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Chapter 1

Introduction

Correlation measurements have played an integral role in the most exciting dis-

coveries at the Brookhaven Relativistic Heavy Ion Collider (RHIC) [9, 30, 31, 32].

Correlation measurements teach us how the particles produced in a high energy col-

lision influence each other. RHIC correlation measurements such as flow and jet

quenching, have demonstrated that these interactions are extremely strong, perhaps

as strong as possible. The success of these measurements has inspired other corre-

lation studies such as forward-backward correlations [33, 34, 35], and the so-called

“ridge”.

We begin with a motivation for ridge related studies, a description of ridge fea-

tures, and general concepts behind the ridge formation. We then provide a general

background to relativistic heavy ion collisions in Ch. 2, and theoretical backgrounds

of the effects of flow and freeze out and the initial state of the collisions in Ch. 3 and

Ch. 4 respectively. In Ch. 5 we follow Refs.[36, 37] and detail our theoretical descrip-

tion of specific ridge features highlighting the long rang behavior and importance of

our choice of particle production mechanism. We extend this framework in Ch. 6 to

discriminate between different ridge measurements and show they all result from the

same phenomenon. Chapter 7 adds insight into the shape of the ridge based on the

effects of viscous diffusion and focuses on changes in freeze out conditions related to

viscosity [38, 39]. Finally in Ch. 8 and 9 we discuss aspects of the ridge not addressed
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in this work and summarize our results.

1.1 Motivation

A range of measurements indicate that relativistic heavy ion collisions produce

a fluid that flows collectively, see Ref [40] for recent review. In particular, elliptic

flow measurements are described at the 10% level by hydrodynamics. This implies

that the fluid is very nearly that of an ideal (viscosity-free) liquid. In this sense the

collective interactions are as strong as possible.

One observes elliptic flow with a two particle correlation measurement [40]. A

comparison of hadron momenta shows an asymmetry in the azimuthal distribution of

final state particles in off-center, peripheral collisions. In head on, central collisions,

particle momenta are, on average, uniform in all directions; the azimuthal distribution

is circular. In peripheral collisions, however, the azimuthal distribution is football

shaped. The famous result is that this asymmetry is correlated to the geometry of the

colliding nuclei, and that as collisions become more peripheral, this effect increases.

Jet quenching measurements demonstrate that the fluid medium influences jet pro-

duction [7, 41, 42, 43, 44]. Naively, perturbative Quantum Chromodynamics (pQCD)

would suggest that such effects should be very small. Specifically, the factorization

theorem of pQCD implies that any effect of the medium on the inclusive cross sec-

tion for AA → jet + X be small and vanish as pt → ∞ [45, 46, 47]. Correlation

measurements escape this restriction.

Jet quenching is also observed with a two particle correlation measurement. Here

the momentum of a high pt trigger particle is compared with the momenta of particles

in an associated pt range - the supposed pt range of jet fragments [41, 42, 43, 44, 7].

At small azimuthal angular differences, on the “same side” as the leading jet particle,

measurements find particles with momenta in a similar direction as the jet in excess

of the background. However, similar correlations with particles ∼ 180◦ are missing
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or suppressed. This is unique to heavy ion collisions where, unlike in proton-proton

(p+p) collisions, the momentum conserving “away side” jet must pass through and

is quenched by the comparatively large and dense medium.

If the medium influences jet production, one can then ask to what extent the jets

influence the medium. This has been much harder to demonstrate. The search for

the jets’ impact on the medium inspired a range of correlations studies such as the

(hard) ridge.

Separate ridge measurements highlight different aspects of heavy ion collisions

including medium response to a high pt trigger [2, 3, 4, 5, 48, 49, 50], bulk medium

evolution [1, 26, 51], and the pt dependent evolution of the system [28, 52, 53, 54, 55].

We call the first the “hard ridge” due to its examination of particle pairs selected by a

high pt trigger and lower pt associates also in a “hard” region of the particle spectrum.

The latter two untriggered measurements fall in the category of the “soft ridge” since

all possible particle pairs contribute; this measurement is made with and without

pt weighting of correlated pairs. All ridge measurements indicate that two particle

correlations extend to a long range in relative (pseudo)rapidity. Understanding this

phenomenon is one of the primary goals of this work, and requires study of both the

initial conditions of the collision and the following evolutionary dynamics.

To study the response to the medium to the passage of jets, correlation measure-

ments compare both azimuthal and longitudinal distributions of momentum. After

accounting for expected sources of correlation including elliptic flow, jet fragmenta-

tion, and global momentum conservation, an excess correlation structure remains.

These unexplained excess correlations are important because they can provide ad-

ditional insight to the connection between the initial state of the collision and the

dynamics and modifications to the produced medium. Such measurements comparing

the relative momentum differences of all possible pairs of produced hadrons find the

striking result that excess correlations exist over large separation in (pseudo)rapidity.
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Figure 1.1: Two particle correlation measurements for Left: p+p (Soft Ridge) [1],
and Right: central d+Au (Hard Ridge) [2].

These long range correlations are exciting because causality limits the interactions of

partons to ∼ 1 − 2 rapidity units, meaning correlations beyond this limit must re-

sult from correlations at the point of particle production rather than from kinematic

transport.

1.2 Description of Ridge Features

Two particle correlation measurements such as the ridge examine the distribution

of final state particle pairs by counting the number of pairs with the same azimuthal

separation φ = φ1 − φ2 and same (pseudo)rapidity separation η = η1 − η2. As shown

in Fig. 1.1, in p+p, deuteron-gold (d+Au), and very peripheral gold-gold (Au+Au)

collisions, these measurements find a “near side” peak centered at φ = η = 0 that is

similarly narrow in both φ and η. This peak is representative of the columniation in

the spray of particles coming from jet fragmentation. The momenta of these particles

point in the direction of the leading jet particle, meaning the jet fragments have small

φ and η separations. The “away side” structure, centered at φ = π, appears flat in

η. This structure is due momentum conservation and longitudinal asymmetry of jet



5

Figure 1.2: STAR hard ridge, Au+Au, 200 GeV, 0−10% central [3]. The “#entries”
on the vertical axis represents the yield of correlated pairs per jet trigger, with the
trigger in the range 3 < pt,trigg < 4 GeV and paired with a particle in the associated
range 2 < pt,assoc < 3

locations.

The triggered hard ridge measures the correlated yield of associates per jet trigger,

(1/Ntrig)dN/dφdη. The intention is to isolate jet effects by specifically examining

correlations of trigger particles in a high pt range with associated particles in a lower

pt range. Conversely, the untriggered soft ridge measurement studies all possible

particle pairs ∆ρ(φ, η)/
√
ρref = (ρsib − ρref )/

√
ρref where ρsib is the distribution of

particle pairs from the same event and ρref is the distribution of particle pairs from

mixed events. Although these measurements are related, the observables are not

directly comparable; understanding this relationship is one of the goals of this thesis.

In Au+Au collisions, jets are expected to modify the hot dense medium. There-

fore, one might expect to find a change in the 2-D (φ, η) correlation structure. Perhaps

such changes would provide clues into the mechanism causing jet energy loss and a

quantification of the modification to the medium.

The near side jet-triggered correlation structure for central Au+Au collisions is

shown in Fig. 1.2. A jet peak near η = φ = 0 likely consists of particles from the

fragmenting jet trigger, assuming the high pt trigger particle is indeed from a jet. The
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Figure 1.3: Minimum-bias soft ridge correlations for several centralities from periph-
eral (left) to central (right) in 200 GeV Au+Au collisions from [1].

hard ridge appears in Au+Au collisions as a pedestal-like enhancement of the yield

at small φ under the jet peak. The ridge is much wider in η than the jet peak and is

absent from d+Au collisions.

This pedestal is broad and seemingly flat in η but shares the same narrow φ profile

as the jet peak. This structure gains the title of “the ridge” because of its resemblance

to a mountain ridge. The further designation of “hard ridge” refers to its examination

of jets which come from “hard” scatterings. The striking and unexpected feature of

the STAR hard ridge is that correlations of high pt particles with a jet trigger extend

up to 2 units in rapidity (the entire STAR acceptance). The main question here is, if

the jet somehow induces correlations with the medium during its passage, how large

is this effect, and how far in rapidity does it reach? To answer this question one can

study the correlation structure from the medium itself, without the isolation of high

pt particles.

STAR also makes separate correlation measurements without a jet trigger. Unlike

the hard ridge measurement, correlations of all possible pairs of particles with any

pt show a similar 2-D correlation structure. Like the hard ridge, the soft ridge has a

near side peak centered at φ = η = 0 that is narrow in φ and broad in η. The soft

and hard ridges have been considered separate phenomenon because of the difference

in the dominant particle production mechanisms in the two pt regimes.

The momentum spectrum in relativistic Au+Au collisions seems to follow a power

law past ∼ 2GeV which is described nicely by jet production. Not coincidently, the



7

minimum momentum of associated particles in the hard ridge measurement is taken

to be 2 GeV. However, more than 99% of all the particles produced in these collisions

are in the soft or bulk region (below 2 GeV). Particles in this range are primarily

thermal and well described by hydrodynamics in Au+Au collisions [9, 30, 31, 32].

Correlations amongst these particles resembling those of the hard ridge suggests that

the ridge shape is a general feature of heavy ion collisions rather than a modification

of that system.

The exploration of the possible relationship between the two ridges is another

goal of this thesis. In particular, we focus on the azimuthal width and amplitude of

the ridge, away from the jet peak. Fig. 1.3 shows the soft ridge in 200 GeV Au+Au

collisions for selected centrality cuts. Notice that in peripheral collisions (left most

graph in Fig. 1.3), the correlations structure resembles that in p+p (left graph in

Fig. 1.1). As the centrality increases the ridge appears and becomes more prominent.

The azimuthal width of the soft ridge in Fig. 1.3 remains roughly constant with

centrality, at about σr ∼ 0.7. In comparison, the hard ridge is much narrower at about

σr ∼ 0.3. The amplitude of the hard ridge is also considerably less than the soft ridge.

Naively one would expect this since the number of possible pairs contributing to the

hard ridge comes from 1% of the total multiplicity and the soft ridge examines all

particle pairs. For this reason, in the soft ridge, the jet peak would be overwhelmed

by correlations from bulk pairs. Although the observables are different, it should

be possible to examine the emergence of a hard ridge-like jet peak in the soft ridge

through the implementation of appropriate pt cuts [26].

The PHOBOS measurement of the ridge (Fig. 1.4) finds the most interesting

and most discriminating feature, as it extends to a range as large as −4 < η < 2

[4, 5]. Correlations existing over a causally disconnected range must then arise at the

earliest stage of the collision when the first partons are produced [25, 36]. Therefore,

fluctuations in the initial conditions of heavy ion collisions directly impact the shape
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Figure 1.4: Per-trigger correlated yield with ptrigT > 2.5 GeV/c as a function of ∆η
and ∆φ for 200 GeV PHOBOS Au+Au collisions [4, 5].

of the ridge.

1.3 The Ridge from Fluctuations and Flow

In this dissertation, we propose an explanation for the soft ridge based on fluc-

tuating initial conditions and later stage transverse flow. Particles produced in a

common local region share an initial spatial correlation based on the fact that they

were produced within that same density fluctuation. Taking each fluctuation as a

fluid cell with small transverse size comparative to the nuclear overlap region, the

following dynamical evolution will have approximately the same effect on all particles

in the cell.

The amount of work done on a fluid cell then depends on the pressure gradient

of the system inside the radial position of the cell. In other words, transverse flow

radially boosts all particles in the fluid cell depending on the initial radial position of

the cell. Since the pt of particles coming from the same fluctuation is related to their

common origin, the initial state spatial correlation then translates into a final state

momentum correlation.

Furthermore, to obtain long range rapidity correlations, fluctuations must extend
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over a large longitudinal region. This relies on both the Bjorken expansion assumption

that links soft particle rapidity to longitudinal position, and a source of fluctuations

that is uniform over a large longitudinal distance and has small transverse size.

Almost instantaneously after a collision of two nuclei, Color Glass Condensate

(CGC) theory predicts that the transverse fields of each nucleus are transformed into

longitudinal fields that are approximately uniform in rapidity [56, 57, 58]. The fields,

which are random over transverse distances larger than Q−1
s where Qs ∼ 1 − 2 GeV

is the saturation scale, comprise a series of flux tubes. Given a dense distribution

of flux tubes, the system enters a “Glasma” pre-thermalization phase as the tubes

evaporate into particles. The Glasma description describes many features of the

matter produced in the high density environment produced in nuclear collisions, and

allows for a systematic weak coupling computation. The contribution of flux tubes

to long range correlations is studied in the Glasma formulation in [25, 36, 37, 59].

We take CGC flux tubes as the source of the fluctuations that produce the soft

ridge. The Glasma scenario provides a distribution of tubes and gluon density per

tube which allows for a quantative comparison to the change in ridge amplitude. Ours

is one of a family of models in which particles are initially correlated at the point of

production [25, 60, 61, 62, 63, 64, 65]. Long range rapidity correlations arise because

flux tubes stretch between the two nuclei and particles from the same flux tube start

at nearly the same transverse position, regardless of rapidity. Flow then boosts the

correlated particles into a small opening angle in φ. Flow models have also been used

to describe qualitative features of the hard ridge [65], [66].

The hard ridge has most commonly been described as a consequence of the jet

passing through the flowing bulk matter produced by the nuclear collision [67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77]. While in principle jets and minijets may contribute

to the soft ridge [78], the overwhelming success of hydrodynamics at low pt suggests

both effects play a role. Of particular interest in this regard is work by Shuryak in
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which jet quenching and transverse flow of the bulk play a combined role [79]. Jet

quenching produces a near side bias by suppressing the away side jet. Near side jet

particles are then correlated with other particles from the same jet or transversely

flowing bulk particles.

We propose that the near side of both hard and soft ridges arise as a consequence

of primarily the same phenomena. Long range correlations arise as a consequence

of initially long color flux tubes that provide particle density fluctuations which feel

later stage transverse flow.
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Chapter 2

Background

High energy particle and nuclear physics are fields devoted to the understanding of

nature at its most fundamental level. The most basic questions include: What are the

smallest building blocks of nature, what are their physical characteristics, and how do

they interact to form the matter we observe? Despite their simplicity, it is no trivial

matter to answer these questions. Our current understanding of these questions is

addressed in the Standard Model [80] as described by Quantum Chromo-Dynamics

(QCD), the strong force corollary to Quantum Electro-Dynamics (QED).

Normal matter is made of elements which are categorized on the Periodic Table.

We understand individual elements as atoms with specific configurations of nuclei

orbited by electrons. An element is defined by the number of protons in its nucleus.

The lightest element, Hydrogen, has one nucleon, the proton, where Gold has, on

average, 197 nucleons (79 protons and 118 neutrons). Already we have described

nature at three very different size scales that vary by many orders of magnitude, see

Fig.2.1. The radius of a Gold atom is 144pm, but its nuclear radius is ∼ 6.38fm and

the radius of a proton is ∼ 1fm. Comparably, the electron size is ∼ 10−3fm.

Scattering is a common technique for determining the size of such forms of matter.

In particular, one can scatter electrons from a target, and determine its size from the

defraction pattern. Deep Inelastic Scattering (DIS) experiments have shown that the

proton is not the smallest particle in the nucleus. Scatterings of electrons on protons
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Figure 2.1: Size scales of sub-atomic particles.

show three scattering centers inside the proton, quarks. Free quarks, however, have

not been observed and are confined to hadrons. QCD predicts that the coupling

strength between quarks asymptotically falls to zero with increase in the energy of

the interaction between quarks. This phenomenon is known as asymptotic freedom.

The motivation behind nuclear collisions is to take advantage of asymptotic free-

dom and create a system with energy density high enough that quarks move freely

within the system. RHIC collides Gold nuclei with a maximum center of mass energy

of 200 GeV per nucleon. The resulting system has an energy density nearly 30 times

that of a proton, an order of magnitude greater than that in a neutron star. The

system evolves over ∼ 20fm/c, where c is the speed of light, a time scale expected

to be long enough that the quarks and gluons thermalize into a new form of matter,

the Quark-Gluon Plasma (QGP). The primary goal of experiments at RHIC has been

to gather evidence for the existence of QGP and characterize its physical attributes.

The goals of this thesis fall along the same lines through the use phenomenological

attributes of the QGP along with theories of the initial state of the collision to explain
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Figure 2.2: Table of standard model particles. Image source: Fermilab, Office of
Science

current measurements.

2.1 The Standard Model and QCD

The Standard Model is a description of our current understanding of the most

elementary particles that make up the universe and their interactions. Fig.2.2 cate-

gorizes these particles and lists some attributes. We see that we are already familiar

with some of these particles, namely the electron and the photon. The electromag-

netic interactions of these particles has been understood for hundreds of years, but

the more recent understanding of these particles in terms of quantum field theory

that has provided the basis for the Standard Model.

QED describes the electromagnetic force acting on electrically charged particles

as mediated by the photon. This knowledge comes in part from understanding the

quantum numbers of elementary particles, such as charge and spin. The electron is
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a Fermion with spin 1/2 and charge −1 where the photon is a massless Boson with

spin 1 and no charge. Like the photon, there are other force carrying Bosons that

mediate the weak and strong forces. For the weak force, there are the W± and the

Z0, and for the strong force, there is the gluon.

The weak force, along with the electromagnetic force, describes all interactions

between leptons. This is symptomatic of the result that, at interaction energies on

the order of 100 GeV, the two forces unify. There are other leptons, the muon and

the tau, that like the electron, have charge −1 and spin 1/2, but different masses.

Additionally there are three more leptons called neutrinos - one associated with each

of the electron, muon, and tau. They are spin 1/2, have zero charge, and are massless

in electroweak theory but are seen to have small experimental mass.

Quarks make up the final class in the standard model. They not only feel the

electroweak force described by the SU(2) × U(1) gauge group, but also the strong

SU(3) gauge group. The SU(3) group is determined by interactions of the (strong)

color charges. In addition to the positive and negative electrical charge, an individual

quark can have one of three charges labeled red, green, or blue. There are eight gluons

that carry carry different combinations of these color charges.

QCD then describes the interactions of quarks and gluons in the SU(3)×SU(2)×

U(1) gauge group. The gluons mediate the color force and can interact with them-

selves. There are six quarks called flavors, three with electrical charge 2/3 and three

with electrical charge −1/3. The lightest two, the up and down, make up all of the

visible matter in the universe (protons and neutrons). They also make up the most

common hadron produced in heavy ion collisions, the pion. The remaining quarks in

order of mass are the strange, charm, bottom, and top.

Quarks combine to form hadrons, which are the particles that we ultimately detect.

Individual quarks carry both a color and electrical charge. Unlike the electrical charge,

the total color charge of a hadron must always add to a neutral (colorless) state. This



15

corresponds to the confinement condition that prevents experimental observation of

a free quark.

Hadrons come in two categories, baryons, containing three quarks, and mesons,

containing two quarks. A proton is and example of a baryon since two up quarks

and a down quark combine to describe its quantum numbers (p = uud). Similarly, a

pion is made of combinations of an up with antidown (π+ = ud̄), down with antiup

(π− = dū), or π0 = (uū+dd̄)/
√

2. In addition to the valence quarks that describe the

quantum numbers of the hadron, there is a “sea” of quarks and gluons that contribute

to the total distribution of the hadron. The primary goal of deep inelastic scattering

experiments is to map out this distribution.

The confinement condition is central to the motivation for studying relativistic

heavy ion collisions. The goal is to create an environment where the temperature

and energy density is high enough that quarks and gluons do not “identify” with any

particular hadron and the color charge is globally rather than locally neutral. This is

perhaps the only situation where one can observe “free” quarks and gluons.

2.2 Relativistic Heavy Ion Collisions

In many ways collisions of relativistic nuclei at RHIC are analogous to the Big

Bang. Each “Little Bang” collision is a space-time event with a sudden deposition of

high energy density into the vacuum. What starts as quantum fluctuations ends as

causally disconnected hadronic matter.

The stages of a heavy ion collision are illustrated in Fig.2.3. In the center of mass

frame, nuclei first appear as highly Lorentz contracted pancakes due to their relativis-

tic speeds. At the moment of the collision, the dense, contracted nuclei pass through

each other in a sort amount of time. Due to large numbers of inelastic interactions, a

large amount of energy is deposited in the vacuum at the collision center. Reminis-

cent of the inflationary period of the early universe, the nuclei continue on, driving
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Figure 2.3: A schematic picture of the matter produced in heavy ion collisions. Image
from S. Bass

a rapid longitudinal expansion of any produced medium [81]. This medium consists

of quarks and gluons that are thought to transition into a thermalized quark-gluon

plasma (QGP), as evidenced by the apparent ideal hydrodynamical expansion of the

system. As the system expands the temperature drops and quarks and gluons must

experience another transition into colorless hadronic states. Finally, rescatterings of

hadrons cease and all hadrons “freeze out”, meaning their momentum will remain

unchanged thereafter.

The initial singularity dictates much about the following evolution of the sys-

tem. A traditional geometrical (Glauber) approach is sufficient to explain many

phenomenon observed in nuclear collisions. The Glauber approach quantifies how

head on or central nuclear collisions are in terms of number of interactions of indi-

vidual nucleons. For example, at a given impact parameter b (b = 0 being the most

central or directly head on), one can calculate, using probability theory, the number

of nucleons that participate in at least one inelastic collision, Npart, and the number

of binary nucleon-nucleon collisions, Ncoll (See Appendix B for a more detailed de-

scription). One can make assumptions about particle production and fluctuations of

initial parton densities based on these quantities. For example, the soft (thermally

produced) part of measured spectrum of hadrons seems to scale with Npart, while

interactions following from perturbative QCD seem to scale with Ncoll. This Eikonal
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model is significantly different in principle from that of the Color Glass Condensate

[19, 16], see Sec.4.5. The Color Glass Condensate approach is described in Ch.4. It

relies on the gluon saturation picture, and distinguishes between perturbative and

non-perturbative processes with a momentum transfer scale Qs. Both approaches

lack the ability to provide a quantitative description of the QGP.

The primary concern of experiments at RHIC is the search for the quark gluon

plasma. At very high temperatures the coupling of the strong force should become

small, and quarks and gluons should become “free” inside the dense medium. If

this is the case, there should be an increase in the number of degrees of freedom

corresponding to those of quarks and gluons rather than hadrons. An ideal gas of

hadrons would have the three translational degrees of freedom, but this number should

largely increase because the availability in QGP for changes of color and quark flavor.

Each gluon would have two helicities and eight colors and each quark has three colors,

two spins, and a quark-antiquark pair. So, the number of degrees of freedom in a

QGP would be 2 × 8 + 3 × 2 × 2 × NF = 52 if the number of contributing quark

flavors is NF = 3. Lattice QCD calculations do see a rapid increase in the number

of degrees of freedom around a critical temperature Tc ≈ 170MeV , see for example

Refs.[82, 83, 84]. RHIC temperatures at the formation stage of the QGP reach 2Tc,

so the relevant degrees of freedom should be those of quarks and gluons.

J/ψ suppression is one proposed signature of the existence of QGP [85]. It relies on

the prevention of the formation of cc̄ pairs through a Debye screening of color charge.

Another signature is the observed enhancement in strange hadrons over those seen in

the same number (Ncoll) of p+p collisions [86]. The ability of ideal hydrodynamics to

explain the the transverse expansion of the system also lends its self to the argument

for the existence of QGP, see Sec.2.3 for more information. For more details about

other possible signature of QGP see [87, 88].

It seems that there is no first order but rather a smooth phase transition from
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the QGP phase to the hadronic phase. The hadronization process itself is also not

completely understood. Hadronization occurs when the system expands such that the

density of partons is not large enough to maintain a global colorless state. Quarks and

gluons combine to form hadrons which freeze out when the mean free path between

hadrons is larger than that of the system.

2.3 Elliptic Flow

Along with jet quenching, the hydrodynamical behavior of the system created in

heavy ion collisions has been one the most striking results from RHIC. Ideal hydrody-

namics does an excellent job of describing the flow of hadrons at pt less than 2 GeV.

In particular, the observation of anisotropic flow is unique to heavy ion collisions and

is a useful tool for relating the geometry of the collisions to the pressure gradients

of the matter produced at the earliest times of the collisions [89]. For this reason,

flow provides a background for correlation measurements, and fluctuations in flow

measurements could probe fluctuations in the initial conditions.

The azimuthal shape of final state particle distributions is seen to change from

central to peripheral collisions [9, 30, 31, 32]. A Fourier analysis of the distribution

provides a mathematical description with quantities (the Fourier coefficients) that

have physical meaning [89]:

1

N

dN

dφ
= 1 + 2v1 cos(φ−ΨRP ) + 2v2 cos[2(φ−ΨRP )] + · · · (2.1)

with

vn = 〈cos[n(φ−ΨRP )]〉. (2.2)

ΨRP defines the angle that the event reaction plane makes with the detector, and the

Fourier coefficients, v1 and v2 relate to the shape of the distribution corresponding

to “directed flow” and “elliptic flow” respectively. These shapes are illustrated in
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Figure 2.4: A diagram of (left) an off-center collision producing anisotropic flow, and
(right) a central collision with small elliptic flow and large directed flow. The x-z
plane defines the event reaction plane. Image created by Masashi Kaneta.

Fig.2.4. If a collision is peripheral, as in the left side of Fig.2.4, then for the colli-

sion of identical symmetric nuclei, the density of the overlap region is larger in the

x-direction than the y direction. The x-direction and the z-direction (beam direction)

define the reaction plane. The anisotropy in density of the overlap area leads to pres-

sure gradients in the collision volume; there is a larger push in the x-direction than the

y-direction. At RHIC, this corresponds to 30% more particles in the direction of the

reaction plan than out of plane, and a large v2 value. The right side of Fig.2.4, corre-

sponds to a central collision, where the resulting volume density is nearly spherically

symmetric. In this case, the transverse push is similar in all directions, minimizing

v2, but corresponding to a larger v1.

The elliptic flow parameter, v2, changes as a function of centrality as well as the

pt of measured particles. Ideal hydrodynamics does an excellent job of describing v2

for pt < 2 GeV [90, 91]. Fig. 2.5 illustrates this point with a compilation of STAR and
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Figure 2.5: Elliptic flow (v2) plotted as a function of transverse momentum pt for
identified hadrons. Compilation of STAR and PHENIX data with hydrodynamic
predictions as presented in [6]

PHENIX data and theoretical predictions [6]. Past this point, ideal hydro predicts

further increase, but the data flattens. The flatness in the data could correspond

to the suppression of high pt particles in nuclear collisions. Fast partons are slowed

to smaller pt as they traverse the medium, decreasing the number of fast hadrons

in the final state, and increasing the number of slower ones. Alternatively, viscous

corrections to hydrodynamics could have the same effects [90, 91, 92, 93, 94, 95, 96].

Thermal partons that have the greatest push from the pressure gradients would have

a larger pt , but viscosity essentially forces the faster partons to drag the slower ones

along, slowing them down.

It is no coincidence, however, that the region of best comparison corresponds with

the soft part of the spectrum. The soft or thermal particles are those thought to

be born of the QGP, where above 2 GeV, pQCD effects start to become important.

The so-called constituent scaling is further evidence for this argument. As seen in

Fig. 2.6, the v2 of both baryons and mesons follows the same trend when the total

v2 per quark is plotted vs. the transverse kinetic energy per quark. In other words,

the total v2 of each baryon is divided by three (the number of valence quarks) and

the v2 for each meson is divided by two. The same is done for the transverse kinetic
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Figure 2.6: The elliptic flow parameter plotted as v2/quark against the transverse
energy/quark [6].

energy of each baryon or meson. The fact that all light hadrons have the same v2

per quark at any given kt indicates that the same transverse energy is given to each

individual quark before hadronization. This fits the flowing QGP picture, but does

not eliminate the possibility that the hadronic phase just has a very large viscosity

which could quickly normalize the momenta of slower hadrons.

The shape of v2 has an impact on correlation measurements. Since there are more

particles pushed in the direction of the reaction plane, and those particles receive

a bigger push, one would find more pairs of particles at small angular separations,

where φ = φ1 − φ2 is the relative azimuthal angle between the particle pair. Pairs

with relative angles φ ∼ 90◦ are comparatively suppressed. At φ ∼ 180◦ one expects

a similar number of pairs with this angular separation to those at small φ. The

correlation background then has the shape

C(φ) = b0(1 + 2〈vtrig2 vasoc2 〉 cos(2φ)) (2.3)

where vtrig2 and vasoc2 are the Fourier coefficients corresponding to angular distribu-

tions of particles in a trigger pt range and that of particles in an associated pt range

[97]. The coefficient b0 is set by the Zero Yield at Minimum (ZYAM) method for

triggered ridge measurements [2, 3, 5, 4, 48, 49, 50], and left as a free parameter in
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soft ridge fits to data [1, 26, 51]. Since v2 is sensitive to fluctuations in initial condi-

tions, and CGC initial conditions predict larger eccentricities in initial elliptic density

distributions (and therefore larger v2), there could be a model dependent effect in

the shape of the ridge. The ridge is a correlation structure that remains after known

sources of correlations are subtracted; the azimuthal width of the ridge depends on

the magnitude of the v2 subtraction. However, this is only a problem in the hard

ridge measurement since the contribution from v2 in the soft ridge measurement is fit

rather than subtracted.

2.4 Jets

During hadronic collisions, partons can scatter with very large momentum trans-

fers. In this case, colored partons move off with large transverse momenta. Such

events are well described by perturbative QCD since for high energy interactions the

strong coupling is small. The high pt partons quickly radiate gluons which split into

multiple quarks which all form hadrons to conserve quantum numbers, momentum,

and a colorless state. This process is called jet fragmentation. Because of the large

energy and pt , the fragments from a jet are focused into a narrow cone opening in

the direction of the original leading particle. Unlike collective phenomenon like flow

and v2, jets are also seen (and more well defined) in p+p collisions. Fig. 2.7 shows

a schematic diagram of a hard scattering of two quarks in a p+p collision forming

back to back jets. In principle, two quarks could scatter elastically into jets, or anni-

hilate on impact and form gluon jets. One parton gains large transverse momentum

and fragments. A momentum conserving away side jet is found 180◦ away in the

transverse plane.

In heavy ion collisions, the situation is somewhat different. If the jets are formed

in the center of the collision volume, they have to traverse the medium before they

escape. Experiments at RHIC have measured unexpectedly low multiplicities of high
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Figure 2.7: Hard scattering of two quarks in a p+p collision, and back to back high
pt jets result.

pt hadrons. This is constant with the saturation picture described in Sec.4.1, and the

discovery of jet quenching.

Jet quenching is the attenuation of the fast colored object as it passes through

the dense strongly interacting partonic medium. Thus, the probability that a jet

escapes the medium is proportional to the length of its path through the medium,

and observed jets are biased toward the surface. Evidence of this is shown in Fig.2.8

[7].

Jets are found by identifying a fast hadron, called the trigger and associated

hadrons within a selected pt threshold. Measurement of the associates’ azimuthal

angle relative to the jet indicates a strong correlation with the leading particle. This

is seen in Fig.2.8, where a narrow peak, that represents the jet cone, is found centered

about small relative angles. Momentum conservation would suggest a peak centered

∆φ = 180◦. Indeed, in p+p and d+Au collisions this peak is present, but absent in

Au+Au collisions.

The absence of a di-jet in heavy ion collisions suggests that the away side jet

is attenuated or absorbed by the medium. If the triggered jet is near the surface
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Figure 2.8: Correlations in azimuthal angle between high momentum hadrons showing
evidence of suppression of back-to-back jets in central Au+Au relative to p+p and
d+Au collisions as seen by the STAR collaboration [7].

of the collision area, then the away side jet must pass through the dense medium.

Quenching of the away jet would support a strongly coupled QGP. Following this

reasoning, the medium could completely quench di-jets produced close to the collision

center, biasing observed jets to the surface. In fact, the identification of jets in central

Au+Au collisions is suppressed by a factor of 4-5 relative to the number found in p+p

or d+Au collisions [43, 98]. In contrast, the number of direct photons which escape

the medium without modification, agrees nicely with the appropriately scaled amount

found in p+p [98].

The response of the medium to the passage of a jet has become an important

topic, and in some sense spurred the work presented in this dissertation. The energy

lost by the jet must equal an energy gain by the medium. Correlation measurements

could observe these changes. The jet quenching measurement is itself a correlation

measurement since it compares the azimuthal angle of hadrons relative to the jet

trigger. The hard ridge measurement is an extension of this, comparing both relative

azimuthal and rapidity coordinates.
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The nature of fragmentation into a narrow cone is responsible for the jet peak.

Fragments splinter off the fast parton, co-moving in the same transverse direction

at about the same rapidity. Therefore, as seen in jet quenching and hard ridge

measurements, there is an abundance of correlated associates at small angles away

from the jet axis, and few at large angles.

Many have suggested that the formation of the near side ridge is a result of the

jet passage through the medium [67, 68, 69, 70, 71, 72, 73, 74, 75]. Ref. [79] suggests

that the jet has coincidental correlations with bulk matter based on the position of

production and transverse bulk flow and jet quenching collaboratively direct particles

to common emission angles. Our work [37], presented here, adopts this prescription,

as described in Ch.6.
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Chapter 3

The Blast Wave Model

Rapid transverse expansion is one of the predominant features of relativistic heavy

ion collisions. The transverse momentum spectrum from RHIC indicates that the

hadronic average final state transverse velocity is larger than that of a freely expanding

thermal source. The conditions at RHIC can be described with a blast wave scenario.

The blast wave model is useful since it describes a significant feature of heavy ion

collisions while incorporating only a small fraction of the physical processes involved

in heavy ion collisions. Given a temperature, it provides a reasonable description of

how a medium of particles gains a collective transverse flow. Among other things,

it does not incorporate the underlying particle production mechanism, perturbative

QCD processes, or the hadronization process. Furthermore, a full hydrodynamical

description would be more useful for characterizing the system, since it would have

information on the equation of state as well as the sheer and bulk viscosity. The

blast wave model is useful, though, because of its simplicity; it characterizes the

transverse expansion of the system with only two parameters, β (also called vsurface),

the transverse velocity, and T , the temperature. Since the collective behavior of

soft particles influences almost all observables, it is convenient to have a model for

specifically that phenomenon.

In this chapter, we review the features of the blast wave model following primarily

Refs. [99, 100, 101]. In Secs. 3.2 and 3.3, we extend this treatment with the intent on
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Figure 3.1: Light cone diagrams indicating different freeze out scenarios. (Left) Con-
stant time freeze out. (Right) Constant proper time freeze out. Higher rapidity
particles freeze out later and the freeze out surface conforms to the beam axes which
move at nearly the speed of light.

its application to our correlation studies.

3.1 Features of the Blast Wave Model

In relativistic ion collisions, the sudden localized deposition of energy produces an

initially hot and dense medium of particles with random transverse motion. Particles

on the surface moving outward from the center of the medium could do so freely, but

surface particles with an inward velocity would scatter from particles in the dense

core. As a result, surface particles will expand outward with an average velocity in

the radial direction. The next innermost layer of particles would scatter from both

the more dense core as well as the outer surface particles. However, as the surface

particles deflected outward, filling more space and becoming more diffuse, the next

layer can also expand outward. The expansion of the entire system follows in this

manner. This anisotropy in density gives rise to pressure gradients that do work to

expand the system. These are the characteristics of a shock or blast wave [99].

The major aspects of the blast wave model are as follows:

• Transverse flow: The outermost layer of particles in the system acquires a radial

velocity because collisions with the next innermost layer continue until the outer

particles have an outward trajectory. Just inside the outer layer, the pressure

gradient is largest, providing the largest push outward. Successive layers will
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receive less of a push as the system expands and the pressure gradient decreases.

The final velocity of each layer of particles then depends on its initial radial

position; the particles starting at a larger radius get a larger transverse boost.

Following this idea, the following calculations utilize a Hubble-like expansion

velocity,

γtvt = λr. (3.1)

• Freeze out: The picture drawn in this chapter, where outer layers of par-

ticles expand out while inner layers continue to interact, changing the sur-

face of the volume in space-time, assumes a constant proper time freeze out

scenario. Rather than assuming all particles freeze out at the same time,

the constant proper time requires that all particles freeze out at the same

proper time, τF = constant =
√
t2 − x2, or in the Bjorken approximation,

τF = constant =
√
t2 − z2 . In this case, faster or higher rapidity particles

freeze out later than slower ones. This is illustrated in the right diagram in

Fig. 3.1. The space-time hypersurface σ defines a borderline between flowing

behavior and free streaming [100]. The element dσµ, moving with momentum

pµ is defined as

dσµ = (d3x, 0, 0, dtdxdy) (3.2)

for constant proper time, and

dσµ = (d3x, 0, 0, 0) (3.3)

for constant time freeze out.

Since the goal of the blast wave model is to determine the distribution of parti-

cles freezing out on σ with velocity β, the differential element of interest is then

pµdσµ, where pµ = (E,p) is the 4-momentum. Cooper and Frye show that this
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differential is also required for energy conservation [101].

• Energy conservation: The reduction of random or thermal kinetic energy (cool-

ing) is precisely the energy associated with the average radial velocity 〈β〉 pro-

viding outward or “directed” flow. A purely thermal source would have a dis-

tribution function ∝ exp[−γE/T ], but in the blast wave picture, energy for

transverse flow is taken from the thermal energy such that the distribution is

∝ exp[−γ(E − v · p)/T ]. As a result, the particle distribution peaks about

a mean radial velocity, where a thermal source would have a peak at a lower

velocity where the multiplicity is higher [99].

• Entropy conservation: The entropy reduction due to the more orderly, collective

motion is equal to the entropy gain from spatial expansion. In other words, the

entropy gain due to expansion of position space is compensated by the entropy

loss from the narrowing of momentum space, implying that the expansion force

is reversable. Gains in entropy, not built into the blast wave model, come from

fluctuations in the medium. If there are only cells of local thermal equilibrium,

processes such as conduction between the cells (thermal fluctuations) and diffu-

sion (momentum fluctuations) would increase the entropy. These contributions

should be small if the system is in a globally thermalized QGP phase.

• Particle Number: Since the blast wave model contains no information about the

initial production mechanism of partons, it cannot predict the absolute number

of particles. Generally the magnitude of blast wave particle distributions are

normalized to data.

• Boost invariance: The transverse boost given to a particle depends only on its

radial position. This implies two things: 1) that longitudinal expansion is sig-

nificantly more rapid than transverse expansion, and 2) that the system initially

resembles a long cylinder with the same azimuthal distribution at any longitu-
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Figure 3.2: A schematic diagram representing the velocity of a fluid element as two
successive boosts in a uniform cylindrical system. The scenario depicted here infers
that the transverse velocity depends only on the transverse boost and is independent
of the boost to the longitudinal position.

dinal position. The velocity at any position, then consists of a longitudinal and

transverse boost as illustrated in Fig. 3.2. Consequentially, the gamma factor

is then approximated as a factorization of the two boosts, such that γ ≈ γzγt.

• Boltzmann Distribution: For mathematical simplicity, a Boltzmann distribu-

tion (with transverse boost) has been taken in replacement of Fermi or Bose

distributions.

Cooper and Frye show in Ref. [101] that the distribution of particles with mo-

mentum pµ within a surface element dσµ in the neighborhood of space-time point xµ

is

E
dN

d3p
=

∫
σ

f(x,p)pµdσµ. (3.4)

We can then calculate important quantities including N , dN/dy, 〈pt〉, and v2, from
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(3.4) as follows:

N =

∫
E
dN

d3p
d3p (3.5)

dN

dy
=

∫
E
dN

d3p
ptdtdφ (3.6)

〈pt〉 =
1

N

∫
pt E

dN

d3p
d3p (3.7)

v2 =
1

N

∫
cos 2φ E

dN

d3p
d3p (3.8)

Following closely to [100], we choose a Boltzmann phase-space distribution

f(x,p) = ae−(uµpµ)/T (3.9)

which is boosted by the local fluid velocity uµ(x) and a is a normalization constant.

Following the boost invariance approximation, uµ(x) represents successive longitudi-

nal and transverse boosts,

uµ(x) = (γ, γv) = (γzγt, γtvt(r), γtγzvz) . (3.10)

We define a “spatial” rapidity, η representing the longitudinal boost

z

t
= tanh η (3.11)

z = τ sinh η (3.12)

t = τ cosh η (3.13)

τ =
√
t2 − z2. (3.14)
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Furthermore (3.12) can be rewritten

γzvz
γz

= tanh η (3.15)

γzvz = sinh η (3.16)

γz = cosh η (3.17)

such that (3.10) can take the form

uµ(x) = (γt cosh η, γtvt(r), sinh η) . (3.18)

Making use of (3.13) and (3.14), the surface element (3.2), in cylindrical coordinates,

becomes

dσµ = (cosh η, 0, 0, sinh η) τrdrdθdη. (3.19)

Similarly, we write the 4-momentum in terms of the rapidity variable

pµ = (E,pt, pz) = (mt cosh y, pt,mt sinh y) . (3.20)

To obtain the differential in (3.4), we combine (3.20) with (3.2) and relate dt with

(3.14) to obtain

pµdσµ = (Ed3x− pzdtd2r) = (mt cosh y rdrdθdz −mt sinh y rdrdθdt)

= [(mt cosh y)(τ cosh η dη)− (mt sinh y)(τ sinh η dη)] rdrdθ

= τmt cosh(y − η) rdrdθdη. (3.21)
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The argument of the exponential in (3.9) makes use of (3.18) and (3.20) and gives

uµpµ = γtmt cosh y cosh η − γtvt · pt − γtmt sinh y sinh η

= γtmt(cosh y cosh η − sinh y sinh η)− γtvt · pt

= γtmt cosh(y − η)− γtvt · pt. (3.22)

Substituting (3.22) in (3.9) we obtain

f(x,p) = ae−
γtmt
T

cosh(y−η)e
γtvt·pt.

T , (3.23)

and using (3.21) we rewrite (3.4) to take the form

E
dN

d3p
= a

∫
e−

γtmt
T

cosh(y−η)e
γtvt·pt.

T τmt cosh(y − η) rdrdθdη. (3.24)

To introduce the Hubble-like expansion term we substitute (3.1) into (3.24), noticing

the expansion velocity only appears in one term. The usefulness of the boost invari-

ance approximation becomes apparent here, since (3.24) factorizes if the temperature

and transverse flow are independent of longitudinal position, and γt ≈ constant. In

this work, we study the blast wave model for both the “real” and “constant” γt cases.

The quotations suggest that one should not take the words literally. The “real”

gamma case is useful for chapter 7, where the “constant” gamma case is useful for

chapters 5 and 6.

3.2 “Real” γt

Since the transverse velocity depends on position through (3.1), the gamma factor

related to the transverse boost should also depend on position. The longitudinal boost

to a transverse plane does not remove this dependency. To determine γt(r), we take
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the radial position vector to be

r = εxxx̂+ εyyŷ (3.25)

where the eccentricities are defined as

εx =

√
1 + ε

2
(3.26)

εy =

√
1− ε

2
. (3.27)

We parameterize the eccentricity ε with centrality using

ε = a+ d

(
b2

b2 + 2χ2

)
(3.28)

where b is the impact parameter and the others are free parameters with values

a = 0.07, χ = 3.0, and d = 0.43 . We can then write

γ2
t v

2
t =

v2
t

1− v2
t

⇒ γ2
t v

2
t = γ2

t − 1

γt =
√

1 + λ2(ε2xx
2 + ε2yy

2). (3.29)

In the transverse plane of a radially boosted cell, (3.29) implies no further approxi-

mations, and (3.24) does not factorize. Conversely, Sec. 3.3 chooses an approximation

for γt that allows (3.24) to factorize. Furthermore, for reasons explained in chapter

7, we add the term M(x, y, η) to modify the spatial distribution of (3.9), to have a

gaussian rather than isotropic distribution, where

M(x, y, η) = e
−x2

2σ2w e
−y2

2σ2w e
−η2

2σ2η . (3.30)
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Here, σw and ση represents the widths of the gaussian spatial densities. For central

collisions, σw is proportional to the nuclear radius, and reduces like a power law with

Npart, and ση is constant with centrality. Using (3.1), and pt = pt(cosφx̂+ sinφŷ) so

that γtvt · pt = λpt(εxx cosφ+ εyy sinφ), we rewrite (3.24) substituting (3.1), (3.25),

(3.29), and (3.30) and

E
dN

d3p
= a

∫
e−
√

1+λ2(ε2xx
2+ε2yy

2)
mt
T

cosh(y−η)

×eλpt(εxx cosφ+εyy sinφ)/T

×e
−x2

2σ2w e
−y2

2σ2w e
−η2

2σ2η τmt cosh(y − η) rdrdθdη, (3.31)

which we integrate using the Monte Carlo: Vegas integration routine. With this code,

we calculate dN/dy, 〈pt〉, and v2 to check the validity of the model. Figures 3.3 and

3.4 show the 〈pt〉, and v2 comparisons to data respectively. In Fig. 3.3, the solid

lines represent the 〈pt〉 for pions, kaons, and protons with a constant temperature

of T = 120MeV . The pions fit well, however the kaons and protons do not show

good agreement. It is possible that including resonances will improve the kaon and

proton curves, but that is not covered here. Moreover, all of the work presented here

accounts for only pions so, for now, it is only critical that the pion 〈pt〉 is correct.

Additionally, we simultaneously calculate the pion v2 . This also fits well, but depends

on the eccentricity parameterization (3.28) and spatial widths σw and ση.
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Figure 3.3: 〈pt〉 fits to experimental data with a temperature at 120 MeV, constant
with centrality. The solid lines are the “real” gamma calculations, and the dashed line
is the “constant” gamma calculation with constant temperature. The circles, squares,
and diamonds represent PHENIX data for pions, kaons and protons respectively [8].
The triangles represent STAR pion data [9].

Figure 3.4: Blast wave calculation of pion v2 with temperature is constant with
centrality at 120 MeV. The solid line is the “real” gamma calculation fit to a STAR
measurement [9]. The “constant” gamma calculation does not include eccentricities
and would appear flat in this figure.
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3.3 “Constant” γt

In order for (3.24) to factorize, γt must be independent or constant with radial

position. For mathematical convenience we use the approximation

γt = (1− v2
t )
−1/2 ≈ (1− v2

s)
−1/2 (3.32)

where vs is the surface velocity measured by experiment [27].

Making use of the modified Bessel function Kν(z) =
π∫
0

ez cosh θ cosh(νθ)dθ, using

ν = 1, we integrate the first exponential in (3.24) overdη and find

∞∫
−∞

e−γtmt cosh(y−η)/T cosh(y − η)dη = 2K1

(γtmt

T

)
. (3.33)

Notice that the y is a constant of integration and the resulting function is independent

of rapidity. This is the mathematical consequence of the boost invariance approxi-

mation. Taking our attention now to the second term in (3.24), after substitution of

(3.1), the argument of the exponential is now λrpt cosϕ/T , and angle between the

radial vector and the momentum vector is equivalent to ϕ = 180◦−φ+θ where φ and

θ are the momentum and spatial angles respectively. Again making use of another

modified Bessel funtion

Iν(z) =
1

π

π∫
0

ez cos θ cos(νθ)dθ, (3.34)

using ν = 0, the second exponential in (3.24) can we integrate dθ such that

2π∫
0

eλrpt cos(φ−θ)/Tdθ = 2πI0

(
λrpt
T

)
. (3.35)

Notice again, that the angle φ is a constant of integration and is absent in the re-
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sulting Bessel function. This is an indication that the final state emission of particles

is isotropic, or as some might say, “flat” in the azimuthal plane, meaning there is

no anisotropic flow. Since (3.35) is the only term that has a radial dependence,

we can be perform the final spatial integration using the Bessel function relation
1∫
0

zν+1Iν(αz)dz = 1
α
Iν+1(α), and the substitution r = Rz, so that

R∫
0

2πI0

(
λrpt
T

)
rdr =

1∫
0

2πI0

(
λpt
T
Rz

)
R2zdz = 2π

R2T

λRpt
I1

(
λRpt
T

)
. (3.36)

Introducing the notation where ρ1 represents the single particle distribution such that

ρ1(p) = EdN/d3p, eq.(3.24) is now

ρ1(p) = a′
4πR2T

λR

mt

pt
K1

(γtmt

T

)
I1

(
λRpt
T

)
. (3.37)

The normalization constant, a′, ensures that
∫
f(x,p)d3p = n(x) and has the form

a′ = a(dN/dy|y=0)/(πR2). This is a consequence of the fact that the blast wave model

cannot calculate the correct particle number and we require that this factor cancels

in later calculations.

Following from (3.1), which relates the flow velocity to the radial position, if the

position is R, then λR = γtvs, where vs is the surface velocity and is a measure of the

average flow velocity. We fix these parameters with measurements from experiment

[27].

Finally for mathematical convenience, we make the substitution x = γtpt/T and

the single particle spectrum takes the form

∫
ρ1(p)ptdpt =

4a

vs

(
dN

dy

)
y=0

(
T

γt

)3∫ √
x2 + ζ2K1(

√
x2 + ζ2)I1(vsx)dx, (3.38)
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with ζ = γtm/T . We can compare 〈pt〉 calculated with (3.38) and constant temper-

ature, to justify the approximation in Sec. 3.3. However, since this calculation has

no azimuthal eccentricity, we cannot compare v2, as it will be flat. This calculation

will be used in chapters 5 and 6 to normalize the pair spectrum and cancel out the

incorrect particle magnitudes.
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Chapter 4

Color Glass Condensate

Following from the idea of gluon saturation, the theory of Color Glass Conden-

sate (CGC) investigates the QCD regime of high parton density to describe the initial

stages of a heavy ion collisions. Parton saturation indicates that at small Bjorken

x (see Appendix A.3), the gluon density rises and fills the available phase space up

to the saturation scale Qs [102, 103, 104]. This large density leads to a coherent

state of gluonic matter, CGC, that can be treated with a classical approach to QCD

[56, 57, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115]. This novel approach

allows for first-principle investigation of QCD in a non-perturbative region. Fur-

thermore, its application to heavy ion collisions provides both predictions for and

quantitative descriptions of measured data [16, 19, 25, 36, 37, 59, 116, 117, 118, 119].

CGC theory also has significant phenomenological impact as, for example, the cal-

culation of fluctuations in the initial state influence the measurement of elliptic flow

(and therefore shear viscosity) as well as provide a natural origin of the long range

correlations seen in the ridge, the focus of this work.

Including an initial CGC state, Ludlam and McLerran, in Fig. 4.1, illustrate the

proposed stages of heavy ion collisions in terms of energy density vs. time. Notice that

the maximum energy density is many times that of ordinary matter. The evolution

of heavy ion collisions takes a path that starts at densities even greater than that of

neutron stars and transitions through several phases. Each phase adds complication
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Figure 4.1: The various stages of a heavy ion collision [10]

to the understanding of such collisions, but also provides an opportunity to study the

behavior of nature in energy regions not accessible through any other means. Much

emphasis in the study of relativistic heavy ion collisions is placed on the understanding

of QGP, but the QGP is a phase that is born from some initial conditions and modifies

the final results with behaviors of its own. Using observed behaviors of QGP, one

should be able to test how proposed initial conditions are manifested after freeze out.

Correlation studies have proved to be a useful tool for this endeavor.

In this chapter, we outline the ideas of parton saturation and the calculation of

the energy dependent saturation momentum Qs, the primary scale in the CGC phase

of QCD. We also discuss the emergence of color flux tubes and the Glasma phase

following from CGC theory and their impact on the calculation of the ridge. The

information in this chapter is primarily review with the exception that we reproduce

selected calculations relevant to out correlation studies.

4.1 Saturation

We can build our understanding of parton saturation in terms of a proton con-

sisting of constituent partons. At low energies, protons consist of three quarks which
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Baryon: many gluonsBaryon: 3 quarks, 1 gluon

Figure 4.2: A schematic illustration of the wave functions of a baryon at low (left)
and high (right) energies. [11].

carry a larger fraction of the total energy, and few gluons, which carry a smaller

fraction. The size of the proton depends on the wave functions of the constituents.

From the uncertainty principle, a parton’s transverse size is inversely proportional

to its momentum. It is seen from measurements of the total cross sections of p + p

and p+ p̄ collisions, that the size of the proton grows slowly, at most like ln2(E/E0),

the Froissart bound [120]. We hypothesize from this that an increase in the proton’s

energy is not accompanied by a substantial increase in the momentum of the con-

stituents, but rather an addition of gluons. This is illustrated in Fig. 4.2, where the

wave function of a low energy baryon, on the left, is made up of the three valence

quarks and few gluons, which we can distinguish. The same baryon at high energy

is depicted on the right and has a wave function dominated by gluons. Adding an

infinite amount of gluons with small fractions of the total momentum is equivalent to

adding the infinite amount of energy required to bring a hadron to the speed of light.

Deep inelastic scattering (DIS) experiments at HERA provide evidence for this

argument. DIS experiments map the partonic structure of hadrons with electromag-

netic probes (i.e. electron+proton collisions). Fig. 4.3 shows the parton distribution

of quarks and gluons in a proton as a function of x. At large x, up and down quarks

dominate the distribution, but for decreasing x, the gluon contribution has a shocking
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Figure 4.3: The quark and gluon composition of a proton for fixed Q2 = 10 GeV [12].

exponential like increase. The rapid increase in gluon number combined with the slow

growth in hadronic size support the saturation picture.

Further, measurements from HERA show that this effect is energy dependent,

meaning that the gluon contribution depends on the momentum transfer of the probe,

Q2. Fig. 4.4 shows the gluon structure function, xG(x,Q2), as a function of x, for

different values of Q2. Notice that the number of gluons increases with decreasing x,

and the effect is more pronounced with increasing Q2.

Since the phase space of the proton is limited, the increase in gluon density with

Q2 implies that gluons saturate the phase space up to a momentum scale that is

energy dependent. In other words, it is observed that the number of gluons grows

with energy and the Froissart bound and unitarity limit the growth of the total cross

section of the proton to ln2(1/x). So, added gluons must inhabit regions of phase space

not already occupied. Partons probed with small Q2 correspond to larger values of

x, and added gluons can only fill in the remaining phase space which requires them

to have a smaller value of x and larger Q2. The scale that defines the distribution

of glue is determined by the region of phase space that is already filled. This is

the saturation scale, Qs . If the energy of the proton is increased, the phase space

increases and gluons are added, but they must have a Q2 greater than Qs (before
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Figure 4.4: The distribution of gluons as a function of x as seen by HERA deep
inelastic experiments [12].

the energy increase). Now a larger amount of phase space is filled, and since Qs is

defined as the momentum scale below which the phase space is filled, it is larger;

Qs increases with the energy of the proton.

We can visualize the saturation picture with the aid of Fig. 4.5. Similar to Fig. 4.2,

we see on the left side the transverse distribution of partons at a lower energy, and

the same on the right at a higher energy. On the left, gluons of some size fill the

space, and we see that in adding energy, it is difficult to add more gluons of a fixed

size. At this point, there are typically 1/αs partons of this size, and repulsive forces

between gluons becomes a factor. So, in order to add gluons, they must fill in smaller

spaces, and in this way the density gets larger. In adding more energy, gluons would

have to fill yet smaller spaces, limiting the growth of the density.

A high energy proton is composed of constituents in two regimes, those above and

below the saturation scale Qs. We want to explore the behavior of interactions with

partons in these two regimes. The gluon distribution as a function of pt is calculated

in Refs. [109, 121, 122, 123], and shown in Fig. 4.6. High pt partons follow a power law

distribution which is familiar to the perterbative region of QCD. The most significant
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Figure 4.5: The density of gluons in the transverse plane as a function of energy
[13, 14].

result of this calculation, however, is that the infrared (small x, large wavelength)

divergence of this behavior is cut off at the saturation scale. Below Qs, the phase

space density flattens as a logarithm of order ln(pt/Qsat)/αs. This is yet another

indication of the saturation of gluons below Qs. The flattening of the distribution is

due to the cancellation of field strengths on size scales larger than their separation;

the interactions between gluons prevent further growth of the numbers of gluons at

larger x.

The key feature of the saturation picture is that below the saturation scale, there is

a densely packed coherent condensate of gluons that cuts off the infrared instabilities

of the perturbative region of the gluon distribution. An interesting and perhaps

crucial implication of this, is that when the density of particles is large enough that

the inter-particle spacing is much smaller than that of the size of the system, all

hadrons look the same at the same saturation scale. In principle, the radius of the

system is irrelevant, meaning hadrons look no different than nuclei.
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Figure 4.6: The gluon distribution function [15].

4.2 Saturation in Relativistic Nuclei

In relativistic nuclei, the saturation picture is nearly synonymous with the phe-

nomenon known as shadowing. In a nucleus, small x partons originating from one

nucleon have large wavelengths that can overlap with that of other small x partons

from another nucleon at the same transverse position. From the uncertainty princi-

ple, interactions with partons at small x develop over large longitudinal distance,

z ∼ 1/(mx), where m is the nucleon mass. In the situation where z becomes larger

than the nuclear diameter, a probe cannot distinguish whether the parton originates

from a nucleon at the front or back of the nucleus. All partons within a transverse

area ∼ 1/Q2 participate in the interaction coherently, see Fig. 4.7 [16].

In the Lorentz contracted nucleus, partons from many nucleons at the same trans-

verse position contribute to the gluon saturation. This brings to light the advantage

of using relativistic nuclear collisions to study high density QCD matter; the density

of gluons in a nucleus at RHIC is equivalent to that in a proton at much higher en-

ergy. Following the assumption that the gluon distribution scales with the number of

nucleons, A, so A× xG(x,Q2) = xG
A

(x,Q2), we can define the density of partons in
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Figure 4.7: A hard probe interacting with the nuclear target resolves the area 1/Q2

where Q2 is the square of the momentum transfer, and in the target rest frame the
longitudinal longitudinal distance ∼ 1/(mx) (m is the nucleon mass and x is the
Bjorken variable [16].

the transverse plane as

ρ
A
' xG

A
(x,Q2)

πR2
A

∼ A1/3, (4.1)

where R
A

is the nuclear radius. The nuclear gluon distribution then also has two

regimes corresponding to Fig. 4.6. If each parton can be probed with a cross section

σ ∼ αs/Q
2, then depending on the magnitude of the momentum transfer, Q, the

atomic number, A, and the value of Bjorken x, then we can identify the saturation

region and perturbative region by:

• σρ
A
� 1 - the perturbative QCD regime, where interactions of a probe can

distinguish the wave functions of individual partons.

• σρ
A
� 1 - the regime of the dense partonic system, where a probe interacts

with many partons behaving coherently.

The border between the two regimes is the critical value of the momentum transfer,

the saturation scale, where σρ
A
' 1 determines at which the parton system begins to
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look dense to a probe. So, we have

Q2
s ' αs

xG
A

(x,Q2)

πR2
A

. (4.2)

Note that in the rest frame of the target, Qs can be understood as the burdening of

the transverse momentum due to multiple rescatterings of the probe [16, 124].

This dense coherent gluonic matter, then is a different regime of QCD that is

unexplored, but accessible in nuclear collisions at RHIC. The relativistic contraction

of the nucleus provides not only dense and coherent gluonic fields, but also weak

coupling that allows for a semi-classical treatment of the matter. It is precisely this

matter that has been given the title of Color Glass Condensate.

4.3 Color Glass Condensate

The etymology of the term Color Glass Condensate is as follows:

• Color: Gluons have color.

• Glass: In the center of mass frame, fast moving particles are time dilated. The

fields from the fast partons, however, generate the fields at smaller x through

the evolution equations [56, 57, 105, 106, 107, 108, 109, 110, 111, 112, 113].

Through this generation, the time scale of the slower gluons evolve slow com-

pared to their natural time scales. This is a property of glass. Ordinary glass

is a liquid on very long time scales, but acts like a solid on shorter time scales

[11].

• Condensate: There is a high occupation number of gluons. Due to the un-

certainty principle, gluons at small x can have wave functions extending the

size of the nuclear radius. These gluons can be packed until their phase space

density is so high that interactions prevent more gluon occupation. This forces
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Figure 4.8: Limiting fragmentation as illustrated in the PHOBOS experimental data
on Au+Au collisions at RHIC [17]

at increasingly high density the gluons to occupy higher momenta, and the cou-

pling becomes weak. At high densities, with weak coupling, these gluons behave

coherently, forming a Bose-Einstein like condensate.

Since the density is high, the coupling between gluons is weak. In other words,

the separation between gluons is small and the energy is high, so αs << 1. This is

precisely the condition that allows for a classical approach to the problem. Also, weak

coupling does not mean weak effects. Since we can treat gluonic fields classically, their

wave functions add in a coherent way, analogous to standing electromagnetic waves.

This coherence allows for many small effects to add to large effects. A more common

example of this behavior is seen is gravity. The gravitational force from one particle

is very weak, but a superposition from some huge mass can produce an extremely

large force [11].

We can find empirical evidence for the glassy nature in limiting fragmentation as

measured by the PHOBOS collaboration and shown in Fig. 4.8 [17, 125]. The data in
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the image has been shifted so that the rapidity of one of the nuclei is at zero. In the

center of mass frame, the rapidity of nuclei are ∼ ±6; in the frame of one nucleus,

the other nucleus would have a rapidity of ∼ ±12. In Fig. 4.8, what we call the

central rapidity region is centered at −6. Measurements of Au+Au multiplicities are

shown for three different center of mass energies. All three energies share the same

behavior. Starting at rapidities near that of the beam, the curves rise, but flatten off

near the central rapidity region, the region corresponding to small x. The interesting

attribute is that for all three energies, the fast degrees of freedom scale the same. In

simpler terms, even though Au+Au collisions at center of mass energies of 19.6 GeV

and 200 GeV are different by an order of magnitude, they seem to produce the same

number of “fast” high rapidity, large x partons per participant. The scaling breaks

in the central rapidity region, where the multiplicity growth flattens earlier at lower

energies. This indicates that there is a separation between fast and slow degrees of

freedom that changes with energy. This separation fits in the CGC picture where the

mathematical development of the increase in small x gluon density is sourced from

the current of fast particles. The nonlinear growth in the multiplicity at small x is

reminiscent of the slow growth in gluon density of the CGC despite the increase of

sources.

Increasing the energy seems to only lead to the addition of lower x degrees of

freedom as sources; the scaling holds to smaller rapidity. The connection to the

separation between the energy of the source partons and the partons below Qs is

controlled by the renormalization group formalism [58, 110, 14, 126, 127, 128, 129,

130, 131, 132].

This interpretation of Fig. 4.8 suggests another important point, the multiplicity

of the central rapidity region is governed by interactions with the dense gluonic (CGC)

matter at small x. We can now draw the picture of soft particle production emerging

from collisions of the CGC in each nucleus. Because of the Lorentz contraction of
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Figure 4.9: The color electric and magnetic fields on a sheet of colored glass [13, 14,
18].

the nuclei, we can think of the CGC matter as a thin sheet of high density matter.

The gluon wave functions are tightly packed and represented by color electric and

magnetic fields that are purely transverse, such that ~E⊥ ~B⊥ẑ, and random over the

transverse plane, as shown in Fig. 4.9. Due to saturation, these fields have maximal

strength E2 ∼ B2 ∼ 1/αs.

The representation of a nuclear collision involves solving classical Yang-Mills equa-

tions before and after the collision. Equations for color fields in high energy hadronic

collisions have been developed in Refs.[126, 127, 133, 134] and numerically solved for

the rapidity independent case in Refs.[110, 128, 129, 135, 136].

During the time CGC sheets pass through each other, each sheet develops a topo-

logical charge since each sheet has a random orientation of color electric and magnetic

fields, the collision allows for ~E · ~B 6= 0 [137, 138, 139, 140, 141, 142]. As the sheets

carry away this charge and their separation becomes large, the once transverse fields

become longitudinal between them. The orientation of longitudinal fields is dubbed

the “Glasma”, and depends on the orientation of fields before the collision. The

Glasma is a pre-equilibrium phase, whose fields source the partons that eventually

thermalize into quark gluon plasma.
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Figure 4.10: Two sheets of colored glass after their collision and the longitudinal color
flux tubes generated by the collision [13, 14, 18].

4.4 Flux Tubes and Glasma

Almost instantaneously after a collision of two nuclei, Color Glass Condensate

(CGC) theory predicts that the transverse fields of each nucleus are transformed into

longitudinal fields that are approximately uniform in rapidity, as shown in Fig. 4.10,

[56, 57, 58]. The fields, which are random over transverse distances larger than Q−1
s

(where Qs ∼ 1 − 2 GeV at RHIC), comprise a series of flux tubes. Given a dense

distribution of flux tubes, the system enters a Glasma pre-thermalization phase where

flux tubes develop quantum instabilities and evaporate into particles.

With this in mind, we can take a new look at the first stages of our schematic

illustration of heavy ion collisions, Fig. 2.3. We can view the initial state of the

nuclei as CGC sheets moving toward each other. The initial singularity corresponds

to the moment when the sheets pass through each other. It is useful to visualize the

time frame of the system in terms of a light cone diagram, as in Fig. 4.11. In the

first 0.1 fm/c, the amount of time it takes the speed of light to traverse the CGC,

field fluctuations on the quantum scale form. These fluctuations are stretched by

rapid longitudinal expansion to the scale of the collision, manifested as topological

charges and connecting longitudinal flux tubes. It is important to note here that the
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Figure 4.11: The stages in the evolution of matter produced in high energy heavy ion
collisions following from a CGC- Glasma picture. Image from [11]

number and transverse position of flux tubes fluctuates from event to event. This has

significant ramifications to our correlation picture, see Secs.4.6, and 5.2. This is the

Glasma phase, which is left out of Fig. 2.3, but represents the transition from local

emission of partons from individual flux tubes, to equilibrated QGP.

The Glasma description describes many of the features of the matter produced

in the high density environment in nuclear collisions, most notably, final state multi-

plicities [16, 19, 20, 116, 117]. The connection between flux tubes, fluctuations, and

multiplicity has significant impact on our description of the correlations that form

the ridge.

4.5 Hadron Multiplicities

In the saturation picture, the total multiplicity of gluons produced in a collision

follows from dimensional reasoning as in Ref. [19]. The factor 1/αs arises because

the multiplicity may be determined by solving a classical problem, or alternatively,

because the phase space density of gluons in the initial state has the same factor [18].

We imagine the Glasma to be filled with flux tubes of large longitudinal extent but

small transverse size ∼ π/Q2
s. Each flux tube yields a multiplicity of ∼ αsπ(Qs)

2
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gluons. The number of flux tubes is proportional to the transverse area SA ∼ πR2
A

divided by the area per flux tube, πQ−2
s . The rapidity density of gluons is therefore

dN/dy ∼ αs
−1Q2

sR
2
A, (4.3)

where the strong coupling constant, αs(Qs), depends on Qs, and is to leading order

αs =
4π

11− 2
3
Nc

1

ln(Q2
s/Λ

2
QCD)

. (4.4)

Again we see the that the saturation scale plays a deterministic role. Indeed,

Ref. [19] finds that the initial gluon density scales to the final state multiplicity with

a constant number near unity. This implies “parton-hadron duality”, meaning the

dynamical evolution of the system doesn’t change the overall multiplicity much. The

“parton liberation” coefficient, c = 1.23± 0.20 found in Ref. [19], compares well with

other calculations [135, 143].

To construct an equation for the saturation scale, we follow Ref. [19], which follows

from methods in Refs. [16, 20, 102, 104, 103, 56, 105, 106, 109, 113, 134, 133, 121,

114, 144], which were motivated in previous sections. We write down

Q2
s =

8π2Nc

N2
c − 1

αs(Q
2
s)xG(x,Q2

s)
ρpart

2
, (4.5)

where Nc = 3 is the number of colors, and the density of participants ρpart is defined

in Appendix B. The density of participants is divided by 2 to get the density of

nucleons in a single nucleus that participate at a given impact parameter. The gluon

distribution function, xG(x,Q2), to leading order from global DIS fits, from Ref.[145],

is

xG(x,Q2) = 31.2x0.390(1− x)6.18(1− 5.23
√
x+ 7.33x) (4.6)

taking x ' 2Qs/
√
s. Ref.[19] solves (4.5) by iterations for Au+Au collisions at

√
s =
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Figure 4.12: Comparison of the calculation of Q2
s, eq.(4.5) (solid line), to that in

Ref.[19] (solid squares). The dotted line is the LHC prediction for Pb+Pb at
√
s =

5500 GeV scaling (4.5) with (4.7). The dashed line is the KLN prediction (4.9) from
Ref.[20] at y = 0.

130 GeV . We reproduce that procedure with agreeing results, as shown in Fig. 4.12.

The energy dependence of Qs follows the scaling noticed in HERA data [124, 146,

147, 148], where

Q2
s(x) = Q2

0

(x0

x

)λ
= Q2

0

(
W

W0

)λ
, (4.7)

with W=
√
s. This scaling has been used to make predictions for both RHIC at

200 GeV, and LHC energies, taking initial values of Q2
s0 = Q2

s(W = 130 GeV )

[16, 19, 20, 116, 117].

A model starting with CGC initial conditions followed by a hydrodynamic af-

terburner finds excellent agreement with Au+Au collision multiplicities at
√
s =

200 GeV , using λ = 0.2, see Fig. 4.13 [21]. However, using the value λ = 0.25 as

determined by HERA experiments [146, 147, 148] still lands the result within the

error bars [21].

There is a fundamental difference between the CGC approach to multiplicity cal-

culation and the conventional “soft plus hard” picture. The latter scenario assumes

that some fraction x of the multiplicity npp measured in p+p collisions is due to hard
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Figure 4.13: Comparison of pseudorapidity distributions in Au+Au
√
s = 200GeV

collisions from PHOBOS [17] to a model of CGC initial conditions with a hydrody-
namic afterburner [21] for different centralities. The impact parameters from top to
bottom are: 2.4, 4.5, 6.3, 7.9, and 9.1 fm.

processes. The remaining fraction (1− x), is due to soft processes. The parameteri-

zation

dN

dη
= (1−X(s))npp

〈Npart〉
2

+X(s)npp〈Ncoll〉, (4.8)

assumes further, that in nuclear collisions, the hard fraction scales with the number

of binary collisions, Ncoll, and the soft fraction scales with the number of participants,

Npart. This formulation was shown to describe
√
s = 130 GeV Au+Au data quite

well [19], but has a particular behavior with change in energy. The p+ p multiplicity

follows the parameterization npp = 2.5− 0.25 ln(s) + 0.023 ln2(s) [149, 150], and aside

from the nucleon-nucleon cross section’s increase with energy, the minijet fraction,

X(s) is required to increase to agree with RHIC data at higher energies [16]. So,

in the soft plus hard picture, we expect growth with energy, reflecting the minijet

cross section, where in the CGC picture, the dependence of multiplicity in the central

rapidity region is determined by the running of αs [30].

Although both approaches have differences small enough that RHIC data cannot

distinguish them, the difference in trends is already noticeable [16]. The KLN pre-
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(2/Npart)dNAA/dη
η=0, Centrality 0-6%

dNpp/dη, η=0

Figure 4.14: Energy dependence of charged hadron multiplicity from Ref.[20]: dN/dη
at η = 0 in p+p collisions and (2Npart)dN/dη at η = 0 for central nucleus-nucleus
collsions. The vertical dotted lines mark LHC energies for Pb+Pb (W=5500 GeV)
and p+p (W=14000 GeV). The experimental data are from Refs.[22, 23].

dictions for the LHC [20] depend on a more sophisticated calculation of Q2
s. They

find

Q2
s(y,W ) = Λ2

QCD exp

(√
2λ ln(Q2

s0/Λ
2
QCD)[ln(W/W0) + y] + ln2(Q2

s(W0)/Λ2
QCD)

)
(4.9)

which includes dependence on rapidity. This dependence allows for the possibility

that one of the colliding partons is in the saturation region and the other is not. In

work presented here, we always consider both colliding partons to be in the saturation

region. This corresponds to the central rapidity region where y ≈ 0 in (4.9), and the

gluon multiplicity corresponds to (4.3). The KLN predictions for multiplicities at the

LHC are shown in Fig. 4.14 and Fig. 4.15.

The LHC will offer much higher energies, but the saturation picture predicts a

slow growth in parton density. However, the saturation scale should be large enough

that there would be a significant difference from a jet dominated picture. Fig. 4.14

shows p+p and A+A values of dN/dη at η = 0 as a function of center of mass energy.

There is agreement with current data [22, 23], but the growth with energy is small
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Kharzeev, Levin,
Nardi

Figure 4.15: Comparison of the Kharzeev, Levin, and Nardi [20] prediction for charged
hadron multiplicities in central (b ≤ 3fm) Pb+Pb collisions with results from other
approaches as given in Ref.[24].

compared to other models. For example, at maximum RHIC energies Au+Au collision

yield a central multiplicity of dN/dη ∼ 700, and the prediction for LHC energy, as

extrapolated from Fig. 4.14, is dN/dη ∼ 2000. From Fig. 4.15, we see comparisons to

other predictions. In particular, we can compare to HIJING, a pure jet model, which

predicts a central value ∼ 2− 4 times larger.

4.6 CGC and Correlations

The CGC-Glasma picture has many implications in our understanding of the

stages of relativistic heavy ion collisions. The CGC formalism builds from fields of

large x partons as sources of those at small x. Because of this, it is convenient

to use the light cone variables reviewed in Appendix A.1. The Bjorken approach to

longitudinal expansion leads to a correspondence between rapidity and pseudorapidity
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via

y =
1

2
ln

(
p+

p−

)
∼ ln

(
p+

mt

)
∼ ln

(
x+

τ

)
∼ η (4.10)

This is consistent with the idea sketched in Fig. 3.2. This implies that particles

created at some spatial rapidity are essentially created with approximately the same

momentum space rapidity. This has significant impact on the picture drawn later in

Sec.5.1, since particles born at very large pseudorapidity differences are seen to have

correlation [2, 3, 4, 5, 28, 48, 49, 50, 52, 53, 54, 55].

In the CGC picture we link these long rage correlations to the long longitudinal

flux tubes, which are the sources of partons [25, 36, 37, 59]. Since, in our picture,

correlated particles come from the same flux tube, it is important that a collection

of flux tubes emits a multiplicity of partons that is preserved throughout the hy-

drodynamic evolution of the QGP and describes the final state, as seen in Fig. 4.13

[21]. Following the idea of parton hadron duality, we do not consider effects from

resonances or 2→ 3 process which would smear out correlations.

We describe the near side ridge as a consequence fluctuations formed at early

stages which are modified by later stage transverse flow. Other similar models taking

initial conduits from individual p+p collisions or string fragmentation are able to

qualitatively describe features of the ridge [60, 65]. This validates that fluctuating

initial conditions are indeed the primary source of final state momentum correlations.

We propose that local parton density fluctuations at early stages arise from the dis-

solution of individual flux tubes. Aside from the necessity that these fluctuations

be longitudinally long, their transverse size, number, and individual multiplicity ulti-

mately determine the strength of the observed correlation. We will show in Chapter

5, that the CGC-Glasma formalism provides an explicit description of these features

and provides a remarkable agreement with correlation data.
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Chapter 5

The Soft Ridge

Two particle correlations measurements find an excess of correlated particle pairs

that is narrow in relative azimuthal angle, φ, and broad in relative (pseudo)rapidity,

η . Experiments find this ridge like shape in correlation measurements with and

without a jet trigger. As described in Ch. 1, the untriggered “soft ridge” represents

correlations of particles with all ranges of momentum. The word “soft” reflects the

fact that the majority of the particles contributing to the measurement emerge from

non-perterbative processes. As we will see in in Ch. 6, this distinction is important

when comparing the soft and hard ridge.

We argue in this chapter that the soft ridge originates from initial state spatial

correlations that experience later stage transverse flow. In Sec. 5.1, we begin with a

brief description of some features of two particle correlations in heavy ion collisions.

One of the primary motivations behind this work is that the ridge exhibits a long

range behavior in η that challenges all potential explanations of the phenomenon

[29]. In Sec. 5.2, we discuss how this long range behavior arises naturally from

CGC-Glasma initial conditions. We then focus on the consequences CGC-Glasma

initial conditions have on the construction of our correlation function and the overall

correlation strength. In Sec. 5.3, we take into account the effects of radial flow.

Finally, we show our results in Sec. 5.4.
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Figure 5.1: Image of the STAR measured soft ridge 19− 28% central [1].

5.1 Some Features of Correlations

The full correlations landscape is a complicated 2-D structure as shown in Fig. 5.1,

taken from Ref. [1]. The coordinates of the correlation structure indicate relative

units between particle pair momenta. The azimuthal difference between two particle’s

momenta is φ = φ1−φ2. Similarly, the relative pseudorapidity is defined as η = η1−η2.

The “near-side” structure is centered at φ = η = 0 and represents the combination

of several sources of correlations including purely random correlations, flow, jets, and

density fluctuations.

If particles are initially randomly deposited in the medium, and do not flow,

then correlations would obey Poisson statistics, mathematically allowing the pair

distribution to factorize into two single-body distributions, i.e. ρ2 → ρ1ρ1. This

case corresponds to particle pairs having only random correlation and should be, on

average, constant for all η and φ. This would effect the overall offset of the correlations

structure in Fig. 5.1.

If we examine the same situation, but allow the particles to flow, then momentum
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conservation demands that transverse momentum gains are compensated by equal

gains at an angular difference of π. We expect correlations of the form of cosφ from

transverse flow, and cos 2φ from anisotropic flow, see Sec. 2.3. In the case of the soft

ridge, experimentalists extract the magnitudes of these effects from the correlation

landscape and find v2 values consistent with other measurements [151]. In the case of

the hard ridge the correlations of the form cos 2φ are subtracted using the Zero Yield

At Minimum (ZYAM) method [3].

Conversely, if all particles come from jets, the emission of particles is a cone

opening in the direction of a leading particle. In this case, all particles in the same

jet have the same origin - the position of the collision producing the jet. Jet particles’

momenta are also correlated, as indicated by the existence of a cone, since particles

fragmenting from the leading particle are co-moving with the leading particle. Here,

one would expect correlated pairs to have small φ and η. Indeed this is seen in p+ p

and peripheral collisions, as well as the jet peak sitting on the hard ridge. The jet

peak exists in the soft ridge as well, however it appears to be overwhelmed by the

anomalous correlations that comprise the ridge [26].

STAR experimentalists decompose the 2-D correlation structure using a multicom-

ponent fit [1]. The fit accounts for correlations from many sources such as momentum

conservation, elliptic flow,and experimental effects. After subtracting these compo-

nents an anomalous structure remains on the near side, the ridge. The ridge is fit

with a 2-D Gaussian as shown on the right side of Fig. 5.6 and is the primary subject

of interest in this dissertation.

The most striking feature of the ridge measurement is that, for central collisions,

the ridge appears to extend to η > 2 where causality limits kinematic transport. The

PHOBOS measurement of the triggered ridge, as shown in Fig. 5.2, provides further

support for the existence of long range correlations [5]. The dashed blue line in the

right panel of Fig. 5.2 indicates the correlation structure from PYTHIA simulations
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Figure 5.2: PHOBOS measurement of the triggered ridge [5]. The left figure is the
2-D correlation structure with relative azimuthal angle ∆φ and relative rapidity ∆η
where the away side is shaded out. In the right figure is the solid dots indicate yield of
pairs integrated over the angle ‖∆φ‖ < 1, and the dashed blue line is the correlation
yield from PYTHIA.

representing the expected correlations from jets. Correlations from jets alone are

zero at ‖η‖ > 2 where the data in central Au+Au collisions is consistently positive

in the range −4 < η < 2. In this chapter, we present an explanation of long range

correlations following Ref. [36]. We find excellent comparison to available STAR data

although STAR rapidity acceptance does not reach to long range.

5.2 Flux Tubes, Glasma, and Correlations

Correlations over several rapidity units can only originate at the earliest stages

of an ion collision when the first partons are produced [25]. The rapid longitudinal

expansion can modify initial quantum fluctuations, stretching them to distances not

causally connected. Hydrodynamics and other later-stage effects can modify these

correlations but are limited to a horizon of ∼ 1 − 2 rapidity units. Analogous to

superhorizon fluctuations in the cosmos, these long range correlations can therefore

reveal the “little bang” in each nuclear collision at its birth.

The red and green shaded regions in Fig. 5.3 represent the history of all possible

events influencing particles A and B respectively. The history of these particles de-
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Figure 5.3: The shaded areas represent the light cones of events causally related to
particles A and B. Image from Ref. [25]

pends on their rapidity. Particles with larger rapidity follow more closely to the beam

line and freeze out later. Particle A has a larger rapidity than B, and consequently,

the shaded red region is slimmer than the green. Particles A and B could only gain

correlations in the blue shaded region, where their light cones overlap. Larger rapid-

ity differences reduce the overlap region, requiring any correlations to occur at earlier

times.

Almost instantaneously after a collision of two nuclei, CGC theory predicts that

the transverse fields of each nucleus are transformed into longitudinal fields that are

approximately uniform in rapidity [105, 57, 58]. These fields, which are random

over transverse distance larger than Q−1
s , where Qs ∼ 1 − 2 GeV is the saturation

scale, comprise a series of flux tubes. These tubes are then stretched by the rapid

longitudinal expansion, as illustrated in Fig.5.4.

We attribute the source of long range correlations to longitudinal flux tubes pre-

dicted by the theory of Color Glass Condensate. Long range rapidity correlations

arise because particles from the same flux tube start at nearly the same transverse

position, regardless of rapidity.

In a nuclear collision, the number of tubes is proportional to the transverse area

R2
A divided by the area per flux tube, Q−2

s . The high density of flux tubes begin
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Figure 5.4: Cartoon of longitudinal flux tubes just after a nuclear collision (left) and
after ∝ 10−1fm/c (right). The Glasma phase begins immediately as the hight density
of tubes begin to thermalize into partons. Analogous to Fig. 5.3, partons A and B have
an early time (in this case, zero time) correlation and rapid longitudinal expansion
stretches the tube causally separating A and B while preserving the correlation.

to emit partons, indicating a Glasma phase. Only partons from the same tube are

correlated and we neglect correlations between neighboring tubes.

In a Glasma phase (see Ch. 4), we imagine a closely packed system of flux tubes and

not strictly distinct due to saturation. They are however uncorrelated for rt > Q−s 1.

This is the essential feature for this work. The Glasma changes into plasma as particles

form from fields and thermalize.

We characterize correlations in the Glasma and later in the evolution using the

spatial correlation function

c(x1,x2) = n2(x1,x2)− n1(x1)n1(x2), (5.1)

where n1 and n2 are the single and pair densities. In the absence of correlations,

n2(x1,x2)→ n1(x1)n1(x2) so that c vanishes. The integral of n2 over both positions

gives the number of pairs averaged over events 〈N(N − 1)〉. When correlations are

negligible, the integral of c vanishes – as it must – because N follows Poisson statistics

and, therefore, 〈N(N − 1)〉 → 〈N〉2.

We take flux tubes to be approximately independent of rapidity, and write the

correlation function depending only on the relative transverse position rt = r1− r2 as
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well as the average Rt = (r1 + r2)/2. The correlation length in rt is roughly the flux

tube size ∼ Q−1
s , while the correlation length in Rt of order of the transverse system

size RA. For Q−1
s � RA we take the correlation function to be point-like in rt and

broad in Rt, writing

c(x1,x2) = R δ(rt)ρFT (Rt). (5.2)

Here, ρ
FT

(Rt) describes the transverse distribution of flux tubes in the collision vol-

ume, which we assume follows the thickness function of the colliding nuclei

ρ
FT

(Rt) = κ

(
1− R2

t

R2
A

)
. (5.3)

Here κ = 2〈N〉2/(πR2
A(∆y)2τ 2) and Rt ≤ RA. Integrating both sides of (5.2) with

respect to rt and Rt, we find

〈N〉2R =

∫
c d3x1d

3x2 = 〈N2〉 − 〈N〉2 − 〈N〉. (5.4)

To see how R depends on Qs, think of each flux tube as a source that produces

particles with a mean multiplicity µ and variance σ2. For K flux tubes, the mean

multiplicity is µK and the variance is σ2K. If K fluctuates from event to event, then

the mean multiplicity is µ〈K〉 and the variance is σ2〈K〉+µ2(〈K2〉−〈K〉2). Therefore

R =
σ2 − µ
µ2

1

〈K〉
+
〈K2〉 − 〈K〉2

〈K〉2
. (5.5)

Particle production from a flux tube is a Poisson process, since the flux tube is a

coherent state. It follows that σ2 = µ, so that the first contribution vanishes. For

large K, the second term is ∝ 〈K〉−1.

We combine these results to obtain a scaling relation for the integrated strength
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of correlations in the Glasma

R ∝ 〈K〉−1 = (QsR)−2, (5.6)

a result supported by momentum-space calculations in [25]. In contrast, the mean

multiplicity in a rapidity interval scales as αs(Qs)
−1Q2

sR
2; see eq. (4.3). This difference

will prove significant later. We comment that (5.6) and similar CGC relations may

not quantitatively describe p+ p or peripheral collisions at the energies studied here,

although phenomenological string models may apply.

5.3 The Blast Wave and Correlations

We now turn to discuss the impact of these long range correlations on the final-

state particle correlations. As the partons emitted from these flux tubes locally

equilibrate, transverse flow builds. To describe the effect of thermalization and flow

on the pair correlation function at freeze out, we generalize the common blast-wave

model described in Ch. 3.

In Ch. 3 we stressed that transverse flow provides a radial boost that depends

the final transverse boost depending on the radial position following (3.1). Here,

fluctuations in particle density are boosted radially based on their initial radial posi-

tion, focusing particles to have narrower relative azimuthal angles. Voloshin has long

stressed the connection between flow and pt correlations [60].

Figures 5.5 and 5.6 illustrate the effect of this phenomenon on angular correlations.

The top of Fig. 5.5 is a cartoon of the dynamical evolution of two selected elements

in a transverse slice of the system. We start with a) a distribution of color flux

tubes, in the Glasma phase, and in b) the tubes have disintegrated into small locally

equilibrated fluid cells. These cells receive a radial boost depending on their radial

position indicated in the images by the white vectors. In step c), transverse flow
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Figure 5.5: (top) Dynamical evolution of the angular correlation enhancement from
transverse flow, and (bottom) vector diagrams illustrating the change in momentum
vectors corresponding to the image immediately above.

has begun, adding the same transverse momentum to all vectors in the same cell

effectively reducing their angular difference and pushing them into a more cone-like

shape. At freeze out, step d, flow effects have finished their work, and we can see that

the cell at the larger radial position received a bigger radial momentum increase, and

particles in that cell have been pushed into a narrower opening angle.

In Fig. 5.6 we show how the effects of transverse flow are represented in the mea-

sured correlation structure. Fluid cells at a larger radius emit particles in a narrower

opening angle. In the cartoon on the left, we highlight in blue a pair with a small

angular difference and in red a pair with larger angle. On the right, using the same

colors, we identify how these two examples are represented in the measurement. We

see that our argument that transverse flow enhances angular correlations, is supported

by the data, at least by eye. A more quantitative comparison will come later.

To exhibit the effect of flow on particle correlations, we use the momentum-space
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Figure 5.6: Comparison of flow effects on angular correlations to the measured cor-
relation structure(2-D gaussian component of data in [1]). Fluid cells at larger radial
position have a narrower opening angle and have a greater contribution to correla-
tions. The wider the opening angle, the weaker the correlation.

correlation function

∆ρ(p1,p2) = ρ2(p1,p2)− ρ1(p1)ρ1(p2) (5.7)

where ρ2(p1,p2) = dN/dy1d
2pt1dy2d

2pt2 is the pair distribution. Generalizing (3.4),

we write

∆ρ(p1,p2) =

∫
c(x1,x2)

f(x1,p1)

n1(x1)

f(x2,p2)

n1(x2)
pµ1dσµ1p

µ
2dσµ2. (5.8)

The freeze out surface differentials follow (3.21), and the quantities f(x,p)/n1(x)

explicitly indicate the spatial normalizations, and simply take the form of (3.23). We

identify c(x1,x2) at freeze out with (5.2), a form that describes the system at its

formation. This identification omits the effects of diffusion described in Ch. 7 and

Ref. [38, 39]. This omission is reasonable only as long as we restrict our attention to

the long range correlations with pairs separated by |η1 − η2| > 1.

Starting with equation (3.23), we see that the terms including cosh(y − η) can

factor and we can make use of (3.33) twice. We make the transformation from spatial

Cartesian coordinates x1 and x2 to relative and average coordinates rt and Rt and
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write

∆ρ(p1,p2) = 4a2τ 2
[
mt1K1

(γtmt1

T

)
mt2K1

(γtmt2

T

)]
(5.9)

×
∫
e
λ
T

[(pt1+pt2)·Rt+
1
2

(pt1+pt2)·rtR δ(rt)ρFT (Rt)d
2rtd

2Rt.

Now we can make use of the delta function in the correlation function where inte-

gration over d2rt eliminates the exponential with rt in the argument. The remain-

ing exponential reduces to exp[(λ/T )‖pt1 + pt2‖Rt cos θ] and we can again make

use of the Bessel function relation (3.34). The remaining integration looks like∫ RA
0

κ(2π)I0((λ/T )‖pt1 +pt2‖Rt)(1−R2
t /R

2
A)RtdRt, which we can preform with help

from the substitution Rt = RAz and the Bessel relation
1∫
0

z(1−z2)I0(αz)dz = 2
α2 I2(α).

We are now in a position to integrate over the momentum magnitudes where

∆ρ(η, φ) = 16a2τ 2πR2
A

T 2

(λRA)2
Rκ
∫

mt1mt2

‖pt1 + pt2‖2
K1

(γtmt1

T

)
K1

(γtmt2

T

)

×I2

(
λRA‖pt1 + pt2‖

T

)
pt1dpt1pt2dpt2dΦ, (5.10)

and φ = φ1 − φ2 is the relative azimuthal angle, and Φ = (φ1 + φ2)/2 is the average

azimuthal angle.

To confront the STAR measurements, we calculate ∆ρ(η, φ) by performing the

integration in (5.10) over the momenta. Similarly, we compute ρref (η, φ) by inte-

grating ρ1(p1)ρ1(p2) as defined in eq,(3.38). To preform the momentum integra-

tion of Eq. (5.10), we make the same substitutions as at the end of Sec. 3.3, where

x = γtpt1/T , y = γtpt2/T , and λRA = γtvs. The pre-factor 16a2τ 2πR2
Av
−2
s (T/γt)

6κ

cancels with the square of the pre-factor in eq,(3.38) and we now arrive at the result
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∆ρ(η, φ)∫
ρ(pt1)

∫
ρ(pt2)

=
R
∫
xy

√
(x2+ζ2)(y2+ζ2)

w2 I2(vsw)dxdy[∫ √
x2 + ζ2K1(

√
x2 + ζ2)I1(vsx)dx

]2 = RF (φ) (5.11)

with ζ = γtm/T , and w =
√
x2 + y2 + 2xy cosφ. Notice that the blast wave nor-

malization is not an issue, as it cancels in the ratio (5.11), which is dimensionless.

Furthermore, notice that, as in Sec. 3.3, the result is independent of rapidity. This is

a consequence of the lack of a spatial rapidity term in the correlation function (5.2).

This is addressed further in Ch. 7.

5.4 Results

STAR measures the characteristics of the untagged near-side ridge as functions of

the centrality at 62 and 200 GeV for Au+Au [1, 51]. While they focus on the region

−1 < η < 1, where short and long range correlation phenomena are both present,

it is instructive to see which aspects of the data can be explained by a purely long

range model.

To facilitate our comparison, we visualize the STAR analysis as consisting of the

following steps. First, a correlated two particle distribution of “sibling” particles ρsib

is measured. This quantity is essentially our ρ2 integrated over the magnitudes of

each particle’s pt as well as the average azimuthal angle Φ = (φ1 +φ2)/2 and average

pseudorapidity ηa = (η1 + η2)/2. The resulting density depends only on the relative

quantities φ and η. Then, an uncorrelated pair distribution ρref is obtained from

mixed events and ∆ρ/
√
ρ = (ρsib − ρref )/

√
ρref is constructed. Next, a rapidity-

independent function a + b cosφ + c cos 2φ is subtracted to remove backgrounds as

well as elliptical flow and momentum conservation effects. Finally, the corrected (η, φ)

distribution is subjected to a multicomponent fit to extract the attributes of the near

side peak. In practice, these steps are performed simultaneously.
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To confront the STAR measurements, we calculate ∆ρ(η, φ)/
∫
ρ1(pt1)

∫
ρ1(pt2),

(5.11), as described in Sec. 5.3 and multiply by the gluon distribution from (4.3),

assuming the final state particle distribution scales similarly [19]. The integrations

are straightforward and done numerically. We obtain

∆ρ
√
ρref

= κRdN
dy

F (φ), (5.12)

where
∫ 2π

0
F (φ)dφ = 1 and κ is an energy independent constant to be determined

from data.

In the saturation regime, the gluon density follows (4.3), which depends on the

density of gluons per flux tube ∝ α−1
s (Qs) and the number of flux tubes K ∼ (QsRA)2.

The factor

RdN
dy

=
1

αs(Qs)
(5.13)

follows from the Glasma relations (4.3) and (5.6). Equation (5.13) contains all of

the energy, system, and centrality information provided by CGC, where the angular

distribution F (φ) is a result of the Glasma influence on the correlation function, but

depends only on blast wave parameters γtm/T and vs.

We specify the centrality dependence of the correlation function using the velocity

and temperature fit from single particle spectra at 200 GeV in Ref. [27]. The com-

puted F (φ), (∆ρ/
√
ρ without the CGC scaling) is shown as the dashed line in the

top right panel of Fig. 5.7. We fix κ in (5.12) such that the calculation of the most

central point of F (φ) agrees with that of the 200 GeV data (only). The top left panel

shows the same calculation using the same value of κ with a constant temperature of

120 MeV . The solid lines represent the full equation (5.12), this time including the

CGC scaling relation.

We define the height of the near side peak as the difference between ∆ρ/
√
ρ at

φ = 0 and π. It follows the basic trend of the data rather well, given that the only
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Figure 5.7: ∆ρ/
√
ρ amplitudes for Au+Au and Cu+Cu 200 and 62 GeV. All data

point are preliminary STAR data, Au+Au from [1] and Cu+Cu from [26]. The
normalization parameter κ is adjusted only in the case of Au+Au 200 GeV with
blast wave temperature from [27]. Calculations presented in the left column use a
constant temperature of 120 MeV and the right column uses a centrality dependent
temperature measured by experiment.
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parameters that vary with centrality – v and T – are fit elsewhere [27]. The shaded

bands in Fig. 5.7 represent the uncertainty in v and T combined with an uncertainty

in the parameterization of Q2
s, which increases inversely with centrality.

To compute ∆ρ/
√
ρ at 62 GeV, we follow [27] and reduce the velocities by 5% and

the temperatures by 10% by uniform scale factors. The dashed curves again represent

the calculation F (φ) alone and are well above the data, but agrees roughly in shape.

Note, we now take the factor κ as fixed, and no longer adjust it. The solid curve

again represents the inclusion of the CGC scaling (5.13). We reduce Qs by ∼ 1/2 to

change from 200 GeV to 62 GeV, and we see surprisingly good agreement with the

data.

We see that although blast wave parameters have some energy dependence, the

Glasma factor (5.13) allows for strong agreement with the 62 GeV data without

further adjustment of κ. In this manner, we use (5.13) to predict the amplitude of

the near side peak of the soft ridge in Cu+Cu for both 200 and 62 GeV as a function

of centrality. We are able to do this, again without adjustment of κ, because of the

Q2
s dependence on the density of participants. We simply scale Q2

s by the ratio of the

cental participant density in Au+Au to that of Cu+Cu

Q2
s,CuCu = Q2

s,AuAu

ρpart,CuCu central

ρpart,AuAu central

. (5.14)

Caution should be taken however, since we use the centrality dependance of the blast

wave parameters T and vs as well as the saturation scale from Au+Au in the Cu+Cu

calculation. The results are shown in Fig. 5.7 and again give nice agreement.

To compare to measured azimuthal widths, we plot (5.12) as a function of φ and

simulate the experimental fit procedure, obtaining the width in the near-side interval

−π/2 < φ < π/2 by fitting a gaussian plus a constant offset. The results are shown in

Fig. 5.8 for both Au+Au and Cu+Cu. We find that the width is nearly independent
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Figure 5.8: Azimuthal correlation widths for Au+Au (left) and Cu+Cu (right) for
200 and 62 GeV. Error bands represent uncertainty in a gaussian fit to calculated
azimuthal distributions.

of both system and energy since the blast wave parameters change very little, and the

normalization does not affect F (φ). The uncertainty band in Fig. 5.8 indicates the

impact of changing the near-side interval by ±20%, i.e. the error associated with the

fit. Once again, the agreement is surprisingly good given the simplicity of the model.

Note that Ref. [25] includes flow by boosting a Glasma source. Their computed width

exceeds data because they omit the pt dependence of the boost and do not simulate

the experimental fit procedure.

To recap the chapter, we describe how the near side peak of the soft ridge can

be explained by Glasma flux tube initial conditions and transverse flow. Glasma

conditions allow for the existence of correlations between causally separated pairs

while transverse flow preserve these long range correlations and enhance angular cor-

relations. The case for Glasma initial conditions is strengthened by the fact that it

provides energy and system dependence in addition to centrality dependence, which

allow for parameter free deduction of 62 GeV data and prediction of Cu+Cu data.
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Chapter 6

Hard Ridge / One Ridge

A primary focus of this work is to determine if the soft and hard ridges are

fundamentally different phenomena. Although the hard ridge attempts to isolate the

effects of jets on the medium, both ridges are di-hadron correlation measurements

with similar looking structures. Comparing Fig.6.1 to Fig.5.1 some differences one

might notice include the fact that the azimuthal width of the hard ridge is narrower

than that of the soft ridge, and that although the relative rapidity width is still

broad, the hard ridge seems to have a separate narrower peak sitting on it. Since the

rapidity width of the narrower peak is similar to the width measured with PYTHIA

simulations, we hypothesize that it is a result of correlations from jet fragmentation,

although we don’t address that here, see Sec. 8.1. Our interest here centers on the

broad ridge structure, its connection to the soft ridge, and its relationship to long

range correlations.

To understand the relationship between the soft and hard ridge, we must account

for the the differences in the two measurements, and determine how to compare them.

The hard ridge measures the yield of associated particles per jet trigger, and the soft

ridge reports the number of “sibling” pairs per reference multiplicity. Sibling pairs are

pairs from the same event and the reference is the square root of the uncorrelated pair

distribution. The most significant difference between the two measurements is the

choice of the momentum range of the correlated particles. The hard ridge attempts to
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Figure 6.1: STAR hard ridge, Au+Au, 200 GeV, 0−10% central [3]. The “#entries”
on the vertical axis represents the yield of correlated pairs per jet trigger, with the
trigger in the range 3 < pt,trigg < 4 GeV and paired with a particle in the associated
range 2 < pt,assoc < 3

highlight the influence of jets and arises from particle pairs where one particle comes

from a jet trigger pt range and the other comes from a lower associated pt range.

Conversely, the soft ridge represents all correlated pairs taking both particles from

any pt above minimum bias. In Sec.6.1 we describe the behavior of the soft ridge with

a change in the pt range of particle pairs, and describe how to compare the observable

with that of the hard ridge. In Sec.6.2, we describe one method by which jets could

contribute to long range correlations, and in Sec.6.3 and Sec.6.4 we describe how soft

ridge effects combine with those jet-bulk correlations to explain some features of the

hard ridge.

6.1 Soft Contribution to the Hard Ridge

We observe that both the hard ridge amplitude and azimuthal width are smaller

than that of the soft ridge. Since the angular width of the soft ridge depends on

small thermal fluids cell receiving a radial boost, the higher pt particles are those

that received the greater push from flow. As described before, the greater the radial

boost given to a fluid cell, the narrower the relative angle between the momentum
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Figure 6.2: (top) Azimuthal width of the near side peak for Au+Au 200 GeV vs. cen-
trality. Colored lines (from top to bottom) represent increasing pt,min limits. (bottom)
Plots the most central values of the width vs pt,min. Each dot represents the central
point of a curve in the graph above.

Figure 6.3: (top) Azimuthal width of the near side peak for Cu+Cu 200 GeV vs. cen-
trality. Colored lines (from top to bottom) represent increasing pt,min limits. (bottom)
Plots the most central values of the width vs pt,min. Each dot represents the central
point of a curve in the graph above.
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vectors of particles in that cell. We therefore expect that the azimuthal width of the

soft ridge will narrow if the pt range of correlated particles is increased. Furthermore,

if we “cut out” lower pt particles, we reduce the number of possible pairs and therefore

reduce the ridge amplitude as well.

To examine the pt dependence of the soft ridge, we rewrite (5.11) such that the

lower limit of the pt integration is no longer zero but some minimum value pt,min

(
∆ρ

ρref

)
pt,min

=

pt2,max∫
pt2,min

pt1,max∫
pt1,min

∆ρ(p1,p2)

pt1,max∫
pt1,min

ρ1(pt1)
pt2,max∫
pt2,min

ρ1(pt2)

= RF (φ; pt1,min, pt1,max, pt2,min, pt2,max). (6.1)

To obtain the measured ratio, we write

(∆ρ/
√
ρref )pt,min

∆ρ/
√
ρref

=
F (φ; pt,min,∞, pt,min,∞)

F (φ)

∫∞
pt1,min

ρ1∫∞
0
ρ1

. (6.2)

For increasing values of pt,min, we calculate the correlation function as in chapter

5, using (6.1) and (6.2) and find that the azimuthal width does indeed decrease as

shown in the upper panels of Fig.6.2, and Fig.6.3. The black curves are the same

curves shown in Fig.5.8, (i.e. pt,min = 0), and the following colored curves represent,

in descending order, the width calculation for pt,min = {0.15, 0.3, 0.5, 0.7, ...} GeV also

indicated by the dots in the panel directly below. The lower panels plot the most

central width value for each curve as a function of its pt,min limit. Preliminary data

in Fig.6.3 comes from ref.[26] and shows decent agreement. We remark that if one

examines the Cu+Cu most central width in Fig.5.8 one might notice that it is slightly

greater than both the Au+Au data and our calculations. This difference may be the

reason why our curve in the lower right panel of Fig.6.3 is consistently lower than the
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Figure 6.4: Soft ridge near side peak amplitudes for Au+Au 200 and 62 GeV. Top
panels: amplitudes vs. centrality for various pt,min limits as indicated by the dots in
the lower panels. Lower panels: most central point of the curves directly above vs
the pt,min limit.

data.

The upper panels of Fig.6.4 and Fig.6.5 show predictions of the amplitude ∆ρ/
√
ρref

vs. centrality for the same choices of pt,min as previously discussed. The amplitude

decreases with increasing pt,min because the number of particles contributing to cor-

relations is reduced. The lower panels of Fig.6.4 and Fig.6.5 show the amplitudes

for the most central collision as a function of the choice of pt,min. Preliminary STAR

data, shown in the lower left panel of Fig.6.5, shows agreement, at the very least,

with the trend of our predictions. Again, we must take caution since we use the

Au+Au centrality dependance of the blast wave as well as the saturation scale pa-

rameterizations; the large error bars in our Cu+Cu calculations are representative of

this.

As the minimum pt of the particles is increased, the amplitude of the correlations

drops and the azimuthal width narrows. In the pt range of the hard ridge, it appears
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Figure 6.5: Soft ridge near side peak amplitudes for Cu+Cu 200 and 62 GeV. Top
panels: amplitudes vs. centrality for various pt,min limits as indicated by the dots in
the lower panels. Lower panels: most central point of the curves directly above vs
the pt,min limit.

that the azimuthal width could be narrow enough, but the amplitude is not a directly

comparable quantity. STAR measures the hard ridge, or yield of associated particles

per jet trigger, for Au+Au 200 GeV for 3 < pt,trigg < 4 GeV with 2 < pt,assoc < 3

[3]. We identify pt1 in our calculation with the trigger range, pt2 with the associated

range, and calculate ∆ρ/
√
ρref . We find the yield with the transformation

Yield =

(
∆ρ
√
ρref

)
pt,min

 ∫
ρ1(pt2)√∫

ρ1(pt1)
∫
ρ1(pt2)

 . (6.3)

At higher ranges of pt1,2 the contribution from jets should become more significant,

and it is important, therefore, to know the relative fraction of thermal and jet con-

tributions. Section 6.3 discusses how we decompose the total particle spectrum into

thermal bulk and jet fractions. To obtain the contribution of bulk correlations to

the hard ridge, we multiply (6.3) by the bulk fraction
∫
ρ1(pt1)/

∫
ρtot(pt1) where
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Figure 6.6: Comparison of bulk-bulk and jet-bulk correlation yields to a cross section
of the hard ridge. Jet contributions begin at ps=1.25 GeV. Data from [3] (talk).

∫
ρtot(pt1) is the total number of particles in the range of pt1.

We find from this calculation, that the contribution to the hard ridge from only

thermal bulk pairs is ∼ 75%, a considerable fraction. The blue curve in Fig.6.6 rep-

resents the contribution to the hard ridge from only thermal bulk pairs. We see from

the the blue curve in Fig.6.6 that “bulk-bulk” correlations contribute significantly to

the amplitude of the triggered measurement, but has a somewhat narrower azimuthal

profile. Ref.[79] shows that a jet acquires angular correlations with flowing matter

due to quenching, but the width of the correlation is wider than the data. The contri-

bution of jet correlations with bulk particles, “jet-bulk” correlations, could increase

both the amplitude and the width and make up the difference between the bulk-bulk

correlations and data.

In the next section we combine a theory of angular correlations from Ref.[79] with

spatial correlations of jets and flux tubes to obtain a jet-bulk contribution to the hard

ridge.
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Figure 6.7: Jet correlations with tubes. Anywhere in the overlap region, the location
of a hard collision will coincide with a flux tube, since tubes fill the space.

6.2 Jet Quenching, Flow, and Correlations

The existence of correlations with jet particles at larger η would require a corre-

lation early in the collision that remains through the expansion of the system. As

we examine higher pt pair correlations, the contributions from jets should become

more prevalent, particularly for small η. Correlations between jet fragments should

eventually dominate the correlation structure, but are restricted to the size of the jet

cone, and the transfer of momentum from jets to bulk particles is causally limited to

∼ 1− 2 units in rapidity.

Both the hard collisions and flux tubes are made in the initial moments of the

nuclear collision. Assuming that the entire overlap region of the colliding nuclei is in

the saturation regime, flux tubes would fill the collision volume and a jet formed at

any transverse position would be accompanied by a flux tube at the same position.

Since the flux tube extends to large rapidities, the correlation of particles from a flux

tube and a jet can extend to large η. Angular correlations arise since particles from

the tube acquire a radial trajectory from flow, but the (measured) jet trajectory has

a bias in the radial direction due to quenching [79].

For the purposes of simplicity, we start with the assumption that jet production

is independent and uncorrelated with the production of soft particles. It has been
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Figure 6.8: Jet path, L, with relation to the event plane.

pointed out in Refs.[60, 79] that some information about the location of a hard colli-

sion can be determined by correlating it with transverse flow. Since the jet must pass

through matter, there is some chance that the matter attenuates or even completely

absorbs the jet. Since the amount of this quenching is related to the amount of matter

the jet must pass through, surviving jets tend to be biased toward the surface of the

medium. Furthermore, if the jet production point is deeper into the medium, the jet

must take the most direct exit route to have the greatest chance to survive; if the

medium is circular, the most direct route is a radial one.

Since quenching biases jets to have a more radial direction, and transverse flow

pushes bulk particles to a more radial trajectory, an angular correlation is induced

between the jet and bulk particles originating at the same radial position. Reference

[79] considers correlations of jets with beam jets, but we explore the possibility of

jet correlation with flux tubes. As illustrated in Fig.6.7, since flux tubes fill the

transverse space of the overlap region, any transverse location that a hard collision

occurs would coincide with a flux tube independently produced at the same location.

As a caveat, at RHIC energies, saturation does not extend to the periphery of the

nuclei so a correction including a “core” made of flux tubes and a “corona” with

Glauber-like production would be appropriate.
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At the moment of a hard collision, the jet direction is random, and the amount

of quenching, or conversely, the chance of survival, depends on the path, L, through

the matter, as depicted in Fig.6.8 and Fig.6.9. Assuming the nuclei are hard spheres,

and that the jet exits the medium before significant expansion, from geometrical

considerations we find the jet path to be

L = −1

2
[2r cosφjet ± b cos(φjet + θ)]

+
1

2

√
[2r cosφjet ± b cos(φjet + θ)]2 − 4 [r2 −R2

A + b2/4± br cos θ]. (6.4)

Notice that the quenching length is sensitive to the reaction plane. We must take

care since the vector r can, for example, point to the +x side of the xy-plane and

the vector L can point to the −x side. Equation (6.4) has two solutions depending

on which hemisphere the vector R points, since this is the hemisphere the jet exits.

In (6.4), we choose the positive solution for −π/2 < α < π/2 and negative for

π/2 < α < 3π/2 where α = sin−1[(L/R) sinφjet]+θ and R =
√
r2 + L2 + 2rL cosφjet.

For the symmetric case, if b = 0 then (6.4) reduces to

L =
√
R2
A − r2 sin2 φjet − r cosφjet, (6.5)

a result stated in Ref.[79]. For the purposes of the following calculation, we make

the approximation that the collision transverse area is circular, even for peripheral

collisions. In the future, we plan to study the reaction plane dependence of the ridge,

which would require us to abandon this assumption as well as introduce eccentricities

back into the blast wave formulation as discussed in Ch.3.

For now, let us analyze the contributions of jet-bulk correlations in the case of

circularly symmetric initial systems as illustrated in Fig.6.9. If r is small (close to
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Figure 6.9: Jet path, L, in a circularly symmetric system, compared to a particle
which will later have a radial trajectory from flow.

the center), the probability of having a jet is maximum, but then L is the same in

all directions, providing no correlation. If r is close to the surface, the probability of

production is at a minimum, and the jet, with any trajectory pointing away from the

medium, experiences little or no quenching. In this case, there is some correlation

since some of the jet’s trajectories are restricted. At some depth inside, the probability

of jet production increases, and the range of φjet of surviving jets is narrowed. To

determine the angular shape and magnitude of this phenomenon, we modify our

calculation in Ch. 5 by replacing the blast wave distribution f(x1,p1)/n(x1) in (5.8)

with the jet distribution fjet(x1,p1)/n(x1).

We define the jet distribution as

fjet(x,p) =
A

pnt
Pprod(rjet)S(rjet, φjet). (6.6)
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The probability of jet production is

Pprod(rjet) ∝
(

1−
r2
jet

R2

)
, (6.7)

for two homogenous hard spheres colliding centrally. For future calculations that

include the anisotropy of the system, we would need to explicitly use a Glauber

calculation of binary collisions [87]. The probability of quenching, or the probability

the jet survives, is approximated by an exponential damping

S(rjet, φjet) = e
−L(rjet,φjet)

`abs (6.8)

that depends on the jet path (6.5) and the quenching length `abs = 0.25fm [79]. The

momentum distribution follows a power law of the form A/pn.

We rewrite (5.8) using the indicies “J” for “jet” and “B” for “bulk”, such that the

first particle comes from a jet and the second from a flux tube

∆ρ
JB

(p1,p2) =

∫
c
JB

(x1,x2)
f
J
(x1,p1)

n1(x1)

f
B

(x2,p2)

n1(x2)
pµ1dσµ1p

µ
2dσµ2 (6.9)

where pµdσµ follows (3.21). The correlation function c
JB

(x1,x2) requires that a jet

and a bulk particle must come from the same radial position. The rest of the equation

accounts for the different spectra for jet and bulk particles. We write

c
JB

(x1,x2) =
R

JB
〈NJ〉

R〈NB〉
c(x1,x2), (6.10)

where c is given by (5.2) and κ
JB

= 2〈N
J
〉〈N

B
〉/(πR2

A(∆y)2τ 2).

To relate the correlation strength R
JB

to the bulk correlation strength R dis-

cussed earlier, we assume that the hard scattering rate is independent of the flux

tube dynamics. Recall that the bulk quantity R in (5.4) is related to the number of
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flux tubes; see (5.13). If we take the fraction of jet and bulk particles per flux tube

to be independent of the number of flux tubes, we can write 〈N
J
〉 = α〈N〉, where α

and β may depend on momentum, but do not vary event by event. We then follow

Ref. [152] to find 〈N
B
〉 = β〈N〉, and 〈N

J
N
B
〉 = αβ〈N(N − 1)〉, so that

R
JB

=
〈N

J
N
B
〉 − 〈N

J
〉〈N

B
〉

〈N
J
〉〈N

B
〉

=
αβ〈N(N − 1)〉 − α〈N〉β〈N〉

α〈N〉β〈N〉

=
〈N(N − 1)〉 − 〈N〉2

〈N〉2
= R. (6.11)

Therefore, the addition of jets to the total multiplicity doesn’t change the correlation

strength. In essence, the beam jet associated with the hard process is just another

flux tube in the high density Glasma state.

Our objective, as before, is to compute ∆ρ
JB

(η, φ) =
∫

∆ρ
JB

(p1,p2)pt1pt2dpt1dpt2dΦ.

To simplify, we notice that the terms containing the jet momentum, pt1, and the jet

rapidity, y1, (and spatial rapidity, η1) can factor out of (6.9) such that we can write

Apt1 =

∫
Amt1

pnt1
pt1dpt1 (6.12)

Aη1 =

∫
cosh(y1 − η1)dη1. (6.13)

Moreover, we can make use of (3.33) yet again to preform the integration of η2. The
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jet-bulk correlation function in now

∆ρ
JB

(η, φ) = 2aτ 2κ
JB
RApt1Aη1

∫ ∫
e

−L(rjet,φjet)

`abs e
λr2p2 cos(φ2)

T

×mt2K1

(γtmt2

T

)
δ(r)

(
1− R2

t

R2
A

)
d2r1d

2r2pt2dpt2dΦ. (6.14)

We now exploit the delta function and integrate over either of the remaining spa-

tial variables (let’s pick r2). In effect, this only changes the subscript of the radial

variables. To avoid confusion, let us immediately make the substitution r1 = xrRA.

Finally, the last analytical integration we perform yields
∫
dθ1 = 2π. We make more

substitutions as done before in Sec. 3.3 and 5.3, where x = γtpt1/T , and γtvs = λRA

so that we have

∆ρ
JB

(η, φ) = 4πR2
Aaτ

2κ
JB
R
(
T

γr

)3

Apt1Aη1

×
2π∫

0

∞∫
γt
T
pt1,min

1∫
0

S(xrRA,Φ +
φ

2
)(1− x2

r)
2

×
√
x2 + ζ2K1(

√
x2 + ζ2)

×evsxrx cos(Φ+φ/2)xrxdxrdxdΦ, (6.15)

with ζ = γtm/T .

To determine ρref , we equate ρref =
∫
ρ1,jet(p1)

∫
ρ1,bulk(p2). Using (6.6), (6.13),

and (6.13) we find

∫
ρ1,jet(p1) =

1

πR2
A

dNjet

dy
Apt1Aη1

2π∫
0

1∫
0

2πR2
A(1− x2

r)S(xrRA, φ1)xrdxrdφ1. (6.16)
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We leave the factor of 2πR2
A in the integrand to indicate it is the result of the spatial

integration
∫
dθ1 = 2π, and the spatial substitution r1 = xrRA.

∆ρ
JB

(η, φ)∫
ρ1,jet(p1)

∫
ρ1,bulk(p2)

=

Rvs

2π∫
0

xmax∫
xmin

1∫
0

S(xrRA, φ1)(1− x2
r)

2mt,xK1(mt,x)e
vsxrx cos(φ1)xrxdxrdxdΦ[

2π∫
0

1∫
0

(1− x2
r)S(xrRA, φ1)xrdxrdφ1

] [
xmax∫
xmin

mt,xK1(mt,x)I1(vsx)dx

] (6.17)

where mt,x =
√
x2 + (γtm/T ) and φ1 = Φ + φ/2 and xmin,max = γtpt2,min,max/T .

We can now write (6.17) as ∆ρ/ρref = RF
JB

(φ) and similarly to (5.12) we have

for jet-bulk correlations

∆ρ
JB√
ρref

= κRdNjet

dy
F
JB

(φ). (6.18)

Here κ is the same as in (5.12), and we find the jet distribution with

RdNjet

dy
= RdNbulk

dy

∫
ρ1,jet(pt1)∫
ρ1,bulk(pt1)

, (6.19)

where pt1 is in the jet range and

∫
ρ1,jet(pt1) =

∫
ρtot(pt1)−

∫
ρ1,bulk(pt1). (6.20)

Multiplying (6.18) by the jet fraction,
∫
ρ1,jet(pt1)/

∫
ρtot(pt1), and using (6.3) to

change from ∆ρ/
√
ρ to yield, we find the jet-bulk correlation yield. To match the hard

ridge measurement, we take appropriate pt limits and find the red curve in Fig.6.1.

We see that the jet-bulk correlation distribution is wider than the data, but makes

up only ∼ 25% of the amplitude. Reference [79] also finds that the calculated width

is too wide, but does not calculate the amplitude. In the following sections, we show
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Figure 6.10: Blast wave vs jet fraction of the invariant spectrum. The blue exponential
line represents the blast wave calculation with its magnitude scaled to intersect the
measured spectrum at ps = 1.25 GeV. The area below the exponential represents the
number of thermal particles and we take the remainder to represent the number of
jets.

that in adding the bulk-bulk and jet-bulk correlations, we can describe the amplitude

and azimuthal width of the hard ridge quite well.

6.3 Bulk and Jet Fractions

In order to compute the amplitude and azimuthal width of the hard ridge in

Fig.6.6, we must determine the relative contributions from both bulk-bulk and jet-

bulk correlations. The measured pt spectrum follows an exponential behavior at low

pt and a power law behavior at higher pt where jets play a larger role, see e.g. Ref. [52].

Our blast wave formulation describes the exponential behavior of the low pt spectrum

well. The scale ps at which the spectrum begins to deviate from exponential behavior

is proportional to Qs in Glasma theory, but the proportionality constant is not known.

This introduces a free parameter – ps at
√
s = 200 GeV – that we fix below. We then

find the number of jet particles by taking the difference between the total number of

particles and the number of thermal particles ρ1,J = ρ1,tot − ρ1,B. We take ρ1,tot from
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the measured spectrum in Ref. [52] and ρ1,B from the blast wave calculation with the

appropriate normalization.

If we decrease ps, we effectively increase the number of jets and decrease the

number of bulk particles. The resulting increase in jet-bulk correlations is less then

the decrease in bulk-bulk correlations, and the total amplitude is less than the data.

Conversely, if we increase ps, the bulk-bulk amplitude growth is much larger than

the jet-bulk reduction, and the total amplitude is then greater than the data. Even

though we have introduced a free parameter into our calculation, the behavior just

described indicates further that bulk-bulk correlations are a significant if not dominant

contribution to the hard ridge.

6.4 Discussion and Predictions

We see in this chapter that, when the pt,min limit of correlated bulk pairs is

increased, not only does the amplitude of correlations decrease, but that we are also

isolating particles with larger transverse boosts. As discussed in Ch. 5, transverse

flow enhances angular correlations; increasing pt,min is accompanied by narrowing

azimuthal width. Furthermore, we find that the soft correlations contribute to ∼ 75%

of the hard ridge amplitude but have a slightly narrower profile. Correlations of

jets with flowing particles can make up the rest of the amplitude and have a wider

azimuthal profile. The combination then does a suitable job of explaining these

aspects of the hard ridge. We expect that, for some pt,min, jets should completely

dominate the spectrum, and the largest contribution to long range correlations comes

from jet-bulk correlations.

We now calculate the combined effect of Glasma, flow, and jets on the correlation

function. Adding the bulk-bulk and jet-bulk contributions, we obtain

∆ρ
√
ρref

= κRdN
dy

F
BB

(φ)

∫
ρ1,B(pt)∫
ρ1,tot(pt)

+ κRdNjet

dy
F
JB

(φ)

∫
ρ1,J(pt)∫
ρ1,tot(pt)

. (6.21)
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Figure 6.11: Comparison of the angular shape of the jet triggered ridge to long range
bulk-bulk (blue line) and jet-bulk (dashed red line) correlations arbitrarily normalized
to the measured peak height. Data from [3] (talk).

In order to compare to the yield of associated particles in the hard ridge, we combine

(6.21) and (6.3) with the appropriate integration limits. We find that the agreement

with the data in Fig.6.6 requires ps = 1.25 GeV. The dashed red curve in Fig. 6.6

represents the contribution to the yield from correlations of jet and bulk thermal

particles. This contribution is too wide. On the other hand, the bulk-bulk correlation

function describing the effect of flow alone, which is given by the blue curve, is too

narrow and the computed peak height is too small. To emphasize the disagreement

of the angular shapes, we show the contributions normalized to the peak in Fig.6.11.

The combination of the two effects shown as the black curve in Fig.6.6 gives nice

agreement with both the amplitude and azimuthal width.

In Fig.6.12 and Fig.6.13, we plot predictions of the amplitude and azimuthal

width vs. pt,min using (6.21). In each case the blue curves represent the bulk-bulk

contribution that we have seen before in the lower panels of Figs.6.2, 6.3, 6.4, and

6.5 on a normal scale. We use a logarithmic scale here to highlight the the relative
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Figure 6.12: Amplitude of ∆ρ/
√
ρ highlighting the contribution for bulk-bulk and

jet-bulk correlations for Au+Au and Cu+Cu 200 and 62 GeV. Caution: bulk and
jet fractions determined by Au+Au 200GeV momentum spectrum only. Data from
Ref.[26].

contributions of bulk-bulk and jet-bulk correlations. At low pt,min, the contribution

from jets is negligible and therefore the amplitude and width of (6.21) is determined by

the bulk-bulk term. As the pt,min is increased, both the amplitude and the azimuthal

width of the bulk-bulk term decreases, while the amplitude of the jet-bulk term

increases.

The azimuthal width of jet-bulk correlations is roughly independent of pt,min; the

growth in the figures for pt,min > 1 GeV is due to the growth of the jet fraction.

Jet-bulk correlations should become a more significant fraction of the total as pt,min

is increased, and the azimuthal width of the ridge should increase toward the jet-bulk

width. The trends shown for Cu+Cu 200 GeV in Figs.6.3, 6.5, 6.12 and 6.13 follow

preliminary data from Ref.[26]. The small difference may reflect the fact that our

calculation omits the jet peak.
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Figure 6.13: Azimuthal width of ∆ρ/
√
ρ comparing the contribution of bulk-bulk

and jet-bulk correlations for Au+Au and Cu+Cu 200 and 62 GeV. Caution: bulk
and jet fractions determined by Au+Au 200GeV momentum spectrum only. Data
from Ref.[26].

We emphasize that the decrease of the bulk-bulk contribution to σr with increasing

pt in Figs.6.12 and 6.13 is a direct consequence of transverse flow and, consequently,

is a firm prediction if the jet-bulk contribution is neglected. The roles of jets and

other phenomena like recombination are less clear. We have chosen the model of

Ref.[79] because it relies only on the well-studied phenomena of jet quenching. Our

calculations using this model predict that the width should increase for higher pt

ranges.

In this chapter, we make the first theoretical study of the soft ridge as a function

of the pair pt range, and show that there is a significant contribution to the hard ridge

from correlations of only soft particles. To include jet correlations with flux tubes,

we reformulate [79], and determine the magnitude of jet-bulk correlations relative

to bulk-bulk correlations. We find that we can explain the azimuthal width and

amplitude of the hard ridge by combining bulk-bulk and jet-bulk correlations, and

make predictions about the azimuthal width and amplitude of ∆ρ/
√
ρ for Au+Au
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and Cu+Cu 200 and 62 GeV collisions. We find that transverse bulk flow and jet

production affect the transverse momentum dependence of the ridge in different ways,

as shown in Fig.6.13. If transverse flow is the only contribution, we predict that the

azimuthal width of the near side peak σr will decrease as pt increases. Jets may

introduce new behavior depending on the way in which they influence the ridge.

It has been pointed out that a larger choice of ps is not outrageous, and therefore

soft correlations alone can explain the total amplitude and nearly the azimuthal width

of the hard ridge. This is not so terrible, since all of the long range correlation behavior

depends on the rapidity reach of flux tubes, and the triggered ridge seems to show

correlations at large η. In either case, our message remains that the primary cause

of the ridge structure is not a medium response to jets, but a characteristic of the

medium itself.
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Chapter 7

Viscosity and the Ridge

While CGC particle production seems to provide an explanation for the long

range shape of the ridge, shorter range transport effects such as shear viscosity play

an integral roll in understanding the two dimensional shape of the ridge. In Chapters

5 and 6, we describe the amplitude and azimuthal shape of the near side ridge as a

consequence of fluctuating initial conditions in combination with radial flow, and jet

quenching. We envision that particle density fluctuations arise from CGC-Glasma

flux tubes that stretch the full longitudinal extent of the collision. This condition

results in a ridge resembling a flat pedestal in ηr. We recognize that the correlation

structure is not flat in ηr, but rather a seemingly broad Gaussian shaped by shear

viscous forces driving momentum density fluctuations toward a local equilibrium.

In Secs.7.1 and 7.2, we summarize the work of Gavin and Abdel-Aziz in Refs.[38,

153, 154] to develop the theory of viscous broadening of the ridge. The addition of

viscous broadening not only adds a valuable piece of the puzzle in putting together

aspects of the ridge, but also allows for measurement of the pt -weighted ridge to serve

as an independent measurement of the shear viscosity to entropy density ratio of the

QGP. In Sec.7.3, as in Ref.[39], our contribution to this work builds on these results,

and focuses on the the effects of transverse flow and freeze out in conjunction with

viscous diffusion. The effects of radial flow and freeze out conditions are required to

link this spatial rapidity broadening with the rapidity width of the pt -weighted ridge.
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Figure 7.1: Cartoon of the broadening of the spatial rapidity correlation distribution
due to shear viscosity. The blue curve is the correlation distribution at the formation
of QGP at (τ = τ0). The black curve is the distribution after some evolution, taking
into account the effect of viscous diffusion.

7.1 Shear Viscosity, Diffusion, and Momentum Broadening

Momentum density fluctuations and the broadening of the rapidity width of the

ridge can be studied in the context of the pt -weighted ridge. Correlation measure-

ments of the soft ridge, where correlated pairs are weighted by their momenta pt1pt2,

amplifies the roll of momentum density on correlations [28, 53]. As a result, the az-

imuthal width of the pt -weighted ridge will appear narrower than the soft ridge since

higher pt pairs are weighted more heavily (higher pt pairs get a larger radial boost

and have smaller opening angle, see Sec.5.3).

The pt -weighted ridge also provides insight into the short range shape of the ridge

in rapidity. Fluctuations in momentum density at early times give rise to shear viscous

forces between neighboring fluid cells with different average momentum density. These

viscous forces reduce the strong correlation in faster fluid cells, effectively spreading it

to slower fluid cells. Figure 7.1 illustrates the effect of viscous diffusion on the initial

spatial rapidity distribution (blue line), after some evolution of the system (black line).

Viscosity tends to reduce fluctuations by distributing the excess momentum density

over the collision volume. This effect broadens the rapidity profile fluctuations.

Nuclear collisions produce a fluid that flows outward with an average transverse
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Figure 7.2: The transverse velocity deviates from the average by an amount u that
varies throughout the collision volume. Viscosity drives this deviation toward zero.

velocity vr. In the hydrodynamic description of these collision, we typically assume

that vr varies smoothly with space time (t,x) and is the same for all collisions of a

fixed impact parameter. More realistically, small deviations u(x) relative to vr occur

throughout the fluid, varying with each collision event. Such deviations occur, for

example, because the number and location of nucleon-nucleon subcollisions varies in

each event.

Viscous friction arises as neighboring fluid elements flow past each other as shown

in Fig.7.2 from Sean Gavin and Mohamed Abdel-Aziz [153]. This friction drives vr

toward the local average. The final size of the deviation depends on the magnitude

of the viscosity, the initial temperature, and the lifetime of the fluid. In the local

co-moving frame where 〈vr〉 = 0, we see the manifestation of the shear stress as the

velocity deviation u varies as a function of longitudinal position z. The shear stress

is defined as

Tzr = −η∂u/∂z. (7.1)

Here, the energy-momentum conservation law ∂µT
µν = 0 is satisfied by the stress-

energy tensor T µν = (ε + p)uµuν − pgµν + τµν where ε is the energy density, p is

the pressure, uµ = γ(1,v) is the four-velocity of the fluid, and γ = (1 − v2)−1/2.

Following Landau and Lifshitz Fluid Mechanics, we define our four-velocity to vanish

when T 0i = 0 [155]. Then the dissipative contribution τµν depends only on viscosity
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with τ 00 = τ 0i = 0 and

τij = −η{∇ivj +∇jvi −
2

3
δij∇ · v} − ζδij∇ · v. (7.2)

The bulk viscosity ζ resists compression or expansion in which ∇ · v 6= 0. We take

ζ � η.

The transverse momentum current of the fluid, which is generally T0r = γ2(ε+p)vr

is changed by the stress (7.1) such that gt(x) = T0r − 〈T0r〉 = δT0r ≈ (ε + p)u in the

co-moving frame. Following from energy-momentum conservation, ∂µT
µν = 0,

∂gt/∂t = −∂Tzr/∂z. (7.3)

Near a point where vr = 0, the momentum current gt satisfies a first order diffusion

equation,

∂gt/∂t = ν∇2gt. (7.4)

The kinematic viscosity is given by

ν =
η

(ε+ p)
=

η

Ts
(7.5)

where T is the temperature and s is the entropy density. This quantity measures the

relative strength of the viscosity to the fluid’s inertia, as is most apparent in the non

relativistic limit where (ε + p) → ρ with ρ being the mass density (c = 1). In our

relativistic system at small net baryochemical potential, (ε + p) ≈ Ts. Observe that

our physically-motivated radial g(z, t) satisfies Eq.(7.4), as does any fluctuation gt for

which ∇ · gt = 0.

Assuming Bjorken longitudinal flow in the z direction coupled to radial flow vr in
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the transverse plane that depends only on r we can generalize (7.7) to

∂gt
∂τ

+ vr · ∇rgt + gt · ∇vr = ν

(
1

τ 2

∂2

∂η2
+∇2

r

)
gt. (7.6)

This equation can be used additionally to find the azimuthal broadening due to

diffusion, and is a subject of future work.

For the purely longitudinal case, we write (7.4) in terms of spatial rapidity η =

1/2 ln((t + z)/(t − z)) and proper time τ = (t2 − z2)1/2 e.g. (3.12) and (3.14), and

find

∂gt
∂τ

=
ν

τ 2

∂2gt
∂η2

. (7.7)

Defining the spatial rapidity width V as

V ≡ 〈(η − 〈η〉)2〉 =

∫
η2gtdη∫
gtdη

, (7.8)

for 〈η〉 = 0 we follow Ref.[154], and translate momentum current diffusion (7.7) into

a broadening of V . We multiply both sides of (7.7) by η2 and integrate over dη to

obtain

dV

dτ
=

2ν

τ 2
. (7.9)

In principle, η, T, and s can all vary with time, in which case we solve this equation

numerically. As discussed in Ref.[38] we can take ν ≈ constant and analytically

compute the spatial rapidity broadening ∆V as,

∆V =
2ν

τ0

(
1− τ0

τ

)
(7.10)

where ∆V ≡ V − V (τ0), and τ0 is the formation time.
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7.2 Diffusion and Correlations

We now take the information in Sec.7.1 and extend it to consider two particle

correlations. In the spirit of Eq.(5.1), we write the two particle spatial correlation

function

rg = 〈gt(x1)gt(x2)〉 − 〈gt(x1)〉〈gt(x2)〉 (7.11)

where the brackets indicate an ensemble of events. The difference ∆rg = rg − rg,eq,

where rg,eq is the local equilibrium value, satisfies the diffusion equation

(
∂

∂τ
− ν

τ 2

∂2

∂η2
1

− ν

τ 2

∂2

∂η2
2

)
∆rg = 0. (7.12)

Then, ∆rg = rg − rg,eq is broadened by momentum diffusion since diffusion spreads

the rapidity of each particle in a given pair with a variance ∆V . Rearranging (7.12)

in to relative ηr = η1 − η2 and average ηa = (η1 + η2)/2 spatial rapidity coordinates,

we have (
∂

∂τ
− 2ν

τ 2

∂2

∂η2
r

− ν

τ 2

∂2

∂η2
a

)
∆rg = 0. (7.13)

Similar to the method in the previous section, one can compute the widths of ∆rg(ηr, ηa, τ)

in relative or average spatial rapidity, by multiplying (7.13) by η2
r or η2

a and integrating

over both variables to find

σ2 = σ2
0 + 2∆V (τf ) (7.14)

Σ2 = Σ2
0 + ∆V (τf ), (7.15)

where ∆〈(ηr − 〈ηr〉)2〉 = 2∆V and ∆〈(ηa − 〈ηa〉)2〉 = ∆V . Here, ∆ represents the

difference in the variance from its initial value. The result is that ∆rg, in relative

spatial rapidity, grows from an initial value σ0 where τf is the proper time at which
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freeze out occurs. We can then take

∆rg(ηr, ηa) ∝ e−η
2
r/2σ

2

e−η
2
a/2Σ2

(7.16)

where (7.15) gives the width in relative rapidity and the width in average rapidity

from (7.15) is Σ. Correspondingly, if one takes the 3+1D diffusion equation (7.6) for

∆rg, it takes the form

∆rg(rt, Rt, ηr, ηa) ∝ e−r
2
t /2σ

2
re−R

2
t /2Σ2

re−η
2
r/2σ

2

e−η
2
a/2Σ2

(7.17)

where the relative and average spatial transverse coordinates are rt = r1 − r2, R =

(r1 +r2)/2, and σr and Σr are the relative and average azimuthal widths respectively.

As stated in Refs.[38, 39, 153, 154], ∆rg is observable through measurement of the

quantity

C = 〈N〉−2〈
∑
i 6=j

ptiptj〉 − 〈pt〉 = 〈N〉−2

∫
∆rg(x1,x2)dx1dx2 (7.18)

where brackets indicate an event average over all particles i and j and 〈pt〉 ≡ 〈
∑
pti〉/〈N〉.

7.3 Radial Flow and the Effects of Freeze Out

As we saw in Ch.5 and 6 momentum space correlations at freeze out are directly

linked to initial state spatial correlations. In this section, we add the additional

wrinkle that initial spatial correlations are altered by diffusion.

In Ch.5 we find that the azimuthal width of the soft ridge is enhanced (narrowed)

by transverse flow. We find the same result in this section, albeit with two differences.

The first difference is a consequence of the pt weighting of the soft ridge studied in

this chapter. We see the second difference when we use the diffusion equation (7.6) for

∆rg to calculate the broadening in (spatial) rapidity and transverse widths starting

from some initial values which are not known.
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Weighting the correlated pairs by the pt of the particles in the pair essentially

suppresses the contribution from slower pairs. In the context of Ch.5, the slower pairs

are those that come from fluid cells originating closer to the center of the collision

volume and therefore receive less of a radial boost and have larger relative azimuthal

angle. The result is that the pt -weighted ridge reflects the contribution of particle

pairs with smaller azimuthal angle and therefore has a smaller azimuthal width.

In the case of the transverse distribution, we can make use of the same knowledge

that lead to the CGC inspired correlation function (5.2). Here the initial relative

transverse distribution takes the form of a delta function and the average transverse

distribution follows (5.3) and diffusion drives them toward the form (7.17). This

requires a numerical solution of (7.6) and is a subject of current investigation. Results

presented in this section were obtained before determination of (5.2). Furthermore,

as shown in Ref.[59], the CGC initial correlated pair distribution in relative rapidity

is truly long range and approximately flat in the STAR acceptance. Long range

correlations cannot be modified by shorter range effects such as diffusion since particle

pairs contributing to this effect are causally disconnected. For this reason, long range

CGC rapidity distributions do not provide information about σ0. For the purposes

of the results shown in this section, we take initial distributions to be Gaussian with

widths set by those measured in peripheral collisions, where diffusion has little or no

contribution.

The effect of diffusion is to spread out correlations over the volume. Given a long

enough lifetime any distribution, even as sharp as a delta function, will tend toward

a Gaussian shape. To include the effects of transverse flow and freeze out, we write

the momentum correlation function as

∆rg(p1,p2) =

∫
∆rg(x1,x2)

f(x1,p1)

n1(x1)

f(x2,p2)

n1(x2)
pµ1dσµ1p

µ
2dσµ2. (7.19)
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Equation (7.19) has a form consistent with (5.8), except now we replace the spatial

correlation function c(x1,x2) that is purely transverse with (7.17), ∆rg(x1,x2), one

that is representative of both transverse and longitudinal correlation distributions

as well as the effects of diffusion. We make use of the formalism started in Ch.3,

where the strength of flow is determined by fitting the measured 〈pt〉 and elliptic flow

coefficient v2. The Boltzmann distribution f(x,p) follows (3.23), with Hubble-like

expansion (3.1), so that γ1,2 follows (3.29). Now (7.19) takes the form

∆rg(p1,p2) = a

∫
e−γ1

mt1
T

cosh(y1−η1)e−γ2
mt2
T

cosh(y2−η2)

×e
λ
T

(εxpx1x1+εypy1y1)e
λ
T

(εxpx2x2+εypy2y2)

×e−(x1−x2)2/2σ2
x−(y1−y2)2/2σ2

y

×e−(x1+x2)2/8Σ2
x−(y1+y2)2/8Σ2

y

×e−η2r/2σ2

e−η
2
a/2Σ2

×τ1τ2mt1mt2 cosh(y1 − η1) cosh(y2 − η2)

×dη1dη2dx1dx2dy1dy2, (7.20)

where a is an overall normalization factor and

σ2
x = σ2

r(1 + α)/2 (7.21)

σ2
y = σ2

r(1− α)/2 (7.22)

Σ2
x = Σ2

r(1 + β)/2 (7.23)

Σ2
y = Σ2

r(1− β)/2, (7.24)

with α, β ≈ 0. For convenience, we rewrite all spatial coordinates in terms of relative

and average coordinates so that x = x1 − x2, X = (x1 + x2)/2, and dx1dx2 = dxdX.

We apply the same convention for y1 and y2.

The gamma factor (3.29) complicates any analytic reduction of (7.20), forcing
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multidimensional, resource-hungry Monte Carlo integration techniques. However, we

observe the expansion factor λ to be small at leading order, and approximate γ1,2 as

a constant. Now the x and y terms of (7.20) factor and take the form

∫
e
λ
2T
εx(px1−px2)xe−x

2/2σ2
xdx

∫
e
λ
T
εx(px1+px2)Xe−X

2/2Σ2
xdX

= 2πσxΣxe
λ2

8T2 ε
2
x(px1−px2)σ2

re
λ2

2T2 ε
2
x(px1+px2)Σ2

r , (7.25)

and similarly for y. With some algebra we obtain

∆rg(p1,p2) = a

∫
e−γ1

mt1
T

cosh(y1−η1)e−γ2
mt2
T

cosh(y2−η2)e−η
2
r/2σ

2

e−η
2
a/2Σ2

×e
λ2

8T2 (Σ2
r(1+αε)+

σ2r
4

(1+βε))(p2t1+p2t2
)

×e
λ2

4T2 (Σ2
r(1+αε)−σ

2
r
4

(1+βε))pt1pt2 cosφ

×e
λ2

8T2 (Σ2
r(α+ε)+

σ2r
4

(β+ε))p2t1 cos(2Φ+φ)

×e
λ2

8T2 (Σ2
r(α+ε)+

σ2r
4

(β+ε))p2t2 cos(2Φ−φ)

×e
λ2

4T2 (Σ2
r(α+ε)−σ

2
r
4

(β+ε))pt1pt2 cos(2Φ)

×τ1τ2mt1mt2 cosh(y1 − η1) cosh(y2 − η2)dηrdηa, (7.26)

with the relative azimuthal angle φ = φ1 − φ2 and the average azimuthal angle

Φ = (φ1 − φ2)/2.

Alternately, we solve (7.20) numerically via Monte Carlo integration with no

change in the gamma factor (3.29). Using the all Monte Carlo technique, we find the

quantity ∆ρpt(yr, φ) =
∫

∆rg(p1,p2)pt1pt2dpt1dpt2dΦ and construct the short range

component of ∆ρ/ρ1ρ1 for the near side in Fig.7.3. We see that there is narrowing in

azimuth due to transverse flow, but it is also important to note that transverse flow

effects the rapidity width as well.

Transverse flow effects compete with those of diffusion. While diffusion tends
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Figure 7.3: The ridge response at freeze out to viscous broadening giving widths ση
and σφ .

to spread out correlations over the volume, flow focuses correlations into a narrower

phase space by increasing particle momenta based on their position. For the azimuthal

case, we have describe this effect in detail in Ch.5.

Rapidity narrowing due to transverse flow is less obvious but can be seen through

examination of the definition of rapidity y = tanh−1(pz/E) with E =
√
m2 + p2

t + p2
z.

An increase in pt only will increase E and not pz, reducing the rapidity y asymptot-

ically toward zero. The rapidity of particles with different pz but same transverse

boost will decrease at a different rate due to the tanh−1 behavior and the relative

rapidity y1 − y2 will also tend toward zero asymptotically.

STAR measures the quantity

∆σ2
pt:n = 〈N〉−1〈

∑
i 6=j

(pti − 〈pt〉)(ptj − 〈pt〉)〉, (7.27)

which is designed to minimize the number density contribution [28, 53]. The co-

variance C is sensitive to the variation of the pt of particles as well as their num-

ber density; both quantities effect the momentum current density. These quantities

are related by 〈N〉−1∆σ2
pt:n = C − 〈pt〉2R, where R measures the number density

contribution (5.4). STAR employs ∆σ2
pt:n to construct a correlation function as a
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Figure 7.4: Centrality dependence of the width of the near side peak in φ and η as a
function of centrality (2Ncol/Npart = ν). The data is from Ref[28].

function of rapidity and azimuthal angle. In essence, they measure ∆σ2
pt:n in var-

ious (pseudorapidity) ηr and φ bins and construct a correlation function F (ηr, φ)

defined by ∆σ2
pt:n =

∫
Fdηrdφ [28, 53]. Fig.7.4 shows the widths of the near side

peak in azimuth σφ and rapidity ση. Fixing our notation, ηr is relative pseudora-

pidity which we take to approximately be relative rapidity y in (7.20). Central-

ity is measured using the definition 2Ncol/Npart = ν. We find the widths taking

σ2
φ =

∫
φ2∆rg(p1,p2)pt1pt2d

3p1d
3p2/

∫
∆rg(p1,p2)pt1pt2d

3p1d
3p2

and σ2
η =

∫
y2∆rg(p1,p2)pt1pt2d

3p1d
3p2/

∫
∆rg(p1,p2)pt1pt2d

3p1d
3p2. We see in Fig.7.4

that for the constant γ1,2 calculation (7.26), we find nice agreement with data.

The impact of diffusion, flow, and freeze out have a complicated and intertwined

relationship with the shape of the near side ridge. Consequently, information from

the pt -weighted ridge and σφ and ση can constrain the shear viscosity to entropy

density ratio since they directly result from calculation of σ and σr in (7.17). This

was first shown in Ref.[38]. Moreover, σ and σr are sensitive to the lifetime of the

fluid and therefore can distinguish between a constant or time dependent viscosity to

entropy density ratio.
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Chapter 8

Other Aspects of the Ridge and Future Work

Thus far, our study of the 2D correlation structure has focused exclusively on the

near side ridge, but the total landscape is a complicated structure with many aspects

remaining to be understood. We describe the long range features of the near side

with a CGC inspired model in which particles are initially correlated at the point

of production. Additionally, we fold in a theory of shorter range correlations based

on viscous diffusion, but together, we have yet to even describe all features of the

near side. The near side appears to consist of a “jet peak” convoluted with a broader

distribution, sitting on a pedestal. There is also the “away side” structure, centered

at φ = π and normally thought of as a consequence of momentum conservation.

Thus far, we have not addressed the jet peak or the away side structures. Addi-

tionally, we have not expanded the short range in rapidity treatment to describe all

available data, i.e. the unweighted soft ridge. The description of all features under

one framework is the primary goal for the future. Additionally, a serious difficulty in

our previous correlation studies has been a lack of access to realistic transport and

full hydrodynamical models. Using the NEXSPHERIO code, ridge correlation stud-

ies along this line have begun, but have only achieved qualitative ridge shapes [65].

One could develop a competitive realistic model, with transport models using various

initial conditions such as BAMPS [156, 157, 158, 159], and UrQMD with intermediate

hydrodynamical evolution [160, 161, 162, 163].
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8.1 The Jet Peak

We imagine that the jet peak sitting on the ridge is due to jet fragmentation

outside of the medium. Similarities in the azimuthal and rapidity width of the jet

peak with that of an isolated jet are evidence of this. Additionally, the amplitude of

the jet peak does not seem to grow with centrality. Following from this, we should be

able to reproduce the jet peak using PYTHIA or fragmentation models. The simplest

next step is to directly add these correlations as a continuation of (6.21) where

∆ρ(p1,p2) = ∆ρ
BB

(p1,p2) + ∆ρ
JB

(p1,p2) + ∆ρ
JJ

(p1,p2). (8.1)

Here the subscripts B and J correspond to the correlation of a bulk or jet particle

distributions. We remark that the long range behavior of the ridge is due mostly to

the production and flow of bulk particles rather than the modification of the medium

by the jet. As a result, the strength of the correlation then scales with soft particle

production, where the last term in (8.1) is due entirely to correlations between jet

fragments.

We observe, however, that the jet peak is not simply sitting on a flat pedestal,

but more like a broad Gaussian. This broad Gaussian structure evolves from an

initial distribution that may or may not be related to the passage of a jet. Viscous

corrections to this initial distribution may be enough to explain the soft ridge width

in central collisions without the presence of the jet (i.e. the jet contribution is small),

but for other centralities and other pt ranges including the hard ridge the interplay

of jet-medium modifications and viscous diffusion could become important.

8.2 The Away Side

The away side structure at φ = π must be explainable within the same correlation

framework. A hydrodynamic explanation of the near side ridge would demand a struc-
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ture at the away side to conserve momentum. Indeed, such a structure is observed,

but its observed magnitude and behavior with centrality are yet to be explained.

This issue can have profound consequences for all correlation probes, including HBT

measurements, and may also affect single particle observables. Aside from its in-

trinsic interest, understanding of the away-side region can shed light on jet-triggered

correlations, as the proposed Mach cone sits atop just such an away side structure.

In an individual event, the vector sum of transverse momenta must vanish. Causal-

ity limits the transport of momenta depending on the size and time frame of the sys-

tem. A momentum diffusion length would determine the scale of causally connected

domains in which any particle could transfer momentum to any other particle in the

same domain.

Momentum conservation should modify the correlation function following ∆ρ(p1,p2)→

∆ρ(p1,p2) + ∆ρmom(p1,p2), where

∆ρmom(p1,p2) = −A cos(φ) (8.2)

A =
2

〈N〉〈pt〉

∫
p(x1,x2)f(x1,p1)f(x2,p2)pµ1dσµ1p

µ
2dσµ2, (8.3)

and p(x1,x2) is the probability that both particles come from the the same causally

connected domain. We assume that the system is large and in local equilibrium.

Borghini et al. first addressed the affect of momentum conservation on correla-

tions, but considered a globally-equilibrated fireball in which all of the particles share

momentum [164, 165, 166, 167, 168]. In that extreme case, p ≡ 1. Chajecki and

Lisa apply Borghini-type corrections to HBT data, and find disagreement with data

[169, 170]. They introduced the notion of causally-connected sub-volumes, and ar-

gued empirically that these sub-volumes contain only ∼ 200−300 particles in central

Au+Au collisions.
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In parallel, we plan to study how well (8.2) and (8.3) explain data for η − φ cor-

relations, HBT,and other signals. Preliminary indications are that (8.3) can describe

the STAR measurements of A as a function of centrality, but quantitative comparison

requires detailed understanding of the experimental analysis method. Lastly, this cal-

culation will expand a framework that can be tested in transport and hydrodynamical

models which inherently include the concept of momentum conservation.

8.3 Rapidity Dependence

Ref.[65] obtains long range correlations using NEXUS initial conditions. The prin-

ciple ideas behind the formation of the ridge remain the same; initial parton density

fluctuations that are long in relative rapidity are modified by hydrodynamical flow.

The major differences from our model are the transverse size and parton distribution

of the fluctuation, and the prescription for radial expansion. We argue in [36, 37] that

our quantitative agreement with data largely reflects the choice of initial conditions,

but we take a simple prescription of transverse expansion. Ref.[65], however, imple-

ments full 3+1 hydrodynamics through the SPHERIO code and obtains a ridge-like

structure, but does not quantitativly reproduce the data.

In our picture, the longitudinal extent of the ridge depends on the distribution

of lengths of flux tubes. In [36, 37], we have approximated the flux tubes to have

infinite length, thus producing a flat ridge. Ref.[59] has shown that in the CGC

picture, two gluon cumulants from early stage color flux tubes exist out at relative

rapidity separations larger than that observed by experiment, but do die off at large

rapidities. We plan to relate this to flux tube lengths and adopt phenomenological

string fragmentation methods to describe the growth in the η width of the ridge

with centrality. Merging such a model of initial state fluctuations with a full viscous

hydrodynamical approach would be a major step in understanding the full correlation

landscape.
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Chapter 9

Discussion and Conclusions

In this chapter, we remark on other ridge models with intent on comparison to our

own. All models have advantages and shortcomings that are illuminated by careful

comparison to data [29]. We then summarize the results presented in this work.

9.1 Other Models

Theoretical interpretations of the near side ridge fall into three categories. The

first category attributes the ridge to the medium response to the passage of a jet. A

variety of mechanisms are given, including momentum broadening [67, 68, 69, 74] and

transfers of energy via successive momentum kicks from the jet parton [73, 75, 76].

The second category of ridge models couples the formation of hot spots, bubbles, or

flux tubes with hydrodynamical transverse flow [25, 60, 62, 65, 79]. Our model falls

into this category. The third category attributes the ridge to parton recombination

or coalescence [70, 71].

Jets can loose energy in the dense medium by Bremsstrahlung radiation of gluons.

Refs. [67, 68, 69, 74] argue that momentum broadening of this radiation occurs either

by strong collective flow or turbulent color fields. These calculations do find a broad-

ening in relative rapidity η, however smaller than seen in experiment. Refs.[67, 69]

find Gaussian widths of ση = 0.4−0.5, where STAR preliminary results find ση ∼ 1.4

[3], and PHOBOS results suggest the ridge extends even further [4, 5]. These models
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Figure 9.1: At Quark Matter 2009, Jamie Nagle “kills” ridge models, using this image
of the grim reaper, while discussing what can be learned in the process [29].

would further predict a reduction in broadening with the increase in the pt of the

trigger and cannot describe the soft ridge in which jets play a minimal role.

In the “Momentum Kick” model [73, 75, 76], bulk medium particles suffer initial

interactions with a jet and receive momentum kicks in the direction of the jet particle.

These kicked particles, depending on the strength of a momentum transfer parameter,

account for the ridge yield and slightly flatter thermal spectrum. The shape of the

ridge seems to depend on the pt and rapidity distributions of the kicked partons. This

model finds a wider width in relative azimuthal angle σφ ∼ 0.5 − 0.7 where STAR

measures a width σφ ∼ 0.25−0.4. Again, this model would also not be able to explain

the soft ridge.

The work presented here fits into the second category of ridge theories. Correlated

partons arise from a common transverse fluctuation in parton density. These fluctua-

tions or “hot spots” extend longitudinally but are small in transverse size. Azimuthal

correlations arise due to the relationship between hot spots and their transverse boost

vector, an idea originally proposed by Voloshin [60]. Ref. [25], incorporates this ra-



115

dial boost model with a description of hot spots using CGC-Glasma theory. This

description finds general agreement with the soft ridge amplitude vs. centrality for

Au+Au 200 GeV collisions, but does not explain the azimuthal shape or behavior

with centrality. Furthermore, this model does not provide any connection to the hard

ridge.

In this work, we improve this theory, finding that the Glasma+flow conditions can

indeed describe the azimuthal profile of both the soft and hard ridges. Additionally,

we show that the Glasma conditions allow for common descriptions of the soft ridge

for different collision systems and energies. However, our approximations lead to a

flat ridge in relative rapidity η for all centralities. STAR data shows, however, that

the ridge width grows with centrality [1, 26, 51].

Although produced by different mechanisms, jet triggers and thermal partons gain

correlations based on a common location in the transverse plane. An idea presented

by Shuryak [79] and discussed in detail in Sec. 6.2, Ref. [79] gives no explanation

of the longitudinal extent of the fluctuation and is therefore unable to estimate the

magnitude of the effect, but calculates an azimuthal distribution that is wider than

the measured data. In this work we address and incorporate these features. We both

find the magnitude of this contribution to the hard ridge and show that this wide

correlation in azimuth, when combined with narrow soft ridge correlations, improves

our agreement with the hard ridge.

The parton bubble model (PBM) [62] relies on a similar mechanism, where trans-

versely boosted bubbles or clusters of partons from the PBM event generator are

correlated with HIJING jet events. This model finds a stinkingly similar looking cor-

relation structure to the hard ridge. They further decompose the near side, showing

that the broad ridge structure is still seen after removing all particle pairs except

those that come from the same bubble. Conversely after removing all background

pairs as well as all bubble particles, a jet peak is seen. Further, more quantitative,
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comparisons to data could be exciting.

Additional qualitative support for this category of ridge models is found in Ref. [65].

Correlation analysis is preformed using the NEXSPHERIO event generator and full

hydrodynamical code. Here initial conditions taken from NEXUS [171] strings pro-

duce hot spots that evolve following hydrodynamics from the SPHERIO code [172].

They find both a long range ridge and what looks like a jet peak, though no jets

are present. Although further quantitative comparison is needed, it is precisely this

approach that would provide a full description of the correlation landscape since hy-

drodynamics automatically accounts for energy and momentum conservation.

The recombination model [70, 71] fills the final category for ridge explanations.

This model attempts to address both ridges as the same phenomenon. The authors

explain that ridges arise because thermal partons are enhanced by semi-hard scat-

terings at early times and form hadrons at late times via recombination. They note,

however, that in the absence of a theoretical framework to calculate the enhance-

ment, the thermal distributions of ridge particles is extracted from data. This work

points out the importance of late stage effects such as hadronization, as well as the

consequences of the geometrical orientation of jet triggers on measured ridge yields.

9.2 Conclusions

In this work, we develop a beginning theoretical framework for understanding

some of the features of the ridge seen in two particle correlation studies at RHIC.

Specifically, we explore the near side ridge, its long range behavior, and the connection

between the soft and hard ridge measurements. Our original interest in the ridge,

however, stems from the viscous broadening seen in the pt -weighted ridge from which

Gavin and Abdel-Aziz extracted a shear viscosity to entropy density estimate [38].

Our ultimate goal is to expand the work presented here to understand the full (η−φ)

correlation landscape.
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Possibly the most striking feature of the ridge is that two particle correlations

seemingly extend to a long range in η. Causality limits the influence of transport

dynamics past ∼ 1 − 2 units in η, but the PHOBOS measurement indicates a ridge

in the interval −4 < η < 2 [4, 5]. These long range correlations, then must arise

at the earliest stages of the collision when the first partons are produced. At the

instant of a collision, CGC theory predicts the formation of longitudinal flux tubes

with small transverse size. In our simple view, rapid longitudinal expansion stretches

these tubes to long distance, and the tubes then thermalize into partons. Realistically,

tube desolation begins before before longitudinal expansion is complete. Although

now causally separated, partons coming from the same tube, no matter the rapidity

difference, are correlated by their common spatial (radial) origin. Transverse flow

then builds and provides a transverse boost to particle density fluctuations (emerging

from tubes) based on their initial radial position. Combining these two aspects, we

find that we can explain the amplitude and azimuthal width of the soft ridge (away

from the jet peak). In particular, we find that the azimuthal shape of the ridge is due

to transverse flow, which we include via a blast wave model. We fix the amplitude

in 200 GeV Au+Au collisions only, and find that we cannot explain the changes

with centrality or collision energy without the inclusion of CGC-Glasma conditions.

Additionally, we are able to predict the soft ridge azimuthal width and amplitude for

Cu+Cu systems only through appropriate adjustment of the CGC parameter Qs.

The differences between the soft and hard ridges is another debated question,

since the soft ridge is intended to study bulk effects, where the hard ridge is intended

to study medium modifications from the passage of a jet. To test our model in the

context of the hard ridge, we perform our soft ridge calculation for increasingly higher

pt ranges. We find that as the soft ridge becomes harder, the amplitude drops and

the azimuthal width narrows. This behavior is expected since the pt limits eliminate

the lower momentum pairs, lowering the correlation strength and isolating pairs with
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higher pt and narrower relative azimuthal angle. These trends are supported by

STAR measurements [26]. Performing our soft ridge calculation with the hard ridge

asymmetric pt limits, we find a soft contribution to the hard ridge that accounts for

∼ 75% of the hard ridge amplitude, but has a narrow azimuthal profile.

Following ideas in Ref. [79], we include incidental correlations of jets with flux

tubes based on common production positions. Measured jet emissions from the bulk

are biased either toward the surface or toward radial emission due to quenching,

while radial flow pushes bulk particles toward more radial trajectories. The angular

correlation between the jet and bulk particles is too wide to explain the data alone,

and makes up only ∼ 25% of the amplitude. The combination of Bulk-Bulk and

Jet-Bulk correlations provides nice agreement with the hard ridge central amplitude

and azimuth width. We conclude from this that the soft and hard ridges arise mainly

from the same phenomenon, an idea that surprises some [173, 174].

The azimuthal profile of the ridge could then be used to distinguish between bulk

and jet effects. As seen in Fig. 6.13, as the minimum pt of the soft ridge is increased

the azimuthal width should decrease until the effects of jets becomes dominant at

which point the width should increase again.

Thus far we have largely neglected the rapidity dependence of the ridge. How-

ever, shear viscosity can broaden the rapidity correlations of momentum current cor-

relations as seen in Ref. [28]. As suggested by Gavin and Abdel-Aziz in Ref. [38],

measuring C allows access to the momentum correlation function ∆rg. This work is

underway, see e.g.[175, 176]. Freeze out effects and radial flow link the spatial widths

after diffusion with the momentum widths taken from the ridge shape. Information

on σφ and ση can then constrain the shear viscosity to entropy density ratio extracted

from C. Further constraint would come from determining the initial widths before

viscous diffusion.

Lastly, we remark that there is still much work to be done before we can fully
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explain all features of the ridge. We must focus on descriptions of both the jet peak as

well as the away side in the context of our framework. To a larger extent a complete

description of the ridge would entail a combination of a theoretical description of

rapidity and azimuthal widths at the QGP formation time (i.e. with CGC theory),

with a more realistic full hydrodynamical model.
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Appendix A

Appendix A: Kinematic Variables

In this Appendix, I will review some useful kinematic variables common to rela-

tivistic heavy ion collisions. They are defined in such a way that they have simple

properties under Lorentz transformations. We also make use of natural units so

c = ~ = 1.

The space-coordinates of a point are defined by the 4-vector

xµ = (x0, x1, x2, x3) = (t, ~x) = (t, x, y, z). (A.1)

Similarly, the momentum vector is

pµ = (p0, p1, p2, p3) = (E, ~p) = (E, px, py, pz). (A.2)

These covariant vectors transform with the space-time metric tensor

gµ,ν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


such that gµνx

µ = xν .
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A.1 Light Cone Variables

The light-cone coordinates are defined as

x± = (t± z)/
√

2. (A.3)

Similarly the light-cone momentum is

p± = (p0 ± pz)/
√

2. (A.4)

The scalar product in these coordinates becomes

x · p = x+p− − x−p+ − xt · pt (A.5)

so the uncertainty principle is now

x±p∓ ≥ 1. (A.6)

A.2 Rapidity

The rapidity variable, y, is defined in terms of the total energy and longitudinal

momentum of a particle such that

y =
1

2
ln

(
p0 + pz
p0 − pz

)
. (A.7)

It can be thought of as the ratio of the forward light-cone momentum to the backward

light-cone momentum. Rapidity is a convenient way of expressing the longitudinal

energy of a particle, since it only requires an additive constant to change frames

of reference. Other relations of the rapidity, energy, and longitudinal momentum
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include,

y = tanh−1 pz
E

(A.8)

pz = mt sinh y (A.9)

E = mt cosh y (A.10)

with mt =
√
m2 + p2

t .

Experimentally, it is more difficult to measure the energy of a particle than the

momentum. Therefore, experiments often report the pseudorapidity variable

η = − ln[tan(θ/2)] (A.11)

which depends on the angle, θ, the particle makes with the beam (longitudinal) axis.

Its relation to rapidity is more clear when written in the form

η =
1

2
ln

(
|~p|+ pz
|~p| − pz

)
. (A.12)

Like the rapidity variable, there are further relations of with total momentum and

longitudinal momentum that are useful:

η = tanh−1 pz
|~p|

(A.13)

pz = pt sinh η (A.14)

|~p| = pt cosh η (A.15)

taking pt =
√
~p2 − p2

z. The relationship between y and η is even more clear when

one compares equations (A.9) and (A.14) . At very large pz, the two quantities are

essentially the same.
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We can also define a space-time rapidity

ηs =
1

2
ln

(
x+

x−

)
. (A.16)

In terms of the space-time position, the variable ηs also transforms with an additive

constant. After a longitudinal boost we have

z

t
= tanh ηs (A.17)

z = τ sinh ηs (A.18)

t = τ cosh ηs. (A.19)

Here τ =
√
t2 − z2 is the proper time, which is invariant under longitudinal boost.

Note that by the uncertainty principle, a particle will have mt ∼ 1/τ , and that up to

a constant of order one, rapidity is defined as

y =
1

2
ln

(
p+

p−

)
∼ ln

(
p+

mt

)
∼ ln

(
x+

τ

)
∼ ηs. (A.20)

Thus, all rapidities in momentum space and coordinate space are of the same order

of magnitude. [18]

A.3 Momentum Fractions

Quantum field theory approaches relativistic scattering as interactions of fermions

through the transfer of a virtual vector boson. Deep inelastic scattering, experiments

for example probe the structure of a proton through high a high energy collision with

an electron. The electron has 4-momentum k and scatters elastically with a quark

inside the proton. The collision with the proton is inelastic; the remaining quarks and

the kicked quark must fragment into hadrons. The electron collision with the quark

however is elastic, and we can determine the momentum transfer in the collision q
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by measuring only the final momentum of the electron. The electron moves off with

some new momentum k′ and the momentum transfer to the kicked quark is defined

as

q = k − k′. (A.21)

If the original momentum of the kicked quark p is some fraction x of the total mo-

mentum of the proton P , so p = xP then its final momentum is p+ q = xP + q. The

invariant mass of the scattered quark is then

m2
q = (p+ q)2 = 2~p · ~q + q2. (A.22)

Defining the momentum transfer Q2 ≡ −q2 and assuming that the parton mass is

much less than Q2, (A.22) becomes

0 = 2~p · ~q −Q2 = 2x~P · ~q −Q2, (A.23)

and

x =
Q2

2~P · ~q
=

Q2

2Mν
(A.24)

where M is the proton mass and ν = E − E ′ is the energy transfer. Finally, taking

the Mandelstam variable ŝ we have

ŝ = (p+ k)2 = 2~p · ~k = 2x~P · ~k = xs (A.25)

where the electron and proton masses have been neglected and s is the center of mass

energy of the collision.
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Appendix B

Appendix B: The Glauber Geometric Approach to Nucleus-Nucleus

Collisions

In this appendix, we review the Glauber model of nuclear collisions following

[20, 87, 88, 177].

At high enough energies in nuclear collisions, the paths of colliding nucleons can

be approximated by straight lines. However, depending on the density of the colliding

nuclei, and the geometry of the collision, a nucleon in the projectile nucleus can suffer

multiple scatterings during its passage through the target nucleus. The Glauber ap-

proach approximates nuclear collisions through the interactions of individual baryons

with a nucleon-nucleon inelastic cross-section σin [20, 87, 88, 177]. This method char-

acterizes nuclear collisions with several geometrically dependent quantities. Here we

will briefly discuss some of the more common quantities used throughout this work.

As we will develop in this Appendix, in nucleus-nucleus collisions, the number of

nucleons that suffer inelastic collisions depends largely on the impact parameter ~b of

the collisions. The impact parameter is defined as the transverse separation of the

centers of the colliding nuclei as shown in Fig.B.1. Experimentally this parameter

cannot be directly measured, however a Zero Degree Calorimeter positioned on the

beam axis can measure the energy of the nucleons that did not participate in the

collisions called “spectators”. “Participant” nucleons are those that suffer at least

one inelastic scattering during the collision. They are also called “wounded” nucleons
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Figure B.1: A geometrical description of Nucleus-Nucleus collisions.

since they fragment into secondary particles after the collision. Wounded nucleons

do not make it to the Zero Degree Calorimeter as baryons, so the measurement of

spectators is related to the centrality of the collision.

As is briefly discussed in Ch.(4), the observed total multiplicity of hadrons pro-

duced in nuclear collisions is related to the number of participants, Npart, as well as

number of binary nucleon-nucleon collisions, Ncoll. For this reason, it is common to

study emerging phenomenon as functions of centrality via Npart and Ncoll.

We would like to calculate the probability of inelastic baryon-baryon collisions

(with cross section σin) given the densities and overlap regions of the nuclei. The

probability of finding a baryon in nucleus A within the volume element d~s dz
A

is

ρ
A

(s, z
A

), normalized so that

∫
ρ
A

(~s, z
A

)d~s dz
A

= A, (B.1)

where A is the number of baryons in the nucleus. We take a Woods-Saxon density

profile of nucleons in a nucleus

ρ
A

(r) =
ρ0

1 + e(r−〈r〉)/ε (B.2)
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where 〈r〉 is the average nuclear radius, ε = 0.545 controls the sharpness of the edges

of the nucleus, and ρ0 is the density normalization factor. The elemental probability

dP that a baryon found in the volume element d~s dz
A

at position (~s, z
A

) of nucleus

A will have a collision with a baryon in nucleus B found in the volume d~s dz
B

at the

position (|~b− ~s|, z
B

) is

dP =
ρ
A

(~s, z
A

)

A

ρ
B

(|~b− ~s|, z
B

)

B
σin d~s dzA dzB , (B.3)

where σin is the cross section for an inelastic collision.

It is convenient to write the thickness function of nucleus A as

T
A

(~s) =

∫
ρ
A

(~s, z
A

) dz
A

(B.4)

where ∫
T
A

(s)d2s = A (B.5)

and similarly for nucleus B. The total probability for a baryon-baryon collision at

impact parameter ~b is σinTAB(~b)/AB where

T
AB

(~b) =

∫
T
A

(s)T
B

(|~b− ~s|)d2s dz
A
dz

B
, (B.6)

with ∫
T
AB

(b)d2b = AB. (B.7)

We can always change our view of the collision so that ~b aligns with the x̂ direction

and so from now on, we will take ~b→ b.

With the thickness functions and T
AB

, we can write down the probability for
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exactly n baryon-baryon collisions at an impact parameter b as

P (n, b) =

 AB

n

[TAB(b)σin
AB

]n [
1− T

AB
(b)σin
AB

]AB−n
, (B.8)

where the first factor on the right hand side is the number of combinations for finding

n out of AB possible collisions

 AB

n

 =
(AB)!

n!(AB − n)!
. (B.9)

The second factor is the probability of exactly n baryon-baryon collisions and the

third factor is the probability of exactly AB − n misses. From this, we can find the

total probability of an inelastic event during the collision of nucleus A with nucleus

B at impact parameter b. This probability is the sum of (B.8) from n = 1 to n = AB

as follows,

dσABin
d2b

=
AB∑
n=1

P (n, b) = 1−
[
1− T

AB
(b)σin
AB

]AB
, (B.10)

and the total cross section is then

σABin =

∫ (
1−

[
1− T

AB
(b)σin
AB

]AB)
d2b. (B.11)

Also, the average number of nucleon-nucleon collisions, Ncoll, is then

Ncoll(b) = T
AB

(b)σin. (B.12)

Since it is possible for each nucleon to suffer zero, one, or more collisions during its

travel through the opposing nucleus, it is also interesting to know the total number

of nucleons that (participate) have at least one inelastic collision for a given impact

parameter. Let us first assume a p+A collision and find the number of collisions.
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Now B=1 and (B.8) reduces to

P
pA

(n, b) =

 A

n

[TA(b)σin
A

]n [
1− T

A
(b)σin
A

]A−n
, (B.13)

which is the probability of the proton having n inelastic events with a “row” (T
A

(b))

of nucleons in nucleus A. We have the probability of any event as

dσpAin
d2b

=
A∑
n=1

P
pA

(n, b) = 1−
[
1− T

A
(b)σin
A

]A
≈ 1− e−σinTA (b). (B.14)

Now instead of a single proton, we imagine a row of nucleons intersecting the same

row in nucleus A. To find the probability of a collision for this scenario, we need only

multiply (B.14) by the number of nucleons in the incoming row, T
B

(|b− s|), and find

T
B

(|b−s|)[1−exp(−σinTA(b))]. The same idea follows for a row of nucleons in nucleus

A intersecting nucleus B. The number of nucleons participating in the collision is then

Npart(b) =

∫
d2s
[
T
A

(s)
(
1− e−σinTB (|b−s|))+ T

B
(|b− s|)

(
1− e−σinTA (s)

)]
. (B.15)

We can also calculate the average density of participants. Equation (B.15) has

two terms in the integrand, the number of nucleons in nucleus A that participate in

collisions with nucleus B, and vice versa. Since these values are found from nucleon

densities we can write (B.15) in the terms npart(b, s) = npart,A(b, s) + npart,B(b, s)

where npart,A(b, s) = T
A

(s)(1 − exp[−σinTB(|b − s|)]), and npart,B(b, s) = T
B

(|b −

s|)(1− exp[−σinTA(s)]), such that
∫
npart(b, s)d

2s = Npart(b). With these definitions

we can calculate the average density of participants in nucleus A as

ρpart(b) =

∫
d2s npart,A(b, s) npart(b, s)∫

d2s npart(b, s)
(B.16)

and similarly for the average density of participants in nucleus B. If A and B are
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symmetric, identical nuclei, then the density of participants in A will be the same as

in B. This would not be true, however, for a Monte Carlo Glauber simulation. The

method presented here has smooth density distributions and adds up fractions of par-

ticipants where MC simulations have individual nucleons that sometimes participate

and sometimes not. Over an average of an ensemble of events, the two methods will

agree.
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Measurements at the Relativistic Heavy Ion Collider (RHIC) find an enhancement

of two particle correlations in relativistic heavy ion collisions, not present in proton-

proton collisions. Because the correlation structure is wide in relative pseudorapidity

and narrow in relative azimuthal angle, it is known as the ridge. The most striking

feature of the ridge is that it seems to extend to a long range in relative pseudorapidity,

where causality limits interaction. Similar ridge structures are observed in correlations

of particles associated with and without a jet trigger. We argue that the untriggered

ridge arises when particles formed in an early Glasma stage later manifest transverse

flow. We extend this study to address the triggered ridge in the same context. Finally

we address the effects of shear viscosity on our correlation formalism.
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