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Chronic primary orofacial pain (OFP) conditions such as painful temporomandibular
disorders (pTMDs; i.e., myofascial pain and arthralgia), idiopathic trigeminal
neuralgia (TN), and burning mouth syndrome (BMS) are seemingly idiopathic, but
evidence support complex and multifactorial etiology and pathophysiology.
Important fragments of this complex array of factors have been identified over
the years largely with the help of preclinical studies. However, findings have yet to
translate into better pain care for chronic OFP patients. The need to develop
preclinical assays that better simulate the etiology, pathophysiology, and clinical
symptoms of OFP patients and to assess OFP measures consistent with their
clinical symptoms is a challenge that needs to be overcome to support this
translation process. In this review, we describe rodent assays and OFP pain
measures that can be used in support of chronic primary OFP research, in
specific pTMDs, TN, and BMS. We discuss their suitability and limitations
considering the current knowledge of the etiology and pathophysiology of these
conditions and suggest possible future directions. Our goal is to foster the
development of innovative animal models with greater translatability and potential
to lead to better care for patients living with chronic primary OFP.

KEYWORDS
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1. Introduction

Orofacial pain (OFP) is that localized below the orbito-meatal line, above the neck and

anterior to the ears, including pain in structures of the oral cavity. According to the latest

OFP classification, OFP can be acute, when it lasts for less than 3 months, episodic, when

it occurs on fewer than 15 days per month whether or not for more than 3 months, or

chronic, when it persists for more than 3 months and is present on at least 15 days per

month (1). This distinction is important because chronic OFP is often accompanied by

reduced quality of life, sleep and psychological disturbances and disability (2–6) that require

different management and it has less favorable prognosis. The estimated prevalence of

chronic OFP in the general population is of 10% (7–9). OFP can be additionally classified

as primary, when its etiology is unknown (e.g., chronic primary temporomandibular joint

pain and idiopathic trigeminal neuralgia), or secondary, when it has an identifiable cause

(e.g., temporomandibular joint pain attributed to arthritis and trigeminal neuralgia
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attributed to multiple sclerosis). In other words, chronic primary

OFP conditions can be understood as their own disease, while

chronic secondary pain syndromes represent symptoms of other

underlying conditions or diseases (10).

Some of the most challenging types of chronic primary OFP to

manage include painful temporomandibular disorders (pTMDs),

idiopathic trigeminal neuralgia (TN), and burning mouth

syndrome (BMS). These seemingly idiopathic conditions have no

cure and treatment is mostly palliative, geared toward pain

management and coping strategies. Often, patients living chronic

pain, including pTMDs, TN, and BMS, must endure significant

biological, psychosocial, and economic burdens that also affect

their families, and society as a whole (11).

The most common types of primary pTMDs are myofascial pain

and temporomandibular joint pain (12). These conditions have a

prevalence of about 5% that is greater in women than in men (13,

14) and their hallmark is spontaneous masticatory muscle and/or

temporomandibular joint pain that is exacerbated upon jaw

function. TN has a lifetime prevalence of 0.16%–0.3% and also

affects more women than men (1.5:1) (15). TN is characterized by

recurrent severe paroxysmal pain restricted to the territory of the

trigeminal nerves (which innervate the orofacial region) lasting

from a fraction of a second up to 2 min. TN pain is described as

electric shock-like, stabbing, or sharp, and is triggered by

innocuous stimuli (e.g., washing the face, eating, and brushing the

teeth). BMS has a prevalence of 2.5%–5% in the general

population that rises to 14% among post-menopausal women.

BMS is characterized by a spontaneous burning sensation that

most commonly affects the tongue, lips, and hard and soft palates

and may be accompanied by an alteration of taste, a stinging

sensation, dryness, and atypical odontalgia (16).

Despite considerable scientific advances over the past decades

(17, 18), the need for greater understanding of the

pathophysiology underlying these primary OFP conditions

persists because treatment remains suboptimal. In this scenario,

pre-clinical research has been and will continue to be an

important and irreplaceable means of facilitating scientific

advancement. Furthermore, we are currently experiencing a

boom of both pain neuroimaging and genetic studies that find

crucial complementation in animal research (19, 20).

The goal of this review is to describe the currently available rodent

assays (injury models) and OFPmeasures (behavior) that can be used

in support of chronic primary OFP research, in specific pTMDs, TN,

and BMS. We will discuss their applicability and challenges

considering our current knowledge of the etiology and

pathophysiology of these conditions and possible future directions.

Previous reviews have focused on other conditions linked to OFP,

including migraine/headaches (20, 21) and oral cancer (22).
2. Animal assays

2.1. Chronic primary pTMDs

Chronic primary pTMDs have multifactorial etiology and

complex pathophysiology that involve the biological [e.g.,
Frontiers in Pain Research 02
genetics (23), central sensitization (24)], psychosocial [e.g., stress

and somatic symptoms (25)] and environmental [e.g., trauma

(26)] realms (27). Mimicking this complex array of factors in

animal models to enable studying the mechanisms leading to and

sustaining pTMDs is clearly challenging. Hence, pre-clinical

pTMD research has been mainly based on assays that induce

pain to the orofacial region using the chemical, surgical, and jaw

trauma assays described next (Table 1). This review does not

include assays that modify occlusion (i.e., the way upper and

lower teeth fit together) as a means of inducing pain the

orofacial region because there is sufficient and consistent

scientific evidence of the absence of causal relationship between

occlusal factors and pTMDs (28).

2.1.1. Chemical assays
Here we briefly describe and discuss the most frequently used

assays involving the injection of inflammatory and pain-inducing

agents into the TMJ or masseter muscle to induce TMD-like

pain in rodents. These assays are typically complemented with

experiments assessing the OFP measure(s) of choice, which often

include nocifensive behaviors, mechanical and thermal pain

sensitivity tests, but can also include bite force and orofacial

operant tests. Often developed and used to study mechanisms

underlying pTMDs (29, 57, 79–82), the main limitation of

chemical assays is their inability to sufficiently simulate the

etiological and/or pathophysiological mechanisms of pTMDs.

Moreover, except for Complete Freund’s Adjuvant (CFA), these

chemical agents induce pain that last for short periods of time.

Nonetheless, the use of these assays has allowed the

accumulation of critical evidence on the mechanisms of

trigeminal nerve pain transmission (17). This knowledge forms

the basis required to advance the methods employed in

developing more clinically similar assays.

2.1.1.1. Formalin injection
Introduced in 1989 (83), this is a reliable assay for inflicting OFP in

rodents (29, 30). In this model, formalin (recommended

concentration up to 1.5%) (31) is injected subcutaneously into

the TMJ or masseter region (29, 32, 33). The reliability of this

assay lies on its consistent elicitation of two phases of behavioral

responses considered as OFP surrogate measures (e.g., face

rubbing): an early phase lasting from 0 to 5 min post-injection

and a late phase lasting from 10 to 50 min post-injection [times

may vary according to strain (34)]. The duration of each phase

may vary with the animal strain. At each phase, the duration of

face rubbing is annotated and compared to that of saline-injected

animals: prolonged face rubbing has a positive correlation with

formalin concentration. Pain in the early phase is attributed to

direct stimulation of sensory afferent neurons, while pain in the

last phase has been proposed to reflect the combined effects of

afferent input, central sensitization and inflammatory response

(35). While the mechanisms underlying pain in the early phase

can arguably parallel acute OFP in humans, as the latter is often

the result of jaw trauma (36) (as opposed to the injection of a

chemical), the mechanisms in the late phase may partly parallel

those involved in chronic primary pTMDs, as central
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TABLE 1 Pre-clinical rodent assays and OFP measures in support of chronic primary pTMD research.

Species OFP measures Reference examples

Chemical assays
Formalin injection Rats and mice Nocifensive behavior (29–38)

CFA Rats and mice Mechanical sensitivity (von Frey filaments and bite force)
Thermal sensitivity
Facial expression
Survival behavior
Operant feeding behavior test
Operant gnawing test

(39–56)

Carrageenan Rats Nocifensive behavior Operant thermal pain test (57–63)

Capsaicin Rats Operant mechanical pain threshold test
Operant thermal pain test
Operant thermal and mechanical pain test

(64–67)

Mustard oil Rats Nocifensive behavior
Mechanical sensitivity

(65, 68, 69)

Glutamate Rats Mechanical sensitivity (70)

NGF Rats Nocifensive behavior
Mechanical sensitivity

(59, 71)

Jaw trauma assays
Repetitive contractions with jaw forced lengthening Rats and mice Muscle thickness and maximum jaw-opening distance* (72–74)

Sustained mouth opening Mechanical sensitivity (75)

Ligation of the tendon of the anterior superficial part
of the masseter muscle

Rats and mice Mechanical sensitivity (76, 77)

Combined assays
COMT inhibition + jaw forced lengthening Rats Operant gnawing test (78)

*Indirect measures of OFP; COMT, catechol-O-methyltransferase.
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sensitization and pathways of immune and inflammatory response

seem to contribute to these conditions (37, 38).
2.1.1.2. Complete freund’s adjuvant (CFA)
CFA is a valid irritating agent composed of desiccated

mycobacterium in paraffin oil and mannide monooleate that

induces a potent inflammatory response in rodents following

local injection (84) that is accompanied by long-lasting

hyperalgesia (i.e., exacerbated pain response to a painful

stimulus) and allodynia (i.e., pain response to a non-painful

stimulus) (79, 85). CFA can be injected directly into the masseter

muscle (39, 40) or into the TMJ (41) to cause OFP: in addition

to leading to mechanical (42, 43) and thermal orofacial

hypersensitivity (44), it also leads to reduced biting force (45)

and signs of spontaneous OFP as assessed using the Grimace

Scale (46).

The long-lasting effects (>30 days) (47) of the CFA assay

comprise its main advantage, and it is considered one of the few

assays that allow the investigation of the “chronic” phase of pain.

Nonetheless, the underlying immune and inflammatory processes

sustaining OFP post-CFA injection may or may not partly reflect

those of chronic OFP in humans, as subcutaneous accumulation

of dead bacteria is hardly an OFP trigger in patients.

To quantify the CFA-induced hyperalgesia and/or allodynia,

this assay is paired with experiments assessing the OFP measure

(s) of choice (48, 49), which often include mechanical and

thermal pain sensitivity tests (50), but can also include bite force

(52, 51), spontaneous pain assessments (46), and orofacial

operant tests (52).
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2.1.1.3. Carrageenan injection
Carrageenan is a seaweed extract used to induce inflammation in

rodents since 1962 (86). Its inflammatory and pain-inducing

effects may be strain-dependent (87), but generally lead to acute

swelling and behavioral nociceptive responses (i.e., face

grooming). The injection of carrageenan (usually 1%–1.5%) into

the TMJ of rats has been used to investigate the inflammatory

aspects of TMJ hyperalgesia, under the assumption that TMJ

pain may result from an inflammatory episode (88). These

studies have shown the involvement of P2X receptors (57, 58,

89), nerve growth factor (59), β-adrenoceptors (59–61), and the

co-participation of peroxisome proliferator-activated receptors-γ

(PPAR-γ) and κ/δ opioid receptors (62) in TMJ inflammatory pain.

Pain and inflammation due to the injection of carrageenan is

short-lived, typically lasting no more than 14 days.

2.1.1.4. Capsaicin injection
Capsaicin is the active ingredient in hot pepper, first isolated in

1846 (90). Trigeminal nerve afferents are predominantly

peptidergic and enriched with transient receptor potential cation

channel subfamily V member 1 (TRPV1) (91, 92). Capsaicin can

sensitize and modulate TRPV1-positive trigeminal afferents and

brainstem nociceptive neurons in the trigeminal subnucleus

caudalis/upper cervical cord (Vc/UCC) (93–97). As early studies

have suggested neurogenic inflammation as one of the putative

mechanisms of injury leading to pTMDs (98, 99), the injection

of capsaicin into the TMJ (80, 100) or masticatory muscles of

animals (101) [and humans (102–106)] has been used to study

neurogenic aspects of nociceptive pain that may be relevant to

pTMDs. For instance, studies have shown that the injection of
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capsaicin into the TMJ of rats (80, 95, 108), as well as mustard oil

(108) and glutamate (71, 95, 108), lead to peripheral sensitization

that may contribute to the primary hyperalgesia or allodynic

states characteristics of pTMD patients (109). This sensitization

is attenuated by N-methyl-d-aspartate (NMDA) receptors

antagonists and suggests the involvement of NMDA receptors in

nociceptive trigeminal responses (80, 71, 108–111, 110). Sex

differences in the orofacial nociceptive response of capsaicin-

sensitive neurons also exist (111). Capsaicin cream has also been

directly applied to the face of rats to induce mechanical pain

sensitivity (64, 65).

2.1.1.5. Mustard oil
The use of mustard oil to induce inflammation in the TMJ was first

proposed based on the assumption that inflammation may be one

of the possible contributing factors to pTMD (81), and on early

studies showing that it activates small C-fibres (112) and induces

inflammatory responses such as plasma extravasation (113) and

neutrophil infiltration (114). The injection of mustard oil into

the TMJ activates Vc/UCC neurons (115, 116) and elicits a

short-lasting pain responses that are modulated by opioids and

serotonin (117–121). Early studies using mustard oil injected into

the TMJ have implicated mechanisms involving NMDA receptors

(108, 119), other peripheral excitatory amino acid receptors

(122), and neurokinins (123) in TMJ nociception, and peripheral

and central γ-aminobutyric acid (GABA)-A receptors in TMJ

anti-nociception (124, 125). These effects seem to vary between

sexes (126–131) and throughout the estrous cycle (132).

Mustard oil has also been injected into the masseter muscle to

induce short-lasting pain (68, 133), which likewise activates

neurons in the trigeminal sensory nuclei (134) in a manner

that involves peripheral NMDA receptors (135) and peripheral

2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid

(AMPA) receptors (136). Studies using this model have also

shown the involvement of TRPV1, the transient receptor

potential ankyrin type 1 (TRPA1), and the transient receptor

potential melastatin type 3 (TRPM3) in craniofacial muscle pain

processing (65, 69).

2.1.1.6. Glutamate injection
Glutamate is an endogenous neurotransmitter produced by both

neuronal [including trigeminal ganglia neurons (137)] and non-

neuronal cells (138–140) which acts via the centrally and

peripherally expressed NMDA, AMPA, kainate, and

metabotropic glutamate receptors. As such, glutamate has

complex pain modulating roles centrally and pain inducing

effects peripherally (141). Glutamate is long known for its

involvement in OFP transmission (116, 122, 142) and

transcriptome analysis has recently reaffirmed its role in

inflammatory pain-signaling (143). Notably, glutamate seems to

produce similar acute pain responses in humans and rats (144).

When injected into the masseter of rodents, glutamate-induced

pain leads to both nociceptor activation and sensitization and local

inflammation (70, 112, 144). Contrarily, glutamate injected into the

TMJ [and other joints(145)] seems to have a limited inflammatory

component (146).
Frontiers in Pain Research 04
2.1.1.7. Nerve growth factor (NGF)
NGF is a neurotrophic protein that acts mainly via the tyrosine

kinase receptor A (TrkA) and the p75 receptor (147). The

suitability of this model for the study of TMD-related pain is

largely based on experimental studies in healthy people showing

that NGF injection into the masseter leads to long-lasting

mechanical allodynia and hyperalgesia and to pain during

strenuous jaw movements that are characteristic of pTMDs of

muscular origin (148–150).

In rodents, intramuscular injection of NGF has been shown to

sensitize masseter muscle afferent fibers without producing local

inflammation (59, 151) in a manner that is at least partly

mediated by enhanced peripheral NMDA receptor expression

(71, 152) and increased glutamate expression in the sensory

nerve endings in the muscle (82). Sex-related differences in

nociception induced by peripheral NGF exist in both humans

and animals (71, 148, 149).
2.1.2. Jaw trauma assays
Jaw trauma, including sustained mouth opening and frequency

of parafunctional behaviors, are known risk factors of pTMD onset

(36, 153) and are associated with chronic pTMDs (26). Hence,

assays based on jaw trauma represent more construct-valid (i.e.,

property of an assay that seems to have a biologic basis like that

of patients) models of pTMDs. However, these assays are not as

widely known nor as widely used as the chemical assays and

future in-depth investigations of the pain mechanisms following

these assays could shed further light into the mechanisms that

sustain pain in humans.
2.1.2.1. Repetitive contractions with jaw forced lengthening
Considering microtrauma, including repetitive parafunctional oral

habits, as a contributor factor to pTMDs (referred to as

myofascial pain syndrome of masticatory muscles at the time),

the assay employing repetitive contractions with forced

lengthening of the mice’s masseter was first proposed in 1995 to

induce pTMD in mice (72). The model was later adapted to rats

(73, 74) and consists of restraining anesthetized animals in

supine position with their jaw open and using an electrical

stimulator to deliver a set of supramaximal stimuli to induce

repetitive tetanic eccentric contractions to the masseter

unilaterally. Stimuli are delivered every 30 s with 10 s of rest

between stimuli for 20 min per session for 14 consecutive days.

Control animals are anesthetized, restrained, and the electrode

positioned into the masseter muscle (without delivering the

electrical stimuli) for the same amount of time.

This assay leads to increases in muscle thickness and reduction

of maximum jaw-opening distance, suggesting a phenotype

consistent with masticatory myofascial pain (147). However,

direct measures of OFP, such as sensitivity to mechanical stimuli

or the display of nocifensive behaviors, have not been assessed in

animals subjected to this assay and the assay’s ability to induce

long lasting pain also remains to be demonstrated.
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2.1.2.2. Sustained mouth opening
In this assay (75), a bite block is placed between the upper and

lower front incisors of anesthetized mice to keep their mouth

maximally opened for 1.5 h per day for 5 consecutive days.

Starting on day 3, mice display mechanical allodynia in the

masseter/TMJ region compared to controls (anesthetized

animals that did not undergo sustained mouth opening) that

seems to be maintained for at least 27 days after the last

sustained mouth opening session. The administration of

ibuprofen (nonsteroidal anti-inflammatory), amitriptyline

(tricyclic antidepressant), pregabalin (antiepileptic), or

morphine (opioid) either partially or completely reversed

mechanical allodynia, suggesting that the pain induced by this

assay involves a complex array of biological pathways, as is

believed to be the case in chronic OFP patients. Notably, mice

exposed to the sustained mouth opening assay also displayed a

reduced intake of hard-pelleted chow accompanied by weight

loss that was reverted after replacement with soft-pelleted chow.

These may be considered as surrogate OFP measures that are

paralleled in humans, as masticatory dysfunction is a hallmark

of pTMDs. Hence, the sustained mouth opening assay may be a

suitable alternative to investigate the “chronic” phase of OFP

and has greater translatability.
2.1.3. Ligation of the tendon of the anterior
superficial part of the masseter muscle

Considering the short-lasting pain induced by other assays

used in the study of pTMDs of muscular origin—from hours to

few weeks at most—this assay has been developed to induce

long-lasting pain in rats (76) and was later adapted to mice

(77). It consists of anesthetizing and restraining animals in

supine position with their mouth open and accessing, freeing,

and tying their tendon of the anterior superficial part of the

masseter muscle (TASM) with two chromic gut ligatures, 2-

mm apart. Control animals receive the same procedure except

for the TASM ligation. In rats, TASM ligation led to short-

lasting local inflammation (2 weeks) that subsided after 8

weeks, but orofacial mechanical allodynia and hypersensitivity

were maintained throughout 8 weeks. Furthermore, activation

and upregulation of NMDA receptors in laminae I/II of Vc/

UCC neurons consistent with somatotopy of the mandibular

branch (V3) of the trigeminal nerve and hyperreactivity of Vc/

UCC astrocytes and microglia were greater in TASM and

sham-operated than in naïve animals and lasted longer in

TASM than in sham-operated animals. Morphine and

duloxetine (serotonin-norepinephrine reuptake inhibitor)

administered at 8 weeks d displayed anti-hyperalgesic effects.

Further studies employing this assay (but with timelines

shorter than 8 weeks) have indicated that GABA-A receptors

in trigeminal ganglia cells and Vc/UCC afferent terminals

projecting to the orofacial region have OFP-inhibitory roles

(154, 155) and that the use of bone marrow stromal cells

(BMSC) (156–158) or of an engineered herpes virus (159) may

be new alternatives for OFP control.
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2.1.4. Combined assays
In an effort to create an assay that induces pTMD in manner

that better emulates the multifactorial etiology of these

conditions in humans, a study combining a pTMD predisposing

factor—inflammation induced by the injection of carrageenan in

the TMJ or sustained inhibition of the catechol-O-

methyltransferase (COMT) enzyme, classically known for its role

in chronic pain (160–162), including OFP (163, 164)—with a

precipitating factor—jaw forced lengthening—found that the

combination of COMT inhibition with jaw forced lengthening

was able to extend the time rats needed to chew through

obstacles—a proxy measure of OFP sensitivity—compared to

exposure to each factor alone after 2 weeks (78). The assay’s

ability to produce longer lasting OFP remains to be

demonstrated. Nevertheless, the concept underlying the

development of this assay is innovative and can lead to the

development of construct valid animal assays of pTMDs.
2.2. Trigeminal neuralgia

TN is a very painful condition with severe, short-lasting,

spontaneous and innocuous stimulus-evoked stabbing pain

attacks in the face for which the development of more efficacious

treatment options is highly warranted. Recently proposed

taxonomies classify primary TN into classical or idiopathic TN

(165, 166). Classical TN is characterized by the demonstration

(in MRI or surgery) of vascular compression with morphological

changes of the trigeminal nerve root entry zone (167–169). Its

etiology seems to be linked to this neurovascular compression in

some but not all cases (170, 171), as not all patients who

undergo surgical decompression experience improvement (172).

Proposed etiologies of idiopathic TN include genetic mutations

in neuronal voltage-gated ion channel gain-of-function (173,

174), neural inflammation (175), and non-specific lesions in the

brainstem (176–178). Centrally mediated pain facilitation and

reduced descending pain inhibition are also non-confirmed

contributors to TN pain (179–181). Existing assays in support of

TN research are those that induce neurogenic pain via chemical

injection or nerve injury (Table 2). The latter group, in

particular assays that compress the trigeminal nerve root entry,

seem to better approximate the pathophysiology of classical TN

attributed to neurovascular compression.

2.2.1. Chemical assays
2.2.1.1. Injection of cobra venom into infraorbital nerve
This assay consists of exposing the infraorbital nerve (ION) at its

rostral extent to inject cobra venom (or saline, for control) into

the ION’s nerve sheath (205). As consequence, animals display

long-lasting (60 days) mechanical allodynia, spontaneous pain

behaviors (e.g., increased face grooming and headshaking), fewer

exploratory activities that is indicative of anxiety, and impaired

spatial learning and memory function (182). Injection of cobra

venom also leads to demyelination changes of the ION and

medulla oblongata and was thus claimed to induce changes

similar to those seen in classical TN (183). Treatment with
frontiersin.org
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TABLE 2 Pre-clinical rodent assays and OFP measures in support of chronic primary TN research.

Species OFP measures Reference examples

Chemical assays
Injection of cobra venom into the ION Rats Nocifensive behavior

Mechanical sensitivity
(182, 183)

Nerve injury assays
Chronic constriction injury to the ION Rats and mice Nocifensive behavior

Survival behavior
Mechanical sensitivity
Thermal sensitivity
Operant thermal pain test

(184–192)

Trigeminal inflammatory compression of the ION Rats and mice Mechanical sensitivity
Thermal sensitivity

(193–200)

Chronic compression of the trigeminal nerve root Rats Survival behavior
Mechanical sensitivity
Thermal sensitivity

(201, 202)

Chronic compression of the trigeminal ganglion Rats Mechanical sensitivity (203)

Demyelination of the trigeminal nerve root Rats Mechanical sensitivity (204)

ION, infraorbital nerve.

Sadighparvar et al. 10.3389/fpain.2023.1150749
pregabalin, a gabapentinoid believed to block calcium channels

thereby reducing excitatory neuronal activity, improves different

pain behaviors and suggests the neuropathic nature of pain

resulting from the injection of cobra venom (183).

Although this assay clearly seems to induce neuropathic pain,

whether the neurobiological mechanisms underlying pain are

translatable to those of TN patients and relevant for the

development of new therapies for patients is debatable.

2.2.2. Nerve injury assays
Neuropathic pain, such as that seen in TN patients, is defined

by pain caused by a lesion or disease of the somatosensory nervous

system (206). With a seminal paper published in 1980 (207), nerve

injury assays in support of TN research constrict (ligate) or

compress the ION or trigeminal nerve to induce pain.

Constriction or compression of the ION consistently leads to

chronic pain and mood alterations that are consistent with the

clinical presentation of chronic pain patients. However, there are

important limitations to methods that employ chromic suture to

ligate or compress nerves, as the resulting pain may be at least

partially due to chromic-induced changes in the chemical milieu

around the nerve (208).

While assays of nerve transection to branches of the trigeminal

nerve also exist (209, 210), they are likely more suitable to the study

of mechanisms underlying pain in post-traumatic neuropathies due

to, for instance, motor vehicle accident, sporting injury, or dental

procedures. Transection or lesions to the TN are not putative

contributors to primary TN and these assays will not be describe

here.

2.2.2.1. Chronic constriction injury (CCI) to the ION
The CCI-ION (184) is the most widely used assay to induce

neuropathic pain in the orofacial region with 167 citations on

PubMed and has been adapted from the assay that induces a

CCI to the sciatic nerve of rats developed by Bennett and Xie in

1988 (211). In this assay, following a midline scalp incision, part

of the skull and nasal bone are exposed allowing access to the
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edge of the orbit. Orbital contents are then deflected, and the

ION—a purely sensory nerve—is dissected free at its most rostral

extent just caudal to the IO foramen. Two chromic gut ligatures

2 mm apart that reduce the diameter but do not occlude

circulation are then loosely tied around the ION. Animals that

undergo ION-CCI display increased face-grooming and freezing-

like behavior, concomitant with a decrease in exploratory

behavior that peak after surgery but remain different from

controls for more than 4 months. Mechanical allodynia displays

delayed onset and persists for approximately 80 days. Notably,

animals also display extraterritorial pain that extends to the

contralateral side of injury, an indicative of the involvement of

central sensitization mechanisms that is believed to play an

important role in chronic pain states, including OFP (212–214).

Studies employing the ION-CCI model have contributed to our

understanding of how the trigeminal nerve responds to injury and

have highlighted its uniqueness. As an example, dorsal root

ganglion sympathetic sprouting that is seen post sciatic nerve

injury is absent in the trigeminal ganglion (215, 216).

Furthermore, CCI to the sciatic or ION induce differential gene

expression in the dorsal root or trigeminal ganglia, respectively

(217). These findings show important differences in the

mechanisms of spinal vs. trigeminal pain and underscore the

need to develop animal assays that are specific to TN.

Modifications to the ION-CCI assay have been proposed

mainly to simplify the complexity of the required surgical

procedure (185, 186). Examples include the chronic constriction

injury of the distal ION (dIoN-CCI) (187). This leads to ipsi-

and contralateral mechanical allodynia that lasts at least 9 weeks

and is accompanied by anxiety-like behaviors that last at least 6

weeks (188). Constrictive assays were also developed for mice but

their ability to produce long-lasting hypersensitivity and/or pain-

like behaviors (185, 186) remains to be demonstrated.

2.2.2.2. Trigeminal inflammatory compression of the ION
Originally developed in rats, performing the ION-CCI assay in

mice is challenging due to the small operating space and
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abundant blood supply in their facial area. The trigeminal

inflammatory compression (TIC) of the ION assay was

developed in response to this shortcoming (193, 194). In this

model (193), a 15-mm antero-posterior incision is made at the

facial midline and the infraorbital muscle is dissected from the

bone to allow a gentle contraction of the orbit. This allows

the visualization and dissection of the ION at its most rostral

extent in the orbital cavity and the placement of a 2 mm

chromic gut suture (6–0) between the ION and the maxillary

bone. As consequence, mice display a slight peripheral nerve

demyelination accompanied by mechanical allodynia that lasts

for at least 21 weeks (195). Cold but not heat-induced allodynia

lasts at least 8 weeks (196–199). In addition, ION-TIC mice also

display anxiety-and depression-like behaviors, a consistent feature

of chronic OFP patients (162). The same research group recently

developed the FRICT-ION (Foramen Rotundum Inflammatory

Constriction Trigeminal Infra-Orbital Nerve) assay, in which the

ION is more easily accessed using an intra-oral approach (200).

The main advantage of this assay is that it does not generate any

outward physical signs, allowing for blinded pre-clinical studies.

This assay leads to spontaneous pain behaviors and ipsi- and

contralateral mechanical allodynia that last at least 100 days.

Anxiety and depression-like behaviors also develop within 3–6

weeks.

2.2.2.3. Chronic compression of the trigeminal (CCT)
nerve root
This assay was developed in response to clinical evidence that

neurovascular compression of the trigeminal nerve root plays a

role in the pathogenesis of TN (218–220). First, a small curved

and antero-posterior skin incision is made above the rat’s eye,

allowing the fascia and muscles to be laterally dissected free and

the lateral retraction of the contents of the orbit. As result, the

ION can be visualized deep within the orbit on the infraorbital

groove of the maxillary bone. Based on the determination that

the distance between the inferior orbital fissure to the proximate

junction of the trigeminal nerve root with the pons is of

approximately 1.5 cm in adult rats, a round plastic filament with

0.1 cm in diameter is placed above the ION superior surface and

inserted for approximately 1.2 com into the intracalvarium

through the inferior orbital fissure (not to reach/damage the

pons). The filament is inserted into the canal between the

cerebral dura mater and the pars petrosa (temporalis bone) to

cross the Meckel’s cave and reach the trigeminal nerve root.

Animals subjected to CCT, but not sham-operated animals,

develop mechanical allodynia that lasts at least for 4 weeks, and

exhibit face-grooming behavior consistent with OFP for 3 weeks

(201, 202). Both CCT and sham-operated animals develop heat-

hypersensitivity over the course of 4 weeks (201). Activation and

increase in the numbers of Schwann cells, astrocytes (i.e., A1-

astrocytes) and microglia/macrophages, as well as an increase in

the infiltration of macrophages and lymphocytes in the

trigeminal root zone are also seen 4 weeks following CCT,

suggesting the contributions of neuroimmune cells to the

pathogenesis of TN attributed to neurovascular compression

(203, 221).
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A method using crystals of a superabsorbent polymer placed

next to the rat’s trigeminal nerve root has also been developed

but its ability to induce pain hypersensitivity and pain-like

behaviors remains to be demonstrated (222).

2.2.2.4. Chronic compression of the trigeminal ganglion
In this assay (203), rats are mounted into a stereotaxic frame and a

21 gauge cannula is inserted into the trigeminal ganglion for the

injection of 8 µl of a 4% agar solution. Control (sham-operated)

animals receive all surgical procedures without agar injection.

Animals with the compressed trigeminal ganglion exhibited

mechanical allodynia and hypersensitivity that lasted up to 40

days and longer than those of naïve or sham-operated animals.

However, there was no evidence of TN-like paroxysmal pain in

animals with the compressed nerve, as there were no group

differences in the number of facial grooming episodes exhibited.

Further studies employing this assay to induce TN-like pain have

suggested that NMDA receptors, particularly their NR-2

subunits, play an important role in the central processing of TN

pain and are potential targets for the development of new

therapies for TN (223).

2.2.2.5. Demyelination of the trigeminal nerve root
This assay was developed based on evidence from classical studies

that proposed a causal relationship between TN and focal

demyelination due to compression of the trigeminal nerve root

(224, 225). To induce focal demyelination, lysophosphatidic acid

(LPA; 3 μl; 1 nmol) is injected into the trigeminal nerve root of

anesthetized and restrained rats. Control animals receive all

surgical procedures with the injection of vehicle instead of LPA.

Injection of LPA produced severe demyelination of the axonal

portion of the trigeminal nerve root for at least 2 weeks that was

completely recovered by day 160. Despite the recovery of the

myelin sheath, mechanical allodynia persisted for approximately

130 days and mechanical hypersensitivity (i.e., hyper-

responsiveness to pin-prick stimulation) lasted for approximately

100 days. LPA injection produced no effect in thermal pain

sensitivity. The display of nocifensive behaviors that would

represent a proxy measure of TN-like paroxysmal pain has not

been investigated (204).
2.3. Burning mouth syndrome (BMS)

BMS is a painful condition often described as a burning,

scalding, or tingling feeling in the mouth that may occur every

day or intermittently for months or longer. Dry mouth and an

altered taste in the mouth typically accompany the pain. Like

other chronic primary pain conditions, the etiology of BMS is

believed to be multifactorial (226). Clinical research over the last

two decades showing small-fiber atrophy in the tongue and

increased expression of TRPV1 and purinergic receptors (P2X3)

ion channels in the epithelium of the lingual mucosa of BMS

patients suggest a neuropathic component in BMS (227–230). As

for primary pTMDs and TN, the incomplete knowledge of the

etiology of BMS makes developing a translatable preclinical
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TABLE 3 Pre-clinical rodent assays and OFP measures in support of
chronic primary BMS research.

Species OFP
measures

Reference
examples

Artemin over expresser Mice Operant
drinking test

(232)

Topical application of 2,4,6-
trinitrobenzene sulfonic acid

Mice Thermal
sensitivity

(233)
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model challenging and there are currently no definitive animal

models of BMS. Nevertheless, assays that induce oral symptoms

resembling those of BMS patients have been put forward and

will be discussed here (Table 3), as they may be useful in the

investigation of the pathogenesis of BMS. Methods involving

nerve transection that is not a factor at play in BMS have also

been developed (231). The utility of these assays for shedding

light into the underlying mechanisms of BMS is debatable and

they will not be described here.

2.3.1. Artemin over expresser (ART-OE) mice
This BMS mouse model was inspired by findings showing the

increased expression of artemin, a member from the glial cell line-

derived neurotrophic factor (GDNF) family, in the inflamed skin of

wildtype mice and that this overexpression leads to hypersensitivity

to noxious thermal stimuli, to increases in the expression of the

pronociceptive ion channels TRPV1 and TRPA1 in neurons of

the dorsal root ganglia, and to an increased heat-induced firing

of C-fibers (234). These findings led to the creation of ART-OE

mice that overexpress artemin in the tongue epithelium with the

goal of assessing whether it would induce oral sensitivity.

Trigeminal afferents of adult ART-OE mice display changes in

their anatomical, physiological, and transcriptional properties

that include hypertrophy of myelinated and unmyelinated fibers

of the lingual nerve, and marked increases in the expression of

TRPV1, TRPA1, and GDNF-family receptor alpha 3 (GFRα3; a

receptor component for artemin) (232). These mice also reduced

their consumption of water containing either capsaicin (a TRPV1

ligand) or mustard oil (a TRPA1 ligand) compared to wildtypes,

a behavior consistent with increased oral sensitivity.

In accordance with the clinical findings of small-fiber atrophy

in the tongue (227) and increased expression of TRPV1 in the

epithelium of the lingual mucosa of BMS patients (228), this

suggests that GFRα3/TRPV1 and artemin-responsive fibers are

possible contributors to BMS and that ART-OE mice may be a

suitable model for future investigations of the mechanisms

underlying BMS.

2.3.2. Topical application of 2,4,6-trinitrobenzene
sulfonic acid (TNBS)

This assay was created as consequence of earlier studies

showing a role for artemin in pain (233, 235), including in

tongue pain (232), and clinical findings of a near 3-fold increase

in the expression of artemin in the tongue of BMS patients

(233). To emulate this increased expression of artemin in the

tongue of mice, TNBS that is known to increase artemin

expression in oral mucosa tissues (236) is applied topically to the
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tongue of mice. In specific, a cotton saturated with a TNBS

10 mg/ml suspension (or vehicle, for controls) is placed on the

dorsum of the tongue for 1 h. As result, mice develop heat

hyperalgesia that lasts at least 11 days and is inhibited by

treatment with a TRPV1 antagonist or with an anti-artemin

antibody (233). A longer follow-up of heat sensitivity has not

been done, but heat sensitivity thresholds seem to be

approaching baseline levels starting on day 11 and the ability of

this assay to induce long-lasting tongue pain remains to be

demonstrated. Notably, TNBS induced tongue pain in the

absence of inflammation or nerve damage, consistent with what

is seen in BMS patients. Following the induction of artemin

expression in the tongue with TNBS, the number of trigeminal

ganglion neurons expressing GFRα3 and TRPV1 increased and

current induced by capsaicin in trigeminal ganglion neurons

enhanced. These phenotypes were reversed upon treatment with

an anti-artemin antibody.

These finds reinforce a role for artemin in tongue pain and may

suggest that topical application of TNBS a may be useful for the

study of tongue pain hypersensitivity associated with BMS and

may be particularly relevant for the understanding of pain flare

ups of chronic patients.
3. Orofacial pain measures

Following orofacial pain induction by means of the selected

assay, the resulting pain must be assessed to confirm the

desired phenotype (i.e., ensure that the assay produced pain),

and to allow the quantification of pain and comparisons pre-

and post-treatment and/or between groups. Assessing pain in

rodents is more challenging than in humans, given the

impossibility of verbal expression. Because of that, pain is

inferred based on measures of pain-associated behaviors that

can be evoked (i.e., reflexive behaviors in response to

mechanical and thermal stimulation), non-evoked (i.e., changes

in nocifensive, survival, and elective behaviors), or mixed (e.g.,

conditioned place preference, conditioned place aversion, and

operant behaviors). Evoked behaviors are those elicited when an

exogenous stimulus is applied by an experimenter at the time of

measurement. Non-evoked behaviors are those elicited without

an exogenous stimulus being applied by an experimenter at the

time of measurement and are often referred to as spontaneous

behaviors. Measures of mixed behaviors were developed to

overcome issues related to the reflexive and innate nature of

commonly assessed evoked and non-evoked pain measures,

respectively. These issues relate to the over-reliance of evoked

and non-evoked measures on simple spinal reflexes (that can

even be evoked in decerebrate animals) (237) that do not

require cerebral processing of nociception (238–240).

Conditioning and operant behaviors are indirect measures of

pain that involve higher levels of brain processing and require

animals to make specific choices based on learning processes

(as do humans) (241). Here, we describe the pain-associated

behaviors used to infer OFP in rodents.
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3.1. Evoked measures

3.1.1. Mechanical sensitivity
Originally developed for assessing tactile sensitivity in humans

(242, 243), von Frey filaments are widely used for measuring

mechanical sensitivity in the skin of rodents. Von Frey filaments

consist of a series of fibers (typically nylon) of equal length and

gradually increasing diameter that are individually and

perpendicularly attached to a hand-held base. Von Frey tests rely

on the fact that the force (in grams) required to lightly bend

each filament increases as the filaments’ diameter increase. In the

ascending/descending technique (184) developed for the orofacial

region, following habituation, rats are individually placed in a

small transparent cage to allow video recording and presented

with a series of von Frey stimuli exerting forces of 2 gm, 9 gm,

16 gm, 4 gm, and 1 gm. The animal’s response to each stimulus

is scored from 0 to 4: 0, when the animal has no response to the

stimulus; (1) when it detects the filament but displays no aversive

behavior; (2) when it withdraws the head as an indication of a

mild aversiveness to the filament; (3) when it escapes or attacks

the filament as an indication of strong aversiveness; or (4) when

it displays an uninterrupted series of at least three facewash

strokes directed to the stimulated facial area as an indication of

prolonged aversiveness. A mean score can then be calculated by

averaging the response scores of each of the five stimuli.

The ascending technique (53) was sequentially proposed to

overcome the potential for bias due to the subjectivity in the

scoring system of the ascending/descending technique (184). Here,

following a habituation period during which rats are trained to rest

their heads on the experimenter’s hand, testing starts with applying

a small-diameter filament (typically 0.192 g for rats and 0.045 g for

mice) five times perpendicularly to the skin over the masseter/TMJ

region with a few seconds of interval. A response to the filament is

defined by a head withdrawal in at least three of the five

stimulations. If no response, the next thicker filament is used until

the response threshold can be detected. The response threshold is

defined as the lowest force needed to produce at least three head

withdrawal responses in five stimulations. Alternatively, the

response frequencies to a range of von Frey stimuli can be

computed [(number of responses/number of stimuli) × 100%] and

a stimulus-response frequency curve plotted. The EF50, defined as

the von Frey filament force (g) that produces a 50% response

frequency, can then be calculated using regression analysis and

used as a measure of mechanical sensitivity (244): a smaller EF50
indicates greater sensitivity. The ascending technique, as originally

described or with modifications (76, 156, 190, 246, 247) that

include the use of electronic filaments (94, 247–251), is likely the

most widely used to measure mechanical orofacial hypersensitivity

in rodents, including in the tongue (252).

To assess OFP in an objective manner that better represents the

patients’ cardinal symptoms, a few methods have been developed to

measure mice bite force as a proxy measure of orofacial mechanical

allodynia. This is supported by clinical studies showing that bite

force is significantly reduced in chronic OFP patients (253, 254).

In the first of such methods developed for rodents (52, 255), rats
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were maintained on a water-restriction schedule and trained to

deliver gradually increasing bite forces with the aid of a

computerized system that triggered the delivery of water upon

biting. Only successful bites (strong enough to reach the gradually

increasing thresholds) resulted in water delivery. Rats can

reportedly be trained to achieve the final target of 1.3 kg within 3–

4 weeks. Post-training reductions in bite force (e.g., following CFA

injection in the masseter) can be prevented by anti-inflammatory

agents (52) and are indicative of orofacial mechanical allodynia.

A method has also been developed to assess bite force in mice

with the advantage that because they exhibit aggressive voluntary

biting, a training phase is not needed. In this method, mice are

individually placed in a cylindrical tube with an opening at one

end for accommodation of their head and a custom-made bite

transducer is slowly moved towards them, naturally eliciting a

bite. The bite force transducer consists of two parallel and 4.5–

5 mm apart beams which deformation (due to biting) results in a

proportional change in resistance that can be measured (in N or

g) and represents the bite force. Reductions in bite forces can be

prevented by anti-inflammatory agents and are indicative of

greater pain sensitivity (47, 51, 77, 256). Variations of this

method also exist but follow the same principle: reduced bite

force equals increased pain sensitivity (257).

3.1.2. Thermal sensitivity
Heat hypersensitivity has been assessed mainly in studies of

neuropathic orofacial pain or tongue pain. In one of the earliest

studies (190), a device to loosely restrain rats while allowing access

to the rat’s snout was designed. The device allows animals to easily

withdraw or flick their snouts. For the test, a radiant heat stimulus

that raises skin temperature above 45°C within 8.5 s is placed 10 cm

from the stimulation site (vibrassal pad). A cut-off time is pre-

determined to prevent tissue damage. Head withdrawal or snout

flicking is detected by a photocell that terminates the stimulus and

stops the timer, which defines the head withdrawal latency. Latency

is determined three times on each side with 2 min intervals between

tests, with shorter latency being suggestive of heat hypersensitivity.

Slight variations of this method also exist (201, 258–261).

Thermal hypersensitivity can also be measured by applying a

small thermal probe to the animal’s vibrassal pad (189, 262, 263).

For this, animals habituated to being restrained by the

experimenter and to being presented with the probe at room

temperature are presented with the thermal probe at higher

temperature. A cut-off time is pre-determined to prevent tissue

damage. Repeated trials with interval in between them are

typically done to determine the animal’s average withdrawal

latency (i.e., time until they withdraw or flick the snout). Similar

methods have also been developed to assess thermal

hypersensitivity in the tongue (233, 252).
3.2. Non-evoked measures

3.2.1. Nocifensive behavior
Nocifensive behaviors are time-limited involuntary rodent

responses to the administration of an algogen (e.g., formalin,
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capsaicin) to a body part, such as the TMJ, masseter muscle, or

vibrassal pad (193, 264). Moving the mandible in a chewing-like

motion, rubbing the orofacial region, or flinching the head are

examples of commonly measured orofacial nocifensive behaviors

(29, 41, 265). Typically, following a habituation period, animals

are placed in a test box/cage where they can be watched/recorded

while moving freely. Results are expressed as the total amount of

time spent doing a specific behavior (31) or as the number of

specific behaviors counted over a pre-determined period (33).

The amount of time/number of behaviors displayed are positively

correlated with pain, and treatment with analgesic drugs inhibits

the behavior (31).

3.2.2. Facial expressions
Like humans, animals also can demonstrate pain via facial

expressions (266). Scoring facial features associated with pain in

rodents (i.e., orbital tightening, changes in ear position, nose/cheek

aspect, and whisker direction) is another measure of orofacial

nocifensive behavior (267, 268). This is done using grimace scales

that have been developed for both mice and rats (269, 270). For

that, following acclimation, one animal at a time is placed in a

partially transparent cage and filmed before and after the injection

of an algogen. A set of baseline and post-injection photographs is

then presented to independent scores who rate each photo: a score

of “0” indicates high confidence of the scorer that no facial feature

associated with pain was present; “1” indicates either high

confidence of a moderate appearance of a facial feature associated

with pain, or equivocation over its presence or absence; “2”

indicates high confidence that a facial feature associated with pain

was present. Baseline and post-injection scores are averaged, and

results are typically expressed as the mean change in score, with

greater changes being indicative of more pain. This process can

now be automated to eliminate human error and provide an

objective, reliable, and rapid way of quantifying spontaneous pain

and pain relief in mice (271).

3.2.3. Survival behavior
Feeding is an activity of primary importance to the animal’s

survival that involves actions of the TMJs, masticatory muscles,

and tongue. Different aspects of feeding have been measured to

infer OFP under the assumption that pain in the orofacial

structures negatively affects feeding. Pain-associated feeding

behaviors include food intake and meal pattern (an indirect

feeding measure). Food intake is usually given by tracking the

amount (in g) of food consumed over a period, corrected for

spillage (54, 55, 272). Reduced food consumption is taken as a

proxy measure of pain, as it suggests reduced engagement of

orofacial structures. Meal pattern, which requires using a

computerized strategy to track meal size, meal duration, and

interval in-between meals, is a complex feeding measure which

results seem to correlate to the intensity of the injury (54, 272).

Grooming is another activity of primary importance to the

animal’s survival and encompasses all forms of care and

attention to the body surface (273). Facial grooming behaviors

include facial rubbing, lower lip skin/cheek rubbing or facial

scratching. Measuring facial grooming involves, following
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habituation of the animals to the test environment, placing them

in a transparent or partially transparent cage where they can be

recorded while moving freely. Results are expressed either as the

total amount of time spent face-grooming (191, 201) or as the

number of face-grooming episodes over a pre-determined period

(187). The amount of time and number of face-grooming

episodes are positively correlated with pain, and treatment with

analgesic drugs inhibits the behavior (187, 274).
3.3. Mixed measures

3.3.1. Operant behaviors
Developing operant tests is challenging due to the difficulty in

generating behaviors that are indicative of OFP after cerebral

processing. These tests offer the advantage of avoiding the stress

that is likely invariably experimented by animals in

experimenter-initiated tests, which can affect pain-related

outcomes (265, 275). Here we describe the operant assays that

have been developed specifically to assess OFP.

3.3.1.1. Operant thermal pain test
To assess operant thermal pain behavior and characterize orofacial

heat pain sensitivity (63, 66, 192, 276), unrestrained rats or mice

are placed in a cage with acrylic walls containing an opening in

one wall lined with grounded metal tubing that serves as

thermode. A spouted watering bottle filled with diluted

sweetened condensed milk (reward) is placed just outside the

opening, allowing animals to access to the reward through the

spout when simultaneously contacting the thermode with their

face. Following sessions in which animals are trained to obtain

the reward while contacting the thermode at room temperature,

temperature is increased and the data acquisition system is

activated. The system records simultaneous spout and thermode

contact as a “licking” event, which can be interpreted as a

successful attempt at the reward; thermode contact only as a

“facial contact” event, which can be interpreted as a failed

attempt at the reward; and the duration of each facial contact.

The amount of reward consumed is also tracked by the

experimenter. The licking/facial contact events and facial

duration/facial contact event ratios, the cumulative facial contact

duration and reward intake can then be calculated and provide

indirect measures of orofacial thermal pain sensitivity.

Using cold thermode temperatures, this method can also be

used to assess cold hypersensitivity (277). Importantly, these

operant measures reflect the animal’s choice to obtain the reward

despite the painful thermal stimulation, which involves learning

cerebral processes.

3.3.1.2. Operant thermal and mechanical pain test
The dual operant thermal and mechanical pain behavior employs a

modification to the system described in the above subsection

(Section 3.3.1.1) by simply adding a mechanical component (67).

In specific, nickel titanium wires (0.010 or 0.007 inches in

diameter) are attached horizontally to the cage opening that

allows access to the spouted watering bottle filled with diluted
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sweetened condensed milk (reward). Thus, access to the reward

requires simultaneous contact with the wires. Similar to the

operant thermal pain behavior, the system records “licking”

events, “facial contact” events and the duration of each facial

contact. The licking/facial contact events and facial duration/

facial contact event ratios, the cumulative facial contact duration

and reward intake can then be calculated and provide indirect

measures of orofacial mechanical pain sensitivity. This dual

system allows investigators to directly assess and compare

mechanical vs. thermal pain using the same outcomes.

3.3.1.3. Operant mechanical pain threshold test
The same group who developed the operant thermal pain test and

the dual operant thermal and mechanical pain test, sequentially

developed the operant mechanical pain threshold test (64). The

new test consists of placing animals in a cage that contains at one

end a round aperture with a 360° array of looped 0.010 in stainless

steel wires with a 0.7 in opening at the center that partially blocks

access to a spouted watering bottle filled with diluted sweetened

condensed milk (reward). Initially, the bottle spout is aligned with

the array of wires so that initial contact with the bottle does not

require contact with the mechanical stimulus. Upon contact with

the bottle, an electric circuit is established triggering a motor that

slowly moves the bottle away from the cage, requiring the animal

to tolerate greater mechanical force to continue to receive the

reward. This process is repeated five times or until 10 min of

testing time elapse. The average tolerance distance can then be

calculated for each testing day for each animal, with greater

distances being indicative of reduced mechanical pain sensitivity.

The main advantage of this test to the previously developed the

dual operant thermal and mechanical pain test is that it allows the

quantification of each animal’s withdrawal threshold.

3.3.1.4. Operant feeding behavior test
In the operant feeding behavior test (56), rats are trained to press

on a bar four times to obtain one 45 mg food pellet. At the time of

testing, the times of each reward obtained during a one-hour

session and the inter-feeding interval are recorded. Results are

shown in a histogram of feeding behavior with inter-feeding

intervals binned at 5 s intervals, normalized to the total number

of pellets consumed. A right shift in the distribution indicates

food was consumed with larger inter-feeding intervals and

suggests increased orofacial pain.

3.3.1.5. Operant gnawing (chewing) tests
A hallmark of OFP conditions is functional pain, such as pain

during mastication (278–281). The dolognawmeter, a device that

allows the quantification of mice gnawing time (52), was

developed considering that other operant tests assess noxious

cutaneous stimulation rather than masticatory dysfunction. The

dolognawmeter is a device designed to fit into a standard mouse

cage and essentially consists of a 24 mm. internal diameter tube

through which are placed two dowels part by 20 mm. Once a

mouse is loaded into the dolognawmeter, an endcap is placed,

and the mouse finds itself confined anteriorly by the series of

two dowels. The mouse instinctively gnaws through them to exit

the tube. Upon severing the first dowel, pistons retract it laterally
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and automatically start a timer that is stopped once the second

dowel is severed. The amount of time taken to gnaw through the

second dowel is an index of OFP: greater gnawing-time reflects

increased OFP pain and can be brought back to baseline levels

upon administration of analgesic drugs. Of note, mice use their

front incisors to gnaw through the dowels and their tongue to

remove debris from the mouth. This is different from humans to

the extent that humans employ their molars for chewing. The

dolognawmeter has been used mainly to study OFP linked to

oral cancer (282–284) and has thus far been under-used in the

field of non-cancer OFP (285). A modified dolognawmeter to

test rats (the ratgnawmeter) has also been developed (78).

3.3.1.6. Operant drinking test
Oral sensitivity, including tongue sensitivity, may be assessed based

on drinking behavior. This test, modified from the paired-

preference drinking aversion paradigm (286, 287), consists in

attaching one bottle with water plus vehicle and another with

capsaicin (1 µM) or mustard oil (100 µM) to the cage of mice

housed individually for three days. Following 24 h during which

animals have access to the two bottles (and to food) ad libitum,

the volume consumed is recorded. At the end of each day, the

bottle positions are changed to ensure findings are not due to a

place preference. The average volume consumed over three days

of testing and the ratio of capsaicin or mustard oil intake vs.

total liquid intake (percentage) is then calculated and used as

measures of oral sensitivity (i.e., lower volume and/or ratio are

indicative of increased oral sensitivity) (232).
4. Discussion

It is hard to envision the much-needed advance in our

comprehension of the etiological and pathophysiological

mechanisms of chronic primary pain conditions and the

consequent development of new drug therapies and treatment

strategies to prevent and treat them without the support of pre-

clinical research. For the success of this endeavor, it is imperative

that appropriate pain assays and measures are selected to

adequately address a study’s goals. Another important aspect that

requires careful consideration is the selection of study subjects

(i.e., animal species, strain, sex, age, etc.). Previous reviews have

discussed factors to consider in the selection of appropriate study

subjects (239). In this review, we have presented the currently

available pain assays and measures in support of chronic primary

OFP, in particular pTMDs, TN, and BMS. Understanding how the

current knowledge on these conditions has been constructed is

important to enable the development of methods that will allow us

to optimize the translation of findings into better OFP care.

Chronic primary pain conditions have seemingly idiopathic

etiology and complex pathophysiology and there is robust

scientific evidence that both processes are multifactorial and

varied at the individual level (11, 17). It is thus challenging to

envisage that a single preclinical pain assay might be necessary

or sufficient to engage, in animals, etiological and

pathophysiological mechanisms similar to those leading to the
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development and maintenance of pain in humans. Single assays, in

particular those relying on an inflammatory or neuropathic injury,

may at best represent environmental factors that produce

nociceptive afferent inputs into the central nervous system (CNS)

needed to initiate the painful state. An overwhelming majority of

preclinical OFP research is, however, based on single assays.

While these studies have been and will continue to be important

to reveal critical inflammatory, neural, and immune aspects of

OFP transmission and processing, their findings likely represent

only an isolated fragment of the mechanisms involved in chronic

pain. Hence, one of the current challenges to be overcome by

preclinical OFP research is the development of integrated assays

with greater construct validity that could potentially trigger the

engagement of pain mechanisms paralleled in humans.

Accordingly, a study has recently shown that OFP develops and

is maintained for at least 2 weeks as result of the exposure of

animals to a combination of assays mimicking a predisposing

(i.e., pharmacological inhibition of COMT) and a precipitating

pTMD factor (i.e., jaw forced lengthening) (78). Similar examples

for idiopathic TN or BMS assays are not currently available.

The measures employed to infer OFP in rodents is another

component of preclinical research design that requires careful

consideration to enhance the translatability of findings. It would

be ideal that the phenotype (i.e., a subject’s observable traits)

created by virtue of the selected OFP assay emulates as best as

possible the symptoms linked with the disease of interest. In

addition to the cardinal symptom of spontaneous (and often

oscillating) pain, pain that is modified by jaw function (e.g.,

chewing hard food, laughing, yawning, resting the jaw) is a

hallmark of pTMDs (278–281). However, preclinical studies

investigating aspects of pain in the TMJs and masticatory

muscles focus mainly on nocifensive behaviors and mechanical

pain sensitivity measures. While the former has the advantage of

being spontaneous (i.e., non-evoked) behaviors, they are elicited

in response to the injection of an algogen and are short-lasting

in nature. Conceivably, nocifensive behaviors are practical

measures of acute pain sensitivity but do not sensibly represent

chronic OFP symptoms in humans. Mechanical pain sensitivity

is mostly assessed using von Frey filaments and seem to have

face validity as a measure of pain evoked by palpation. Assessing

palpation pain in the TMJs and masticatory muscles is an

integral part of a pTMD clinical examination for adequately

rendering a diagnosis [e.g., a myalgia diagnosis requires the

patient to report that the pain elicited by palpation resembles the

pain they experience outside the clinical setting, a.k.a. familiar

pain (12)] and assessing severity and prognosis (288).

Nonetheless, evoked pain is not the chief complaint of pTMD

patients and their reason for seeking care. Furthermore, it has

been speculated that von Frey tests assess noxious cutaneous

stimulation rather than mechanical sensitivity. In the inability to

communicate pain, it seems like preclinical measures of

masticatory function, such as bite force (52, 51, 77, 255–265),

feeding (54, 55, 272), and the operant gnawing tests (52, 78),

would be more sensible measures of OFP resembling that of

pTMD patients. Assessing these measures, however, does not

come without challenges and disadvantages, which include the
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devices and computational systems to enable testing.

There are also no construct-valid animal assays that lead to

behaviors that sufficiently mimic TN (i.e., long-lasting display of

spontaneous pain attacks). It is commendable that many studies

employing assays that compress the trigeminal nerve in a

manner that likely partly parallels the pathophysiology of

classical TN (167–169, 218–220, 224, 225) assess and show OFP

for long periods of time lasting at least one month (201–204).

These are, however, assessments of mechanical and/or thermal

hypersensitivity and there is no reported evidence that these

assessments trigger pain attacks. Pain attacks in TN patients are

often triggered by innocuous stimuli, such as touching the face,

brushing the hair, or simply stepping out into colder

temperatures. Hence, it would be expected from a face-valid

animal model of TN that the mechanical or thermal stimuli such

as those delivered, for example, in von Frey or in thermal pain

tests, would trigger pain attacks. The assay that injects cobra

venom into the ION to induce TN seems to have greater face-

validity despite lacking construct-validity, as injected animals

display greater face-grooming behavior that could be indicative of

spontaneous pain attacks compared to controls for at least 30

days. Going forward, it is important that pre-clinical studies of

TN assess behaviors that could demonstrate the paroxysmal

nature of pain, which could include, for instance, freezing

behaviors in addition to face-grooming. Freezing is an instinctive

behavior in animals to avoid physical pain (289) and is

commonly assessed in pre-clinical migraine/headache research to

infer pain (290) that would likely be informative for TN research.

It is also important to reiterate a previously voiced concern

regarding the lack of specificity of assays supposedly relevant for

TN, as the same assays (especially those compressing the infra-

orbital nerve) are also used to induce painful trigeminal neuropathy.

These are two distinct conditions both in terms of clinical

presentation and evidence-based treatment and it is unlikely that

the same assay would validly recreate pathophysiological

mechanisms simultaneously relevant for both conditions (291).

Burning pain that can feel like one has scalded their mouth

(more often in the tongue but may also affect gums, lips, the

inside of cheeks, palate, and/or widespread areas in the mouth) is

the main complaint of patients with BMS (292). Although a

neuropathic component has been suggested for BMS (227–230)

and introduced into animal assays (232), this condition also is

believed to be multifactorial (226). Creating a rodent assay that

better approximates the pathophysiology of BMS and results in a

phenotype consistent with its clinical manifestations—in terms of

both chief complaint and chronicity—will likely require combined

approaches. Another challenge in BMS research is the

development of methods that assess burning pain in a translatable

manner. Acidic foods and liquids, such as tomatoes, orange juice,

carbonated beverages, and coffee, typically worsen the burning

sensation. A possibility could be to invest in the development of

measures that assess the intake of these commonly consumed

products as opposed to water containing potent TRPV1 and

TRPA1 and ligands (e.g., capsaicin and mustard oil, respectively).

Notably, a recent study showing that nociceptive nerves are
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required for enforced hematopoietic stem cells mobilization has

developed a method in which mice are fed with spicy (capsaicin-

infused) chow without affecting their daily food intake or body

weight compared to regular chow that could potentially be useful

as an outcome measure in pre-clinical BMS research (293).

Of note, this review does not wish to make a statement that

measures of mechanical and thermal pain sensitivity are not

adequate or needed to demonstrate a painful phenotype. In fact,

pTMD (109, 214, 294, 295), TN (182, 297, 298), and BMS (298–

301) patients are more sensitive to experimental mechanical and

thermal pain locally and often in other parts of the body. Hence,

pairing face-valid measures of OFP sensitivity with

complementary measures of pain sensitivity is not only needed

for a comprehensive phenotypic characterization but is also likely

informative of the disease pathophysiology.
4.1. Perspectives and New applications

The multifactorial etiology and complex pathophysiology of

chronic primary OFP conditions is a challenge to the

translatability of pre-clinical research. The development of

models in which long-standing pain results from the exposure to

biological, psychological, and environmental factors seems to be

required if we are to better understand the mechanisms that

sustain pain and to develop treatment strategies that target these

mechanisms. A recent study reports that mice with genetic

background susceptible to pain (i.e., transgenic mice expressing

reduced COMT levels) that are not more sensitive to pain at

baseline develop pain in multiple body sites following combined

exposure to stress (i.e., swim stress) and to an OFP-relevant

environmental factor (i.e., surgery to remove lower molars

bilaterally) that lasts more than 3 months and is of greater

magnitude in females (302). This multiple assay-based animal

model of chronic primary pain seems to be a step in the right

direction and could be used to inspire new pTMD, TN, and

BMS pre-clinical models.

In the abovementioned multiple assay-based animal model of

chronic primary pain, animals also displayed depressive-like

behaviors for longer than 3 months. Measures of psychological

well-being are additional complementary measures that should be

assessed to fully characterize OFP-related rodent phenotypes, as

well as to assess pain duration and response to treatment. It is

well-documented that chronic OFP patients, including those living

with pTMD (25, 303, 304), TN (305, 306), and BMS (307–310),

display a complex array of symptoms that includes psychological
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comorbidities and poorer quality of life. Naturally occurring

elective behaviors such as grooming, playing, socializing, and nest

building are increasingly accepted as indicators of rodent well-

being (311–314). Equivalent behaviors in humans include social

interactions and participation in physical activities, which are

negatively affected by chronic pain (315–317), including pTMDs,

TN, and BMS (26, 306, 319). Hence, complementing the study

design with measures of elective behaviors may be crucial to assess

the entirety of an animal’s orofacial pain experience.

A plethora of preclinical assays have been used and have been

helpful to advance our understanding of the mechanisms of OFP.

Combined with evidence originating from studies in humans, it

is now time to put effort into developing construct-valid OFP

assays and face-valid OFP measures that may help uncover

pathophysiological aspects of chronic OFP and enable the

development of drug therapies and treatment strategies that may

survive the translational ladder. In this regard, this review hopes

to foster the development of innovative animal models with

greater translatability and potential to lead to better care for

patients living with chronic primary OFP.
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