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Chapter 1

Introduction

Correlation measurements have played an integral role in the most exciting dis-
coveries at the Brookhaven Relativistic Heavy Ion Collider (RHIC) [9, 30, 31, 32].
Correlation measurements teach us how the particles produced in a high energy col-
lision influence each other. RHIC correlation measurements such as flow and jet
quenching, have demonstrated that these interactions are extremely strong, perhaps
as strong as possible. The success of these measurements has inspired other corre-
lation studies such as forward-backward correlations [33, 34, 35], and the so-called
“ridge”.

We begin with a motivation for ridge related studies, a description of ridge fea-
tures, and general concepts behind the ridge formation. We then provide a general
background to relativistic heavy ion collisions in Ch. 2, and theoretical backgrounds
of the effects of flow and freeze out and the initial state of the collisions in Ch. 3 and
Ch. 4 respectively. In Ch. 5 we follow Refs.[36, 37] and detail our theoretical descrip-
tion of specific ridge features highlighting the long rang behavior and importance of
our choice of particle production mechanism. We extend this framework in Ch. 6 to
discriminate between different ridge measurements and show they all result from the
same phenomenon. Chapter 7 adds insight into the shape of the ridge based on the
effects of viscous diffusion and focuses on changes in freeze out conditions related to

viscosity [38, 39]. Finally in Ch. 8 and 9 we discuss aspects of the ridge not addressed



in this work and summarize our results.

1.1 Motivation

A range of measurements indicate that relativistic heavy ion collisions produce
a fluid that flows collectively, see Ref [40] for recent review. In particular, elliptic
flow measurements are described at the 10% level by hydrodynamics. This implies
that the fluid is very nearly that of an ideal (viscosity-free) liquid. In this sense the
collective interactions are as strong as possible.

One observes elliptic flow with a two particle correlation measurement [40]. A
comparison of hadron momenta shows an asymmetry in the azimuthal distribution of
final state particles in off-center, peripheral collisions. In head on, central collisions,
particle momenta are, on average, uniform in all directions; the azimuthal distribution
is circular. In peripheral collisions, however, the azimuthal distribution is football
shaped. The famous result is that this asymmetry is correlated to the geometry of the
colliding nuclei, and that as collisions become more peripheral, this effect increases.

Jet quenching measurements demonstrate that the fluid medium influences jet pro-
duction [7, 41, 42, 43, 44]. Naively, perturbative Quantum Chromodynamics (pQCD)
would suggest that such effects should be very small. Specifically, the factorization
theorem of pQCD implies that any effect of the medium on the inclusive cross sec-
tion for AA — jet + X be small and vanish as p; — oo [45, 46, 47]. Correlation
measurements escape this restriction.

Jet quenching is also observed with a two particle correlation measurement. Here
the momentum of a high p, trigger particle is compared with the momenta of particles
in an associated p; range - the supposed p; range of jet fragments [41, 42, 43, 44, 7].
At small azimuthal angular differences, on the “same side” as the leading jet particle,
measurements find particles with momenta in a similar direction as the jet in excess

of the background. However, similar correlations with particles ~ 180° are missing



or suppressed. This is unique to heavy ion collisions where, unlike in proton-proton
(p+p) collisions, the momentum conserving “away side” jet must pass through and
is quenched by the comparatively large and dense medium.

If the medium influences jet production, one can then ask to what extent the jets
influence the medium. This has been much harder to demonstrate. The search for
the jets’ impact on the medium inspired a range of correlations studies such as the
(hard) ridge.

Separate ridge measurements highlight different aspects of heavy ion collisions
including medium response to a high p; trigger [2, 3, 4, 5, 48, 49, 50], bulk medium
evolution [1, 26, 51], and the p;, dependent evolution of the system [28, 52, 53, 54, 55].
We call the first the “hard ridge” due to its examination of particle pairs selected by a
high p, trigger and lower p; associates also in a “hard” region of the particle spectrum.
The latter two untriggered measurements fall in the category of the “soft ridge” since
all possible particle pairs contribute; this measurement is made with and without
p: weighting of correlated pairs. All ridge measurements indicate that two particle
correlations extend to a long range in relative (pseudo)rapidity. Understanding this
phenomenon is one of the primary goals of this work, and requires study of both the
initial conditions of the collision and the following evolutionary dynamics.

To study the response to the medium to the passage of jets, correlation measure-
ments compare both azimuthal and longitudinal distributions of momentum. After
accounting for expected sources of correlation including elliptic flow, jet fragmenta-
tion, and global momentum conservation, an excess correlation structure remains.
These unexplained excess correlations are important because they can provide ad-
ditional insight to the connection between the initial state of the collision and the
dynamics and modifications to the produced medium. Such measurements comparing
the relative momentum differences of all possible pairs of produced hadrons find the

striking result that excess correlations exist over large separation in (pseudo)rapidity.



- R

d+Au 0-10% STAR preliminary e

p+p 0-10% STAR preliminary "

w1g ~—

[= o e

. | % a*pn»q;q:f}'ﬁ‘?.y e
P22 GOV ' i

Ap P e
77 00835,

o i
-0.0247 AL
-0.04

Figure 1.1: Two particle correlation measurements for Left: p+p (Soft Ridge) [1],
and Right: central d+Au (Hard Ridge) [2].

These long range correlations are exciting because causality limits the interactions of
partons to ~ 1 — 2 rapidity units, meaning correlations beyond this limit must re-
sult from correlations at the point of particle production rather than from kinematic

transport.

1.2 Description of Ridge Features

Two particle correlation measurements such as the ridge examine the distribution
of final state particle pairs by counting the number of pairs with the same azimuthal
separation ¢ = ¢; — ¢ and same (pseudo)rapidity separation n = n; — 1,. As shown
in Fig. 1.1, in p+p, deuteron-gold (d+Au), and very peripheral gold-gold (Au+Au)
collisions, these measurements find a “near side” peak centered at ¢ = n = 0 that is
similarly narrow in both ¢ and 7. This peak is representative of the columniation in
the spray of particles coming from jet fragmentation. The momenta of these particles
point in the direction of the leading jet particle, meaning the jet fragments have small
¢ and 7 separations. The “away side” structure, centered at ¢ = 7, appears flat in

7. This structure is due momentum conservation and longitudinal asymmetry of jet
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Figure 1.2: STAR hard ridge, Au+Au, 200 GeV, 0—10% central [3]. The “#entries”
on the vertical axis represents the yield of correlated pairs per jet trigger, with the
trigger in the range 3 < p;4rigg < 4 GeV and paired with a particle in the associated
range 2 < Prassoc < 3

locations.

The triggered hard ridge measures the correlated yield of associates per jet trigger,
(1/Niyig)dN/d¢pdn. The intention is to isolate jet effects by specifically examining
correlations of trigger particles in a high p, range with associated particles in a lower
p: range. Conversely, the untriggered soft ridge measurement studies all possible
particle pairs Ap(é,n)/\/Pref = (Psib = Pref)//Pres Where pgyp, is the distribution of
particle pairs from the same event and p,.; is the distribution of particle pairs from
mixed events. Although these measurements are related, the observables are not
directly comparable; understanding this relationship is one of the goals of this thesis.

In Au+Au collisions, jets are expected to modify the hot dense medium. There-
fore, one might expect to find a change in the 2-D (¢, n) correlation structure. Perhaps
such changes would provide clues into the mechanism causing jet energy loss and a
quantification of the modification to the medium.

The near side jet-triggered correlation structure for central Au+Au collisions is
shown in Fig. 1.2. A jet peak near n = ¢ = 0 likely consists of particles from the

fragmenting jet trigger, assuming the high p, trigger particle is indeed from a jet. The



Figure 1.3: Minimum-bias soft ridge correlations for several centralities from periph-
eral (left) to central (right) in 200 GeV Au+Au collisions from [1].

hard ridge appears in Au+Au collisions as a pedestal-like enhancement of the yield
at small ¢ under the jet peak. The ridge is much wider in 7 than the jet peak and is
absent from d+Au collisions.

This pedestal is broad and seemingly flat in n but shares the same narrow ¢ profile
as the jet peak. This structure gains the title of “the ridge” because of its resemblance
to a mountain ridge. The further designation of “hard ridge” refers to its examination
of jets which come from “hard” scatterings. The striking and unexpected feature of
the STAR hard ridge is that correlations of high p, particles with a jet trigger extend
up to 2 units in rapidity (the entire STAR acceptance). The main question here is, if
the jet somehow induces correlations with the medium during its passage, how large
is this effect, and how far in rapidity does it reach? To answer this question one can
study the correlation structure from the medium itself, without the isolation of high
p; particles.

STAR also makes separate correlation measurements without a jet trigger. Unlike
the hard ridge measurement, correlations of all possible pairs of particles with any
p: show a similar 2-D correlation structure. Like the hard ridge, the soft ridge has a
near side peak centered at ¢ = n = 0 that is narrow in ¢ and broad in 1. The soft
and hard ridges have been considered separate phenomenon because of the difference
in the dominant particle production mechanisms in the two p, regimes.

The momentum spectrum in relativistic Au+Au collisions seems to follow a power

law past ~ 2GeV which is described nicely by jet production. Not coincidently, the



minimum momentum of associated particles in the hard ridge measurement is taken
to be 2 GeV. However, more than 99% of all the particles produced in these collisions
are in the soft or bulk region (below 2 GeV). Particles in this range are primarily
thermal and well described by hydrodynamics in Au+Au collisions [9, 30, 31, 32].
Correlations amongst these particles resembling those of the hard ridge suggests that
the ridge shape is a general feature of heavy ion collisions rather than a modification
of that system.

The exploration of the possible relationship between the two ridges is another
goal of this thesis. In particular, we focus on the azimuthal width and amplitude of
the ridge, away from the jet peak. Fig. 1.3 shows the soft ridge in 200 GeV Au+Au
collisions for selected centrality cuts. Notice that in peripheral collisions (left most
graph in Fig. 1.3), the correlations structure resembles that in p+p (left graph in
Fig. 1.1). As the centrality increases the ridge appears and becomes more prominent.

The azimuthal width of the soft ridge in Fig. 1.3 remains roughly constant with
centrality, at about o, ~ 0.7. In comparison, the hard ridge is much narrower at about
o, ~ 0.3. The amplitude of the hard ridge is also considerably less than the soft ridge.
Naively one would expect this since the number of possible pairs contributing to the
hard ridge comes from 1% of the total multiplicity and the soft ridge examines all
particle pairs. For this reason, in the soft ridge, the jet peak would be overwhelmed
by correlations from bulk pairs. Although the observables are different, it should
be possible to examine the emergence of a hard ridge-like jet peak in the soft ridge
through the implementation of appropriate p; cuts [26].

The PHOBOS measurement of the ridge (Fig. 1.4) finds the most interesting
and most discriminating feature, as it extends to a range as large as —4 < n < 2
[4, 5]. Correlations existing over a causally disconnected range must then arise at the
earliest stage of the collision when the first partons are produced [25, 36]. Therefore,

fluctuations in the initial conditions of heavy ion collisions directly impact the shape



Figure 1.4: Per-trigger correlated yield with p% > 2.5 GeV/c as a function of A
and A¢ for 200 GeV PHOBOS Au+Au collisions [4, 5].

of the ridge.

1.3 The Ridge from Fluctuations and Flow

In this dissertation, we propose an explanation for the soft ridge based on fluc-
tuating initial conditions and later stage transverse flow. Particles produced in a
common local region share an initial spatial correlation based on the fact that they
were produced within that same density fluctuation. Taking each fluctuation as a
fluid cell with small transverse size comparative to the nuclear overlap region, the
following dynamical evolution will have approximately the same effect on all particles
in the cell.

The amount of work done on a fluid cell then depends on the pressure gradient
of the system inside the radial position of the cell. In other words, transverse flow
radially boosts all particles in the fluid cell depending on the initial radial position of
the cell. Since the p; of particles coming from the same fluctuation is related to their
common origin, the initial state spatial correlation then translates into a final state
momentum correlation.

Furthermore, to obtain long range rapidity correlations, fluctuations must extend



over a large longitudinal region. This relies on both the Bjorken expansion assumption
that links soft particle rapidity to longitudinal position, and a source of fluctuations
that is uniform over a large longitudinal distance and has small transverse size.

Almost instantaneously after a collision of two nuclei, Color Glass Condensate
(CGC) theory predicts that the transverse fields of each nucleus are transformed into
longitudinal fields that are approximately uniform in rapidity [56, 57, 58]. The fields,
which are random over transverse distances larger than Q;! where Q, ~ 1 — 2 GeV
is the saturation scale, comprise a series of flux tubes. Given a dense distribution
of flux tubes, the system enters a “Glasma” pre-thermalization phase as the tubes
evaporate into particles. The Glasma description describes many features of the
matter produced in the high density environment produced in nuclear collisions, and
allows for a systematic weak coupling computation. The contribution of flux tubes
to long range correlations is studied in the Glasma formulation in [25, 36, 37, 59].

We take CGC flux tubes as the source of the fluctuations that produce the soft
ridge. The Glasma scenario provides a distribution of tubes and gluon density per
tube which allows for a quantative comparison to the change in ridge amplitude. Ours
is one of a family of models in which particles are initially correlated at the point of
production [25, 60, 61, 62, 63, 64, 65]. Long range rapidity correlations arise because
flux tubes stretch between the two nuclei and particles from the same flux tube start
at nearly the same transverse position, regardless of rapidity. Flow then boosts the
correlated particles into a small opening angle in ¢. Flow models have also been used
to describe qualitative features of the hard ridge [65], [66].

The hard ridge has most commonly been described as a consequence of the jet
passing through the flowing bulk matter produced by the nuclear collision [67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77]. While in principle jets and minijets may contribute
to the soft ridge [78], the overwhelming success of hydrodynamics at low p, suggests

both effects play a role. Of particular interest in this regard is work by Shuryak in
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which jet quenching and transverse flow of the bulk play a combined role [79]. Jet
quenching produces a near side bias by suppressing the away side jet. Near side jet
particles are then correlated with other particles from the same jet or transversely
flowing bulk particles.

We propose that the near side of both hard and soft ridges arise as a consequence
of primarily the same phenomena. Long range correlations arise as a consequence
of initially long color flux tubes that provide particle density fluctuations which feel

later stage transverse flow.
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Chapter 2

Background

High energy particle and nuclear physics are fields devoted to the understanding of
nature at its most fundamental level. The most basic questions include: What are the
smallest building blocks of nature, what are their physical characteristics, and how do
they interact to form the matter we observe? Despite their simplicity, it is no trivial
matter to answer these questions. Our current understanding of these questions is
addressed in the Standard Model [80] as described by Quantum Chromo-Dynamics
(QCD), the strong force corollary to Quantum Electro-Dynamics (QED).

Normal matter is made of elements which are categorized on the Periodic Table.
We understand individual elements as atoms with specific configurations of nuclei
orbited by electrons. An element is defined by the number of protons in its nucleus.
The lightest element, Hydrogen, has one nucleon, the proton, where Gold has, on
average, 197 nucleons (79 protons and 118 neutrons). Already we have described
nature at three very different size scales that vary by many orders of magnitude, see
Fig.2.1. The radius of a Gold atom is 144pm, but its nuclear radius is ~ 6.38 fm and
the radius of a proton is ~ 1fm. Comparably, the electron size is ~ 1072 fm.

Scattering is a common technique for determining the size of such forms of matter.
In particular, one can scatter electrons from a target, and determine its size from the
defraction pattern. Deep Inelastic Scattering (DIS) experiments have shown that the

proton is not the smallest particle in the nucleus. Scatterings of electrons on protons
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Figure 2.1: Size scales of sub-atomic particles.

show three scattering centers inside the proton, quarks. Free quarks, however, have
not been observed and are confined to hadrons. QCD predicts that the coupling
strength between quarks asymptotically falls to zero with increase in the energy of
the interaction between quarks. This phenomenon is known as asymptotic freedom.

The motivation behind nuclear collisions is to take advantage of asymptotic free-
dom and create a system with energy density high enough that quarks move freely
within the system. RHIC collides Gold nuclei with a maximum center of mass energy
of 200 GeV per nucleon. The resulting system has an energy density nearly 30 times
that of a proton, an order of magnitude greater than that in a neutron star. The
system evolves over ~ 20fm/c, where c is the speed of light, a time scale expected
to be long enough that the quarks and gluons thermalize into a new form of matter,
the Quark-Gluon Plasma (QGP). The primary goal of experiments at RHIC has been
to gather evidence for the existence of QGP and characterize its physical attributes.
The goals of this thesis fall along the same lines through the use phenomenological

attributes of the QGP along with theories of the initial state of the collision to explain
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Figure 2.2: Table of standard model particles. Image source: Fermilab, Office of
Science

current measurements.

2.1  The Standard Model and QCD

The Standard Model is a description of our current understanding of the most
elementary particles that make up the universe and their interactions. Fig.2.2 cate-
gorizes these particles and lists some attributes. We see that we are already familiar
with some of these particles, namely the electron and the photon. The electromag-
netic interactions of these particles has been understood for hundreds of years, but
the more recent understanding of these particles in terms of quantum field theory
that has provided the basis for the Standard Model.

QED describes the electromagnetic force acting on electrically charged particles
as mediated by the photon. This knowledge comes in part from understanding the

quantum numbers of elementary particles, such as charge and spin. The electron is
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a Fermion with spin 1/2 and charge —1 where the photon is a massless Boson with
spin 1 and no charge. Like the photon, there are other force carrying Bosons that
mediate the weak and strong forces. For the weak force, there are the W= and the
79, and for the strong force, there is the gluon.

The weak force, along with the electromagnetic force, describes all interactions
between leptons. This is symptomatic of the result that, at interaction energies on
the order of 100 GeV, the two forces unify. There are other leptons, the muon and
the tau, that like the electron, have charge —1 and spin 1/2, but different masses.
Additionally there are three more leptons called neutrinos - one associated with each
of the electron, muon, and tau. They are spin 1/2, have zero charge, and are massless
in electroweak theory but are seen to have small experimental mass.

Quarks make up the final class in the standard model. They not only feel the
electroweak force described by the SU(2) x U(1) gauge group, but also the strong
SU(3) gauge group. The SU(3) group is determined by interactions of the (strong)
color charges. In addition to the positive and negative electrical charge, an individual
quark can have one of three charges labeled red, green, or blue. There are eight gluons
that carry carry different combinations of these color charges.

QCD then describes the interactions of quarks and gluons in the SU(3) x SU(2) x
U(1) gauge group. The gluons mediate the color force and can interact with them-
selves. There are six quarks called flavors, three with electrical charge 2/3 and three
with electrical charge —1/3. The lightest two, the up and down, make up all of the
visible matter in the universe (protons and neutrons). They also make up the most
common hadron produced in heavy ion collisions, the pion. The remaining quarks in
order of mass are the strange, charm, bottom, and top.

Quarks combine to form hadrons, which are the particles that we ultimately detect.
Individual quarks carry both a color and electrical charge. Unlike the electrical charge,

the total color charge of a hadron must always add to a neutral (colorless) state. This
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corresponds to the confinement condition that prevents experimental observation of
a free quark.

Hadrons come in two categories, baryons, containing three quarks, and mesons,
containing two quarks. A proton is and example of a baryon since two up quarks
and a down quark combine to describe its quantum numbers (p = uud). Similarly, a
pion is made of combinations of an up with antidown (7% = ud), down with antiup
(7~ =du), or 7 = (uti+dd)/+/2. In addition to the valence quarks that describe the
quantum numbers of the hadron, there is a “sea” of quarks and gluons that contribute
to the total distribution of the hadron. The primary goal of deep inelastic scattering
experiments is to map out this distribution.

The confinement condition is central to the motivation for studying relativistic
heavy ion collisions. The goal is to create an environment where the temperature
and energy density is high enough that quarks and gluons do not “identify” with any

particular hadron and the color charge is globally rather than locally neutral. This is

perhaps the only situation where one can observe “free” quarks and gluons.

2.2 Relativistic Heavy Ion Collisions

In many ways collisions of relativistic nuclei at RHIC are analogous to the Big
Bang. Fach “Little Bang” collision is a space-time event with a sudden deposition of
high energy density into the vacuum. What starts as quantum fluctuations ends as
causally disconnected hadronic matter.

The stages of a heavy ion collision are illustrated in Fig.2.3. In the center of mass
frame, nuclei first appear as highly Lorentz contracted pancakes due to their relativis-
tic speeds. At the moment of the collision, the dense, contracted nuclei pass through
each other in a sort amount of time. Due to large numbers of inelastic interactions, a
large amount of energy is deposited in the vacuum at the collision center. Reminis-

cent of the inflationary period of the early universe, the nuclei continue on, driving
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Figure 2.3: A schematic picture of the matter produced in heavy ion collisions. Image
from S. Bass

a rapid longitudinal expansion of any produced medium [81]. This medium consists
of quarks and gluons that are thought to transition into a thermalized quark-gluon
plasma (QGP), as evidenced by the apparent ideal hydrodynamical expansion of the
system. As the system expands the temperature drops and quarks and gluons must
experience another transition into colorless hadronic states. Finally, rescatterings of
hadrons cease and all hadrons “freeze out”, meaning their momentum will remain
unchanged thereafter.

The initial singularity dictates much about the following evolution of the sys-
tem. A traditional geometrical (Glauber) approach is sufficient to explain many
phenomenon observed in nuclear collisions. The Glauber approach quantifies how
head on or central nuclear collisions are in terms of number of interactions of indi-
vidual nucleons. For example, at a given impact parameter b (b = 0 being the most
central or directly head on), one can calculate, using probability theory, the number
of nucleons that participate in at least one inelastic collision, Np4, and the number
of binary nucleon-nucleon collisions, N.,; (See Appendix B for a more detailed de-
scription). One can make assumptions about particle production and fluctuations of
initial parton densities based on these quantities. For example, the soft (thermally
produced) part of measured spectrum of hadrons seems to scale with N4, while

interactions following from perturbative QCD seem to scale with N,.,;. This Eikonal
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model is significantly different in principle from that of the Color Glass Condensate
[19, 16], see Sec.4.5. The Color Glass Condensate approach is described in Ch.4. It
relies on the gluon saturation picture, and distinguishes between perturbative and
non-perturbative processes with a momentum transfer scale ()s. Both approaches
lack the ability to provide a quantitative description of the QGP.

The primary concern of experiments at RHIC is the search for the quark gluon
plasma. At very high temperatures the coupling of the strong force should become
small, and quarks and gluons should become “free” inside the dense medium. If
this is the case, there should be an increase in the number of degrees of freedom
corresponding to those of quarks and gluons rather than hadrons. An ideal gas of
hadrons would have the three translational degrees of freedom, but this number should
largely increase because the availability in QGP for changes of color and quark flavor.
Each gluon would have two helicities and eight colors and each quark has three colors,
two spins, and a quark-antiquark pair. So, the number of degrees of freedom in a
QGP would be 2 x 8 +3 x 2 x 2 X Np = 52 if the number of contributing quark
flavors is Np = 3. Lattice QCD calculations do see a rapid increase in the number
of degrees of freedom around a critical temperature T, ~ 170MeV, see for example
Refs.[82, 83, 84]. RHIC temperatures at the formation stage of the QGP reach 27T,
so the relevant degrees of freedom should be those of quarks and gluons.

J /1) suppression is one proposed signature of the existence of QGP [85]. It relies on
the prevention of the formation of c¢ pairs through a Debye screening of color charge.
Another signature is the observed enhancement in strange hadrons over those seen in
the same number (N,;) of p+p collisions [86]. The ability of ideal hydrodynamics to
explain the the transverse expansion of the system also lends its self to the argument
for the existence of QGP, see Sec.2.3 for more information. For more details about
other possible signature of QGP see [87, 88].

It seems that there is no first order but rather a smooth phase transition from
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the QGP phase to the hadronic phase. The hadronization process itself is also not
completely understood. Hadronization occurs when the system expands such that the
density of partons is not large enough to maintain a global colorless state. Quarks and
gluons combine to form hadrons which freeze out when the mean free path between

hadrons is larger than that of the system.

2.3 Elliptic Flow

Along with jet quenching, the hydrodynamical behavior of the system created in
heavy ion collisions has been one the most striking results from RHIC. Ideal hydrody-
namics does an excellent job of describing the flow of hadrons at p; less than 2 GeV.
In particular, the observation of anisotropic flow is unique to heavy ion collisions and
is a useful tool for relating the geometry of the collisions to the pressure gradients
of the matter produced at the earliest times of the collisions [89]. For this reason,
flow provides a background for correlation measurements, and fluctuations in flow
measurements could probe fluctuations in the initial conditions.

The azimuthal shape of final state particle distributions is seen to change from
central to peripheral collisions [9, 30, 31, 32]. A Fourier analysis of the distribution
provides a mathematical description with quantities (the Fourier coefficients) that

have physical meaning [89]:

1 dN
——— =1+42v;cos(¢p — Ygp) + 2vz cos[2(p — Ygp)| + - - - (2.1)
N do

with

v, = (cos[n(¢d — Ygp)]). (2.2)
U rp defines the angle that the event reaction plane makes with the detector, and the

Fourier coefficients, v; and v, relate to the shape of the distribution corresponding

to “directed flow” and “elliptic flow” respectively. These shapes are illustrated in
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Peripheral Collision (near) Central Collision

J

Figure 2.4: A diagram of (left) an off-center collision producing anisotropic flow, and
(right) a central collision with small elliptic flow and large directed flow. The x-z
plane defines the event reaction plane. Image created by Masashi Kaneta.
Fig.2.4. If a collision is peripheral, as in the left side of Fig.2.4, then for the colli-
sion of identical symmetric nuclei, the density of the overlap region is larger in the
x-direction than the y direction. The x-direction and the z-direction (beam direction)
define the reaction plane. The anisotropy in density of the overlap area leads to pres-
sure gradients in the collision volume; there is a larger push in the x-direction than the
y-direction. At RHIC, this corresponds to 30% more particles in the direction of the
reaction plan than out of plane, and a large v, value. The right side of Fig.2.4, corre-
sponds to a central collision, where the resulting volume density is nearly spherically
symmetric. In this case, the transverse push is similar in all directions, minimizing
V9, but corresponding to a larger v;.

The elliptic flow parameter, vy, changes as a function of centrality as well as the
p: of measured particles. Ideal hydrodynamics does an excellent job of describing vy

for p, < 2 GeV [90, 91]. Fig. 2.5 illustrates this point with a compilation of STAR and
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Figure 2.5: Elliptic flow (v2) plotted as a function of transverse momentum p; for
identified hadrons. Compilation of STAR and PHENIX data with hydrodynamic
predictions as presented in [6]

PHENIX data and theoretical predictions [6]. Past this point, ideal hydro predicts
further increase, but the data flattens. The flatness in the data could correspond
to the suppression of high p; particles in nuclear collisions. Fast partons are slowed
to smaller p; as they traverse the medium, decreasing the number of fast hadrons
in the final state, and increasing the number of slower ones. Alternatively, viscous
corrections to hydrodynamics could have the same effects [90, 91, 92, 93, 94, 95, 96].
Thermal partons that have the greatest push from the pressure gradients would have
a larger p;, but viscosity essentially forces the faster partons to drag the slower ones
along, slowing them down.

It is no coincidence, however, that the region of best comparison corresponds with
the soft part of the spectrum. The soft or thermal particles are those thought to
be born of the QGP, where above 2 GeV, pQCD effects start to become important.
The so-called constituent scaling is further evidence for this argument. As seen in
Fig. 2.6, the vy of both baryons and mesons follows the same trend when the total
vo per quark is plotted vs. the transverse kinetic energy per quark. In other words,

the total vy of each baryon is divided by three (the number of valence quarks) and

the vy for each meson is divided by two. The same is done for the transverse kinetic
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Figure 2.6: The elliptic flow parameter plotted as vy/quark against the transverse
energy/quark [6].

energy of each baryon or meson. The fact that all light hadrons have the same v,
per quark at any given k; indicates that the same transverse energy is given to each
individual quark before hadronization. This fits the flowing QGP picture, but does
not eliminate the possibility that the hadronic phase just has a very large viscosity
which could quickly normalize the momenta of slower hadrons.

The shape of v5 has an impact on correlation measurements. Since there are more
particles pushed in the direction of the reaction plane, and those particles receive
a bigger push, one would find more pairs of particles at small angular separations,
where ¢ = ¢ — ¢, is the relative azimuthal angle between the particle pair. Pairs
with relative angles ¢ ~ 90° are comparatively suppressed. At ¢ ~ 180° one expects
a similar number of pairs with this angular separation to those at small ¢. The

correlation background then has the shape

C(¢) = bo(1 + 2(vy " v5*°) cos(26)) (2.3)

tri . . . . .
where vy and v3°°¢ are the Fourier coefficients corresponding to angular distribu-

tions of particles in a trigger p; range and that of particles in an associated p; range
[97]. The coefficient by is set by the Zero Yield at Minimum (ZYAM) method for

triggered ridge measurements [2, 3, 5, 4, 48, 49, 50], and left as a free parameter in
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soft ridge fits to data [1, 26, 51]. Since vq is sensitive to fluctuations in initial condi-
tions, and CGC initial conditions predict larger eccentricities in initial elliptic density
distributions (and therefore larger vs), there could be a model dependent effect in
the shape of the ridge. The ridge is a correlation structure that remains after known
sources of correlations are subtracted; the azimuthal width of the ridge depends on
the magnitude of the vy subtraction. However, this is only a problem in the hard
ridge measurement since the contribution from v, in the soft ridge measurement is fit

rather than subtracted.

2.4  Jets

During hadronic collisions, partons can scatter with very large momentum trans-
fers. In this case, colored partons move off with large transverse momenta. Such
events are well described by perturbative QCD since for high energy interactions the
strong coupling is small. The high p; partons quickly radiate gluons which split into
multiple quarks which all form hadrons to conserve quantum numbers, momentum,
and a colorless state. This process is called jet fragmentation. Because of the large
energy and p, , the fragments from a jet are focused into a narrow cone opening in
the direction of the original leading particle. Unlike collective phenomenon like flow
and vy, jets are also seen (and more well defined) in p+p collisions. Fig. 2.7 shows
a schematic diagram of a hard scattering of two quarks in a p+p collision forming
back to back jets. In principle, two quarks could scatter elastically into jets, or anni-
hilate on impact and form gluon jets. One parton gains large transverse momentum
and fragments. A momentum conserving away side jet is found 180° away in the
transverse plane.

In heavy ion collisions, the situation is somewhat different. If the jets are formed
in the center of the collision volume, they have to traverse the medium before they

escape. Experiments at RHIC have measured unexpectedly low multiplicities of high
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Figure 2.7: Hard scattering of two quarks in a p+p collision, and back to back high
Py jets result.

p; hadrons. This is constant with the saturation picture described in Sec.4.1, and the
discovery of jet quenching.

Jet quenching is the attenuation of the fast colored object as it passes through
the dense strongly interacting partonic medium. Thus, the probability that a jet
escapes the medium is proportional to the length of its path through the medium,
and observed jets are biased toward the surface. Evidence of this is shown in Fig.2.8
[7].

Jets are found by identifying a fast hadron, called the trigger and associated
hadrons within a selected p; threshold. Measurement of the associates’ azimuthal
angle relative to the jet indicates a strong correlation with the leading particle. This
is seen in Fig.2.8, where a narrow peak, that represents the jet cone, is found centered
about small relative angles. Momentum conservation would suggest a peak centered
A¢ = 180°. Indeed, in p+p and d+Au collisions this peak is present, but absent in
Au+Au collisions.

The absence of a di-jet in heavy ion collisions suggests that the away side jet

is attenuated or absorbed by the medium. If the triggered jet is near the surface
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Figure 2.8: Correlations in azimuthal angle between high momentum hadrons showing
evidence of suppression of back-to-back jets in central Au+Au relative to p+p and
d+Au collisions as seen by the STAR collaboration [7].

of the collision area, then the away side jet must pass through the dense medium.
Quenching of the away jet would support a strongly coupled QGP. Following this
reasoning, the medium could completely quench di-jets produced close to the collision
center, biasing observed jets to the surface. In fact, the identification of jets in central
Au+Au collisions is suppressed by a factor of 4-5 relative to the number found in p+p
or d4+Au collisions [43, 98]. In contrast, the number of direct photons which escape
the medium without modification, agrees nicely with the appropriately scaled amount
found in p+p [98].

The response of the medium to the passage of a jet has become an important
topic, and in some sense spurred the work presented in this dissertation. The energy
lost by the jet must equal an energy gain by the medium. Correlation measurements
could observe these changes. The jet quenching measurement is itself a correlation
measurement since it compares the azimuthal angle of hadrons relative to the jet
trigger. The hard ridge measurement is an extension of this, comparing both relative

azimuthal and rapidity coordinates.
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The nature of fragmentation into a narrow cone is responsible for the jet peak.
Fragments splinter off the fast parton, co-moving in the same transverse direction
at about the same rapidity. Therefore, as seen in jet quenching and hard ridge
measurements, there is an abundance of correlated associates at small angles away
from the jet axis, and few at large angles.

Many have suggested that the formation of the near side ridge is a result of the
jet passage through the medium [67, 68, 69, 70, 71, 72, 73, 74, 75]. Ref. [79] suggests
that the jet has coincidental correlations with bulk matter based on the position of
production and transverse bulk flow and jet quenching collaboratively direct particles
to common emission angles. Our work [37], presented here, adopts this prescription,

as described in Ch.6.



26

Chapter 3

The Blast Wave Model

Rapid transverse expansion is one of the predominant features of relativistic heavy
ion collisions. The transverse momentum spectrum from RHIC indicates that the
hadronic average final state transverse velocity is larger than that of a freely expanding
thermal source. The conditions at RHIC can be described with a blast wave scenario.

The blast wave model is useful since it describes a significant feature of heavy ion
collisions while incorporating only a small fraction of the physical processes involved
in heavy ion collisions. Given a temperature, it provides a reasonable description of
how a medium of particles gains a collective transverse flow. Among other things,
it does not incorporate the underlying particle production mechanism, perturbative
QCD processes, or the hadronization process. Furthermore, a full hydrodynamical
description would be more useful for characterizing the system, since it would have
information on the equation of state as well as the sheer and bulk viscosity. The
blast wave model is useful, though, because of its simplicity; it characterizes the
transverse expansion of the system with only two parameters, 8 (also called vy face),
the transverse velocity, and T, the temperature. Since the collective behavior of
soft particles influences almost all observables, it is convenient to have a model for
specifically that phenomenon.

In this chapter, we review the features of the blast wave model following primarily

Refs. [99, 100, 101]. In Secs. 3.2 and 3.3, we extend this treatment with the intent on



Figure 3.1: Light cone diagrams indicating different freeze out scenarios. (Left) Con-
stant time freeze out. (Right) Constant proper time freeze out. Higher rapidity
particles freeze out later and the freeze out surface conforms to the beam axes which
move at nearly the speed of light.

its application to our correlation studies.

3.1 Features of the Blast Wave Model

In relativistic ion collisions, the sudden localized deposition of energy produces an
initially hot and dense medium of particles with random transverse motion. Particles
on the surface moving outward from the center of the medium could do so freely, but
surface particles with an inward velocity would scatter from particles in the dense
core. As a result, surface particles will expand outward with an average velocity in
the radial direction. The next innermost layer of particles would scatter from both
the more dense core as well as the outer surface particles. However, as the surface
particles deflected outward, filling more space and becoming more diffuse, the next
layer can also expand outward. The expansion of the entire system follows in this
manner. This anisotropy in density gives rise to pressure gradients that do work to
expand the system. These are the characteristics of a shock or blast wave [99].

The major aspects of the blast wave model are as follows:

e Transverse flow: The outermost layer of particles in the system acquires a radial
velocity because collisions with the next innermost layer continue until the outer
particles have an outward trajectory. Just inside the outer layer, the pressure

gradient is largest, providing the largest push outward. Successive layers will
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receive less of a push as the system expands and the pressure gradient decreases.
The final velocity of each layer of particles then depends on its initial radial
position; the particles starting at a larger radius get a larger transverse boost.
Following this idea, the following calculations utilize a Hubble-like expansion
velocity,

YV = Ar. (3.1)

Freeze out: The picture drawn in this chapter, where outer layers of par-
ticles expand out while inner layers continue to interact, changing the sur-
face of the volume in space-time, assumes a constant proper time freeze out
scenario. Rather than assuming all particles freeze out at the same time,
the constant proper time requires that all particles freeze out at the same
proper time, 7x = constant = \/t2 —x2, or in the Bjorken approximation,
T = constant = \/t?> — z? . In this case, faster or higher rapidity particles
freeze out later than slower ones. This is illustrated in the right diagram in
Fig. 3.1. The space-time hypersurface ¢ defines a borderline between flowing
behavior and free streaming [100]. The element do,, moving with momentum
pt is defined as

do, = (d°x,0,0,dtdzdy) (3.2)

for constant proper time, and

do, = (d*z,0,0,0) (3.3)

for constant time freeze out.

Since the goal of the blast wave model is to determine the distribution of parti-
cles freezing out on o with velocity [, the differential element of interest is then

ptdo,,, where p* = (E, p) is the 4-momentum. Cooper and Frye show that this
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differential is also required for energy conservation [101].

Energy conservation: The reduction of random or thermal kinetic energy (cool-
ing) is precisely the energy associated with the average radial velocity (3) pro-
viding outward or “directed” flow. A purely thermal source would have a dis-
tribution function o exp[—yFE/T], but in the blast wave picture, energy for
transverse flow is taken from the thermal energy such that the distribution is
x exp[—y(E — v - p)/T]. As a result, the particle distribution peaks about
a mean radial velocity, where a thermal source would have a peak at a lower

velocity where the multiplicity is higher [99].

Entropy conservation: The entropy reduction due to the more orderly, collective
motion is equal to the entropy gain from spatial expansion. In other words, the
entropy gain due to expansion of position space is compensated by the entropy
loss from the narrowing of momentum space, implying that the expansion force
is reversable. Gains in entropy, not built into the blast wave model, come from
fluctuations in the medium. If there are only cells of local thermal equilibrium,
processes such as conduction between the cells (thermal fluctuations) and diffu-
sion (momentum fluctuations) would increase the entropy. These contributions

should be small if the system is in a globally thermalized QGP phase.

Particle Number: Since the blast wave model contains no information about the
initial production mechanism of partons, it cannot predict the absolute number
of particles. Generally the magnitude of blast wave particle distributions are

normalized to data.

Boost invariance: The transverse boost given to a particle depends only on its
radial position. This implies two things: 1) that longitudinal expansion is sig-
nificantly more rapid than transverse expansion, and 2) that the system initially

resembles a long cylinder with the same azimuthal distribution at any longitu-
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Figure 3.2: A schematic diagram representing the velocity of a fluid element as two
successive boosts in a uniform cylindrical system. The scenario depicted here infers
that the transverse velocity depends only on the transverse boost and is independent
of the boost to the longitudinal position.

dinal position. The velocity at any position, then consists of a longitudinal and

transverse boost as illustrated in Fig. 3.2. Consequentially, the gamma factor

is then approximated as a factorization of the two boosts, such that v ~ ~,v;.

e Boltzmann Distribution: For mathematical simplicity, a Boltzmann distribu-
tion (with transverse boost) has been taken in replacement of Fermi or Bose

distributions.

Cooper and Frye show in Ref. [101] that the distribution of particles with mo-
mentum p within a surface element do, in the neighborhood of space-time point z*
is

dN
EdTp_/f(X’p)pMdU#' (3.4)

We can then calculate important quantities including N, dN/dy, (p;), and vy, from
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(3.4) as follows:

dN
N= | E—d :
[ Bty (35)
dN dN
= _ [ g2 :
1 AN
(pr) = N /pt E_d3pd p (3.7)

1 dN
v = /cos 2¢ E%d?’p (3.8)

Following closely to [100], we choose a Boltzmann phase-space distribution

f(x,p) = ae”“PI/T (3.9)

which is boosted by the local fluid velocity u*(x) and a is a normalization constant.
Following the boost invariance approximation, u*(x) represents successive longitudi-

nal and transverse boosts,

u(x) = (7,7v) = (V=7 % ve(r), 77:0z) - (3.10)

We define a “spatial” rapidity, n representing the longitudinal boost

; — tanh7 (3.11)
z = Tsinhn (3.12)
t = 7coshn (3.13)

T=Vi— 22 (3.14)



32

Furthermore (3.12) can be rewritten

Y2V

= tanh (3.15)
Yz
v,v, = sinhn (3.16)
v, = coshn (3.17)
such that (3.10) can take the form
u*(x) = (v coshn, 3 v(r),sinhn) . (3.18)

Making use of (3.13) and (3.14), the surface element (3.2), in cylindrical coordinates,
becomes

do, = (coshn,0,0,sinhn) Trdrdddn. (3.19)

Similarly, we write the 4-momentum in terms of the rapidity variable

" = (E,ps, p.) = (my coshy, p;, my sinhy) . (3.20)

To obtain the differential in (3.4), we combine (3.20) with (3.2) and relate dt with

(3.14) to obtain

p'do, = (Ed’x — p.dtd*r) = (my coshy rdrdfdz — m;sinhy rdrdfdt)
= [(my cosh y) (7 coshn dn) — (my sinhy)(7 sinhn dn)] rdrdf

= 7my cosh(y — n) rdrdfdn. (3.21)
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The argument of the exponential in (3.9) makes use of (3.18) and (3.20) and gives

u'p,, = yemy coshy coshn — vvy - pr — yemy sinh y sinh

= yymy(cosh y coshn — sinh y sinhn) — v, v, - py

= yymy cosh(y —n) — vy - pr. (3.22)
Substituting (3.22) in (3.9) we obtain
F(x,p) = ae™ T oshly=n) o MEEE (3.23)

and using (3.21) we rewrite (3.4) to take the form

dN Jyrme JtViPt-
E— = a/e‘TCOSh(y_”)e T 1tmy cosh(y — n) rdrdfdn. (3.24)

To introduce the Hubble-like expansion term we substitute (3.1) into (3.24), noticing
the expansion velocity only appears in one term. The usefulness of the boost invari-
ance approximation becomes apparent here, since (3.24) factorizes if the temperature
and transverse flow are independent of longitudinal position, and 7; ~ constant. In
this work, we study the blast wave model for both the “real” and “constant” ; cases.
The quotations suggest that one should not take the words literally. The “real”
gamma case is useful for chapter 7, where the “constant” gamma case is useful for

chapters 5 and 6.

3.2 “Real” v

Since the transverse velocity depends on position through (3.1), the gamma factor
related to the transverse boost should also depend on position. The longitudinal boost

to a transverse plane does not remove this dependency. To determine ~;(r), we take
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the radial position vector to be

I = €,2T + €,y (3.25)

where the eccentricities are defined as

1+e¢
= 2
€ 5 (3.26)
1—¢
— . .2
Ey 2 (3 7)

We parameterize the eccentricity e with centrality using

e=a+d (6—22> (3.28)

b2 + 2x

where b is the impact parameter and the others are free parameters with values

a=0.07, x = 3.0, and d = 0.43 . We can then write

2
Ut

1-—
Y = \/1 + N (€2x? + e2y?). (3.29)

’Vtth_ :>7tvt_%_1

In the transverse plane of a radially boosted cell, (3.29) implies no further approxi-
mations, and (3.24) does not factorize. Conversely, Sec. 3.3 chooses an approximation
for 7, that allows (3.24) to factorize. Furthermore, for reasons explained in chapter
7, we add the term M(x,y,n) to modify the spatial distribution of (3.9), to have a

gaussian rather than isotropic distribution, where

e —n2

M(z,y,n) = b exh e (3.30)
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Here, o, and o, represents the widths of the gaussian spatial densities. For central
collisions, o,, is proportional to the nuclear radius, and reduces like a power law with
Npart, and o, is constant with centrality. Using (3.1), and p; = p(cos ¢z + sin ¢y) so
that v v: - pr = Ap(€,@ cos ¢ + €,y sin @), we rewrite (3.24) substituting (3.1), (3.25),
(3.29), and (3.30) and

N _ . / o~/ TG E ) B cosh(y—)

d®p

% e)\pt (exx cos p+eyysing)/T

2
—z2 yz -n

XeﬁeﬁeﬂTmt cosh(y — n) rdrdfdn, (3.31)

which we integrate using the Monte Carlo: Vegas integration routine. With this code,
we calculate dN/dy, (p;), and vy to check the validity of the model. Figures 3.3 and
3.4 show the (p;), and vy comparisons to data respectively. In Fig. 3.3, the solid
lines represent the (p;) for pions, kaons, and protons with a constant temperature
of T' = 120MeV. The pions fit well, however the kaons and protons do not show
good agreement. It is possible that including resonances will improve the kaon and
proton curves, but that is not covered here. Moreover, all of the work presented here
accounts for only pions so, for now, it is only critical that the pion (p;) is correct.
Additionally, we simultaneously calculate the pion vy . This also fits well, but depends

on the eccentricity parameterization (3.28) and spatial widths o,, and o,).
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Figure 3.3: (p;) fits to experimental data with a temperature at 120 MeV, constant
with centrality. The solid lines are the “real” gamma calculations, and the dashed line
is the “constant” gamma calculation with constant temperature. The circles, squares,
and diamonds represent PHENIX data for pions, kaons and protons respectively [8].
The triangles represent STAR pion data [9].
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Figure 3.4: Blast wave calculation of pion vy with temperature is constant with
centrality at 120 MeV. The solid line is the “real” gamma calculation fit to a STAR

measurement [9]. The “constant” gamma calculation does not include eccentricities
and would appear flat in this figure.
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3.3 “Constant” ~,

In order for (3.24) to factorize, v, must be independent or constant with radial

position. For mathematical convenience we use the approximation
== (1 —0l) (3.32)

where vy is the surface velocity measured by experiment [27].
Making use of the modified Bessel function K,(z) = [ €**"% cosh(v)df, using
0

v = 1, we integrate the first exponential in (3.24) overdn and find

/ 6_'tht COSh(y_T])/T Cosh(y — n)dn e 2K1 (71577:/%) . (333)

—00

Notice that the y is a constant of integration and the resulting function is independent
of rapidity. This is the mathematical consequence of the boost invariance approxi-
mation. Taking our attention now to the second term in (3.24), after substitution of
(3.1), the argument of the exponential is now Arp; cos /T, and angle between the
radial vector and the momentum vector is equivalent to ¢ = 180° — ¢+ 60 where ¢ and
0 are the momentum and spatial angles respectively. Again making use of another

modified Bessel funtion

™

I,(2) = l/ezcosgcos(yﬁ)de, (3.34)
0

using v = 0, the second exponential in (3.24) can we integrate df such that

2

A
/e/\rpt CoS(¢—9)/Td0 = onl, ( ;pt> . (3.35)

Notice again, that the angle ¢ is a constant of integration and is absent in the re-
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sulting Bessel function. This is an indication that the final state emission of particles
is isotropic, or as some might say, “flat” in the azimuthal plane, meaning there is
no anisotropic flow. Since (3.35) is the only term that has a radial dependence,
we can be perform the final spatial integration using the Bessel function relation

1
[ 2%, (az)dz = +1,.1(), and the substitution r = Rz so that
0

R 1

r A\ RT (AR
/ znlo( T“) rdr = / only (%Rz) Rzdz = 27 ot ( Tpt) . (3.36)
0 0

Introducing the notation where p; represents the single particle distribution such that

p1(p) = EdN/dp, eq.(3.24) is now

AT R*T m, Yemy ARp;
_ i
pl(p) =a b\ _pt K1 ( ) ]1 . (337)

The normalization constant, a’, ensures that [ f(x,p)d®*p = n(x) and has the form
a' = a(dN/dyl,—o)/(wR?). This is a consequence of the fact that the blast wave model
cannot calculate the correct particle number and we require that this factor cancels
in later calculations.

Following from (3.1), which relates the flow velocity to the radial position, if the
position is R, then AR = y,v,, where v, is the surface velocity and is a measure of the
average flow velocity. We fix these parameters with measurements from experiment
[27].

Finally for mathematical convenience, we make the substitution = = ~;p,;/T and

the single particle spectrum takes the form

[ o= (%) (,YZ) [ VET R O s, (339

Vs
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with ¢ = yym/T. We can compare (p;) calculated with (3.38) and constant temper-
ature, to justify the approximation in Sec. 3.3. However, since this calculation has
no azimuthal eccentricity, we cannot compare vy, as it will be flat. This calculation
will be used in chapters 5 and 6 to normalize the pair spectrum and cancel out the

incorrect particle magnitudes.
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Chapter 4

Color Glass Condensate

Following from the idea of gluon saturation, the theory of Color Glass Conden-
sate (CGC) investigates the QCD regime of high parton density to describe the initial
stages of a heavy ion collisions. Parton saturation indicates that at small Bjorken
x (see Appendix A.3), the gluon density rises and fills the available phase space up
to the saturation scale Qs [102, 103, 104]. This large density leads to a coherent
state of gluonic matter, CGC, that can be treated with a classical approach to QCD
[56, 57, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. This novel approach
allows for first-principle investigation of QCD in a non-perturbative region. Fur-
thermore, its application to heavy ion collisions provides both predictions for and
quantitative descriptions of measured data [16, 19, 25, 36, 37, 59, 116, 117, 118, 119].
CGC theory also has significant phenomenological impact as, for example, the cal-
culation of fluctuations in the initial state influence the measurement of elliptic flow
(and therefore shear viscosity) as well as provide a natural origin of the long range
correlations seen in the ridge, the focus of this work.

Including an initial CGC state, Ludlam and McLerran, in Fig. 4.1, illustrate the
proposed stages of heavy ion collisions in terms of energy density vs. time. Notice that
the maximum energy density is many times that of ordinary matter. The evolution
of heavy ion collisions takes a path that starts at densities even greater than that of

neutron stars and transitions through several phases. Each phase adds complication
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Figure 4.1: The various stages of a heavy ion collision [10]

to the understanding of such collisions, but also provides an opportunity to study the
behavior of nature in energy regions not accessible through any other means. Much
emphasis in the study of relativistic heavy ion collisions is placed on the understanding
of QGP, but the QGP is a phase that is born from some initial conditions and modifies
the final results with behaviors of its own. Using observed behaviors of QGP, one
should be able to test how proposed initial conditions are manifested after freeze out.
Correlation studies have proved to be a useful tool for this endeavor.

In this chapter, we outline the ideas of parton saturation and the calculation of
the energy dependent saturation momentum (), the primary scale in the CGC phase
of QCD. We also discuss the emergence of color flux tubes and the Glasma phase
following from CGC theory and their impact on the calculation of the ridge. The
information in this chapter is primarily review with the exception that we reproduce

selected calculations relevant to out correlation studies.

4.1 Saturation

We can build our understanding of parton saturation in terms of a proton con-

sisting of constituent partons. At low energies, protons consist of three quarks which
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Baryon: 3 quarks, 1 gluon Baryon: many gluons

Figure 4.2: A schematic illustration of the wave functions of a baryon at low (left)
and high (right) energies. [11].

carry a larger fraction of the total energy, and few gluons, which carry a smaller
fraction. The size of the proton depends on the wave functions of the constituents.
From the uncertainty principle, a parton’s transverse size is inversely proportional
to its momentum. It is seen from measurements of the total cross sections of p + p
and p + p collisions, that the size of the proton grows slowly, at most like In*(E/E,),
the Froissart bound [120]. We hypothesize from this that an increase in the proton’s
energy is not accompanied by a substantial increase in the momentum of the con-
stituents, but rather an addition of gluons. This is illustrated in Fig. 4.2, where the
wave function of a low energy baryon, on the left, is made up of the three valence
quarks and few gluons, which we can distinguish. The same baryon at high energy
is depicted on the right and has a wave function dominated by gluons. Adding an
infinite amount of gluons with small fractions of the total momentum is equivalent to

adding the infinite amount of energy required to bring a hadron to the speed of light.

Deep inelastic scattering (DIS) experiments at HERA provide evidence for this
argument. DIS experiments map the partonic structure of hadrons with electromag-
netic probes (i.e. electron+proton collisions). Fig. 4.3 shows the parton distribution
of quarks and gluons in a proton as a function of x. At large x, up and down quarks

dominate the distribution, but for decreasing x, the gluon contribution has a shocking
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Figure 4.3: The quark and gluon composition of a proton for fixed Q* = 10 GeV [12].

exponential like increase. The rapid increase in gluon number combined with the slow
growth in hadronic size support the saturation picture.

Further, measurements from HERA show that this effect is energy dependent,
meaning that the gluon contribution depends on the momentum transfer of the probe,
Q?. Fig. 4.4 shows the gluon structure function, zG(z, @?), as a function of x, for
different values of Q?. Notice that the number of gluons increases with decreasing x,
and the effect is more pronounced with increasing @Q?.

Since the phase space of the proton is limited, the increase in gluon density with
Q? implies that gluons saturate the phase space up to a momentum scale that is
energy dependent. In other words, it is observed that the number of gluons grows
with energy and the Froissart bound and unitarity limit the growth of the total cross
section of the proton to ln2(1 /x). So, added gluons must inhabit regions of phase space
not already occupied. Partons probed with small Q? correspond to larger values of
x, and added gluons can only fill in the remaining phase space which requires them
to have a smaller value of x and larger Q. The scale that defines the distribution
of glue is determined by the region of phase space that is already filled. This is
the saturation scale, @), . If the energy of the proton is increased, the phase space

increases and gluons are added, but they must have a Q* greater than Q, (before
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Figure 4.4: The distribution of gluons as a function of x as seen by HERA deep

inelastic experiments [12].

the energy increase). Now a larger amount of phase space is filled, and since @), is

defined as the momentum scale below which the phase space is filled, it is larger;

(s increases with the energy of the proton.

We can visualize the saturation picture with the aid of Fig. 4.5. Similar to Fig. 4.2,
we see on the left side the transverse distribution of partons at a lower energy, and
the same on the right at a higher energy. On the left, gluons of some size fill the
space, and we see that in adding energy, it is difficult to add more gluons of a fixed
size. At this point, there are typically 1/a; partons of this size, and repulsive forces
between gluons becomes a factor. So, in order to add gluons, they must fill in smaller
spaces, and in this way the density gets larger. In adding more energy, gluons would
have to fill yet smaller spaces, limiting the growth of the density.

A high energy proton is composed of constituents in two regimes, those above and
below the saturation scale Q5. We want to explore the behavior of interactions with
partons in these two regimes. The gluon distribution as a function of p; is calculated
in Refs. [109, 121, 122, 123], and shown in Fig. 4.6. High p, partons follow a power law

distribution which is familiar to the perterbative region of QCD. The most significant
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Increasing Energy

Figure 4.5: The density of gluons in the transverse plane as a function of energy
(13, 14].
result of this calculation, however, is that the infrared (small x, large wavelength)
divergence of this behavior is cut off at the saturation scale. Below @), the phase
space density flattens as a logarithm of order In(p;/Qsa¢)/cs. This is yet another
indication of the saturation of gluons below (),. The flattening of the distribution is
due to the cancellation of field strengths on size scales larger than their separation;
the interactions between gluons prevent further growth of the numbers of gluons at
larger x.

The key feature of the saturation picture is that below the saturation scale, there is
a densely packed coherent condensate of gluons that cuts off the infrared instabilities
of the perturbative region of the gluon distribution. An interesting and perhaps
crucial implication of this, is that when the density of particles is large enough that
the inter-particle spacing is much smaller than that of the size of the system, all
hadrons look the same at the same saturation scale. In principle, the radius of the

system is irrelevant, meaning hadrons look no different than nuclei.
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Figure 4.6: The gluon distribution function [15].
4.2 Saturation in Relativistic Nuclei

In relativistic nuclei, the saturation picture is nearly synonymous with the phe-
nomenon known as shadowing. In a nucleus, small x partons originating from one
nucleon have large wavelengths that can overlap with that of other small x partons
from another nucleon at the same transverse position. From the uncertainty princi-
ple, interactions with partons at small x develop over large longitudinal distance,
z ~ 1/(mx), where m is the nucleon mass. In the situation where z becomes larger
than the nuclear diameter, a probe cannot distinguish whether the parton originates
from a nucleon at the front or back of the nucleus. All partons within a transverse
area ~ 1/Q? participate in the interaction coherently, see Fig. 4.7 [16].

In the Lorentz contracted nucleus, partons from many nucleons at the same trans-
verse position contribute to the gluon saturation. This brings to light the advantage
of using relativistic nuclear collisions to study high density QCD matter; the density
of gluons in a nucleus at RHIC is equivalent to that in a proton at much higher en-
ergy. Following the assumption that the gluon distribution scales with the number of

nucleons, A, so A x G (z,Q?) = G, (z,Q?), we can define the density of partons in
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2
~ 1/Q

Figure 4.7: A hard probe interacting with the nuclear target resolves the area 1/Q?
where Q% is the square of the momentum transfer, and in the target rest frame the
longitudinal longitudinal distance ~ 1/(mx) (m is the nucleon mass and x is the
Bjorken variable [16].

the transverse plane as

N JIGA<$7Q2) ~ A1/3 (41)

Pa™ R

where R, is the nuclear radius. The nuclear gluon distribution then also has two
regimes corresponding to Fig. 4.6. If each parton can be probed with a cross section
o ~ a,/Q?% then depending on the magnitude of the momentum transfer, Q, the
atomic number, A, and the value of Bjorken x, then we can identify the saturation

region and perturbative region by:

e op, < 1 - the perturbative QCD regime, where interactions of a probe can

distinguish the wave functions of individual partons.

e op, > 1 - the regime of the dense partonic system, where a probe interacts

with many partons behaving coherently.

The border between the two regimes is the critical value of the momentum transfer,

the saturation scale, where op, ~ 1 determines at which the parton system begins to
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look dense to a probe. So, we have

2G, (z, Q%)

2~ 4.2

Note that in the rest frame of the target, (); can be understood as the burdening of
the transverse momentum due to multiple rescatterings of the probe [16, 124].

This dense coherent gluonic matter, then is a different regime of QCD that is
unexplored, but accessible in nuclear collisions at RHIC. The relativistic contraction
of the nucleus provides not only dense and coherent gluonic fields, but also weak
coupling that allows for a semi-classical treatment of the matter. It is precisely this

matter that has been given the title of Color Glass Condensate.

4.3 Color Glass Condensate

The etymology of the term Color Glass Condensate is as follows:
e Color: Gluons have color.

e Glass: In the center of mass frame, fast moving particles are time dilated. The
fields from the fast partons, however, generate the fields at smaller x through
the evolution equations [56, 57, 105, 106, 107, 108, 109, 110, 111, 112, 113].
Through this generation, the time scale of the slower gluons evolve slow com-
pared to their natural time scales. This is a property of glass. Ordinary glass
is a liquid on very long time scales, but acts like a solid on shorter time scales

11].

e Condensate: There is a high occupation number of gluons. Due to the un-
certainty principle, gluons at small x can have wave functions extending the
size of the nuclear radius. These gluons can be packed until their phase space

density is so high that interactions prevent more gluon occupation. This forces
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Figure 4.8: Limiting fragmentation as illustrated in the PHOBOS experimental data
on Au+Au collisions at RHIC [17]
at increasingly high density the gluons to occupy higher momenta, and the cou-
pling becomes weak. At high densities, with weak coupling, these gluons behave

coherently, forming a Bose-Einstein like condensate.

Since the density is high, the coupling between gluons is weak. In other words,
the separation between gluons is small and the energy is high, so a; << 1. This is
precisely the condition that allows for a classical approach to the problem. Also, weak
coupling does not mean weak effects. Since we can treat gluonic fields classically, their
wave functions add in a coherent way, analogous to standing electromagnetic waves.
This coherence allows for many small effects to add to large effects. A more common
example of this behavior is seen is gravity. The gravitational force from one particle
is very weak, but a superposition from some huge mass can produce an extremely
large force [11].

We can find empirical evidence for the glassy nature in limiting fragmentation as

measured by the PHOBOS collaboration and shown in Fig. 4.8 [17, 125]. The data in
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the image has been shifted so that the rapidity of one of the nuclei is at zero. In the
center of mass frame, the rapidity of nuclei are ~ +6; in the frame of one nucleus,
the other nucleus would have a rapidity of ~ £12. In Fig. 4.8, what we call the
central rapidity region is centered at —6. Measurements of Au+Au multiplicities are
shown for three different center of mass energies. All three energies share the same
behavior. Starting at rapidities near that of the beam, the curves rise, but flatten off
near the central rapidity region, the region corresponding to small x. The interesting
attribute is that for all three energies, the fast degrees of freedom scale the same. In
simpler terms, even though Au+Au collisions at center of mass energies of 19.6 GeV
and 200 GeV are different by an order of magnitude, they seem to produce the same
number of “fast” high rapidity, large x partons per participant. The scaling breaks
in the central rapidity region, where the multiplicity growth flattens earlier at lower
energies. This indicates that there is a separation between fast and slow degrees of
freedom that changes with energy. This separation fits in the CGC picture where the
mathematical development of the increase in small x gluon density is sourced from
the current of fast particles. The nonlinear growth in the multiplicity at small x is
reminiscent of the slow growth in gluon density of the CGC despite the increase of
sources.

Increasing the energy seems to only lead to the addition of lower x degrees of
freedom as sources; the scaling holds to smaller rapidity. The connection to the
separation between the energy of the source partons and the partons below Qs is
controlled by the renormalization group formalism [58, 110, 14, 126, 127, 128, 129,
130, 131, 132].

This interpretation of Fig. 4.8 suggests another important point, the multiplicity
of the central rapidity region is governed by interactions with the dense gluonic (CGC)
matter at small x. We can now draw the picture of soft particle production emerging

from collisions of the CGC in each nucleus. Because of the Lorentz contraction of
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Figure 4.9: The color electric and magnetic fields on a sheet of colored glass [13, 14,
18].

the nuclei, we can think of the CGC matter as a thin sheet of high density matter.
The gluon wave functions are tightly packed and represented by color electric and
magnetic fields that are purely transverse, such that ELEJ.%, and random over the
transverse plane, as shown in Fig. 4.9. Due to saturation, these fields have maximal
strength E? ~ B% ~ 1/a.

The representation of a nuclear collision involves solving classical Yang-Mills equa-
tions before and after the collision. Equations for color fields in high energy hadronic
collisions have been developed in Refs.[126, 127, 133, 134] and numerically solved for
the rapidity independent case in Refs.[110, 128, 129, 135, 136].

During the time CGC sheets pass through each other, each sheet develops a topo-
logical charge since each sheet has a random orientation of color electric and magnetic
fields, the collision allows for E - B # 0 [137, 138, 139, 140, 141, 142]. As the sheets
carry away this charge and their separation becomes large, the once transverse fields
become longitudinal between them. The orientation of longitudinal fields is dubbed
the “Glasma”, and depends on the orientation of fields before the collision. The
Glasma is a pre-equilibrium phase, whose fields source the partons that eventually

thermalize into quark gluon plasma.
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Figure 4.10: Two sheets of colored glass after their collision and the longitudinal color
flux tubes generated by the collision [13, 14, 18].

4.4 Flux Tubes and Glasma

Almost instantaneously after a collision of two nuclei, Color Glass Condensate
(CGC) theory predicts that the transverse fields of each nucleus are transformed into
longitudinal fields that are approximately uniform in rapidity, as shown in Fig. 4.10,
[56, 57, 58]. The fields, which are random over transverse distances larger than Q!
(where Qs ~ 1 —2 GeV at RHIC), comprise a series of flux tubes. Given a dense
distribution of flux tubes, the system enters a Glasma pre-thermalization phase where
flux tubes develop quantum instabilities and evaporate into particles.

With this in mind, we can take a new look at the first stages of our schematic
illustration of heavy ion collisions, Fig. 2.3. We can view the initial state of the
nuclei as CGC sheets moving toward each other. The initial singularity corresponds
to the moment when the sheets pass through each other. It is useful to visualize the
time frame of the system in terms of a light cone diagram, as in Fig. 4.11. In the
first 0.1 fm/c, the amount of time it takes the speed of light to traverse the CGC,
field fluctuations on the quantum scale form. These fluctuations are stretched by
rapid longitudinal expansion to the scale of the collision, manifested as topological

charges and connecting longitudinal flux tubes. It is important to note here that the
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Figure 4.11: The stages in the evolution of matter produced in high energy heavy ion
collisions following from a CGC- Glasma picture. Image from [11]

number and transverse position of flux tubes fluctuates from event to event. This has
significant ramifications to our correlation picture, see Secs.4.6, and 5.2. This is the
Glasma phase, which is left out of Fig. 2.3, but represents the transition from local
emission of partons from individual flux tubes, to equilibrated QGP.

The Glasma description describes many of the features of the matter produced
in the high density environment in nuclear collisions, most notably, final state multi-
plicities [16, 19, 20, 116, 117]. The connection between flux tubes, fluctuations, and
multiplicity has significant impact on our description of the correlations that form

the ridge.

4.5 Hadron Multiplicities

In the saturation picture, the total multiplicity of gluons produced in a collision
follows from dimensional reasoning as in Ref. [19]. The factor 1/ay arises because
the multiplicity may be determined by solving a classical problem, or alternatively,
because the phase space density of gluons in the initial state has the same factor [18].
We imagine the Glasma to be filled with flux tubes of large longitudinal extent but

small transverse size ~ m/Q?. Each flux tube yields a multiplicity of ~ a,m(Q;)?
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gluons. The number of flux tubes is proportional to the transverse area Sy ~ mR%

divided by the area per flux tube, 7Q;2. The rapidity density of gluons is therefore

dN [dy ~ " QIR (4.3)

where the strong coupling constant, as(Qs), depends on @, and is to leading order

41 1
g = i 4.4
11— 2N, in(Q2/A5ep) (4.4)

Again we see the that the saturation scale plays a deterministic role. Indeed,
Ref. [19] finds that the initial gluon density scales to the final state multiplicity with
a constant number near unity. This implies “parton-hadron duality”, meaning the
dynamical evolution of the system doesn’t change the overall multiplicity much. The
“parton liberation” coefficient, ¢ = 1.23 £0.20 found in Ref. [19], compares well with
other calculations [135, 143].

To construct an equation for the saturation scale, we follow Ref. [19], which follows
from methods in Refs. [16, 20, 102, 104, 103, 56, 105, 106, 109, 113, 134, 133, 121,

114, 144], which were motivated in previous sections. We write down

2
NC ar
= T 0, ()G, Q) (15)

¢ 2

where N, = 3 is the number of colors, and the density of participants ppe+ is defined
in Appendix B. The density of participants is divided by 2 to get the density of
nucleons in a single nucleus that participate at a given impact parameter. The gluon
distribution function, *G(x, Q?), to leading order from global DIS fits, from Ref.[145],
is

rG(x, Q%) = 31.22°%°(1 — 2)%1¥(1 — 5.23\/z + 7.331) (4.6)

taking r ~ 2Q);/+/s. Ref.[19] solves (4.5) by iterations for Au+Au collisions at /s =
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Figure 4.12: Comparison of the calculation of Q?, eq.(4.5) (solid line), to that in
Ref.[19] (solid squares). The dotted line is the LHC prediction for Pb+Pb at /s =
5500 GeV scaling (4.5) with (4.7). The dashed line is the KLN prediction (4.9) from
Ref.[20] at y = 0.

130 GeV. We reproduce that procedure with agreeing results, as shown in Fig. 4.12.

The energy dependence of @ follows the scaling noticed in HERA data [124, 146,
147, 148], where .

G- () - () (@)
with W=,4/s. This scaling has been used to make predictions for both RHIC at
200 GeV, and LHC energies, taking initial values of Q% = Q*(W = 130 GeV)
(16, 19, 20, 116, 117].

A model starting with CGC initial conditions followed by a hydrodynamic af-
terburner finds excellent agreement with Au+Au collision multiplicities at /s =
200 GeV, using A = 0.2, see Fig. 4.13 [21]. However, using the value A = 0.25 as
determined by HERA experiments [146, 147, 148] still lands the result within the
error bars [21].

There is a fundamental difference between the CGC approach to multiplicity cal-
culation and the conventional “soft plus hard” picture. The latter scenario assumes

that some fraction = of the multiplicity n,, measured in p+p collisions is due to hard
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Figure 4.13: Comparison of pseudorapidity distributions in Au+Au /s = 200GeV
collisions from PHOBOS [17] to a model of CGC initial conditions with a hydrody-

namic afterburner [21] for different centralities. The impact parameters from top to
bottom are: 2.4, 4.5, 6.3, 7.9, and 9.1 fm.

processes. The remaining fraction (1 — x), is due to soft processes. The parameteri-

zation

IV (1 x () D!

+ X(S)npp<Nm”>, (48)

assumes further, that in nuclear collisions, the hard fraction scales with the number
of binary collisions, N, and the soft fraction scales with the number of participants,
Npart. This formulation was shown to describe /s = 130 GeV Au+Au data quite
well [19], but has a particular behavior with change in energy. The p + p multiplicity
follows the parameterization n,, = 2.5 — 0.25In(s) +0.023 In*(s) [149, 150], and aside
from the nucleon-nucleon cross section’s increase with energy, the minijet fraction,
X (s) is required to increase to agree with RHIC data at higher energies [16]. So,
in the soft plus hard picture, we expect growth with energy, reflecting the minijet
cross section, where in the CGC picture, the dependence of multiplicity in the central
rapidity region is determined by the running of «y [30].

Although both approaches have differences small enough that RHIC data cannot

distinguish them, the difference in trends is already noticeable [16]. The KLN pre-
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Figure 4.14: Energy dependence of charged hadron multiplicity from Ref.[20]: dN/dn
at 7 = 0 in p+p collisions and (2Npg+)dN/dn at n = 0 for central nucleus-nucleus
collsions. The vertical dotted lines mark LHC energies for Pb+Pb (W=5500 GeV)
and p+p (W=14000 GeV). The experimental data are from Refs.[22, 23].

dictions for the LHC [20] depend on a more sophisticated calculation of Q2. They
find

Q20 W) = N exp (/2AIN(Q2/ M) I(IV/Wo) 3] + 107 Q20Va) M) )

(4.9)
which includes dependence on rapidity. This dependence allows for the possibility
that one of the colliding partons is in the saturation region and the other is not. In
work presented here, we always consider both colliding partons to be in the saturation
region. This corresponds to the central rapidity region where y ~ 0 in (4.9), and the
gluon multiplicity corresponds to (4.3). The KLN predictions for multiplicities at the
LHC are shown in Fig. 4.14 and Fig. 4.15.

The LHC will offer much higher energies, but the saturation picture predicts a
slow growth in parton density. However, the saturation scale should be large enough
that there would be a significant difference from a jet dominated picture. Fig. 4.14
shows p+p and A+A values of dN/dn at n = 0 as a function of center of mass energy.

There is agreement with current data [22, 23|, but the growth with energy is small
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Figure 4.15: Comparison of the Kharzeev, Levin, and Nardi [20] prediction for charged
hadron multiplicities in central (b < 3fm) Pb+Pb collisions with results from other
approaches as given in Ref.[24].

compared to other models. For example, at maximum RHIC energies Au+Au collision
yield a central multiplicity of dN/dn ~ 700, and the prediction for LHC energy, as
extrapolated from Fig. 4.14, is dN/dn ~ 2000. From Fig. 4.15, we see comparisons to
other predictions. In particular, we can compare to HIJING, a pure jet model, which

predicts a central value ~ 2 — 4 times larger.

4.6 CGC and Correlations

The CGC-Glasma picture has many implications in our understanding of the
stages of relativistic heavy ion collisions. The CGC formalism builds from fields of
large x partons as sources of those at small x. Because of this, it is convenient
to use the light cone variables reviewed in Appendix A.1. The Bjorken approach to

longitudinal expansion leads to a correspondence between rapidity and pseudorapidity



29

1 p+ p+ xt

This is consistent with the idea sketched in Fig. 3.2. This implies that particles

via

created at some spatial rapidity are essentially created with approximately the same
momentum space rapidity. This has significant impact on the picture drawn later in
Sec.5.1, since particles born at very large pseudorapidity differences are seen to have
correlation [2, 3, 4, 5, 28, 48, 49, 50, 52, 53, 54, 55].

In the CGC picture we link these long rage correlations to the long longitudinal
flux tubes, which are the sources of partons [25, 36, 37, 59]. Since, in our picture,
correlated particles come from the same flux tube, it is important that a collection
of flux tubes emits a multiplicity of partons that is preserved throughout the hy-
drodynamic evolution of the QGP and describes the final state, as seen in Fig. 4.13
[21]. Following the idea of parton hadron duality, we do not consider effects from
resonances or 2 — 3 process which would smear out correlations.

We describe the near side ridge as a consequence fluctuations formed at early
stages which are modified by later stage transverse flow. Other similar models taking
initial conduits from individual p+p collisions or string fragmentation are able to
qualitatively describe features of the ridge [60, 65]. This validates that fluctuating
initial conditions are indeed the primary source of final state momentum correlations.
We propose that local parton density fluctuations at early stages arise from the dis-
solution of individual flux tubes. Aside from the necessity that these fluctuations
be longitudinally long, their transverse size, number, and individual multiplicity ulti-
mately determine the strength of the observed correlation. We will show in Chapter
5, that the CGC-Glasma formalism provides an explicit description of these features

and provides a remarkable agreement with correlation data.
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Chapter 5

The Soft Ridge

Two particle correlations measurements find an excess of correlated particle pairs
that is narrow in relative azimuthal angle, ¢, and broad in relative (pseudo)rapidity,
n . Experiments find this ridge like shape in correlation measurements with and
without a jet trigger. As described in Ch. 1, the untriggered “soft ridge” represents
correlations of particles with all ranges of momentum. The word “soft” reflects the
fact that the majority of the particles contributing to the measurement emerge from
non-perterbative processes. As we will see in in Ch. 6, this distinction is important
when comparing the soft and hard ridge.

We argue in this chapter that the soft ridge originates from initial state spatial
correlations that experience later stage transverse flow. In Sec. 5.1, we begin with a
brief description of some features of two particle correlations in heavy ion collisions.
One of the primary motivations behind this work is that the ridge exhibits a long
range behavior in 7 that challenges all potential explanations of the phenomenon
[29]. In Sec. 5.2, we discuss how this long range behavior arises naturally from
CGC-Glasma initial conditions. We then focus on the consequences CGC-Glasma
initial conditions have on the construction of our correlation function and the overall
correlation strength. In Sec. 5.3, we take into account the effects of radial flow.

Finally, we show our results in Sec. 5.4.
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Figure 5.1: Image of the STAR measured soft ridge 19 — 28% central [1].
5.1 Some Features of Correlations

The full correlations landscape is a complicated 2-D structure as shown in Fig. 5.1,
taken from Ref. [1]. The coordinates of the correlation structure indicate relative
units between particle pair momenta. The azimuthal difference between two particle’s
momenta is ¢ = ¢ —¢o. Similarly, the relative pseudorapidity is defined as n = n; —ns.
The “near-side” structure is centered at ¢ = n = 0 and represents the combination
of several sources of correlations including purely random correlations, flow, jets, and
density fluctuations.

If particles are initially randomly deposited in the medium, and do not flow,
then correlations would obey Poisson statistics, mathematically allowing the pair
distribution to factorize into two single-body distributions, i.e. ps — pyp;. This
case corresponds to particle pairs having only random correlation and should be, on
average, constant for all n and ¢. This would effect the overall offset of the correlations
structure in Fig. 5.1.

If we examine the same situation, but allow the particles to flow, then momentum
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conservation demands that transverse momentum gains are compensated by equal
gains at an angular difference of m. We expect correlations of the form of cos ¢ from
transverse flow, and cos 2¢ from anisotropic flow, see Sec. 2.3. In the case of the soft
ridge, experimentalists extract the magnitudes of these effects from the correlation
landscape and find vy values consistent with other measurements [151]. In the case of
the hard ridge the correlations of the form cos2¢ are subtracted using the Zero Yield
At Minimum (ZYAM) method [3].

Conversely, if all particles come from jets, the emission of particles is a cone
opening in the direction of a leading particle. In this case, all particles in the same
jet have the same origin - the position of the collision producing the jet. Jet particles’
momenta are also correlated, as indicated by the existence of a cone, since particles
fragmenting from the leading particle are co-moving with the leading particle. Here,
one would expect correlated pairs to have small ¢ and 7. Indeed this is seen in p +p
and peripheral collisions, as well as the jet peak sitting on the hard ridge. The jet
peak exists in the soft ridge as well, however it appears to be overwhelmed by the
anomalous correlations that comprise the ridge [26].

STAR experimentalists decompose the 2-D correlation structure using a multicom-
ponent fit [1]. The fit accounts for correlations from many sources such as momentum
conservation, elliptic flow,and experimental effects. After subtracting these compo-
nents an anomalous structure remains on the near side, the ridge. The ridge is fit
with a 2-D Gaussian as shown on the right side of Fig. 5.6 and is the primary subject
of interest in this dissertation.

The most striking feature of the ridge measurement is that, for central collisions,
the ridge appears to extend to n > 2 where causality limits kinematic transport. The
PHOBOS measurement of the triggered ridge, as shown in Fig. 5.2, provides further
support for the existence of long range correlations [5]. The dashed blue line in the

right panel of Fig. 5.2 indicates the correlation structure from PYTHIA simulations
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Figure 5.2: PHOBOS measurement of the triggered ridge [5]. The left figure is the
2-D correlation structure with relative azimuthal angle A¢ and relative rapidity An
where the away side is shaded out. In the right figure is the solid dots indicate yield of
pairs integrated over the angle ||A¢|| < 1, and the dashed blue line is the correlation
yield from PYTHIA.

representing the expected correlations from jets. Correlations from jets alone are
zero at ||n|] > 2 where the data in central Au+Au collisions is consistently positive
in the range —4 < n < 2. In this chapter, we present an explanation of long range

correlations following Ref. [36]. We find excellent comparison to available STAR data

although STAR rapidity acceptance does not reach to long range.

5.2 Flux Tubes, Glasma, and Correlations

Correlations over several rapidity units can only originate at the earliest stages
of an ion collision when the first partons are produced [25]. The rapid longitudinal
expansion can modify initial quantum fluctuations, stretching them to distances not
causally connected. Hydrodynamics and other later-stage effects can modify these
correlations but are limited to a horizon of ~ 1 — 2 rapidity units. Analogous to
superhorizon fluctuations in the cosmos, these long range correlations can therefore
reveal the “little bang” in each nuclear collision at its birth.

The red and green shaded regions in Fig. 5.3 represent the history of all possible

events influencing particles A and B respectively. The history of these particles de-
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Figure 5.3: The shaded areas represent the light cones of events causally related to
particles A and B. Image from Ref. [25]

pends on their rapidity. Particles with larger rapidity follow more closely to the beam
line and freeze out later. Particle A has a larger rapidity than B, and consequently,
the shaded red region is slimmer than the green. Particles A and B could only gain
correlations in the blue shaded region, where their light cones overlap. Larger rapid-
ity differences reduce the overlap region, requiring any correlations to occur at earlier
times.

Almost instantaneously after a collision of two nuclei, CGC theory predicts that
the transverse fields of each nucleus are transformed into longitudinal fields that are
approximately uniform in rapidity [105, 57, 58]. These fields, which are random
over transverse distance larger than Q;', where Q, ~ 1 — 2 GeV is the saturation
scale, comprise a series of flux tubes. These tubes are then stretched by the rapid
longitudinal expansion, as illustrated in Fig.5.4.

We attribute the source of long range correlations to longitudinal flux tubes pre-
dicted by the theory of Color Glass Condensate. Long range rapidity correlations
arise because particles from the same flux tube start at nearly the same transverse
position, regardless of rapidity.

In a nuclear collision, the number of tubes is proportional to the transverse area

R% divided by the area per flux tube, Q2. The high density of flux tubes begin
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Figure 5.4: Cartoon of longitudinal flux tubes just after a nuclear collision (left) and
after oc 107! fm/c (right). The Glasma phase begins immediately as the hight density
of tubes begin to thermalize into partons. Analogous to Fig. 5.3, partons A and B have
an early time (in this case, zero time) correlation and rapid longitudinal expansion
stretches the tube causally separating A and B while preserving the correlation.

to emit partons, indicating a Glasma phase. Only partons from the same tube are
correlated and we neglect correlations between neighboring tubes.

In a Glasma phase (see Ch. 4), we imagine a closely packed system of flux tubes and
not strictly distinct due to saturation. They are however uncorrelated for r, > Q7 1.
This is the essential feature for this work. The Glasma changes into plasma as particles
form from fields and thermalize.

We characterize correlations in the Glasma and later in the evolution using the

spatial correlation function

c(x1,X2) = no(X1,X2) — n1(x1)n1(x2), (5.1)

where n; and ny are the single and pair densities. In the absence of correlations,
na(X1,Xs) — ny(X1)n1(xz) so that ¢ vanishes. The integral of ny over both positions
gives the number of pairs averaged over events (N(N — 1)). When correlations are
negligible, the integral of ¢ vanishes — as it must — because N follows Poisson statistics
and, therefore, (N(N — 1)) — (V)2

We take flux tubes to be approximately independent of rapidity, and write the

correlation function depending only on the relative transverse position r; = r; —ry as
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well as the average R; = (r; + ry)/2. The correlation length in r; is roughly the flux
tube size ~ Q; !, while the correlation length in R, of order of the transverse system
size Ra. For Q;' < R4 we take the correlation function to be point-like in r; and
broad in R;, writing

c(x1,%2) = RI(re)ppr (Re). (5.2)

Here, p,..(R;) describes the transverse distribution of flux tubes in the collision vol-
ume, which we assume follows the thickness function of the colliding nuclei
R2
per(R) = (1= 35 (53)
A

Here k = 2(N)?/(7R%(Ay)?7?) and R, < Ra. Integrating both sides of (5.2) with

respect to r; and Ry, we find
(NY’R = /cd3$1d3x2 = (N?) — (N)? — (N). (5.4)

To see how R depends on @), think of each flux tube as a source that produces

2. For K flux tubes, the mean

particles with a mean multiplicity x4 and variance o
multiplicity is /& and the variance is 02 K. If K fluctuates from event to event, then

the mean multiplicity is u(K) and the variance is 02(K) + p*((K?) — (K)?). Therefore

R Ton 1KY - ()

2w TR (5:5)

Particle production from a flux tube is a Poisson process, since the flux tube is a
coherent state. It follows that 02 = u, so that the first contribution vanishes. For
large K, the second term is oc (K)~".

We combine these results to obtain a scaling relation for the integrated strength
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of correlations in the Glasma

R o (K)™ = (QsR) ™7, (5.6)

a result supported by momentum-space calculations in [25]. In contrast, the mean
multiplicity in a rapidity interval scales as o, (Q,) "' Q% R?; see eq. (4.3). This difference
will prove significant later. We comment that (5.6) and similar CGC relations may
not quantitatively describe p + p or peripheral collisions at the energies studied here,

although phenomenological string models may apply.

5.3 The Blast Wave and Correlations

We now turn to discuss the impact of these long range correlations on the final-
state particle correlations. As the partons emitted from these flux tubes locally
equilibrate, transverse flow builds. To describe the effect of thermalization and flow
on the pair correlation function at freeze out, we generalize the common blast-wave
model described in Ch. 3.

In Ch. 3 we stressed that transverse flow provides a radial boost that depends
the final transverse boost depending on the radial position following (3.1). Here,
fluctuations in particle density are boosted radially based on their initial radial posi-
tion, focusing particles to have narrower relative azimuthal angles. Voloshin has long
stressed the connection between flow and p, correlations [60].

Figures 5.5 and 5.6 illustrate the effect of this phenomenon on angular correlations.
The top of Fig. 5.5 is a cartoon of the dynamical evolution of two selected elements
in a transverse slice of the system. We start with a) a distribution of color flux
tubes, in the Glasma phase, and in b) the tubes have disintegrated into small locally
equilibrated fluid cells. These cells receive a radial boost depending on their radial

position indicated in the images by the white vectors. In step ¢), transverse flow
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Figure 5.5: (top) Dynamical evolution of the angular correlation enhancement from
transverse flow, and (bottom) vector diagrams illustrating the change in momentum
vectors corresponding to the image immediately above.

has begun, adding the same transverse momentum to all vectors in the same cell
effectively reducing their angular difference and pushing them into a more cone-like
shape. At freeze out, step d, flow effects have finished their work, and we can see that
the cell at the larger radial position received a bigger radial momentum increase, and
particles in that cell have been pushed into a narrower opening angle.

In Fig. 5.6 we show how the effects of transverse flow are represented in the mea-
sured correlation structure. Fluid cells at a larger radius emit particles in a narrower
opening angle. In the cartoon on the left, we highlight in blue a pair with a small
angular difference and in red a pair with larger angle. On the right, using the same
colors, we identify how these two examples are represented in the measurement. We
see that our argument that transverse flow enhances angular correlations, is supported
by the data, at least by eye. A more quantitative comparison will come later.

To exhibit the effect of flow on particle correlations, we use the momentum-space
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Figure 5.6: Comparison of flow effects on angular correlations to the measured cor-
relation structure(2-D gaussian component of data in [1]). Fluid cells at larger radial
position have a narrower opening angle and have a greater contribution to correla-
tions. The wider the opening angle, the weaker the correlation.

correlation function

Ap(p1,P2) = p2(P1, P2) — p1(P1)p1(P2) (5.7)

where py(p1, p2) = dN/dy1d*pydysd®pss is the pair distribution. Generalizing (3.4),

we write

X1, X3,
Ap(p1,P2) =/ C(Xl,Xz)f( 1Py S pZ)p’fdaulpé‘dauz- (5.8)

ni(x1)  ni(xa)

The freeze out surface differentials follow (3.21), and the quantities f(x,p)/n1(x)
explicitly indicate the spatial normalizations, and simply take the form of (3.23). We
identify c¢(x1,Xs) at freeze out with (5.2), a form that describes the system at its
formation. This identification omits the effects of diffusion described in Ch. 7 and
Ref. [38, 39]. This omission is reasonable only as long as we restrict our attention to
the long range correlations with pairs separated by |n; — 72| > 1.

Starting with equation (3.23), we see that the terms including cosh(y — ) can
factor and we can make use of (3.33) twice. We make the transformation from spatial

Cartesian coordinates x; and x, to relative and average coordinates r, and R; and
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write

m m
Ap(p1, p2) = 4a’7? [mthl (%Tﬂ> my K <%Tt2)] (5.9)

X / 6%[(pt1+pt2)'Rt+%(pt1+pt2)‘7'tR 5(rt)pFT (Rt)d27"td2Rt.

Now we can make use of the delta function in the correlation function where inte-

gration over d’r, eliminates the exponential with 7, in the argument. The remain-

ing exponential reduces to exp[(A/T)||pn + Ps2||Ricosf] and we can again make

use of the Bessel function relation (3.34). The remaining integration looks like

fORA k(27) Io((A/T)||psr + Pe2|| Re) (1 — R?/ R%) RydR;, which we can preform with help

from the substitution R; = R4z and the Bessel relation jz(l —2)h(az)dz = S ().
0

We are now in a position to integrate over the momentum magnitudes where

T’ mum L YeM2
Ap(n, ¢) = 16a*7*7 R? RI{/ A (1) (22
p(/r’ gb) A()\RA)Q ||pt1+pt2”2 1 T 1 T

I, (ARAHP; + pea|

)pﬂdpﬂpwdpmd@, (5.10)

and ¢ = ¢ — ¢ is the relative azimuthal angle, and ® = (¢1 + ¢2)/2 is the average
azimuthal angle.

To confront the STAR measurements, we calculate Ap(n, ¢) by performing the
integration in (5.10) over the momenta. Similarly, we compute p,.f(7,¢) by inte-
grating p1(p1)p1(p2) as defined in eq,(3.38). To preform the momentum integra-
tion of Eq. (5.10), we make the same substitutions as at the end of Sec. 3.3, where
= vypu/T, y = vpw/T, and ARy = vv,. The pre-factor 16a*7?m R3v; (T /v:)%k

cancels with the square of the pre-factor in eq,(3.38) and we now arrive at the result
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Ve AE)
Ap(n.¢) _ Rfwy D(vsw)drdy - = RF(¢) (5.11)

J p(per) [ p(pe2) [ [JEre Kl(\/xQ + O (vew)da

with ¢ = v,m/T, and w = /22 + y2 + 2zycos ¢. Notice that the blast wave nor-
malization is not an issue, as it cancels in the ratio (5.11), which is dimensionless.
Furthermore, notice that, as in Sec. 3.3, the result is independent of rapidity. This is

a consequence of the lack of a spatial rapidity term in the correlation function (5.2).

This is addressed further in Ch. 7.

5.4 Results

STAR measures the characteristics of the untagged near-side ridge as functions of
the centrality at 62 and 200 GeV for Au+Au [1, 51]. While they focus on the region
—1 < n < 1, where short and long range correlation phenomena are both present,
it is instructive to see which aspects of the data can be explained by a purely long
range model.

To facilitate our comparison, we visualize the STAR analysis as consisting of the
following steps. First, a correlated two particle distribution of “sibling” particles pg
is measured. This quantity is essentially our p, integrated over the magnitudes of
each particle’s p; as well as the average azimuthal angle ® = (¢ + ¢2)/2 and average
pseudorapidity 1, = (191 + 12)/2. The resulting density depends only on the relative
quantities ¢ and 7. Then, an uncorrelated pair distribution p,s is obtained from
mixed events and Ap/\/p = (psiv — Pref)/\/Pres 18 constructed. Next, a rapidity-
independent function a + bcos ¢ + ccos2¢ is subtracted to remove backgrounds as
well as elliptical flow and momentum conservation effects. Finally, the corrected (7, ¢)
distribution is subjected to a multicomponent fit to extract the attributes of the near

side peak. In practice, these steps are performed simultaneously.
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To confront the STAR measurements, we calculate Ap(n, @)/ [ pi(pu) [ p1(Pr2),
(5.11), as described in Sec. 5.3 and multiply by the gluon distribution from (4.3),
assuming the final state particle distribution scales similarly [19]. The integrations

are straightforward and done numerically. We obtain

= KR F(¢), (5.12)

where fo% F(¢)d¢ = 1 and k is an energy independent constant to be determined
from data.

In the saturation regime, the gluon density follows (4.3), which depends on the
density of gluons per flux tube oc a;1(Q,) and the number of flux tubes K ~ (QsR1)%.

The factor

(5.13)

follows from the Glasma relations (4.3) and (5.6). Equation (5.13) contains all of
the energy, system, and centrality information provided by CGC, where the angular
distribution F(¢) is a result of the Glasma influence on the correlation function, but
depends only on blast wave parameters v,;m /T and vy.

We specify the centrality dependence of the correlation function using the velocity
and temperature fit from single particle spectra at 200 GeV in Ref. [27]. The com-
puted F'(¢), (Ap/\/p without the CGC scaling) is shown as the dashed line in the
top right panel of Fig. 5.7. We fix x in (5.12) such that the calculation of the most
central point of F'(¢) agrees with that of the 200 GeV data (only). The top left panel
shows the same calculation using the same value of k with a constant temperature of
120 MeV'. The solid lines represent the full equation (5.12), this time including the
CGC scaling relation.

We define the height of the near side peak as the difference between Ap/,/p at

¢ = 0 and 7. It follows the basic trend of the data rather well, given that the only
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Figure 5.7: Ap/,/p amplitudes for Au+Au and Cu+Cu 200 and 62 GeV. All data
point are preliminary STAR data, Au+Au from [1] and Cu+Cu from [26]. The
normalization parameter x is adjusted only in the case of Au+Au 200 GeV with
blast wave temperature from [27]. Calculations presented in the left column use a
constant temperature of 120 MeV and the right column uses a centrality dependent
temperature measured by experiment.
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parameters that vary with centrality — v and T' — are fit elsewhere [27]. The shaded
bands in Fig. 5.7 represent the uncertainty in v and 7' combined with an uncertainty
in the parameterization of Q% which increases inversely with centrality.

To compute Ap/,/p at 62 GeV, we follow [27] and reduce the velocities by 5% and
the temperatures by 10% by uniform scale factors. The dashed curves again represent
the calculation F'(¢) alone and are well above the data, but agrees roughly in shape.
Note, we now take the factor s as fixed, and no longer adjust it. The solid curve
again represents the inclusion of the CGC scaling (5.13). We reduce Qs by ~ 1/2 to
change from 200 GeV to 62 GeV, and we see surprisingly good agreement with the
data.

We see that although blast wave parameters have some energy dependence, the
Glasma factor (5.13) allows for strong agreement with the 62 GeV data without
further adjustment of k. In this manner, we use (5.13) to predict the amplitude of
the near side peak of the soft ridge in Cu+Cu for both 200 and 62 GeV as a function
of centrality. We are able to do this, again without adjustment of , because of the
Q? dependence on the density of participants. We simply scale Q% by the ratio of the

cental participant density in Au+Au to that of Cu+Cu

2 o 2 ppart,CuCu central
s,CuCu — ¥s,AuAu : (514)
Ppart, AuAu central

Caution should be taken however, since we use the centrality dependance of the blast
wave parameters T and v, as well as the saturation scale from Au+Au in the Cu+Cu
calculation. The results are shown in Fig. 5.7 and again give nice agreement.

To compare to measured azimuthal widths, we plot (5.12) as a function of ¢ and
simulate the experimental fit procedure, obtaining the width in the near-side interval
—m/2 < ¢ < /2 by fitting a gaussian plus a constant offset. The results are shown in

Fig. 5.8 for both Au+Au and Cu+Cu. We find that the width is nearly independent
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Figure 5.8: Azimuthal correlation widths for Au+Au (left) and Cu+Cu (right) for
200 and 62 GeV. Error bands represent uncertainty in a gaussian fit to calculated
azimuthal distributions.

of both system and energy since the blast wave parameters change very little, and the
normalization does not affect F'(¢). The uncertainty band in Fig. 5.8 indicates the
impact of changing the near-side interval by +20%, i.e. the error associated with the
fit. Once again, the agreement is surprisingly good given the simplicity of the model.
Note that Ref. [25] includes flow by boosting a Glasma source. Their computed width
exceeds data because they omit the p, dependence of the boost and do not simulate
the experimental fit procedure.

To recap the chapter, we describe how the near side peak of the soft ridge can
be explained by Glasma flux tube initial conditions and transverse flow. Glasma
conditions allow for the existence of correlations between causally separated pairs
while transverse flow preserve these long range correlations and enhance angular cor-
relations. The case for Glasma initial conditions is strengthened by the fact that it
provides energy and system dependence in addition to centrality dependence, which

allow for parameter free deduction of 62 GeV data and prediction of Cu+Cu data.
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Chapter 6

Hard Ridge / One Ridge

A primary focus of this work is to determine if the soft and hard ridges are
fundamentally different phenomena. Although the hard ridge attempts to isolate the
effects of jets on the medium, both ridges are di-hadron correlation measurements
with similar looking structures. Comparing Fig.6.1 to Fig.5.1 some differences one
might notice include the fact that the azimuthal width of the hard ridge is narrower
than that of the soft ridge, and that although the relative rapidity width is still
broad, the hard ridge seems to have a separate narrower peak sitting on it. Since the
rapidity width of the narrower peak is similar to the width measured with PYTHIA
simulations, we hypothesize that it is a result of correlations from jet fragmentation,
although we don’t address that here, see Sec. 8.1. Our interest here centers on the
broad ridge structure, its connection to the soft ridge, and its relationship to long
range correlations.

To understand the relationship between the soft and hard ridge, we must account
for the the differences in the two measurements, and determine how to compare them.
The hard ridge measures the yield of associated particles per jet trigger, and the soft
ridge reports the number of “sibling” pairs per reference multiplicity. Sibling pairs are
pairs from the same event and the reference is the square root of the uncorrelated pair
distribution. The most significant difference between the two measurements is the

choice of the momentum range of the correlated particles. The hard ridge attempts to
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_['STAR hard ridge |-

Figure 6.1: STAR hard ridge, Au+Au, 200 GeV, 0—10% central [3]. The “#entries”
on the vertical axis represents the yield of correlated pairs per jet trigger, with the
trigger in the range 3 < p;4rigg < 4 GeV and paired with a particle in the associated
range 2 < Pt assoc < 3

highlight the influence of jets and arises from particle pairs where one particle comes
from a jet trigger p, range and the other comes from a lower associated p; range.
Conversely, the soft ridge represents all correlated pairs taking both particles from
any p; above minimum bias. In Sec.6.1 we describe the behavior of the soft ridge with
a change in the p, range of particle pairs, and describe how to compare the observable
with that of the hard ridge. In Sec.6.2, we describe one method by which jets could
contribute to long range correlations, and in Sec.6.3 and Sec.6.4 we describe how soft

ridge effects combine with those jet-bulk correlations to explain some features of the

hard ridge.

6.1 Soft Contribution to the Hard Ridge

We observe that both the hard ridge amplitude and azimuthal width are smaller
than that of the soft ridge. Since the angular width of the soft ridge depends on
small thermal fluids cell receiving a radial boost, the higher p, particles are those
that received the greater push from flow. As described before, the greater the radial

boost given to a fluid cell, the narrower the relative angle between the momentum
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Figure 6.2: (top) Azimuthal width of the near side peak for Au+Au 200 GeV vs. cen-
trality. Colored lines (from top to bottom) represent increasing p; mn limits. (bottom)
Plots the most central values of the width vs p; ,i. Each dot represents the central

point of a curve in the graph above.
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Figure 6.3: (top) Azimuthal width of the near side peak for Cu+Cu 200 GeV vs. cen-
trality. Colored lines (from top to bottom) represent increasing p; ., limits. (bottom)
Plots the most central values of the width vs p; . Each dot represents the central

point of a curve in the graph above.
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vectors of particles in that cell. We therefore expect that the azimuthal width of the
soft ridge will narrow if the p;, range of correlated particles is increased. Furthermore,
if we “cut out” lower p; particles, we reduce the number of possible pairs and therefore
reduce the ridge amplitude as well.

To examine the p; dependence of the soft ridge, we rewrite (5.11) such that the

lower limit of the p; integration is no longer zero but some minimum value p; mn,

Pt2,maz Ptl,mazx

f f AP(Ph P2)

Ap - Pt2,min Ptl,min
p'r‘ef - Pt1l,max Pt2,max
Ptmin [ oilpa) [ pi(pe2)
Pt1,min Pt2,min
= RF(¢;ptl,mimptl,maxapt2,min>pt2,mam)- (61>

To obtain the measured ratio, we write

[e.e]

(AIO/\/ pref)Pt,mm _ F(¢;pt,min7 Ooapt,mina OO) fptl,min p1 (6 2)

NN F(9) I

For increasing values of p; :n, we calculate the correlation function as in chapter
5, using (6.1) and (6.2) and find that the azimuthal width does indeed decrease as
shown in the upper panels of Fig.6.2, and Fig.6.3. The black curves are the same
curves shown in Fig.5.8, (i.e. ptmin = 0), and the following colored curves represent,
in descending order, the width calculation for p i, = {0.15,0.3,0.5,0.7, ...} GeV also
indicated by the dots in the panel directly below. The lower panels plot the most
central width value for each curve as a function of its p; i, limit. Preliminary data
in Fig.6.3 comes from ref.[26] and shows decent agreement. We remark that if one
examines the Cu+Cu most central width in Fig.5.8 one might notice that it is slightly
greater than both the Au+Au data and our calculations. This difference may be the

reason why our curve in the lower right panel of Fig.6.3 is consistently lower than the
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Figure 6.4: Soft ridge near side peak amplitudes for Au+Au 200 and 62 GeV. Top
panels: amplitudes vs. centrality for various p; ., limits as indicated by the dots in
the lower panels. Lower panels: most central point of the curves directly above vs
the pt man limit.

data.

The upper panels of Fig.6.4 and Fig.6.5 show predictions of the amplitude Ap/ /Pref
vs. centrality for the same choices of p; i, as previously discussed. The amplitude
decreases with increasing p; i, because the number of particles contributing to cor-
relations is reduced. The lower panels of Fig.6.4 and Fig.6.5 show the amplitudes
for the most central collision as a function of the choice of p; n. Preliminary STAR
data, shown in the lower left panel of Fig.6.5, shows agreement, at the very least,
with the trend of our predictions. Again, we must take caution since we use the
Au+Au centrality dependance of the blast wave as well as the saturation scale pa-
rameterizations; the large error bars in our Cu+Cu calculations are representative of
this.

As the minimum p; of the particles is increased, the amplitude of the correlations

drops and the azimuthal width narrows. In the p, range of the hard ridge, it appears
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Figure 6.5: Soft ridge near side peak amplitudes for Cu+Cu 200 and 62 GeV. Top
panels: amplitudes vs. centrality for various p; ., limits as indicated by the dots in
the lower panels. Lower panels: most central point of the curves directly above vs
the pt man limit.

that the azimuthal width could be narrow enough, but the amplitude is not a directly
comparable quantity. STAR measures the hard ridge, or yield of associated particles
per jet trigger, for Au+Au 200 GeV for 3 < piirigg < 4 GeV with 2 < i ges0c < 3

[3]. We identify p;; in our calculation with the trigger range, py with the associated

range, and calculate Ap/,/prer. We find the yield with the transformation

‘ Ap fp1<pt2)
Yield = ) (6.3)
( Vv pref)pt,min \/f pl(ptl) fp]-<pt2)

At higher ranges of p; 2 the contribution from jets should become more significant,
and it is important, therefore, to know the relative fraction of thermal and jet con-
tributions. Section 6.3 discusses how we decompose the total particle spectrum into
thermal bulk and jet fractions. To obtain the contribution of bulk correlations to

the hard ridge, we multiply (6.3) by the bulk fraction [ pi1(pu)/ [ prot(pn) where
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Figure 6.6: Comparison of bulk-bulk and jet-bulk correlation yields to a cross section
of the hard ridge. Jet contributions begin at p;=1.25 GeV. Data from [3] (talk).
[ ptot(pe1) s the total number of particles in the range of py;.

We find from this calculation, that the contribution to the hard ridge from only
thermal bulk pairs is ~ 75%, a considerable fraction. The blue curve in Fig.6.6 rep-
resents the contribution to the hard ridge from only thermal bulk pairs. We see from
the the blue curve in Fig.6.6 that “bulk-bulk” correlations contribute significantly to
the amplitude of the triggered measurement, but has a somewhat narrower azimuthal
profile. Ref.[79] shows that a jet acquires angular correlations with flowing matter
due to quenching, but the width of the correlation is wider than the data. The contri-
bution of jet correlations with bulk particles, “jet-bulk” correlations, could increase
both the amplitude and the width and make up the difference between the bulk-bulk
correlations and data.

In the next section we combine a theory of angular correlations from Ref.[79] with
spatial correlations of jets and flux tubes to obtain a jet-bulk contribution to the hard

ridge.



83

Figure 6.7: Jet correlations with tubes. Anywhere in the overlap region, the location
of a hard collision will coincide with a flux tube, since tubes fill the space.

6.2 Jet Quenching, Flow, and Correlations

The existence of correlations with jet particles at larger n would require a corre-
lation early in the collision that remains through the expansion of the system. As
we examine higher p; pair correlations, the contributions from jets should become
more prevalent, particularly for small n. Correlations between jet fragments should
eventually dominate the correlation structure, but are restricted to the size of the jet
cone, and the transfer of momentum from jets to bulk particles is causally limited to
~ 1 — 2 units in rapidity.

Both the hard collisions and flux tubes are made in the initial moments of the
nuclear collision. Assuming that the entire overlap region of the colliding nuclei is in
the saturation regime, flux tubes would fill the collision volume and a jet formed at
any transverse position would be accompanied by a flux tube at the same position.
Since the flux tube extends to large rapidities, the correlation of particles from a flux
tube and a jet can extend to large n. Angular correlations arise since particles from
the tube acquire a radial trajectory from flow, but the (measured) jet trajectory has
a bias in the radial direction due to quenching [79].

For the purposes of simplicity, we start with the assumption that jet production

is independent and uncorrelated with the production of soft particles. It has been



Figure 6.8: Jet path, L, with relation to the event plane.

pointed out in Refs.[60, 79] that some information about the location of a hard colli-
sion can be determined by correlating it with transverse flow. Since the jet must pass
through matter, there is some chance that the matter attenuates or even completely
absorbs the jet. Since the amount of this quenching is related to the amount of matter
the jet must pass through, surviving jets tend to be biased toward the surface of the
medium. Furthermore, if the jet production point is deeper into the medium, the jet
must take the most direct exit route to have the greatest chance to survive; if the
medium is circular, the most direct route is a radial one.

Since quenching biases jets to have a more radial direction, and transverse flow
pushes bulk particles to a more radial trajectory, an angular correlation is induced
between the jet and bulk particles originating at the same radial position. Reference
[79] considers correlations of jets with beam jets, but we explore the possibility of
jet correlation with flux tubes. As illustrated in Fig.6.7, since flux tubes fill the
transverse space of the overlap region, any transverse location that a hard collision
occurs would coincide with a flux tube independently produced at the same location.
As a caveat, at RHIC energies, saturation does not extend to the periphery of the
nuclei so a correction including a “core” made of flux tubes and a “corona” with

Glauber-like production would be appropriate.
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At the moment of a hard collision, the jet direction is random, and the amount
of quenching, or conversely, the chance of survival, depends on the path, L, through
the matter, as depicted in Fig.6.8 and Fig.6.9. Assuming the nuclei are hard spheres,
and that the jet exits the medium before significant expansion, from geometrical

considerations we find the jet path to be

1
L = ) [2r cos @jer £ b cos(Pjer + 0)]

1
+§\/[27“ COS Gt £ bcos(Pjer + 0)]° — 4[r2 — Ry + b2 /4 & br cos 0. (6.4)

Notice that the quenching length is sensitive to the reaction plane. We must take
care since the vector r can, for example, point to the +z side of the xy-plane and
the vector L can point to the —z side. Equation (6.4) has two solutions depending
on which hemisphere the vector R points, since this is the hemisphere the jet exits.

In (6.4), we choose the positive solution for —7/2 < a < m/2 and negative for

T/2 < o < 3w /2 where a = sin”'[(L/R) sin ¢je;| +60 and R = /r? + L? + 2r L cos ¢jes.

For the symmetric case, if b = 0 then (6.4) reduces to

L= \/R?4 — 128in% Gjop — T COS e, (6.5)

a result stated in Ref.[79]. For the purposes of the following calculation, we make
the approximation that the collision transverse area is circular, even for peripheral
collisions. In the future, we plan to study the reaction plane dependence of the ridge,
which would require us to abandon this assumption as well as introduce eccentricities
back into the blast wave formulation as discussed in Ch.3.

For now, let us analyze the contributions of jet-bulk correlations in the case of

circularly symmetric initial systems as illustrated in Fig.6.9. If r is small (close to



86

¢j|3t

P

Figure 6.9: Jet path, L, in a circularly symmetric system, compared to a particle
which will later have a radial trajectory from flow.

the center), the probability of having a jet is maximum, but then L is the same in
all directions, providing no correlation. If r is close to the surface, the probability of
production is at a minimum, and the jet, with any trajectory pointing away from the
medium, experiences little or no quenching. In this case, there is some correlation
since some of the jet’s trajectories are restricted. At some depth inside, the probability
of jet production increases, and the range of ¢, of surviving jets is narrowed. To
determine the angular shape and magnitude of this phenomenon, we modify our
calculation in Ch. 5 by replacing the blast wave distribution f(x1,p1)/n(x;1) in (5.8)
with the jet distribution fje(x1,p1)/n(x1).

We define the jet distribution as

fiet(x,p) = Z%Pprod(rjet)s('rjeta Djet)- (6.6)

t
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The probability of jet production is

r?
Porod(Tjet) <1 — é;) , (6.7)

for two homogenous hard spheres colliding centrally. For future calculations that
include the anisotropy of the system, we would need to explicitly use a Glauber
calculation of binary collisions [87]. The probability of quenching, or the probability

the jet survives, is approximated by an exponential damping

_L(Tjebd)jet)

S(T‘jet, (bjet) =€ Labs (68)

that depends on the jet path (6.5) and the quenching length £,,s = 0.25fm [79]. The
momentum distribution follows a power law of the form A/p".
We rewrite (5.8) using the indicies “;” for “jet” and “g” for “bulk”, such that the

first particle comes from a jet and the second from a flux tube

_ fJ(Xlapl) fB(X27p2) 1t 1
Ap,;(P1,P2) —/ ¢, (X1, %) 71 (x1) 71 (Xs) P1doapydoys (6.9)

where ptdo,, follows (3.21). The correlation function c,,(x1,X2) requires that a jet
and a bulk particle must come from the same radial position. The rest of the equation

accounts for the different spectra for jet and bulk particles. We write
Cip (X17X2) = LJC(XhXZ); (610)

where ¢ is given by (5.2) and x,, = 2(N,)(N,) /(7 R4 (Ay)*7?).
To relate the correlation strength R,, to the bulk correlation strength R dis-
cussed earlier, we assume that the hard scattering rate is independent of the flux

tube dynamics. Recall that the bulk quantity R in (5.4) is related to the number of
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flux tubes; see (5.13). If we take the fraction of jet and bulk particles per flux tube
to be independent of the number of flux tubes, we can write (N,) = a(N), where «

and $ may depend on momentum, but do not vary event by event. We then follow

Ref. [152] to find (N,) = B(N), and (N,N,) = aS(N(N — 1)), so that

" (N, {Ny)

- = R. (6.11)

Therefore, the addition of jets to the total multiplicity doesn’t change the correlation
strength. In essence, the beam jet associated with the hard process is just another
flux tube in the high density Glasma state.

Our objective, as before, is to compute Ap, . (7, ¢) = [ Ap,,(P1, P2)prpiadpu dppd®.
To simplify, we notice that the terms containing the jet momentum, p;;, and the jet

rapidity, y1, (and spatial rapidity, 7;) can factor out of (6.9) such that we can write

Am
Ap,, = / nﬂptldptl (6.12)

tl

A, = /Cosh(y1 —m)dn;. (6.13)

Moreover, we can make use of (3.33) yet again to preform the integration of 7,. The
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jet-bulk correlation function in now

JEt <z>.7675) )\'r2p2 cos(¢o)
T

—L(r
Ap,,(n,8) =2ar’k,, RA,, Ay, // Tabs

m R?
thgKl <’YtTt2> 5( ) <1 — R—A) d Tld T2pt2dpt2dq).

(6.14)

We now exploit the delta function and integrate over either of the remaining spa-

tial variables (let’s pick 75). In effect, this only changes the subscript of the radial

variables. To avoid confusion, let us immediately make the substitution r; = z, R 4.

Finally, the last analytical integration we perform yields [ df; = 2r. We make more

substitutions as done before in Sec. 3.3 and 5.3, where z = ;py1 /T, and v, = ARA

so that we have

APJB(U>¢) - 47TR124aT2KJBR (_

></ / jS(xTRA,CDJrg)(l—xf)Q

~
%ptl,'min 0

X/a? + (2K (Va2 + (?)

x eUsr @ cos(®+0/2) 0. 0, dxd®,

with ¢ = ym/T.

(6.15)

To determine p,cr, we equate prer = [ p1jet(P1) [ p1pun(p2). Using (6.6), (6.13),

and (6.13) we find

dy

1 dNjy
/ pl,jet(pl):m? Ay Any / / 2 R% (1 — 22)S(x,Ra, ¢1)x,dx,dpr.  (6.16)
A
0 0
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We leave the factor of 2r R% in the integrand to indicate it is the result of the spatial

integration f df; = 27, and the spatial substitution r; = x,R4.

Ap,(1, 9) _
I p1jee(P1) [ p1 g (P2)

2T Tmazx 1

[ [ [S(@Ra,é1)(1 — 22)*my . Ky (my ) e =@z, vdr, drd®

R, o 0 - (6.17)
Jfa- x%)S(xTRA,QSl)xrdxrd@] [ [ my Ki(my ) I (vsz)da
00 Tmin

where Mt = / x? + (%m/T) and gbl =&+ ¢/2 and Tmin,max = ’ytth,min,max/T~
We can now write (6.17) as Ap/pref = RF,,(¢) and similarly to (5.12) we have

for jet-bulk correlations

LR (). (6.18)

Here & is the same as in (5.12), and we find the jet distribution with

dNjer _ RdNbulk J prje(Pa)

R :
dy dy f pl,bulk(pﬂ)

(6.19)

where p;; is in the jet range and

[ priaten) = [ puaton) = [ prnaton). (6.20)

Multiplying (6.18) by the jet fraction, [ p1je(Pi1)/ [ prot(pe1), and using (6.3) to
change from Ap/,/p to yield, we find the jet-bulk correlation yield. To match the hard
ridge measurement, we take appropriate p; limits and find the red curve in Fig.6.1.
We see that the jet-bulk correlation distribution is wider than the data, but makes
up only ~ 25% of the amplitude. Reference [79] also finds that the calculated width

is too wide, but does not calculate the amplitude. In the following sections, we show
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Figure 6.10: Blast wave vs jet fraction of the invariant spectrum. The blue exponential
line represents the blast wave calculation with its magnitude scaled to intersect the
measured spectrum at p, = 1.25 GeV. The area below the exponential represents the
number of thermal particles and we take the remainder to represent the number of
jets.

that in adding the bulk-bulk and jet-bulk correlations, we can describe the amplitude

and azimuthal width of the hard ridge quite well.

6.3 Bulk and Jet Fractions

In order to compute the amplitude and azimuthal width of the hard ridge in
Fig.6.6, we must determine the relative contributions from both bulk-bulk and jet-
bulk correlations. The measured p; spectrum follows an exponential behavior at low
p and a power law behavior at higher p, where jets play a larger role, see e.g. Ref. [52].
Our blast wave formulation describes the exponential behavior of the low p; spectrum
well. The scale ps at which the spectrum begins to deviate from exponential behavior
is proportional to ()5 in Glasma theory, but the proportionality constant is not known.
This introduces a free parameter — p, at /s = 200 GeV — that we fix below. We then
find the number of jet particles by taking the difference between the total number of

particles and the number of thermal particles p1 ; = p14ot — p1,5. We take pj ;o from
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the measured spectrum in Ref. [52] and p; 5 from the blast wave calculation with the
appropriate normalization.

If we decrease p,, we effectively increase the number of jets and decrease the
number of bulk particles. The resulting increase in jet-bulk correlations is less then
the decrease in bulk-bulk correlations, and the total amplitude is less than the data.
Conversely, if we increase p,, the bulk-bulk amplitude growth is much larger than
the jet-bulk reduction, and the total amplitude is then greater than the data. Even
though we have introduced a free parameter into our calculation, the behavior just
described indicates further that bulk-bulk correlations are a significant if not dominant

contribution to the hard ridge.

6.4 Discussion and Predictions

We see in this chapter that, when the p; ., limit of correlated bulk pairs is
increased, not only does the amplitude of correlations decrease, but that we are also
isolating particles with larger transverse boosts. As discussed in Ch. 5, transverse
flow enhances angular correlations; increasing pi m, is accompanied by narrowing
azimuthal width. Furthermore, we find that the soft correlations contribute to ~ 75%
of the hard ridge amplitude but have a slightly narrower profile. Correlations of
jets with flowing particles can make up the rest of the amplitude and have a wider
azimuthal profile. The combination then does a suitable job of explaining these
aspects of the hard ridge. We expect that, for some p i, jets should completely
dominate the spectrum, and the largest contribution to long range correlations comes
from jet-bulk correlations.

We now calculate the combined effect of Glasma, flow, and jets on the correlation

function. Adding the bulk-bulk and jet-bulk contributions, we obtain

Ap dN J p1.8(pr) dNjer J prs(pe)
= kR—F R F o PLIATE 6.21
/Pref My wn () I P10t (pt) o dy 12(9) I P10t (pt) (6.21)
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Figure 6.11: Comparison of the angular shape of the jet triggered ridge to long range
bulk-bulk (blue line) and jet-bulk (dashed red line) correlations arbitrarily normalized
to the measured peak height. Data from [3] (talk).

In order to compare to the yield of associated particles in the hard ridge, we combine
(6.21) and (6.3) with the appropriate integration limits. We find that the agreement
with the data in Fig.6.6 requires p, = 1.25 GeV. The dashed red curve in Fig. 6.6
represents the contribution to the yield from correlations of jet and bulk thermal
particles. This contribution is too wide. On the other hand, the bulk-bulk correlation
function describing the effect of flow alone, which is given by the blue curve, is too
narrow and the computed peak height is too small. To emphasize the disagreement
of the angular shapes, we show the contributions normalized to the peak in Fig.6.11.
The combination of the two effects shown as the black curve in Fig.6.6 gives nice
agreement with both the amplitude and azimuthal width.

In Fig.6.12 and Fig.6.13, we plot predictions of the amplitude and azimuthal
width vs. ptmin using (6.21). In each case the blue curves represent the bulk-bulk
contribution that we have seen before in the lower panels of Figs.6.2, 6.3, 6.4, and

6.5 on a normal scale. We use a logarithmic scale here to highlight the the relative
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Figure 6.12: Amplitude of Ap/,/p highlighting the contribution for bulk-bulk and
jet-bulk correlations for Au+Au and Cu+Cu 200 and 62 GeV. Caution: bulk and
jet fractions determined by Au+Au 200GeV momentum spectrum only. Data from
Ref.[26].

contributions of bulk-bulk and jet-bulk correlations. At low p; ,n, the contribution
from jets is negligible and therefore the amplitude and width of (6.21) is determined by
the bulk-bulk term. As the p; i, is increased, both the amplitude and the azimuthal
width of the bulk-bulk term decreases, while the amplitude of the jet-bulk term
increases.

The azimuthal width of jet-bulk correlations is roughly independent of p; ,,,; the
growth in the figures for p i, > 1 GeV is due to the growth of the jet fraction.
Jet-bulk correlations should become a more significant fraction of the total as p; min
is increased, and the azimuthal width of the ridge should increase toward the jet-bulk
width. The trends shown for Cu+Cu 200 GeV in Figs.6.3, 6.5, 6.12 and 6.13 follow

preliminary data from Ref.[26]. The small difference may reflect the fact that our

calculation omits the jet peak.
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Figure 6.13: Azimuthal width of Ap/,/p comparing the contribution of bulk-bulk
and jet-bulk correlations for Au+Au and Cu+Cu 200 and 62 GeV. Caution: bulk
and jet fractions determined by Au+Au 200GeV momentum spectrum only. Data

from Ref.[26].

We emphasize that the decrease of the bulk-bulk contribution to o, with increasing
p in Figs.6.12 and 6.13 is a direct consequence of transverse flow and, consequently,
is a firm prediction if the jet-bulk contribution is neglected. The roles of jets and
other phenomena like recombination are less clear. We have chosen the model of
Ref.[79] because it relies only on the well-studied phenomena of jet quenching. Our
calculations using this model predict that the width should increase for higher p,
ranges.

In this chapter, we make the first theoretical study of the soft ridge as a function
of the pair p; range, and show that there is a significant contribution to the hard ridge
from correlations of only soft particles. To include jet correlations with flux tubes,
we reformulate [79], and determine the magnitude of jet-bulk correlations relative
to bulk-bulk correlations. We find that we can explain the azimuthal width and
amplitude of the hard ridge by combining bulk-bulk and jet-bulk correlations, and

make predictions about the azimuthal width and amplitude of Ap/,/p for Aut-Au
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and Cu+Cu 200 and 62 GeV collisions. We find that transverse bulk flow and jet
production affect the transverse momentum dependence of the ridge in different ways,
as shown in Fig.6.13. If transverse flow is the only contribution, we predict that the
azimuthal width of the near side peak o, will decrease as p; increases. Jets may
introduce new behavior depending on the way in which they influence the ridge.

It has been pointed out that a larger choice of p, is not outrageous, and therefore
soft correlations alone can explain the total amplitude and nearly the azimuthal width
of the hard ridge. This is not so terrible, since all of the long range correlation behavior
depends on the rapidity reach of flux tubes, and the triggered ridge seems to show
correlations at large n. In either case, our message remains that the primary cause
of the ridge structure is not a medium response to jets, but a characteristic of the

medium itself.
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Chapter 7

Viscosity and the Ridge

While CGC particle production seems to provide an explanation for the long
range shape of the ridge, shorter range transport effects such as shear viscosity play
an integral roll in understanding the two dimensional shape of the ridge. In Chapters
5 and 6, we describe the amplitude and azimuthal shape of the near side ridge as a
consequence of fluctuating initial conditions in combination with radial flow, and jet
quenching. We envision that particle density fluctuations arise from CGC-Glasma
flux tubes that stretch the full longitudinal extent of the collision. This condition
results in a ridge resembling a flat pedestal in 7. We recognize that the correlation
structure is not flat in 7,, but rather a seemingly broad Gaussian shaped by shear
viscous forces driving momentum density fluctuations toward a local equilibrium.

In Secs.7.1 and 7.2, we summarize the work of Gavin and Abdel-Aziz in Refs.[38,
153, 154] to develop the theory of viscous broadening of the ridge. The addition of
viscous broadening not only adds a valuable piece of the puzzle in putting together
aspects of the ridge, but also allows for measurement of the p,-weighted ridge to serve
as an independent measurement of the shear viscosity to entropy density ratio of the
QGP. In Sec.7.3, as in Ref.[39], our contribution to this work builds on these results,
and focuses on the the effects of transverse flow and freeze out in conjunction with
viscous diffusion. The effects of radial flow and freeze out conditions are required to

link this spatial rapidity broadening with the rapidity width of the p,-weighted ridge.
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Figure 7.1: Cartoon of the broadening of the spatial rapidity correlation distribution
due to shear viscosity. The blue curve is the correlation distribution at the formation
of QGP at (7 = 79). The black curve is the distribution after some evolution, taking
into account the effect of viscous diffusion.

7.1 Shear Viscosity, Diffusion, and Momentum Broadening

Momentum density fluctuations and the broadening of the rapidity width of the
ridge can be studied in the context of the p; -weighted ridge. Correlation measure-
ments of the soft ridge, where correlated pairs are weighted by their momenta p;;p;o,
amplifies the roll of momentum density on correlations [28, 53|. As a result, the az-
imuthal width of the p,-weighted ridge will appear narrower than the soft ridge since
higher p; pairs are weighted more heavily (higher p; pairs get a larger radial boost
and have smaller opening angle, see Sec.5.3).

The p;-weighted ridge also provides insight into the short range shape of the ridge
in rapidity. Fluctuations in momentum density at early times give rise to shear viscous
forces between neighboring fluid cells with different average momentum density. These
viscous forces reduce the strong correlation in faster fluid cells, effectively spreading it
to slower fluid cells. Figure 7.1 illustrates the effect of viscous diffusion on the initial
spatial rapidity distribution (blue line), after some evolution of the system (black line).
Viscosity tends to reduce fluctuations by distributing the excess momentum density
over the collision volume. This effect broadens the rapidity profile fluctuations.

Nuclear collisions produce a fluid that flows outward with an average transverse
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Figure 7.2: The transverse velocity deviates from the average by an amount u that
varies throughout the collision volume. Viscosity drives this deviation toward zero.
velocity v,. In the hydrodynamic description of these collision, we typically assume
that v, varies smoothly with space time (¢,x) and is the same for all collisions of a
fixed impact parameter. More realistically, small deviations u(x) relative to v, occur
throughout the fluid, varying with each collision event. Such deviations occur, for
example, because the number and location of nucleon-nucleon subcollisions varies in
each event.

Viscous friction arises as neighboring fluid elements flow past each other as shown
in Fig.7.2 from Sean Gavin and Mohamed Abdel-Aziz [153]. This friction drives v,
toward the local average. The final size of the deviation depends on the magnitude
of the viscosity, the initial temperature, and the lifetime of the fluid. In the local
co-moving frame where (v,) = 0, we see the manifestation of the shear stress as the
velocity deviation u varies as a function of longitudinal position z. The shear stress

is defined as

T,, = —ndu/0z. (7.1)

Here, the energy-momentum conservation law 0, 7" = 0 is satisfied by the stress-
energy tensor T" = (e 4+ p)utu” — pg"” + T where € is the energy density, p is
the pressure, u* = 7(1,v) is the four-velocity of the fluid, and v = (1 — v?)~V/2,
Following Landau and Lifshitz Fluid Mechanics, we define our four-velocity to vanish

when 7% = ( [155]. Then the dissipative contribution 7# depends only on viscosity
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with 7%° = 7% = 0 and
2
Tz’j = —n{Vivj + le),‘ — géwv . V} — C(LJV V. (72)

The bulk viscosity ( resists compression or expansion in which V - v # 0. We take
(<.

The transverse momentum current of the fluid, which is generally Ty, = v?(e+p)v,
is changed by the stress (7.1) such that g;(x) = Ty, — (To,) = 010, = (€ + p)u in the

co-moving frame. Following from energy-momentum conservation, 0, 7" = 0,
dg, /ot = =0T, /0z. (7.3)

Near a point where v, = 0, the momentum current g; satisfies a first order diffusion
equation,

og, /0t = vV?g,. (7.4)

The kinematic viscosity is given by

v = = — (7.5)

where T' is the temperature and s is the entropy density. This quantity measures the
relative strength of the viscosity to the fluid’s inertia, as is most apparent in the non
relativistic limit where (e + p) — p with p being the mass density (¢ = 1). In our
relativistic system at small net baryochemical potential, (¢ + p) &~ T's. Observe that
our physically-motivated radial g(z, t) satisfies Eq.(7.4), as does any fluctuation g, for
which V - g, = 0.

Assuming Bjorken longitudinal flow in the z direction coupled to radial flow v, in
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the transverse plane that depends only on r we can generalize (7.7) to

Og 1 0?
a—;+vr-vrgt+gt-VUT =V (58_7]2+Vz> - (76)

This equation can be used additionally to find the azimuthal broadening due to
diffusion, and is a subject of future work.
For the purely longitudinal case, we write (7.4) in terms of spatial rapidity n =

1/2In((t + 2)/(t — 2)) and proper time 7 = (> — 22)'/2 e.g. (3.12) and (3.14), and

find
agt 4 azgt
o " Tor (7.7)
Defining the spatial rapidity width V' as
2
n-g.dn
V= (- )y = LB (79)

B fgtdn ’

for (n) = 0 we follow Ref.[154], and translate momentum current diffusion (7.7) into
a broadening of V. We multiply both sides of (7.7) by * and integrate over dn to

obtain
dv  2v
— = —. 7.9
dr 72 (7.9)
In principle, n, T, and s can all vary with time, in which case we solve this equation

numerically. As discussed in Ref.[38] we can take v &~ constant and analytically

compute the spatial rapidity broadening AV as,

N (1 . @) (7.10)

T0 T

where AV =V — V(7y), and 79 is the formation time.
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7.2 Diffusion and Correlations

We now take the information in Sec.7.1 and extend it to consider two particle
correlations. In the spirit of Eq.(5.1), we write the two particle spatial correlation

function

ry = (g(x1)g(x2)) — (8 (x1)) (g (x2)) (7.11)

where the brackets indicate an ensemble of events. The difference Ary = r; — 144,
where 74 ., is the local equilibrium value, satisfies the diffusion equation
0 v 0 v 0?
— s~ ——— | Ary = 0. (7.12)
or 120n; T20m;
Then, Ary = ry — ry¢q is broadened by momentum diffusion since diffusion spreads
the rapidity of each particle in a given pair with a variance AV. Rearranging (7.12)

in to relative i, = n; — 19 and average 1, = (11 + 12)/2 spatial rapidity coordinates,

we have

o 2w v o
(5~ o~ 2ag) =0 (719

Similar to the method in the previous section, one can compute the widths of Ary(n,,7,, 7)
in relative or average spatial rapidity, by multiplying (7.13) by n? or n? and integrating

over both variables to find

o = of + 2AV (1y) (7.14)

¥ =2+ AV(ry), (7.15)

where A{(n, — (n,))?) = 2AV and A((n, — (n.))?) = AV. Here, A represents the
difference in the variance from its initial value. The result is that Ar,, in relative

spatial rapidity, grows from an initial value oy where 74 is the proper time at which



103

freeze out occurs. We can then take
ATy (yy Ma) X eI 20% o 2 (7.16)

where (7.15) gives the width in relative rapidity and the width in average rapidity
from (7.15) is X. Correspondingly, if one takes the 3+1D diffusion equation (7.6) for

Ar,, it takes the form
A7y (ry, Ry, 1y, ) 0c €7 71/207 e RE/2E7 gz /207 o /257 (7.17)

where the relative and average spatial transverse coordinates are ry = r; —ry, R =
(r;+1r2)/2, and o, and %, are the relative and average azimuthal widths respectively.
As stated in Refs.[38, 39, 153, 154], Ar, is observable through measurement of the

quantity

C= (M) pupig) — (pe) = (N) ™ / A7, (%1, X9)da dy (7.18)
i#j

where brackets indicate an event average over all particles i and 7 and (p;) = (O pu)/ (V).

7.3 Radial Flow and the Effects of Freeze Out

As we saw in Ch.5 and 6 momentum space correlations at freeze out are directly
linked to initial state spatial correlations. In this section, we add the additional
wrinkle that initial spatial correlations are altered by diffusion.

In Ch.5 we find that the azimuthal width of the soft ridge is enhanced (narrowed)
by transverse flow. We find the same result in this section, albeit with two differences.
The first difference is a consequence of the p, weighting of the soft ridge studied in
this chapter. We see the second difference when we use the diffusion equation (7.6) for
Ar, to calculate the broadening in (spatial) rapidity and transverse widths starting

from some initial values which are not known.
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Weighting the correlated pairs by the p; of the particles in the pair essentially
suppresses the contribution from slower pairs. In the context of Ch.5, the slower pairs
are those that come from fluid cells originating closer to the center of the collision
volume and therefore receive less of a radial boost and have larger relative azimuthal
angle. The result is that the p;, -weighted ridge reflects the contribution of particle
pairs with smaller azimuthal angle and therefore has a smaller azimuthal width.

In the case of the transverse distribution, we can make use of the same knowledge
that lead to the CGC inspired correlation function (5.2). Here the initial relative
transverse distribution takes the form of a delta function and the average transverse
distribution follows (5.3) and diffusion drives them toward the form (7.17). This
requires a numerical solution of (7.6) and is a subject of current investigation. Results
presented in this section were obtained before determination of (5.2). Furthermore,
as shown in Ref.[59], the CGC initial correlated pair distribution in relative rapidity
is truly long range and approximately flat in the STAR acceptance. Long range
correlations cannot be modified by shorter range effects such as diffusion since particle
pairs contributing to this effect are causally disconnected. For this reason, long range
CGC rapidity distributions do not provide information about ¢y. For the purposes
of the results shown in this section, we take initial distributions to be Gaussian with
widths set by those measured in peripheral collisions, where diffusion has little or no
contribution.

The effect of diffusion is to spread out correlations over the volume. Given a long
enough lifetime any distribution, even as sharp as a delta function, will tend toward
a Gaussian shape. To include the effects of transverse flow and freeze out, we write

the momentum correlation function as

f(x1,p1) (%2, P2)

1 (Xl) ny (Xg)

Ary(p1,p2) :/ Arg(x1,X2) pido,aphdos. (7.19)
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Equation (7.19) has a form consistent with (5.8), except now we replace the spatial

correlation function c¢(xy,x2) that is purely transverse with (7.17), Ar,(x;,%3), one

that is representative of both transverse and longitudinal correlation distributions

as well as the effects of diffusion. We make use of the formalism started in Ch.3,

where the strength of flow is determined by fitting the measured (p;) and elliptic flow

coefficient ve. The Boltzmann distribution f(x,p) follows (3.23), with Hubble-like

expansion (3.1), so that v o follows (3.29). Now (7.19) takes the form

Ary(p1,p2) = 61/6_71 7t cosh(y1—m) g2 77 cosh(yz—2)
Xe%(Ezpzlxl+€ypyIY1)€%(ezpw2x2+€ypyZYQ)
X6_(951_1’2)2/2‘712;—(}’1—}’2)2/205
w o~ (@1+2)? /853 —(y1+y2)? /85

w oM /20% oG /257

X T1 oMy My cosh(y; — 1) cosh(ya — 12)

Xd?hd?]gdl’ldlCQdyldyQ,
where a is an overall normalization factor and

o2 =0(1+a)/2
03 =0%(1 —a)/2
Y=+ 5)/2

(7.20)

(7.21)
(7.22)
(7.23)

(7.24)

with «, 8 =~ 0. For convenience, we rewrite all spatial coordinates in terms of relative

and average coordinates so that z = x; — xo, X = (21 + 22)/2, and dz dzy = dxdX.

We apply the same convention for y; and ys,.

The gamma factor (3.29) complicates any analytic reduction of (7.20), forcing
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multidimensional, resource-hungry Monte Carlo integration techniques. However, we
observe the expansion factor A to be small at leading order, and approximate 7, 5 as

a constant. Now the x and y terms of (7.20) factor and take the form

/eﬁﬂﬁz(pxlpm2)xex2/2ggdx/e%5:v(pml+pm2)XeX2/2Eng

A2 2 2 A2 2 2
_ QWUIEI@WGI(le*PxQ)Uremez(perpxz)Zr7 (725)
and similarly for y. With some algebra we obtain
Ary(p1,p2) = a / e~ cosh(yi—m) o= " cosh(ya—2) o~ /207 o~ /25
)

2 o2
s« e 517 (SR (1+ae)+ 5 (14+56)) (pF) +17, )

2 2
> erﬁ@%(lﬂ%)—%(1+ﬂ€))ptlpt2 cos ¢

2 )
e 517 (B (0O +7F (B+6))pfy cos(2P+9)

2
o o oz (S (ake)+ ZF (B+))p?, cos(20—¢)

2 o2
we ‘:‘? (Z2(ate)—ZF (B+€))pi1pia cos(29)

X T1Tamg My cosh(y; — my) cosh(ya — n2)dn,.dn,, (7.26)

with the relative azimuthal angle ¢ = ¢; — ¢» and the average azimuthal angle
D = (1 — ¢2)/2.

Alternately, we solve (7.20) numerically via Monte Carlo integration with no
change in the gamma factor (3.29). Using the all Monte Carlo technique, we find the
quantity App, (yr, @) = [ Ary(p1, P2)papdpndpied® and construct the short range
component of Ap/p;p; for the near side in Fig.7.3. We see that there is narrowing in
azimuth due to transverse flow, but it is also important to note that transverse flow
effects the rapidity width as well.

Transverse flow effects compete with those of diffusion. While diffusion tends
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Figure 7.3: The ridge response at freeze out to viscous broadening giving widths o,
and oy .

to spread out correlations over the volume, flow focuses correlations into a narrower
phase space by increasing particle momenta based on their position. For the azimuthal
case, we have describe this effect in detail in Ch.5.

Rapidity narrowing due to transverse flow is less obvious but can be seen through
examination of the definition of rapidity y = tanh ™ (p,/E) with E = \/m2 + p? + p2.
An increase in p; only will increase E and not p,, reducing the rapidity y asymptot-
ically toward zero. The rapidity of particles with different p, but same transverse
boost will decrease at a different rate due to the tanh™' behavior and the relative
rapidity y; — y2 will also tend toward zero asymptotically.

STAR measures the quantity

Ay = (N (o = (o) (g — (1)), (7.27)

i#j
which is designed to minimize the number density contribution [28, 53]. The co-
variance C is sensitive to the variation of the p; of particles as well as their num-
ber density; both quantities effect the momentum current density. These quantities
are related by (N)~"Ac?2 . = C — (p)*R, where R measures the number density

contribution (5.4). STAR employs Ao ., to construct a correlation function as a
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Figure 7.4: Centrality dependence of the width of the near side peak in ¢ and 7 as a
function of centrality (2Neoi/Npart = v). The data is from Ref[28].

function of rapidity and azimuthal angle. In essence, they measure Aaf,tm in var-
ious (pseudorapidity) 7, and ¢ bins and construct a correlation function F(n,,¢)
defined by Ac?., = [ Fdn,d¢ (28, 53]. Fig.7.4 shows the widths of the near side
peak in azimuth o, and rapidity o,. Fixing our notation, 7, is relative pseudora-

pidity which we take to approximately be relative rapidity y in (7.20). Central-
ity is measured using the definition 2N.y/Npee = v. We find the widths taking
05 = [ *Arg(pr, P2)paped®pid®pa/ [ Ary(p1, P2)Paped’pid®ps

and 07 = [ y*Ary(p1, P2)puped®pid®py/ [ Arg(pr, P2)paped®pid®ps. We see in Fig.7.4
that for the constant 7; 5 calculation (7.26), we find nice agreement with data.

The impact of diffusion, flow, and freeze out have a complicated and intertwined
relationship with the shape of the near side ridge. Consequently, information from
the p; -weighted ridge and o, and o, can constrain the shear viscosity to entropy
density ratio since they directly result from calculation of ¢ and o, in (7.17). This
was first shown in Ref.[38]. Moreover, o and o, are sensitive to the lifetime of the
fluid and therefore can distinguish between a constant or time dependent viscosity to

entropy density ratio.
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Chapter 8

Other Aspects of the Ridge and Future Work

Thus far, our study of the 2D correlation structure has focused exclusively on the
near side ridge, but the total landscape is a complicated structure with many aspects
remaining to be understood. We describe the long range features of the near side
with a CGC inspired model in which particles are initially correlated at the point
of production. Additionally, we fold in a theory of shorter range correlations based
on viscous diffusion, but together, we have yet to even describe all features of the
near side. The near side appears to consist of a “jet peak” convoluted with a broader
distribution, sitting on a pedestal. There is also the “away side” structure, centered
at ¢ = m and normally thought of as a consequence of momentum conservation.

Thus far, we have not addressed the jet peak or the away side structures. Addi-
tionally, we have not expanded the short range in rapidity treatment to describe all
available data, i.e. the unweighted soft ridge. The description of all features under
one framework is the primary goal for the future. Additionally, a serious difficulty in
our previous correlation studies has been a lack of access to realistic transport and
full hydrodynamical models. Using the NEXSPHERIO code, ridge correlation stud-
ies along this line have begun, but have only achieved qualitative ridge shapes [65].
One could develop a competitive realistic model, with transport models using various
initial conditions such as BAMPS [156, 157, 158, 159], and UrQMD with intermediate

hydrodynamical evolution [160, 161, 162, 163].
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8.1 The Jet Peak

We imagine that the jet peak sitting on the ridge is due to jet fragmentation
outside of the medium. Similarities in the azimuthal and rapidity width of the jet
peak with that of an isolated jet are evidence of this. Additionally, the amplitude of
the jet peak does not seem to grow with centrality. Following from this, we should be
able to reproduce the jet peak using PYTHIA or fragmentation models. The simplest

next step is to directly add these correlations as a continuation of (6.21) where

Ap(pP1,P2) = Ap,,(P1,P2) + Ap,,(P1, P2) + Ap,, (P1, P2)- (8.1)

Here the subscripts B and J correspond to the correlation of a bulk or jet particle
distributions. We remark that the long range behavior of the ridge is due mostly to
the production and flow of bulk particles rather than the modification of the medium
by the jet. As a result, the strength of the correlation then scales with soft particle
production, where the last term in (8.1) is due entirely to correlations between jet
fragments.

We observe, however, that the jet peak is not simply sitting on a flat pedestal,
but more like a broad Gaussian. This broad Gaussian structure evolves from an
initial distribution that may or may not be related to the passage of a jet. Viscous
corrections to this initial distribution may be enough to explain the soft ridge width
in central collisions without the presence of the jet (i.e. the jet contribution is small),
but for other centralities and other p, ranges including the hard ridge the interplay

of jet-medium modifications and viscous diffusion could become important.

8.2 The Away Side

The away side structure at ¢ = m must be explainable within the same correlation

framework. A hydrodynamic explanation of the near side ridge would demand a struc-
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ture at the away side to conserve momentum. Indeed, such a structure is observed,
but its observed magnitude and behavior with centrality are yet to be explained.
This issue can have profound consequences for all correlation probes, including HBT
measurements, and may also affect single particle observables. Aside from its in-
trinsic interest, understanding of the away-side region can shed light on jet-triggered
correlations, as the proposed Mach cone sits atop just such an away side structure.

In an individual event, the vector sum of transverse momenta must vanish. Causal-
ity limits the transport of momenta depending on the size and time frame of the sys-
tem. A momentum diffusion length would determine the scale of causally connected
domains in which any particle could transfer momentum to any other particle in the
same domain.

Momentum conservation should modify the correlation function following Ap(p1, p2) —

Ap(p1,P2) + Apmom(P1, P2), Where

Apmom(pla p2) — —.A COS(¢) (82)
2 ) )
A= —<N><pt> /P(X1, X2) f(x1, P1) f (X2, P2)P) dopydo,s, (8.3)

and p(xy,x3) is the probability that both particles come from the the same causally
connected domain. We assume that the system is large and in local equilibrium.
Borghini et al. first addressed the affect of momentum conservation on correla-
tions, but considered a globally-equilibrated fireball in which all of the particles share
momentum [164, 165, 166, 167, 168]. In that extreme case, p = 1. Chajecki and
Lisa apply Borghini-type corrections to HBT data, and find disagreement with data
[169, 170]. They introduced the notion of causally-connected sub-volumes, and ar-
gued empirically that these sub-volumes contain only ~ 200 — 300 particles in central

Au-+Au collisions.
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In parallel, we plan to study how well (8.2) and (8.3) explain data for n — ¢ cor-
relations, HBT,and other signals. Preliminary indications are that (8.3) can describe
the STAR measurements of A as a function of centrality, but quantitative comparison
requires detailed understanding of the experimental analysis method. Lastly, this cal-
culation will expand a framework that can be tested in transport and hydrodynamical

models which inherently include the concept of momentum conservation.

8.3 Rapidity Dependence

Ref.[65] obtains long range correlations using NEXUS initial conditions. The prin-
ciple ideas behind the formation of the ridge remain the same; initial parton density
fluctuations that are long in relative rapidity are modified by hydrodynamical flow.
The major differences from our model are the transverse size and parton distribution
of the fluctuation, and the prescription for radial expansion. We argue in [36, 37] that
our quantitative agreement with data largely reflects the choice of initial conditions,
but we take a simple prescription of transverse expansion. Ref.[65], however, imple-
ments full 3+1 hydrodynamics through the SPHERIO code and obtains a ridge-like
structure, but does not quantitativly reproduce the data.

In our picture, the longitudinal extent of the ridge depends on the distribution
of lengths of flux tubes. In [36, 37], we have approximated the flux tubes to have
infinite length, thus producing a flat ridge. Ref.[59] has shown that in the CGC
picture, two gluon cumulants from early stage color flux tubes exist out at relative
rapidity separations larger than that observed by experiment, but do die off at large
rapidities. We plan to relate this to flux tube lengths and adopt phenomenological
string fragmentation methods to describe the growth in the 7 width of the ridge
with centrality. Merging such a model of initial state fluctuations with a full viscous
hydrodynamical approach would be a major step in understanding the full correlation

landscape.
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Chapter 9

Discussion and Conclusions

In this chapter, we remark on other ridge models with intent on comparison to our
own. All models have advantages and shortcomings that are illuminated by careful

comparison to data [29]. We then summarize the results presented in this work.

9.1 Other Models

Theoretical interpretations of the near side ridge fall into three categories. The
first category attributes the ridge to the medium response to the passage of a jet. A
variety of mechanisms are given, including momentum broadening [67, 68, 69, 74] and
transfers of energy via successive momentum kicks from the jet parton [73, 75, 76].
The second category of ridge models couples the formation of hot spots, bubbles, or
flux tubes with hydrodynamical transverse flow [25, 60, 62, 65, 79]. Our model falls
into this category. The third category attributes the ridge to parton recombination
or coalescence [70, 71].

Jets can loose energy in the dense medium by Bremsstrahlung radiation of gluons.
Refs. [67, 68, 69, 74] argue that momentum broadening of this radiation occurs either
by strong collective flow or turbulent color fields. These calculations do find a broad-
ening in relative rapidity 7, however smaller than seen in experiment. Refs.[67, 69]
find Gaussian widths of o,, = 0.4 — 0.5, where STAR preliminary results find o, ~ 1.4

[3], and PHOBOS results suggest the ridge extends even further [4, 5]. These models
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Figure 9.1: At Quark Matter 2009, Jamie Nagle “kills” ridge models, using this image
of the grim reaper, while discussing what can be learned in the process [29].
would further predict a reduction in broadening with the increase in the p; of the
trigger and cannot describe the soft ridge in which jets play a minimal role.

In the “Momentum Kick” model [73, 75, 76], bulk medium particles suffer initial
interactions with a jet and receive momentum kicks in the direction of the jet particle.
These kicked particles, depending on the strength of a momentum transfer parameter,
account for the ridge yield and slightly flatter thermal spectrum. The shape of the
ridge seems to depend on the p; and rapidity distributions of the kicked partons. This
model finds a wider width in relative azimuthal angle o4 ~ 0.5 — 0.7 where STAR
measures a width o4 ~ 0.25—0.4. Again, this model would also not be able to explain
the soft ridge.

The work presented here fits into the second category of ridge theories. Correlated
partons arise from a common transverse fluctuation in parton density. These fluctua-
tions or “hot spots” extend longitudinally but are small in transverse size. Azimuthal
correlations arise due to the relationship between hot spots and their transverse boost

vector, an idea originally proposed by Voloshin [60]. Ref. [25], incorporates this ra-
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dial boost model with a description of hot spots using CGC-Glasma theory. This
description finds general agreement with the soft ridge amplitude vs. centrality for
Au+Au 200 GeV collisions, but does not explain the azimuthal shape or behavior
with centrality. Furthermore, this model does not provide any connection to the hard
ridge.

In this work, we improve this theory, finding that the Glasma+flow conditions can
indeed describe the azimuthal profile of both the soft and hard ridges. Additionally,
we show that the Glasma conditions allow for common descriptions of the soft ridge
for different collision systems and energies. However, our approximations lead to a
flat ridge in relative rapidity n for all centralities. STAR data shows, however, that
the ridge width grows with centrality [1, 26, 51].

Although produced by different mechanisms, jet triggers and thermal partons gain
correlations based on a common location in the transverse plane. An idea presented
by Shuryak [79] and discussed in detail in Sec. 6.2, Ref. [79] gives no explanation
of the longitudinal extent of the fluctuation and is therefore unable to estimate the
magnitude of the effect, but calculates an azimuthal distribution that is wider than
the measured data. In this work we address and incorporate these features. We both
find the magnitude of this contribution to the hard ridge and show that this wide
correlation in azimuth, when combined with narrow soft ridge correlations, improves
our agreement with the hard ridge.

The parton bubble model (PBM) [62] relies on a similar mechanism, where trans-
versely boosted bubbles or clusters of partons from the PBM event generator are
correlated with HIJING jet events. This model finds a stinkingly similar looking cor-
relation structure to the hard ridge. They further decompose the near side, showing
that the broad ridge structure is still seen after removing all particle pairs except
those that come from the same bubble. Conversely after removing all background

pairs as well as all bubble particles, a jet peak is seen. Further, more quantitative,
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comparisons to data could be exciting.

Additional qualitative support for this category of ridge models is found in Ref. [65].
Correlation analysis is preformed using the NEXSPHERIO event generator and full
hydrodynamical code. Here initial conditions taken from NEXUS [171] strings pro-
duce hot spots that evolve following hydrodynamics from the SPHERIO code [172].
They find both a long range ridge and what looks like a jet peak, though no jets
are present. Although further quantitative comparison is needed, it is precisely this
approach that would provide a full description of the correlation landscape since hy-
drodynamics automatically accounts for energy and momentum conservation.

The recombination model [70, 71] fills the final category for ridge explanations.
This model attempts to address both ridges as the same phenomenon. The authors
explain that ridges arise because thermal partons are enhanced by semi-hard scat-
terings at early times and form hadrons at late times via recombination. They note,
however, that in the absence of a theoretical framework to calculate the enhance-
ment, the thermal distributions of ridge particles is extracted from data. This work
points out the importance of late stage effects such as hadronization, as well as the

consequences of the geometrical orientation of jet triggers on measured ridge yields.

9.2 Conclusions

In this work, we develop a beginning theoretical framework for understanding
some of the features of the ridge seen in two particle correlation studies at RHIC.
Specifically, we explore the near side ridge, its long range behavior, and the connection
between the soft and hard ridge measurements. Our original interest in the ridge,
however, stems from the viscous broadening seen in the p, -weighted ridge from which
Gavin and Abdel-Aziz extracted a shear viscosity to entropy density estimate [38].
Our ultimate goal is to expand the work presented here to understand the full (n—¢)

correlation landscape.
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Possibly the most striking feature of the ridge is that two particle correlations
seemingly extend to a long range in 7. Causality limits the influence of transport
dynamics past ~ 1 — 2 units in 1, but the PHOBOS measurement indicates a ridge
in the interval —4 < n < 2 [4, 5]. These long range correlations, then must arise
at the earliest stages of the collision when the first partons are produced. At the
instant of a collision, CGC theory predicts the formation of longitudinal flux tubes
with small transverse size. In our simple view, rapid longitudinal expansion stretches
these tubes to long distance, and the tubes then thermalize into partons. Realistically,
tube desolation begins before before longitudinal expansion is complete. Although
now causally separated, partons coming from the same tube, no matter the rapidity
difference, are correlated by their common spatial (radial) origin. Transverse flow
then builds and provides a transverse boost to particle density fluctuations (emerging
from tubes) based on their initial radial position. Combining these two aspects, we
find that we can explain the amplitude and azimuthal width of the soft ridge (away
from the jet peak). In particular, we find that the azimuthal shape of the ridge is due
to transverse flow, which we include via a blast wave model. We fix the amplitude
in 200 GeV Au+Au collisions only, and find that we cannot explain the changes
with centrality or collision energy without the inclusion of CGC-Glasma conditions.
Additionally, we are able to predict the soft ridge azimuthal width and amplitude for
Cu+Cu systems only through appropriate adjustment of the CGC parameter Q.

The differences between the soft and hard ridges is another debated question,
since the soft ridge is intended to study bulk effects, where the hard ridge is intended
to study medium modifications from the passage of a jet. To test our model in the
context of the hard ridge, we perform our soft ridge calculation for increasingly higher
p ranges. We find that as the soft ridge becomes harder, the amplitude drops and
the azimuthal width narrows. This behavior is expected since the p; limits eliminate

the lower momentum pairs, lowering the correlation strength and isolating pairs with
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higher p; and narrower relative azimuthal angle. These trends are supported by
STAR measurements [26]. Performing our soft ridge calculation with the hard ridge
asymmetric p; limits, we find a soft contribution to the hard ridge that accounts for
~ 75% of the hard ridge amplitude, but has a narrow azimuthal profile.

Following ideas in Ref. [79], we include incidental correlations of jets with flux
tubes based on common production positions. Measured jet emissions from the bulk
are biased either toward the surface or toward radial emission due to quenching,
while radial flow pushes bulk particles toward more radial trajectories. The angular
correlation between the jet and bulk particles is too wide to explain the data alone,
and makes up only ~ 25% of the amplitude. The combination of Bulk-Bulk and
Jet-Bulk correlations provides nice agreement with the hard ridge central amplitude
and azimuth width. We conclude from this that the soft and hard ridges arise mainly
from the same phenomenon, an idea that surprises some [173, 174].

The azimuthal profile of the ridge could then be used to distinguish between bulk
and jet effects. As seen in Fig. 6.13, as the minimum p; of the soft ridge is increased
the azimuthal width should decrease until the effects of jets becomes dominant at
which point the width should increase again.

Thus far we have largely neglected the rapidity dependence of the ridge. How-
ever, shear viscosity can broaden the rapidity correlations of momentum current cor-
relations as seen in Ref. [28]. As suggested by Gavin and Abdel-Aziz in Ref. [38],
measuring C allows access to the momentum correlation function Arg. This work is
underway, see e.g.[175, 176]. Freeze out effects and radial flow link the spatial widths
after diffusion with the momentum widths taken from the ridge shape. Information
on o4 and o, can then constrain the shear viscosity to entropy density ratio extracted
from C. Further constraint would come from determining the initial widths before
viscous diffusion.

Lastly, we remark that there is still much work to be done before we can fully
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explain all features of the ridge. We must focus on descriptions of both the jet peak as
well as the away side in the context of our framework. To a larger extent a complete
description of the ridge would entail a combination of a theoretical description of
rapidity and azimuthal widths at the QGP formation time (i.e. with CGC theory),

with a more realistic full hydrodynamical model.
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Appendix A
Appendix A: Kinematic Variables

In this Appendix, I will review some useful kinematic variables common to rela-
tivistic heavy ion collisions. They are defined in such a way that they have simple
properties under Lorentz transformations. We also make use of natural units so

c=h=1.

The space-coordinates of a point are defined by the 4-vector

o = (2,2, 0%, 2%) = (4,7) = (.Y, 2). (A1)

Similarly, the momentum vector is

=% p", % p*) = (E,p) = (E,ps, Dy, p2)- (A.2)

These covariant vectors transform with the space-time metric tensor

v

such that g, " = x,.
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A.1 Light Cone Variables

The light-cone coordinates are defined as
ot = (t+2)/V2. (A.3)
Similarly the light-cone momentum is
p* =’ £p7)/V2. (A4)
The scalar product in these coordinates becomes
x-p=ap —xpt —a-p (A.5)

so the uncertainty principle is now

A.2 Rapidity

The rapidity variable, y, is defined in terms of the total energy and longitudinal

momentum of a particle such that

1 Do +pz)
=—In{——]. A7

It can be thought of as the ratio of the forward light-cone momentum to the backward
light-cone momentum. Rapidity is a convenient way of expressing the longitudinal
energy of a particle, since it only requires an additive constant to change frames

of reference. Other relations of the rapidity, energy, and longitudinal momentum
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include,

y = tanh™* il (A.8)
p. = mysinhy (A.9)
E = m;coshy (A.10)

with my; = /m?2 + p?.
Experimentally, it is more difficult to measure the energy of a particle than the

momentum. Therefore, experiments often report the pseudorapidity variable

n = —In[tan(0/2)] (A.11)

which depends on the angle, 6, the particle makes with the beam (longitudinal) axis.

Its relation to rapidity is more clear when written in the form

() o

Like the rapidity variable, there are further relations of with total momentum and

longitudinal momentum that are useful:

n = tanh ™ %1 (A.13)
p» = pesinhy (A.14)
|p] = pr coshn (A.15)

taking p; = 1/p? — p?. The relationship between y and 7 is even more clear when

one compares equations (A.9) and (A.14) . At very large p,, the two quantities are

essentially the same.
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We can also define a space-time rapidity

ns = %m <£> , (A.16)

T

In terms of the space-time position, the variable 7, also transforms with an additive

constant. After a longitudinal boost we have

% = tanh ), (A.17)
z = 7 sinh 7 (A.18)
t = 7 coshn. (A.19)

Here 7 = /t? — 22 is the proper time, which is invariant under longitudinal boost.
Note that by the uncertainty principle, a particle will have m; ~ 1/7, and that up to

a constant of order one, rapidity is defined as

1 ot ot o+
y = 5111 <;) ~ In (% ~In — ) s (A.20)

Thus, all rapidities in momentum space and coordinate space are of the same order

of magnitude. [18]

A.3 Momentum Fractions

Quantum field theory approaches relativistic scattering as interactions of fermions
through the transfer of a virtual vector boson. Deep inelastic scattering, experiments
for example probe the structure of a proton through high a high energy collision with
an electron. The electron has 4-momentum k and scatters elastically with a quark
inside the proton. The collision with the proton is inelastic; the remaining quarks and
the kicked quark must fragment into hadrons. The electron collision with the quark

however is elastic, and we can determine the momentum transfer in the collision ¢
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by measuring only the final momentum of the electron. The electron moves off with
some new momentum &’ and the momentum transfer to the kicked quark is defined

as

qg=k—k. (A.21)
If the original momentum of the kicked quark p is some fraction x of the total mo-
mentum of the proton P, so p = xP then its final momentum is p+ ¢ = P + q. The
invariant mass of the scattered quark is then

me=(p+9)* =277+ ¢ (A.22)

Defining the momentum transfer Q> = —¢* and assuming that the parton mass is

much less than Q?, (A.22) becomes

0=20-7—Q*=2zP -7— Q> (A.23)
and
Q? Q?
_ 2 A.24
YT 9B ¢ 2Mw (4.24)

where M is the proton mass and v = F — E’ is the energy transfer. Finally, taking

the Mandelstam variable § we have
s=(p+k)?=25k=2aP k=us (A.25)

where the electron and proton masses have been neglected and s is the center of mass

energy of the collision.
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Appendix B

Appendix B: The Glauber Geometric Approach to Nucleus-Nucleus

Collisions

In this appendix, we review the Glauber model of nuclear collisions following
20, 87, 88, 177].

At high enough energies in nuclear collisions, the paths of colliding nucleons can
be approximated by straight lines. However, depending on the density of the colliding
nuclei, and the geometry of the collision, a nucleon in the projectile nucleus can suffer
multiple scatterings during its passage through the target nucleus. The Glauber ap-
proach approximates nuclear collisions through the interactions of individual baryons
with a nucleon-nucleon inelastic cross-section oy, [20, 87, 88, 177]. This method char-
acterizes nuclear collisions with several geometrically dependent quantities. Here we
will briefly discuss some of the more common quantities used throughout this work.

As we will develop in this Appendix, in nucleus-nucleus collisions, the number of
nucleons that suffer inelastic collisions depends largely on the impact parameter b of
the collisions. The impact parameter is defined as the transverse separation of the
centers of the colliding nuclei as shown in Fig.B.1. Experimentally this parameter
cannot be directly measured, however a Zero Degree Calorimeter positioned on the
beam axis can measure the energy of the nucleons that did not participate in the
collisions called “spectators”. “Participant” nucleons are those that suffer at least

one inelastic scattering during the collision. They are also called “wounded” nucleons
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Nucleus B

Z
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Nucleus A

Figure B.1: A geometrical description of Nucleus-Nucleus collisions.

since they fragment into secondary particles after the collision. Wounded nucleons
do not make it to the Zero Degree Calorimeter as baryons, so the measurement of
spectators is related to the centrality of the collision.

As is briefly discussed in Ch.(4), the observed total multiplicity of hadrons pro-
duced in nuclear collisions is related to the number of participants, Ny, as well as
number of binary nucleon-nucleon collisions, N.,;. For this reason, it is common to
study emerging phenomenon as functions of centrality via Ny and Ney.

We would like to calculate the probability of inelastic baryon-baryon collisions
(with cross section o0y,) given the densities and overlap regions of the nuclei. The
probability of finding a baryon in nucleus A within the volume element ds dz, is

p.(s,2,), normalized so that

/pA(g,zA)dgdzA =A, (B.1)

where A is the number of baryons in the nucleus. We take a Woods-Saxon density

profile of nucleons in a nucleus

_ Po
pA(/r) - 1+ €(T7<T>)/€ (BQ)
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where (r) is the average nuclear radius, e = 0.545 controls the sharpness of the edges
of the nucleus, and p, is the density normalization factor. The elemental probability
dP that a baryon found in the volume element ds dz, at position (5, z,) of nucleus
A will have a collision with a baryon in nucleus B found in the volume ds dz, at the

position (|b— 3], z,,) is

»~B

. i
P CER VAR Ry (B:3)

where oy, is the cross section for an inelastic collision.

It is convenient to write the thickness function of nucleus A as

where

/TA(s)d23 =A (B.5)

and similarly for nucleus B. The total probability for a baryon-baryon collision at

impact parameter b is 07,7, (b)/AB where

T, () = / T\(8)T, (8 - &)dPs dz, dz,, (B.6)

with

/TAB(b)d% = AB. (B.7)

We can always change our view of the collision so that b aligns with the 2 direction
and so from now on, we will take b— b.

With the thickness functions and T

.5, We can write down the probability for
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exactly n baryon-baryon collisions at an impact parameter b as

where the first factor on the right hand side is the number of combinations for finding

n out of AB possible collisions

AB | (4B)!

~ nl(AB —n)! (B.9)

The second factor is the probability of exactly n baryon-baryon collisions and the
third factor is the probability of exactly AB — n misses. From this, we can find the
total probability of an inelastic event during the collision of nucleus A with nucleus

B at impact parameter b. This probability is the sum of (B.8) fromn =1ton = AB

as follows,
d AB AB T b . AB
%:ZP(n,b)zl— {1—%} , (B.10)
n=1

and the total cross section is then

oAB _ / (1 - {1 - W}AE;) %, (B.11)

Also, the average number of nucleon-nucleon collisions, N, is then

Ncoll(b) =T (b)am <B12)

AB

Since it is possible for each nucleon to suffer zero, one, or more collisions during its
travel through the opposing nucleus, it is also interesting to know the total number
of nucleons that (participate) have at least one inelastic collision for a given impact

parameter. Let us first assume a p+A collision and find the number of collisions.
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Now B=1 and (B.8) reduces to
A o qn 1A4-n
P ,(nb) = {M] [1 — M} 7 (B.13)

which is the probability of the proton having n inelastic events with a “row” (T, (b))
of nucleons in nucleus A. We have the probability of any event as
do’f’f = T (b)aln 4 —0;
%:ZPPA(n,b):l— [1—AT1 ~ 1 — e omTal), (B.14)
n=1
Now instead of a single proton, we imagine a row of nucleons intersecting the same
row in nucleus A. To find the probability of a collision for this scenario, we need only
multiply (B.14) by the number of nucleons in the incoming row, T, (|b — s|), and find

T,.(]b—s|)[l —exp(—0imT,(b))]. The same idea follows for a row of nucleons in nucleus

A intersecting nucleus B. The number of nucleons participating in the collision is then

Npart(b) = /dQS [TA(S) (1 — e_"i"TB“b_s‘)) +T,(]b—s|) (1 — e_"i”TA(s))] . (B.15)

We can also calculate the average density of participants. Equation (B.15) has
two terms in the integrand, the number of nucleons in nucleus A that participate in
collisions with nucleus B, and vice versa. Since these values are found from nucleon
densities we can write (B.15) in the terms npu (b, s) = Npare , (0,S) + Npart 5 (b, S)
where npet,(b,8) = T,(s)(1 — exp[—0iT,(|b — s])]), and npee (b, s) = TH(|b —
s|)(1 — exp[—0in T, (s)]), such that [ npe.(b, s)d*s = Npar(b). With these definitions

we can calculate the average density of participants in nucleus A as

p (b) _ fd28 npa?“t,A(ba 3) npart(ba 3)
e fdQS Npart (b, 5)

(B.16)

and similarly for the average density of participants in nucleus B. If A and B are
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symmetric, identical nuclei, then the density of participants in A will be the same as
in B. This would not be true, however, for a Monte Carlo Glauber simulation. The
method presented here has smooth density distributions and adds up fractions of par-
ticipants where MC simulations have individual nucleons that sometimes participate
and sometimes not. Over an average of an ensemble of events, the two methods will

agree.
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ABSTRACT

TWO-PARTICLE CORRELATIONS AND THE RIDGE IN
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Measurements at the Relativistic Heavy Ion Collider (RHIC) find an enhancement
of two particle correlations in relativistic heavy ion collisions, not present in proton-
proton collisions. Because the correlation structure is wide in relative pseudorapidity
and narrow in relative azimuthal angle, it is known as the ridge. The most striking
feature of the ridge is that it seems to extend to a long range in relative pseudorapidity,
where causality limits interaction. Similar ridge structures are observed in correlations
of particles associated with and without a jet trigger. We argue that the untriggered
ridge arises when particles formed in an early Glasma stage later manifest transverse
flow. We extend this study to address the triggered ridge in the same context. Finally

we address the effects of shear viscosity on our correlation formalism.
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