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Chapter 1 

 

Titan  

 

1.1 Introduction  

 

Titan, Saturn’s largest satellite, is the only solar system body besides 

Earth and Venus that has a dense atmosphere1,2. Titan is known to have the 

second largest volume of any of our solar system’s satellites, with the radius of 

2575 km, roughly 50% greater than that of Earth’s moon3. It was first discovered 

in 1655 by a Dutch astronomer Christiaan Huygens4. It was well known as a 

planet-like satellite because of its size and it was also considered as the largest 

moon in the solar system until Voyager 1 arrived in 1980. However, now it is 

clear that the dense atmosphere of Titan, which extends many kilometers above 

its surface, increases the visible radius of Titan, giving it a larger apparent size. 

 Titan’s atmosphere, mostly N2, has a value of column density ten times 

greater than that of Earth5,6,7. Unlike the Earth’s atmosphere, there is no 

chemical equilibrium in Titan’s atmosphere. It has an irreversible formation of 

complex negative and positive ions at the thermosphere, which involves solar 

EUV, UV radiation and impact from high energy electron and ions as a result of 

magnetospheric-ionospheric-atmospheric interactions8. On the other hand CH4, 

the second most abundant molecule in Titan’s atmosphere, dissociates 
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irreversibly ultimately leading to formation of ethane, acetylene and simple 

nitriles5,7. These molecules eventually undergo photochemical reactions to 

produce larger organic molecules, such as benzene and naphthalene5, 9. These 

molecules start condensing at about 950 km altitude, and trigger the process of 

haze formation8,10. The haze particles strongly absorb UV and visible radiation 

and initiate the heating process in Titan’s stratosphere and drive the wind system 

in the middle atmosphere11. These haze particles act as ozone in Earth’s 

stratosphere5, shielding the surface from UV radiation. Finally, these complex 

molecules precipitate on the surface of Titan, thereby connecting the upper 

thermosphere with the surface8.  

Most of the detailed information on Titan’s atmosphere and the surface to-

date was revealed from Cassini-Huygens mission, which arrived in the Saturnian 

system in 200412,13. However, the origin, the atmosphere and the surface of Titan 

are still a mystery in most aspects and scientists face extraordinary challenges in 

understanding the processes involved.  On the other hand it is an interesting 

body to study, as Titan is known to have diverse geophysical and chemical 

processes comparable to the Earth’s atmosphere8. Therefore, Titan is an ideal 

world for geophysicists and astrochemists to explore the mysteries of this 

satellite as well as making the connection to the Earth. 
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1.2 Origin of Titan 

 

The origin of Titan has been extensively studied over the last decade 

through data obtained from space and ground based measurements, models, 

and laboratory studies. Although we are still not close to a complete 

understanding of Titan, these data and models have helped enormously to 

understand the formation and evolution of Titan as well as to get an idea of how it 

captured an atmosphere8.  

However, it is a quite difficult task to find the best connection between a 

model for the solar nebula and a model for the formation of planets that includes 

its own satellite system. Any thriving model for satellite formation should be able 

to predict the probable composition of the atmosphere and surface as well as the 

density and variety of satellites8. Those are the crucial properties that can be 

employed as useful parameters to elucidate the limitations of satellite formation 

models by comparison with current observations. By considering the 3-D hydro-

dynamical model14 it is clear that satellite formation took place in the 

protosatellitary disk. At the last stage of planetary formation, the contracting 

atmosphere in protosatellitary disk helped to capture the materials, which 

became the building blocks of the satellites. 

 Scenarios have been developed for satellite formation based on two end-

member type hypotheses8. 
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Hypothesis 1 

It is hypothesized that planetesimals, which consists only of silicates and 

moderately refractory volatile compounds, were formed in the cold- and gas- 

dominated solar nebula which is at the end of its lifetime. This could have 

happened due to rapid degeneration of primary subnebula15. In this case, CH4, 

H2S and Xe can be trapped as clathrate hydrates while NH3 and CO2 condensed 

in migrating planetesimals which ultimately formed Titan15-16. This will explain the 

low abundance of CO and 36Ar in Titan’s atmosphere as the lack of water ice  at 

later age restricted the trapping of less stable molecules such as CO and Ar 

which prefer to clathrated at low temperatures8. 

 

Hypothesis 2   

  In this hypothesis, it is assumed that planetesimals were formed within 

the warm sub nebula with the formation of Saturn. These planetesminal were the 

origin of Titan and other satellites in Saturn8. Silicates and other moderately 

volatile materials must have incorporated into Titan by this formation.  However, 

considering the temperature  of planetesminals, it would be rather difficult  to 

entrap the volatile noble gases like Xe, Ar  and CH4 in ice grains; however it 

would facilitate accommodation of H2O, NH3, CO2 and nonvolatile 

compounds17,10,18,19. Detection of Ar on a small scale from the Huygens GCMS20 

has provided an indication of ambient temperatures for the formation in the sub 

nebula ~ 100 K18,19 assuming Ar was trapped in amorphous ice. Even though 
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CH4 is the second most abundant constituent in Titan’s current atmosphere; it 

was not initially included in Titan. CH4 was produced from the reaction of C 

compounds such as CO2 with H, which was produced from H2O by water-rock 

reactions10 

 Both of these hypotheses proposed that NH3 escaped from the 

planetesimals throughout the accumulation and formed the early atmosphere. 

Then these hypotheses suggest that NH3  would have converted to N2 due to 

photolysis reactions of the hot proto-atmosphere of Titan21 or impact-induced  

chemical reactions22. However, it is also suggested that  CH4 outgassed from the 

inner part of the Titan20,23. Even though these two processes lead to different 

isotopic ratio of H:D in vaporized water and methane, these provide a 

comparable guideline for formation8 of Titan’s atmosphere. 

 

1.3 Titan as a model for the early Earth 

 

Life on Earth originated about 4 billion years ago. Investigation of the 

processes that led to the origin of life is extremely difficult and challenging due to 

the fact that most of the processes and environmental conditions at that time 

have been erased by the evolutionary mechanisms. Therefore, it is very 

important for scientists to have an extraterrestrial place, which is parallel to our 

primitive Earth, to understand the emergence of life on our planet. 
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Titan has many similarities with early Earth even though it has a lower 

temperature24. Titan is the only outer solar system body with an atmospheric 

pressure (1.5 bar) close to the Earth’s atmosphere. Moreover, both Titan and 

Earth consist of an N2 dominated atmosphere5,1. In addition, there are many 

structural similarities ranging from ionosphere to troposphere in both atmospheric 

systems.  When CH4 is considered, it exists in all three phases on Titan: 

gaseous, solid and liquid. This resembles the presence of H2O in the Earth8,10. 

Further, Titan is the only extraterrestrial body that is known to have liquid on its 

the surface, in the form of hydrocarbon lakes. 

 

1.3.1 Complex Prebiotic chemistry in Titan’s atmosphere 

 

It is well known that several of the organic molecules that are formed in 

Titan today are important molecules in prebiotic chemistry. HCN, HC3N and C2N2   

are some of the key molecules found in Titan’s atmosphere and also crucial for 

prebiotic chemistry25,26.  N2 and CH4 in Titan’s atmosphere initiate the formation 

of gas phase complex organic molecules and solid state products such as 

tholins27 which also can be produced in the laboratory. Data collection at the 

region of troposphere and stratosphere using gas chromatography mass 

spectrometer (GCMS) shows that there is a low abundance of volatile organic 

species other than CH4
7. This is due to the condensation of volatile organic 

substances on aerosol particles. After analyzing their composition using Huygens 
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analytic predictor-corrector (APC) instrument, it is clear that these aerosol 

particles are made of refractory organic compounds, which are covered by 

condensation of volatile compounds20 

Several organic compounds have been detected by the ion and neutral 

mass spectrometer (INMS) instrument in Cassini at very high altitudes (1100 km- 

1300 km)28.  The extrapolation of data obtained by INMS indicated the possibility 

of the formation of higher molecular weight species in the ionosphere8. 

Therefore, if confirmed, these data would definitely revolutionize our 

understanding of Titan’s atmosphere, implying it has the ability of forming high 

molecular weight complex organic molecules29 in its ionosphere, a surprising 

change in perspective.28, 30 

After formation, these complex higher molecular weight organic molecules 

will tend to accumulate simultaneously with other volatile organic compounds, 

ultimately depositing on Titan’s surface8. This is the beginning of aerosol particle 

formation and these aerosol particles will undergo chemical evolution, perhaps 

forming biologically interesting molecules31.  It has been shown  by laboratory 

experiments that tholins can form  amino acids when there are interactions with 

liquid water32. These processes could happen on Titan’s surface where 

cryovolcanism occurs33. Unfortunately, it is impractical to study long time 

chemical evolution processes in the laboratory; therefore Titan is an ideal 

candidate for observation of the chemical evolution of prebiotic Earth. 
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1.4 Titan as a  complex system to study 

 

Compared to other objects in our solar system, Titan is the best satellite to 

show parallel coupling between the magnetosphere, stratosphere, ionosphere, 

troposphere, surface and interior as seen in the Earth34. Therefore, Titan is also 

studied as a complex system analogous to the Earth. 

On Earth, H2O is the working fluid that has a well understood complex life 

cycle. In Titan, CH4 acts as water in Earth10. It is known to present in the interior, 

trapped as clatharate hydate15-16 or dissolved in a liquid layer under the crust of 

Titan.  The presence of CH4 in the interior of Titan affects the ice crust 

chemically, mechanically and thermally10. Outgassing of interior CH4 can be 

happen via cryovolcanoes11. These volcanisms, which supply CH4, could be 

facilitated by the presence of a liquid water mantle35. All these predictions were 

supported by data collected by the Cassini Visible and Infrared mapping 

Spectrometers (VIMS) as well as from the information obtained by its RADAR 

imaging systems12.  Also, the escaped methane facilitates the formation of 

clouds, helping to maintain the basic radiative balance of the dense atmosphere 

in Titan35. In the upper atmosphere of Titan, CH4 is dissociated and reacts with 

N2 to form complex organic molecules that will eventually form a dense aerosol 

layer5. All of these complex molecules and aerosol particles precipitate on the 

surface nourishing the lakes, seas and dunes10,8.  
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1.4.1 Surface of Titan 

 

The Cassini/Huygens mission has shown and provided a vast array of 

information of Titan. This information is available for geophysists to predict or 

obtain a better understanding of Titan’s surface. Geomorphologicanl information 

has been gathered by using high resolution (0.5km/pixel) RADAR mapper with 

coverage of approximately 1% of Titan’s surface12. In addition to that, the Cassini 

Visible and Infrared Mapping Spectrometer (VIMS) with a moderate resolution 

(few km/pixel) has covered 100km2 geographical areas on Titan’s surface36,37. 

According to the observations, the surface of Titan appears to be young, and low 

frequency impact craters have been found38. In addition, Cassini RADAR images 

provided information on complex geological features on the surface of Titan. 

Dome shaped volcanic constructs, cryovolcanic flows and twisting channels are 

some of the interesting geological features that have been observed on Titan’s 

surface12. The Synthetic Aperture Radar (SAR) mode of the Cassini RADAR 

maps assisted in identifying frozen hydrocarbons on the surface12. Moreover, 

scattering and dielectric data obtained from these instruments clearly indicated 

the presence of porous ice structure12. Also, it is clear that there are erosion 

features such as deltas, river channels, hydrocarbon lakes, mountains, 

widespread aeolian, glacial-flow assembles as well as dunes on the surface11, 36, 

39. 
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1.4.2 Interaction between upper atmosphere and magnetosphere 

   

Titan’s upper atmosphere, extending from 400 km, is the most essential 

part of Titan‘s entire atmosphere when its chemistry and physics are 

considered40. In this region, EUV and VUV radiation play a key role in 

dissociating N2 and CH4 to form primary organic constituents5. These 

dissociation products will ultimately undergo more complex photochemical 

reactions that affect all other layers in Titan’s atmosphere1, 21. On the other hand, 

Titan’s upper atmosphere actively interacts with Saturn’s magnetosphere 

resulting in the formation of an induced magnetosphere in Titan41. In the induced 

magnetosphere, N2 and CH4 can be easily ionized and dissociated1, 5  producing 

primary nitriles and hydrocarbons that can create photochemical effects on all 

other layers. 

Previous Voyager and recent Cassini/Huygens observations have 

provided valuable information on an extraordinary relationship between Titan’s 

upper atmosphere and magnetosphere. Moreover, these observations have 

assisted in understanding the complex upper atmospheric chemistry to great 

extent. Huygens has given the information on vertical profile of total composition 

of the atmosphere from 1400km13. It was able to obtain detailed information from 

~ 140km altitude to the surface8. On the other hand Cassini provided data up to 

950km altitude13. These accumulated measurements not only directly help to 

identify ~100 new complex organic molecules at the upper atmosphere of Titan7, 
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20 but also observed haze particles at high altitude, longitude dependent 

composition and a strong relationship between magnetic field and the 

ionosphere. Detection of heavy negative ions using mass/charge and 

energy/charge spectrometer in Cassini was an important finding28. This 

observation of very large negative ion (~8kDa) at high altitude (~1000km) 

ionosphere proposed that there is an ionospheric contribution for the formation of 

aerosol in the lower layers of Titan’s atmosphere42. Additional information was 

obtained from ground based observations and the Cassini Magnetospheric 

Imaging Instrument (MIMI)43. Observation of very high gas escape rates, 

detection of neutral hydrogen clouds, which spread out for several Titan’s radii, 

and identification of energetic neutral atoms44 (ENA) that can be used to study 

magnetospheric dynamics facilitate to obtain a better understanding of the 

relationship between Titan’s upper atmosphere and Saturn’s magnetosphere. 

Taken together, the study of Titan’s upper atmosphere and magnetosphere is 

very important in understanding the entire atmosphere. However, future studies 

are needed to better understand this broad transition region that would give us 

relevant information on the entire atmosphere. 

 

1.4.3 Neutral atmosphere of Titan 

 

Titan’s atmosphere, very much like Earth’s atmosphere, is connected to its 

ionosphere through chemical reactions, the surface through precipitation and 
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evaporation, and the interior through outgassing. Observing the variation of 

chemical composition and temperature profile in Titan’s atmosphere would allow 

scientists to get a thorough understanding of Titan’s neutral atmosphere. Titan’s 

temperature profile is similar to the temperature profile of Earth45. At the Earth’s 

surface H2O, CO2, which are greenhouse gases, warm up the atmosphere by 

~35K. In Titan, the surface is warmed due to pressure induced heat absorption 

by N2, H2 and CH4 by ~20K46.  The temperature starts to decrease gradually with 

altitude in both atmospheres up to the tropopause (around ~10-15km from 

surface on Earth and ~40km on Titan)45. However, when altitude increases 

above the tropopause, again temperature starts to increase due to the presence 

of ozone in Earth and CH4 and haze layers on Titan45. The balance between 

heating and cooling a region in Titan is achieved by the presence of molecules.  

CH4 is important in heating while haze, C2H2, C2H6 and HCN are crucial for 

cooling this region46. Therefore, the molecules in the haze layer act as anti-

greenhouse gases which absorb ~ 30% of solar radiation and blocking 

illumination of lower atmosphere46. This anti-greenhouse effect and warming 

effect change considerably with seasons and latitude47 because of the variation 

of number density of C2H2, C2H6 and HCN gases with latitude and with season. 

This variation of abundance is caused by seasonal winds48,11. Moreover, the 

distribution of haze and its photolysis byproducts such as C2H2, C2H6 and HCN 

gases, condensation and deposition on the surface can be influenced by the 



13 

 

 

atmospheric circulation of Titan49.  This atmospheric circulation is directly 

affected by the variation of number density of anti-greenhouse gases.   

Though CH4 is a major constituent of Titan’s atmosphere, the 

understanding of Titan’s methane cycle is still not clear. Regardless of 

irreversible destruction of methane by reactions, a greater saturation of methane 

in the troposphere has been observed by Huygens50. However, H2O covers 75% 

of Earth’s surface while liquid CH4 in seas and lakes only covers about 1% of 

Titan’s surface39. In addition, Earth’s atmosphere only contains ~2.5 cm of 

precipitable H2O where as Titan’s atmosphere contains up to ~5m of precipitable 

CH4
8. Therefore, it is surprising to observe the lower atmosphere of Titan 

contains more methane than predictions. A great amount of methane release 

must have come from volcanoes, contributing to the methane cycle in Titan’s 

atmosphere while leaving the surface dry8,10.  

Only 10% of the incident sunlight can contribute to weather by reaching 

Titan’s surface, whereas 60% of sunlight   on Earth reaches the surface8. The 

formation of clouds on Titan is still not understood although various theories have 

been proposed. There is a development of large number of storms, which 

changing with season51, in Titan’s atmosphere. The Cassini probe has observed 

several instances of clouds throughout the thick haze layer near the South Pole 

and near 40° S region using near infrared spectroscopy and imaging31. 

Formation of clouds as well as their location, frequency and composition can be 

explained by theoretical models that consider and describe the large scale 
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circulation52, cryovolcanism and surface heating. Figure 1.2 summarizes and 

shows the major coupling between Titan’s neutral atmospheric processes8.  

 

1.5 Haze formation in Titan’s atmosphere 

 

Understanding elementary chemical reactions in detail is the key goal of 

chemical dynamics. Most of the chemical processes that occur in earth and other 

planetary atmospheres are usually initiated by light, and, thus, photochemistry 

has a great significance in such study, including a broad range of issues of 

fundamental importance in astrochemical physics. Titan’s haze layers are 

assumed to be composed of hydrocarbons and nitriles formed from its dense 

atmosphere1,5,53. Photochemistry and impact from high energetic electrons 

initiate reactions involving 4% of methane in Titan’s dense nitrogen atmosphere 

to form complex hydrocarbons and carbon-nitrogen compounds5. This complex 

hydrocarbon production undergoes a series of reactions involving hydrocarbon 

radicals and ions that remain poorly understood. It is believed that haze is known 

to play an important role in Titan’s energy balance and atmospheric dynamics. 

After the Cassini/Huygens mission, lots of new information is now becoming 

available and this information will help to get a good understanding of Titan’s 

atmosphere and the mechanism of its haze formation54,6,55. When constructing a 

photochemical model to describe the atmospheric composition in Titan’s 

atmosphere, it is very important to have a solid database of the relevant physical  
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Figure 1.1 (Adapted from reference 5) coupling between Titan atmospheric 
processes8 
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and chemical parameters. Table 1.1 summarizes the main physical and chemical 

data in Titan’s atmosphere5.   

 

1.5.1 Primary chemical reactions in Titan’s atmosphere 

 

Dissociation of thermospheric N2 with the interaction of energetic electrons 

coming from induced magnetosphere initiate chemical reaction process in Titan’s 

atmosphere5, 56. This dissociation generates ground and excited state N atoms, 

which can readily abstract an H atom from CH4
57.  

2 [ N2     +    e      N     +    N (2D)    +     e ]  

2 [ N (2D)   +   CH4         NH    +     CH3 ] 

NH radical can interact with ground state N to form N2 and H. This H 

radical reacts with another NH radical and produces H2 and N 

NH     +     N   N2    +     H 

 NH     +     H   N     +     H2 

Formation of CH3 from H abstraction reaction can initiate HCN formation58. 

2 [ CH3     +    N   HCN   +     H2  ] 

 

net     N2   +    2CH4   2HCN    +     3H2 

HCN then is transported to the stratosphere and condenses in the 

troposphere. 
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Table1.1 
At the Surface (altitude z=0) 
 
r0 = distance to center = 2575km 
g0 = gravity = 135cm s-2 
P0 = total pressure = 1.5 bar 
T0 = temperature = 94K 
n0 = number density = 1.2x1020 cm-3 
 
Composition of the Troposphere (volume mixing ratio) 
 
N2 > 0.97 
CH4 < 0.03 
H2 = 0.002 
 
At Troposphere (z = 45km) 
 
P = 130 mbar 
T = 71.4 K 
n = 1.1x1019 cm-3 
 
Composition of Stratosphere (volume mixing ratio) 
 
CH4 = 1-3x10-2                           
H2 = 2.0x10-3 
C2H6 = 2x10-5                            
C2H2 = 2x10-6 

C2H4 = 4x10-7                            
C3H8 = 2-4x10-6 
CH3C2H = 3x10-8                      
 
Composition of Mesosphere and thermosphere 
 
N2 = 2.7x108 cm-3  at z = 1280km 
CH4 = 1.2x108 cm-3  at z = 1140km 
(mixing ratio = 0.08) 
C2H2 mixing ratio 1% - 2%  at z = 840km 

 

Table 1.1 Chemical and physical composition of Titan’s atmosphere5( adapted 
from reference 5) 

 

C4H2 = 10-8-10-7 
HCN = 2x10-7                           
HC3N = 10-8-10-7 
C2N2 = 10-8-10-7                        
CO = 6x10-5 
CO2 = 1.5x10-9                         
H2O < 1x10-9 
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Photodissociation of CH4 is very crucial in Titan’s mesosphere. It is found that the 

H elimination pathway plays very minor role at VUV radiation59. There are three 

major pathways of CH4 dissociation with the quantum yield of 0.41, 0.51 and 0.08 

respectively59-60,61. 

 CH4    +   hν    *CH2     +      H2 

      CH2     +      2H 

      CH       +       H      +       H2 

Where *CH2 and CH2 are singlet excited and ground triplet state of CH2 

respectively. Triplet CH2 can react with its own radical to produce C2H2. On the 

other hand CH2 can collide with CH3, which forms in the previous reaction with N 

(2D), to form C2H4 in mesosphere62,63 . Moreover, CH can be reacted with CH4 to 

form C2H4. 

 2CH2     C2H2     +     H2 

 CH2    +   CH3      C2H4     +     H 

 CH    +       CH4   C2H4     +     H 

 Further reaction between CH2 and C2H2 can initiate the formation of 

CH3C2H by distributing the excess energy to a third body63. 

 CH2    +      C2H2    +    M    CH3C2H      +       M     

Formation of C2H6 can be driven by two major reaction pathways. The ultimate 

reaction step of both pathways is recombination of two CH3 radicals. However 

formation of CH3 radical can occur two different ways. Both reaction parts start 
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from singlet CH2 radical. CH2 can react either with H2, which forms for CH4 

dissociation, or with another CH4 to form CH3
5.   

 *CH2      +     H2   CH3       +       H 

 2CH3     +      M   C2H6     +       M 

 Or 

 *CH2     +     CH4       2CH3 

  2CH3     +      M   C2H6     +       M 

After formation of C2H6, it can be condensed in the troposphere to form 

surface lakes and seas on Titan or it can further react with C2H, which is formed 

by photodissociation of C2H2, to form C2H5. This C2H5 can readily interact with 

CH3 radical to produce C3H8
5. 

C2H2    +   hν    C2H     +      H  

C2H      +     CH4   C2H2    +    CH3 

C2H     +    C2H6   C2H2     +    C2H5 

CH3     +    C2H5     +      M          C3H8       +       M 

Formation of C4H2, which is very important in polyacetylene formation, is 

initiated by photodissociation of C2H2 in the stratosphere64,63,65. 

C2H2    +   hν    C2H     +      H  

C2H     +   C2H2   C4H2    +     H 

Furthermore, cyanoacetylene can be generated in the stratosphere by the 

reaction of C2H with HCN molecule64,63,65. 

C2H2    +   hν    C2H     +      H  
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C2H     +    HCN      HC3N    +   H 

Photodissociation of HCN leads to the formation of CN radical that rapidly 

reacts with another HCN molecule to form C2N2
63-65. 

HCN    +   hν    CN     +      H  

CN      +   HCN   C2N2    +   H 

Thermospheric H2O, which originates from meteorites, can be sublimated 

and photodissociated to form OH radical. OH radical can further react with CH3 to 

form CO and this CO can again collide with an OH radical to produce CO2
66,67.     

H2O    +   hν    OH     +      H  

OH     +    CH3   CO     +     2H2 

OH     +    CO   CO2    +     H 

 

1.5.2 Polymerization process 

 

A important aspect of Titan’s atmosphere is the haze layer which may be 

considered as the destination of hydrocarbon and nitrile chemistry9. This thick 

haze layer mainly divided in to two regions which are known as main haze layer 

(below ~ 220km) and detached layer68 (from 300 to 350km). Even though the 

exact mechanism for haze formation is still uncertain, there are very useful 

mechanisms of haze particle formation via polyyne formation2, 5, 69, nitrile 

polymerization and polyaromatic hydrocarbon formation70.    
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 Considering the first mechanism, polymerization of C2H2 is the key for 

polyyne formation. After formation of C2H via the photodissociation of C2H2, C2H 

can react with another C2H2 molecule to form C4H2. This polymerization process 

will proceed till the formation of polyynes71  

 C2nH2   +   C2H    C2n+2H2     +    H          (n= 1,2,3..) 

This chain lengthening process does not undergo one-dimensional 

polymerization. It automatically cyclizes and assists the nucleation of the soot 

particle72 (figure 1.3-a).    

At low temperature, the reactivity of polyacetylene radical decreases with 

the size. The relative size dependent rate constant of polyethynyl reaction can be 

described as follows5.  

 k (C2nH   +    X)   =   31-n 
k (C2H   +  X)   where X =  H2, CH4, C2H2… 

Considering Titan’s atmospheric temperature and mixing ratios, there can 

be several key reactions for polyacetylene polymer formation in Titan’s 

atmosphere9.  

C6H2    +     C4H    PA-polymer 

C6H2    +     C6H    PA-polymer 

C8H2    +     C2H    PA-polymer 

C8H2    +     C4H    PA-polymer 

C8H2    +     C6H    PA-polymer 

Polymerization of acetylene can lead to formation of polyaromatic Hydrocarbons 

PAH9. Benzene is the first member of this process. Benzene can undergo the  
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Figure 1.2 (a) cyclization of polyacetylene. (b) Attachment of RCN on to nitrile 
backbone9. 
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reaction with enthynyl radical or phenyl radical can react with acetylene or 

another benzene molecule to form PAHs 

C6H5    +    C2H2    PAH-polymer 

C6H6    +    C2H    PAH-polymer 

C6H5   +     C6H6    PAH-polymer 

Nitrile polymerization can be initiated by the reaction of excited HCN 

molecule with another ground state HCN molecule to form HCN dimer73. This 

chain reaction can proceed until pure poly-HCN is formed. 

*HCN     +    HCN          (HCN)2       (HCN)n 

 However, most possible nitrile polymerization in Titan’s atmosphere 

requires a heterogeneity which can occur by the attachment of CN and RCN on 

to nitrile compounds9 (Figure 1.3-b).  

Laboratory studies have indicated that cyanoacetylene (HC3N) can 

polymerize much  faster than HCN does74 and 2-5 times faster than C2H2
75. Due 

to high reactivity of metastable states of HC3N, it is very important to include 

copolymerization of *HC3N. The main reaction product can be written as follows. 

 HC3N     +    hν    *HC3N 

 *HC3N    +      C2H2    Co-polymer 

 HC3N     +      C6H5    Co-polymer 
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Chapter 2 

 

Experimental Overview 

 

2.1 Introduction 

 

Information and measurements from the Cassini/Huygens mission have 

provided a profound understanding of Titan’s atmosphere and its chemistry1,2,3. 

In addition, many laboratory based experiments aimed at understanding the 

astrochemical problems or observations have been emerged in parallel to the 

Cassini/Huygens measurements. However, most of these laboratory studies, 

which are largely dominated by spectroscopic based methods, were done only to 

support astronomical observation. In the recent years, direct laboratory 

simulation and modeling techniques of Titan’s atmosphere and haze formation 

have rapidly developed due to the availability of new, detailed information4,5.  

However, for modeling of Titan’s atmosphere, it is very crucial to have a large 

network of elementary reactions with known rate constants at relevant 

temperatures. Experimental methods that are employed in obtaining kinetics data 

at appropriate temperatures6,7,8 and exploring photochemical products in single 

collision environments9,10,11 are now being used in modeling studies. 
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A major objective of recent  studies of Titan is to understand  the chemical 

dynamics of Titan‘s atmosphere12 since the gross chemical composition is 

already well understood. Photodissociation is the key step of all chemical 

dynamics of Titan’s atmosphere. Therefore, studying of the photodissociation 

dynamics of the elementary chemical constituents of Titan under extreme 

environments is important in obtaining precise measurements that in turn can be 

used in modeling of Titan’s atmosphere.  

The DC slice imaging technique, which is described in detail next, is a 

very powerful method to study chemical dynamics under collisionless 

environments and low temperatures as in Titan. The other advantage of 

employing the DC slice imaging technique is to study photodissociation dynamics 

relevant to Titan to obtain translational energy distributions and angular 

distribution of the desired product. These studies will be important in obtaining a 

better understanding of the Titan’s atmosphere and for current modeling studies.  

The main focus of this chapter is to give an overview of the instrumentation of the 

imaging techniques that are either employed or provided a basis for the current 

studies of the constituents of Titan’s atmosphere under collisionless conditions.  

 

2.2 Ion Imaging  

 

Ion imaging is a prevailing and powerful method of studying 

photodissociation dynamics or reactive scattering13. This fascinating method was 
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first developed by Chandler and Houston in 1987 and used to measure 

photodissociation dynamics of methyl iodide1. The major components of the ion 

imaging instrumentation consist of Wiley-McLaren time-of-flight (TOF) mass 

spectrometer with a repeller electrode and a grounded grid, a two-dimensional 

(2D) position-sensitive detector, a microchannel plate (MCP) coupled to a fast 

phosphor screen and a charge coupled device (CCD) camera. In this technique, 

one of the fragments of photodissociation event can be ionized by a probe laser, 

and the produced ion cloud is accelerated by the repeller electrode. This 

accelerated ion cloud moves in the Wiley-McLaren TOF tube towards the MCP 

detector. MCP detector is coupled to a phosphor screen to produce visible ion 

spots, which can be viewed by CCD camera. At the detector, the three-

dimensional ion cloud is flattened, resulting in a two dimensional ion image. To 

reconstruct the 3D photofragment ion distribution from the 2D photofragment 

projection, mathematical methods such as inverse Abel transformation are 

employed. After obtaining the 3D ion distribution, the central section of interest 

can be isolated for further studies. The velocity and internal energy distribution of 

photodissociated fragments can be obtained from the images. The velocity of the 

photo fragment is calculated by dividing the distance of the ion spot from the 

center of the image by the time of flight of the ion. Then, the internal energy of 

the ion can be determined by using conservation of energy and momentum. This 

technique is also very powerful in obtaining total translational energy and angular 
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distributions for a photodissociation event, and has been subjected to continuing 

improvements.  

 

2.3 Velocity map imaging 

 

In 1997, Eppink and Parker14 significantly improved the ion imaging 

technique and achieved a great success by introducing a high resolution velocity 

map imaging technique (VMI). In VMI, the velocity resolution was improved 

almost one order of magnitude. The major difference of the velocity map imaging 

technique over ion imaging is the removal of the grid of the Wiley-McLaren setup 

and its replacement by focusing elements.  The replacement of grids with an 

additional extractor electrode focuses the ions with same velocity at nearly the 

same point on the detector regardless of their origin position. Figure 2.1 is a 

schematic representation of typical ion imaging apparatus with velocity mapping 

ion optics. This setup includes a pulsed molecular beam source, ion optics, 

imaging detector, and data acquisition unit.  

Although the VMI technique achieved a greater success in obtaining high 

resolution velocity images over other techniques, it is not without limitations. The 

major drawback of VMI method is the presence of artificial noise on the 

symmetry axis due the image reconstruction methods. The imaging method 

inevitably uses numerical inversion techniques such as the inverse Abel 

transform to reconstruct the velocity distribution from the images. This is indeed 
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important as imaging techniques always project the three dimensional ion sphere 

onto the two dimensional detector. The artificial noise arising from image 

reconstruction leads to poor resolution of translational energy distribution and 

angular distribution. Moreover, these reconstruction methods are only valid if the 

experiment has an axis of cylindrical symmetry parallel to the detector plane. 

Images that do not possess a cylindrical symmetry axis parallel to the imaging 

plane cannot be transformed to 3D distribution using these mathematical 

methods15.  This drawback definitely affects the experiments that use two 

different lasers with different polarizations. One such an example is studying the 

orientation and alignment effects of photofragments using a pump-probe 

strategy. Therefore, an alternative to the VMI was long needed and the one 

approach to look was the way to find a method to detect only the fragment that 

has no velocity component along the time of flight axis. 

 

2.4 Direct Current (DC) Sliced Imaging 

 

 A slicing technique has been introduced to detect the quantity of interest - 

the velocity distribution in the plane parallel to the detector – directly. The 

characteristic feature of this technique is the direct detection of central slice of 

the 3D photofragment distribution. A related approach  was first proposed by 

Tonokura and Suzuki16 who used “laser sheet” ionization with a cylindrical  lens 

to probe a slice of a neutral fragment sphere. Kisopoulos and co-workers17   
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Figure 2.1 Schematic instrumentation setup of Ion imaging with conventional 
velocity mapping ion optics 



43 

 

 

recently developed the technique by applying a pulsed electric field to the 

expanded ion fragments. Introduction of short period of field free expansion to 

the ion cloud facilitates the spatial expansion of the ion cloud at the detector 

region. Then, the central section of this ion cloud could be detected exclusively 

with a narrow time gate at the imaging detector due to the expansion of the ion 

cloud. A major benefit of slice imaging technique is that the total translational and 

angular distribution can be obtained directly without applying any mathematical 

construction methods such as the inverse Abel transformation or complex 

forward convolution methods. Furthermore, it can be used in any type of systems 

of interest that have a wide range of photofragment kinetic energy.  

This pulsed slice technique, however, has to compromise velocity focusing 

of the VMI technique, so that offers limited resolution. This drawback can be 

overcome by introducing multilens velocity mapping ion optics at  low voltages 

without using a mesh grid15 (no pulsed field).  

The Direct current (DC) slice imaging technique was developed by the Suits 

group as an alternative approach to overcome the limitations associated with 

previous methods. In this method, a spread of ion cloud is obtained by using a 

very low repeller voltage. The momentum focusing is then achieved by 

maintaining the precise voltage ratio which is applied to the repeller and extractor 

lenses, and adding an additional lens element. This technique does not employ 

grids or pulsed electric fields, which distort the ion cloud. The important features 

in DC slice imaging technique are represented in Figure 2.2. In this figure, it  
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Figure 2.2 Schematic illustration of the simulated expansion of the photofragment 
ion cloud at 1.5 µs Intervals (Adapted from reference 15).  
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clearly illustrates the expansion of an isotropic ion cloud through the time-of-flight 

axis. A conventional velocity mapping condition is shown in Figure 2.2 A. In this 

instance, the ion cloud is detected within a short temporal spread (40 ns) by the 

MCP. As stated previously, the expansion of the ion cloud can be achieved by 

decreasing the repeller voltage, which is shown in Figure 2.2 B. The extent of 

reducing voltage of repeller is restricted due to the loss of the focus. However, 

this can be overcome by introducing an additional ion optic. Figure 2.2 C shows 

the use of two focusing lenses to adequately stretch the ion sphere, which in turn 

increases the arrival time width. This is very important for detecting the central 

slice of ion cloud through a narrow gate at the detector. Notably, this technique 

was used in many experiments performed in Suits research group and is the 

central to the work in this thesis. Also, this technique has many similarities to the 

“3D” imaging method, which was separately developed by K. Liu et al18.  

Figure 2.3 is a schematic representation of the components of the experimental 

setup of DC slice imaging, which was used in our studies of molecules relevant 

to Titan’s atmosphere. A molecular beam seeded in either argon or helium is 

expanded supersonically into the source chamber. This was achieved through a 

pulsed nozzle operating at 10/30 Hz and a backing pressure of 3 atm.  After it 

travels through a skimmer (1.0 mm diameter), the collimated beam arrives the 

velocity mapping electrode assembly, which has been optimized for DC slice 

imaging. Then it is intersected at 900 by two counter-propagating lasers. After 

ionization of photodissociated fragments by the probe laser, the ion sphere  
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Figure 2.3 Schematic of experimental apparatus for DC slice imaging  
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moves along the time of flight tube. Next this ion cloud impacts onto a MCP array 

of 75 or 120 mm diameter. The MCP array is then coupled to a P-47 phosphor 

screen to give the ion spot signal. Then a narrow (40 ns) time gate at the 

detector was used to obtain the central slice of the distribution. Finally, a CCD 

camera and a photomultiplier tube (PMT) were used to record the resulting signal  

with the help of IMACQ Megapixel acquisition program19 .  

As mentioned previously, this was the experimental setup that was used 

extensively for our studies and the experimental set up for chapters 3, 4 and 5. In 

addition, for the use of our study of photodissociation of Titan’s atmospheric 

constituents, Two Color Reduced Doppler method was employed as a reliable 

and convenient probing strategy, especially in H atom detection 

 

2.5 Two Color Reduced Doppler (TCRD) technique 

 

Doppler free multi photon spectroscopic methods were first introduced in 

the 1970s20,21,22,23 for gas phase spectroscopy. Since then, this technique has 

been extensively used as a versatile method for ionization and detection in  

various high resolution gas phase spectroscopic studies24,25,26,27,28. In this 

method, the Doppler width of a photofragment is eliminated by absorbing one 

photon from each of two counter propagating, equal frequency laser beams. 

Previously, Doppler free methods have extensively been used in absorption 

spectroscopic studies. Interestingly, It has been recently shown that the Doppler 
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free method can also be used in resonance enhance multiphoton ionization 

(REMPI) spectroscopy to obtain a  high signal to noise ratio and a ultrasensitive 

detection efficiency29. This higher sensitivity is mainly due to the simultaneous 

resonance of all of the species in the probe volume. In this technique, two 

counterpropagating laser lights with a very narrow line width are precisely fixed at 

the center of the absorption line. This counterpropagating two laser beams can 

be produced by splitting a parent laser beam and then directing them around the 

apparatus to obtain the Doppler free effect. Following to those Doppler free 

REMPI studies, a pioneering work on ion imaging using Doppler free REMPI was 

done for H atom30. In this work, two circular polarized laser beams have been 

employed to eliminate the one color signal from each laser. This approach offers 

improved sensitivity and higher signal to noise ratio in imaging studies. However, 

the major drawback of this method is the presence of background one laser 

signal. 

Two Color Reduced Doppler (TCRD) technique was developed by Suits 

group as an alternative approach for obtaining same benefits as in Doppler free 

technique. The major advantage of this method over the Doppler free REMPI is 

the elimination of one color background signal. Here, two different laser lights are 

counterpropagated to achieve the resonance transition to excited state of the 

probing system. The sum of the two wave vectors of each counter propagating 

laser beams determines the Doppler reduction of the transition, which is not zero 

as in Doppler free strategy. However, the Doppler width is significantly reduced 
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compared to normal Doppler-limited 2+1 REMPI, where a single beam is used to 

absorb two photons to achieve the resonance transition. Our research group has 

extensively employed TCRD technique to probe Hydrogen atom, which is shown 

in figure 2.4. In this technique, parent molecule can absorb the shorter 

wavelength light and undergoes photodissociation. In most instances, longer 

wavelength light is chosen such that it is transparent to the parent molecule. 

Then the fragment, which we need to probe, is resonantly excited to a higher 

excited state by the absorption of a photon from each counter propagating laser 

beam. Then it can be ionized by absorbing another photon from either of two 

laser beam. To give a better understanding of this technique, a theoretical 

explanation behind TCRD is summarized below.  

An atom or a molecule with the velocity of v in a laser field of a frequency 

ωlaser can detect the relative frequency of ω which can be written in the equation 

given below31. 

 

ω =  ωlaser  -  k.v      where k is the wave vector 

 

In two color experiment, if the transition involves one photon from each 

laser beam, then the resonance transition can be obtained from the equation 

given below.  

 

ω1  +  ω2   =  ωlaser1  +  ωlaser2  - ( k1  +  k2 ) . v  
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Figure 2.4 Scheme of the Two Color Reduced Doppler REMPI probe (Adapter 
from reference 31) 
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In Doppler free condition, k1 and k2 have the same magnitude but different sign, 

which cancel each other and resulting the zero Doppler width. However in TCRD 

condition, the sum of the two wave vectors31
 is not zero but substantially low. For 

an example, when two laser wavelengths of 224nm and 266nm (produced from 

forth harmonic generation of Nd:YAG)  are used to probe the D atom from the 

photodissociation of DBr molecule, the reduced Doppler profile of D atom is 0.6 

cm-1 (Kinetic energy release of DBr at 224nm = 1.74 eV, therefore v=1.24x104ms-

1). In this case, the Doppler profile of D can be easily masked by 2cm-1 bandwidth 

of 266nm beam. In contrast, the Doppler broadening in conventional REMPI 

technique is found to be 3.5cm-1, and cannot be covered without scanning of the 

laser. Therefore, TCRD-REMPI technique has a great benefit over the 

conventional REMPI method for the detection of products with a higher kinetic 

energy release. Because of the above mention uses and advantages, TCRD-

REMPI method has been widely employed in our experimental set up and is the 

basis for the results obtained for H probe in diacetylene and cynoacetylene 

experiments which are discussed in Chapter 3 and 4. 
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Chapter 3 

 

Photodissociation Dynamics and Metastable Lifetimes of Diacetylene 

in Titan’s Atmosphere 

 

3.1 Introduction 

 
 Titan’s haze layer is an important factor controlling the energy balance 

and atmospheric dynamics in Titan’s atmosphere. As discussed in Chapter 1 in 

detail, the haze layer of Titan is believed to be created of polyhydrocarbons and 

polynitriles. However, the understanding of the chemical processes that govern 

the formation of the haze layer is not well understood.  It has been shown 

previously that diacetylene (C4H2), cyanoacetylene (HC3N), and other trace 

amounts of unsaturated molecules trigger the formation of haze layer in Titan’s 

atmosphere1. However, to date, none of these chemical constituents have been 

studied in relation to the understanding of haze formation under collisionless 

conditions.  

Chapter 3 presents first experimental results for primary C4H2 

photodissociation and metastable lifetimes under collisionless conditions. 

Chapter 4 is a detail study of the photodissociation dynamics of cyanoacetylene. 

Chapter 5 contains photodissociation studies of variety of heptane isomers. 

Heptane is of great importance for astrochemical and planetary sciences and 
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believed to be present in Titan. Objectives of these studies are to obtain a deep 

understanding of the chemical dynamics of these components in Titan’s 

atmosphere in relation to haze formation. 

  Diacetylene is also believed to play a key role in the formation of polyynes 

and polycyclic aromatic hydrocarbons (PAH) that partially comprise the haze 

layer in Titan’s upper atmosphere2,3,4. It is well established that the formation of 

diacetylene is initiated by photodissociation of acetylene below 217nm light 

2,5,6,7,8 according to the following reaction mechanism: 

 

 C2H2    +   hν       C2H    +    H   (λ <  217nm) 

 C2H      +   C2H2    C4H2  +    H 

  

The importance ascribed to diacetylene arises in part owing to the fact that 

it absorbs light at longer wavelengths, where the solar flux is higher, than any 

other major constituents of Titan’s atmosphere; moreover, experimental results 

suggest it is still be photochemically reactive even well below the threshold for 

dissociation9,10,11,12. Understanding the dynamics of diacetylene photoexcitation 

is thus key in revealing the factors driving the chemistry of Titan’s atmosphere. 

 In a pioneering study, Glicker and Okabe determined a quantum yield of 

2.0 ± 0.5 for diacetylene photodissociation in the wavelength region of 147 nm - 

254 nm9. Between 184 and 254 nm, no free radical products were detected and 

polymeric material was found to coat the inside of the reaction cell. The upper 
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limit for the quantum yield of C4H formation was then determined to be only 0.06 

at 228 nm based on experimental uncertainty. However, at the time the published 

thermochemical thresholds were in error, and it is now known that the threshold 

for H elimination is 5.8 eV (214.1 nm), significantly higher than the energy 

assumed by Okabe. The diacetylene dissociation quantum yield was ascribed to 

reactivity of a long-lived metastable form. Subsequently Zwier and co-workers 

extensively investigated the UV photoinduced chemistry of diacetylene through 

reactions10, 13 in a ceramic nozzle with VUV probe of the products downstream. 

Following excitation of the 1
∆u excited state, secondary reactions, likely involving 

the lowest triplet state, were found to lead to the formation of various larger 

hydrocarbons12,14,15. These laser-based studies, principally at 231 and 243 nm, 

also found no evidence for radical products proceeding from primary 

photodissociation of diacetylene16,11,17,18. Although metastable diacetylene 

reactions invoked to account for the observed chemistry are now often 

incorporated in models of Titan’s atmosphere, with an assumed metastable 

lifetime of 1 ms or more, to clarify their role the triplet lifetime must be measured 

directly and as a function of excitation energy19. 

 Several theoretical models and experiments have examined the 

secondary photochemistry of C4H2
2,20,21. However, for a clear understanding of 

the role of diacetylene in Titan’s atmosphere it is essential to have a better 

knowledge of its primary photochemistry (product branching and energy 

dependence), in addition to the electronic decay pathways and rates.  Therefore, 
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a series of experiments are carried out to understand the photodissociation 

dynamics of diacetylene under collisionless condition. All these results are 

supported by a series of ab initio and RRKM calculations, which have been done 

by Mebel and coworkers, to assist in interpretation of the results22
 

 

3.2 Experimental 

 

 The detailed DC slice imaging experimental set-up has been reported in 

chapter two and in previous publications23,24. Here, only the essential 

components of the present configuration are given. The molecular beam 

containing ~40% diacetylene seeded in Ar. The laser and molecular beam delay 

is adjusted to access the earlier portion of the molecular beam pulse in order to 

eliminate the contribution from diacetylene dimer or clusters. Two 

counterpropagating laser beams of different wavelengths are focused onto the 

molecular beam in the interaction region. The C4H2 is excited and dissociated to 

produce H-atoms which are then probed by a two-color reduced-Doppler (TCRD) 

REMPI25,26
 scheme, or 1+1’ ionization in the case of the Lyman-α dissociation. 

The 243 nm laser beam is produced by frequency doubling of the output 

of a dye laser pumped by a 308 nm XeCl excimer laser. Lyman-α radiation is 

generated by frequency tripling of 364.7 nm laser light in a VUV cell containing 

30% xenon gas, phase matched with argon at a total pressure of 900 torr. The 

364.7 nm beam is focused to the center of the VUV cell using a tight focusing 
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quartz lens. The resultant Lyman-α light is then loosely focused to the center of 

the interaction region by a MgF2 lens. No H+ signal is seen when the TCRD or 

Lyman-α resonant condition is not met. 

In the lifetime measurements, a tunable, narrow-linewidth (0.07 cm-1) 

OPO laser that is frequency doubled to provide the pump light at 230-250 nm 

was used. The probe light is an F2 excimer laser beam at 157 nm. Both lasers 

are unfocused and directed at right angles mutually perpendicular to the 

diacetylene beam. The power in each beam is attenuated to the point that 

negligible signal is seen from either laser alone. For the UV beam this 

corresponds to 0.3 mJ in a spot of 1 cm diameter (~150 µJ/cm2), while the VUV 

probe is estimated to be roughly half this value. Total ion yield at the parent C4H2 

mass is then recorded as a function of delay between the two lasers. 

 

3.3 Results and discussion 

 

 DC-sliced images of H atoms from diacetylene photodissociation at three 

different wavelengths were recorded (Figure 3.2). Background signals were 

subtracted from the raw images and total center-of-mass translational energy 

distributions were derived from the refined data (Figure 3.3). The images all show 

isotropic angular distributions. The distributions at all three wavelengths studied 

(243 nm, 212 nm, and 121.6 nm) have peaks around 0.45 eV and decay to 

higher recoil energies, extending to 3-4 eV for the 243 and 121.6 nm results and 
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Figure 3.1 Profile of the ground state potential energy surface of diacetylene 
calculated by Mebel and coworkers at the CCSD(T)/CBS + ZPE(B3LYP/6-
311G**) level of theory  
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to ~5 eV for the 212 nm dissociation. The isotropic angular distributions and 

structureless translational energy distributions peaking at low energy are typical 

of statistical, barrierless hydrogen elimination process27 and suggest dissociation 

on the ground electronic state. As shown in Figure 3.1, the C-H bond in 

diacetylene is very strong, with dissociation energy of 133 kcal/mol. The 

threshold wavelength for single photon dissociation of diacetylene is thus ~215 

nm, while at 243 nm the single photon energy is only 118 kcal/mol. Single photon 

dissociation at 243 nm is clearly not possible. However, if C4H2 absorbs two 

photons at 243 nm, dissociation to C4H + H is possible with a total excess energy 

of 103 kcal/mol. Such a process is consistent with the translational energy 

distribution in Figure 3.3, which extends nearly to this limit. 

 Then these results were compared to that obtained at the same 

two- photon energy by considering dissociation (and probe) at 121.6 nm. The 

kinetic energy distribution recorded at this wavelength is also shown in Figure 3.3 

and is nearly superimposable on that obtained at 243 nm. Therefore, by looking 

at these results it is possible to conclude that 243 nm production of H atom from 

diacetylene likely results from absorption of two photons, while at 121.6 it is 

single photon dissociation. Next is to consider 212 nm, which is several kcal/mol 

above the threshold for H loss in diacetylene. The distribution in Figure 3.3 

shows a translational energy release similar in shape but extending to even 

higher energy than at 243 or 121.6 nm. However, the distribution is entirely 

confined within the available energy (138 kcal/mol) of the two-photon excitation  
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 Figure 3.2 DC sliced H atom images from diacetylene excitation at (a) 243 nm 
(b) 121.6 nm (c) 212 nm.                                
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at 212 nm. The conclusion is that two- photon dissociation still dominates, even 

though it is now certainly above the single photon dissociation threshold. 

 All of the observed dissociation processes appear to come from the 

ground state following some intramolecular electronic relaxation processes. This 

ground state decomposition is only a part of the picture for diacetylene. 

Therefore, it is also important to understand that the electronic decay dynamics 

leading to the ground state and the possible time spent as a potentially reactive 

metastable triplet species. As mentioned before, the importance is ascribed to 

metastable diacetylene in Titan’s atmosphere. If reactive C4H2
* is very long-lived, 

its contribution to the chemistry in Titan’s stratosphere will clearly be much 

greater than if intersystem crossing (ISC) takes it to the unreactive ground state 

before it has an opportunity to encounter a suitable reaction partner (e.g., some 

other unsaturated hydrocarbon.) To examine these issues, the possible excited 

states involved were considered. Vila et al. have calculated energies and 

geometries for a range of low- lying excited states of diacetylene using CASSCF 

and CASMP2 methods and their results is drawn on for this discussion22. If first 

the linear geometry of the ground state is considered, the initial excitation is to 

the second singlet state. This is the only low-lying excited state that is linear. 

Internal conversion (IC) may then populate the first singlet state, or ISC may take 

the system to one of several triplet states. IC in the triplet manifold will then result 

in formation of the lowest triplet (T1), the long-lived metastable species. It should  
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Figure 3.3 Total translational energy release spectra derived from images in 
Figure 3.2 
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be noted that these other excited states split into cis and trans isomers fairly 

close in energy, but with, in some cases, significant associated relaxation energy. 

Zwier and coworkers have shown from linewidth analysis that the initially excited 

state must have a sub- picosecond lifetime28, and the spectra are in excellent 

agreement with their results. Relative rates for IC and ISC leading to the lowest 

triplet, such as could be obtained by femtosecond time-resolved photoelectron 

spectroscopy, would be very interesting for this system; however these 

measurements are not yet available. In any case, it is assumed that these 

processes are very rapid relative to the final step, ISC for T1-S0. This is the decay 

rate that represents the metastable lifetime for an isolated molecule, and one that 

we can measure using a UV-pump, VUV-probe strategy. In this approach, the 

nanosecond UV laser excites C4H2, after which it relaxes rapidly to T1. A 7.9 eV 

probe laser can then ionize the electronically excited states of C4H2 (I.P. 10.30 

eV vertical, 10.17 adiabatic29) but not the ground state. By monitoring the parent 

ion yield as a function of pump-probe delay, the lifetime of T1 was determined. 

Also, this can be done for any initial UV excitation energy. Results for a typical 

scan at 231.5 nm are shown in Figure 3.4A. Single exponential decays are 

readily seen and fitted after accounting for the laser pulse duration. Experimental 

decay rates were determined at 231.5 nm, 243.11 and 247.6 nm and plotted in 

Figure 3.4B. This strong dependence of lifetime on excitation energy is a 

manifestation of the dependence of the T1-S0 ISC rate on vibrational excitation in 

the triplet molecule. This behavior is commonly seen, and may be ascribed to a  
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Figure 3.4 Lifetime measurements for triplet diacetylene. A) Typical pump-probe 
decay profile obtained following excitation at 231.5 nm. Points are experimental 
result and line is single exponential fit after convolution over laser pulse duration. 
B) Triplet decay rate plotted vs. excess energy in T1. 
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barrier on the triplet surface leading to the crossing region. The barrier may be 

the actual crossing seam of T1 and S0, or it may simply be a region of T1 that 

must be passed through to access a lower energy T1/S0 crossing. If a simple 

exponential dependence of the decay rate on excess energy in the lowest triplet 

is assumed, then it is possible to extrapolate this determination to higher 

excitation energies (Figure 3.4B). In here an experimental value of 2.7 eV was 

used for the origin of T1
30 to obtain a lifetime of 4.6 ns at 212 nm. This indicates 

that at 212 nm, just above the dissociation threshold, ISC to S0 is likely to occur 

within the duration of our laser pulse. 

 The only other measurement of the triplet lifetime is a study by Vuitton et 

al. in argon and krypton matrices8. They monitored phosphorescence following 

excitation at 249 nm and extrapolated the results to the gas phase after 

accounting for the dielectric effect of the matrix on the lifetime. They obtained a 

value of ~70 ms. It is difficult to compare this thermalized value in a matrix at 5- 

30K to our microcanonical determinations at 2-3 eV vibrational energy.  However, 

it is clear that the observation is not inconsistent with their measurement. 

 The most important practical issue arising from lifetime measurement is 

the relevant value for Titan. In attempting to incorporate metastable reactions into 

atmospheric models, a lifetime of 1 ms has generally been employed10,12,31, and 

this has been cited as the lifetime of triplet acetylene determined by Klemperer 

and coworkers32,33. An examination of that work reveals, however, that is it not 

strictly a lifetime determination, rather a report that some metastable acetylene 
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produced by electron impact had persisted to detection for 1 ms. Recent 

experiments have more directly examined the triplet lifetime in acetylene 

following ISC from specific rovibrational levels of S1 and obtained a value on the 

order of 80-100 µs that is dependent on excitation energy34, just as seen here for 

diacetylene. For diacetylene, the measurement clearly shows a lifetime many 

orders of magnitude lower than what has been assumed at the energies relevant 

for UV photoexcitation on Titan. However, if collisions result in vibrational cooling 

of the triplet to the ambient temperature, this lifetime will be extended, perhaps to 

the point that triplet reactions can contribute significantly to the chemistry. 

However, in Titan’s upper atmosphere where the UV solar flux is significant, the 

pressure is too low for vibrational cooling of the triplet to dominate over T1-S0 ISC 

given these sub-microsecond lifetimes. 

 When considering the possible H loss products and pathways on the 

ground state, guided by the ab initio calculations done by Mebel and coworkers 

as shown in Figure 3.1, the H elimination from diacetylene can occur without a 

barrier to the product channel P1 giving linear C4H
35,36. This dissociation pathway 

can also be accessed via an intermediate (IS1). In this case, H atom migration 

first occurs from one terminal carbon atom to the other terminal carbon atom with 

a 101 kcal/mol barrier. The intermediate product will also undergo H elimination 

without a barrier. At high energy (e.g., Lyman-α wavelength), all the three 

channels will be accessible. Starting from the diacetylene ground state, one way 

of producing P2 and P3 product is through the ring closing reaction which occurs 
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with a 91.8 kcal/mol barrier to form IS2. Finally, IS2 can undergo H elimination 

without a barrier to produce P3. Alternatively, IS2 can rearrange via ring 

contraction to IS3 with a small barrier of 15.1 kcal/mol. The IS3 intermediate 

finally undergoes barierlesss H elimination to produce P2. The other alternative 

route of forming P2 product is through intermediate IS1 followed by cyclization 

with a 59.9 kcal/mol barrier to IS4. The IS4 intermediate dissociates to P2 

products. Finally, it is also possible to have rearrangement of IS4 to IS3 through 

H migration. This reaction occurs with a barrier of 28.6 kcal/mol.  

 To gain a sense of the relative importance of these different pathways, 

Mebel and coworkers have performed RRKM calculations of the dissociation 

rates and branching ratios to the H loss channels, as well as H2 and C2 

elimination channels, at several energies of interest. The results are shown in 

Table 3.1. First they examined the total rates for H elimination summed over all 

C4H product channels. Just above threshold, at 212 nm, they saw an H loss rate 

of 5.2×104 s-1. This very low rate readily accounts for the absence of any 

dissociation signal in the experiment, for which the detection window is only the 

10 ns duration of the laser pulse. If the fluence at 212 nm were sufficiently low, 

single photon dissociation at 212 nm should be seen. However, the timescale is 

such that very little will be formed within the 10 ns duration of the laser pulse, so 

that it drops below the sensitivity limits of the experiment. At 193 nm, the rate 

rises rapidly to 5.3x107 s-1. Although the dissociation at this energy has not yet 

been studied, it can be seen that there should be reasonable probability of  
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Product 

Wavelength 

212nm 193nm 157nm 121.6nm 2x212nm 

Energy (eV) 5.85 6.4 7.9 10.2 11.7 

HCCCC  +   H 100.0 88.4 82.1 86.5 84.9 

C4(
1
Σg

+)   +  H2 0.0 0 1.5 6.1 0.1 

C4(
1A’)   +  H2 0.0 0 0.0 0.0 0.1 

C4(
1Ag)   +  H2 0.0 0 0.0 0.0 0.1 

C2   +    C2H2 0.0 11.6 16.3 7.4 5.8 

HCCCC   +    H 
(From R1) 

81.5 55.0 43.2 46.5 50.1 

HCCCC   +    H 
(From IS1) 

18.5 33.4 38.9 40.0 34.8 

k(H loss) , s
-1 5.23x104 5.26x107 2.39x1010 6.88x1011 1.98x1012 

 

 
Table 3.1 Computed branching ratios (%) and dissociation rates for indicated 
product channels calculated by Mebel and coworkers 
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decomposition within the duration of the laser pulse. At a total energy of 9-10 

eV,H elimination still dominates (86%) and roughly half is formed via S3 and half 

via S5. The remaining branching is roughly evenly split between linear C4 + H2 

and C2 + C2H2. Branching to the lower energy rhombic isomer of C4 is negligible 

in the calculations except at the highest energy studied, where is still 100-fold 

lower than that to the linear isomer. 

 These results suggest the following scenario for the observed H atom 

signals: the first photon excites the C4H2 molecule from 1
Σg ground state which 

has linear D∞h symmetry, to 1
∆u with the same symmetry. Very rapid electronic 

relaxation likely precedes absorption of a second photon, which then excites the 

molecule to one of many high-lying Rydberg states, likely now with considerable 

vibrational excitation30. This highly excited diacetylene can then undergo efficient 

electronic relaxation, ultimately to the ground state where dissociation takes 

place. This second photon absorption may be attributed to the presence of low-

lying Rydberg states of C4H2 around 9.4 eV and below30. Excited state 

calculations done by Mebel and coworkers at CIS(D) and EOM-CCSD levels of 

theory have confirmed the presence of a multitude of such states in the range of 

8.0-10.2 eV with significant oscillator strength. 

 In Okabe’s work, discharge lamps were used with fluences lower by many 

orders of magnitude. Two-photon processes are thus unlikely in that work, and in 

Titan as well, we should note. However, in the previous work by Zwier and co-

workers, fluences significantly greater than ours were employed, so it is 



74 

 

 

interesting that no radical processes were detected. In those experiments, it may 

be the number density in the irradiated nozzle extension that is key, so that the 

rate of vibrational quenching and reaction could exceed the rate of additional 

photoexcitation and decomposition to radicals. In comparing and reconciling all 

the various experiments performed under a wide range of conditions, there are 

many competing factors come into play. This underscores the importance of 

understanding timescales and the complex interactions between electronic and 

vibrational relaxation, secondary photoabsorption, and metastable reaction to 

determine the processes truly relevant to Titan’s atmosphere. 

 

3.4 Conclusion 

 

 The H elimination channel in C4H2 photodissociation was studied under 

isolated molecule conditions following photoexcitation at 243 nm, 212 nm, and 

121.6 nm. From the translational energy and angular distributions, 

photodissociation was found to proceed on the ground state. At 243 nm and 212 

nm, a two-photon absorption process is responsible while at Lyman-α, a one 

photon absorption process prevails. In separate pump-probe experiments, the 

lifetime of metastable diacetylene has been measured as a function of excitation 

energy. The values obtained for UV excitation energies are several orders of 

magnitude lower than assumptions generally used in modeling Titan’s 
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atmosphere, and suggest that metastable reactions may be less important in 

Titan’s atmosphere than previously believed. 
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Chapter 4 

 

Photodissociation Dynamics of Cyanoacetylene in Titan’s 

Atmosphere 

 

4.1 Introduction 

 

Cyanoacetylene (CA), one of the key trace atmospheric constituents on 

Saturn’s moon, Titan, is believed to be of central importance in the formation of 

the aerosol haze that dominates its atmosphere1,2,3. High energy electrons and 

solar UV photons initiates the dissociation pathways of N2 and CH4 in the upper 

atmosphere of Titan. These dissociation fragments are then acts as reactants for 

the formation unsaturated nitrile compounds including cyanoacetylene. The 

traces of cynoacetylene were first identified through the analysis of UV and 

infrared spectra obtained by Voyager mission4,5.  

Cyanoacetylene is the building block for the formation of cyanopolyines, 

which are then polymerizes with other organic constituents to form tholins6. 

Tholins are thought to be present in the surface of Titan and is also a major 

component in the formation of haze layer surrounding the upper atmosphere. 

However, the current understanding of the formation of haze layer is not very 

clear. The lack of current laboratory data with rate constants and kinetics of the 
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photochemical reactions of various chemical constituents such as hydrocarbons 

and nitriles preclude proper modeling of Titan’s atmosphere. This inadequate 

data is also a major reason for discrepancies of the current models to the data 

obtained by Cassini Huygens mission.  

This has motivated many experimental and theoretical investigations of 

cyanoacetylene photodissociation7,8,9,10,11,12,13. Halpern and co-workers have 

studied the photochemistry of CA and related compounds extensively, mostly in 

static cell experiments, using a variety of probe techniques but focusing mainly 

on the CN radical product10,9. Complex multiphoton processes were observed to 

give rise to a variety of radical products and emission from electronically excited 

CN and CCN. Clarke and Ferris used infrared absorption to investigate the UV 

photochemistry of CA by probing H-D exchange using a variety of deuterated 

reactants7,14 with an interest in the role of CA photochemistry mediating ethane 

production on Titan. In a provocative study, Okabe and coworkers showed that 

UV irradiation of a cell containing a few torr CA promptly gave rise to an aerosol 

mist and a concomitant pressure decrease, suggesting rapid polymer 

formation13. They concluded that the primary dissociation process at 193 nm was 

H loss to form the radical CCCN with a quantum yield of 0.3. Radical reactions 

were then thought to lead to polymerization. The balance of the photoabsorption 

was believed to result in metastable HCCCN*, which could undergo subsequent 

reactions also contributing to polymer formation. Despite this large volume of 

previous work, direct laboratory investigation of photochemistry of CA under 
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collisionless conditions in a supersonic molecular beam has not previously been 

undertaken. 

 The electronic spectrum of CA has been studied in absorption13,15 and 

through excitation spectroscopy16. It consists of a weak band extending from 230 

to 255 nm assigned to the vibronically induced 1A′′ ← 1
Σ

+ transition and a 

stronger, structured absorption from 190 to 225 nm assigned to a 1
∆ ← 1

Σ
+ 

transition; in the vacuum ultraviolet there is a pair of broad, intense features at 

146 and 141 nm as well as a series of intense Rydberg transitions beginning 

around 129 nm12,17. Significant inconsistencies in the thermochemistry and bond 

dissociation energies have been reported over the years, with experimental D0 

values for H-CCCN reported as low as 117 kcal/mol10,12 or 119.9 kcal/mol7,14, 

implying a dissociation threshold of 244 or 240 nm, respectively. Published 

theoretical values have consistently been much higher, ranging from 138 

kcal/mol18 to 130 kcal/mol11, giving instead dissociation thresholds from 208 to 

219 nm. Resolving this discrepancy is important in understanding the role of CA 

photolysis in Titan’s atmosphere, as the solar flux decreases significantly across 

this range. Experiment and theory agree that the H loss channel is the lowest 

dissociation pathway and that the onset of CCH + CN is significantly higher. The 

recent high-level theoretical study by Luo et al. is noteworthy in that they 

characterized the stationary points in the first excited singlet and triplet states as 

well as the ground state11. For the H loss channel, they found barrierless 

dissociation in the ground state but modest barriers on both S1 and T1, with the 
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former correlating to electronically excited CCCN* (2
Π). In this paper we 

present direct current (dc) slice imaging results for photodissociation of CA under 

collisionless conditions at 121.6, 193.3, and 243.2 nm. The theoretical 

calculations done by mebel and coworkers augmented the experimental 

observations. Therefore, the chapter represents the experimental observations 

combined with theoretical calculations of the stationary points on the ground and 

excited-state surfaces (see Figure 4.1) and statistical calculations of the 

dissociation rates and product branching on S0.  

 

4.2 Experimental section 

 

 The experiment was carried out using a velocity map ion imaging19,20 

apparatus optimized for dc slice imaging21,22.  A detail experiment set up is given 

in chapter 2 and only the specific details are given in here. A pulsed supersonic 

molecular beam containing ~2% cyanoacetylene seeded in Ar. The laser and 

molecular beam delay was adjusted to access the earlier portion of the molecular 

beam pulse in order to eliminate the contribution from cyanoacetylene 

dimers/clusters. After dissociation by the 193 or 121 nm laser, the H 

photofragments were ionized by (1 + 1′) or Doppler-free (2 + 1) REMPI schemes 

described previously.  

 For the 243 nm dissociation experiments, an alternative approach, relying 

on the Autler-Townes effect23, was used to give Doppler-free detection. In this 
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approach, the fundamental 486 nm light was doubled and allowed to 

copropagate with the linearly polarized 243 nm light. The 486 nm light couples 

the 2s and 3d levels in atomic hydrogen, resulting in AC Stark broadening of the 

two-photon absorption to the 2s level.  

Conditions are readily found that broaden the line sufficiently to detect the full 

Doppler-broadened recoil distribution, but ionization on the line’s center is 

suppressed24,  as may be seen in the lower image in Figure 4.2. This has little 

effect on the reconstructed distribution. 

 Cyanoacetylene was synthesized by a slight modification of the published 

procedure25,26. Briefly, 5.03 g of methyl propiolate was reacted with 10 mL of 

ammonium hydroxide at -33 0C. The neat propiolate was added dropwise over a 

period of 10 minutes; the stirring bar was then removed and the water pumped 

off using a mechanical pump for about 8 hours. The resulting yellow propiolamide 

crystals were then thoroughly mixed with 40 g of P2O5 and sand. The solid 

mixture of propiolamide, P2O5, and sand was then placed in a round-bottom flask 

and heated at 180 °C for about 1 h to yield cyanoacetylene, which was collected 

as a white solid at -78 °C. 

  

4.3 Results 

 

 Stationary points and dissociation asymptotes for the groundstate 

potential energy surface of CA are constructed by Mebel and co-workers and  
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Figure 4.1 Stationary points and reaction pathways on the ground electronic 
state, and the S2 minimum, for HCCCN calculated by Mebel and coworkers as 
described in the text 
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given in Figure 4.1 at the CCSD(T)/CBS level of theory. One can see that 

HCCCN i1 can directly decompose to CCCN(2
Σ

+) + H or C2H(2
Σ

+) + CN(2
Σ

+) by 

the cleavage of the C-H or the middle C-C bonds with an endothermicity of 133.7 

or 150.1 kcal/mol, respectively, without exit barriers. Pathways to the other 

possible products, such as CCNC(2A′) + H and C2(
1
Σg

+) + HCN residing 162.7 

and 136.4 kcal/mol above HCCCN, respectively, are more complex and will be 

discussed in detail elsewhere, in relation to the C2(
1
Σg 

+) + HCN reaction6. Here 

we only briefly mention that CCNC + H can be produced by C-H bond cleavages 

in HCCNC i2, CCHNC i5, and HCNCC i8, occurring without exit barriers. Since 

CCNC is computed to be 29 kcal/mol less stable than CCCN, the contribution of 

this product to the photodissociation of CA is expected to be insignificant. 

Energetically, the most favorable pathway leading to C2 + HCN involves i1 f i2 

rearrangement by flipping the CN group over, followed by a 1,2-H shift to i5, 

three-member ring closure to i7, and elimination of the C2 fragment from the 

latter. i7 can also ring open to a peculiar HCNCC isomer i8 and then lose C2. 

Since the route to C2 + HCN is rather complicated and includes entropically 

unfavorable H migrations and ring openings/closures, we expect that this product 

channel would play a relatively minor role. 

 Since dissociation of HCCCN on S1 and T1 surfaces was considered 

theoretically by Luo et al.11, here the focus is on the S2 (B 1
∆) surface. The 

vertical excitation energy from S0 to S2 computed in this work, 5.70 eV, is close to 

the result reported by Luo et al11. Geometry optimization is also an effort of 
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Mebel and co-workers. For S2 gives a stable structure, shown in Figure 4.1. One 

can see that, upon excitation to S2, geometric changes involve elongation of the 

triple C≡C and C≡N bonds by ~0.09 and ~0.07 Å, respectively, accompanied by 

a shortening of the C-C single bond by 0.07 Å. In contrast to the S1 and T1 local 

minima, the optimized structure for S2 maintains a linear C∞V geometry. Mebel 

and co-workers also calculated adiabatic excitation energy to the B 1
∆ state, 

which is 4.96 eV (114.4 kcal/mol). Due to the computed change in geometry, 

vibrational modes that should be active in the 1∆ ←1
Σ

+ absorption spectra include 

combinations of C≡N, C≡C, and C-C stretching, which are displaced and 

distorted in the excited state, with the corresponding vibrational frequencies 

changing from 2377, 2172, and 906 cm-1 in 1
Σ

+ to 2075, 1465, and 938 cm-1, 

respectively, in 1
∆. These results support the assignment of the structured 

absorption band from 190 to 225 nm to the 1
∆ ←1

Σ
+ transition. Mebel and co-

workers confirm that a transition-state search for the H loss on the S2 surface, 

carried out for the 1A′ component of 1
∆ within Cs symmetry, showed that this 

process occurs without exit barrier and leads to the CCCN(2
Π) + H products. 

Because of its degeneracy, the 2Π state of the product correlates both with the S1 

(1A′′) and S2 (the 1A′ component of 1
∆ when symmetry is reduced to Cs) states of 

HCCCN. Thus, dissociation on the S2 surface can also produce CCCN(2
Π), but in 

contrast to the S1 surface, no exit barrier was found here. 

 DC sliced ion images for H atom from dissociation/probe of CA at both 

121.6 and 243.2 nm are shown in Figure 4.2, along with the translational energy 
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distributions determined from the imaging data. The images show no angular 

anisotropy. The translational energy distributions are nearly identical, peaking at 

~0.5 eV and extending to 4-5 eV. The average translational energy release is 

1.17 eV (243 nm) or 1.19 eV (121.6 nm), which is ~27% of the available energy 

at Lyman-α. These are typical H atom loss distributions, similar to those we have 

seen from a range of hydrocarbon molecules, and they suggest dissociation on 

the ground electronic state following internal conversion. Despite the fact that the 

distributions peak away from zero energy, we believe they represent simple bond 

fission without a barrier. Statistical ground-state treatments are able to reproduce 

these distributions quite well, as has been shown by Ashfold and co-workers for 

ketene dissociation27. The similarity between the 243.2 nm result and that at 

Lyman-α strongly suggests that the former represents a two-photon absorption 

process. This is analogous to the situation we recently reported for diacetylene 

photodissociation. Although some of the earlier experimental work indicated 

dissociation thresholds for CA at wavelengths as long as 244 nm, this 

translational energy distribution at 243 nm is clearly not consistent with single 

photon dissociation near threshold. 

 The sliced ion image and associated translational energy distribution for 

193 nm dissociation of CA are shown in Figure 4.3. This distribution is quite 

distinct from that at Lyman-α. It peaks at ~0.2 eV and extends only to 0.5 eV, 

with an average of 0.30 eV. The theoretical results embodied in the energy 

diagram in Figure 4.1 give a dissociation energy of 133.7 kcal/ mol, with an  
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Figure 4.2 H+ images at indicated wavelength and associated translational 
energy distributions for cyanoacetylene dissociation at 121.6 nm (solid blue line) 
and 243.2 nm (red dashed line). 
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estimated uncertainty of perhaps 1 kcal/mol. This corresponds to a maximum 

available energy at 193.3 nm of 14.3kcal/mol, or 0.62 eV. Our result at 193 nm 

thus shows roughly 50% of the available energy in translation. Alternatively, the 

excited-state S1 surface correlates to electronically excited CCCN, roughly 0.2 eV 

higher in energy than the ground-state CCCN product (Figure 4.1). The 

maximum translational energy in that case would be 0.46 eV, which is very close 

to the observed limit. The triplet surface correlates to ground-state products and 

would give the higher translational energy limit. As seen in Figure 4.1, direct 

dissociation on S2 also correlates to the excited CCCN radical but occurs without 

a barrier. 

 

4.4 Discussion 

 

 It is instructive to compare results for UV photoexcitation of CA to those 

for diacetylene. In both cases, H loss is the lowest energy dissociation channel28, 

but the threshold is higher than the absorption onset, and the chemistry driven by 

“metastable” reaction has been invoked to account for the reactive processes 

observed at energies below the dissociation threshold29,30,31. Furthermore, these 

dissociation thresholds were long thought to be much lower than the best current 

theory now suggests28. For CA in particular, the present theoretical value of 

133.7 kcal/ mol is not likely to be significantly in error. It is also well supported by  
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Figure 4.3 H+ images and associated translational energy distribution for 
cyanoacetylene dissociation at 193.3 nm probed by Doppler-free REMPI at 243 
nm  



93 

 

 

the translational energy distribution in Figure 4.3. The previous experimental 

determinations of around 5.1 eV for the H-CCCN dissociation energy would imply 

a maximum translational energy limit of up to 1.3 eV for Figure 4.3. This is clearly 

not supported by the measurements 

 The VUV dissociation result shown in Figure 4.2 is consistent with ground-

state dissociation following internal conversion, although dissociation from higher 

excited states is not explicitly ruled out by the data. To understand the ground-

state dissociation dynamics, RRKM calculations of the dissociation rates and 

product branching were performed by Mebel and co-workers as reported for 

diacetylenein chapter 328.The results are compiled in Table 4.1. Two significant 

differences are immediately apparent in these results compared to those 

reported for diacetylene. For CA, the dissociation rate at 193 nm is 2.50 × 109 s-

1; this is 50 times higher than that for diacetylene. This may account, in part, for 

our facile detection of the H loss channel in this case, while we were unable to 

obtain photodissociation results for diacetylene at 193 nm. The origin of this 

increased rate is the lower density of states for the dissociating molecule HCCCN 

vs HCCCCH. The second significant difference in these results relative to those 

found for diacetylene is in the branching to the H loss channel. For diacetylene, H 

loss dominated, 80% at 157 nm and 75% at Lyman-α. For CA, we see in Table 1 

that branching to H loss quickly falls to 57% once the C2H + CN channel is open 

and then remains roughly independent of excitation wavelength, decreasing only 

slightly. The higher yield of C2H + CN from cyanoacetylene vs C2H + C2H from  
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Wavelength (nm) 212 193 157 121.6 2x212 

Available energy 

(kcal/mol) 

 

134.9 

 

148.0 

 

182.1 

 

235.2 

 

269.0 

Rate constants (s-1)  

HCCCN → C2H + CN 0 4.25x107 1.44x1011 2.20x1012 5.7x1012 

HCCCN → CCCN + H 2.29x107 2.50x109 1.92x1011 2.89x1012 7.0710x12 

Relative yield (%)  

C2H + CN 0 0 42.9 43.3 44.6 

CCCN  +  H 100 100 57.1 56.7 55.4 

 

 
Table 4.1 RRKM Calculated Rate Constants and Relative Yields for the CCCN + 
H and C2H + CN Photodissociation Channels of Cyanoacetylene done by Mebel 
and co-workers 
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diacetylene can be understood if we compare the energy difference between 

C2H+ CN and CCCN + H (16.4 kcal/mol) and that between C2H + C2H and 

CCCCH + H (26.6 kcal/mol). Thus, the C2H + CN channel opens at a lower 

energy (150.1 kcal/mol), compared to 159.7 kcal/mol for C2H + C2H; as a result, 

the relative yield of the former nears its saturation earlier than that for the latter. 

Note also that possible minor production of C2 + HCN (up to ~10%) is not 

included here. 

 The image at 193 nm, shown in Figure 4.3, is quite intriguing. The fraction 

of available energy appearing in recoil is much higher than we usually see for H 

loss processes on the ground state. Although peaking away from zero energy in 

H loss from the ground state is commonly seen, usually it represents a relatively 

small fraction of the available energy27,28. A plausible explanation for the 

translational energy distribution in Figure 4.3 is dissociation from an excited state 

with an exit barrier on the order of 0.2 eV. As mentioned above, Luo et al. found 

barriers of ~0.06 eV for both S1 and T1 dissociation11. Although this is a bit low to 

account for the observed distribution, there is likely to be some significant 

associated uncertainty in the magnitude of the excited-state barriers. 

Furthermore, the S1 dissociation correlates to electronically excited 2
Π CCCN 

product. The translational energy limit is very close to the theoretical prediction 

for this product. These observations lead us to suggest that 193 nm excitation 

likely gives rise to excited-state dissociation, yielding electronically excited 

CCCN. 
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4.5 Conclusions  

 

 We have observed photodissociation of cyanoacetylene under 

collisionless conditions at 193.3, 243.2, and 121.6 nm. The 243 nm result is 

assigned to a two-photon process, and its similarity to the Lyman-α result and the 

fact that both are isotropic, with relatively little energy in translation, lead to the 

likely assignment as ground-state processes. Theoretical calculations of the 

groundstate dissociation rates and branching show rapid H loss at 193.3 nm and 

branching to HCC + CN above 40% at 157 nm and higher. The 193.3 nm result is 

in stark contrast, however. The sharply peaked translational energy distribution 

and large fraction of available energy in translation suggest excited-state 

dissociation, and the energetic limit leads to the likely assignment as S1 

dissociation. 

 At this point, the findings raise more questions than they answer for haze 

formation on Titan. These results are consistent with the emerging theoretical 

consensus that the C-H bond in CA is much stronger than previously reported, 

making direct dissociation above 200 nm probably of limited significance. 

Furthermore, the results at 193 imply excited-state dissociation to electronically 

excited CCCN. This indicates that internal conversion is slower than that in 

diacetylene, for example. One must assume, however, that below the S1 barrier, 

IC or ISC must eventually occur. The timing and wavelength dependence of 
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these events will be important for understanding the possible role of metastable 

HCCCN in growth of hydrocarbons and nitriles in Titan’s atmosphere. 
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Chapter 5 

 

Photodissociation Dynamics of Heptane Isomers and Relative 

Ionization Efficiencies of Butyl and Propyl Radicals at 157 nm 

 

5.1 Introduction 

 

 Titan’s atmosphere is continuously bombarded by high energetic electron 

and cosmic rays, which results in the formation of primary ions such as N2
+, CH4

+ 

1,2. As mentioned in chapter 1, these primary ions are undergoing a series of 

chemical reactions to produce stable ion clusters, which can ultimately 

accumulated in clouds in Titan’s troposphere3. Gravitational settling and 

convection assist in charge separation, which finally leads to electric field 

development within the clouds and between clouds and the ground4. 

Neutralization of charge separation leads to charge discharge and stimulate 

variety of chemical reactions in Titan’s troposphere. Laboratory investigation  of  

corona discharge in simulated Titan’s atmosphere clearly shows formation of  n-

heptane and its isomers4,3. VUV radiation in Titan’s atmosphere can easily 

photodissociates heptane and its isomers to form alkyl radical. These alkyl 

radicals are  important functional intermediates not only in planetary 

atmospheres5,2 such as in Titan but also in combustion6,7, and in dissociation of 
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saturated hyrocarbons8,9,10,11. Determination of chemical and physical properties 

such as absolute reaction rate constants, branching ratios and ionization 

potentials of these alkyl products are key aspects of modeling Titan’s 

atmosphere. Moreover, methods of determining the relative or absolute detection 

efficiency for reaction products provide the foundation for measuring branching 

ratios. A well-established approach for determining detection efficiency in 

electron impact ionization mass spectrometry involves accumulating the yield of 

all possible daughter ions arising from fragmentation in a mass-spectrometric 

detection system, then scaling them based on total ionization cross sections 

estimated from semiempirical methods12,13,14. However, this approach remains 

challenging for application to large polyatomic molecules, and in any case these 

determinations are associated with significant uncertainty. 

 Recently, a variety of related approaches have emerged based on 

comparing photoionization efficiencies for atomic and radical products of the 

same photodissociation event, notably from the Butler group15,16. A similar 

strategy has been combined with imaging to examine the internal energy 

dependence of 157nm ionization of butyl radical. The object in that study was 

simply to rule out any internal energy dependence of the VUV detection 

efficiency. This approach has been used extensively by Pratt and 

coworkers17,18,19 in more general studies of the internal energy dependence of 

the photoionization efficiency. Butler’s group in particular has used this approach 

to investigate the internal energy dependence of secondary decomposition 



104 

 

 

processes allowing them to locate ground state barriers for radical 

decomposition20. Neumark and coworkers have used tunable synchrotron 

radiation in related experiments, employing known atomic photoionization cross 

sections to place the relative VUV photoionization eficiency for radicals on an 

absolute scale21,22. Recent work from Taatjes et al. has employed this approach 

in a simpler imaging configuration to obtain absolute photoionization cross 

sections for the methyl radical23. 

 In our work, photodissociation dynamics of heptane isomers and an 

alternative scheme to obtain relative ionization efficiency for butyl and propyl 

radicals’ isomers of interest are studied. This approach does not offer the 

promise of absolute ionization efficiency as in some of the studies mentioned 

above. However, the objective is to examine the sensitivity of the 157 nm 

ionization for radical products in crossed-beam scattering experiments24,25,26. 

This strategy has the advantage that it is a simple and direct way to scale the 

detection under the conditions of the experiment. At the same time, it can give 

some insight into the VUV photodissociation of the heptane isomers used as 

radical precursors. Measurements and comparison of the ionization efficiencies 

of two major fragments i.e., butyl and propyl radicals, that result from an isolated 

collision free 157 nm photodissociation and ionization of several heptane isomers 

are presented in here. In these studies, relative detection efficiencies for 

separate pairs of radical products are compared; when one of the species in 
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each pair is identical in two measurements, the results may be scaled to give the 

relative detection efficiencies for the other two species. 

 Figure 5.1 shows results for dissociation of n-heptane (n-Hep), which 

yields 1-propyl and 1-butyl photofragments as the major products, to those for 

photodissociation of 3-methylhexane (3-M-Hex), which yields 1-propyl and 2-

butyl 4 radicals as the major primary product channels. The relative 157 nm 

ionization efficiencies of 1-butyl and 2-butyl radicals were determined using 1-

propyl radical as the reference. A similar strategy may further be used to scale 

the relative detection efficiency for 1-propyl and 2-propyl radicals as discussed 

further below. 

The results reported in this study also seek to unveil the possible neutral 

photodissociation dynamics of heptane isomers at 157 nm with the aim of gaining 

a better understanding on the formation of these two radical products and their 

excited state behavior. Studies of the photochemistry of saturated hydrocarbons 

is limited to the VUV as that is the onset of the first absorption27,28. Studies have 

ranged from end-product analysis of cell experiments with VUV lamps and 

radical scavengers27,29,30 to more recent Doppler31 and photofragment 

translational spectroscopy studies in molecular beams32,33,34,35. It is worth noting 

that while the photodissociation dynamics of all the heptanes isomers presented 

here do not show any dramatic differences, the relative yields and ionization 

efficiencies of different dissociation pathways and radical products are distinct.  
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Figure 5.1 Scheme showing formation of C3 and C4 radical products from simple 
C-C bond fission for selected heptane isomers. 
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5.2 Experimental 

 

 The details of the apparatus36 and the DC slice imaging technique37 have 

been reported in previous chapters. Here, we present only the features that are 

essential for this experimental set up. Up to 0.5 % of a particular heptane isomer 

seeded in helium was supersonically expanded to the sauce chamber. The 

molecular beam pulse valve delay was adjusted such that 157nm laser light 

interacted only with the early portion of the beam to avoid the contamination with 

clusters. An oxygen free environment was maintained along the F2 excimer laser 

path way by a continuous purge of N2. The laser beam was loosely focused in 

the interaction region by a 135 cm focal length MgF2 lens. After fragmentation 

and ionization, the ion cloud was accelerated to the MCP detector coupled with 

P-47 phosphor screen. The phosphor screen was viewed by a CCD camera 

which captured and recorded the ion images, and by a photomultiplier tube 

(PMT) to capture the integrated time-of-flight signal. 

 In the time of flight spectrum measurements, the MCP was un-gated and 

the PMT signal was sent to an oscilloscope for averaging and final transfer to the 

computer.  
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5.3 Results 

 

 To investigate the product yields resulting from the 157 nm dissociation of 

heptane and its isomers, time of flight mass spectra were accumulated up to 

1000 shots and the accumulated intensity of selected radical products measured. 

This procedure was repeated for each system and the relative intensity of each 

fragment was then determined. At the total available energy for dissociation and 

ionization at 157nm, i.e., two photons, secondary H and H2 loss from the cation 

is possible, and the TOF data showed overlapping mass peaks for these 

processes. The ion yields were thus summed for all C4Hn
+ and C3Hn

+ species. 

The results are presented in Table 1 scaled for the propyl product in each case. 

 To confirm that these ion yields represent neutral dissociation pathways, 

and to investigate the photodissociation dynamics, DC sliced ion images were 

recorded at each mass for each parent molecule shown in Figure 5.1. The results 

are shown in Figure 5.2 for the propyl and butyl products from each precursor 

heptane molecule. In addition, imaging results are shown for the ethyl-pentyl and 

methyl-hexyl radical product pairs from n-heptane dissociation. Total translational 

energy distributions derived from the images are shown in Figure 5.3. A key point 

in Figure 5.3 is that the distributions are derived independently for each co-

product. If the products come from the same neutral dissociation event, there 

should be momentum matching between the products and the two inferred 

translational energy distributions should agree. There is reasonable agreement 
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for all C3-C4 product pairs examined. The C2-C5 and C1-C6 pairs shown in 

Figure 5.2 e,f and Figure 5.3 e,f, however, do not show momentum matching; 

clearly these signals do not originate from a common neutral dissociation event. 

Instead, they may arise from multiphoton ionization/fragmentation processes. 

Nevertheless, they provide a useful contrast to the momentum matching seen for 

the propyl-butyl radical pairs. The average translational energy release 

determined for each channel and partner fragment is compiled in Table 5.2. The 

trends apparent from the translational energy distribution are reflected clearly in 

the average translational energy release. 

 The imaging results all show isotropic angular distributions. Although the 

157 nm laser is unpolarized, any inherent anisotropy in the photodissociation 

event should still be manifested in the images, albeit reduced by a factor of two 

relative to the case of pure linear polarization. The absence of anisotropy 

suggests that the lifetime may be long relative to the rotational period of the 

molecule or that dissociation occurs from a wide range of geometries. 

 As outlined in the Introduction, the relative detection efficiency for radical 

products determined for several precursor heptane molecules may be obtained if 

there is a co-product in common. This is the case for n-Hep and 3-M-Hex: they 

both give 1- propyl radical as a product, but for n-Hep the cofragment is 1-butyl 

radical, while for 3-M-Hex, the cofragment is 2-butyl radical. Assuming the 

detection efficiency for the product 1- propyl radicals is the same for the two 

systems, the relative 157 nm ionization efficiency for 2-butyl vs. 1-butyl radical  
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Figure 5.2 DC sliced ion images for indicated radical fragment from various 
heptanes precursors 
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are detected as 0.46:0.43 or 1.0:0.93. Similarly, 3-M-Hex and 2,3-DM-Pent both 

give 2-butyl as the C4 product to determine our relative detection efficiency for 

propyl radical products. Then, a relative 157 nm ionization efficiency of 

1.0:0.96for 2-propyl:1-propyl is obtained. A similar comparison is possible for 2,3-

DM-Pent and 2-M-Hex. However, this is complicated by the fact, shown in Fig. 1, 

that 2-M-Hex has two distinct pairs of C3-C4 products following CC bond fission: 

1- propyl with iso-butyl, and 2-propyl with 1-butyl. The relative yields of these two 

channels are unknown, but the thermochemistry places them very close in 

energy. No single channel is likely to dominate. For 2-M-Hex, the C3:C4 relative 

detection efficiency is obtained as 1.0:0.42, certainly consistent with the other 

measurements. However, the relative detection efficiency for iso-butyl from these 

results could not be obtained, only that it is likely to be similar to the other C4 

products. 

 

5.4 Discussion 

 

 Although few studies exist on the VUV photodissociation dynamics of 

heptane, extensive studies have been reported over the years for simpler 

alkanes, methane to butane, and the close chemical relation among these make 

for a very useful comparison to the present results. Unfortunately there does not 

appear to be a consensus on the nature of the initial electronic excitation. The 

157 nm excitation for heptane is on the triplet or the ground singlet state of the  
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1-C3H3 

 

2-C3H3 

 

1-C4H3 

 

iso-C4H3 

 

2-C4H3 

 

3-M-Hex 

 

1.0 

    

0.5 

 

2,3 DM-Pent 

  

1.0 

   

0.47 

 

2-M-Hex 

 

1.0 

 

0.42 

 

 

n-Hept 

 

1.0 

  

0.43 

  

 

 
 
 
Table 5.1 Relative signal intensity for C4H3 products from indicated heptane 
isomer dissociation/ionization at 157 nm 
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molecule. Perhaps the most useful studies for comparison to the present work is 

an investigation of the 157 nm dissociation of propane and other hydrocarbons 

by Yang and coworkers using photofragment translational spectroscopy with 

universal detection33,34,35. Although their study focused on H and H2 loss 

channels, they also reported the C-C bond fission channel giving radical products 

in the propane case. They reported a branching of 0.22:0.46:0.32 for H, H2 and 

CH3 loss channels, respectively. In this, the focus is in considering the C-C bond 

fission channel to give radical products readily detected at 157 nm. Nevertheless, 

by analogy, the propane results suggest this is likely a significant reaction 

channel. 

 The propane study inspired a theoretical examination of the ground state 

surface of methane, ethane and propane by Morokuma and coworkers. For 

propane, they characterized the energetics of the H and H2 dissociation 

asymptotes and the barrier for 1,1 or 1,2 H2 elimination. The located the lowest 

barrierless H loss pathway at 99.4 kcal/mol to make 2-propyl, the 2,2 elimination 

transition state at 97.3 kcal/mol, the 1,2 pathway at 104.3 kcal/mol, and they 

found the C-C bond fission reaction to be barrierless and located at 89 kcal/mol. 

The energetics for analogous processes in heptanes do not differ greatly. In all of 

the heptane systems, following 157 nm excitation there are many similar 

competing reactions involving H or H2 loss or other C-C bond fission processes, 

possibly followed by secondary decomposition. At the same time there may also 

be complex multiphoton dissociative ionization processes. The signals we  
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Figure 5.3 Total translational energy distributions derived from the corresponding 
images in Figure 5.2 
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observe will simply reflect the dominant pathways for combined fragmentation 

and ionization. The results obtained by this study clearly suggest that the facile 

detection for C3 and C4 radical products at 157 nm (7.9 eV) means that for 

these, neutral dissociation followed by ionization dominates relative to 

dissociative ionization. This is plausible given the ionization energies: roughly 7.3 

eV for 2-propyl or 2-butyl, 7.9 eV for iso-butyl and 8.1 eV for 1-propyl or 1-butyl 

(adiabatic values)38. 

 For CH3 and C2H5, the dissociative ionization processes appear to dominate 

over direct detection of these radicals. However, it is likely that the results 

obtained for the heavy fragment in these reactions still reflects the underlying 

neutral dissociation event. This is supported by the translational energy 

distributions shown in Figure 5.3 and the average translational energy release in 

Table 5.2, closely resembling results for C3 and C4 products. A key question that 

has not yet addressed is the possibility of rearrangement in the product radicals 

to give the lowest energy isomers, a 2-1 H migration in 1-propyl for example. This 

would certainly undermine the determination of the relative detection efficiencies 

presented in this study. Calculations by Noler and Fisher39 place this at just 38 

kcal/mol relative to the 1-propyl minimum, and calculated values range from this 

to even 50 kcal/mol for 1,2 H migration in hexyl radicals40. H migration may thus 

be possible for some subset of the radical products. At 157 nm there is 182 

kcal/mol excitation energy, C-C bond fission requires ~89 kcal/mol. Our 

experiments suggest an average of ~7 kcal/mol in translation. This leaves ~ 86  
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 C4 C3 

3-M-Hex 0.33 0.27 

2,3 DM-Pent 0.26 0.31 

2-M-Hex 0.24 0.19 

n-Hept 0.32 0.31 

n-Hept C5 C2 

 0.28 0.52 

n-Hept C6 C1 

 0.37 0.69 

 

 
Table 5.2 Average total translational energy release (eV) determined from each 
product from the indicated heptane isomer dissociation/ionization at 157nm. 
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kcal/mol to be distributed between the two radical products. The most likely 

partitioning of energy places roughly half of this in each product, so that, given 

enough time, some fraction of the radical products could relax to the lowest 

energy isomers. However, in our study the total available time is limited to the 

duration of the laser pulse, less than 20 ns, and this includes the time for 

dissociation of the parent molecule and possible rearrangement of the radical.  

Noller and Fischer measured H loss rates for propyl radicals at 112 

kcal/mol and higher excitation energies (significantly higher than available in the 

present experiment) and obtained values below 108 s-1, much lower than 

predicted by RRKM theory. The lifetime for rearrangement is likely on a similar 

timescale. In the present study, the average available energy is only slightly 

higher than the barrier so the lifetime is expected to be much longer. These 

considerations suggest that, although some radical rearrangement is possible, on 

the timescale of the experiment it is not likely to be the dominant process. 

Therefore, the reported detection efficiencies of this study thus represent the 

indicated radicals inferred from the parent geometries. 

 

5.5 Conclusion 

 

 Ion imaging and time-of-flight mass spectra for one-color laser dissociation 

of a variety of heptane isomers were obtained under collisionless conditions at 
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157 nm. Momentum matching results for the C3 and C4 product radicals suggest 

that those signals are dominated by neutral dissociation with single photon 

ionization of the products. This is in clear contrast to the results for C2-C5 and 

C1-C6 products of n-heptane dissociation, in which momentum matching was not 

demonstrated. The isotropic angular distributions and very low translational 

energy release suggest dissociation on the ground state following internal 

conversion. Results for four different heptane isomers allowed for calibration of 

the relative detection efficiency for the different C3 and C4 radical isomers at 157 

nm. 
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 Photodissociation dynamics of molecules relevant to understanding 

Titan’s atmosphere (diacetylene, cyanoacetylene and heptane isomers) are 

carried out under collisionless condition using the DC slice imaging technique. In 

diacetylene photodissociation, two-photon processes dominate at 243 nm and 

212 nm whereas at 121.6 nm, a one-photon dissociation process dominates. 

Direct measurement of the lifetime of metastable triplet diacetylene confirms sub-

microsecond lifetimes. Photodissociation of cyanoacetylene at 193.3 nm 

proceeds on the S1 potential energy surface with an exit barrier. In heptane 

photodissociation, the dissociation occurs on the ground state or low-lying triplet 

states with nonradiative electronic relaxation. Time-of-flight mass spectroscopy 

studies in this system yield the relative ionization efficiencies of 1- and 2-butyl 

and propyl radicals at 157 nm. 
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