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With the three-dimensional semi-classical ensemble model, we studied the non-
sequential double ionization by orthogonal two-color laser pulses. Our
calculations show that the proportion of events experiencing multiple
returnings, the sum of the final energies of two electrons, and the ion
momentum distribution depend on the relative phase of the two-color fields,
exhibiting oscillatory behavior with a period of π. Back analysis of these trajectories
reveals that we can control the recollision energy of the electron by changing the
relative phase of the two-color laser pulse. As a consequence, the trajectories of
multiple-returning ions changewith the relative phase, resulting in relative-phase-
dependent ion momentum distributions. The result shows that the momentum
distribution of the ions in the trajectories ofmultiple returnings is clearly wider than
that for the case of single returning. For the multiple-returning events, the binary
recollision leads to a smaller scattering angle of the first electron.
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1 Introduction

It is well known that when in a strong laser field, two electrons in an atom may leave the
parent nucleus, and the atom gets doubly ionized. For the ionization of two electrons in
atoms and molecules in a strong laser field, the simplest and most direct physical picture is
that the two electrons get ionized independently one after another; that is, the ionization of
the first electron has no effect on the ionization of the second electron. This process is often
called sequential double ionization [1, 2]. However, in 1992, Fittinghoff et al. accurately
measured the ionization rate of He and found that when the laser intensity is not too high,
the experimental double ionization yield shows a knee-like structure with varying laser
intensity [3]. For different laser parameters and different targets, this knee-like structure is
also observed, which is considered a feature of non-sequential double ionization [4–7]. This
kind of double ionization, which is contrary to the theory of sequential ionization and reflects
electronic correlation, is called non-sequential double ionization (NSDI). The strong-field
NSDI provides a simple and clear model for studying the effect of electron correlation [8, 9].
The study of the strong-field NSDI enables us to deeply understand electron correlation and
gain insight into the essence of many physical phenomena [10–15]. Therefore, the strong-
field NSDI has become one of the research hot spots in strong-field physics.
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Later, experimental and theoretical studies showed that the
recollision model was in good agreement with the experiment
[16]. In addition, it was widely recognized that the strong-field
NSDI occurs mainly through two different pathways: recollision
impact ionization (RII) and recollision excitation with subsequent
field ionization (RESI) [17]. Cold target recoil ion momentum
spectroscopy (COLTRIMS) [18, 19], combined with recent
progress in laser development, succeeded in measuring three-
dimensional momentum distributions of multiple electrons and
ions simultaneously. From the momentum spectrum, we can
obtain more information about the detailed ultrafast dynamics in
the NSDI [20–22]. Staudte et al. accurately measured the NSDI of
helium atoms [23]. With an intensity just slightly higher than the
threshold of collision ionization, they observed a finger-like
structure that had not been found before on the measured
correlated electron momentum spectrum. Through a classical
kinematics analysis, they suggested that this structure reflects two
different collision mechanisms: recoil collision and binary collision.
In the recoil collision, the incoming electrons are backscattered after
the collision, and the scattering angle is close to 180°, which may
produce electrons with energy greater than 2Up (Up ∝Iλ2 is the
ponderomotive energy [16]). For the two-body collision, the
direction of the incoming electron is almost unchanged after the
collision; that is, the scattering angle is around 0°, and the energy of
the photoelectron generated by this mechanism will always be less
than 2Up. Further research found that the Coulomb attraction of the
nucleus to electrons and the Coulomb repulsion between the two
electrons after ionization are also important reasons for the
formation of finger-like structures [12, 24, 25]. In later research,
it was found that there were multiple recollisions and multiple
returns in NSDI generally [26–30]. At low laser intensity, Liu et al.
found multiple recollisions leading to back-to-back emission of the
electrons and a significant cutoff in the sum-energy spectra [26]..Ye
et al. discussed that multiple recollisions strongly enhance the
energy exchange between two electrons [27]. In an experiment
with doubly ionized Xe with mid-IR fields, Wolter et al. found
several small peak structures in the electron momentum spectrum,
which indicated that electrons undergo multiple recollisions during
double ionization [31]. Later, we found that the various multiple-
returning recollision trajectories correspond to different windows of
the initial transverse velocity [29]. In these multiple-returning
recollision processes, the Coulomb focusing effect plays an
important role. It can be said that multiple returnings play an
important role in NSDI. The electron dynamics of multiple-
returning recollision in the NSDI by a multi-cycle orthogonal
two-color laser field had not been investigated before.

In this paper, we theoretically study the correlated electron
dynamics in strong-field NSDI of Ar with a two-color laser pulse
consisting of a strong 800 nm field and a weak orthogonal-polarized
400 nm field. We focus on the single-returning and multiple-
returning processes in NSDI using a semi-classical ensemble
model. Results show that the process of multiple-returning
recollision can be controlled by changing the relative phase of
the two-color fields. Back analysis of the NSDI trajectories shows
that lower return energy causes the first electron to collide after
multiple returnings. Then, the binary collision causes the electron to
scatter at a small angle after the collision; thus, the momentum

direction of the first electron is unchanged. The final ionmomentum
distribution is wide.

2 Theoretical model

Among many theoretical research methods for describing
double ionization in strong fields, solving the time-dependent
Schrodinger equation is undoubtedly the most accurate [32–36].
However, for multi-electron systems, the computational
requirement of this method is huge [21, 37, 38]. In the past
decades, the classical and semi-classical ensemble models have
been well established [39–44]. Compared with solving the
Schrödinger equation, the classical and semi-classical ensemble
models have some advantages: the amount of corresponding
computation is much less; they can be used to reproduce the
basic dynamic characteristics of the quantized two-electron
system; and the double-ionization track of any atom at any time
can be obtained by backward analysis. It has been proven that these
models are reliable tools for investigating electron dynamics in
strong-field double ionization [45–47]. Thus, in this paper, we
employ the two-dimensional semi-classical ensemble model to
study the electron dynamics of the NSDI using two-color pulses.

In this semi-classical ensemble model, the process of NSDI is
divided into two steps. The first step is the ionization of the first
electron, which is described by the tunneling ionization theory [48].
The second step is the classical motion of two electrons; that is, the
first ionized electron and the second electron in the bound state are
both regarded as classically charged particles that move under the
joint action of the laser field and Coulomb field. The motion of
electrons is determined by the following equation (atomic units are
used throughout until stated otherwise):

d2ri
dt2

� −∇ Vne ri( ) + Vee r1, r2( )[ ] − E t( ), (1)
where the subscript i = 1,2 is the label of the two electrons and E(t) is
the electric field. The electric field of the orthogonal two-color pulse
is written as

E t( ) � f t( ) Ex t( )x̂ + Ey t( )ŷ[ ], (2)

where x̂ and ŷ are the polarization vectors. The pulse envelope f(t)
has a constant amplitude for the first eight cycles and is linearly
turned off with a two-cycle ramp of the 800 nm field. Ex(t) �
Ex0 cos(wt) and Ey(t) � Ey0 cos(2wt + Δϕ), where Δϕ is the
relative phase between the 400 nm and 800 nm fields. w is the
frequency of the 800 nm laser field. Ex0 and Ey0 are the amplitudes
of the 800 nm and 400 nm fields, respectively. Vne(ri) �
−2/ ������

ri2 + a2
√

and Vee(r1, r2) � 1/
������������
(r1 − r2)2 + b2

√
represent the

ion-electron and electron-electron interaction potentials,
respectively. Here, we set a = 1.5 to avoid auto-ionization [24].
The parameter b in the electron–electron interaction potential is not
important as long as it is sufficiently small. In this paper, the
intensity of the 800 nm field is set to be 4.0 × 1014 W/cm2. The
intensity ratio of the 800 nm to 400 nm fields is 40.

The initial state of the first electron is determined by the
tunneling ionization theory, and the weight of each track is
determined by w(t0, vi⊥ 0) � w(t0)w(v⊥0) [49], in which
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w t0( ) � 2 2Ip1( )1/2
E t0( )| |[ ]

2��
2Ip1

√ −1
exp

−2 2Ip1( )3/2
3 E t0( )| |

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (3)

w v⊥0( ) � 1
E t0( )| | exp −v

2
⊥ 0 2Ip1( )1/2
E t0( )| |

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (4)

where w(t0) represents the instantaneous tunneling probability in
the quasistatic approximation and w(v⊥0) is the distribution of
initial transverse velocity v⊥0. Ip1 = −0.58 a.u. is the negative
ionization potential of the first electron.

The initial distribution of the second electron is the regular
ensemble distribution of the ground state for Ar+. After the laser
field, we analyze the energy of two electrons in every trajectory. If the
energy of both electrons is greater than zero, the corresponding atom
is considered to have undergone double ionization.

Here, the first electron is defined as the ionized and returned
electron. Recollision is defined when this distance is less than 3.0 a.u.
after the tunneling of the first electron. The recollision time is
defined as the instant of the closest approach of the two
electrons, and the double ionization time is defined as the instant
when both electrons achieve positive energies. In our calculations,
for almost all of the double ionization events, the closest distance is
less than 2.5 a.u., meaning that double ionization occurs through the
recollision. We have checked that a small change in this criterion
does not influence the final results.

3 Results and discussion

Figure 1A shows the relative yields of Ar2+ as a function of the
relative phase of the two-color laser pulse. It shows that the ratio of
Ar2+ exhibits an oscillating behavior with a period of π. It indicates
that NSDI has indeed been controlled by the orthogonal two-color
laser fields. The distribution shows that the ratio is minimum for
about Δϕ = 0.4π and 1.4π and maximum for about Δϕ = 0.9π and

1.9π. In Figure 1B, we can see that the proportion of events
experiencing single returning (blue triangles) and multiple
returnings (yellow circles) in all double-ionization events also
experiences oscillation changes with a period of π, but they are
in the opposite trend. The proportion of events experiencing single
returning is higher for about Δϕ = 0.6π and 1.6π, but the proportion
of events experiencing multiple returnings is higher for about Δϕ =
0.1π and 1.1π.

Figures 2A,B show the sum of the final energies of two electrons
and the ion momentum distribution along the 800 nm laser
polarization direction after recollision. In Figure 2A, the sum of
the energies of two electrons exhibits an oscillating behavior with a
period of π. For near Δϕ = 0.1π and 1.1π, the energy distribution
exhibits a peak located at 0.5 a.u. For near Δϕ = 0.6π and 1.6π, the
energy distribution extends to about 1.5 a.u. We show the
momentum distribution of the ion along the 800 nm laser
polarization direction as a function of the relative phase in
Figure 2B. The distribution also oscillates with the relative phase,
with a period of π. For about Δϕ = 0.6π and 1.6π, the momentum
distribution exhibits a narrow structure around 0 a.u. However, for
about Δϕ = 0.1π and 1.1π, the distribution exhibits a wide structure.

In order to reveal the corresponding dynamics of electrons in the
two-color fields, we back-trace the classical trajectories and perform
statistical analysis. Figure 3 shows the distributions of the energy of
the bound electron versus the recolliding electron at time 0.02 T1

after recollision at the relative phases Δϕ = 0.6π (Figures 3A–C) and
1.1π (Figures 3B, D). The first line of pictures represents the
trajectories of recollision occurring at the first returning, and the
second line of pictures represents the trajectories of recollision
occurring at later returnings. Here, the energy of each electron is
defined to contain the kinetic energy, the potential energy of the
electron-ion interaction, and half electron–electron potential energy.
Figure 3 shows that the distributions are away from the main
diagonal, indicating asymmetric energy sharing during
recollision. Especially for the trajectories of single-returning

FIGURE 1
(A) Relative yields of Ar2+ as a function of the relative phase of the two-color laser pulse. (B) The proportion of events experiencing single returning
(blue triangles) and multiple returnings (yellow circles) in all double-ionization events as a function of the relative phase of the two-color laser pulse.
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recollision (Figures 3A B), after recollision, the first electron
possesses most of the returning energy. The extremely unequal
energy sharing leads to a recoil collision between the two
electrons [23]. Relatively speaking, for trajectories of multiple
returnings (Figures 3C,D), the asymmetry of energy sharing is
weaker, so binary collision makes a major contribution to double
ionization.

More information on the ionization dynamics can be obtained
from the distributions of the traveling time, the recollision energy of
the first electron, and the sum of the energy of two electrons after
recollision as a function of the relative phase of the two-color laser
pulse in Figures 4A–C. The traveling time is the time difference
between recollision and tunneling of the first electron. Here, it
should be noted that we only consider the NSDI events where

FIGURE 2
Distributions of the sumof the final energies of two electrons (A) and ionmomentumdistribution along the 800 nm laser polarization direction (B) as
a function of the relative phase of the two-color laser pulse.

FIGURE 3
Distributions of the energy of the bound electron versus the recolliding electron at time 0.02 T1 after recollision at the relative phases Δϕ = 0.6π[(A),
(C)] and 1.1π[(B), (D)]. (A, B); (C, D) The events that recollision occurs at the first returning and later returning, respectively.
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FIGURE 4
(A, B)Distributions of the traveling time and the recollision energy of the first electron as a function of the relative phase. (C) The sum of the energies
of two electrons after recollision as a function of the relative phase of the two-color laser pulse.

FIGURE 5
(A, B) Momentum distribution of Ar2+ along the polarization direction of the 800 nm field as a function of the relative phase of the two-color laser
pulse. (C, D)Momentum distribution of Ar2+ along the polarization direction of the 400 nm field as a function of the relative phase of the two-color laser
pulse. The events in the left column and the right column correspond to the blue triangles and yellow circles in Figure 1B, respectively. The white lines
show zero value of momentum.
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tunneling of the first electron occurs within the optical cycle
of −1.0T1 to 0T1 (T1 is the laser cycle of the 800 nm field), and
we find almost all of the events occur through RII (the delay time is
less than 0.15T1). Clearly, the positions of these distributions change
gradually with the relative phases. For example, the window in
Figure 4A located from 0.6T1 to 0.8T1 moves from 0.45T1 to 0.75T1

as Δϕ changes from 0π to 0.5π. It means that the traveling time of the
first electron has been controlled with attosecond accuracy by the
two-color fields. The traveling time distribution shows that for most
of the events, the first electron returns to the nucleus within 0.75T1,
indicating recollision occurs at the first returning of the first
electron. The other population is at about 1.2T1 and 1.85T1,
corresponding to the events where recollision occurs at the
second and third returnings, respectively. Events of the multiple
returnings are rarely distributed for about Δϕ = 0.6π and 1.6π, which
is in good agreement with Figure 1B. This means that with the
orthogonal two-color pulses, electron trajectories with multiple
returnings can be regulated and controlled to make contributions
to double ionization; Figure 4B shows that the recollision energy of
the first electron exhibits a stronger peak located at about 2.7 a.u. and
two weak peaks located at 1.95 a.u. and 1.1 a.u., respectively. In
consideration of the fact that second ionization potential of Ar
is −1.01 a.u. and the sum of the first and second ionization potentials
is −1.59 a.u., we can deduce that the events corresponding to the two
weak peaks of the recollision energy occur through many times of
returning. The energy transmitted during the first returning is not
high enough to induce the ionization of the second electron.

According to the recollision model, the returning electron
possesses the highest energy at the first return and the second
(third) highest energy at the third (fifth) return [50]. Thus, for the
multiple-return trajectory, the first electron needs the second or
even the third return to transfer enough energy to cause ionization
of the second electron. This is more clearly seen in the sum of the
energies of two electrons after recollision, as shown in Figure 4C.
For most of the events, recollision occurs at the first returning, and
the corresponding energy distribution is located at about 2.3 a.u.
For the multiple-returning recollision event, the sum of energy
decreases to 0.35 a.u. at the relative phase change between 0 and
0.4π, 0.8π and 1.4π, or 0.8π and 2.0π. This is the phase range where
multiple returning trajectories make less contribution, indicating
the control of the multiple-returning recollision by the two-color
fields. As a consequence, the relative yield of Ar2+ is higher when
the relative phase is within these ranges, which is consistent with
Figure 1.

Figures 5A–D show the momentum distributions of the ion as a
function of the relative phase. We can see that the momentum of Ar2+

along the polarization direction of the 800 nm field oscillates with a
period of π with the relative phase of the orthogonal two-color field
changing, and the width along the 400 nmdirection is constant with the
relative phase, which is qualitatively consistent with the experimental
results [51]. In Figures 5A,C, we show the NSDI events where
recollision occurs through only one returning along the 800 nm
laser polarization direction and 400 nm laser polarization direction,
respectively. In contrast; Figures 5B,D show the NSDI events that occur

FIGURE 6
Two representative NSDI trajectories of single return and multiple returns (A–C); (D–F). (A, D) Time evolution of the momenta of the two electrons
along the 800 nm laser polarization direction. (B, E) Time evolution of the distance between each electron. (C, F) Time evolution of the energies of the
two electrons. The solid gray curves show the electric field of the 800 nm laser pulse. In (A), (D), (C), and (F), the black arrows indicate the instant of
recollision.

Frontiers in Physics frontiersin.org06

Ma et al. 10.3389/fphy.2023.1177359

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1177359


through multiple-returning recollision along the 800 nm and 400 nm
laser polarization directions, respectively. The distribution of the ion
momentum in the single-returning recollision case is narrower than in
the multiple-returning recollision case. Combined with Figures 4B,C, it
can be easily deduced that for a single-returning recollision case, higher
return energy leads to stronger recollision; thus, the energy sharing
between two electrons is unequal at the instant of recollision. This is
consistent with the recoil collision scenario. However, for the multiple-
returning recollision case, lower return energy causes the momentum
direction of the first electron to remain unchanged before and after the
collision, which corresponds to the binary collision scenario. The binary
collision scenario leads to a broad momentum distribution of Ar2+ [23],
which is shown in Figure 5B.

In Figure 6 we show two representative trajectories to provide an
intuitive picture of the recollision process of NSDI in the orthogonal
two-color laser fields. The trajectories in Figure 6A–C show that the
first electron collides and ionizes at the first returning to the nucleus.
After recollision, the direction of the momentum of the first electron
changes compared with the direction before the recollision in
Figure 6A, which means that the first electron is backscattered by
recoil collision. In Figures 6D–F, the first electron experiences three
times of returning before recollision. Figure 6F shows the first
electron was in an excited state after collision for about 0.13T1

before ionization, which means the recollision energy is low,
resulting in a weak collision, and the scattering angle of the first
electron is very small.

4 Conclusion

In conclusion, we have theoretically studied the correlated
electron dynamics in the orthogonal two-color laser fields. Our
calculations show that the momentum distributions of Ar2+ in the
direction parallel to the 800 nm polarization of the laser field exhibit
a narrow or wide structure, depending on the relative phase of the
two-color fields. The recollision energy of the first electron is
accurately controlled with the two-color fields. Back analysis of
the NSDI trajectories reveals that before recollision, the first electron
with different recollision energies experiences single returning or
multiple returnings, which can be controlled by changing the
relative phase of the two-color field. Thus, trajectories of single
or multiple returnings lead to a recoil collision or binary collision
between two electrons, respectively, resulting in relative-phase-
dependent ion momentum distributions.
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