shows the eight

algorithms. The mean execution time across all four datasets is shown. The

correlation and versions of KLT were orders of magnitude faster than the dense

optical flow and blob algorithms. Figure 28 shows the same data as Figure 27

but with the correlation and KLT algorithms pulled out.

61

0
1000
2000
3000
4000
5000
6000

Mean Time (in ms)

Time (in ms)

Figure 27: Execution time (in milliseconds) of the eight algorithms compared

0

20

40

60

80

100

120

Correlation KLT (Standard) KLT(with
RANSAC)

KLT (with
Descriptor)

Mean Time (in ms)

Time (in ms)

Figure 28: Execution time of the correlation tracker and KLT versions.

The dense optical flow algorithms and blob trackers could conceivably

process data at 1-2 Hz. The correlation and KLT algorithms are capable of

processing in the realm of 10-15 Hz on the typical OCU hardware that normally

62

ships with the PackBot. There have been recent advances in using the GPU for

processing that could possibly increase the speed of the slower algorithms.

3.4.2 Memory Consumption

The amount of memory consumed was another metric looked at for each

of the algorithms. After each algorithm executed on a frame, the system state

was queried for the amount of memory being consumed. Figure 29 shows the

mean memory used across all four datasets.

0
5
10
15
20
25
30
35

Memory Used (% total)

Memory Used (% total)

Figure 29: The mean memory consumption over all four datasets.

The results for memory consumption were consistent with what was found

for the mean time. The correlation and KLT optical flow algorithms occupied the

least amount of memory.

3.4.3 Accuracy

As discussed earlier, the data for the tracking algorithm analysis were

collected in such a way that a specific object was designated as the goal point

63

and the robot was driven towards the object. Each of the four datasets had a

visible target. Five different people were asked to click on the object in each of

the four datasets. These goal points were then used as the goal point in each of

the datasets. The ground truth data were then established for each of the five

points using the addition to TACTICAL. Figure 30-31 show the aggregated mean

Euclidean distance of the tracked goal point from the ground truth for each of the

four datasets.

0
1
2
3
4
5
6
7
8
9

Figure 30: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Sign dataset.

64

0
1
2
3
4
5
6
7
8
9

Figure 31: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Woodpile dataset

0

2

4

6

8

10

12

14

16

Figure 32: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Silver Car dataset

65

0

2

4

6

8

10

12

14

16

Figure 33: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the SUV dataset

Figure 34 is the aggregated mean of the Euclidean distance compared

with the ground truth. The correlation and KLT (with a descriptor) performed the

best.

66

0

2

4

6

8

10

12

Figure 34: The aggregated mean of all four datasets compared with the ground

truth data.

3.4.4 Effect of Accuracy with Image Compression Added

This metric is essentially the same as the accuracy metric described

above except that each frame of the dataset was encoded with MPEG1

compression. This was chosen because it is typically the compression method

used in transmitting a wireless video feed and is most like the video feed from the

PackBot. Figure 35-38 shows the mean Euclidean distance from the ground

truth of each of the four datasets with the added compression.

67

0

2

4

6

8

10

12

Figure 35: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Sign dataset with added MPEG1 compression.

0
1
2
3
4
5
6
7
8
9
10

Figure 36: The mean Euclidean distance from the ground truth for each of the

tracking algorithms for the Woodpile dataset with added MPEG1 compression.

68

0

2

4

6

8

10

12

14

16

Figure 37: Ground Truth vs. the Eight Tracking Algorithms for the Silver Car

dataset with Added MPEG1 Compression

0
2
4
6
8
10
12
14
16
18

Figure 38: Ground Truth vs. the Eight Tracking Algorithms for the SUV dataset with

Added MPEG1 Compression

69

Finally, Figure 39 shows the aggregate means of the Euclidean distance

of the calculated goal point from the ground truth dataset. As can be seen,

adding compression causes nearly every tracking algorithm to perform slightly

worse than when using an uncompressed dataset.

0

2

4

6

8

10

12

14

Uncompressed

Compressed

Figure 39: The aggregate mean of the Euclidean distance away from the ground

truth dataset over the uncompressed and compressed datasets.

3.4.5 Determination of Winners

 The algorithms were ranked according to the results in each of the above

categories: speed, memory usage, accuracy, and how the accuracy of each

algorithm was affected by compression. The results of which algorithm

performed the best are shown in Table 4. The main concern for the visual

servoing application was the ability of each algorithm to run in real-time and

because of that, it was given a weight of 0.40 in the ranking calculation. Memory

70

usage and accuracy were each given a weight of 0.20 and how each algorithm

handled compression was given a weight of 0.10;

0 20 40 60 80 1

KLT‐D

KLT‐S

Correlation

KLT‐R

SURF

SIFT

Farneback

Horn‐Schunck

Algorithm Scores (total points out of
100)

00

Table 4: The ranking of each algorithm on how they ranked in terms of speed,

memory usage, accuracy, and the effect of compression on accuracy.

3.5 Discussion and Summary

This chapter presented the analysis of the tracking algorithms that were

chosen in this study to find out which were robust enough to implement as the

visual servoing method for this research. The work done by the creators of

Make3D was extended by adding the ability to track feature points while virtually

flying though the scene. Although this approach was a good start, it did not offer

the ability to easily model real-world conditions. A large amount of data was

collected by driving the robot, equipped with sensors and a camera, to create

datasets used for offline analysis of the tracking algorithms. The large datasets

were then carved into smaller subsets which were used in the final analysis.

71

This chapter also looks at a correlation tracker, optical flow, and blob

tracking algorithms. Each algorithm has its own set of input parameters. A

common test environment, TACTICAL, was developed that exposed each

algorithm’s variables in order to easily modify and see the results in real-time.

The metrics chosen included the computation time, the amount of memory

used, and the accuracy of each algorithm compared to ground truth data.

Compression was added to each dataset to simulate the video as if it had been

received at the OCU of current military robots.

In the end, the accuracy among the tracking algorithms studied turned out

to be within a few pixels of accuracy when aggregated across the datasets. The

best KLT tracker had an average accuracy of 5.75 pixels compared to ground

truth. The correlation had an average accuracy of 7.18 pixels compared to

ground truth. The largest difference between the algorithms was their ability to

execute in real time. It can be argued that with enough computational power,

virtually any algorithm can be made to run faster. This is true to an extent, but in

order for this technology to be adopted by the military the ability for it to run on

existing hardware is an important consideration. Because of this, the two

algorithms able to operate in real-time, correlation, and the KLT variants were

chosen to be implemented on the PackBot. The next chapter describes the

testbed creation for implementing the visual servoing and visual dead reckoning

algorithms.

The most useful contribution of this aim was TACTICAL, the tracking

algorithm environment. This environment consolidated many years of work in

72

computer vision into one environment. It was built with modularity in mind and

can continue to be built upon in the years ahead.

73

CHAPTER 4

TESTBED CREATION

4.1 Introduction

This chapter describes implementing the tracking algorithms, along with

several other algorithms, on the robot, creating the testbed to evaluate the

hypothesis of this research. Section 4.2 explains the robotic platform used and

the development GUI used to fine-tune the parameters of the system. Section

4.3 details the control methods that were implemented. Section 4.4 addresses

the motion control algorithms used and Section 4.5 summarizes the contributions

made in this work.

Figure 40 shows a broad overview of the two main components that

encompass this aim. The first is the robot hardware, which in this case is an

iRobot PackBot, and the second is the Operator Control Unit software developed

to support the tracking algorithms.

It is important to note that although iRobot’s PackBot was used in this

dissertation, the implementation described in this chapter is to be regarded as

fundamental research able to be applied to any robotic platform. The robot

needs to be equipped with the sensors described in Chapter 2, namely a camera,

an IMU, and a method of reliably calculating odometry. The exact details of how

the robot operates, considered to be iRobot’s proprietary information and

protected under the International Traffic and Arms regulations, ITAR, and will not

be discussed in this dissertation.

74

Figure 40: The two main components of the second aim.

4.2 Platform and Development GUI

The implementation of this system was done on an iRobot PackBot 510.

A picture of it is shown in Figure 41. It was purchased under a Defense

University Research Instrumentation Program (DURIP) grant. The PackBot is a

fielded MTRS robot. By focusing on this platform, it ensured that the work

remained relevant to the Army.

75

Figure 41: The iRobot PackBot 510 EOD that was used to implement this research.

Figure 42 shows a screen capture of the GUI developed to implement the

supervisory control algorithms on the PackBot. Every parameter deemed

important to either the tracking or motion control algorithm was placed on the

GUI to expedite the implementation and allowed refinement of the parameters

that worked best in the laboratory environment. The GUI displayed the current

status of the computer, memory and process usage that the program was

occupying. This allowed a quick visual inspection of what the current parameters

did and allowed for tweaking to make tracking perform as well as possible. The

developed GUI contained a large number of fields because every parameter

important to either the semi-autonomous algorithms or to the motion control

algorithm was added to the display. Figure 43 shows a larger view of the options

for the KLT algorithm.

76

Figure 42: The development GUI that exposed all of the tracking and motion

control algorithm's parameters.

Figure 43: The options for KLT on the development GUI shown in more detail.

4.3 Control Methods

The control methods implemented and tested on the PackBot were rate-

control teleoperation, displacement control, visual dead reckoning, and two

77

supervisory control methods, one based on the correlation tracker and the other

on the KLT. In the following sections, each method is described in more detail.

4.3.1 Teleoperation

The rate-controlled teleoperation was implemented using an off-the-shelf

game controller. Rotation and translation were controlled using one of the

analog sticks. Rotation was controlled by the analog stick’s x-axis and

translation was controlled by the y-axis.

4.3.2 Displacement Control

Displacement control uses odometry to move the robot. Odometry

feedback from the PackBot was used in this work. There were several

implementations of displacement control developed. The first used four buttons

on the gamepad. Rotation was a set amount, either two degrees to the left or

right. Translation, also a set amount, and was either two feet forward or reverse.

These values were determined empirically from the pilot testing, based on

navigating to the target locations, which is explained in more detail in the next

chapter.

The second version of displacement control used a GUI with a dial for

rotation and sliders for translation control. Figure 44 shows the GUI designed for

the second version. The dial enabled the subject to rotate the robot up to 180

degrees in either direction. The sliders allowed translation control in small,

medium, or large increments. The left-hand slider moved the robot up to 2

78

meters for finer control, the middle slider moved the robot up to 8 meters, and the

right-hand slider moved the robot up to 32 meters.

Figure 44: The GUI used for displacement control. The dial controlled rotation and

the three sliders controlled translation.

4.3.3 Visual Dead Reckoning

Visual dead reckoning uses the odometry data in the PackBot, coupled

with internal properties of the drive camera, along with kinematics of the arm, to

go to the user specified location without the need of tracking features. Visual

dead reckoning first rotates and then translates to the goal point.

First, for rotation, if the initial goal point designation is defined as C0, and

Cm denotes the middle of the image, then the pixel distance to rotate is given in

79

(4.1). Next, if s is the horizontal IFOV, then how far the robot has to rotate is

given by (4.2).

CmC −0 (4.1)

 (4.2))0(* CmCs −

Once the robot has finished rotating, it begins translating to the goal. The

angle between vertical and the bottom of the image is given as Ab and may be

calculated by (4.3), where s is the vertical IFOV. Next, if the row position of the

initial goal point is given as R0, the stopping row is given as Rm, and H equals

the height of the camera as determined by the forward kinematics, then the initial

distance remaining is given by (4.4). Once this value has been found, the

odometry is read from the robot and once the distance travelled exceeds this

estimate, the goal point has been reached.

2
* rowss (4.3)

 (4.4)))*tan()0*tan((* RmsAbRsAbH +−+

4.3.3.1 IMU Correction

Chapter 2 discussed the error associated with using odometry. The error

for translation is usually negligible but can be substantially off for rotation. Two

versions of visual dead reckoning were implemented. One version had IMU

correction and the other did not.

80

The first version used only odometry and the other used the IMU to correct

heading. The developed algorithm uses an offset that allows the global theta to

be rotated into the coordinate system of the robot instead of a coordinate system

based on true north. If the IMU readings became unstable due to

communications dropout, which did occur due to interference problems with other

wireless networks, the algorithm went back to calculating heading from odometry.

4.3.4 Visual Servoing

The two algorithms used for testing visual servoing were correlation and

KLT. These two algorithms were selected for implementation because they

could run in real-time on the OCU computer. The other algorithms discussed in

the previous chapter could not run in real time, which was the heaviest weighted

component in the decision of which algorithms to implement for visual servoing.

Tracking was done using the video received at the OCU after the image

was compressed and transmitted over the network. The blocking artifacts in the

video feed were noticeable and as a result, tracking was negatively impacted. A

method was developed to grab the uncompressed frame directly from the

PackBot and run the visual servoing algorithm on-board. In this version, the

OCU sent the x and y coordinates of the goal point the user clicked on to the on-

board computer and then only status messages of the visual servoing algorithm

were relayed back to the OCU. This method did not end up working because of

a hardware problem with the PackBot unable to be resolved. Because of this,

the visual servoing algorithms continued to run on the OCU.

81

The basic control loop for the visual servoing algorithms is shown in

Figure 45. At a very high level, the control is very simple. The robot remains

stationary until a goal point is designated by the operator. Once the goal point

has been entered using the mouse, tracking is initialized and the goal point is

tracked from frame to frame. If tracking is stable, motion commands are sent to

the robot to control its steering and throttle. The goal point is kept in the center of

the screen until the robot has advanced to a stopping point in the scene, which is

shown as the blue line in Figure 46. Figure 46 also shows the simplified interface

developed for subject testing. The only methods the subject had to move the

robot, when using the visual servoing or visual dead reckoning algorithms, were

the video feed window and the mouse. Please note from this point forward, if a

figure is shown that uses the video feed from the PackBot’s camera, it is

degraded slightly in an abundance of caution over ITAR restrictions and iRobot’s

intellectual property rights.

82

Figure 45: The basic control loop for visual servoing.

83

Figure 46: This is interface for visual servoing. The blue line indicates the

stopping row. Once the tracked point meets the blue line, the robot stops moving.

4.4 Motion Control

The rate commands for rotation and translation were driven by the

estimation of distance and speed. The conceptual profile was a constant

acceleration up to either a maximum rate or a minimum distance, whichever

came first, followed by a constant deceleration to the goal point.

In the implemented system, Ap was the maximum rate increment in one

time cycle. The nominal rate decrement in one time cycle was given as An and

Vmax was the maximum rate command. The threshold distance to start

decelerating was given as Dn, and calculated by (4.5).

An
v

*2
max2

 (4.5)

84

Table 5 shows the four possible states of the motion control algorithm. In

these equations, d is the current estimate of the distance and r is the current

estimate of the rate. Case A is when the robot is still far from the goal but is

travelling too fast. Case B is when the robot is far from goal but needs to speed

up. Case C is when the robot is close but going too slow and Case D is when

the robot is close but going too fast.

Table 5: The four possible cases in the implemented motion control algorithm.

The motion control algorithm was developed so the robot would accelerate

when the goal point was far away and decelerate as the goal point became

closer. If the goal point was far off in the scene and the robot was only capable

of going one speed, it would take the robot longer to reach its destination.

4.5 Discussion and Summary

This chapter has detailed the software testbed developed to implement

visual servoing and visual dead reckoning. Again, the work developed here was

significant because it can be applied to any robot. In this research, the

85

algorithms were implemented on a PackBot. The result of this aim produced a

working system. The development GUI was used to easily find the best

parameters for each algorithm and allowed moving forward with the human-in-

the-loop experiments, which are described in more detail in the next chapter.

86

CHAPTER 5

HUMAN-IN-THE-LOOP TESTING

5.1 Introduction

The goal of the human-in-the-loop test was to see how the supervisory

control algorithms performed relative to teleoperation at different levels of

dropout. Section 5.2 discusses the materials and methods used in the human-in-

the-loop testing, Section 5.3 presents the results, and Section 5.4 ends with

discussions and conclusions that can be drawn from the conducted experiment.

Figure 47 shows the goal of the third and final aim to be discussed in this

chapter. This aim deals with the human-in-the-loop testing done to determine if

there was any measureable difference in using the supervisory control

algorithms, compared to teleoperation. Artificial degradation was added to the

video stream, which is described in more detail later. This chapter also describes

the independent variables used for the experiments and describes the metrics

used for the presented results.

87

Figure 47: This aim determined if the developed semi-autonomous algorithms

performed better than teleoperation.

5.2 Methods

This section describes all of the details of the experiment. It describes the

participants, the design of the course, and what the assigned task was. The

design of the experiment is described along with the dependent and independent

variables. The trial procedures and how the data were verified and finally, the

results are presented and discussed.

88

5.2.1 Participants

There were six participants, all students at Wayne State. All of the

participants had normal/corrected vision. No subject had any cognitive

impairment. All subjects had prior experience using a computer and playing

video games.

5.2.2 Course Design

Three courses were constructed that looked similar to what is shown in

Figure 48. The first course was made out of masking tape applied to the floor.

The second course was designed to simulate small bumps and was made out of

1x2s as the bumps, with 2x4 as the rails. The third course simulated large

bumps and was made out of 2x4s as the bumps and 2x4s as the rails. The total

length of the course was forty-five feet.

Figure 48: The layout of the courses with the five inspection targets.

The course was designed to have the robot traverse and come back.

There were four stops on the down portion of the track. The four stops on the

down portion of the track were approximately 22, 11, 5, and 2 feet apart. The

fifth stop, going back to the starting position, had a distance of 45 feet. Figure 49

89

shows an overhead view of the three courses that were created in the laboratory.

Figure 50 is another view of the PackBot going over the 2x4 course.

Figure 49: The overhead view of the three courses: flat (with tape), 1x2s, and 2x4s.

90

Figure 50: The PackBot going over the 2x4 course during subject testing.

5.2.3 Inspection Tasks

Each participant was asked to move the robot to each of the five targets,

using each of the different control methods, while keeping the robot inside the

rails. Once the participant felt the robot was positioned correctly, they were

instructed to take a snapshot. A running count of how many snapshots had been

taken was shown in the upper-left corner of the screen, as shown in Figure 51.

This was done in order to provide an easy method of analyzing the data after the

experiments were done. The post-processing process looked at the timestamp

of when the subject took the picture to break each run up into the different

segments. There were several occasions in the data files where this did not

happen and the subject took too many snapshots by accident. In these cases,

91

the odometry data were used to determine when the robot started to move,

indicating a new goal point was issued.

For the supervisory control algorithms, the participant was told that they

could issue an emergency stop to the robot at any time by pressing the space

bar on the keyboard, but the goal was not to rely on it because ideally, both

visual servoing and visual dead reckoning should go exactly where the subject

clicked. If the subject had to press the emergency stop many times, it indicated

that the semi-autonomous algorithms were not performing well. This is a metric

that was used later on and will be discussed in more detail.

5.2.4 Dropout Rates

 Simulated degraded communications were introduced by corrupting data

packets. A corrupted data packet is one that cannot be decoded. The data

containing control messages, from the OCU to the PackBot, and data packets

containing the video feed, from the PackBot to the OCU were both artificially

corrupted. In the current fielded system, when a corrupted video packet is

received, a black frame is shown. In this implementation, the last good frame

was displayed. The data corruption was modeled as a Bernoulli process, i.e. all

of the packets had an equal probability of being corrupted. There were four

levels of communication degradation implemented: 0, 3/8, 9/16, and 3/4 seconds.

92

5.2.5 Pilot Testing

Several rounds of pilot testing were conducted to find the best settings to

use. The objective of the pilot test was to make sure all of the control methods

were working properly along with the display dropout function. The data logging

software was verified to be working and the data captured were scrutinized to

ensure they would be sufficient for processing and analysis later. Also during the

pilot testing, the procedures were double checked to make sure they were clear.

The development GUI was used to find the proper acceleration and deceleration

rates to use for each control method. This made sure that the visual servoing

algorithms performed with the optimal parameters. The other important outcome

of the pilot studies were to verify dropout rates picked were difficult enough to the

subject that there could definitively be a point where the semi-autonomous

algorithms performed better than teleoperation.

The GUI used in the first round of pilot testing was a plain video feed that

required the user to designate two points. The first click designated the row and

column of the goal point and the second click designated the stopping row. It

was determined this confused the subjects and the interface was changed to

accept a single click for the row and column of the goal point and the stopping

row was shown with a blue line, as shown in Figure 51. The stopping row was

adjustable by using the up and down arrows on the OCU’s keyboard. A visual

cue was added to indicate how many images the subjects had taken.

93

Figure 51: The simple GUI used in pilot and subject testing.

5.2.6 Trial Procedure

Prior to beginning, each subject was given the same presentation detailing

the objectives of the study. A graphic of the course was first used to explain

where the target locations were and the course was also walked with the subject

to show where each target was located. The subject was given ample time to

use each control method before the actual test and indicated to the test proctor

when they were comfortable enough to proceed.

The subject was positioned in an area having no direct line of sight to the

robot, as shown in Figure 52. Each subject was instructed not to turn around and

look at the PackBot while they were controlling it. At the end of a course run,

each subject was asked to enter a difficulty rating on a scale from one to ten,

where one meant easy and ten meant difficult. This provided the examiner with a

difficulty rating for each control method, dropout rate, and course roughness.

94

There were times when the PackBot would become unresponsive due to

communication interference or it would stop because of discharged batteries. If

this occurred during a trial run, the trial was repeated.

Figure 52: Another view of the experiment in the highbay. Each participant was

positioned in such a way that the PackBot could not be seen.

 The subjects were asked to complete a task, namely to drive to a target on

the ground and stop the PackBot when the target is still visible in the display and

is within reach of the PackBot’s arm. An example of a “good” stopping point is

shown in Figure 53. This position was chosen because the target was in reach

of the grippers on the PackBot’s arm. In a realistic setting, this would be similar

to driving up to something buried in the ground that a warfighter wants to

examine with the robot.

95

Figure 53: The "good" stopping distance from a target that each subject was

trained to stop at.

The courses constructed from 1x2s and 2x4s introduced motion blur to the

PackBot’s camera. Figure 54 shows an example image taken from the

PackBot’s camera as it traversed the 2x4 course. The image containing the

motion blur, combined with the compression artifacts, were input into the visual

servoing algorithms that relied on tracking features from frame to frame.

96

Figure 54: The view from going over the 2x4 course.

5.2.7 Experimental Design

The experiment was run with six subjects. For each subject, the test was

blocked by control method: teleoperation, visual dead reckoning, visual servoing

using the correlation tracker, and visual servoing using the KLT tracker. Each of

these blocks was then subdivided into four blocks by the dropout rate. Each of

these blocks consisted of runs on each of the three courses. Each subject ran a

total of 48 courses for a total of 288 course runs over each of the six subjects.

Each subject took between 4 and 6 hours to complete all runs and each subject

completed the test in a single block of time, i.e. no one came back at a later date

to complete the test.

97

5.2.8 Data Validation

The first pass of the data occurred before the subject left. This test made

sure that the data files had all been properly recorded. The data parsing

program used the timestamps from when the operator took the picture based on

when they felt the robot was positioned correctly. The operator would sometimes

accidentally press the button too many times. If the data reduction program ran

into this scenario, it would automatically try to combine the timestamps based on

movement of the robot. There was a field in the reduced file that indicated when

this happened so the result could be manually verified to make sure nothing was

lost.

The difficulty scores from of each of the runs were stored separately from

data collected from the robot. These had to be combined at data reduction time.

An inspection was made of each record to make sure the difficulty ratings from

the database were brought over correctly in the final file. The reduced file was

also visually inspected to make sure all of the fields were within the normal

range, i.e. the angles from the IMU readings were all between 0 and 360

degrees.

5.2.9 Aggregation and Analysis

This section presents the aggregation and analysis of the data collected

from the subject testing. The items examined include the difficulty rating that

each participant gave, the number of seconds it to took to reach each target, and

the number of emergency stops. This is a within-subject design with subjects

used as replicates. The rest of section 5.2.9 contains two-way ANOVAs. The

98

values for the course roughness in the supplemental figures and tables are: 0 =

flat, 1 = 1x2 course, and 2 = 2x4 course. The values for control method are: 0 =

teleoperation, 4 = visual dead reckoning, 5 = correlation, and 6 = KLT. The

values for the dropout rate are: 0 = no delay, 1 = 3/8, 2 = 9/16, and 3 = ¾

seconds.

5.2.9.1 Difficulty Rating

 After each run, the participant was asked to rank the difficulty on a scale

from 1 to 10, where 1 meant easy and 10 meant difficult. Table 6 shows the

results of a two-way ANOVA of difficulty rating as a function of dropout and

course roughness (F2,1716 = 24.73, p=0.0000). The difficulty rating increased as

the roughness of the terrain increased. The difficulty rating increased as the

dropout rate increased as well. There was no significance in the interaction

between dropout rate and course roughness. Figure 55 shows the box plot of

the two-way ANOVA results. Figure 56 shows the mean values of the difficulty

ratings by dropout rate and course roughness. The 3/4 dropout rate had the

highest average difficulty rating at 5.229 and the 2x4 course had the highest

average difficulty rating at 5.339.

99

Table 6: Two-way ANOVA results of difficulty rating as a function of course

roughness and dropout rate.

Course
Dropout Rate

2x41x2Flat
3/49/163/803/49/163/803/49/163/80

10

8

6

4

2

0

D
iff

ic
ul

ty
 R

at
in

g

Difficulty Rating

Figure 55: Box plot of difficulty rating as a function of dropout rate and course

roughness.

100

Figure 56: The mean difficulty ratings for course roughness and dropout rates.

Table 7 shows the results of a two-way ANOVA of difficulty rating as a

function of course roughness and control method (F2,1716 = 26.46, p=0.0000).

There was significance in the interaction between control method and course

roughness. The mean difficulty rating for visual dead reckoning was the lowest

of all control methods at 4.03. Figure 57 shows the box plot of the two-way

ANOVA results. Figure 58 shows the mean values of the difficulty ratings by

course roughness and control method. The mean value of the difficulty rating

increased as the course became rougher.

Table 7: Two-way ANOVA results of difficulty rating as a function of course

roughness and control method.

101

Course
Control Method

2x41x2Flat
KLTCorrVDRTelepKLTCorrVDRTelepKLTCorrVDRTelep

10

8

6

4

2

0

D
iff

ic
ul

ty
 R

at
in

g
Difficulty Rating

Figure 57: Box plot of difficulty rating as a function of control method and course

roughness.

102

Figure 58: The mean difficulty ratings for course roughness and control method.

Table 8 shows the results of a two-way ANOVA of difficulty rating as a

function of control method and dropout rate (F3,1712 = 39.04, p=0.0000). The

difficulty rating for visual dead reckoning was the lowest across all courses and

control methods. There was significance in the interaction between control

method and dropout rate. Figure 59 shows the box plot of the two-way ANOVA

results. .Figure 60 shows the mean values of the difficulty ratings by control

method and dropout rate.

Table 8: Two-way ANOVA results of difficulty rating as a function of dropout rate

and control method.

103

Control Method

Dropout Rate

KLT
Co

rr
VD

R

Te
leo

p

3/49/1
63/803/49/1

63/803/49/1
63/803/49/1

63/80

10

8

6

4

2

0

D
iff

ic
ul

ty
 R

at
in

g

Difficulty Rating

Figure 59: Box plot of difficulty rating as a function of dropout rate and control

method.

104

Figure 60: The mean difficulty ratings for control method and dropout rate.

5.2.9.2 Inspection Time

The inspection time was the time it took the operator to navigate the robot

to the target position. All times are in seconds. As noted before, sometimes the

robot would become stuck on the wooden courses. If that happened, the

particular segment was redone.

Table 9 shows the results of a two-way ANOVA of inspection time as a

function of course roughness and dropout rate (F2,1716 = 23.48, p=0.0000). There

was significance in the interaction between course roughness and dropout rate.

The mean inspection time increased as the level of course roughness increased.

The dropout rate did not affect the mean inspection time as much as the course

roughness did. Figure 61 shows the box plot of the two-way ANOVA results.

Figure 62 shows the mean values of the inspection time by course roughness

and dropout rate.

105

Table 9: Two-way ANOVA results of inspection time as a function of course

roughness and dropout rate.

Course
Dropout Rate

2x41x2Flat
3/49/163/803/49/163/803/49/163/80

300

250

200

150

100

50

0

In
sp

ec
ti

on
 T

im
e

Inspection Time

Figure 61: Two-way ANOVA of inspection time as a function of dropout rate and

course roughness.

106

Figure 62: The mean inspection time for course roughness and dropout rate.

Table 10 shows the results of a two-way ANOVA of inspection time as a

function of course roughness and control method (F2,1716 = 25.22, p=0.0000).

There was no significance in the interaction between course roughness and

control method. Teleoperation had the lowest average inspection time of the

control methods at 22.89 seconds with visual dead reckoning having the second

lowest at 30.05 seconds. Figure 63 shows the box plot of the two-way ANOVA

results. Figure 64 shows the mean values of the inspection time by course

roughness and control method.

107

Table 10: Two-way ANOVA results of inspection time as a function of course

roughness and control method.

Course
Control Method

2x41x2Flat
KLTCorrVDRTeleopKLTCorrVDRTeleopKLTCorrVDRTeleop

300

250

200

150

100

50

0

In
sp

ec
ti

on
 T

im
e

Inspection Time

Figure 63: Inspection time as a function of control method and course roughness.

108

Figure 64: The mean inspection time for course roughness and control method.

Table 11 shows the results of a two-way ANOVA of inspection time as a

function of control method and dropout rate (F3,1712 = 39.40, p=0.0000). There

was significance in the interaction between control method and dropout rate.

Teleoperation had the lowest average inspection time of the control methods,

with visual dead reckoning having the second lowest, followed by KLT. Figure 65

shows the box plot of the two-way ANOVA results. Figure 66 shows the mean

values of the inspection time by control method and dropout rate.

Table 11: Two-way ANOVA results of inspection time as a function of control

method and dropout rate.

109

Control Method

Dropout Rate

KLT
Co

rr
VD

R

Te
leo

p

3/49/1
63/803/49/1

63/803/49/1
63/803/49/1

63/80

300

250

200

150

100

50

0

In
sp

ec
ti

on
 T

im
e

Inspection Time

Figure 65: Inspection time as a function of dropout rate and control method.

Figure 66: The mean inspection time for control method and dropout rate.

110

5.2.9.3 Number of Times Stopped

The final metric analyzed was the number of times stopped. In

teleoperation, if the operator allowed the x and y axes on the gamepad to both go

to zero, it was counted as a stop. In the semi-autonomous algorithms, the

operator designated a stop by pressing the space bar on the laptop’s keyboard.

Table 12 shows the results of a two-way ANOVA of number of times

stopped as a function of course roughness and dropout rate (F2,1716 = 152.80,

p=0.0000). There was significance in the interaction between course roughness

and dropout rate. The mean number of times stopped increased as both the

level of course roughness and dropout rate increased. Figure 67 shows the box

plot of the two-way ANOVA results. Figure 68 shows the mean values of

number of times stopped by course roughness and dropout rate.

Table 12: Two-way ANOVA results of the number of times stopped as a function of

course roughness and dropout rate.

111

Course
Dropout Rate

2x41x2Flat
3/49/163/803/49/163/803/49/163/80

70

60

50

40

30

20

10

0

Nu
m

be
r

of
 T

im
es

 S
to

pp
ed

Number of Times Stopped

Figure 67: The number of times stopped as a function of dropout rate and course

roughness.

Figure 68: The mean number of times stopped for course roughness and dropout

rate.

112

Table 13 shows the results of a two-way ANOVA of number of times

stopped as a function of course roughness and control method (F2,1716 = 164.62,

p=0.0000). There was significance in the interaction between course roughness

and dropout rate. The control method with the least number of stops was KLT,

followed by correlation, teleoperation. Visual dead reckoning had the most.

Figure 69 shows the box plot of the two-way ANOVA results. Figure 70 shows

the mean values of the inspection time by course roughness and control method.

Table 13: Two-way ANOVA results of the number of times stopped as a function of

course roughness and control method.

113

Course
Control Method

2x41x2Flat
KLTCorrVDRTeleopKLTCorrVDRTeleopKLTCorrVDRTeleop

70

60

50

40

30

20

10

0

Nu
m

be
r

of
 T

im
es

 S
to

pp
ed

Number of Times Stopped

Figure 69: The number of times stopped as a function of control method and

course roughness.

Figure 70: The mean number of times stopped for course roughness and control

method.

114

Table 14 shows the results of a two-way ANOVA of number of times

stopped as a function of control method and dropout rate (F3,1712 = 31.47,

p=0.0000). There was significance in the interaction between control method

and dropout rate. Figure 71 shows the box plot of the two-way ANOVA results.

Figure 72 shows the mean values of the inspection time by control method and

dropout rate.

Table 14 : Two-way ANOVA results of the number of times stopped as a function of

control method and dropout rate.

115

Control Method

Dropout Rate

KLT
Co

rr
VD

R

Te
leo

p

3/59/1
63/803/59/1

63/803/59/1
63/803/59/1

63/80

70

60

50

40

30

20

10

0

Nu
m

be
r

of
 T

im
es

 S
to

pp
ed

Number of Times Stopped

Figure 71: The number of times stopped as a function of dropout rate and control

method.

Figure 72: The mean number of times stopped for control method and dropout

rate.

116

5.3 Results

The most significant factor found was the difficulty rating. The mean

difficulty rating for visual dead reckoning was less than every other control

method, which indicates that the subjects found it to be easier than teleoperation.

The difficulty rating of the visual servoing methods were close and teleoperation

was last, especially as the difficulty of terrain and dropout rates increased.

The completion time and number of emergency stops were similar enough

so a clear winner was not able to be detected. Overall, teleoperation proved to

take the least amount of time and visual dead reckoning was second. The two

supervisory control methods also had the lowest number of emergency stops. It

was interesting to find that visual dead reckoning had the highest average of

stops. This may be due to the fact it did accelerate faster than the visual

servoing algorithms because it did not have to track features.

5.4 Discussion and Summary

The subject testing took an average of four to five hours to complete. All

participants were able to complete the test in one block of time. Generally

speaking, the r2 values were all low. This indicated there was noise that was not

accounted for. This may be due to the fact that participants served as replicates.

This could also be due to the operators not feeling comfortable with the control

methods. The lighting in the laboratory could not be controlled and it may have

caused the visual servoing algorithms to not perform as well as they could.

The sound of the PackBot when it is operating was very loud in the

laboratory setup. Although the subject was positioned in such a way that the

117

robot was not visible at any time during the test, it would be a different

experience if the subject was operating the robot in another room where the

robot could not be easily heard.

This did prove that visual dead reckoning was the preferred and most

robust of the semi-autonomous algorithms. This also proved that visual servoing

algorithms, as implemented in this research, may not be robust enough for

adoption by the Army. The laboratory setting was a benign environment

compared to the missions these robots are required to operate in. If they do not

perform well in this setting, it is logical to conclude they won’t perform well in Iraq

and Afghanistan.

Displacement control, described in the previous chapter, did not end up

making it to the final subject testing. At the time, it was felt that visual dead

reckoning was superior to displacement control because it could do both rotation

and translation with one mouse click. In hindsight, displacement control should

have been included because it allows the operator to rotate larger amounts much

easier than visual dead reckoning. This is because visual dead reckoning is

constrained by the field of the view of the camera. If an operator wishes to rotate

more than thirty degrees at any given time, it takes several mouse clicks.

It had also been considered to add one more trial to the subject testing,

allowing the operator to dynamically select which control method they wanted to

use at any given time. This would have created another dataset to analyze to

determine which control method was preferred as a function of dropout rates.

However, as the experiment stands, there is a wealth of information that has

118

been collected that can be used to extract how people drive, and more

importantly, a testbed was established along with a method of collecting data that

has since been used for other work that focused on the effect of latency on

operator performance.

119

CHAPTER 6

SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

6.1 Summary

In very broad terms, the research covered in this dissertation implemented

a novel method of tracking points in a video feed, used the developed tracking

algorithm to issue rotation and translation commands for semi-autonomous

operations of a military robot, and finally performed an experiment to determine if

the new method of control enhanced operator performance or not. The

developed algorithms also have broader impact and application that are outside

of being used to control a robot. This chapter will first summarize the key

contributions of this work and will then discuss the additional applications of this

research.

It is also important to note the Department of Defense maintains a

Technology Readiness Level (TRL) to describe how ready hardware and

software is for transition to the field, where 1 is the lowest level and 9 means that

the system has been proven to successfully work in a mission. The work

performed in this test would possibly be classified at TRL 4 or 5. All of the testing

so far has been performed only in the lab setting. It would be interesting to

perform the same experiment outside on real terrain and see if there is a

measureable change in operator performance.

120

6.2 Key Novel Contributions

There were several contributions of this research. First and foremost, a

novel method to control any unmanned ground vehicle was developed. The rest

of the contributions were all in support of the new control method. Key

contributions are highlighted in Table 15.

One contribution was the extension to Make3D, allowing tracking of a goal

point in a virtual environment by flying through the scene. Although this method

was not ultimately used for the analysis, the capability has been developed and

this is a viable method to use for testing tracking algorithms. Another key

contribution was the large dataset collected using the IGVC platform that was

made freely available. This dataset contains video, GPS, IMU, encoder, and

joystick command data.

Another contribution was the ability to track a goal point using any

algorithm that is able to track features from frame to frame. As described earlier,

there have been many algorithms developed over the years that track features.

This research provides a methodology to track a goal point using any algorithm

for purposes of visual servoing.

TACTICAL was another important contribution. This software provided

the method to perform a comprehensive analysis of the three classes of tracking

algorithms described in this work. It has also been released as open source and

is freely available. The ground truth annotation tool that was added allowed for a

precise measurement of accuracy of each tracking algorithm. The ability to add

compression was also a key development. This allowed compressing each

frame of the dataset using several different algorithms including JPEG and

121

MPEG. This allowed the dataset used to be degraded in a real-world way to test

the resiliency of the tracking algorithms.

Another contribution was adding a descriptor to the KLT optical flow

algorithm, improving the tracking algorithm. Several shapes around the corner

feature were experimented with: a rectangle, a disc, and an annulus. Multiple

matching metrics were implemented included histogram matching and 2d

correlation. In the experiments conducted, the disc shape with a 2D correlation

metric proved to be the best method.

This work has also produced a dataset of how people operating a robot

drive to an inspection point. It could be used for further research in the human

factors arena. The work developed in this research can be used in future

experiments.

Table 15: Summary of the major contributions of this research.

122

The improved corner tracker has applications to other areas such as

image stabilization and stereo matching. Image stabilization using features is

done by finding the overall motion from frame to frame. If features can be

reliably and quickly matched from frame to frame, then stabilization becomes

easier. This has already been used in another project being developed in the

lab. It is a “persistent stare” application where a stationary camera is watching a

scene looking for any changes.

Figure 73 shows two images from a dataset taken with a camera on a

tripod overlooking a parking lot and street from a parking garage. The images on

the left are with the change detection algorithm run on the data as it was. The

images on the right are the same, but image stabilization, using the KLT

algorithm with histogram corner matching, was run first. As can be seen, the

algorithm was able to ignore the small camera motion and detect only items of

interest in the scene. This technology may, at some point, be employed on a

MTRS robot with a camera on a mast, watching scenes of interest and reporting

back items of interest.

123

Figure 73: The "persistent stare" application that uses a stationary camera to look

at a scene. The images on the left are the output of the algorithm without image

stabilization and the images on the right are the output of the algorithm with image

stabilization using the KLT tracker with the descriptor to match features from frame to

frame.

Another important contribution to the lab where this work was performed

was the development of a workaround to the ITAR (International Traffic and Arms

Regulations) restrictions on the PackBot. Every detail about the PackBot is

protected both by iRobot’s Intellectual Property rights and also by ITAR. This

means only approved United States citizens are able to operate, and more

124

importantly, develop applications for it. This can be a problematic a large

number of the graduate student population is comprised of foreign nationals.

The developed OCU is not only able to operate any robot that has the

sensors discussed, but it is also able to act as a server communicating with the

PackBot in its native format. The OCU shares the communication cloud with the

PackBot but it is capable of accepting and relaying messages from any computer

using a non-ITAR restricted protocol.

Figure 74 depicts what the network topology looks like. The PackBot and

its ITAR OCU are connected over a wireless network. The non-ITAR OCU is

connected to the ITAR OCU using Ethernet and there is a firewall between the

two exposing one port that passes only data from the developed protocol. This is

done entirely in software and requires no special hardware. Although there have

not been any projects that have made use of this yet, it will be an important piece

of software that could allow the lab to follow ITAR restrictions while allowing the

students interested in robotics, a chance to work on a production robot.

125

Figure 74: The developed OCU is able to function as a proxy to the any ITAR-

restricted robot.

6.3 Future Work

The work performed so far does not include any path planning or obstacle

avoidance. There are multiple forward-facing cameras on the PackBot. One

approach to obstacle avoidance might be to use those cameras in an

uncalibrated stereo application that could be used for obstacle detection.

Another possibility might be to build up a 3D model of the environment from the

video frames as the robot drives to the goal point. The path planning algorithm

could then take an approach similar to Make3D and allow the operator to virtually

zoom into the scene to plan the path out for the robot.

126

One interesting addition to this work might be to add a hands-free

interface to the GUI instead of using the mouse. A simple approach would be to

add a course grid, such as shown in Figure 75. The OCU would have to be able

to recognize a small set of verbal commands, such as “Go to F6”, and “Stop”.

Figure 75: An example of a grid overlay that the supervisory control algorithms

could extend to.

Another approach may be to utilize content-based image retrieval

algorithms trained to recognize objects in the environment. If the algorithm could

preprocess the scene and indicate it recognizes a door or a window, the interface

could display to the operator what it recognizes in the current scene and the

operator could instruct the robot to go to a location instead of a grid location.

The subject testing for the visual servoing algorithms were limited to the

two methods that ran in real-time, correlation and KLT. This work could also be

127

extended to dynamically change the parameters of each algorithm depending

upon how well the tracking is performing. It could look at whether the operator is

frequently pressing the emergency stop button or designating a new goal point

and use that feedback to either change the parameters of the tracking algorithm

or try a different algorithm.

The work developed in this dissertation has been used in a contract

awarded to Signature Research, Inc. in early 2010. The research conducted in

accordance to that contract was to study the effect latency has on operator

performance. During successful completion of this contract, a fixed amount of

latency was simulated and studied. The visual dead reckoning algorithm was

transferred to this work and it was enhanced slightly. The new method of

selecting a point is shown in Figure 76. This was a slight modification to show

the blue ray as the operator moves the mouse. Once the user releases the

mouse, the display changes to what is shown in Figure 77 with the goal point

showing as a green dot. The robot stops when the green dot reaches the red

line.

128

Figure 76: The revised interface for visual dead reckoning. The blue ray traces the

mouse as the operator moves.

129

Figure 77: Once the mouse is released in visual dead reckoning, the greet dot

shows the goal point.

Fulfilling the terms of the contract required developing augmented and

virtual reality displays that took the queue of latent commands and showed the

calculated position and orientation of the robot after the queue of commands had

been processed. Figure 78 shows the augmented reality display and Figure 79

show the virtual reality display.

130

Figure 78: Augmented reality predictive display (ARPD).

Figure 79: Virtual reality predictive display (VRPD).

This work may also be extended to more autonomous behaviors and

could be done by having an algorithm designate new goal points to the

131

supervisory control algorithm. The autonomous algorithm could determine path

planning and determine if the path is clear or not.

There is no reason why the “point-and-go” algorithm has to apply only to

the chassis. The same idea can also apply to controlling the arm. In this work,

the forward kinematics of the arm were calculated to obtain the angle of the

camera but arm control would require the inverse kinematics. There are open

source libraries available that are solve the inverse kinematics that could be used

for this purpose.

The research described in this dissertation proved that the concept of a

“point-and-go” controlled robot works and that the operators expressed a

preference for point-and-go over teleoperation. This is fundamental research

that can be easily ported to run on any ground vehicle.

132

Appendix A

HIC Approval

133

Appendix B

Dataset Details

Although a complete dataset was collected, the only data used for

analyzing the performance of the tracking algorithms were the images recorded

from the camera. The dataset contains:

• Video frames

• GPS

• IMU data

• Encoder feedback

• Motor controller feedback

• Joystick commands

The dataset is available at: http://gbvs.sourceforge.net/

http://gbvs.sourceforge.net/

134

References

1. Chen, J., E. Haas, and M. Barnes, Human performance issues and user

interface design for teleoperated robots. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 2007. 37(6): p.

1231-1245.

2. BP robots still trying to contain oil spill. 2010-09-11]; Available from:

http://www.cbc.ca/world/story/2010/06/02/gulf-of-mexico-oil-spill.html.

3. BP oil spill containment stalled as robotic saw becomes stuck. [cited

2010-09-11; Available from: http://www.examiner.com/world-news-in-

national/bp-oil-spill-containment-stalled-as-robotic-saw-becomes-stuck.

4. Gunderson, J. and L. Gunderson, Autonomy (What’s it Good for?).

5. Sarter, N., D. Woods, and C. Billings, Automation surprises. Handbook of

human factors and ergonomics, 1997. 2: p. 1926–1943.

6. Endsley, M., Toward a theory of situation awareness in dynamic systems.

Human Factors: The Journal of the Human Factors and Ergonomics

Society, 1995. 37(1): p. 32-64.

7. Endsley, M., Situation awareness in aviation systems. Handbook of

aviation human factors, 1999: p. 257-276.

8. Defense, S.o., Unmanned Systems Roadmap 2007-2032, OSD, Editor.

2007, US Department of Defense: Washington D.C.

9. iRobot. iRobot Wins $286 Million U.S. Army Contract. 2007 [cited 2010;

Available from: http://www.irobot.com/sp.cfm?pageid=86&id=377.

http://www.cbc.ca/world/story/2010/06/02/gulf-of-mexico-oil-spill.html
http://www.examiner.com/world-news-in-national/bp-oil-spill-containment-stalled-as-robotic-saw-becomes-stuck
http://www.examiner.com/world-news-in-national/bp-oil-spill-containment-stalled-as-robotic-saw-becomes-stuck
http://www.irobot.com/sp.cfm?pageid=86&id=377

135

10. IFOV (Instantaneous Field of View) Definition. 11-Sep-2010]; Available

from: http://www.ssec.wisc.edu/sose/tutor/ifov/define.html.

11. Anderson, D. IMU Odometry. 31-July-2010]; Available from:

http://www.geology.smu.edu/~dpa-www/robo/Encoder/imu_odo/#sec2.

12. Hutchinson, S., G. Hager, and P. Corke, A tutorial on visual servo control.

IEEE transactions on robotics and automation, 1996. 12(5): p. 651-670.

13. Perkins, W. and T. Binford, A corner finder for visual feedback. Computer

Graphics and Image Processing, 1973. 2(3-4): p. 355-376.

14. Kragic, D. and H. Christensen, Survey on visual servoing for manipulation.

Computational Vision and Active Perception Laboratory, Fiskartorpsv. 15.

15. Wilson, W., C. Hulls, and G. Bell, Relative end-effector control using

Cartesian position based visual servoing: Special section on vision-based

control of robot manipulators. IEEE Transactions on Robotics and

Automation, 1996. 12(5): p. 684-696.

16. Espiau, B., Effect of camera calibration errors on visual servoing in

robotics. Experimental Robotics III, 1994: p. 182-192.

17. Corke, P., Visual control of robot manipulators {a review. Visual Serving:

Real Time Control of Robot Manipulators Based on Visual Sensory

Feedback, 1993: p. 1.

18. Tsai, R., A versatile camera calibration technique for high-accuracy 3D

machine vision metrology using off-the-shelf TV cameras and lenses.

IEEE Journal of robotics and Automation, 1987. 3(4): p. 323-344.

http://www.ssec.wisc.edu/sose/tutor/ifov/define.html
http://www.geology.smu.edu/~dpa-www/robo/Encoder/imu_odo/#sec2

136

19. Espiau, B., F. Chaumette, and P. Rives, A new approach to visual

servoing in robotics. Geometric Reasoning for Perception and Action,

1993: p. 106-136.

20. Martinet, P. and J. Gallice. Position based visual servoing using a

nonlinear approach.

21. Malis, E., F. Chaumette, and S. Boudet, 2 1/2 D visual servoing. IEEE

Transactions on Robotics and Automation, 1999. 15(2): p. 238-250.

22. Bowditch, N., Dead Reckoning. The American Practical Navigator, an

Epitome of Navigation, 1802.

23. Gallistel, C., The organization of learning. 1990: MIT press Cambridge,

MA.

24. Pantel, L. and L. Wolf. On the suitability of dead reckoning schemes for

games. 2002: ACM.

25. Prewitt, J., Object enhancement and extraction. Picture processing and

Psychopictorics, 1970: p. 75-149.

26. Sobel, I. and G. Feldman, A 3x3 isotropic gradient operator for image

processing. Presentation for Stanford Artificial Project, 1968.

27. Harris, C. and M. Stephens. A combined corner and edge detector. 1988:

Manchester, UK.

28. Shi, J. and C. Tomasi. Good features to track. 1994.

29. Kerr, D., S. Coleman, and B. Scotney. Comparing Cornerness Measures

for Interest Point Detection. 2008.

137

30. Bradski, G. and A. Kaehler, Learning OpenCV: Computer vision with the

OpenCV library. 2008: O'Reilly Media, Inc.

31. Guiducci, A., Corner characterization by differential geometry techniques.

Pattern Recognition Letters, 1988. 8(5): p. 311-318.

32. Smith, S. and J. Brady, SUSAN—A new approach to low level image

processing. International Journal of Computer Vision, 1997. 23(1): p. 45-

78.

33. Rosten, E. and T. Drummond, Machine learning for high-speed corner

detection. Computer Vision–ECCV 2006, 2006: p. 430-443.

34. Trujillo, L. and G. Olague. Synthesis of interest point detectors through

genetic programming. 2006: ACM New York, NY, USA.

35. Lucas, B. and T. Kanade. An iterative image registration technique with an

application to stereo vision. 1981: Citeseer.

36. Bouguet, J., Pyramidal implementation of the lucas kanade feature tracker

description of the algorithm. Intel Corporation, Microprocessor Research

Labs, 2000.

37. Adelson, E., et al., Pyramid methods in image processing. 2004.

38. Horn, B. and B. Schunck, Determining optical flow. Computer vision, 1981.

17: p. 185-203.

39. Farnebäck, G., Polynomial expansion for orientation and motion

estimation. 2002: Univ.

40. Heigl, B., D. Paulus, and H. Niemann. Tracking points in sequences of

color images. 1998: Citeseer.

138

41. Jin, H., P. Favaro, and S. Soatto. Real-time feature tracking and outlier

rejection with changes in illumination. 2001.

42. Lowe, D. Object recognition from local scale-invariant features. 1999:

Corfu, Greece.

43. Bay, H., T. Tuytelaars, and L. Van Gool, Surf: Speeded up robust

features. Lecture Notes in Computer Science, 2006. 3951: p. 404.

44. Viola, P. and M. Jones. Rapid Object Detection using a Boosted Cascade

of Simple.

45. Crow, F., Summed-area tables for texture mapping. ACM SIGGRAPH

Computer Graphics, 1984. 18(3): p. 212.

46. Beis, J. and D. Lowe. Shape indexing using approximate nearest-

neighbour search in high-dimensional spaces. 1997: INSTITUTE OF

ELECTRICAL ENGINEERS INC (IEEE).

47. Zhang, W. and J. Kosecka. Image based localization in urban

environments. 2006.

48. Battiato, S., et al. SIFT features tracking for video stabilization. 2007.

49. Fischler, M. and R. Bolles, Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated

cartography. 1981.

50. Mondragon, I., et al. Visual model feature tracking for UAV control. 2007:

Citeseer.

139

51. Connor, D. and J. Limb, Properties of frame-difference signals generated

by moving images. Communications, IEEE Transactions on [legacy, pre-

1988], 1974. 22(10): p. 1564-1575.

52. Cafforio, C. and F. Rocca, Methods for measuring small displacements of

television images. IEEE transactions on Information Theory, 1976. 22(5):

p. 573-579.

53. Ryan, T., R. Gray, and B. Hunt, Prediction of correlation errors in stereo-

pair images. Optical Engineering, 1980. 19(3): p. 312-322.

54. Forstner, W. and A. Pertl. Photogrammetric standard methods and digital

image matching techniques for high precision surface measurements.

1986.

55. Wood, G., Realities of automatic correlation problem. Photogrammetric

Engineering and Remote Sensing, 1983. 49(4): p. 537-538.

56. Tian, Q. and M. Huhns, Algorithms for subpixel registration. Computer

Vision, Graphics, and Image Processing, 1986. 35(2): p. 220-233.

57. Systems, S. Scenespector - VooCAT. [cited 2009 13-July-2009];

Available from:

http://www.scenespector.com/index.php?option=com_content&task=view

&id=10&Itemid=25.

58. Andersson Technologies, L. SynthEyes Camera Tracker. [cited 2009 13-

July-2009]; Available from: http://www.ssontech.com/synovu.htm.

http://www.scenespector.com/index.php?option=com_content&task=view&id=10&Itemid=25
http://www.scenespector.com/index.php?option=com_content&task=view&id=10&Itemid=25
http://www.ssontech.com/synovu.htm

140

59. Farm, T.P. PFTrack by The Pixel Farm. [cited 2009 13-July-2009];

Available from:

http://www.thepixelfarm.co.uk/products/products.aspx?PID=3.

60. libmv (a structure from motion library). Available from:

http://code.google.com/p/libmv/.

61. Saxena, A., M. Sun, and A. Ng. Make3D: Depth Perception from a Single

Still Image. 2008: AAAI.

62. Bloomberg. Affine transformations. 30-July-2009]; Available from:

http://www.leptonica.com/affine.html.

63. Shapiro, L. and G. Stockman, Computer Vision. 2001. 2001, Prentice Hall.

64. Felzenszwalb, P. and D. Huttenlocher, Efficient graph-based image

segmentation. International Journal of Computer Vision, 2004. 59(2): p.

167-181.

65. Cookbook/RANSAC. [cited 2010 20-Aug-2010]; Available from:

http://www.scipy.org/Cookbook/RANSAC.

66. Kuzmin, Y. An efficient circle-drawing algorithm. 1990: John Wiley & Sons.

67. Bentley, J., Multidimensional binary search trees used for associative

searching. Communications of the ACM, 1975. 18(9): p. 517.

68. Kumar, N., L. Zhang, and S. Nayar, What is a good nearest neighbors

algorithm for finding similar patches in images? Computer Vision–ECCV

2008, 2008: p. 364-378.

69. Mount, D. and S. Arya. ANN: A library for approximate nearest neighbor

searching. 1997: Citeseer.

http://www.thepixelfarm.co.uk/products/products.aspx?PID=3
http://code.google.com/p/libmv/
http://www.leptonica.com/affine.html
http://www.scipy.org/Cookbook/RANSAC

141

70. Snavely, N., S. Seitz, and R. Szeliski. Photo tourism: exploring photo

collections in 3D. 2006: ACM New York, NY, USA.

71. Muja, M. and D. Lowe. Fast approximate nearest neighbors with automatic

algorithm configuration. 2009: Citeseer.

72. Sproull, R., Refinements to nearest-neighbor searching in k-dimensional

trees. Algorithmica, 1991. 6(1): p. 579-589.

73. Omohundro, S., Five balltree construction algorithms. International

Computer Science Institute Technical Report, 1989: p. 89-063.

74. MacQueen, J. Some methods for classification and analysis of multivariate

observations. 1967: California, USA.

75. view3dscene. 10-July-2009]; Available from:

http://vrmlengine.sourceforge.net/view3dscene.php.

76. Hunt, S. Goal-Based Visual Servoing. 2010 4-August-2010]; Available

from: http://sourceforge.net/projects/gbvs/.

77. Gonzalez, R. and E. Richard, Woods, digital image processing. Beijlng:

Publishing House of Electronics Industry, 2005: p. 420-450.

78. Roth, S. Syntehtic Optical Flow Database. 21-Aug-2010]; Available from:

http://www.gris.tu-darmstadt.de/~sroth/research/flow/downloads.html.

http://vrmlengine.sourceforge.net/view3dscene.php
http://sourceforge.net/projects/gbvs/
http://www.gris.tu-darmstadt.de/%7Esroth/research/flow/downloads.html

142

Abstract

ROBOTIC GOAL-BASED SEMI-AUTONOMOUS ALGORITHMS IMPROVE

REMOTE OPERATOR PERFORMANCE

by

SHAWN HUNT

December 2010

Advisors: Dr. Abhilash Pandya & Dr. R. Darin Ellis

Major: Computer Engineering

Degree: Doctor of Philosophy

The focus of this research was to determine if reliable goal-based semi-

autonomous algorithms are able to improve remote operator performance or not.

Two semi-autonomous algorithms were examined: visual servoing and visual

dead reckoning. Visual servoing uses computer vision techniques to generate

movement commands while using internal properties of the camera combined

with sensor data that tell the robot its current position based on its previous

position. This research shows that the semi-autonomous algorithms developed

increased performance in a measurable way. An analysis of tracking algorithms

for visual servoing was conducted and tracking algorithms were enhanced to

make them as robust as possible. The developed algorithms were implemented

on a currently fielded military robot and a human-in-the-loop experiment was

conducted to measure performance.

143

Autobiographical Statement

SHAWN HUNT

Mr. Hunt received his BS degree in Computer Science from Franklin

University in 2004 and his MS in Electrical and Computer Engineering from

Wayne State University in 2008. He is currently transitioning into a position with

TARDEC in Warren, MI. Previous positions include a Systems Analyst for

several automotive suppliers and as an engineer for Turing Associates, Inc. in

Ann Arbor, MI.

He has had the privilege of leading Wayne State’s entry to the annual

Intelligent Ground Vehicle Competition for the past two years and looks forward to

assisting as a mentor in future years. He has also published several conference

papers, has submitted his first peer-reviewed journal paper, and is currently working

on several more journal papers based on this research.

Publications in process:

S. Hunt, G. Witus, R. D. Ellis A. Pandya (2010), "Remove Operators Prefer Goal-
based Semi-Autonomous Algorithms", Journal of Intelligent and Robotic Systems.
Submitted September 2010.

Selected publications:

S. Hunt, G. Witus, R. Karlsen (2010), "Comparison of Teleoperation and Supervisory
Control for Navigation and Driving under Reduced Bandwidth", SPIE 2010.

G. Witus, R. Karlsen, S. Hunt (2009), "Sequential Learning for Robot Vision Terrain
Classification", Proceedings of the 2009 SPIE Conference on Defense and Security.

G. Witus, S. Hunt, R.D. Ellis (2008), "Monocular Visual Ranging", Proceedings of the
2008 SPIE Conference on Defense and Security, Vol. 6962.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2010

	Robotic Goal-Based Semi-Autonomous Algorithms Improve Remote Operator Performance
	Shawn Hunt
	Recommended Citation

	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	CHAPTER 1INTRODUCTION
	1.1 Motivation and Problem Statement
	1.2 Research Objective and Specific Aims
	1.3 Outline of this Dissertation

	CHAPTER 2BACKGROUND
	2.1 Introduction
	2.2 Military Robots
	2.3 Robotic Sensors
	2.3.1 Cameras
	2.3.2 Encoders
	2.3.3 Inertial Measurement Units

	2.4 Semi-Autonomous Algorithms

	CHAPTER 3IMPLEMENTATION AND TESTING OF TRACKING ALGORITHMS
	3.1 Introduction
	3.2 Literature Review
	3.3 Methods
	3.3.1 Implemented Tracking Algorithms
	3.3.1.1 Correlation
	3.3.1.2 Tracking a Goal Point
	3.3.1.3 Optical Flow
	 Three optical flow algorithms, Horn-Schunck, Farnebäck, and KLT, were analyzed for this class of algorithms. Horn-Schunck and Farnebäck are classified as dense because nearly every pixel’s movement is calculated from frame to frame. The KLT sparse optical flow algorithm, on the other hand, tracks corners from frame to frame.
	3.3.1.4 Blob Trackers
	3.3.2 Tracking in 3D
	3.3.3 Data Collection
	3.3.4 Software Development Environment (TACTICAL)

	3.4 Results
	3.4.1 Speed
	3.4.2 Memory Consumption
	3.4.3 Accuracy
	3.4.4 Effect of Accuracy with Image Compression Added
	3.4.5 Determination of Winners

	3.5 Discussion and Summary

	CHAPTER 4TESTBED CREATION
	4.1 Introduction
	4.2 Platform and Development GUI
	4.3 Control Methods
	4.3.1 Teleoperation
	4.3.2 Displacement Control
	4.3.3 Visual Dead Reckoning
	4.3.3.1 IMU Correction
	4.3.4 Visual Servoing

	4.4 Motion Control
	4.5 Discussion and Summary

	CHAPTER 5HUMAN-IN-THE-LOOP TESTING
	5.1 Introduction
	5.2 Methods
	5.2.1 Participants
	5.2.2 Course Design
	5.2.3 Inspection Tasks
	5.2.4 Dropout Rates
	 Simulated degraded communications were introduced by corrupting data packets. A corrupted data packet is one that cannot be decoded. The data containing control messages, from the OCU to the PackBot, and data packets containing the video feed, from the PackBot to the OCU were both artificially corrupted. In the current fielded system, when a corrupted video packet is received, a black frame is shown. In this implementation, the last good frame was displayed. The data corruption was modeled as a Bernoulli process, i.e. all of the packets had an equal probability of being corrupted. There were four levels of communication degradation implemented: 0, 3/8, 9/16, and 3/4 seconds.
	5.2.5 Pilot Testing
	5.2.6 Trial Procedure
	The courses constructed from 1x2s and 2x4s introduced motion blur to the PackBot’s camera. Figure 54 shows an example image taken from the PackBot’s camera as it traversed the 2x4 course. The image containing the motion blur, combined with the compression artifacts, were input into the visual servoing algorithms that relied on tracking features from frame to frame.
	5.2.7 Experimental Design
	5.2.8 Data Validation
	5.2.9 Aggregation and Analysis
	5.2.9.1 Difficulty Rating
	/
	5.2.9.2 Inspection Time
	5.2.9.3 Number of Times Stopped

	5.3 Results
	5.4 Discussion and Summary

	CHAPTER 6SUMMARY, CONTRIBUTIONS, AND FUTURE WORK
	6.1 Summary
	6.2 Key Novel Contributions
	6.3 Future Work

	Appendix AHIC Approval
	/
	Appendix BDataset Details
	References
	Abstract
	Autobiographical Statement

