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Nearly 30% of adults consume less than the estimated average daily requirement
of magnesium (Mg2+), and commonly used medications, such as diuretics,
promote Mg2+ deficiency. Higher serum Mg2+ levels, increased dietary Mg2+ in-
take, and Mg2+ supplementation are each associated with lower blood pressure,
suggesting that Mg2+-deficiency contributes to the pathogenesis of hypertension.
Antigen-presenting cells, such as monocytes and dendritic cells, are well-known
to be involved in the pathogenesis of hypertension. In these cells, processes
implicated as necessary for increased blood pressure include activation of the
NLRP3 inflammasome, IL-1β production, and oxidative modification of fatty acids
such as arachidonic acid, forming isolevuglandins (IsoLGs). We hypothesized that
increased blood pressure in response to dietary Mg2+-depletion leads to increased
NLRP3, IL-1β, and IsoLG production in antigen presenting cells. We found that a
Mg2+-depleted diet (0.01% Mg2+ diet) increased blood pressure in mice compared
to mice fed a 0.08% Mg2+ diet. Mg2+-depleted mice did not exhibit an increase in
total body fluid, as measured by quantitative magnetic resonance. Plasma IL-1β
concentrations were increased (0.13 ± 0.02 pg/mL vs. 0.04 ± 0.02 pg/mL). Using
flow cytometry, we observed increased NLRP3 and IL-1β expression in antigen-
presenting cells from spleen, kidney, and aorta. We also observed increased IsoLG
production in antigen-presenting cells from these organs. Primary culture of
CD11c+ dendritic cells confirmed that low extracellular Mg2+ exerts a direct
effect on these cells, stimulating IL-1β and IL-18 production. The present
findings show that NLRP3 inflammasome activation and IsoLG-adduct
formation are stimulated when dietary Mg2+ is depleted. Interventions and
increased dietary Mg2+ consumption may prove beneficial in decreasing the
prevalence of hypertension and cardiovascular disease.
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Background

Decades of work demonstrate that systemic inflammatory activity increases blood
pressure (Rodriguez-Iturbe et al., 2017). More recent studies show that inflammation
plays a key role in mediating the hypertensive effects of dietary salt (Barbaro et al.,
2017; Kirabo, 2017). The NLRP3 [NOD (nucleotide-binding and oligomerization
domain)-like receptor family pyrin domain containing 3] inflammasome contributes to
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the effect of dietary salt on blood pressure (Pitzer et al., 2022). Upon
activation, NLRP3 oligomerizes and assembles with ASC (the
apoptosis-associated speck-like protein containing a caspase-
recruitment domain) to form a platform that induces
autocatalytic cleavage of pro-caspase-1 to active caspase-1.
Caspase-1, in turn, cleaves pro-IL-1β and pro-IL-18, forming IL-
1β and IL-18, which are then secreted to propagate an inflammatory
response (Schroder and Tschopp, 2010).

Several lines of evidence suggest the importance of the
NLRP3 inflammasome in the pathophysiology of hypertension.
In Dahl salt-sensitive rats, in addition to experiencing increased
blood pressure, a high salt diet increases expression of NLRP3, ASC,
and caspase-1 (Zhu et al., 2016). In contrast, high salt diet does not
increase expression of these inflammatory mediators in Brown
Norway rats, whose blood pressure is notably insensitive to
dietary salt. Genetic or pharmacologic reduction of
NLRP3 activity attenuates hypertension in numerous animal
models of hypertension (Wang et al., 2012; Gong et al., 2016;
Krishnan et al., 2016; Krishnan et al., 2019; Pitzer et al., 2020; Li
et al., 2022). NLRP3 mRNA was found to be increased in kidney
tissue from patients with hypertensive nephrosclerosis, suggesting a
role in the pathophysiology of human hypertension (Vilaysane et al.,
2010).

In addition to secreting pro-hypertensive cytokines, antigen-
presenting cells (monocytes and dendritic cells) can promote
hypertension through the production of isolevuglandins (IsoLGs)
(Elijovich et al., 2021). These γ-ketoaldehydes are produced by
peroxidation of fatty acids, including arachidonic acid, by
reactive oxygen species in antigen-presenting cells. IsoLGs react
with primary amines in proteins, producing essentially irreversible
pyrrole adducts (Davies and May-Zhang, 2018). IsoLG-adducted
peptides accumulate in antigen presenting cells and are suggested to
act as neoantigens, activating CD8+ T cells (Bloodworth et al., 2022).
CD8+ T cells are required to increase blood pressure in angiotensin
II or mineralocorticoid/salt models of hypertension in mice
(Rodriguez-Iturbe et al., 2017).

Dietary magnesium also influences blood pressure. Multiple
population-based cross-sectional studies and clinical trials
observed a high prevalence of magnesium deficiency with 10%–
30% of individuals having serum magnesium concentrations below
the standard cutoff (<0.80 mmol/L) (Lowenstein and Stanton, 1986;
Kesteloot et al., 2011; Rasic-Milutinovic et al., 2012; Mejia-
Rodriguez et al., 2013; Zhan et al., 2014). Dietary magnesium
intake and circulating magnesium levels both correlate inversely
with incidence of hypertension (Han et al., 2017; Wu et al., 2017).
Magnesium supplementation reduces blood pressure in adults
(Zhang et al., 2016). Dietary magnesium deficiency provokes
inflammation in laboratory animals, as demonstrated by
leukocytosis and increased circulating inflammatory cytokines
(Weglicki et al., 1992; Malpuech-Brugère et al., 2000; Van Orden
et al., 2006). In humans, magnesium supplementation reduces
circulating C-reactive protein levels (Mazidi et al., 2018). We
hypothesized that increased blood pressure secondary to dietary
Mg2+ deficiency is associated with activation of the
NLRP3 inflammasome and increased production of IsoLGs. We
confirmed that dietary Mg2+ depletion in a mouse model provokes
hypomagnesemia and increases blood pressure. We examined body
composition of Mg2+-depleted mice to determine whether an

increase in body fluid could contribute to this increase in blood
pressure. We examined antigen-presenting cells in spleen, kidney,
and aorta, discovering that Mg2+ depletion increased NLRP3 and IL-
1β in these cells in vivo. Furthermore, we found that Mg2+ depletion
increased in vivo formation of IsoLG-adducts. To determine
whether reduced extracellular Mg2+ could provoke these effects
directly, we examined CD11c+ dendritic cells in primary culture
and found that reduced extracellular Mg2+ also increases IL-1β
production. These findings suggest that systemic inflammation
occurring in response to dietary Mg2+ insufficiency may
contribute to the pathogenesis of hypertension.

Materials and methods

Animal care

All in vivo experiments were performed in mice in the SV129
(129S2/SvPasCrl) background, obtained from Charles River
Laboratories. Due to the observation that female mice are
relatively resistant to inflammation-associated hypertension, only
male mice were used in this study (Ji et al., 2014; Pollow et al., 2014;
Veiras et al., 2021). Powdered Mg2+-deficient diet for mice was
purchased from Envigo (Teklad TD.93106) with starting Mg2+

content of 0.0015%–0.003% and Na+ content of 0.15%. To this,
Mg2+ oxide (Sigma) was added back to achieve final Mg2+ content of
either 0.01%, 0.02%, or 0.08%, and in one group NaCl was added to a
final Na+ content of 4% as noted in results section and figure legends.
Powdered diets were provided to mice in cages of three to five
animals in tip-proof feeding jars for powdered diets (Dyets, Inc.).
Food consumption was assessed by weighing jars daily and dividing
decrease in weight by the number of mice in the cage. As a positive
control for NLRP3 inflammasome activation and IsoLG production
in antigen-presenting cells as previously shown (Kirabo et al., 2014;
Barbaro et al., 2017; Pitzer et al., 2022), mice were fed a high salt diet
with NaCl added to final concentration of 4%. Blood pressures were
measured non-invasively via tail cuff at baseline (while still receiving
regular chow provided by the animal facility) and weekly for the
duration of the treatment period, as previously described (Kirabo
et al., 2011a; Kirabo et al., 2011b). Blood was collected from live mice
under 2% isoflurane via left-ventricular cardiocentesis using a
heparinized syringe. Blood was centrifuged in lithium heparin-
containing plasma separator tubes (Becton, Dickinson and Co.).
Separated plasma was removed bymicropipetter, promptly frozen in
liquid nitrogen, and stored at −80°C until thawing on ice for further
analysis. Experiments were carried out in the Department of
Laboratory Animal Research at the University of Pittsburgh or
Vanderbilt University Medical Center. Animals were cared for in
accordance with the Guide for the Care and Use of Laboratory
Animals, U.S. Department of Health and Human Services. All
Experiments were approved by these respective institutions’
Institutional Animal Care and Use Committee.

Plasma metabolite measurement

Plasma Mg2+ levels were measured using a xylidyl blue assay kit
(Magnesium XB Reagent Set, Pointe Scientific), as per manufacturer
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directions. Circulating cytokines were measured in plasma using a
V-PLEX® AND V-PLEX® Plus Mouse Proinflammatory Panel Kit (Meso
Scale Diagnostics, LLC).

Body composition analysis

Body water content was measured in non-anesthetized mice
using a quantitative magnetic resonance body composition analyzer
(EchoMRI) as previously described (Ray et al., 2021).

Flow cytometry of splenic, kidney, and aortic
leukocytes

Harvested spleens were placed in spleen dissociation buffer and
dissociated using a 3 mL syringe plunger. Harvested kidneys were
placed in kidney digestion buffer (Collagenase D (1 mg/mL;
MilliporeSigma, Cat# 11088866001) and DNAse I (0.1 mg/mL;
MilliporeSigma, Cat# 10104159001) and thoracic aortas with
surrounding perivascular fat were placed in aorta digestion buffer
(Collagenase A (1 mg/mL; MilliporeSigma, Cat# 10103578001),
Collagenase B (1 mg/mL; MilliporeSigma, Cat# 11088807001),
and DNAse I (0.1 mg/mL; MilliporeSigma, Cat# 10104159001)
and placed in a rotating 37°C incubator for 30 min. Tissue
homogenates were then passed through a 40 μm strainer and
spun down at 400 × g for 10 min at 4°C. Kidney single cell
suspensions underwent a Ficoll gradient centrifugation to isolate
leukocytes, whereby kidney pellets were resuspended in 36% Ficoll
in PBS and gently placed on top of 72% Ficoll in PBS in 15 mL tubes
and centrifuged at 2,400 rpm for 15 min with decreased deceleration
to prevent mixing of the density layers. Leukocytes are collected
from the top density layer, diluted with PBS, and centrifuged. Single-
cell suspensions were pretreated with FcR blocking reagent
(Miltenyi Biotec, Cat# 130-092-575) and subsequently stained
with LIVE/DEAD™ Fixable Violet Dead Cell Stain Kit
(ThermoFisher) to determine cell viability. For surface staining
the following fluorophore-conjugated antibodies were used (1 μg/
100 μL): Brilliant Violet 510 anti-CD45 (Biolegend, Cat# 103137),
PE-Cy7 anti-MerTK (Biolegend, Cat # 151522), PerCP-Cy5.5 anti-I-
A/I-E (Biolegend, Cat# 107626), PE-Fluor 610 anti-CD11c
(ThermoFisher, Cat# 61-01-1482), APC-Cy7 anti-CD115
(Biolegend, Cat# 135532). Cells were then fixed and
permeabilized for incubation of intracellular markers. For
intracellular staining, we used PE anti-IL1β (ThermoFisher, Cat#
12-71-1482), D11 ScFv antibody to detect IsoLGs which was
conjugated to Alexa Fluor 488 microscale labeling Kit
(ThermoFisher, Cat#A30006), and anti-NLRP3 (R&D Systems,
Cat# MAB7578) which was conjugated to Alexa Fluor
647 Antibody Labeling Kit (ThermoFisher, Cat# A-20186). Samples
were run on a Cytek Aurora system and analyzed using FlowJo
Software (Tree Star, Inc.). Gates were set live singlets and
subsequent gates were based on flow minus one (FMO) controls
for each fluorophore. Results are expressed as percent positive per
either dendritic cell or monocyte. Dendritic cells were identified as
being CD45+/MerTK−/I-A/I-E+/CD11c+. Monocytes were identified as
being CD45+/MerTK−/I-A/I-E+/CD11c+/CD115+. Representative flow
cytometry plots were selected to best represent the gating strategy.

CD11c+ dendritic cell isolation and culture

Low Mg2+ medium for cell culture was prepared using Gibco™
Mg2+-free RPMI 1640 (Life Technologies Corp.) with L-glutamine,
supplemented with 1% penicillin-streptomycin, 15 mM HEPEs,
1 mM sodium pyruvate, 0.05 mM β-mercaptoethanol, and 10%
fetal bovine serum. Control Mg2+-medium was supplemented
with MgCl2. Final mineral concentrations were measured using
inductively coupled mass-spectrometry (ICP-MS), which showed
concentrations of 0.12 mM in the low Mg2+ solution and 0.90 mM
magnesium in control Mg2+ solution, which is within the normal
range of blood magnesium of 0.85–1.10 mM (Topf and Murray,
2003). Concentrations of calcium, potassium, and phosphorus were
also measured and determined to be similar in the two media (0.72,
5.9, and 3.3 mM, respectively in the control medium; versus 0.72,
5.9, and 3.4 mM in the low Mg2+ medium). Dendritic cells were
isolated from a single-cell suspension of splenocytes by magnetic
labelling and positive selection of CD11c+ cells using Miltenyi Biotec
Isolation Kit (Miltenyi Biotec, Cat# 130-125-835) according to the
manufacturer’s protocol using LS columns. Cells were plated in 24-
well plates at a density of 1 × 106/mL in either low or control Mg2+

medium for a variable period, as described in Results section. In
some experiments, cells were pre-treated for 20 min with or without
YVAD (5 μg/mL, Invivogen) or MCC950 (10μM, Invivogen). IL-1β
production was measured using a commercially available ELISA kit
(Abcam) according to manufacturer instructions.

Statistics

In all data sets, one mouse represents 1 N value. All results are
presented as mean ± standard error of the mean. Normality of
distribution was assessed using the Shapiro-Wilk test. Testing for
outliers was performed using the ROUT method (Q = 1%).
Comparisons of two groups were performed using Student’s t-tests
for parametric data orMann-Whitney test for non-parametric data. A
repeated-measures analysis of variance (ANOVA) followed by a
Bonferonni’s multiple comparison test were used to compare more
than two groups. A comparison of more than two non-parametric
groups having an N less than 6 where normality cannot be properly
tested (i.e.,: Figures 3–6) a Kruskall-Wallis test with Dunn’s post hoc
multiple comparison test were used. To analyzemore than two groups
compared to a control group (i.e. 0.08%Mg2+ diet), we used a two-way
ANOVA with a Dunnett’s post hoc multiple comparison. For all
analyses, a two-tailed p-values < 0.05 was used to reject the null
hypothesis. Analyses were performed using Graphpad Prism 8.4.2.

Results

We confirmed that dietaryMg2+ deficiency increases blood pressure
in a SV129 background mouse model. This strain of mice was chosen
because of its sensitivity to hypertensive stimuli relative to other strains
of mice, such as C57B/6J (Zhang et al., 2020). Blood pressures increased
overall in both groups ofmice.Mice receiving 0.01%Mg2+ diet (n = 7), a
magnesium deficient diet, developed higher blood pressures
(+8.6 mmHg; Two way ANOVA Ptreatment = 0.007) than in those
receiving 0.08% Mg2+ diet (n = 7) (Figure 1A). However, both
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0.01% Mg2+ (+15.4 mmHg; p = 0.002) and 0.08% Mg2+ (+24.6 mmHg;
p ≤ 0.001) diet groups developed significantly higher systolic blood
pressure at the end of the experiment compared to baseline (Figure 1B).
Mice were euthanized at the end of 5 weeks and blood Mg2+ was
measured to confirm that mice on the 0.01% Mg2+ diet experienced
relative hypomagnesemia (−0.8 ± 0.1 mmol/L; p < 0.001) compared to
mice on the 0.08% Mg2+diet (Figure 1C). Mouse weights did not differ
overall between groups, though mice in the 0.08% Mg2+ diet group
(23.0 ± 0.67 g; p = 0.004), experienced a statistically significant dip in
weight after the first week on the powdered diet compared to the 0.01%
Mg2+ diet group (27.9 ± 0.5 g) (Figure 1D). Food consumption was
similar between groups (Two way ANOVA, Pinteraction = 0.47)
(Figure 1E). Survival was similar between groups for the first
4 weeks, however in the fifth week, a series of deaths in the 0.01%
Mg2+ diet group prompted termination of the experiment and
euthanization of the mice (Figure 1F).

To evaluate whether the observed increase in blood pressure was
associated with an increase in total body fluid, we examined the influence

of dietary Mg2+ on body composition. A milder Mg2+-deficient diet
(0.02% Mg2+, as opposed to 0.01% Mg2+) was employed to avoid the
mortality observed in Figure 1. The 0.02% Mg2+ (n = 7) diet induced a
significant reduction (−0.2 ± 0.1 mmol; p = 0.03) in plasma Mg2+ as
compared to the 0.08%Mg2+ diet (n= 7), however it should be noted that
the difference between 0.08% Mg2+ diet and the 0.02% Mg, diet was
reduced compared to the difference observed inmice fromFigure 1. Body
compositionwasmeasured using quantitativemagnetic resonance, which
had previously been shown to detect increases in body water in response
to mineralocorticoid activity (Morla et al., 2020) and decreases in body
water in mice susceptible to body fluid volume depletion (Ray et al.,
2021). Mice were placed on control (0.08%) diet for 6 days, and weights
were measured. After day 6, half were transitioned to a low (0.02%) Mg
diet. The remaining mice continued to receive the 0.08% diet. Weights
shown are normalized to the weight the day before the transition. Overall,
body weights increased to a similar degree inmice receiving the two diets
(Figure 2A).Mice in both groups ate a similar quantity of food though the
amount of food decreased over time for both groups (Ptime = 0.02;

FIGURE 1
Dietary Mg2+ deficiency increased blood pressure in mice. (A) Figure showing change in systolic blood pressure for the duration of the dietary
intervention (N = 7–14 per group, expressed as mean ± SEM; p = 0.007 for treatment effect). (B) Figure showing individual systolic blood pressure
measurements for eachmouse at day 0 (baseline) and day 35 when the experiment was terminated (N = 7–14 per group, expressed asmean ± SEM; **p=
0.002, ***p = < 0.0001). (C) Summarized data showing effect of dietary intervention on plasma Mg2+ (N = 7 for 0.08% diet, N = 5 for 0.01% diet;
expressed as mean ± SEM; ****p < 0.0001 by Student’s t-test). (D)Mouse weights of mice fed a 0.01% Mg2+ or 0.08% Mg2+ dietary groups (p = 0.004 for
day 7). (E) Food consumed permouse per day (expressed asmean ± SEM; p =NS for the time-treatment interaction term). (F) Survival curve for the 0.08%
Mg2+ and 0.01% Mg2+ dietary groups (p = NS by Mantel-Cox test). (A,B,D,E) were analyzed by two-way ANOVA with Bonferonni’s post hoc multiple
comparisons test.
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Figure 2B). After 14 days on the powdered diet (14 days of 0.08% Mg2+

for one group and 7 days of 0.02% Mg2+ for the other group) total body
water decreased in both groups by about 10% (Ptime < 0.0001; Figure 2C).
Over the next 4 weeks, total body water did not differ between mice on
the 0.02% or the 0.08% Mg2+ diet (Pinteraction = 0.9). Thus, we found no
evidence that dietary Mg2+ depletion altered total body fluid.

Since inflammatory activity increases blood pressure in models of
hypertension (Drummond et al., 2011; Iulita et al., 2018; Hengel et al.,
2022), we examined whether dietary Mg2+ deficiency induced
systemic changes in inflammatory cytokines. Cytokines were
measured in plasma of mice euthanized at the end of the
experiment in Figure 2, after 6 weeks on either a 0.08% Mg2+ or
0.02% Mg2+ diet. We found a significant increase in IL (interleukin)-
1β in mice on the 0.02% Mg2+ (0.02% Mg2+, 0.24 ± 0.1 versus 0.08%
Mg2+, 0.08 ± 0.03 pg/mL; p = 0.02) diet (Figure 3). Point estimates for
tumor necrosis factor alpha (TNF-α), IL-2, and IL-10 were higher but
were not significantly different. Levels of IFN (interferon)-γ, IL-6, IL-
5, and chemokine C-X-C motif ligand 1 (CXCL1) were not different.

Plasma cytokine levels are a relatively insensitive indicator of
systemic inflammation. We therefore looked more directly at
expression of IL-1β in splenic antigen-presenting cells (monocytes
and dendritic cells). Single cell suspensions prepared from spleens of

mice euthanized at the end of the experiment in Figure 1 and were used
for flow cytometry gated to detect total leukocytes and either dendritic
cells or monocytes. Gating strategy for flow cytometric analysis can be
found in Supplementary Figure S1. We found that total splenic CD45+

leukocytes decreased in response to the 0.01% Mg2+ diet with no
changes in either dendritic cell or monocyte numbers (Figure 4A).
Additionally, we also examined expression of NLRP3, which we have
previously shown to increase in association with a high salt diet.
Increased NLRP3 inflammasome activity is necessary for high salt
diet-induced increase in IL-1β expression and for increased blood
pressure in an angiotensin II-primed mouse model of hypertension
(Pitzer et al., 2022). We found that the percentages of IL-1β expressing
splenic monocytes (0.01% Mg2+, 49.83% ± 11.3% versus 0.08% Mg2+,
24.4% ± 6.1%; p = 0.04) but not dendritic cells increased significantly
(Figure 4B). The percentage of IL-1β expressing cells failed to increase in
response to high salt diet. In contrast, the 0.01% Mg2+ diet increased
percent NLRP3 positivity significantly in both splenic monocytes
(0.01% Mg2+, 37.7% ± 6.2% versus 0.08% Mg2+, 19.7% ± 2.7%; p =
0.03) and dendritic cells (0.01% Mg2+, 47.6% ± 4.9% vs. 0.08% Mg2+,
20.1% ± 2.7%; p = 0.002).

Additionally, we examined isolevuglandins (IsoLGs) in splenic
antigen-presenting cells. These γ-ketoaldehydes arise through

FIGURE 2
Dietary Mg2+ deficiency did not alter total body water. (A)Mouseweights on a 0.08% or 0.02%Mg2+ diet (N = 7 for the 0.08%Mg diet group, N = 8 for
the 0.02% Mg diet group; expressed as mean ± SEM). (B) Total body water was measured weekly by quantitative magnetic resonance (expressed as
mean ± SEM; p < 0.0001 for time effect; p = NS for the time-diet interaction effect). (C) Food consumed per mouse per day (expressed as mean ± SEM;
p = NS). (D) Effect of the dietary intervention on plasma Mg2+ (expressed as mean ± SEM; p = 0.03 by Student’s t-test). (A–C) analyzed by two-way
ANOVA with Bonferonni’s post hoc multiple comparisons test.
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oxidation of fatty acids and their phospholipid esters, in particular
prostaglandin H2 (Salomon and Bi, 2015). In animal models of
hypertension, IsoLG-protein adducts accumulate in antigen-
presenting cells, and scavenging of IsoLGs attenuates the increase
in blood pressure observed in these models (Kirabo et al., 2014;
Barbaro et al., 2017; Pitzer et al., 2022). We observed an increase in
the percentage of IsoLG positive splenic dendritic cells (4% NaCl,
5.8% ± 1.4% versus 0.08% Mg2+, 0.6% ± 0.5%; p = 0.01), but not

monocytes, in mice subjected to a high salt diet (Figure 4C). Dietary
Mg2+ deficiency with a 0.01% Mg2+ diet induced increases in the
percentage of IsoLG+ dendritic cells (0.01% Mg2+, 8.5% ± 2.0% vs.
0.08% Mg2+, 0.6% ± 0.5%; p = 0.002) but not monocytes, suggesting
that Mg2+ depletion is a potent stimulus of this pro-hypertensive
inflammatory pathway.

Inflammation in the kidney has been suggested to promote
hypertension (Elijovich et al., 2021). We observed an increase in

FIGURE 3
LowMg2+ diet significantly increased plasma IL-1β. Figure shows levels of cytokines in the plasma from both the 0.08%Mg2+ and 0.01%Mg2+ diet fed
mice of Figure 2 (N = 7 for the 0.08% Mg diet group, N = 8 for the 0.02% Mg diet group; expressed as mean ± SEM; *: p = 0.01 by Student’s t-test).
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infiltrating monocytes (0.01%Mg2+, 8.5% ± 2.0% versus 0.08%Mg2+,
0.6% ± 0.5%; p = 0.002), but not dendritic cells or total CD45+

leukocytes, in mice fed a 0.01% Mg2+ diet (+483.0 ± 131.7; p = 0.03)
as well as the mice fed a high salt diet (+464.0 ± 131.7; p = 0.03) when
compared with the 0.08%Mg2+ diet group (Figure 5A). Additionally,
we examined whether dietary Mg2+ deficiency promotes
NLRP3 inflammasome activation and IsoLG formation in the
kidney. Renal monocytes did not exhibit increased NLRP3 or IL-
1β positivity in either mice receiving a 0.01%Mg2+ diet or a high salt
diet. In contrast, the percentage of dendritic cells that were positive

for IL-1β was dramatically enhanced (0.01% Mg2+, 41.9% ± 6.6%
versus 0.08% Mg2+, 15.9% ± 6.6%; p = 0.03), as was the percentage
that was positive for NLRP3 (0.01% Mg2+, 34.06% ± 2.5% versus
0.08%Mg2+, 7.4% ± 0.6%; p = 0.0004), (Figure 5B). As with cytokine
activity, monocytes did not exhibit an increase in percent positivity
for IsoLGs either in the context of the 0.01%Mg2+ diet or the 4%Na+

diet. Both the 0.01%Mg2+ diet (+7.83 ± 2.0%; p = 0.002) and the high
salt diet (+5.2 ± 1.4%; p = 0.01) increased the percent IsoLG positive
kidney dendritic cells compared to the 0.08% Mg2+ diet (Figure 5C).
These results confirm that dietary Mg2+ deficiency, similar to high

FIGURE 4
Low Mg2+ diet increased indicators of inflammatory activity in the spleen. (A) Flow cytometric analysis of total leukocytes (CD45+ cells), monocyte
counts, and dendritic cell counts per spleen. (B)NLRP3 inflammasome and IL-1β cytokine positive cells are shown in splenicmonocytes from animals on a
standard (0.08%) Mg2+, standard (0.15%) Na+ diet, as compared to animals on a standardMg2+, high (4%) salt diet or on a low (0.01%)Mg2+, standard (0.15%)
Na+ diet. (C) Summarized data showing effect of 0.08% Mg2+, high salt, and 0.01% Mg2+diet on IsoLG positivity in splenic dendritic cells and
monocytes. Data for (A–C) are expressed as mean ± SEM; *p < 0.05; **p < 0.01 by Kruskall-Wallis test with a Dunn’s post hocmultiple comparisons test.
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dietary salt intake, can enhance immune activity in the kidney, a key
regulator of systemic blood pressure.

During hypertension, immune cells have been shown to
transmigrate into the vasculature and produce cytokines, which
promote endothelial dysfunction, increasing blood pressure (Trott
et al., 2014). Indeed, we found that the 0.01% Mg2+ diet significantly
increased the number of monocytes per aorta (+27,818 ± 16,593; p =
0.04) but not dendritic cells nor total CD45+ leukocytes (Figure 6A). We
therefore asked whether low Mg2+ diet influences inflammation and

oxidative stress in aortic antigen-presenting cells. The 0.01% Mg2+ diet
had no effect on percent IL-1β positivity in aortic dendritic cells or
monocytes. However, it increased NLRP3 positivity in both monocytes
(0.01%Mg2+, 30.4% ± 8.6% versus 0.08%Mg2+, 2.4% ± 0.3%; p = 0.004)
and dendritic cells (0.01% Mg2+, 63.8% ± 2.8% versus 0.08% Mg2+,
24.2% ± 2.3%; p = 0.004), even though the high salt diet only increased
NLRP3 percent positivity in dendritic cells (4% NaCl, 57.3% ± 6.0%
versus 0.08% Mg2+, 24.2% ± 2.3%; p = 0.02), but not monocytes
(Figure 6B). Additionally, the 0.01% Mg2+ diet dramatically increased

FIGURE 5
LowMg2+ diet increased indicators of inflammatory activity in the kidney. Mice examined were the same as those from Figure 4. (A). Flow cytometric
analysis of total leukocytes (CD45+ cells), monocyte counts, and dendritic cell counts per spleen. Figure showing the effect of 0.08% Mg2+, high salt diet,
and 0.01% Mg2+ diet on NLRP3 inflammasome or IL-1β positivity (B) or IsoLG-adduct formation (C) positivity in kidney monocytes and dendritic cells.
Results from animals on high salt or 0.01%Mg2+ diets were compared to animals on the 0.08%Mg2+ diet using a Kruskall-Wallis with Dunn’s post hoc
multiple comparisons test (expressed as mean ± SEM;*p < 0.05; **p < 0.01; ***p < 0.001).
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the percentage IsoLG positive monocytes (+29.5 ± 6.8%; p = 0.0008) and
dendritic cells (+56.0 ± 4.7%; p= 0.004) compared to the 0.08%Mg2+ diet
(Figure 6C). Thus, dietaryMg2+ deficiency in this model system potently
stimulates immune activity in the aorta.

Dietary Mg deficiency could stimulate dendritic cells directly, or
through systemic effects. To determine whether Mg2+ depletion directly
stimulates NLRP3 expression and IsoLG production, we isolated
CD11c+ dendritic cells and incubated them in vitro in medium
containing either low Mg2+ (0.12 mM) or control (0.90 mM) Mg2+.

By 6 h, both IL-1β levels (Ctl, 1.03 ± 0.01, n = 6; Low, 1.12 ± 0.02, n = 6;
p = 0.04; Figure 7A) and IL-18 levels (Ctl, 1.1 ± 0.1, n = 6; Low, 1.6 ± 0.1,
n = 6; p = 0.02; Figure 7B) in the medium increased significantly.

Caspase-1 mediates production of IL-1β from pro-IL-1β (Xu
and Nunez, 2022). Caspase-1, in turn, is activated through the
actions of active NLRP3. We asked whether inhibition of
caspase-1 or NLRP3 attenuates stimulation of dendritic cell IL-1β
production in low Mg2+ medium. CD11c+ dendritic cells were
incubated in the presence of vehicle (dH2O), a caspase-1

FIGURE 6
Low Mg2+ diet increased indicators of inflammation in the aorta. Mice examined were the same as those from Figure 4. (A) Flow cytometric analysis
of total leukocytes (CD45+ cells), monocyte counts, and dendritic cell counts per spleen. Figure showing the effect of 0.08% Mg2+, high salt diet, and
0.01% Mg2+ diet on NLRP3 inflammasome of IL-1β positivity (B) or IsoLG-adduct formation (C) positivity in aortic monocytes and dendritic cells. Results
from animals on high salt or 0.01%Mg2+ diets were compared to animals on a 0.08% Mg2+ diet using a Kruskall-Wallis test with a Dunn’s post hoc
multiple comparisons test (expressed as mean ± SEM;*p < 0.05; **p < 0.01; ***p < 0.001).
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inhibitor (5 μg/mL YVAD) or an inhibitor of NLRP3 (10 μM
MCC950, also known as CP-456,773) (Perregaux et al., 2001).
Eighteen hours in low Mg2+ solution increased IL-1β (n = 5,
Figure 7C) concentration in cell medium (fold change, +4.5 ±
0.8; p = 0.002). Similarly, we observed an increased release of IL-
18, another NLRP3 inflammasome activation marker (n = 6,
Figure 7D), in the cell culture medium (fold change, +1.9 ± 0.3;
p = 0.003). Both YVAD and MCC950 significantly attenuated this

increase in IL-1β (YVAD, p = 0.006; MCC950, p = 0.01; Figure 7C)
and IL-18 concentration (YVAD, p = 0.003; MCC950, p = 0.04;
Figure 7D). These data suggest that NLRP3 and caspase-1 are
necessary for stimulation of IL-1β and IL-18 production in low
Mg2+ medium.

Discussion

The present study demonstrates that moderate dietary Mg2+

depletion increases blood pressure in a mouse model. This increase
in blood pressure is achieved with no significant difference in total body
fluid. Dietary Mg2+ depletion also stimulated systemic inflammation, as
seen by an increase in circulating IL-1β levels. Mg2+ depletion increased
NLRP3 expression inmonocytes from spleen and aorta and in dendritic
cells from spleen, kidney, and aorta. Mg2+ depletion also induced IsoLG
production in monocytes from spleen and aorta and in dendritic cells
from spleen, kidney, and aorta (Figure 7E). The effects of dietary Mg2+-
depletion on these markers of inflammation were generally comparable
to, or greater than, the effects of a high salt diet. Finally, Mg2+-depletion
in dendritic cells in culture induced IL-1β production, confirming a
direct stimulatory effect.

In humans, systemic magnesium depletion is common. Content
of essential minerals, including Mg2+, in contemporary fruits and
vegetables has declined by 80% or more compared to Mg2+ in
produce grown in the early 20th century (Workinger et al.,
2018). Food Mg2+ is also reduced by modern processing methods
(Rosanoff and Kumssa, 2020). As such, nearly a third of any given
population in developed countries consume less than their estimated
average daily Mg2+ requirement (Moshfegh et al., 2009; Costello
et al., 2016). Moreover, commonly used medications further
promote systemic Mg2+ depletion (Ray et al., 2022). Thiazide-
type diuretics, one of the most commonly employed classes of
clinical anti-hypertensive agents, induce urinary Mg2+ wasting,
promoting hypomagnesemia (Kieboom et al., 2018).
Hydrochlorothiazide, for example, was the 11th most commonly
prescribed medication in the United States in 2020 (SP, 2022). Thus,
Mg depletion is rampant.

Mg2+-depletion promotes hypertension. In Wistar rats given a
Mg2+-deficient diet, blood pressure increased (Murasato et al., 1999).
Dietary Mg2+ supplementation attenuated increases in blood
pressure in both angiotensin II and high salt diet rat models of
hypertension (Pere et al., 2000; Finckenberg et al., 2005). However,
not every animal study has shown increases in blood pressure with
Mg2+-depletion. An early study in Wistar rats showed decreased
blood pressure (Itokawa et al., 1974). Animals in this study exhibited
extracellular fluid overload, suggesting systemic illness. Another
study showed no difference in blood pressure (Laurant et al.,
1999). In that study, Wistar rats were 3 weeks of age, which may
have influenced blood pressure.

Human studies suggest that dietary Mg2+ protects against
increased blood pressure. Lower serum Mg2+ was found to be
associated with increased odds of hypertension (Posadas-Sanchez
et al., 2016). Dietary Mg2+ in-take was associated with decreased risk
of hypertension in a meta-analysis of ten cohort studies (Han et al.,
2017). Meta-analyses of randomized controlled trials suggest a dose-
dependent reduction in blood pressure in persons given
supplemental Mg2+ (Kass et al., 2012). This effect was found to

FIGURE 7
Low extracellular Mg2+ directly stimulates dendritic cell IL-1β
production. CD11c+ dendritic cells isolated from a splenocyte cell
suspension were subjected to control (0.92 mM) Mg2+ or low
(0.12 mM) Mg2+ for 1 h or 6 h, and IL-1β (A) and IL-18 (B) was
measured in cell medium. Data shown are normalized to IL-1β levels in
medium from cells in control Mg2+ at the same time-point (N = 6,
expressed as mean ± SEM). CD11c+ dendritic cells were cultured for
18 h in control or low Mg2+ medium, with either vehicle, a caspase-1
inhibitor (YVAD, 5 μg/mL), or an NLRP3 inhibitor (MCC950, 10 µM).
Data shown are normalized values of ELISA formature IL-1β (C) and IL-
18 (D) production (N = 5, 6, expressed as mean ± (SEM)) (E) Graphical
representation showing Mg2+ deficiency increases
NLRP3 inflammasome activation and IsoLG production in antigen
presenting cells. (Figure produced with Biorender.com.) Pairwise
comparisons were performed using a two-way ANOVA with Tukey’s
post hoc test for multiple comparisons (expressed asmean ± SEM;*p <
0.05; **p < 0.01***p < 0.001).
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be more significant in hypertensive individuals (Rosanoff and
Plesset, 2013; Rosanoff et al., 2021). These studies provide a
compelling case that systemic Mg2+ balance influences blood
pressure in humans.

Systemic Mg2+ depletion could increase blood pressure
through numerous mechanisms. In our study, although a low
Mg2+ diet increased blood pressure, it did not increase total
body fluid. The decreased difference in plasma Mg2+ level
observed in mice examined for body composition, as compared
to mice examined for blood pressure, represents a caveat in the
interpretation of these findings. It is possible that a difference in
body water may have been observed if experimental and control
groups had a bigger difference in plasma Mg2+ or if body water had
been measured at more frequent time intervals. Nevertheless, the
data do not provide evidence for a difference in body water
associated with hypomagnesemia.

Hypertension and kidney disease are closely linked whereby
hypertension can also cause as well as contribute to kidney disease
progression (Kestenbaum et al., 2008). Incidence and severity of
hypertension increases as the estimated glomerular filtration rate
(eGFR), a marker of kidney damage, increases (Baekken et al., 2008).
NLRP3 inflammasome activation promotes inflammation, tubular
injury, and fibrosis and is involved in pathogenesis of chronic kidney
disease (Vilaysane et al., 2010). In a large multiethnic population-
based cohort, low serum Mg2+ levels were associated with decreased
eGFR (Ferre et al., 2019). Additional studies have shown low
baseline serum Mg2+ levels associated with higher risk for end
stage renal disease (Sakaguchi et al., 2015). In our study, mice on
a low Mg2+ diet exhibited elevated systolic blood pressure and
increased NLRP3 inflammasome activation in kidney dendritic
cells, which may contribute to intrarenal inflammation associated
with magnesium deficiency-induced hypertension.

Differences in arterial elasticity may contribute to the observed
increase in blood pressure in mice on a low Mg2+ diet. Increased
systemic Mg2+ has been shown to increase arterial elasticity (Laurant
et al., 1999; Van Laecke et al., 2011). Arterial elasticity, in turn, is
influenced by cardiovascular inflammation (Zanoli et al., 2020).
Mg2+ mediates vasorelaxation through its action as a calcium
channel antagonist, regulating calcium influx (Bara and Guiet-
Bara, 2001). Hypomagnesemia has been associated with vascular
stiffness and endothelial dysfunction, which is a predictive measure
for cardiovascular mortality in patients with essential hypertension
(Kisters et al., 2006). Given the absence of a change in volume status,
the modest increase in blood pressure observed in association with
dietary Mg2+ depletion in the present study may be the result of
increased inflammatory and oxidative stress, as shown by
NLRP3 inflammasome activation and IsoLG-adduct formation,
respectively, of antigen presenting cells in the aorta. Future
studies examining systemic vascular resistance and cardiac output
may shed further insight on the mechanisms of howMg2+ deficiency
induces increases in blood pressure.

Magnesium plays a role in multiple cellular functions, and its
deficiency has a significant impact on inflammatory processes.
Limiting dietary magnesium by just 10% induces leukocyte
migration, tissue infiltration, and activation to release
inflammatory cytokines and free radicals (Classen et al., 1993;
Malpuech-Brugere et al., 1999; Zimowska et al., 2002). During
transendothelial migration, infiltrating monocytes differentiate

into DCs (Randolph et al., 1998). Indeed, we found kidney DCs
but not monocytes were activated by dietary Mg2+ depletion.
Both myeloid-derived NLRP3 inflammasome and IsoLGs
contribute to the pathogenesis of hypertension (Pitzer et al.,
2020; Elijovich et al., 2021). This study represents the first
demonstration that dietary magnesium depletion stimulates
the NLRP3 inflammasome and production of IsoLGs. The
observation that decreased extracellular Mg2+ concentration
activates IL-1β production in cell culture demonstrates a
direct stimulatory effect of Mg2+-depletion on dendritic cell
activity. NF-κB is a transcription factor responsible for
upregulation of NLRP3 inflammasome components. A study
using neonatal monocytes found that magnesium sulfate
supplementation inhibits NF-κB activity (Sugimoto et al.,
2012). However, whether NF-κB plays a role and the precise
mechanisms by which decreased extracellular Mg2+ activates
these cells will require further study.

This study represents the first study showing that dietary Mg2+

depletion activates the NLRP3 inflammasome and stimulates
production of IsoLGs, both of which promote hypertension.
Given the prevalence of hypertension and of dietary Mg2+

depletion in human populations, the findings suggest that dietary
Mg2+ consumption may represent an important, modifiable risk
factor for hypertension and cardiovascular disease.
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