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Polysaccharides derived from plants, algae, or fungi serve as the major 
components of some human diets. Polysaccharides have been shown to exhibit 
diverse biological activities in improving human health, and have also been 
proposed to function as potent modulators of gut microbiota composition, thus 
playing a bi-directional regulatory role in host health. Here, we review a variety 
of polysaccharide structures potentially linked to biological functions, and cover 
current research progress in characterizing their pharmaceutical effects in 
various disease models, including antioxidant, anticoagulant, anti-inflammatory, 
immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight 
the effects of polysaccharides on modulating gut microbiota via enrichment for 
beneficial taxa and suppression of potential pathogens, leading to increased 
microbial expression of carbohydrate-active enzymes and enhanced short 
chain fatty acid production. This review also discusses polysaccharide-mediated 
improvements in gut function by influencing interleukin and hormone secretion 
in host intestinal epithelial cells.
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1. Introduction

Polysaccharides, formed by α- or β-glycosidic bond of identical or various monosaccharide 
monomers with10 or more polymerization, are naturally produced in large quantities by plants 
and fungi (Tan et al., 2017). To date, numerous polysaccharides have been shown to exhibit a 
range of biological activities, including anticoagulation, antiviral, antitumor, antioxidant, 
hypoglycemic, and immunomodulatory effects (Zeng et al., 2019; Zhang et al., 2019; Wang et al., 
2019b; Kalinina et al., 2020; Chaisuwan et al., 2021; Chen C. et al., 2021; Kiddane and Kim, 2021; 
Liang Q. et al., 2021; Surayot et al., 2021; Figure 1 and Table 1). In addition, many studies have 
proposed that some polysaccharides also contribute to shaping the structure, diversity and 
function of gut microbiota and thus play a role in enhancing human health (Koropatkin et al., 
2012; Chang et al., 2015; Lin et al., 2018; Zhang L. et al., 2018; Zhang X. et al., 2018; Chen 
G. et al., 2019; Ding et al., 2019; Wang M. et al., 2019; Wang Y. et al., 2020; Wang et al., 2020b; 
Guo et al., 2021a).
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Gut microbes share a symbiotic lifestyle with human hosts, 
colonizing the gastrointestinal tract, and a large number of studies 
have highlighted the significance of these microbes, collectively 
termed microbiota, in mediating interactions that determine human 
health or disease states involving the gastrointestinal, cardiovascular, 
orthopedic and even neurological systems (Björkstén et al., 2001; Li 
et  al., 2019). Recently, naturally occurring undigestable 
polysaccharides in plants and foods were found to exert regulatory 
effects on gut microbiota by selecting for beneficial microorganisms 
in the gut while inhibiting the growth of pathogenic bacteria. This 
activity reinforces the structural and functional integrity of the 
intestinal mucosal barrier, and enhances the intestinal immune system 
via modulation of cytokine expression levels (de Vrese and 
Schrezenmeir, 2008; Chiu et al., 2014; Fuke et al., 2019; Han et al., 
2020; Zhang et al., 2020; Zhao et al., 2020; Guo et al., 2021b). For 
example, Hawthorn HAW1-2 Polysaccharide (Guo et  al., 2021b), 
Ziziphus Jujuba Polysaccharide (Han et  al., 2020), glycyrrhiza 
polysaccharide (Zhang X. et  al., 2018), and Lycium barbarum 
polysaccharide (Ding et al., 2019) were all reported to act as prebiotics 
by affecting gut microbiota structure and diversity. In addition, fungal 
polysaccharides were also found to play an important regulatory role 
as prebiotics through mechanisms similar to that of plant 

polysaccharides (Liang J. et  al., 2021). However, studies of these 
various prebiotic effects of polysaccharides have yet to fully uncover 
the full range of interaction mechanisms between polysaccharides and 
gut microbiota. Thus, a summary of the different plant sources and 
structures of known bioactive polysaccharides can facilitate ongoing 
research efforts, especially their prebiotic effects and modulation of 
microbiota in the context of human health. It should be noted that 
progress toward understanding the diversity of prebiotic 
polysaccharide functions requires the integration of plant phenotypic 
data with multi-omics analyses to identify tripartite host-
polysaccharide-microbiota interactions.

2. Overview of polysaccharides and 
their bioactivities

2.1. Structure and classification of 
polysaccharides

To provide an overview of higher order polysaccharide structures, 
polysaccharides are first categorized by their primary structure, 
determined by connection types, the organization and composition of 

FIGURE 1

Bioactivities of polysaccharides (anticoagulation, antiviral, antitumor, antioxidant, hypoglycemic, anti-inflammatory and immunomodulatory). PI3K, 
phosphoinositide 3-kinase; AKT, serine/threonine-specific protein kinase; ERK, extracellular-signal-regulated kinase; MAPK, mitogen-activated protein 
kinase; NF-κB, nuclear factor-κB; ROS, reactive oxygen species; GSH-Px, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; Nrf2, 
nuclear factor erythroid 2–related factor 2.
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sugar residues, the configuration of glycosidic bonds, and the 
conformation of sugar rings (Yang et  al., 2020). The secondary 
structure of oligosaccharides, i.e., their regular conformation resulting 
from hydrogen bonding (the most common secondary bonds between 
main chains), is determined by the dihedral Φ, Ψ or ω angles of the 
polymer backbone (Hatcher et al., 2011). Based on the secondary 
structure of polysaccharides, the tertiary structure is formed by 
non-covalent interactions among carboxyl groups, hydroxyl groups, 
sulfate groups, and/or amino groups on the sugar units. The 
polysaccharide quaternary structure refers to aggregates formed by 
non-covalent bonding between polymer chains (Lafond et al., 2016). 
In addition, polysaccharides can be  classified as either 

homopolysaccharides or heteropolysaccharides, homo-
polysaccharides are composed of a single type of monosaccharide and 
hetero-polysaccharides are composed of different types of 
monosaccharides (Sinha and Kumria, 2001; Liu et  al., 2008). For 
example, glucans are glucose homopolysaccharides, while mannans 
are mannose homopolysaccharides (d’Ayala et  al., 2008). Overall, 
polysaccharides are categorized as glucans, mannans, pectin 
polysaccharides, arabinogalactans, galactans, fucoidan, fructan, and 
polyxylose, among others, based on their monosaccharide 
composition and linkage types (Tan et al., 2017; Maji, 2019; Figure 2).

Different monosaccharide contents and branching exhibit various 
bioactivities. Wu et al. (2020) isolated polysaccharide from the seeds of 

TABLE 1 The action of some bioactive polysaccharides in disease prevention and treatment.

Source Polysaccharide Disease Action References

Laminaria japonica Fucoidan Parkinson’s disease (PD) Reversed the loss of nigral dopaminergic neurons 

and striatal dopaminergic fibers

Zhang L. et al. (2018) and 

Zhang X. et al. (2018)

Inonotus obliquus Polysaccharide Alzheimer’s disease (AD) Improved the pathological behaviors correlated 

with memory and cognition, upregulated Nrf2 

expression and its downstream proteins, 

decreased β-amyloid peptides deposition and 

neuronal fiber tangles

Han et al. (2019)

Walnut green husk Polysaccharide Inflammatory bowel disease 

(IBD)

Enhanced the Production of SCFAs through 

fermentation in the colon which help on 

allivating inflammatory damage and protecting 

integrity of the intestinal barrier function

Wang et al. (2021)

Walnut green husk Polysaccharide Obesity Relieved the oxidative stress in the liver by 

modulating the MAPK/Nrf2 pathway, and 

promoted the browning of inguinal white adipose 

tissue and thermogenesis in brown adipose 

tissue.

Wang et al. (2021)

Hypsizygus ulmarius Polysaccharide Diabetes mellitus (DM) Exhibited moderate inhibition activity against 

α-amylase and α-glucosidase enzyme in a 

concentration-dependent manner

Govindan et al. (2023)

Momordica charantia L Selenylated polysaccharide 

(Se-MCPIIa-1)

DM Reduced fasting blood glucose levels and 

increased insulin levels

Ru et al. (2020)

Hawthorn (Crataegus.) Polysaccharide Colon cancer Arrested the cell cycle in the S and G2/M phases, 

increased the rate of apoptosis, downregulated 

the expression of Cyclin A1/D1/E1 and CDK-1/2

Ma et al. (2020)

Crataegus pinnatifida Polysaccharide Colitis Restored the pathological lesions in colon, 

decreased the expression of inflammatory 

cytokines (IL-1β, IL-6, and TNF-α)

Guo et al. (2021b)

Lactobacillus plantarum 

YW11

Exopolysaccharide IBD Inhibited inflammatory cytokines (TNF-α, IL-1β, 

IL-6, IFN-γ and IL-12) and enhanced the anti-

inflammatory cytokine IL-10.

Min et al. (2020)

Bacillus subtilis Exopolysaccharide Bacterial infections Limited superantigens-T cell activation by S. 

aureus and abrogated systemic induction of 

gamma interferon.

Paik et al. (2019)

Red seaweed Gelidium 

pacificum Okamura

Sulfated polysaccharide Antibiotic-associated 

diarrhea (AAD)

Promoted the recovery of the gut microbiota and 

improved mucosal barrier function, 

downregulated the levels of inflammatory 

cytokines and enhanced the production of 

SCFAs.

Cui et al. (2020)

*Nrf2, nuclear factor erythroid 2–related factor 2; SCFA, short-chain fatty acids; MAPK, mitogen-activated protein kinase; CDK1/2, cyclin dependent kinase-1/2; IL, interleukin; IFN, 
interferon; TNF, tumor necrosis factor.
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FIGURE 2

Classification and composition of some representative polysaccharides and commonly polymerized monosaccharides. (A) Xylan (B) Beta-Glucan 
(C) Mannan (D) Arabinogalactan (E) Galactan (F) Fucoidan (G) Fructan.

Litchi chinensis Sonn. and reported reduction of antitumor activity of 
branched backbone of polysaccharides with more than four 
monosaccharide units. The monosaccharide contents of 
polysaccharides could also influence their anti-inflammatory activity 
(Chen Y. C. et al., 2019). In addition, polysaccharides contain many 
functional groups, including hydroxyl groups and a hemiacetal 
reducing end that has the potential to reduce precursor salts (Park et al., 

2011). Studies have revealed that the oxidation of polysaccharide 
hydroxyl groups to carbonyl groups play a significant role in reducing 
gold salts (Mata et  al., 2009). Alternatively, the reducing end of 
polysaccharides has been used to introduce an amino functional group 
capable of forming complexes with and stabilizing metallic 
nanoparticles (Nadkarni et al., 1994). Carbohydrates with these amino 
groups bind strongly to the surface of gold or silver nanoparticles to 
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provide a hydrophilic surface (Kemp et al., 2009). The introduction of 
specific functional groups will change a polysaccharide’s molecular 
weight, structure, types, position and number of substituents groups, 
and may alter the physiochemical and functional properties of that 
polysaccharide (Li et al., 2016). More specifically, various modifications, 
including sulfation, phosphorylation, carbomethylation, benzoylation 
or acetylation have all been shown to enhance the biology activity of 
some specific polysaccharides (Xu Y. et al., 2019). For instance, in 
heparan sulfate (HS) polysaccharides, negatively charged sulfate and 
carboxylate decorations can be organized into a variety of different 
so-called HS S-domains through a tightly controlled biosynthetic 
pathway that enables remarkable structural variability (Li and Kusche-
Gullberg, 2016). Using standard DPPH and ABTS assays, Cao et al. 
(2020) characterized the antioxidant properties of sulfated 
polysaccharides from Amana edulis (Cao et al., 2020). Another study 
illustrated the positive effects of phosphorylation- based modifications 
on increasing the antioxidant activity of polysaccharides isolated from 
Momordica charantia (Chen F. et al., 2019). Recently, nanocellulose 
incorporated polysaccharides were reported to extent nanoparticle 
application in health promotion. Incorporation of chitosan and 
nanocellulose could improve their antimicrobial activity (Tomé et al., 
2013), as well as exerting roles in wound healing (Hasan et al., 2017). 
These different combinations of functional groups of polysaccharides 
from diverse sources, along with monosaccharide composition, linkage 
types, and chemical modifications can thus result in different 
biological activities.

2.2. Polysaccharide bioactivities

2.2.1. Anticoagulation and anti-inflammatory 
effects

Polysaccharides are widely reported to exhibit anticoagulation 
properties by inhibiting thrombin activity, decreasing platelet counts, 
inhibiting platelet adhesion and aggregation, enhancing plasminase 
activity, and promoting the dissolution of fibrin (Matsubara et al., 
2001; Pawlaczyk et al., 2011; Xue et al., 2018). Souza et al. (2015) 
identified polysaccharides from spinosa bark that could provide 
anticoagulant, antiplatelet and antithrombotic effects without 
increasing inducing a greater likelihood of hemorrhage (Souza et al., 
2015). Similarly, an acidic polysaccharide was extracted from the 
edible mushroom Auricularia auricula which contained mannose, 
glucose, glucuronic acid and xylose oligosaccharides, but no sulfate 
ester links. This polysaccharide displayed potent anticoagulation effect 
by inhibiting thrombin via antithrombin activation (Yoon et al., 2003). 
Sulfated galactans produced by the seaweed Hypnea musciformis were 
also found to have antioxidant, anticoagulant, and immunostimulatory 
properties, depending on the method of their extraction (Gabriela das 
Chagas Faustino Alves et al., 2016).

Other than anticoagulant effects, polysaccharides are also known 
to exert anti-inflammatory activities. Fu et  al. (2022) studied the 
structure of polysaccharides from Chinese aconite (Aconitum 
carmichaelii) leaves and demonstrated that these polysaccharides have 
immunomodulatory and anti-inflammatory effects on 
lipopolysaccharide (LPS)-induced inflammation in intestinal 
epithelial cells (Fu et al., 2022). In addition, in vitro investigation of the 
bioactivity of polysaccharides from Typha angustifolia using 
RAW264.7 cell provided evidence indicating that these polysaccharides 

can significantly suppress inflammatory cytokine production, nuclear 
factor-κB (NF-κB) signal pathway activation, and reactive oxygen 
species (ROS) production (Wei et  al., 2021). Study on Sargassum 
fusiforme fucoidan has shown that polysaccharides can inhibit 
selectin-mediated leukocyte migration and infiltration by blocking 
interactions between P-selectin and its ligands on leukocytes, 
ultimately reducing the levels of IL-6, IL-8, TNF, and CRP cytokines 
to ameliorate systemic inflammation (Wu S. et al., 2019). Guo et al. 
(2018) studied the anti-inflammatory activity and related mechanism 
of polysaccharides isolated from Sargentodoxa cuneata. Their findings 
demonstrated that these polysaccharides could markedly inhibit 
carrageenan-induced edema in the hind paw of rats by decreasing 
malondialdehyde and prostaglandin E2 levels in the hind paw, serum 
and liver, while promoting SOD activity in serum and liver (Guo 
et al., 2018).

2.2.2. Immunomodulatory effects
Numerous polysaccharides from fungi and plants can reportedly 

provide various dietary and medicinal benefits, including marked 
effects on immune system function. Polysaccharides have also been 
shown to function as immunomodulators through a variety of 
mechanisms (Mousavi et al., 2015), such as activating macrophages, 
T cells, B lymphocytes, or natural killer cells, or by activating 
complements and promoting cytokine production (Kouakou et al., 
2013). This regulation of innate immune response can substantially 
impact the host’s ability to rapidly respond to pathogens. As an 
essential component of the host immune system, macrophages 
collaborate with other cell types, such as neutrophils, to resist the 
adverse effects of biotic and abiotic stresses (Schepetkin and Quinn, 
2006; Shen et al., 2014). To augment this function, some polysaccharide 
signal molecules can activate a macrophage-mediated immune 
response via binding with different receptors on macrophages, such 
as Toll-like receptor 4, complement receptor 3, scavenger receptor, 
mannose receptor, and Dectin-1, consequently initiating one or more 
intracellular signaling cascades that ultimately result in production of 
inflammation-related cytokines (Schepetkin and Quinn, 2006; Liao 
et al., 2015; Bunyatyan et al., 2017; Gong et al., 2017; Zhou et al., 2020). 
These macrophage-associated immunomodulatory effects of plant 
polysaccharides are largely mediated by increased ROS generation, 
cytokine secretion, cell proliferation, and phagocytic activity of 
macrophages (Gong et al., 2017) One earlier study described a novel 
polysacchaide obtained from the fruiting body of Dictyophora 
indusiate that could significantly promote macrophage secretion of 
NO, TNF-α, and IL-6 via complement receptor 3  in mouse RAW 
264.7 cells (Liao et al., 2015). As organic selenium compound with 
complex chemical structure and diverse sources, selenium 
polysaccharide has been widely studied as its biological activities. A 
wide variety of non-specific immune cells, such as natural killer cells 
and macrophages display significantly improved immune function in 
the presence of selenium polysaccharides (Zhou et al., 2020). These 
advances in understanding the scope of polysaccharide activity 
suggest that many more plant polysaccharides with 
immunomodulatory effects have yet to be identified through extensive 
screening and research.

2.2.3. Hypoglycemic effects
Diabetes is a chronic, metabolic disease with typical hyperglycemia 

symptoms which is characterized by insulin resistance and a relative/
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absolute insulin insufficiency (Bunyatyan et  al., 2017). Plant 
polysaccharides can also stimulate insulin secretion, modulate the 
activity of glucose metabolizing enzymes, inhibit the gluconeogenesis 
pathway, and promote glucose utilization in peripheral tissues, thus 
performing important functions in the prevention and treatment of 
diabetes (Wu et al., 2016). Tea made with guava (Psidium guajava L., 
Myrtaceae) leaves has long been used as a traditional herbal treatment 
for diabetes in Asia and North America (Oh et  al., 2005). 
Polysaccharides from guava leaf have been shown to exhibit potent 
free-radical scavenging activity toward DPPH, OH, and ABTS, and 
can significantly lower fasting blood sugar, total cholesterol, total 
triglyceride, glycated serum protein, creatinine, and malonaldehyde 
levels (Luo et  al., 2019). In addition, treatment with these 
polysaccharides can significantly increase total antioxidant activity 
and superoxide dismutase (SOD) enzyme activity in diabetic mice, 
consequently ameliorating damage to the liver, kidney, and pancreas 
(Luo et al., 2019). Recently, the application of bitter gourd (Momordica 
charantia) as herbal medicine/vegetable in the treatment against 
diabetes has been widely reported. One study investigating the 
hypoglycemic effects of Momordica charantia polysaccharides in 
alloxan-induced diabetic mice model showed that the polysaccharide 
treatment led to significantly lower fasting blood glucose levels and 
improved glucose tolerance, thus proposed dose-dependent anti-
diabetic activity (Xu et al., 2015). In order to obtain better antidiabetic 
activities, a selenylated polysaccharide from Momordica charantia has 
been applied to diabetic mice and was reported to prevent pancreatic 
islets, liver and kidney damage from diabetes by reduction of fasting 
blood glucose levels, enhancement of insulin levels and antioxidant 
enzyme activities (Ru et al., 2020). The pumpkin polysaccharides also 
demonstrated a significant glucose tolerance effect, and effectively 
alleviated insulin resistance in addition to providing cytoprotective 
benefits on type II diabetes mellitus (T2DM) mice (Chen X. et al., 
2019). In particular, glucomannan and glucogalactan have been 
shown to exhibit significant antidiabetic properties by inhibiting 
alpha-amylase and alpha-glucosidase activity to promote pancreatic 
beta cell proliferation and stimulate insulin sensitivity and secretion 
(Mirzadeh et al., 2021).

Mechanistically, these effects are mediated by phosphorylated 
tyrosine residues present in the intracellular substrates of the insulin 
receptor (IRS) (Mirzadeh et al., 2021). These substrates could activate 
the phosphoinositide 3-kinase (PI3K), phosphoinositide-dependent 
protein kinase 1 and 2 (PDK1/2) and then activates serine/threonine-
specific protein kinase (AKT) pathways (Ganesan and Xu, 2019). AKT 
activates the phosphorylation of glycogen synthase kinase 3 (GSK3), 
resulting in upregulation of glycogen synthesis in the liver and skeletal 
muscle (Mirzadeh et al., 2021). Moreover, AKT can also stimulate the 
translocation of glucose transporter 4 (GLUT4) to the plasma 
membrane which consequently enhance glucose uptake (Wang et al., 
2012). Study also found that AkT is a main mediator in activating the 
extracellular-signal-regulated kinase (ERK) /mitogen-activated 
protein kinase (MAPK) pathways thereby triggering several 
physiological and biochemical mechanisms, such as cell 
differentiation, proliferation, apoptosis, and cell endurance 
(Jayachandran et  al., 2019). IRS studies on Ophiopogon japonicus 
polysaccharide and glucopyranose-rich heteropolysaccharide from 
Catathelasma ventricosum demonstrated that these compounds could 
trigger the PI3K/AKT signaling pathway through IRS1, PI3K-p85, and 
phosphorylated AKT to promote insulin sensitivity and improve 

diabetes-associated renal disease (Wang et  al., 2012; Liu et  al., 
2016a,b). Collectively, polysaccharide could regulate glucose uptaking, 
glycogen synthesis and β-cell activity through PI3K/Akt pathway and 
ERK/MAPK pathways and resulting in playing an anti-diabetic role 
(Figure 3).

2.2.4. Antioxidant effects
Oxidative stress can be  link to a variety of diseases including 

cancer, cardiovascular diseases, diabetes, respiratory diseases, immune 
deficiency and neurodegenerative disorders, while antioxidants could 
protect cells against free radicals and reduce the risk of many diseases 
(Fridovich, 1999; Fang et al., 2002). Plant polysaccharides have been 
shown to directly eliminate free radicals by inhibiting lipid 
peroxidation, scavenging hydroxyl free radicals, and clearing 
superoxide anion free radicals. They also act on free radicals indirectly 
by enhancing the activities of SOD, catalase (CAT), and glutathione 
peroxidase to maintain a balance of free radicals, which can 
collectively diminish or avert the occurrence of disease (Xie et al., 
2016). Lin et al. (2022) used enzymatic and microwave extraction 
methods to obtain polysaccharides from Purple-Heart Radish 
(Raphanus sativus) that displayed high antioxidant effects by inhibiting 
lipid peroxidation (Lin et al., 2022). Studies of polysaccharides from 
yerba mate (Ilex paraguariensis) tea reported IC50 values of 
3.36 ± 0.31 mg/mL for ·OH scavenging activity, suggesting a strong 
antioxidant capacity (Chen X. et  al., 2019). Xu et  al. (2012) 
characterized polysaccharides from flowers of Camellia sinensis and 
found a high, dose-dependent capacity for scavenging superoxide 
anion free radicals (Xu et al., 2012). Study of polysaccharides from 
Astragalus membranaceus (Fisch.) has shown that ROS levels decrease, 
SOD activity increases, and superoxide dismutase free radical 
scavenging is enhanced, which can alleviate tissue damage and delay 
senescence (Song et  al., 2019). Shan et  al. (2011) found that 
administering Lycium barbarum polysaccharides led to significantly 
higher SOD and glutathione peroxidase (GPX) levels in rats with 
exercise-induced oxidative stress, indicating that these polysaccharides 
played a significant role in preventing oxidative stress after exhaustive 
exercise (Shan et al., 2011). Investigation of alfalfa polysaccharides 
illustrated their antioxidant effects on immune response in preventing 
H2O2-induced oxidative damage by activating mitogen-activated 
protein kinase (MAPK)/nuclear factor erythroid 2–related factor 2 
(Nrf2) signaling pathways while suppressing NF-κB signaling in 
mouse embryonic fibroblasts (Wang et al., 2019a).

In addition to naturally occurring polysaccharides, chemical 
modification can also enhance the antioxidant effects of some 
polysaccharides. For example, findings by Gao et al. (2017) showed 
that selenylation of Angelica sinensis polysaccharide could enhance its 
antioxidant and hepatoprotective activity through inhibition of p- 
ERK and p-JNK signaling in mice with hepatic injury (Gao et al., 
2017). Collectively, polysaccharides from diverse sources have been 
applied as functional antioxidant components in many 
pharmaceutical/nutraceutical products due to their capacity for 
modulating ROS levels, enzymatic and non-enzymatic antioxidant 
defense responses (e.g., SOD, CAT, GPX), and oxidative stress-
induced signaling pathways (e.g., MAPK ERK, and JNK).

2.2.5. Antitumor and antiviral capacities
Cancer remains one of the greatest threats to public health 

worldwide, and is a long-standing focus of research attention and drug 
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development, especially those with reduced side-effects. Bioactive 
polysaccharides have been identified that exert anti-tumor activity 
toward a variety of tumor cells without inducing cytotoxicity in 
normal cells (You et  al., 2013). In the cactus (Opuntia dilleniid), 
polysaccharides were found that can induce S-phase arrest and block 
the growth of SK-MES-1 cells, possibly through increased levels of P53 
and phosphatase and tensin homolog deleted on chromosome 10 
protein (PTEN) (Li et al., 2014). The screening and discovery of new 
anti-tumor polysaccharides represents an ongoing pursuit for many 
research groups, with the most common direct tumor-killing 
mechanisms of anti-tumor polysaccharides involving cell cycle arrest, 
blocking angiogenesis, and inducing apoptosis. In addition, some 
polysaccharides act through immunomodulation to indirectly induce 
tumor killing (Khan T. et al., 2019; Lu et al., 2020).

Several studies have described antiviral effects of both natural and 
chemically modified polysaccharides. For example, Witvrouw et al. 
(1994) observed antiviral activity by a sulfated polysaccharide isolated 
from the red seaweed (Aghardhiella tenera) in vitro and found that it 
could inhibit the cytopathic effects of human immunodeficiency virus 

type 1 (HIV-1) and type 2 (HIV-2), as well as against other enveloped 
viruses. Examination of the inhibitory effects of Glycyrrhiza 
polysaccharide (GPS) on bovine immunodeficiency virus (BIV), 
adenovirus type III (AdVIII), and coxsackie virus (CBV3) revealed 
that GPS could inhibit BIV to some extent, but showed obvious 
inhibition or direct inactivation of AdVIII and CBV3 (Wang Y. et al., 
2020). Further technological advances in plant polysaccharide 
research will enable more comprehensive screening for effective anti-
tumor and antiviral polysaccharide drugs.

3. Prebiotic effects of various sources 
of polysaccharides on gut microbiota

The adult human intestinal tract harbors an estimated stable 
community of 39 trillion microbial cells, which has been recognized 
as a diverse and dynamic ecosystem containing bacteria, fungi, 
protozoa, and viruses (Rajakovich and Balskus, 2019). Gut bacterial 
communities are generally comprised of six major phyla, including 

FIGURE 3

The hypoglycemic function of bioactive polysaccharides on the insulin signaling pathway. IRS, insulin receptor substrate; PI3K, phosphoinositide 
3-kinase; PDK1/2, phosphoinositide-dependent protein kinase 1 and 2; AKT, serine/threonine-specific protein kinase; GSK-3, glycogen synthase 
kinase-3; GLUT4, glucose transporter type 4; ERK, extracellular-signal-regulated kinase; MAPK, mitogen-activated protein kinase.
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FIGURE 4

Prebiotic effects of polysaccharides toward gut microbial modulation. LPS, lipopolysaccharide; VH/CD, villus height/crypt depth; CAZymes, 
carbohydrate-active enzymes; SCFA, short-chain fatty acids; PPARγ, peroxisome proliferator-activated receptor-γ; PYY, peptide tyrosine; IL-2, 
interleukin-2; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α.

Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, 
Verrucomicrobia, and Fusobacteria (Gong et  al., 2020), which 
collectively contribute to protecting the intestinal barrier, preventing 
pathogen invasion, participating in vitamin synthesis (Vitamin K, 
Vitamin B), host metabolism, and other functions related to nutrient 
uptake (Cresci and Bawden, 2015). In addition, mutual interactions 
between gut microbiota and their host were found to provide 
important functions in host health, and dysbiosis in gut microbiota 
has been linked to inflammatory bowel disease, obesity, allergies, and 
psychological disorders (Coyte et al., 2015). Patterson et al. (2016) 
proposed a possible association between gut microbiota and obesity 
and metabolic syndrome, which are both accompanied by an 
increased ratio of Firmicutes to Bacteroidetes in obese phenotypes 
patients, compared with that in non-obese individuals (Patterson 
et al., 2016). Other studies have indicated that gut microbiota can 
influence the development of neurological disorders as autism, 
depression, Alzheimer’s disease, and Parkinson’s disease (Dinan and 
Cryan, 2017).

Several factors, including infant delivery modes and feeding 
patterns, host, diet, antibiotic usage, and other factors have all been 
reported to affect gut microbiota composition and diversity (Cresci and 
Bawden, 2015). Among these factors, host and diet exert a particularly 
strong influence on gut microbiota. Our own previous study identified 

clear differences in gut microbiota driven by dietary variation among 
people living in close regional proximity (Liu et al., 2020). Furthermore, 
dietary intervention was recently recognized as a reliable strategy for 
altering gut microbiota and enhancing gut function, especially through 
prebiotics. Prebiotics are food components that may promote health in 
the host by exert activity in the gastrointestinal microbiota, such as 
fructose oligosaccharides, arabino-oligosaccharides, isomalt 
oligosaccharides, polyphenols and polyunsaturated fatty acids and etc. 
(Gibson et  al., 2004, 2017). Among these prebiotics, dietary 
polysaccharides are relatively large macromolecules that are difficult to 
digest and absorbed, but can serve as carbon sources that potentially 
enrich beneficial gut microbes, or regulate microbial growth, activity, 
and metabolite production (Koropatkin et al., 2012; Chang et al., 2015; 
Wang et  al., 2018). Furthermore, the polysaccharides affected gut 
microbiota modulation via enrichment for beneficial taxa and 
suppression of potential pathogens, leading to increased microbial 
expression of carbohydrate-active enzymes and enhanced short chain 
fatty acid production. In addition, polysaccharide mediated 
improvements in gut function such as influencing immune-related 
cytokines and hormone secretion in host intestinal epithelial cells and 
maintaining gut barrier function (Figure 4).

Plant polysaccharides have been frequently proposed to serve as 
regulators of gut microecology (Fang et al., 2019), and have been 
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shown to regulate the diversity and structure of gut microbiota, thus 
altering metabolic functions in the gastrointestinal tract (Zhao et al., 
2021). Oral administration of polysaccharides from Ziziphus Jujuba 
cv. Pozao in cyclophosphamide-induced mice led to enrichment of 
Firmicutes and decreased Bacteroidetes, with genus-level increases in 
the relative abundance of Bacteroidales-S24-7-group, Lachnospiraceae, 
Alloprevotella, Alistipes, and Bacteroides (Han et al., 2020). Chen and 
colleagues showed that Sarcodon aspratus polysaccharides could serve 
as a prebiotic treatment to prevent obesity in mice fed with a high-fat 
diet, and led to increased relative abundance of Lactobacillus, 
Bacteroides and Akkermansia, decreased Firmicutes-to-Bacteroidetes 
ratio, inhibitory effects on immune cells activation and adipocyte 
differentiation in adipose tissues (Chen et  al., 2020). Poria cocos 
polysaccharides were shown to alleviate intestinal mucosal injury, 
improve intestinal integrity, and restore the composition and structure 
of gut microbiota following dysbiosis by promoting the proliferation 
of beneficial bacteria in Ob/Ob Mice (Sun et al., 2019). Li et al. (2020) 
investigated the hypoglycemic and hypolipidemic effects of tea 
polysaccharides, potentially mediated by changes in gut microbiota 
and metabolism, in a rat model of type 2 diabetes. They stated that 
treatment with tea polysaccharides restored some specific bacterial 
taxa, such as Lachnospira, Victivallis, Roseburia, and Fluviicola in 
diabetic rats, whereas Bacteroides was decreased (Li et  al., 2020). 
Taken together, polysaccharides play an important role in improving 
body health by increasing the enrichment of beneficial bacteria and 
reducing the proximity of harmful bacteria.

In addition, gut microbiota could produce short-chain fatty acids 
(SCFAs) and other metabolites, such as acetic acid, propionic acid, 
butyric acid, lactic acid and succinic acids, etc. These SCFAs can, in 
turn, affect gut functions to jointly regulate health (Wu Y et al., 2019). 
SCFAs are the final product of polysaccharide fermentation by gut 
microbiota (Mitsou et al., 2020), and are well-known to contribute to 
maintaining epithelial cell growth in the colon, modulate host 
metabolism, participate in immune regulation of the intestinal system, 
and play an indispensable role in maintaining the homeostasis of 
human gut microbiota (Morrison and Preston, 2016). In a study by 
Guo et al., treatment with polysaccharide from hawthorn (Crataegus 
monogyna) by gavage ameliorated inflammation symptoms in mice 
with dextran sulfate sodium (DSS)-induced colitis through 
significantly increased production of total SCFAs and acetic acid, 
attributable to greater relative abundance of Alestipes and Odoribacter 
(Guo et  al., 2021b). Investigation of Cyclocarya paliurus 
polysaccharides in type 2 diabetic rat models. Suggested that these 
molecules could enrich for SCFA-producing bacteria, leading to 
elevated SCFA production and upregulation of associated sensory 
mediators that alleviate symptoms of type 2 diabetes (Yao et al., 2020). 
β-glucans, inulin, and oligofructose have all been found to significantly 
increase butyric acid production, which serve as a nutrient source for 
intestinal epithelial cells, reduces pH in the lumen, and provides 
energy for human activities (Song et al., 2014; Kim and Jazwinski, 
2018), whereas polysaccharides such as α-glucan, fructan, and 
arabinoxylan can reportedly increase intestinal acetic acid levels 
(Shang et  al., 2018). Insoluble polysaccharide isolated from the 
sclerotium of Poria cocos, as a prebiotic, increased the abundance of 
butyrate-producing bacteria such as Lachnospiracea and Clostridium, 
leading to an increase in the level of butyrate and improvement of gut 
mucosal integrity and activated the intestinal PPAR-γ pathway, 
significantly improving glucose and lipid metabolism and alleviating 

hepatic steatosis in ob/ob mice, suggesting its potential for the 
treatment of metabolic diseases (Sun et  al., 2019). As one of the 
important natural polysaccharides source, marine polysaccharides 
were also well studied recently. Lentinan and sea anemone 
polysaccharides were recently reported to facilitate the production of 
total SCFAs, maintain gut homeostasis, and provide energy (Wang 
et al., 2018). In addition, polysaccharides from tea, C. sinensis, can also 
reduce blood glucose and lipid levels, promote SCFA production, 
attenuate insulin resistance, confer protective effects against pancreatic 
damage in type 2 diabetic rat model (Li et al., 2020).

In addition to regulating SCFA production, study showed that 
plant polysaccharides can up-regulate the expression of genes 
encoding carbohydrate-active enzymes (CAZymes), enhancing 
CAZyme activity and thus leads to higher SCFA production and 
increased tight junction protein expression with concurrent 
suppression of metabolic endotoxemia and decreased expression of 
inflammatory factors (Nguyen et al., 2016). Guo et al. (2021a) reported 
that Ganoderma lucidum polysaccharide could also upregulate 
CAZyme expression, especially glycoside hydrolases, polysaccharide 
lyases, glycosyltransferases, and carbohydrate esterases, leading to 
improved health.

Furthermore, polysaccharides can facilitate repair of damaged 
intestinal barrier to ensure the integrity of intestinal structures (Liang 
J. et al., 2021). Zhou et al. (2021) conducted co-treatment of American 
ginseng polysaccharide and ginsenoside altered uric acid, xanthurenic 
acid, acylcarnitine and restored the morphology of intestine. 
Specifically, the co-treatment resulted in an up-regulation of the villus 
height (VH)/crypt depth (CD) ratio, as well as an increase in the areas 
of mucins expression, quantity of goblet cells and expression of tight 
junction proteins (ZO-1, occludin) and then protecting the intestinal 
barrier (Zhou et al., 2021). Additionally, study of Yu et al. (2021) found 
that Cyclocarya paliurus polysaccharides dramatically increased the 
intestine antioxidant defense of CTX-induced mice, repaired the 
intestinal barrier by restoring the length of villi and depth of crypt, 
up-regulating the expression of tight junction proteins, shifting the 
composition and diversity of the gut microbiota, and regulating the 
relative abundances of specific taxa, then restoring intestinal mucosal 
barrier function (Yu et al., 2021).

Additionally, polysaccharide mediated improvements in gut 
function such as influencing immune-related cytokines and hormone 
secretion. Study of Lycium barbarum polysaccharide also suggested 
that polysaccharide treatment could protect immune organs, enhance 
the production of immune-related cytokines (IL-2, IL-6, IL-1β, 
TNF-α, and IFN-γ) and prevent the hepatotoxicity in 
cyclophosphamide (CTX)-induced mice (Ding et  al., 2019). In 
immunosuppressed mice, Cordyceps sinensis polysaccharide was 
found to modulate gut microbiota, alleviate gut injury, and regulate 
the balance of T helper (Th)1/Th2 cells (Chen S. et al., 2021). Khan 
I. et al. (2019) reported that the treatment of Ganoderma lucidum 
polysaccharides markedly promoted SCFA produced bacteria and 
abridged sulfate-reducing bacteria in a time-dependent manner, 
altered expressions of histone deacetylases, anti-cancer gut hormone 
PYY, and PPAPγ in ApcMin/+ mice. Collectively, both in vitro and 
animal experiments applied for polysaccharide from different sources 
has been proved to have gut modulation capacity as prebiotic, 
however, clinical application of well recognized polysaccharides could 
help further understanding the actual response of human gut 
microbiota. These studies collectively indicate that plant 
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polysaccharides share a complex relationship with gut microbes, and 
further study is required to reveal the full scope of mechanisms. In 
addition, gut regulation by postbiotic as secreted polysaccharides and 
extracellular polysaccharides has aroused attention recently. In several 
studies, the lactic acid bacteria-exopolysaccharides showed anti-
oxidative and immunomodulatory activities as well as gut microbiota 
regulation effect (Xu R. et al., 2019; Xu Y. et al., 2019; Nataraj et al., 
2020; Wang et al., 2020a). Further research into the biological activities 
of these metabolites is expected to reveal novel uses for postbiotics in 
medicine and beyond.

In general, the influence of polysaccharides on gut microbes can 
be summarized in three main aspects. Firstly, polysaccharides can 
attenuate damage to intestinal mucosa, alleviate intestinal 
inflammation, facilitate repair of damaged intestinal barrier, and 
ensure the integrity of the intestinal structure. Second, polysaccharides 
can alter intestinal microbial community composition and function, 
enriching beneficial bacteria while suppressing the proliferation of 
potential pathogens, consequently improving the relative content of 
various intestinal metabolites, especially SCFAs, that positively impact 
overall health. Third, polysaccharides can directly regulate gut 
function, such as modulating the secretion of interleukins and 
hormones in intestinal epithelial cells, or activating microbial 
CAZyme expression, which can reduce the likelihood of gut disease. 
However, most of these interventional studies are based on in vitro 
experiments or model animals, and thus clinical trials examining the 
effects of polysaccharide-based treatments in gut dysbiosis could 
improve our understanding of the interactions between 
polysaccharides, gut microbiota, and gastrointestinal function 
in humans.

4. Conclusion

Dietary polysaccharides have been shown to exert a range of 
biological activities, including anticoagulation, anti-inflammatory, 
immunomodulatory, hypoglycemic, antitumor, and antioxidant effects 
that impact gut health, in addition to modulating gut function and 
microbiota composition. These diverse functions are largely 
dependent on the primary structure and functional groups of the 
saccharide monomers. Ongoing innovations in data mining and 
compound screening continually expand the range of available 
bioactive polysaccharides, and drive the development of their 
pharmacological applications. It is noteworthy that these bioactive 

polysaccharides are not strictly limited to plants, and have been 
screened from fungi and algal sources, suggesting that there are likely 
a multitude of such metabolites with potential health benefits that are 
yet to be discovered in nature.
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