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Acoustic neuroma is one of the most common tumors in the cerebellopontine 
angle area. Patients with acoustic neuroma have clinical manifestations of 
the cerebellopontine angle occupying syndrome, such as tinnitus, hearing 
impairment and even hearing loss. Acoustic neuromas often grow in the internal 
auditory canal. Neurosurgeons need to observe the lesion contour with the 
help of MRI images, which not only takes a lot of time, but also is easily affected 
by subjective factors. Therefore, the automatic and accurate segmentation 
of acoustic neuroma in cerebellopontine angle on MRI is of great significance 
for surgical treatment and expected rehabilitation. In this paper, an automatic 
segmentation method based on Transformer is proposed, using TransUNet as the 
core model. As some acoustic neuromas are irregular in shape and grow into 
the internal auditory canal, larger receptive fields are thus needed to synthesize 
the features. Therefore, we added Atrous Spatial Pyramid Pooling to CNN, which 
can obtain a larger receptive field without losing too much resolution. Since 
acoustic neuromas often occur in the cerebellopontine angle area with relatively 
fixed position, we  combined channel attention with pixel attention in the up-
sampling stage so as to make our model automatically learn different weights by 
adding the attention mechanism. In addition, we collected 300 MRI sequence 
nuclear resonance images of patients with acoustic neuromas in Tianjin Huanhu 
hospital for training and verification. The ablation experimental results show that 
the proposed method is reasonable and effective. The comparative experimental 
results show that the Dice and Hausdorff 95 metrics of the proposed method 
reach 95.74% and 1.9476 mm respectively, indicating that it is not only superior 
to the classical models such as UNet, PANet, PSPNet, UNet++, and DeepLabv3, 
but also show better performance than the newly-proposed SOTA (state-of-the-
art) models such as CCNet, MANet, BiseNetv2, Swin-Unet, MedT, TransUNet, and 
UCTransNet.
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1. Introduction

Acoustic neuroma is one of the most common tumors in the 
cerebellopontine angle area, accounting for about 85% of the tumors 
in this region. Although these tumors are typically non-life-
threatening, postoperative morbidity can be associated with injury to 
the facial nerve, cochlear nerve, cerebrospinal fluid leaks, and other 
wound complications. Permanent facial paralysis can occur in 3 to 5% 
of cases, and up to 22% of patients may experience cerebrospinal fluid 
leaks (North et al., 2022). Fortunately, the surgical mortality rate is 
low, with less than 1% of cases resulting in death (McClelland et al., 
2011). The main manifestation of acoustic neuroma is the thickening 
of the auditory nerve. Due to the limitation of bone canal, the tumor 
gradually grows to the cerebellopontine angle area with less resistance 
(Ling et al., 2016). The tumor originates from the vestibular part of the 
VIII pair of cranial nerves. The early lesions are small and often grow 
in the internal auditory canal. Neurosurgeons need to use Magnetic 
Resonance Imaging (MRI), which not only takes a lot of time, but also 
is susceptible to subjective factors. Therefore, it is of great significance 
to realize the automatic and accurate segmentation of acoustic 
neuroma. MRI has the characteristics of no bony artifacts, multi-
directional and multi angle imaging, clear anatomical structure and 
high-level resolution for tissues. It can clearly show the size, shape, 
edge contour, peritumoral edema and adjacent structural changes of 
tumor, providing information for the preoperative diagnosis of tumor. 
It has become a preferred method for the examination of space 
occupying lesions in cerebellopontine angle (Xiaoxia et al., 2014).

At present, in the medical field, manual segmentation is mainly 
used in brain tumor segmentation. Manual segmentation is to 
manually outline the tumor area in all tumor MRI image slices. 
Although manual segmentation is accurate, it is time-consuming, 
laborious and subjective, which is not conducive to the timely 
diagnosis and treatment of patients. Therefore, scholars have been 
exploring automatic segmentation methods. In the early stage, people 
mainly focused on traditional segmentation methods, such as 
threshold segmentation (Xiaobo et al., 2019), watershed segmentation 
(Yongzhuo and Shuguang, 2018), region segmentation (Qiulin and 
Xin, 2018). There are also more complex segmentation methods based 
on statistical shape model [6] and graph cut (Corso et  al., 2008). 
Despite the high speed of these segmentation methods, its result 
depends on the parameters specified by the user and the preprocessing 
of MRI images (Lingmei et  al., 2020), which greatly limits its 
generalization ability.

With the rapid development of artificial intelligence in recent 
years, deep learning methods have been successfully applied to the 
field of medical images. Deep learning models solve the problems of 
poor accuracy and strong dependence on data in traditional automatic 
segmentation methods, such as threshold segmentation, region 
segmentation, and clustering segmentation, and have made great 
progress in medical image segmentation. AlexNet (Krizhevsky et al., 
2017), VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy 
et al., 2014), ResNet (He et al., 2016), DenseNet (Huang et al., 2016), 
and other deep and wide network structures have been proposed one 
after another to learn deeper data features. UNet (Ronneberger et al., 
2015) is a network structure proposed by Ronneberger et al. in 2015, 
which was originally applied in the field of biomedical cell 
segmentation. In 2019, Mumtaz et al. used a new method based on 3D 
fully convolutional neural networks (FCNNs; Shelhamer et al., 2016) 

and a 3D level set segmentation algorithm to classify and segment 
colon and rectal cancer. Their accuracy was 0.9378, which was 0.0755 
lower than the previous accuracy of 0.8623 (Soomro et al., 2018). 
Cuixia et al. (2019) discussed and compared various classification 
models for breast tumors using deep learning in 2019 and proposed a 
novel method that combines deep learning features. Deep learning is 
also widely applied in brain tumor segmentation. Thillaikkarasi and 
Saravanan (2019) proposed a brain tumor segmentation algorithm 
using a support vector machine to extract features and CNN 
segmentation in 2019, resulting in an accuracy of 84%. Dong et al. 
(2017) used UNet to segment MRI images of brain tumors and 
achieved good results by splicing feature vectors of the expansion path 
and contraction path through skip connections. Lingmei et al. (2020) 
improved the UNet structure in 2020 and applied it to the 
segmentation of glioma magnetic resonance images. Specifically, they 
used an attention module on the contraction path of UNet to 
distribute weight to convolution layers of different sizes, promoting 
the utilization of spatial and contextual information. Replacing the 
original convolution layer with the residual compact module can 
extract more features and promote network convergence. In 2021, 
Russo et al. (2020) applied a spherical transformation preprocessing 
input training model, which was better than the Descartes input 
training model in predicting glioma tumor core segmentation and 
enhancing tumor category. The two models were combined to further 
improve prediction accuracy.

Undoubtedly, CNN represents a very promising method for image 
processing. However, its convolution operation has limitations, 
especially for samples with large texture differences, resulting in weak 
performance. In recent years, scholars have proposed several solutions 
to address this issue. For instance, Chen et al. (2014) introduced the 
Atrous Spatial Pyramid Pooling (ASPP) module in DeepLabv3+ 
(Chen et al., 2018a) after several generations of improvements (Chen 
et al., 2017, 2018b). The addition of ASPP into CNN enables atrous 
convolution to expand the vision field of the filter without increasing 
computational demand. Therefore, ASPP can obtain feature 
information of different scales without using a pooling layer, 
overcoming the limitations of local information loss caused by grid 
effect and the lack of correlation between long-distance information 
when using a single atrous convolution. Moreover, some studies 
suggest building a self-attention mechanism based on CNN features 
(Wang et al., 2017) as an effective means to solve the limitations of 
convolution operations. This method has also garnered much 
attention in the field of artificial intelligence. For instance, Tian et al. 
(2020) used channel attention in ADNet to accurately extract useful 
information hidden in the complex background. Huang et al. (2020) 
proposed the Criss-cross attention module in CCNet to capture 
contextual information of the complete image. Fan et  al. (2020) 
introduced the self-attention mechanism in 2020 and proposed Multi-
scale Attention Net (MA-Net).

Furthermore, Transformer has emerged as an alternative 
architecture designed for sequence-to-sequence prediction, and its 
success has been widely demonstrated in various fields such as 
machine translation and natural language processing (NLP; Vaswani 
et al., 2017; Devlin et al., 2018). In various image recognition tasks, 
Transformer has proven to reach or even exceed the state-of-the-art 
(Zheng et al., 2020; Dosovitskiy et al., 2021). For example, Chen et al. 
(2021) combined Transformer as a powerful encoder for medical 
image segmentation tasks with UNet in 2021, proposing TransUNet 
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as a powerful alternative for medical image segmentation. Yang et al. 
added an attention mechanism to TransUNet (Yang and Mehrkanoon, 
2022), showing that the combination of attention mechanism and 
TransUNet can optimize the segmentation effect. Subsequently, 
Valanarasu et  al. proposed the MedT (Valanarasu et  al., 2021) 
containing Local–Global (Logo) training strategy based on 
Transformer, which further improved the model’s performance. Cao 
H et al. fused high-resolution features from different scales of the 
encoder by skip connections, and Swin-Unet (Cao et al., 2021) was 
proposed to mitigate the loss of spatial information due to the 
pooling operation.

It is worth noting that acoustic neuromas have different shapes 
and may grow into the inner auditory canal, which is challenging for 
accurate feature extraction. We believe that the combination of ASPP, 
attention mechanism and Transformer can solve this challenge well. 
Therefore, we  propose a novel model called ACP-TransUNet for 
accurate segmentation of acoustic neuromas, with TransUNet as the 
core framework. Specifically, the ASPP module is added to increase 
the receptive field, enabling more accurate and noticeable extraction 
of tumor features during the segmentation process. We  also 
incorporate the CPAT module, which combines channel attention (Jie 
et al., 2019) and pixel attention (Zhao et al., 2020) to better explore 
channel and pixel features of acoustic neuromas while recovering the 
original input image size. The use of feature multiplication between 
attentions enhances the ability of feature representation and improves 
the feature propagation strategy, resulting in higher performance 
under the same computational load (Zhao et al., 2020; e.g., RCAN, 
Zhang et al., 2018; CARN, Ahn et al., 2018). By arranging the channel 
attention and pixel attention sequentially, we  aim to improve the 
feature extraction capability of ACP-TransUNet.

Our main contributions are as follows:

 1. Our proposed ACP TransUNet combines Transformer and 
CNN to capture the global and local features of the 
segmentation target.

 2. In the down-sampling process, the ASPP module is added after 
the convolutional neural network to gain contextual 
information at multiple scales and resolutions.

 3. In the up-sampling process, channel attention and pixel 
attention are used to improve model performance and accuracy 
by weighting important features.

2. Related works

2.1. TransUNet

UNet has become the most commonly used method to accurately 
segment lesions in medical segmentation tasks, and Transformer has 
also become a structural system that replaces the self-attention 
mechanism. TransUNet combines Transformer with UNet as a 
powerful alternative for medical image segmentation, possessing the 
advantages of both. To compensate for the loss of feature resolution due 
to Transformers, TransUNet adopted a hybrid CNN-Transformer 
architecture to exploit the detailed high-resolution spatial information 
of CNN features and the global context encoded by Transformers. 

Inspired by U-Shape, the attention features encoded by Transformers 
are combined with different high-resolution CNN features during 
upsampling to achieve precise localization. This design enables the 
model to preserve the advantages of Transformer and also facilitates 
the segmentation of medical images. On the one hand, Transformer 
encodes the tokenized image patches of the convolutional neural 
network (CNN) feature map as an input sequence for feature 
extraction; on the other hand, the decoder up-sampling the encoded 
features, and then combines them with the feature map in CNN to 
achieve accurate positioning (Chen et al., 2021). Currently, TransUNet 
and its variants have achieved great success in image segmentation. 
Nurçin used TransUNet for the segmentation step of the red blood cells 
to improve the segmentation quality of overlapping cells (Nurçin, 
2022). MS-TransUNet++ (Wang et al., 2022) employed a multi-scale 
and flexible feature fusion scheme between different levels of encoders 
and decoders to achieve competitive performance in prostate MR and 
liver CT image segmentation. Liu et al. proposed an efficient model 
called TransUNet+ (Liu et  al., 2022) through a redesigned skip 
connection, which has achieved promising results in medical image 
segmentation. Wang et al. proposed UCTransNet (Wang et al., 2021), 
which used the CTrans block to replace the skip connection in U-Net 
and obtained a higher segmentation effect. DS-TransUNet (Lin et al., 
2022) applied swin transformer block (Liu et al., 2021) to encoder and 
decoder. This may be the first attempt to combine the advantages of 
layered Swin Transformer into both encoder and decoder of standard 
U-shaped architecture with the aim of improving the segmentation 
quality of different medical images. In TransAttUnet (Chen et  al., 
2021), multilevel guided attention and multiscale skip connection were 
co-developed to effectively improve the functionality and flexibility of 
the traditional U-shaped architecture. Zhao et  al. proposed an 
automatic deep learning pipeline nn-TransUNet (Zhao et al., 2022) for 
cardiac MRI segmentation by combining the experimental planning of 
nn-UNet and the network architecture of TransUNet. EG-TransUNet 
(Pan et  al., 2023) used progressive enhancement module, channel 
spatial attention, and semantic guidance attention to be able to capture 
object variability on different biomedical datasets. In summary, the 
architecture of TransUNet combines the advantages of Transformer 
and CNN, which is not only good for local information extraction, but 
also can explore long-range modeling.

2.2. Channel attention

Channel attention was first proposed in SE-Net and achieved 
excellent performance. In CBAM (Woo et  al., 2018), channel 
attention has been improved significantly. Specifically, channel 
attention compresses the feature of spatial dimension, i.e., each 
two-dimensional feature map becomes a real number, which is 
equivalent to the pooling operation with global receptive field. The 
number of feature channels remains unchanged, and the module 
structure is shown in Figure 1. Channel attention aggregates spatial 
information of feature maps based on global average pooling 
AvgPool F( ) and maximum pooling MaxPool F( )  operations, 
generating two different spatial context descriptors: Favg

c  and Fc
max , 

representing average pool features and maximum pool features, 
respectively. After adding the two feature maps of the multilayer 
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perceptron (MLP), the Sigmoid function is used to generate channel 
feature map, as follows in Eq. (1):

 

M F (MLP AvgPool F

MLP(MaxPool(F)))

W W F W

C

avg
c

( ) = +
=

+

σ
σ

( ( ))

( ( ( ))1 0 11( )))maxFc

  
(1)

where Ã represents the Sigmoid function, W0 and W1 represent the 
two convolution operations, respectively, and Favg

c  and Fc
max  represent 

the average pooling and max pooling, respectively. Sigmoid function can 
map the result to 0–1 with the amplitude unchanged, so we can get the 
weight of each feature point of the input channel feature layer.

In recent years, channel attention has been widely used to solve 
medical challenges. Yuan et al. improved the accuracy of automatic vessel 
segmentation in fundus images by embedding an adaptive channel 
attention module to automatically rank the importance of each feature 
channel (Yuan et al., 2021). Du et al. applied channel attention to the 
automatic segmentation of early gastric cancer (EGC) to extract subtle 
discriminative features of EGC lesions by capturing the interdependence 
between channel features (Du et al., 2023). In addition, channel attention 
paired with other excellent attention mechanisms can also improve the 
quality of super-resolution reconstruction of medical images. Song et al. 
and Zhu et al. obtained high-quality reconstructed images for glioma 
MRI images and lung cancer CT images, respectively (Zhu et al., 2022; 
Song et al., 2023). Therefore, channel attention has great potential in the 
field of medical image processing.

2.3. Pixel attention

The channel attention aims to obtain a 1 1 1D C × ×( )  vector of 
attentional features. In contrast, pixel attention (Zhao et al., 2020) is able 
to generate 3D C H W× ×( ) matrices as attention features. Note that C is 
the number of channels, and H  and W  are the height and width of the 
features, respectively. Specifically, pixel attention generates attention 
coefficients for all pixels of the feature map. As shown in Figure 2, pixel 
attention uses only 1 × 1 convolutional layers and Sigmoid functions to 
obtain the attention map, and then multiplies the attention map with the 
input features, as follows in Eq. (2):

 
M F f FP PA

′ ′( ) = ( )( )×σ 1 1

  
(2)

where Ã represents the Sigmoid function and fPA
1 1×  represents a 

convolution operation with the filter size of 1 1× .
Pixel attention not only reduces the number of parameters, but 

also eliminates unnecessary pooling operations that can lead to image 
smoothing (Tang et  al., 2021). Relying on this advantage, pixel 
attention is widely used in the field of medical images for segmentation 
(Roy et  al., 2022) and super-resolution reconstruction tasks 
(Rajeshwari and Shyamala, 2023).

3. Methods

3.1. Overview

In this section, we  describe our ACP-TransUNet with more 
details. The ACP-TransUNet model proposed in this paper is based 
on the TransUNet (Chen et al., 2021) model, and is improved and 
extended on the basis of the latter, as shown in Figure 3.

Given an input image with resolution H W×  and C number of 
channels, the segmentation map is obtained by down-sampling and 
up-sampling. The down-sampling process consists of five parts, which 
are CNN, ASPP, Image Sequentialization, Patch Embedding, and 
Transformer Layer. The input image is first extracted by CNN layer to 
get the feature map. After that, the ASPP module is used to increase 
the receptive field to obtain a feature map with different scales. Then, 
Hidden Feature and Linear Projection reshape the feature map into 
N flattened 2D patches for Image Sequentialization, with each patch 

of size P P× , 2
H WN

P
′ ′

= , ′H  and ′W  being the length and width of 

each feature map. In order to encode the spatial information of the 

patches, we add positional embedding to the patch embedding to 
preserve the positional information, as follows in Eq. (3):

  
Z x E; x E; x E Ep p p

N
p0

1 2= …



 +;

 
(3)

where E P C D∈ ( )×
2 .  represents the patch embedding projection, xp 

represents the vectorized patch, and EP
N D∈ ×  represents the 

position embedding.
The Transformer (Vaswani et al., 2017) layer is added at the end 

of the down-sampling to obtain the global features, which consists of 

FIGURE 1

Overview of the channel attention structure.
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Multi-head Attention (MSA) and Multi-layer Perceptron (MLP) as 
shown in Eqs. (4) and (5):

 Z MSA LN z zn n n
′

− −= ( )( ) +1 1  (4)

 
Z MLP LN z zn n n= ( )( ) +′ ′

  
(5)

where LN ·( ) denotes the layer normalization operator and zn is the 
encoded image representation.

In the up-sampling process, we added CPAT modules in each 
layer to weight the important features in recovering the image size to 
improve the performance and accuracy of the model.

3.2. ASPP module

Acoustic neuromas vary in shape. Some are irregular in shape 
and grow into the inner auditory canal, while some have clear 
boundary. Therefore, we need a larger receptive field to extract the 
feature of acoustic neuromas. The ordinary convolution structure 
cannot fully extract features, so in this paper we choose to use ASPP 
module to strengthen the ability of the model to segment objects at 

FIGURE 2

Overview of pixel attention structure.

FIGURE 3

Overview of ACP-TransUNet. The input is an acoustic neuroma MRI image, and the output is the corresponding prediction map generated by ACP-
TransUNet.
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different scales. As shown in Figure 4, in this paper, ASPP module is 
equipped in the last layer of CNN, with dilation rate set to 2, 4, 8. 
The rate of atrous convolution is based on the ordinary convolution, 
and the interval between adjacent weights is rate −1. The rate of 
ordinary convolution is defaulted to 1, so the actual size of atrous 
convolution is k k rate+ −( ) −( )1 1 , in which k is the size of the 
original convolution kernel. ASPP overcomes the shortcomings of 
local information loss and lack of correlation in remote information 
caused by grid effect when using single atrous convolution, making 
it possible to obtain different scale feature information without using 
pooling layer.

3.3. CPAT module

Given an intermediate feature map F∈ × ×C H W  as input, CPAT 
module sequentially infers a 1D channel attention map Mc ∈

× ×C 1 1 
and a 3D pixel attention map MP ∈

× ×C H W  as illustrated in 
Figure  5. For the arrangement of attention modules, we  found 
through experiments that the result is better when using two 
sequential attentions than using one attention, which will 

be  discussed in the ablation experiments, as shown in Eqs. (6) 
and (7):

  ′ = ( )⊗F M F Fc  (6)

 ′′ ′ ′= ( )⊗F M F FP   (7)

where ′F  denotes the feature map obtained by channel attention, ′′F  
denotes the feature map obtained by pixel attention, and ⊗ denotes 
element multiplication.

4. Experimental results

In this section, we introduce the details of the experimental data and 
results. In order to verify whether ACP-TransUNet can effectively and 
accurately segment acoustic neuromas, we first performed comparative 
experiments and ablation experiments on all test sets (including coronal 
view, sagittal view, and transverse view). To test the accuracy of the 
model’s segmentation effect in a single view, we  also conducted 

FIGURE 4

Overview of ASPP Module.

FIGURE 5

Overview of CPAT structure. This module has two submodules: channels and pixels, where ⊗ denotes element-wise multiplication. The intermediate 
feature map is adaptively refined through our module (CPAT).
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multi-view evaluation, performing a comparison experiment and 
ablation experiment on the three views separately. The results are 
discussed in detail below. Among them, ACP-TransUNet achieves 
95.74% Dice Similarity Coefficient on the test set, and Hausdorff 95 
reaches 1.9476 mm, which are superior than other models.

4.1. Dataset

We selected MRI images of sagittal view, coronal view and transverse 
view of patients with cerebellopontine angle (CPA) acoustic neuroma 
diagnosed by experts in Tianjin Huanhu Hospital from January 2019 to 
January 2022, with all the patients signing informed consent. The 
scanning equipment we used was Siemens Skyra 3.0 T MRI scanner, 
which could collect magnetic resonance images of multiple sequences. 
However, compared with other sequences, T1WI-SE could better 
distinguish the lesion and its surrounding adjacent tissues. Therefore, this 
paper adopts contrast - enhanced fast low-angle shot 2-dimensional 
sequence (T1_fl2d) with Gd-GDPA. Scanning parameters are as follows: 
slice thickness is 5 mm; slice interval, 1.5 mm; echo time (TE), 2.46 ms; 
repetition time (TR), 220 ms. After screening, a total of 300 magnetic 
resonance images of acoustic neuromas were selected in this paper, in 
which the ratio of training set, verification set and test set is 8: 1: 1 and 
each part has no cross.

4.2. Preprocessing

To avoid the deviation of the experimental results caused by the 
inconsistent data format, the training, verification and test MRI 
images in this paper are all set to the same format. Because the dataset 
is small, to improve the generalization ability of the model, the images 
are subjected to data augmentation processing such as inversion and 
flipping. In order to save training resources, the images are set to 
512 512×  pixels. The gray value visualization of the MRI image is 
shown in Figure 6.

4.3. Experimental setup

In the experiment, the framework we  used was Pytorch, and 
batchsize was set to 4. All networks trained 100 epochs on Nvidia Tesla 
V100 GPU. Specifically, we used a pre-training model (R50 + ViT-B_16) 
that was trained on the ImageNet21k dataset. The pre-training model 
can be found at the following link: https://console.cloud.google.com/
storage/vit_models/. In addition, we use the Adam optimizer (Kingma 
and Ba, 2014) to optimize, the initial learning rate is 10 4− , and use the 
StepLR mechanism to set the learning rate attenuation according to 
epoch. The StepLR mechanism is a way to adjust the learning rate 
during training in machine learning. It reduces the learning rate by a 
certain factor after a fixed number of epochs or iterations. We set the 
“step_size” parameter to 7 and the “gamma” parameter to 0.1, which 
means that the learning rate was reduced by a factor of 0.1 every 7 
epochs. By gradually reducing the learning rate, we aimed to improve 
the convergence of the model and prevent overfitting.

4.4. Evaluation metrics

In order to objectively evaluate the results of different models, this 
paper uses the Dice Similarity Coefficient (Mehta, 2015; Liu et al., 
2020) and Hausdorff 95 (Huttenlocher et al., 1993; Beauchemin et al., 
1998) as representative segmentation performance indicators, which 
measure the similarity and maximum mismatch between the 
segmentation result and the labeling result, respectively. These metrics 
are widely used in medical image segmentation studies and have been 
shown to be effective in evaluating segmentation performance.

4.5. Comparative experiment

To verify the validity of the proposed model, we  compared 
several classical networks such as PANet (Liu et al., 2018), PSPNet 
(Zhao et al., 2016), UNet++ (Zhou et al., 2018), and DeeplabV3 
(Chen et al., 2018a), as well as some emerging networks such as 
CCNet (Huang et al., 2020), MANet (Fan et al., 2020), BiseNetv2 (Yu 
et al., 2021), Swin-Unet (Cao et al., 2021), MedT (Valanarasu et al., 
2021), TransUNet (Chen et al., 2021), and UCTransNet (Wang et al., 
2021), which have shown great performance on segmentation tasks 
in recent years. Table 1 summarizes the comparison results between 
our scheme and these representative networks. For each model, 
we visualized the segmentation effect in the coronal (cor), sagittal 
(sag), and transverse (tra) views, and the results are shown in 
Figure 7.

The results show that ACP-TransUNet achieved the best 
performance on the test set, with a Dice value of 95.74% and a 
Hausdorff 95 value of 1.9476 mm. Compared with the original UNet 
network proposed by Ronneberger et  al. (2015), ACP-TransUNet 
achieved improvements of 1.09% and 2.5506 mm in Dice and 
Hausdorff 95, respectively.

In the comparative experiments, our scheme achieved optimal 
Dice and Hausdorff 95 values, outperforming other network models. 
Specifically, our scheme improved Dice by 2.63% (PSPNet), 2.28% 
(DeepLabv3), 1.08% (UNet++), 1.86% (PANet), 10.42% (CCNet), 
0.79% (MANet), 5.88% (BiseNetv2), 4.28% (Swin-Unet), 2.48% 
(MedT), 0.72% (TransUNet), and 0.68% (UCTransNet), respectively. 
Hausdorff 95 was increased by 1.2669 mm (PSPNet), 2.4962 mm 
(DeepLabv3), 1.8268 mm (UNet++), 2.3923 mm (PANet), 3.3072 mm 
(CCNet), 1.8007 mm (MANet), 3.7427 mm (BiseNetv2), 4.3982 mm 
(Swin-Unet), 2.8318 mm (MedT), 2.0561 mm (TransUNet), and 
2.127 mm (UCTransNet), respectively. The corresponding 
segmentation effect in Figure  7 demonstrates the superior 
performance of ACP-TransUNet.

In comparison experiments, for some regular acoustic neuromas, 
such as the tumor shown in the sagittal view, it can be seen that the 
selected networks can achieve basic segmentation of the tumor except 
for BiseNetv2 and MedT. However, comparing the internal filling and 
boundary of the segmentation map, only ACP-TransUNet is closest 
to Ground Truth; for the part that shows irregular shape and grows 
into the internal auditory canal, as shown in the coronal view, 
PSPNet, PANet, CCNet, BiseNetv2 and MedT cannot well segment 
some tumors growing in the internal auditory canal. Although 
UNet++ and MANet could segment the tumors in the internal 
auditory tract, the segmentation results were inferior to the rest of the 
networks. DeepLabv3, UNet and TransUNet performed comparably 
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to ACP-TransUNet for segmenting the tumors in the internal 
auditory tract, but UCTransNet and ACP-TransUNet outperformed 
the rest of the models in terms of edge detail. However, in the 
transverse (tra), only TransUNet and ACP-TransUNet can well 
segment the acoustic neuroma. We  noticed that the models 
containing Transformer structures (such as MedT, Swin-Unet, 

TransNet, and UCTransNet) were deficient in processing edge details, 
which may be  explained by the limited Transformer localization 
ability caused by insufficient low-level details. After adding the CPAT 
module and ASPP module, the segmentation map edge contours have 
been greatly improved.

4.6. Multi-view evaluation

To further verify the effectiveness of the model, we  conduct 
comparative experiments and ablation experiments on the 
segmentation effects of the coronal, sagittal and transverse views in 
the test set, respectively. The results of the multi-view evaluation in the 
comparative experiments are shown in Table 2.

It can be seen that although the Hausdorff 95 is not as good as 
MANet in the transverse view, our model is generally better than 
other models through the evaluation of dice and Hausdorff 95 
values. Dice values of the coronal view, sagittal view and transverse 
view reached 94.88, 95.45 and 96.45% respectively; and the 
Hausdorff 95 values reached 2.541 mm, 1.4056 mm and 1.902 mm, 
respectively.

4.7. Ablation experiment

To demonstrate the efficacy of the incorporation module, 
we  performed two groups of ablation experiments based on the 
principle of “fixing two items and changing one item.”

FIGURE 6

Gray visualization of MRI images in three directions. a-1, a-2, and a-3 represent coronal, sagittal and transverse MRI images, respectively. b-1, b-2, and 
b-3 are three-dimensional gray-scale visualization images of nuclear magnetic resonance, which represent the corresponding directions. The x-axis 
and y-axis represent the length and width of the image respectively, and the value range is [0, 512]. The z-axis represents the gray value distribution of 
the image, and the value range is [0, 255].

TABLE 1 Results of comparative experiment.

Model Dice (%) Hausdorff 95 (mm)

UNet (2015) 94.65 4.4982

PSPNet (2016) 93.11 3.2145

DeepLabv3 (2017) 93.46 4.4438

UNet++ (2018) 94.66 3.7744

PANet (2018) 93.88 4.3399

CCNet (2020) 85.32 5.2548

MANet (2020) 94.95 3.7483

BiseNetv2 (2021) 89.86 5.6903

Swin-Unet (2021) 91.46 6.3458

MedT (2021) 93.26 4.7794

TransUNet (2021) 95.02 4.0037

UCTransNet (2022) 95.06 4.0746

Ours 95.74 1.9476

Bold font is the best data for each column.
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4.7.1. Ablation experiment of attention module
We examine four different experimental configurations to verify 

the efficacy of adding attention modules, i.e., TransUNet with ASPP 
(TransUNet+ASPP) as the baseline, and further with channel attention 
(TransUNet+ASPP+C), pixel attention (TransUNet+ASPP+P), and 
CPAT module (TransUNet+ASPP+CPAT). Tables 3, 4 show the 
segmentation results for the overall and multiple views, respectively.

From Tables 3, 4, we have some observations as follows.

 1. When we added channel attention to “TransUNet+ASPP,” not 
only the Dice and Hausdorff 95 of “TransUNet+ASPP+C” in 
Table 3 improved by 0.05% and 0.5062 mm, respectively, but 
also the experimental results of multiple views in Table 4 were 
better than those of “TransUNet+ASPP”， which proves the 
effectiveness of adding channel attention.

 2. When we added pixel attention to “TransUNet+ASPP,” the Dice 
and Hausdorff 95 of “TransUNet+ASPP+P” in Table 3 were 
95.52% and 2.4821 mm, respectively, and the experimental 
results in Table  4 were also improved significantly, thereby 
proving that the addition of pixel attention is effective.

 3. The results of “TransUNet+ASPP+CPAT” in Tables 3, 4 are 
significantly better than those of “TransUNet+ASPP+C” and 
“TransUNet+ASPP+P,” demonstrating that the sequential 
connection of channel attention and pixel attention is better 
than using either attention module.

4.7.2. Ablation experiment of ASPP module
To demonstrate the efficacy of the ASPP module, two different 

experimental configurations were studied, i.e., TransUNet with 
CPAT (TransUNet +CPAT) as a baseline and further addition of the 
ASPP module (TransUNet +CPAT+ASPP). Tables 5, 6 show the 
segmentation results for the overall and multiple views, respectively. 
As can be  seen from Table 5, the addition of the ASPP module 
improves the “TransUNet+CPAT+ASPP” Dice and Hausdorff 95 by 
0.2% and 1.5166 mm, respectively. In addition, according to Table 6, 
Hausdorff 95 with “TransUNet +CPAT+ASPP” is excellent in other 
views, although it is lower than “TransUNet +CPAT” in the 
transverse view. The above results prove the efficiency of 
ASPP module.

FIGURE 7

Examples of predictions for each network on acoustic neuromas in comparative experiments.
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5. Discussion

At present, the results of Dice and Hausdorff distance of our 
model in acoustic neuroma segmentation have reached our 
expectations. Given the fact that acoustic neuromas vary in shape--
some with irregular shape and growing into the inner auditory canal, 
while some with clear boundary, we need a larger receptive field to 
extract the feature of acoustic neuromas. As ordinary convolution 
structure cannot fully extract features, we added the ASPP module. 
Furthermore, since acoustic neuromas often occur in the 
cerebellopontine angle area with relatively fixed position, we intended 
to make our model automatically learn the weights at different scales 
by adding the attention mechanism. Therefore, we added the channel 
attention and pixel attention in the up-sampling, so that the channel 
information and pixel information are combined to better explore the 

channel characteristics and pixel characteristics while restoring the 
original input image size. In the comparison experiments, we can see 
that most of the networks with the added Transformer structure 
achieve good results in segmentation of acoustic neuromas, for 
example, the Dice value of these networks is almost equal to that of 
ACP-TransUNet. However, Hausdorff 95 cannot be comparable to 
ACP-TransUNet. which is due to Transformer’s inadequacy to capture 
low-level details and its limited positioning ability. Given that, 
we combined ASPP and attention mechanism to make up for this 
deficiency. In the ablation experiment, it is observed that the 
segmentation performance of the model becomes better and better 
with the addition of ASPP and CPAT modules, proving the 
effectiveness of our choice to add the modules.

However, there are still problems existing in the current work. 
For example, in the multi-view evaluation, we  did not achieve 
desirable segmentation results in the transverse view. The Hausdorff 
95 value of our model in the transverse view is 1.902 mm. That figure 
is inferior to the MANet, which reached 1.8365 mm in the 
comparison experimental. The reasons we believe are of two aspects. 
First, it could be  explained by the relatively low importance of 
channel weight in the down-sampling of acoustic neuromas in the 
transverse view direction. But the addition of pixel attention could 
make all the pixels of the feature map generate attention coefficient, 
which makes up for the disadvantage of using channel attention 
alone. Second, although the addition of ASPP module would increase 
the receptive field, making each convolution output contain a large 
range of information, the information of smaller tumors in the 
transverse view could be lost. Given that, in our future work, we will 
gradually increase the dataset and study the performance changes 
when increasing or decreasing the single direction module. In 
addition, our current research task is to achieve accurate 
segmentation of acoustic neuromas. We hope that the application of 
ACP-TransUNet will not be  limited to acoustic neuromas, so its 
effectiveness in segmenting other medical images will also be the 
focus of our future experimental research.

In our research work, the improvement of the accuracy of 
acoustic neuroma segmentation means that we  need to abandon 
some indicators in some aspects. We have considered trade-offs in 
these issues. First, the addition of ASPP module, attention mechanism 
and deeper transformer layer means longer training time and larger 
model parameters. We believe that the medical segmentation task is 
different from other segmentation tasks that pursue timeliness (such 
as face segmentation). Between lightweight and precision, we prefer 
the latter. Second, since Transformer lacks the inductive bias of 
convolution, it requires more sample size than CNN. Transformer 
needs to learn this kind of information from a large amount of data. 
Considering the precious resources and insufficient data support of 
current medical images, instead of choosing to train from scratch, 
we resort to pre-trained models to achieve the same or even better 
performance than CNN. In the future, we will conduct research for 
Transformer on small-scale datasets.

6. Conclusion

In this paper, we proposed a novel model named ACP-TransUNet 
based on the improved TransUNet structure, with all the data on the 
basis of MRI images. Through deep learning, we realized the automatic 

TABLE 2 Comparative experiment from multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

UNet (2015) 94.16 94.76 94.94 7.6671 1.6476 3.8948

PSPNet 

(2016)

92.3 92.11 94.13 3.454 2.6466 3.4861

DeepLabv3 

(2017)

92.43 93.62 94.11 7.23 1.8961 3.9505

UNet++ 

(2018)

93.12 94.94 95.6 7.0516 1.4254 2.6112

PANet (2018) 93.14 94.03 94.33 7.4731 1.5437 3.7234

CCNet (2020) 90.9 90.15 93.76 8.0307 2.7355 4.7462

MANet 

(2020)

93.83 94.52 95.91 6.8507 2.4254 1.8365

BiseNetv2 

(2021)

89.84 84.93 92.07 8.3099 4.3865 4.2442

Swin-Unet 

(2021)

88.9 89.93 93.8 10.3311 4.7801 3.7695

MedT (2021) 91.52 92.32 94.89 8.2466 3.1183 2.8071

TransUNet 

(2021)

94.31 94.34 95.81 6.7094 2.3035 2.8282

UCTransNet 

(2022)

94.4 94.01 95.99 7.5424 2.6062 1.9285

Ours 94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are 
represented by cor, sag, and tra, respectively.

TABLE 3 Results of ablation experiments with attentional module.

Model Dice (%) Hausdorff 95 
(mm)

TransUNet+ASPP 95.18 4.2574

TransUNet+ASPP+C 95.23 3.7512

TransUNet+ASPP+P 95.52 2.4821

TransUNet+ASPP+CPAT 95.74 1.9476

Bold font is the best data for each column.
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and accurate segmentation of acoustic neuromas in the cerebellopontine 
angle region. Dice and Hausdorff 95 reached 95.74% and 1.9476 mm 
respectively, and the dividing boundary was closer to the gold standard. 
The overall effect of segmentation was significantly improved, which was 
valuable for clinical application and auxiliary physician diagnosis. With 
decreased intervention of human factors, we  greatly improved the 
diagnostic efficiency and reliability. In addition, the ASPP module was 
introduced into ACP-TransUNet, which not only increases the receptive 
field and obtains multi-scale and multi-resolution background 
information, but also makes the features contained in the sequence of the 
imported Transformer more accurate and significant. The CPAT module 
with sequential channel attention and pixel attention is added to the 
upsampling process so that channel information and pixel information 
are combined to improve model performance and accuracy by weighting 
important features. The experimental results show that our model can 
effectively segment acoustic neuroma. Compared with other methods, 
the proposed method has different degrees of performance improvement 
in the segmentation of acoustic neuroma.
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TABLE 4 Results of ablation experiments with attentional module from multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

TransUNet+ASPP 94.18 94.85 95.75 6.2425 1.9845 3.8742

TransUNet+ASPP+C 94.24 94.98 95.91 5.9475 1.4863 2.8431

TransUNet+ASPP+P 94.66 95.05 96.34 5.7424 1.8574 1.9527

TransUNet+ASPP+CPAT 94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are represented by cor, sag, and tra, respectively.

TABLE 5 Results of ablation experiments with ASPP module.

Model Dice (%) Hausdorff 95 (mm)

TransUNet +CPAT 95.54 3.4642

TransUNet +CPAT+ASPP 95.74 1.9476

Bold font is the best data for each column.

TABLE 6 Results of ablation experiments with ASPP module from 
multiple perspectives.

Model Dice (%) Hausdorff 95 (mm)

cor sag tra cor sag tra

TransUNet 

+CPAT

94.68 95.34 96.23 7.0574 1.4682 1.8472

TransUNet 

+CPAT+ASPP

94.88 95.45 96.45 2.541 1.4056 1.902

Bold font is the best data for each column, and the coronal, sagittal, and transverse views are 
represented by cor, sag, and tra, respectively.
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