
1.  Introduction
The Indian summer monsoon (ISM), a critical component of the Asian monsoon system, transports massive 
amounts of heat and moisture from the Indian Ocean to the Indian subcontinent and inland China (An 
et al., 2011). Variations in the monsoon system directly affect the livelihood of billions of people and the wider 
socio-economic development in these regions (Jin & Wang,  2017; S. Li et  al.,  2018; X. Li & Tang,  2021). 
Changes in paleo-monsoonal precipitation and its influencing factors have long been a matter of great concern 
for assessing climatic variability and predicting future climatic changes. To date, substantial progress has been 
made in reconstructing monsoon variability since the Pleistocene (e.g., Cai et  al.,  2015; Cheng et  al.,  2016; 
Kathayat et al., 2016; Kathayat et al., 2022). It is now widely believed that precipitation decreased during the 
last glacial period (LGP) in Southwest China, which is attributed to a diminution of the ISM (Tian et al., 2019; 
Zhao et  al.,  2021). However, the ISM moisture transmission involves multiple interactions of the large-scale 
atmosphere-oceans circulation and the more localized topography (Acosta & Huber, 2020; Cai et al., 2015; Ding 
et al., 2020; Man et al., 2014; R. Zhang et al., 2015; Zhou et al., 2010). The topographic barrier may modulate the 
monsoon circulation and redistribute water vapor (Acosta & Huber, 2020; Xie et al., 2006; R. Zhang et al., 2015). 
Moreover, climatic records in Southwest China are mostly distributed on the eastern side of the mountains, and 
previous high-resolution last glacial records with respect to ISM precipitation variation in Southwest China are 
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limited to speleothem stable oxygen isotope (δ 18O) records (e.g., Cai et al., 2015; Cheng et al., 2016). Effective 
moisture (EM), which is calculated from precipitation and evapotranspiration, is more effective than precipitation 
at describing whether a region is wetter or drier as it takes the water demand into account (S. Liu et al., 2018). 
Hence, reconstructions of the EM variation along the windward slopes of mountains in Southwest China over the 
LGP are needed to decipher the precipitation and EM pattern and to accurately evaluate the forcing mechanism.

Tenchong Qinghai (TCQH) Lake (25°07′48″N–25°08′6″N, 98°34′11″E−98°34′16″E) is situated in the western 
Gaoligong Mountains (GLGM) in the southern Hengduan Mountain Range. It is located along the pathway which 
the ISM transports heat and moisture from the Bay of Bengal to inland China (Figures S1a and S1b in Support-
ing Information  S1). The sediment proxy records from TCQH Lake well document the changes in the ISM 
intensity, vegetation and temperature since the LGP (Peng et al., 2019; Tian et al., 2019; X. Zhang et al., 2020; 
Zhao et al., 2021). Here we characterized EM variations over the LGP in Southwest China based on environ-
mental magnetism proxies in two long sediment cores (TCQH4 and TCQH17A) from TCQH Lake (Figure S1c 
in Supporting Information S1). Accelerator mass spectrometry (AMS)  14C ages, combined with relative paleo-
intensity (RPI) data indicated that the two cores contained material deposited continuously since approximately 
90 kyr BP (before present, where present = 1950 A.D.; Z. Yang et al., 2022). Combined with the ISM intensity, 
which was previously reconstructed by the leaf wax hydrogen isotope (δDwax) record in the TCQH17A core (Zhao 
et al., 2021), we provide new insights into the terrestrial EM pattern in Southwest China since the LGP. Our data 
also provide evidence in support of the role of topography in modulating the Indo-Asian Monsoon circulation.

2.  Materials and Methods
2.1.  Materials and Sampling

TCQH Lake is a closed volcanic dammed lake without input from external rivers. The terrigenous debris of the 
lake sediments are mainly derived from the surrounding hills. The relatively detailed geological and geographical 
background of TCQH Lake and the sediment properties of two cores have been described by Peng et al. (2019) 
and X. Zang et al. (2022). A total of 679 and 1,068 discrete sediment samples were taken at ∼2.5 and ∼2 cm 
stratigraphic intervals from the TCQH4 and TCQH17A cores, respectively. We performed diffuse reflectance 
spectroscopy (DRS) and out of phase susceptibility (χop) on the samples from the TCQH17A core, and grain  size 
analysis on all samples from the TCQH4 core. We also conducted DRS on 16 modern surface soil samples 
(∼10 cm under the surface), sampled from the western foothill of GLGM at ∼50 m altitude interval from 2,250 
to 3,050 m in 2019 A.D. (Figure S2 and Table S1 in Supporting Information S1).

2.2.  Experimental Methods

The DRS measurements were conducted to obtain the relative concentration of hematite and goethite. The DRS 
was conducted on a PerkinElmer Lambda 950 spectrophotometer with a diffuse reflectance attachment (reflec-
tance sphere) following analytical protocols described in T. Zhang et al.  (2020). The data processing process 
was conducted following Scheinost (1998) and Torrent & Barrón. (2008). The out-of-phase susceptibility was 
measured for the TCQH17A samples using a Kappabridge KLY-5 with a frequency of 1220 Hz (which similar 
with χfd; Hrouda et al., 2013). Grain size components was measured for all TCQH4 samples using a Mastersizer 
3,000 laser diffraction particle size analyzer.

2.3.  Data Analytical Methods

The relative concentrations of hematite (RelHm), goethite (RelGt) and nanometer-scale ferrimagnetic minerals 
(𝐴𝐴 Rel𝜒𝜒op ) were calculated as follows:

Rel𝑝𝑝𝑖𝑖 = 𝑛𝑛 ∗

(

𝑉𝑉𝑝𝑝𝑖𝑖
∑𝑛𝑛

𝑖𝑖=1
𝑉𝑉𝑝𝑝𝑖𝑖

)

� (1)

where Vp indicates the proxy value and n denotes the number of samples (Q. Zhang et  al.,  2018). The ratio 
of 𝐴𝐴

RelHm

Rel(Hm+Gt)

 and 𝐴𝐴
Rel𝜒𝜒op

RelHm
 , abbreviated as H/(H + G) and OP/H, respectively, were also calculated as hydroclimate 

proxies for this study. Data were smoothed using the bootstrap method with 1 kyr windows, and decomposed 
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using the ensemble empirical mode decomposition (EEMD) method in Acycle v2.3.1 (M. Li et al., 2019; Wu & 
Huang, 2009). Full details of the above experimental procedures and the data processing methods are provided in 
the Supporting Information S1 (Text S1).

3.  Results
Modern climatic and observational data show that the annual mean temperature decreases with increasing eleva-
tion on the west slope of GLGM (Table S1 in Supporting Information S1; Xue, 1995), and the potential evapo-
transpiration also decreases with elevation according to the adjusted Thornthwaite method (1948). Annual mean 
precipitation and EM (precipitation minus evapotranspiration) increases with increasing elevation, and the maxi-
mum precipitation and EM occurs at the summit. Our elevation profile results for the surface soil show a linear 
positive correlation between H/(H + G) and EM (Figure S3 in Supporting Information S1), and OP/H is linearly 
negative with EM on a logarithmic scale (Figure S3 in Supporting Information S1).

Downcore variations of H/(H + G) and OP/H record from TCQH17A core and the small grain-size fraction 
(SGS, <16 μm) record from TCQH4 core are shown in Figure 1. There is a strong similarity in variations of H/
(H + G) and OP/H records at the orbital and sub-orbital scales, where the value of H/(H + G) show a decreasing 
trend during the periods of 90–70 and 30 kyr BP to the present, and an increasing trend from 70 to 30 kyr BP. It 
should be noted that the vertical axis of OP/H is inverted. The range of H/(H + G) is between 0.044 and 0.877, 
with a higher mean value of 0.591 during the LGP and 0.294 during the Holocene. The range of OP/H is between 
0.109 and 7.904, with a lower mean value of 0.880 during the LGP and a higher mean value of 3.530 during the 
Holocene. Combined with the relationship between H/(H + G) and OP/H and EM from surface soil, we inferred 

Figure 1.  Proxy records from the two cores. (a) H/(H + G) record of TCQH17A; (b) OP/H record of TCQH17A; (c) small 
grain-size fraction record of TCQH4. Color dots represent the raw proxy data, thick solid lines represent smoothed data, and 
the shaded areas indicate 2-sigma confidence intervals.
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that the EM in the study area was higher during the LGP than during the Holocene. The SGS content of TCQH4 
core range between 40% and 95%, with an average of 75% (Figure 1c). The SGS record is stable or showing 
slight change during the period of 70–30 kyr BP, with large fluctuations and a long-term decreasing trend during 
30 kyr BP to the present. Overall, the three records reveal similar trends on the orbital scale and all show distinctly 
different characteristics during the glacial and interglacial stage, even though the SGS record differs from the 
other records at the millennial scale.

4.  Discussion
4.1.  Paleo-Effective Moisture Reconstruction Based on H/(H + G) and OP/H Proxies

Hematite, goethite and fine nanometer-scale ferrimagnetic minerals are common in soil and the formation of these 
minerals is largely controlled by surface environmental conditions (e.g., temperature, humidity; Jiang et al., 2022). 
Moreover, these minerals are formed competitively under different climatic conditions. Thus, H/(H + G) and 
the ratio of fine nanometer-scale ferrimagnets and hematite, which is often illustrated by frequency-dependent 
magnetic susceptilibity/hard isothermal remanent magnetization (χfd/HIRM), are widely used for paleoprecipita-
tion reconstruction (Ao et al., 2020; Hyland et al., 2015; Long et al., 2011; Nie et al., 2017). However, the relation-
ship between the two ratios and precipitation is not immutable, and as precipitation increases, the interpretation 
of the ratios may be reversed due to mineral dissolution (Abrajevitch & Kodama,  2011; Z. Liu et  al.,  2013; 
Long et al., 2011). Annual mean precipitation of Tengchong (TC) and GLGM are higher than the threshold of 
1,000 mm/yr, observed in previous study (Z. Liu et al., 2013). The relative concentration of goethite (RelGt), and 
ferrimagnetic minerals (𝐴𝐴 Rel𝜒𝜒op ) of surface soil samples shows a linearly anti-correlation with precipitation, which 
indicate the existence of mineral dissolution and the degree of dissolution was correlated with precipitation 
(Figure S3 in Supporting Information S1). In addition, Figures 3a–3c shows that hematite is more stable than 
goethite and ferrimagnetic minerals under dissolution environment (Abrajevitch & Kodama, 2011). Therefore, 
higher precipitation will theoretically lead to higher H/(H + G) and lower χfd/HIRM, which is also supported by 
the result of surface soil from GLGM (Figure S3 in Supporting Information S1). It is important to note that very 
fine hematite does not carry a remanence signal, which may lead to an underestimation of the concentration of 
hematite using HIRM. Thus, we used RelHm instead of HIRM to improve the accuracy of hematite content estima-
tion. Since terrestrial moisture is not determined solely by precipitation, EM is more suitable to description of the 
hydroclimatic environment (wetter or drier) of a region than precipitation (S. Liu et al., 2018). EM is positively 
correlated with precipitation, so the correlation between EM, precipitation and two ratios (H/(H + G), OP/H) is 
similar (Figures S3j–S3k in Supporting Information S1). Additionally, the highly similar trends of H/(H + G) 
and OP/H in TCQH17A core also imply that two ratios are controlled by the same factors. The SGS record from 
TCQH4 shows a consistent trend with the SGS, Ti and black carbon records from TCQH10-1, taken from the 
same lake during the overlapping periods (Figure S4 in Supporting Information S1; E. L. Zhang et al., 2017). This 
also suggests that the variations of SGS content in the TCQH4 sediments may relate to lake level or EM changes 
(E. L. Zhang et al., 2017).

We next applied the EEMD method to analyze our H/(H + G) and OP/H records. The EEMD results show that 
the intrinsic mode functions (IMF) 1–5 of the two records mainly reflect climate variability at the centennial–
millennial scale (Figure S5 in Supporting Information S1). The precession scale variability is captured by the 
IMF 6–7 of H/(H + G) and IMF6 of OP/H (Figure S5 in Supporting Information S1), which coincides with the 
simulated precipitation rate of South Asia (Kutzbach et  al.,  2008), the precession, and Northern Hemisphere 
summer insolation (NHSI; Figure S6 in Supporting Information  S1; Laskar et  al.,  2004). This also supports 
the idea that orbital-scale variability of ISM is driven by precession induced changes in NHSI which is based 
on numerous studies from marine and terrestrial proxies (Bolton et al., 2013; Cai et al., 2015; Dutt et al., 2015; 
Kathayat et al., 2016; Mohtadi et al., 2016). In general, minimum precession is reached when the Northern Hemi-
sphere summer solstice occurs at perihelion, which results in the higher insolation and stronger land–sea thermal 
gradient in the Northern Hemisphere (Mohtadi et al., 2016). Higher insolation increases the temperature, evapo-
transpiration and atmospheric humidity. The stronger thermal gradient enhances the atmosphere circulation and 
wind speed (enhances the ISM), which transports more moisture from ocean to land, increasing precipitation in 
the monsoonal region. The wetness brought by increase precipitation counteracts the dryness induced by increase 
evapotranspiration, resulting in the increased of EM and a wetter climate. The majority of the moisture from TC 
is transported from the Bay of Bengal and Indian Ocean via the ISM during the monsoon season (An et al., 2011; 
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Cai et al., 2015; Y. Yang et al., 2019). The major finding from our records is that the minimum of our H/(H + G) 
correlates well with the maximum of precession and the minimum of simulate precipitation and insolation, and 
vice versa (Figure S6 in Supporting Information S1; Kutzbach et al., 2008; Laskar et al., 2004). However, the 
opposite is observed for OP/H, which is consistent with the results from GLGM surface soils. Therefore, H/
(H + G) and OP/H were considered to be reliable proxies for paleo-EM reconstruction in this study.

We stacked H/(H + G) and OP/H records into a new synthesized curve after standardization to characterize 
the variation of EM in the TC region since 90 kyr BP (Figure S7 in Supporting Information S1). The stacked 
curve suggests that the EM decreased continuously during 90–70 kyr BP. Subsequently, EM increased slowly 
with fluctuation from 70 to 30 kyr BP and reached the maximum at ∼30 kyr BP. EM then decreased rapidly 
during 30–22 kyr BP, and continued to decrease after a brief increase at 22–18 kyr BP, reaching its minimum at 
∼4 kyr BP, which is consistent with the lower lake level reconstructed by SGS and Ti concentration (Figure S4 
in Supporting Information S1; E. L. Zhang et al., 2017). Subsequently, the EM increased from 4 kyr BP to the 
present.

4.2.  Decoupling of Effective Moisture and ISM Modulated by Temperature and Topography

The most profound feature of our stacked curve is that the hydroclimate of TC during glacial stages is wetter 
(higher EM) than the interglacial stages, which is also supported by our grain size results (higher SGS contents). 
This wetter glacial pattern is opposite to the general consensus of a weakened monsoon and reduced monsoon 
rainfall during glacial stages (Cai et al., 2015; X. Zhang et al., 2020; Zhao et al., 2021). A similar wetter glacial 
pattern has also been observed in other continental records from easternmost Africa (Dinezio & Tierney, 2013), 
southwestern United States (Railsback et al., 2015) and southeastern rim of the Alps (Spötl et al., 2021). They 
suggested that the increased more rainfall in the regions mentioned above during the glacial stages may be 
explained by changes in the intensity and location of atmosphere convection, resulting in changes in the moisture 
transport pathway and amount of water vapor. However, the trajectory of moisture advection from the Bay of 
Bengal to the TC region is relatively stable during the present day and the Last Glacial Maximum (LGM; Cai 
et al., 2015). Weakened ISM during glacial stage was also observed in the δDwax record from the TCQH17A core 
(Zhao et al., 2021), terrestrial stalagmite δ 18O records (Cai et al., 2015; Dutt et al., 2015; Kathayat et al., 2016) 
and ocean sediments derived ISM records (Caley et al., 2011; Clemens & Prell, 2003; Lauterbach et al., 2020) 
from different locations in the ISM domain (Figure 2). There should be less moisture transport and precipitation 
in TC given the weakened ISM and lower temperatures and weakened convection during the glacial stage, which 
is opposite to the increased EM observed in our record. This seems to indicate that not only the temperature and 
ISM are decoupled at the orbital scale in TC (Zhao et al., 2021), but EM and monsoon are also decoupled.

EM is controlled by precipitation and evapotranspiration, the latter being closely related to temperature. Empirical 
studies have shown that temperature rise markedly affects the severity of droughts, and the evaporation and tran-
spiration can consume up to 80% of precipitation based on a general circulation model experiment (Abramopoulos 
et al., 1988; Vicente-Serrano et al., 2010). In addition, the dryness brought by increased temperature is compa-
rable to that induced by decreased precipitation (Abramopoulos et al., 1988). Conversely, the wetness brought 
by decreased temperature (evapotranspiration) can counteract the dryness induced by decreased precipitation (S. 
Liu et al., 2018). Modern meteorological data show that the long-term mean annual precipitation (1,495 mm) 
is comparable to evapotranspiration (1,591 mm) in TC. Therefore, precipitation and temperature anomalies can 
have a non-negligible impact on EM in TC. Temperature records reconstructed from multiple proxies show that 
glacial temperatures in TC were lower than interglacial (Figure S8 in Supporting Information S1). The sustained 
increase in temperature since 20 kyr BP has led to a continuous increase in evapotranspiration, which may have 
led to a decrease in EM, even though the monsoon was enhanced during the interglacial phase. This results in 
decoupling pattern of EM and ISM.

Modern meteorological data show that the distribution of ISM EM and precipitation are concentrated in three 
regions: the southern side of the Himalayas; the west coast of the continent and some inland areas (Figure 3a; 
Figure S9 in Supporting Information S1). A common feature of these areas is that they are all located on the wind-
ward side of mountains during the ISM season. The precipitation distribution pattern has an excellent relationship 
with topography, which is also consistent with the view that topography can modify precipitation patterns by 
redistributing airflow (Acosta & Huber, 2020; Thomson et al., 2021; Xie et al., 2006). Theoretically, owing to the 
land-sea thermal gradient in summer, ISM wind carries a large amount of water vapor from ocean to land. The 
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warm and moist atmospheric flow will uplift along the windward slope after encountering the mountain, and the 
water vapor cools, condenses, grows and then falls as raindrops as it rises over a mountain. The remaining water 
vapor continues to migrate to the destination. For meso-minor scale mountains, there is more rainfall on the wind-
ward slope and the maximum is observed near the summit (Figure 3b; Ramage & Schroeder, 1999). In contrast, 
it is more difficult for water vapor to climb over large-scale mountains, which cause higher (lower) precipitation 
at lower (higher) altitudes (Figure 3b). In addition, the temperature and evapotranspiration are influenced by 
large-scale topography (Figure S9 in Supporting Information S1).

Figure 2.  Comparison of the reconstructed effective moisture (EM) record from Tenchong Qinghai Lake and related records. 
(a) Northern Hemisphere summer insolation (25°N, June–August; Laskar et al., 2004); (b) precession (Laskar et al., 2004); 
(c) simulated precipitation of south Asia region (Kutzbach et al., 2008); (d) stacked EM record of the TCQH17A core (grass 
green line) and EEMD-IMF 6 record (gray line); (e) δDwax record of theTCQH17A core (Zhao et al., 2021) and δ 18Osw-ivc 
record of SO 188-17286-1 core (Lauterbach et al., 2020); (f) Indian summer monsoon stack records (Caley et al., 2011; 
Clemens & Prell, 2003); (g) stalagmite δ 18O records from Xiaobailong Cave (Cai et al., 2015), Bittoo cave (Kathayat 
et al., 2016), and Mawmluh cave (Dutt et al., 2015).
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It is worth noting that TC is located on the southwestern windward side of the Hengduan Mountains. The 
monsoon precipitation in TC is higher than that in inland areas because of the topographic uplift effect of the 
Hengduan mountains and the Yunnan-Guizhou Plateau, which act as a dynamic barrier to monsoon wind and 
water vapor. The special geographical location and topography imply that the terrain factors may be responsible 
for the decoupling of EM and monsoon in TC.

During the glacial stage, the water vapor is transported at a lower-level because of to the relative cold continent. 
It is difficult for water vapor to climb over the Hengduan mountains under weakened ISM and lower transport 
energy (lower wind speed), leading to the accumulation of precipitation on the windward slope of the mountains 
and shortage of precipitation in inland. The model simulation results also show that the precipitation in TC during 
the LGM was comparable or even slightly higher than present (Figure S10 in Supporting Information S1). In 
addition, the evapotranspiration is decreased by the intense cooling during the glacial stage, resulting in increased 
EM in TC (Figure 4a). In contrast, in the interglacial stage with enhanced ISM, the warmer land alters the surface 

Figure 3.  Modern climatology of the study sites. (a) Long-term mean annual effective moisture (EM) distributions during 
1961–2010, blue lines indicate the present coastline, the black lines denote the boundary of topography at 3,000 m above sea 
level; (b) profiles of topography (gray shading), annual temperature (red line), annual precipitation (blue line) and annual EM 
(green line) from A to A’ in (a). The location of Tenchong Qinghai Lake is indicated by a magenta dot.
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temperature structure, and water vapor is transported at a relatively higher level under the thermal uplifting 
forces the land. The water vapor can more easily climb over the mountains and is transported inland under 
a higher  transport energy (higher wind speed) and lower lifting energy, bringing more precipitation to inland 
(Figure 4b). However, the dryness from increased evaporation due to warming overweighs the wetness from an 
enhanced monsoon and increased precipitation, resulting in decreased EM in TC (Figure 4b). Eventually, the EM 
in the TC is decoupled with the ISM intensity at the glacial-interglacial scale under the combined influence of 
temperature and topography.

5.  Conclusions
We present the high-resolution EM records in Southwestern China spanning the last glacial stage based on H/
(H + G) and OP/H. Our results show that the variability of EM at the orbital scale in the TC region is primarily 
dominated by precession, and TC experienced a profound humid and relatively arid hydroclimate during the 
glacial and interglacial stage, respectively. These findings demonstrate that the EM was decoupled with ISM in 
this region during the last glacial-interglacial cycle. The modern meteorological data suggest that temperature 
and topography may play an indispensable role in regulating the hydroclimate and the decoupled relationship 
between monsoon and EM in Southwestern China. This research indicates a strong effect of temperature and 
topography on climate over long time scales. However, further detailed investigations in other regions and proxies 
are needed to improve global climate models and provide more accurate simulations of the Earth's past, present, 
and future climate states.

Figure 4.  Schematic diagram illustrating the decoupling pattern between Indian summer monsoon and precipitation 
influenced by temperature and topography during different climatic status. (a) Glacial stage; (b) interglacial stage.
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