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Background: Accumulating evidence has suggested that glycometabolism plays

an important role in the pathogenesis of tumorigenesis. However, few studies

have investigated the prognostic values of glycometabolic genes in patients with

osteosarcoma (OS). This study aimed to recognize and establish a glycometabolic

gene signature to forecast the prognosis, and provide therapeutic options for

patients with OS.

Methods: Univariate and multivariate Cox regression, LASSO Cox regression,

overall survival analysis, receiver operating characteristic curve, and nomogram

were adopted to develop the glycometabolic gene signature, and further evaluate

the prognostic values of this signature. Functional analyses including Gene

Ontology (GO), kyoto encyclopedia of genes and genomes analyses (KEGG), gene

set enrichment analysis, single-sample gene set enrichment analysis (ssGSEA),

and competing endogenous RNA (ceRNA) network, were used to explore the

molecular mechanisms of OS and the correlation between immune infiltration

and gene signature. Moreover, these prognostic genes were further validated by

immunohistochemical staining.

Results: A total of four genes including PRKACB, SEPHS2, GPX7, and PFKFB3

were identified for constructing a glycometabolic gene signature which had a

favorable performance in predicting the prognosis of patients with OS. Univariate

and multivariate Cox regression analyses revealed that the risk score was

an independent prognostic factor. Functional analyses indicated that multiple

immune associated biological processes and pathways were enriched in the

low-risk group, while 26 immunocytes were down-regulated in the high-risk

group. The patients in high-risk group showed elevated sensitivity to doxorubicin.

Furthermore, these prognostic genes could directly or indirectly interact with

other 50 genes. A ceRNA regulatory network based on these prognostic genes

was also constructed. The results of immunohistochemical staining showed that

SEPHS2, GPX7, and PFKFB3 were differentially expressed between OS tissues and

adjacent normal tissues.
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Conclusion: The preset study constructed and validated a novel glycometabolic

gene signature which could predict the prognosis of patients with OS, identify

the degree of immune infiltration in tumor microenvironment, and provide

guidance for the selection of chemotherapeutic drugs. These findings may shed

new light on the investigation of molecular mechanisms and comprehensive

treatments for OS.
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1. Introduction

Osteosarcoma (OS) is derived from primitive osteogenic
mesenchymal cells, which is recognized as the most common
type of malignant bone tumor in childhood and adolescence
(1). OS prefers to occur in the metaphysis of long bones,
especially around the knees, and is characterized by high rates
of metastasis and progression (2). With the improvement of
neoadjuvant therapy and surgical resection, more than two-thirds
of patients with localized lesions are likely to achieve long-
term survival (3, 4). However, approximately 30% of the patients
with non-metastasis at diagnosis suffer from lung metastasis after
comprehensive treatments (5). What’s worse, the 5-year survival
rate of the patients with distant metastasis at diagnosis is still
unfavorable, and patients with metastatic OS or chemoresistance
are lacking of the effective therapeutic interventions (6). It is
believed that early detection and intervention is of great importance
to improve the overall survival of patients with OS. Thus, novel
prognostic biomarkers are urgently needed for the diagnosis and
treatment of OS.

Glycometabolism is a universal pathway involved in cell
growth and survival. Normal and non-proliferating cells
obtain energy though oxidative phosphorylation under aerobic
conditions (7). Whereases cancer cells mainly depend on
aerobic glycolysis for adenosine triphosphate (ATP) production
for the requirement of rapid proliferation and invasion, and
display enhanced glucose uptake for the compensation against
the low energy yield of aerobic glycolysis (8, 9). Increasing
studies have shown that elevated glucose uptake and aerobic
glycolysis in cancer cells is associated with distant metastasis
and unfavorable prognosis (10). Recent studies also have
found that dysregulation of glycometabolism is involved
in tumorigenesis and treatment of OS (11–13). Increased
aerobic glycolysis facilitates cell growth, metastasis, and
chemoresistance in OS (14, 15). Targeting aerobic glycolysis
may be an attractive therapeutic option for the treatment of OS
(16, 17). However, the mechanisms of glycometabolic genes in
OS remain largely unknown. Recently, several signatures based
on glycometabolic genes and lncRNAs have been established in
multiple tumors, and these signatures can contribute to elucidate
the association between glycometabolism and prognosis (18–21).
Nevertheless, the study on glycometabolic gene signature in OS
still remains limited.

In this study, we obtained the expression profiles and
corresponding clinical information of OS patients from the
therapeutically applicable research to generate effective treatments
(TARGET) database and the gene expression omnibus (GEO)
database and then constructed a novel glycometabolic gene
signature to predict the clinical outcomes of patients with OS.
Meanwhile, the immune status and chemotherapy drug sensitivity
between high- and low-risk groups were also evaluated. Finally, the
potential mechanisms of these prognostic genes in tumorigenesis
of OS and their up-regulatory network were further investigated.
These findings may provide novel prognostic biomarkers and
molecular mechanisms for the diagnosis and treatment of OS.

2. Materials and methods

2.1. Selection of datasets and data
acquisition

The expression profile and corresponding clinical data of
OS patients were downloaded from the TARGET database (22).1

The dataset includes 85 OS patients with survival information,
which were then randomly separated into training (n = 43) and
testing (n = 42) cohorts at cut-off 5:5. Moreover, the GSE39055
dataset which contains 36 OS patients with survival information
were downloaded from the GEO database2 as a validation cohort.
Furthermore, we extracted 8 glycometabolic gene sets from
the molecular signatures database (MSigDB) (23).3 As shown
in Supplementary Table 1, the entire glycometabolic gene set
contained 291 genes after removing overlapping genes. There were
282 genes left after removing genes whose expression is 0 in 50% of
the samples. The workflow chart of this study is shown in Figure 1.

2.2. Construction and validation of a
glycometabolic gene signature

Univariate Cox analysis was performed to assess the prognostic
value of glycometabolic genes. Genes with a P-value < 0.05

1 https://ocg.cancer.gov/programs/target

2 https://www.ncbi.nlm.nih.gov/

3 http://www.broad.mit.edu/gsea/msigdb
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FIGURE 1

The flowchart of this study.

were considered as potential prognostic genes. Next, the
LASSO regression algorithm was used to construct an optimal
glycometabolic gene signature. The risk score for each patient
was calculated as follows: risk score = ∑n

i=1 βi×Expgene(i), where n
is the number of genes in this prognosis model, β represents the
regression coefficient, and Expgene is the expression level of each
gene. We divided the patients from the training cohort (n = 43)
into high- and low-risk groups based on the median value of the
risk score, that individuals in the high-risk groups suffered from
a lower survival probability and higher risk of death compared to
that in low-risk group. Differences of survival probability between
these two risk groups were assessed using Kaplan–Meier (KM)
curves. Receiver operating characteristic (ROC) curves were used

to evaluate the prognostic capacity of the gene signature. The gene
signature was further tested and validated in the testing (n = 42)
and validation cohort (n = 36), respectively.

2.3. Independent prognostic analysis and
construction of a nomogram

The univariate and multivariate Cox regression analyses were
used to identify independent prognostic factors in the TARGET
dataset. The correlation between risk score and metastasis was
evaluated using chi-squared test. The results of multivariate
regression analysis were used to establish a nomogram to
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predict the 1-, 3-, and 5-year overall survival. Moreover, the
discrimination and accuracy of the nomogram were assessed by
the concordance index (C-index), calibration curves, and decision
curves, respectively.

2.4. Functional enrichment analysis

The “limma” package was used to analyze differentially
expressed genes (DEGs) between the high- and low-risk groups in
the TARGET dataset. Gene set enrichment analysis (GSEA) was
performed to determine the biological functions of DEGs. Gene
Ontology (GO) and kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analyses were performed using the
ClusterProfiler package (24, 25). Moreover, we also explored the
single-sample GSEA (ssGSEA) scores between the high- and low-
risk groups based on gene expression profiles involved in the top 10
GO and KEGG terms.

2.5. Analysis of immune infiltration

To analyze the differences in the proportion of 28 immunocytes
between the high- and low-risk groups, ssGSEA was performed
using TARGET dataset (26). We also investigated the correlation
between the proportion of the 28 immunocytes and prognostic
genes. Tumor immune infiltration scores including immune score,
stromal score, ESTIMATE score, and tumorpurity were assessed
using the “estimate” and “limma” packages.

2.6. Drug sensitivity analysis

The R package “pRRophetic” was used to calculate the half-
maximal inhibitory concentration (IC50) of chemotherapy drugs,
and the Wilcoxon signed-rank test was employed to compare the
differences of IC50 between the high- and low-risk groups.

2.7. Protein-protein interaction (PPI)
network

To explore the interactions among these prognostic genes, a
PPI network was constructed using the online tool search tool
for the retrieval of interacting genes (STRING) database (27).
Furthermore, a plug-in of Cytoscape software (version 1.6.20),
molecular complex detection (MCODE), was used to screen the
significant modules in the PPI network (28).

2.8. Construction of a ceRNA network

MiRNAs that can regulate prognostic genes were predicted
based on miRanda software. Then, lncRNAs that can regulate
the predicted miRNAs were predicted through miRanda software.
To improve the accuracy of the competing endogenous RNA
(ceRNA) network, we further screened the results using the

following criteria: combined score > 200 was set as the screening
criteria of lncRNA-miRNA interactions, combined score > 200
and minimum free energy (MFE) score < −200 were set as the
screening criteria of miRNA-gene interactions. Finally, a ceRNA
network was constructed using Cytoscape.

2.9. OS samples and
immunohistochemical staining

This study was approved by the Ethics Committee of
Affiliated Hospital of Guizhou Medical University (No. GZYD003-
201753035). The tumor samples and corresponding adjacent
normal tissues were obtained from the patients who were
diagnosed with OS. All the clinical information of patients
were shown in Supplementary Table 2. Human samples were
fixed with 4% paraformaldehyde, embedded in paraffin, and
sliced into 5-µm sections. Sections were deparaffinized in xylene,
hydrated with a graded ethanol series at room temperature.
Next, sections were treated with 3% H2O2 to block endogenous
peroxidase activity, and then blocked with 5% bull serum
albumin (BSA) for 30 min at room temperature. The specimens
were incubated with the appropriate primary antibodies at 4
◦C overnight and incubated with goat anti-rabbit secondary
antibodies (1:200, Proteintech, Wuhan, China, SA00001-2) at
37 ◦C for 2 h at room temperature. Primary antibodies used
in this experiment included antibodies against PRKACB (1:200,
Proteintech, 12232-1-AP), SEPHS2 (1:200, Proteintech, 14109-1-
AP), GPX7 (1:200, Proteintech, 13501-1-AP), and PFKFB3 (1:200,
Proteintech, 13763-1-AP). The DAB substrate system (Solarbio,
China) was used for color development, and hematoxylin staining
was used to reveal the cell nuclei. Images were obtained under a
light microscope.

2.10. Statistical analysis

All the above analyses were completed by the R software
(Version 4.0.5). A time-dependent ROC analysis was performed
by the “pROC” package (29). Chi-squared test was used to explore
the correlation between risk score and metastasis of OS. And a
nomogram was constructed by the “rms” packages. Results with a
P-value< 0.05 were considered as statistical significance.

3. Results

3.1. Construction of a glycometabolic
gene signature in OS

In order to establish a glycometabolic gene signature, we
identified 19 glycometabolic genes which were significantly
associated with the overall survival of the patients with
OS in the training cohort using univariate Cox regression
analysis (Figure 2A). Subsequently, LASSO Cox regression
analysis was performed to screen candidate genes for
constructing the gene signature. The results indicated that
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4 glycometabolic genes, including protein kinase CAMP-
activated catalytic subunit beta (PRKACB), selenophosphate
synthetase 2 (SEPHS2), glutathione peroxidase 7 (GPX7),
and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), were identified according to the optimum penalty
parameter (λ) value (Figures 2B, C). The coefficient of each
candidate gene is shown in Figure 2D. Combining the gene
expression with corresponding regression coefficient, a risk score
model was then established using a formula as follows: risk
score = expression level of PRKACB× (−0.10894429) + expression
level of SEPHS2 × (−0.01563243) + expression level of
GPX7 × 0.32559346 + expression level of PFKFB3 × 0.55009921.
According to the median value of the risk scores, the patients in
the training cohort were divided into high- (n = 21) and low-risk
group (n = 22). The expression of GPX7 and PFKFB3 had a positive
correlation with risk scores, while the expression of SEPHS2 and
PRKACB was negatively associated with risk scores (Figure 2E).
However, the expression of these four genes was not associated
with age and gender. As shown in Figure 2F, the patients with
high-risk scores seemed to have high mortality rates and shorter
survival time than those with low-risk scores. Similarly, the KM
curves showed that patients in the low-risk group had a better
clinical prognosis than those in the high-risk group (Figure 2G).
Furthermore, the respective area under the ROC curve (AUC) of
1-, 2-, 3-, 4- and 5-year survival was 0.904, 0.939, 0.900, 0.900, and
0.919, suggesting that this glycometabolic gene signature showed a
favorable prognostic value of overall survival (Figure 2H).

3.2. Validation of the glycometabolic
gene signature

According to the median value of the risk scores, the 42 patients
in the testing cohort were equally separated into high- and low-risk
groups. The heatmap visualized the expression of GPX7, PFKFB3,
SEPHS2, and PRKACB in high- and low-risk groups. The results
showed that the expression patterns of these 4 prognostic genes in
testing cohort were similar to that in training cohort (Figure 3A).
The risk scatter plots and KM survival analysis also indicated that
the patients with high-risk scores had worse prognoses than those
with low-risk scores (Figures 3B, C). The AUC was 0.687 at 1-
year, 0.730 at 2-year, 0.729 at 3-year, 0.729 at 4-year, and 0.718
at 5-year (Figure 3D). In order to verify the robustness of this
prognostic signature, GSE39055 which contains 36 OS patients
was used as an external validation cohort. The risk score of each
patient in validation cohort was calculated using the same formula
determined in training cohort. The 36 patients in the validation
cohort were equally separated into high- and low-risk groups. The
expression patterns of these 4 prognostic genes were depicted on
the heatmap which also showed similarity to that in training cohort
(Figure 3E). As shown in Figures 3F, G, poor prognosis was found
in patients with high-risk scores, and the percentages of dead
patients were 50% (9/18) and 5.6% (1/18) in the high- and low-risk
groups, respectively. The respective AUC was 0.907, 0.825, 0.743,
0.743 and 0.743 for 1, 2-, 3-, 4-, and 5-years survival (Figure 3H).
All these results indicated that this glycometabolic gene signature
had a robust performance in predicting the prognosis of patients
with OS.

3.3. Independent prognostic value of the
glycometabolic gene signature and
construction of a nomogram

We firstly analyzed the correlation between risk score and
metastasis. The results revealed that the proportion of individuals
with metastasis in the high-risk group was more than that in
low-risk group (Supplementary Figure 1). To further assess the
independent prognostic value of the glycometabolic gene signature,
we conducted univariate and multivariate Cox regression analyses
based on the risk score and clinical characteristics in TARGET
dataset. Univariate Cox regression analysis identified that the
risk score could serve as a survival related variable (Figure 4A).
Subsequently, multivariate Cox regression analysis was used to
determine the independent prognostic value of the risk score,
and the results showed that the risk score was an independent
prognostic factor (Figure 4B). Thus, these results demonstrated
that the risk score was significantly associated with metastasis, and
could serve as an independent prognostic factor for patients with
OS.

Besides, to better provide an applicable quantitative tool for
clinic practice, we constructed a new nomogram based on the
independent prognostic factor to predict the prognosis of patients
with OS in TARGET dataset at different years after diagnosis. Then,
total points of each patient could be calculated according to the
survival rate at 1, 3-, and 5-years (Figure 5A). The results showed
that the overall survival of patients at 1, 3-, and 5-years reduced
along with the increase of total scores. The C-index was 0.76 and
the calibration curve was similar to the ideal curve (Figure 5B).
Furthermore, decision curves were drawn to assess the clinical
utility of the risk score model. The results showed that the risk
score model could yield more net benefit for predicting the 5-
year survival rates than both treat-all and treat-none strategies
(Figure 5C). All these findings indicated that the nomogram
showed favorable predictive ability and application value.

3.4. The expression of prognostic genes
and their prognostic values

In order to understand the prognostic values of these four
glycometabolic genes, we firstly investigated the expression of each
gene between high- and low-risk groups in TARGET dataset.
The expression of PFKFB3 and GPX7 was upregulated while the
expression of PRKACB and SEPHS2 was downregulated in high-
risk group when compared to that in low-risk group (Figure 6A).
The expression trends of these prognostic genes in validation
cohort were similar to that in TARGET dataset except for SEPHS2
(Figure 6B). Then the prognostic values of glycometabolic genes
were evaluated in TARGET dataset. As a result, the elevated
expression of PRKACB was associated with favorable clinical
outcomes (Figure 6C), whereas the patients with high expression of
GPX7 had poorer prognosis (Figure 6E). Nevertheless, there was no
distinct difference between the expression level and overall survival
in terms of SEPHS2 and PFKFB3 (Figures 6D, F). These findings
showed that glycometabolic genes including PRKACB and GPX7
were significantly correlated with the prognosis of patients with OS.
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FIGURE 2

Construction of a glycometabolic gene signature in the training cohort. (A) Univariate Cox regression analysis of glycometabolic genes. (B) LASSO
Cox regression analysis of glycometabolic genes. (C) Selection of the optimal penalty parameter for LASSO Cox regression. (D) Coefficients of the
four glycometabolic genes though LASSO Cox regression. (E) Heat map visualizing the expression of the four glycometabolic genes between risk
groups. (F) The scatter plot of patients’ risk score and survival time. (G) Kaplan–Meier curves of patients in low- and high-risk groups.
(H) Time-dependent ROC curves of 1-, 2-, 3-, 4-, and 5-years survival.

3.5. Functional enrichment analyses of
DEGs based on risk score

In order to understand the potential biological functions,
the DEGs based on risk score were explored in the TARGET
dataset. As shown in Supplementary Table 3, a total of 940 DEGs
including 336 upregulated genes and 604 downregulated genes
were identified between risk groups. Subsequently, we conducted
GSEA to explore the discrepancies of biological processes and
pathways between two risk groups. The results of GO enrichment

analysis indicated that DEGs were enriched in multiple biological
processes including activation of innate immune response, adaptive
immune response, antigen processing and presentation, and
antigen receptor-mediated signaling pathway (Supplementary
Table 4). The top 10 enriched biological processes are shown in
Figure 7A. Results from KEGG analysis showed that the DEGs
were mainly involved in allograft rejection, antigen processing and
presentation, autoimmune thyroid disease, chemokine signaling
pathway, complement and coagulation cascades, and cytokine-
cytokine receptor interaction (Supplementary Table 5). The top
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FIGURE 3

Validation of the glycometabolic gene signature in testing and validation cohorts. (A) Heat map visualizing the expression of the four glycometabolic
genes between risk groups in testing cohort. (B) The scatter plot of patients’ risk score and survival time in testing cohort. (C) Kaplan–Meier curves
of patients in testing cohort. (D) Time-dependent ROC curves of 1-, 2-, 3-, 4-, and 5-years survival in testing cohort. (E) Heat map visualizing the
expression of the four glycometabolic genes between risk groups in validation cohort. (F) The scatter plot of patients’ risk score and survival time in
validation cohort. (G) Kaplan–Meier curves of patients in validation cohort. (H) Time-dependent ROC curves of 1-, 2-, 3-, 4-, and 5-years survival in
validation cohort.

10 enriched pathways are shown in Figure 7B. The above results
suggested that these DEGs were involved in various immune
related processes and pathways, indicating widespread correlation
between glycometabolism and immune status. In addition, we
further calculated the scores of each biological process and
pathway in each patient using ssGSEA. The heatmaps depicted
the top 10 biological processes and pathways with significant
differences of scores between the two risk groups, respectively
(Figures 7C, D). The results revealed that several immune
related processes and pathways were downregulated in high-risk
group.

3.6. Evaluation of immune
microenvironment characteristics
between risk groups

In order to further evaluate the correlation between immune
and the glycometabolic gene signature, we next carried out
ssGSEA to analyze the immune infiltration in TARGET dataset.
As shown in Figure 8A, the heatmap described the abundance
of 28 immunocytes between the two risk groups. A total of 26
immunocytes were significantly decreased in the patients with
high-risk scores in comparison to the patients with low-risk

Frontiers in Medicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2023.1115759
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1115759 May 18, 2023 Time: 13:0 # 8

Wang et al. 10.3389/fmed.2023.1115759

FIGURE 4

Independent prognostic value of glycometabolic gene signature. (A) Univariate Cox regression analysis and (B) multivariate Cox regression analysis
of the correlations between prognosis and age, gender, and risk score.

FIGURE 5

Construction of a nomogram based on risk score. (A) A nomogram for predicting 1/3/5-year survival rates of OS patients. (B) 1/3/5-year calibration
curves of the nomogram. (C) Decision curve of the risk score.
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FIGURE 6

The expression of the prognostic genes and their prognostic values. (A) The expression of the prognostic genes in TARGET dataset. (B) The
expression of the prognostic genes in validation cohort. (C–F) The Kaplan–Meier curves for overall survival of osteosarcoma patients in the high and
low PRKACB (C), SEPHS2 (D), GPX7 (E), and PFKFB3 (F) expression groups from the TARGET dataset.

scores (Figure 8B). Higher level of Type 17 T helper cell was
found in low-risk group while there was no significant difference
between the two risk groups. Moreover, the immune infiltration
scores and tumorpurity were also assessed between two risk
groups. As shown in Figures 8C–F, the immune score, stromal
score, and ESTIMATE score were higher while the tumorpurity

was lower in low-risk group when compared to those in high-
risk group. Besides, the correlation between these 4 prognostic
genes and the immunocytes was further analyzed. The results
showed that the SEPHS2 was positively correlated with 14 immune
cells, PRKACB was positively correlated with 17 immune cells,
GPX7 was negatively correlated with 11 immune cells, and
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FIGURE 7

Functional enrichment analyses of DEGs between risk groups. (A) The top 10 GO terms enriched in the low-risk group using GSEA analysis. (B) The
top 10 KEGG terms enriched in the low-risk group using GSEA analysis. (C) Heatmap of the top 10 GO terms between risk groups using ssGSEA
analysis. (D) Heatmap of the top 10 KEGG terms between risk groups using ssGSEA analysis.

PFKFB3 was negatively correlated with 2 immune cells, respectively
(Figure 8G).

3.7. Analysis of chemotherapy drugs
sensitivity between risk groups

The IC50 values of chemotherapy drugs were compared in
order to provide treatment options for patients with OS. The
IC50 values of cisplatin, methotrexate, and paclitaxel showed no
significance between two risk groups (Figures 9A–C). Significantly,
the IC50 value of doxorubicin was lower in high-risk group,
suggesting that the patients in high-risk group may be more
sensitive to doxorubicin (Figure 9D).

3.8. Functions of prognostic genes and
their regulatory mechanisms

Both GO and KEGG analyses were performed to further
identify the potential biological functions of these 4 prognostic
genes. Several glycometabolism related biological processes such
as fructose metabolic process, and carbohydrate phosphorylation
were enriched (Figure 10A). KEGG analyses showed that these 4
genes were related to the pathway of thyroid hormone synthesis,
fructose and mannose metabolism, and hedgehog signaling
pathway (Figure 10B). In the PPI network, we found that these
4 prognostic genes could directly or indirectly interact with other
50 genes (Figure 10C). Furthermore, a lncRNA-miRNA-mRNA

regulatory networks was conducted to identify the lncRNAs and
miRNAs regulating the expression of prognostic genes. Finally,
a ceRNA network composed by 4 glycometabolic genes, 148
miRNAs, and 91 lncRNAs, were identified (Figure 10D and
Supplementary Table 6).

3.9. Validation the expression of
prognostic genes in OS tissues

The expression of these 4 prognostic genes were verified using
immunohistochemistry (Figure 11). It was shown that GPX7 and
PFKFB3 were up-regulated, and SEPHS2 was down-regulated in OS
tissues in comparison to those in adjacent normal tissues. However,
the expression of PRKACB appeared to be no significant difference
between OS tissue and adjacent normal tissue. These findings
indicated that GPX7, PFKFB3, and SEPHS2 may play critical roles
in the development of OS.

4. Discussion

Glycometabolism in tumor cells is characterized by the
enhanced glucose uptake and aerobic glycolysis (30). Aerobic
glycolysis allows the conversion of glucose into pyruvate eventually
contributing to the production of lactate. This energy metabolic
reprogramming promotes energy generation and thus facilitates
the proliferation, invasion, and chemoresistance of OS cells
(31). Several factors, including glycolytic enzymes (e.g., GLUT1),
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FIGURE 8

Evaluation the differences of immune microenvironment between risk groups. (A) Heatmap of immune cell populations between risk groups.
(B) Proportion of immune cell subpopulations between risk groups. (C–F) Immune scores (C), stromal score (D), ESTIMATE score (E), and
tumorpurity score (F) between risk groups. (G) Heatmap visualizing the correlation between the four prognostic genes and immune cell
subpopulations.

oncogenes (e.g., KRT17), transcription factors (e.g., HIF1α),
tumor suppressors (e.g., p53), and related signaling pathways,
have been reported to regulate the glycometabolism of OS cells
(32–34). Deep insight into these factors may help to formulate
therapeutic strategies. In this study, a total of 4 glycometabolism
related prognostic genes, including PRKACB, SEPHS2, GPX7,
and PFKFB3, were identified using the univariate Cox regression
analysis followed by a LASSO regression analysis. Then a
glycometabolic gene signature was established based on these

genes. Further analysis showed that the glycometabolic gene
signature had a good performance and application value in
predicting the prognosis of patients with OS. Meanwhile, this
prognostic signature was significantly associated with immune
microenvironment, and could provide options for the application
of chemotherapy drugs. Functional enrichment showed that these 4
genes were enriched in multiple biological processes and pathways
which have been demonstrated involving in the pathogenesis of OS.
PPI and ceRNA network revealed that these 4 prognostic genes
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FIGURE 9

Comparation the differences of chemotherapy drug sensitivity between risk groups. (A) Cisplatin. (B) Methotrexate. (C) Paclitaxel. (D) Doxorubicin.
The differences were assessed by Wilcoxon tests.

could interact with several genes, and their expression might be
regulated by a variety of miRNAs and lncRNAs. These findings
indicated that the novel glycometabolic gene signature may serve
as a new diagnostic biomarker, and have the potential to predict
the prognosis of patients with OS, which also may shed new light
on the underlying mechanisms of OS from the perspective of
glycometabolism.

Osteosarcoma (OS) is one of the highly aggressive tumors
with high rates of metastasis and recurrence (1). The development
of biomarkers for early diagnosis and predicting prognosis will
facilitate the comprehensive treatment of patients with OS (35).
Recently, several gene signatures have been established from
different perspectives which could serve as diagnostic biomarkers
and predict the prognosis of OS. These prognostic signatures
can be divided into several categories, including immune related
gene signatures (36, 37), hypoxic gene signatures (38, 39), cell
death related gene signature (40–43), noncoding RNA related

prognostic signatures (44, 45), epigenetics related gene signatures
(46, 47), and metastasis associated gene signatures (48, 49). In
addition, some metabolism related prognostic signatures have also
been developed (50, 51). Glycometabolism, as one of the most
important metabolic pathways in tumor, is of great importance to
the initiation and progression of OS (10). Previous studies have
showed that glycolysis related gene signatures are able to predict
the prognosis of patients undergoing OS (52, 53). It is well known
that the acquisition of energy in tumor cells also depends on
oxidative phosphorylation (10). Hence, comprehensive analysis the
roles of glycometabolism related genes will be more helpful to
elucidate the correlation between glycometabolism and OS. In this
study, we identified a novel prognostic gene signature based on
4 glycometabolic genes including PRKACB, SEPHS2, GPX7, and
PFKFB3. Comprehensive analyses such as KM survival analysis,
ROC curve, and nomogram indicated that this gene signature was
robust and had a good performance in predicting the prognosis
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FIGURE 10

Functional analyses of prognostic genes. (A) Biological processes of GO functional analysis. (B) KEGG pathway analysis. (C) Protein-protein
interaction network. (D) ceRNA regulatory network.

of patients with OS. These findings may enrich the study on the
association between glycometabolic genes and the prognosis of OS.

In current study, bioinformatics analysis showed these 4
glycometabolic genes were differentially expressed between high-
and low- risk groups. Significantly, the results of IHC staining
also indicated the distinct difference of prognostic genes including
SEPHS2, GPX7, and PFKFB3 between tumor and adjacent normal
tissues. Hence, we speculate these glycometabolic genes may
play critical roles in the occurrence, and development of OS.
However, due to the small sample size of OS tumor tissues
included in this study, we failed to observe the significant difference
of PRKACB between tumor and adjacent normal tissues. What
is more, increasing studies have investigated their roles in the
tumorigenesis. For instance, Lower PRKACB expression was found
in tumor tissues and significantly associated with unfavorable
overall survival in patients with colorectal carcinoma (54). It was
shown that SEPHS2 was elevated in breast tumor samples, and
its overexpression was correlated with advanced tumor grade,
suggesting that SEPHS2 may serve as a prognostic marker and
therapeutic target for patients with breast cancer (55). GPX7
is a member of the glutathione peroxidase (GPx) family with
weak GPx activity (56). GPX7 has been confirmed to inhibit
tumorigenesis, and may function as a tumor suppressor in multiple
tumors (57, 58). PFKFB3, as a key regulator of glycolysis, has been
implicated in tumorigenesis, angiogenesis chemoresistance, and
tumor microenvironment (59). Furthermore, it was shown that
upregulated PFKFB3 could accelerate cell growth and metastasis,

which may be a potential biomarker for OS (60, 61). Taking
together, it is believed that the prognostic value of this signature
may be attributed to the potential impacts of these glycometabolic
genes to the tumorigenesis of OS.

The tumor immune microenvironment has long been shown
to be strongly correlated with tumor development, recurrence
and metastasis (62). Previous studies have suggested that
Warburg effect participates in immunomodulation in the tumor
microenvironment, and promotes immune evasion by against
macrophage immunosurveillance (63, 64). However, little is known
about the association between glycometabolism and immune
microenvironment in OS. Herein, GSEA was performed and
found that DEGs were enriched several immune related biological
functions and pathways, such as in activation of innate immune
response, adaptive immune response, antigen processing and
presentation, natural killer (NK) cell mediated cytotoxicity, T
cell receptor signaling pathway, and B cell receptor signaling
pathway. ssGSEA analysis was conducted to further determine the
correlations between glycometabolism and immune infiltration.
The ssGSEA results indicated that a total of 26 immunocytes,
including activated B cell, activated CD8 T cell, NK cell, and
activated dendritic cell, were lower infiltration in high-risk OS
samples than that in low-risk OS samples. Further analysis showed
that significant links were found between these 4 glycometabolic
genes and multiple immunocytes. Among these cells, NK cells,
as a type of lymphocytes of the innate immune system, are
able to recognize OS cells, release cytokines, and induce the cell
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FIGURE 11

Validation the expression of prognostic genes in OS tissues. The immunohistochemical staining was performed to detect the expression of PRKACB,
SEPHS2, GPX7, and PFKFB3 between OS tissues and the corresponding adjacent tissues (magnification 20 and 40×).

lysis via multiple mechanisms (65). Enhancing NK cell-versus-OS
effect has become a promising treatment for OS (66). Dendritic
cells (DCs) are known as the central regulators of the adaptive
immune response, and are essential for T cell mediated cancer
immunity. It has been demonstrated that OS immunotherapy using
a DCs-fused tumor vaccine could significantly facilitate T cells
proliferation, and promote the tumor-cytotoxic activity of cytotoxic
T cells (67). The combination of DCs and anti-glucocorticoid-
induced tumor necrosis factor receptor antibodies had the ability
to enhance systemic immune responses, and inhibit primary OS
growth (68). In addition, we found that the decrease in immune
score, stromal score, and ESTIMATE score while the increase in
tumorpurity was detected in high-risk group. Stromal cells and
immune cells are considered as the main components of tumor
microenvironment, which is essential for tumorigenesis, invasion
and immune infiltration (69). The increase of both stromal cells and
immune cells in tumor environment facilitates immune resistance
and immune escape, and the OS patients with higher stromal
and immune scores may be appropriate for immune checkpoint
inhibitor treatment (70, 71). Hence, these findings indicated
that the patients with low- risk scores may obtain more benefit
from immune checkpoint inhibitor treatment. Taking together,
this glycometabolic gene signature may contribute to estimate
the immune microenvironment of OS samples, and thus help
formulate individualized anti-tumor immunotherapies.

It is known that 4 agents, including cisplatin, methotrexate,
paclitaxel, and doxorubicin, are regarded as the first-line
chemotherapy drug regarding OS treatment. Nevertheless,
numerous studies have found that the resistance to these drugs can

lead to unfavorable outcomes of patients with OS (72). Currently,
the prediction of the responses to chemotherapies is still limited
by lack of effective biomarkers. In present study, we investigated
the drug sensitivity between two risk groups, and the results
showed that the patients in high-risk group were more sensitive
to doxorubicin. As mentioned above, an increase of tumorpurity
score was found in high-risk group, indicating that there were
much more OS tumor cells in high-risk samples when compared
to that in low-risk samples. Meanwhile, the correlation between
risk scores and metastasis suggested that higher proportion
of patients with metastasis was found in high-risk group in
comparation to that in low-risk group. Hence, we speculate that
the patients with high tumorpurity score or metastatic OS may
be more effective to the chemotherapy with doxorubicin. These
findings indicated that the risk score model may help guide the
selection of chemotherapy drugs. Although multiple studies have
demonstrated the pharmacological effect on OS treatment, it is
necessary to conduct large sample size of cohort study to explore
the clinical effectiveness of doxorubicin for the patients with
high-risk scores.

What is more, we also tried to identify more details about
these 4 prognostic genes in the pathogenesis of OS. GO functional
and KEGG analyses showed that these 4 prognostic genes
were enriched in the biological processes of fructose metabolic
process, carbohydrate phosphorylation, and the pathways of
thyroid hormone synthesis, fructose and mannose metabolism,
and hedgehog signaling pathway. These biological processes and
pathways may participate in the regulation of glycometabolism
in OS. The PPI network suggested that these 4 prognostic genes
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were able to directly or indirectly interact with other 50 genes.
Some of these genes have been shown involving the initiation and
progression of OS. For instance, Wang and Sun (73) demonstrated
that inhibition of FOXO1 was able to suppress both proliferation
and metastases in OS cells, indicating that FOXO1 may be a
potential target for the treatment of OS. In addition, CREB1
could lead to OS progression and metastasis through promoting
epithelial-mesenchymal transition (74). Hence, deeper insight into
these genes in the network may help uncover the underlying
mechanisms of these 4 prognostic genes in the development
of OS. CeRNA network is regarded to be a prevalent form of
post-transcriptional regulation of gene expression in mammals
(75). Message RNA (mRNA), long non-coding RNA (lncRNA),
pseudogene, and circular RNA (circRNA) can affect the stability
or translation activity of target RNAs by competitive combination
with microRNA (miRNA). Increasing studies have confirmed that
ceRNA regulatory network is widely involved in the occurrence
and development of OS (76). To further understand the upstream
mechanisms of prognostic genes, a ceRNA network was performed
to identify the target miRNAs and the corresponding lncRNAs.
The results showed that a total of 148 miRNAs and 91 lncRNAs
were linked with these four prognostic genes. These findings may
facilitate a better understanding of these 4 prognostic genes in the
pathogenesis of OS.

Some limitations of this study should be interpreted. First,
both training cohort and testing cohorts used in current study
contain relatively small sample size. Meanwhile, some clinical
features including tumor size and grade of OS patients are missing
in TARGET dataset. Hence, we did not perform stratification
analysis to investigate the correlations between risk score and
tumor size and grade. Second, due to limited clinical tumor
samples used in current study, we failed to find distinct difference
of PRKACB between tumor and adjacent normal tissues. Given
that low expression of PRKACB has been demonstrated leading
to unfavorable clinical outcomes in patients undergoing breast
cancer and colorectal carcinoma (54, 77), we speculate that the
low expression of PRKACB may contribute to the occurrence
and development of OS, thereby bringing about inferior clinical
outcomes. However, no studies have reported the functions of
these prognostic genes including PRKACB, SEPHS2, and GPX7 in
the pathogenesis of OS. Therefore, more OS tumor samples and
multiple OS cell lines should be applied to determine the expression
of these prognostic genes and their roles in the tumorigenesis of OS.

In summary, our research identified a novel signature based on
four glycometabolic genes, and constructed a risk score model that
can predict the survival, immune infiltration, and chemosensitivity
of patients with OS. These findings may provide new insights into
the role of glycometabolic genes in the molecular mechanisms of
OS, and help develop novel diagnostic and therapeutic strategies.
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