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Abstract—Widespread adoption of sustainable energy sources
is driving electricity grid operators to supplement hierarchical
control regimes with market-based control that better motivates
stakeholder involvement. However, to prevent market failures,
such controls require testing before real-world implementation.
The Power Trading Agent Competition is a competitive sim-
ulation of distribution grids that mirrors real-world scenarios
and tests alternative policy and business scenarios. In Power
TAC, broker agents acquire energy through bidding in a forward
wholesale market to satisfy their customers overall demand on
an hourly basis. In addition, a balancing market is intended to
resolve real-time energy imbalances caused by broker prediction
errors using demand response resources. As part of the annual
alignment process, we discovered that brokers in the 2015
competition were persistently buying insufficient energy on the
wholesale market to satisfy their customer demand. Instead,
the balancing market made up the deficit, charging brokers
a premium over the wholesale price. Also, demand response
resources were heavily underused. We studied the economic
impact of this systematic imbalance on brokers and discovered
that they were behaving rationally, given the prices they faced
in the two markets. We present the process and results of this
analysis, and show how the balancing markets pricing mechanism
can be adjusted for the 2016 competition to make it rational for
brokers to achieve an overall neutral imbalance.

I. INTRODUCTION

Modern society depends heavily on reliable electric
power [1], but our existing electricity infrastructure presents
significant sustainability challenges [2]. Traditional approaches
to grid management rely heavily on top-down control and
fast-response, low-efficiency gas turbines [3]. These systems
were not designed to work with large amounts of weather-
dependent renewable energy sources like wind turbines and
solar panels [4].

Many approaches have been put forward for revising the
organization and management of electric power systems to
enhance sustainability. However, it is difficult and risky to
experiment with various policy prescriptions in the real world;
witness the disaster visited on California in 2000 by an ill-
considered market introduction [5]. For this reason, many
groups have turned to simulation studies to evaluate market
designs [6], policy prescriptions [7], and grid operations
under high penetrations of variable-output renewable energy
sources [8]. Some research also focuses on the introduction
of demand response (DR) resources as a means of mitigating
renewable energy volatility [9], [10]. In such studies, a simula-

tion is typically carried out by a single researcher or research
group. When entities in such a simulation must compete with
each other across multiple markets, it can be quite difficult
to ascertain that the simulation developers have considered all
the ways competitors might exploit market design features. In
such cases, a method known as Competitive Benchmarking
(CB) offers much promise [11].

CB has three elements: a Platform, typically in the form
of a competitive simulation environment that serves as a
shared research foundation among a number of participating
researchers [12]; periodic Alignment to refine elements of
the platform and synchronize the platform with important
elements of the real-world problem area being studied; and
a Process that integrates contributions from stakeholders and
participating researchers, and runs periodic competitions to
assess the performance of the platform and competing agents
contributed by researchers.

The Power Trading Agent Competition1 (Power TAC) [13]
began in 2010 as a CB project to study retail future re-
tail electric power markets, with a focus on improving the
match between consumption and production (especially from
distributed renewables) through market-based controls. Au-
tonomous retail broker agents (or simply “brokers”) com-
pete with each other to make profits by serving customers,
buying energy in a wholesale forward market and selling it
to customers through tariff contracts. Brokers are required
to balance wholesale energy purchases with the consumption
(and production) of their customers on an hourly basis; any
residual imbalances are resolved through a balancing market.
In this market, brokers can offer customer demand-response
capacity [14], such as interruptible heating and cooling units
and electric-vehicle batteries. The remaining imbalance is
cleared using wholesale resources at a price computed as a
premium over the “spot” price, the highest price at which the
forward market has cleared for delivery in the current hour.2

The Power TAC platform is designed to guide real-world
decision-making by providing an environment for quantitative
research. Previously, two common lines of research using
Power TAC’s environment involved markets analysis [18] and
autonomous retail broker agents [19], [20], [21]. It is central

1see www.powertac.org
2This is similar to the scheme used in the Nord Pool regulating market [15].

etails are outlined in [16] and in the Power TAC game specification [17]



to the applicability of these studies that the platform they
are based upon holds relevance to the real world and also
retains credible dynamics. This can be ensured through regular
alignment events.

In the 2015 competition, competing brokers were generally
not offering customer demand-response capacity within the
balancing market. As part of the 2016 alignment, it would be
interesting to determine whether this was a rational response to
the market conditions they faced. Another research question
arose during this inquiry; whether brokers found it rational
to carry negative imbalances, thereby requiring the balancing
market to systematically supply a portion of the energy their
customers were using.

We can summarize our results in the following: (a) We
determined that there was a strong bias toward negative im-
balance, and that brokers indeed found it rational to purchase
through the forward market less than the full quantity their
customers were consuming. (b) Due to limited profitability,
only 1 of the 11 competing brokers ever offered customer
demand-response resources into the balancing market. (c) We
identified the balancing-market premium as a key parameter
that drives broker responses to the interaction of the forward
and balancing markets, and we make recommendations on how
this premium might be adjusted.

The following section provides more detail on the Power
TAC markets. Section III explains the alignment process by
detailing the measures taken to understand and remedy the
problem. We conclude by summarizing our findings, future
implementation goals, and possible future work in Section IV.

II. THE POWER TAC MARKETS

In the 2015 Power TAC Finals competition, the simulation
modeled a small city’s electricity distribution market over a
period of a little over 8 weeks. The city contains a multitude
of customer models, from residential “prosumers” who both
produce and consume energy, to industrial consumers with
very stable hourly energy use. To focus on the economic
aspects of market design, Power TAC simplifies most physical
limitations of electricity grids. Since the small city is designed
to house a large number of renewable energy sources, its
energy mix tends to be strongly weather dependent. Hence, as
an information input to create a realistic weather environment,
real-world weather data and forecasts from an undisclosed
location are injected into the simulation scenario and provided
to brokers.

Electricity cannot be easily stored for later use; what is
drawn from the grid in some location must be injected
elsewhere. In Power TAC, retail brokers are required to
purchase the energy their customers consume in each one-
hour timeslot [22]. However, customer demand is stochastic,
and the customer population includes a large quantity of
distributed solar photovoltaic installations. Brokers can predict
the solar output in their portfolios using weather forecasts.
However, forecasts in Power TAC are not entirely reliable,
because weather forecasts and current weather conditions are
drawn from real-world data. Hence, brokers are faced with

a prediction task in matching supply (mainly from wholesale
market) and demand (mainly from retail market), the errors of
which are meant to be solved in the balancing market. Since
these markets deal in the same commodity, brokers have to
make choices about how to interact with them [23].

A. Wholesale Market

The Power TAC wholesale market is a simple call mar-
ket [24]. Offers (bids and asks) for delivery of energy in a
given hour timeslot are cleared once in each of the previous
24 timeslots. In other words, energy for delivery in hour 50
can be traded 24 times, from hour 26 to hour 49. From the
viewpoint of the market, offers arrive with delivery times
from one hour to 24 hours in the future; the market sorts
them by timeslot and clears each timeslot separately. Offers
can be market orders that specify a quantity to be cleared
at any price, or limit orders that specify quantity and price.
Bids and asks are matched as long as there remain bids with
prices at least as high as the lowest remaining un-matched
ask. The last matched bid/ask pair (highest matched ask and
lowest matched bid) set the clearing price for all transactions.
Deferred transactions are generated for the matched offers,
and are sent to the parties who submitted them. Payment is
due on delivery. All participants receive an order book listing
the clearing price, the quantity traded, and the quantities and
prices of the unmatched offers. This allows brokers to estimate
the prices they might see in the next round.

In addition to the retail broker agents, there are two other
types of market participant:

• Gencos are wholesale energy suppliers. In the 2015 com-
petition, all of the supply came either from the brokers
themselves, or from an abstract Genco that generates
a large number of asks with quantities and prices that
produce a supply curve that is approximately quadratic
when sorted by price. The coefficients of the quadratic
vary over time through a mean-reverting random walk,
and the bid quantities are selections from a normal
distribution. The Genco keeps track of its commitments,
and so at each market clearing it repeats the uncleared
offers from the previous clearing, with some additional
perturbation.

• An outside Buyer represents parties outside the scope of
the simulation who also trade in the market. Their pri-
mary purpose is to provide liquidity to broker agents who
wish to sell energy, and they also add some uncertainty
to energy prices.

Brokers are free to learn and exploit price patterns in the
forward market, buying energy for future delivery and then
selling it back before the delivery time arrives, or even short-
selling as long as they restore their positions before delivery.

B. Balancing Market

The balancing market operates as a single auction call mar-
ket for demand response resources. Brokers are allowed to bid
utilization of their DR resources for up-regulation and down-
regulation; any additional imbalances are processed through a
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Figure 1. Computing the cost of balancing energy through the Regulating
Market entity. Brokers pay a premium over the wholesale price, and price
escalates with quantity.

mechanism similar to the Nordpool regulating market [15].
This market clears offers through a VCG mechanism, an
incentive-compatible mechanism; as a result, it is rational for
brokers to set bid prices equal to their costs [16]. Clearing
prices are determined by the values of P+ and P−, by the
slopes of the market’s price functions, and by the size of the
total imbalance. Hence, broker’s offers will either fail to clear,
or will clear at prices higher than or equal to bid prices.

In each timeslot, the overall imbalance is either positive or
negative. A negative imbalance happens when brokers require
extra energy to supply for underestimated demand, since they
have purchased too little for delivery in the current timeslot. In
this case, which we call up-regulation, we consider the price
for energy to be positive, because the broker has to pay.

On the other hand, a positive total imbalance entails that
brokers have purchased too much energy for delivery, and
therefore require down-regulation. Essentially this means the
energy must be sold back or otherwise absorbed within the grid
on short notice. The surplus can be used to charge batteries,
add heat to water heaters, pump water uphill, or reduce the
output of a generator somewhere, but it cannot be sold for the
same price at which it had been purchased. To determine the
price, the lowest price at which energy was sold in the forward
market for the current timeslot is taken as spotsale (Figure 1).
The down-regulation spot price spotsale is multiplied by a
premium ratio < 1 to compute P−, the zero-quantity price
for down-regulation. The final down-regulation price is then
Pdown = P−+qdownφ

− where qdown is the surplus energy (in
MWh), and φ− is a constant. As a result, the price escalates to
the disadvantage of brokers as imbalance increases in either
direction. Up regulation is treated in an analogous fashion,
except that the spot price is the highest price at which energy
was purchased in the current timeslot, and P+ is the spot price
multiplied by a premium ratio larger than 1.

The premium ratios between spot prices and the zero-
quantity balancing prices were P+ = 1.1 and P− = 1/1.1
in the Power TAC 2015 Finals. The slopes were φ+ = 1e −
6 e/kWh and φ− = −1e− 6 e/kWh. These parameters were
chosen to roughly replicate the balancing market mechanism
used in the Nord Pool regulating market and to ensure that
brokers will always see a better deal in the forward market.

III. ALIGNING INCENTIVES BETWEEN MARKETS

As part of the CB process, the Power TAC platform is
annually re-aligned to improve its research value. This may
involve incorporating real-world data and trends, adding or
updating models, and making improvements based on analyses
of agent and model performance over previous competitions.
For example, the 2015 re-alignment added three new customer
models. Two of these models, electric vehicles and electric
fork-lift trucks, offer demand response capacity that brokers
can utilize within the balancing market. The third, and the most
influential in terms of market dynamics, was the addition of a
large population of small retail solar producers. Occasionally,
this population has sufficient capacity to offset all of the
customer demand in the most extreme cases of high sunlight
and low demand (see Figure 2).
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Figure 2. Hourly demand percentile contours by hour of day, aggregated
across days and games in the 2015 Finals (top); hourly consumption percentile
contours, without solar production (bottom)

A. Impact of Solar Capacity

The high volatility and uncertainty of the solar producer
model’s output introduced a new tension in Power TAC’s sim-
ulated grid. While solar production through the retail market
is a cheap alternative to wholesale market energy purchases,
brokers face the challenge of predicting PV output and treating
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the side effects of prediction errors. In Figure 2 we can see the
impact of solar production in the retail market. The upper plot
shows percentile contours of daily net demand (consumption
less retail production) over all 230 games of the 2015 finals.
The lower plot shows daily consumer consumption. There
is a small amount of wind production in the model, but its
variability is fairly constant. The high variability we see in
the middle of the day comes from solar production. Thus,
during the noontime hours, when solar production is highly
volatile, brokers are prone to high output prediction errors,
which would lead them to over-supply or under-supply their
portfolio’s demand for those hours. This imbalance in supply
and demand is managed in the balancing market.
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Figure 3. Net imbalance and the standard deviations of imbalance, consump-
tion, and production per hour of day aggregated over all games in the 2015
Finals.

Through investigating energy trades within the two markets,
we noticed a strong presence of negative imbalance events in
the balancing market (about 60% of imbalance cases). Also,
the amount of imbalance was much more that what we see
in real world data.3 The mean imbalance across all timeslots
in all games from the 2015 Finals was −4.111 MWh (with a
standard deviation of 10.76 MWh), which is over 10% of mean
net demand. Given that imbalance presumably arises from a
broker agent’s inability to predict supply and demand in its
portfolio, we expect imbalance to have significant correlations
with unpredictability of supply and demand. Deviations in
solar production and retail consumption, the main two sources
of energy unpredictability, indeed seem to have strong cor-
relation with imbalance (Figure 3). A Pearson’s correlation
test showed a coefficient of −0.5999 and for net imbalance
versus the standard deviation of consumption, and 0.5771
for imbalance versus standard deviation of production (p-
values are 0.0019 and 0.0032, respectively). Thus, imbalances
were dependent on production and consumption predictabil-
ity, whereas in 2014, they were mostly dependent on only
consumption predictability.

3Data on prices and regulation are available in many markets, such as
www.misoenergy.org or www.pjm.com.

We next investigated how brokers were being charged for
this imbalance. In Figure 4 we see a scatter plot of broker
profits vs. the broker’s RMS imbalance for each of the 230
games in the 2015 Finals. This plot again confirms individ-
ual brokers’ imbalance numbers are abnormally high. More
importantly, we see little correlation between the imbalance
performance of any brokers and their overall profits. This is
not what we hoped to see.

0e+00

2e+06

4e+06

0 10000 20000 30000

RMS Imbalance (kWh)
P

ro
fi
ts

Broker ID
AgentUDE

COLDPower

CrocodileAgent

CUHKTac

cwiBroker

Maxon15

Mertacor

NTUTacAgent

Sharpy

SPOT

TacTex

Figure 4. Broker total profits in each game versus root mean squared
imbalance for the 2015 Finals games.

B. Balancing Market Pricing

A lack of correlation between broker imbalance and prof-
its suggested that the balancing market may be priced too
cheaply; that is, the brokers may have little economic incentive
to balance their energy supply and demand. In other words,
brokers may have found it profitable to acquire a portion of
their energy needs through the balancing market. The next step
is to understand the economic incentives faced by brokers with
regard to energy imbalances.

We investigated demand response resource (DRR) bids
within the balancing market to understand how the market was
being used. We noticed that out of eleven participants, only one
(CrocodileAgent [18]) offered DRR into the balancing market.
Although the quantities were small, it earned a 44% margin
when these offers were exercised. The surplus available to
brokers for DRR offers is the difference between what brokers
earn from the balancing market and the price brokers offer to
their customers for the use of these resources. In addition to
again indicating that balancing is too cheap, this disregard for
DRR forced nearly all energy balancing to be performed by
the regulating market entity (RM).

Based on these two observations, we determined that the
RM entity was offering energy trade at prices too cheap
to suitably demotivate imbalances and motivate DRR use.
Mathematically speaking, the ratios P+ and P− prove to be
too close to 1.0 to provide the correct economic incentives. The
problem is that while the balancing market cost is always less
attractive than what brokers have already paid for energy being
supplied to customers, it is not necessarily less attractive than
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what brokers would have to pay for the energy needed to clear
the imbalance through the forward wholesale market. This is
because the supply curve – the relationship between quantity
and price over all the asks (offers to sell) in the forward market
– is roughly quadratic to model the effects of merit order and
congestion pricing in real-world markets [25]. Since brokers
can observe the order books, they may have been able to
predict that energy trades through the forward market would
have been more expensive than expected balancing market
prices.

C. Incentive Alignment

One method to make RM balancing less profitable than
trading in the forward market, is to price balancing according
to how much it may have cost were it to be solved by the
forward market. To calculate this, we computed how much
the energy imbalance would have cost for each broker, if
all brokers had predicted accurately and traded all energy
imbalance at the last possible moment in the forward market,
prior to entering the balancing market. Next, we calculated the
P+ and P− values that would have produced these prices in
the balancing market, and the ratios by which P+ and P−

would have to change to correct the interaction between the
balancing and forward markets.

We ran these calculations on all 230 games in the 2015
Finals competition, over all timeslots and all brokers within
each game.4 We ignored cases in which a broker’s imbalance
was the opposite sign of the total imbalance, as the handling of
these scenarios did not depend on the market mechanism that
dissuades broker imbalance. A few timeslots for which data
was not adequately recorded were also pruned; there were too
few to affect the results.

Figure 5 shows how much the premiums need to be changed
to remove the advantage brokers can achieve by relying on
the balancing market to resolve their imbalances. The 95th
percentile values of P− and P+, are values for which 95% of
brokers’ imbalance cases have prices in the wholesale market
equal to or better than the prices for the same energy imbalance
in the balancing market. Thus, they indicate the ratios that
would encourage balancing through the forward market in 95%
of cases in which a broker’s imbalance is similar to overall
imbalance. We posit that the ratios at this value level would
satisfy our alignment goals with little negative repercussions.
The 95th percentile values over all timeslots for the P− and
P+ ratios are found to be 0.096 and 2.52, respectively.

Increasing P+ by 2.52 would suggest that in 95% of
cases, the wholesale market would either be economically
preferable or as good as the balancing market’s regulation
prices. Similarly, multiplying the P− ratio by 0.096 would
mean that in only 5% of cases where total imbalance is
positive, would it be rational to carry surplus energy into the
balancing market.

4All Power TAC 2015 Finals game logs are available at
http://xlarge.rsm.nl/finals 2015 04/. Tools used for data extraction can
be found at www.github.com/powertac/powertac-tools
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Figure 5. Ratio by which P+ must be increased (top), and by which P−

must be decreased (bottom), to make balancing through the forward market
equal the cost of balancing energy, aggregated over games for each timeslot.
The total percentile values show percentiles aggregated over all timeslots.

Within the P+ and P− ratio figures, we can observe a
clear diurnal pattern. Also, in the top plot of Figure 5 the
ratio appears to stabilize after the first days. At least part
of this pattern is likely due to the high churn in the tariff
market over the first few days of a game as brokers compete
for customers. It is probably also a consequence of agent
learning as they build their portfolios. This learning behavior
could also aid agents in predicting potential market costs and
balancing costs, finding cases in which the latter is cheaper,
and thus continuing to exploit price differences across these
markets in some timeslots. Regarding the diurnal fluctuation,
the P+ ratio values appear to be high where solar output is
most unpredictable (and highest) and in peak demand hours
(Figure 6). Note that the peaks match well with the high-
variability hours shown in the top plot of Figure 2. The peaking
regions could possibly be predicted by brokers, enticing them
to forgo some energy trade in the wholesale market in favor
of the balancing market’s potential prices once the latter has
closed. However, with a P+ ratio of 2.52, this does not appear
to contribute significantly enough to warrant concern. The P−

ratio plots did not have any recognizable patterns.
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IV. CONCLUSIONS AND FUTURE WORK

The Power TAC simulation platform is designed to be
a Competitive Benchmarking testbed for viable policy and
business scenarios in the electricity distribution grid. It also
seeks to provide an environment within which quantitative
research can be conducted. However, such an environment
demands routine alignment to sustain research value and retain
relevance to practical situations.

Alignment changes in the 2015 competition year exposed
a maladjustment in the Power TAC balancing market. In the
Power TAC 2015 Finals competition, the broker agents signif-
icantly underused demand response resources and routinely
passed excess demand to the balancing market. We calcu-
lated a possible adjustment of the balancing market’s pricing
mechanism that would make the balancing market generally
unfavorable to the wholesale market. This adjustment will also
motivate brokers to utilize demand response resources, since
brokers can expect higher profits from balancing orders.

Through implementation in the 2016 competition, this ad-
justment can reconfigure Power TAC’s balancing market to
provision balancing for a customer base that incorporates
recent energy technology changes. This may hold strong
relevance for many regions, such as Germany and the US state
of California, which are transitioning from fossil fuels to an
energy system based on clean but occasionally unpredictable
renewable energy sources.

Possible future work on Power TAC may focus on capacity
controls for peak demand and tariff schemes for demand
response resources.
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