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Tackling the glial scar in spinal
cord regeneration: new
discoveries and future directions
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Tariq Saleh, Khaled Alkattan and Ahmed Yaqinuddin
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Axonal regeneration and functional recovery are poor after spinal cord injury

(SCI), typified by the formation of an injury scar. While this scar was traditionally

believed to be primarily responsible for axonal regeneration failure, current

knowledge takes a more holistic approach that considers the intrinsic growth

capacity of axons. Targeting the SCI scar has also not reproducibly yielded

nearly the same efficacy in animal models compared to these neuron-directed

approaches. These results suggest that the major reason behind central nervous

system (CNS) regeneration failure is not the injury scar but a failure to stimulate

axon growth adequately. These findings raise questions about whether targeting

neuroinflammation and glial scarring still constitute viable translational avenues.

We provide a comprehensive review of the dual role of neuroinflammation and

scarring after SCI and how future research can produce therapeutic strategies

targeting the hurdles to axonal regeneration posed by these processes without

compromising neuroprotection.

KEYWORDS
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1. Background

In response to tissue injury, the body swiftly seeks to restore homeostasis by minimizing
damage spread and recovering normal tissue function. The wound healing process involves
conserved and coordinated phases of hemostasis, inflammation, and remodeling. However,
in the adult mammalian central nervous system (CNS), this healing process is prolonged and
culminates in the formation of an injury scar characterized by a fibrotic core surrounded by
a limitans border of astrocytes, termed the glial border or glial scar, in the lesion’s immediate
penumbra (Adams and Gallo, 2018).

Central nervous system regeneration is notoriously poor after traumatic spinal cord
injury (SCI) (Bradbury and McMahon, 2006). The injury scar was once viewed as the primary
obstacle to successful regeneration, leading to numerous attempts to inhibit its essential
components (Silver and Miller, 2004). However, contemporary research has largely moved
past this notion, adopting a more comprehensive approach considering neuron-intrinsic
properties. Advances in neural stem cell (NSC) transplantation and the administration
of neurotrophic factors have achieved unprecedented levels of neural regeneration and
functional recovery (Lu et al., 2012; Anderson et al., 2018), even progressing to early-phase
clinical trials (Liu et al., 2022).
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Conversely, strategies targeting scar components have not
reproducibly yielded noteworthy beneficial effects in animal models
(Zheng and Tuszynski, 2023). Moreover, genetic manipulations
that deplete or attenuate glial or stromal cells in the glial scar
have revealed numerous protective functions in SCI (Wahane and
Sofroniew, 2022). There is also currently no FDA-approved drug
targeting scar-associated neuroinflammation in the management
of SCI. These observations prompt a critical question: is targeting
the SCI scar beneficial, and should it remain a focus of future
research? Answering this question requires a deeper understanding
of the roles of various cells in SCI. This review discusses recent
advancements in SCI cell biology, reflects on current study
limitations, and proposes a trajectory for future research in this
area.

2. Formation and composition of the
glial scar

2.1. Primary and secondary spinal cord
injury

Tissue response to injury begins with local vascular damage
and the infiltration of blood-borne immune cells (Gurtner et al.,
2008; Eming et al., 2014). The CNS injury response follows a
similar pattern (Burda Joshua and Sofroniew Michael, 2014; Orr
and Gensel, 2018; Bradbury and Burnside, 2019; Anjum et al., 2020;
Hellenbrand et al., 2021).

Spinal cord injuries are divided into primary and secondary
injury mechanisms (Figure 1; Sekhon and Fehlings, 2001; Alizadeh
et al., 2019). The primary injury can take many forms, all
involving mechanical forces that disrupt several ascending and
descending tracts, blood vessels, the blood-spinal cord barrier
(BSCB), and cell membranes of neurons and glial cells (Tator
and Fehlings, 1991; Tator, 1998; Rossignol et al., 2007). This
leads to local tissue ischemia and necrotic cell death, manifesting
as spinal and potential neurogenic shock, neurotransmitter and
electrolyte imbalances, and the release of pro-inflammatory
damage-associated molecular patterns (DAMPs) such as ATP and
high-mobility group box-1 (HMGB1) (Bianchi, 2007; Tran et al.,
2018b; Anjum et al., 2020).

These events give rise to a secondary injury response, a
series of cellular, molecular, and biochemical mechanisms that
chronically exacerbate tissue loss and impede functional recovery
(Allen, 1911; Oyinbo, 2011; Fehlings et al., 2012). Traditionally,
the secondary injury response to SCI has been categorized into
acute [0–2 days-post injury (dpi)], subacute (2–14 dpi), and
chronic phases (>14 dpi), each with unique and overlapping
pathophysiological hallmarks. For example, the acute phase
features vascular hemorrhage, vasogenic edema, necrotic cell death,
neurotransmitter and electrolyte imbalance, and excitotoxicity
(Oyinbo, 2011; Alizadeh et al., 2019). The subacute phase involves
demyelination of spared axons due to continued oligodendrocyte
apoptosis, Wallerian degeneration of the distal stump of transected
axons, and axonal dieback of the proximal end. The chronic phase
is typified by a mature SCI scar, comprising a fibrotic core—
often containing a central cystic cavity—encircled by a glial scar
of astrocytes and oligodendrocyte progenitor cells (OPCs). We

refer readers to other reviews for additional information on the
unique and overlapping disease processes occurring in these phases
(Oyinbo, 2011; Alizadeh et al., 2019).

2.2. Neuroinflammation in spinal cord
injury

Neuroinflammation refers to the induction of reactive states
in various CNS cell types and the recruitment of circulating
innate and adaptive immune cells (Bareyre and Schwab, 2003).
Neuroinflammation is a salient feature of all the phases of
secondary injury but varies with intensity, peaking in the acute and
subacute phases (Oyinbo, 2011; Anwar et al., 2016). CNS resident
cells, such as astrocytes and microglia, are the first to react to
the primary injury site, secreting pro-inflammatory cytokines and
chemokines that recruit blood-borne immune cells to the lesion
epicenter and activate them (Fawcett and Asher, 1999; Schnell et al.,
1999; Davalos et al., 2005; Rice et al., 2007; Burda and Sofroniew,
2014).

During the acute phase, neutrophils are recruited to the SCI
lesion site, where they exert deleterious effects by producing
reactive oxygen species (ROS), pro-inflammatory cytokines, and
proteases, which exacerbate neuronal loss and neuroinflammation
(Dinkel et al., 2004; Nguyen et al., 2007; Bi et al., 2021; Dolma
and Kumar, 2021; Feng et al., 2021). However, some studies
have reported that infiltrating neutrophils in SCI contribute to
the resolution of neuroinflammation and create an environment
conducive to axonal regeneration (de Castro et al., 2004; Stirling
et al., 2009; Ghasemlou et al., 2010; Schreiber et al., 2013). A seminal
paper by Stirling et al. demonstrated that depleting neutrophils
in the acute phase of SCI worsens tissue damage, reduces local
levels of growth factors such as vascular endothelial growth factor
(VEGF) and fibroblast growth factor (FGF), and compromises
functional recovery (David et al., 2009). Neutrophil numbers in the
SCI lesion site begin to decline in the subacute phase, coinciding
with the infiltration of monocyte-derived macrophages (MDMs)
and adaptive B and T lymphocytes (Neirinckx et al., 2014).

Macrophages infiltrate the lesion site after 2–3 dpi, peaking
around 7–10 dpi (Perry and Teeling, 2013; Andrew and Samuel,
2014). Macrophages originate either from circulating monocytes,
termed MDMs, or CNS resident macrophages in the perivascular
spaces and meninges. Reactive microglia and MDMs occupy
distinct locations in the fibrotic scar, with MDMs at the center and
reactive microglia in the periphery, interfacing with the astrocyte
border (David and Kroner, 2011; Zhou et al., 2014; Wang et al.,
2015). These cell types also differ temporally: microglia proliferate
rapidly at the lesion site, peaking at 14 dpi, whereas MDMs peak
at 7–10 dpi and again at 60 dpi (Popovich et al., 1997; Bellver-
Landete et al., 2019; Milich et al., 2021). While the numbers
of macrophages and microglia decline in the chronic phase,
this resolution is incomplete, with phagocytic pro-inflammatory
macrophages and reactive microglia persisting months after SCI
onset and contributing to impaired wound healing (Fleming et al.,
2006; Prüss et al., 2011).

Lymphocytes begin infiltrating the lesion site in the
subacute phase and remain elevated in the chronic phase,
driving autoimmunity and neuroinflammation (Jones, 2014;
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FIGURE 1

The pathophysiology behind spinal cord injury involves primary injury, describing initial mechanical trauma to the spinal trauma, and secondary
injury, which sustains spinal cord damage. The secondary phase is further divided into acute (0–2 days), subacute (2–14 days) and chronic
(>14 days), each with its own pathophysiological hallmarks. Neuroinflammation is a part of all the secondary injury phases, but the cell types
involved vary. Astrocytes and microglia are the first to become reactive. They secrete cytokines/chemokines that recruit neutrophils in the acute
phase. Neutrophil numbers subside in the subacute phase, coinciding with macrophage and lymphocyte infiltration. Macrophage and lymphocytes
can stay elevated in the chronic phase to drive persistent inflammation and impair wound resolution. This figure was created with Biorender.com.

Allison and Ditor, 2015). At the lesion site, antigen-presenting
cells such as macrophages present self-antigens to T-cells, thereby
fostering a chronic autoimmune T-cell response (Jones, 2014).
Autoreactive CD4+ T-cells can adopt a T helper-1 (Th1) type
phenotype, secreting pro-inflammatory cytokines that induce pro-
inflammatory/anti-repair microglia and macrophage polarization
states (Yu and Fehlings, 2011). Autoreactive CD4+ T-cells can
also stimulate humoral immune responses by promoting B-cell
differentiation into plasma cells producing autoantibodies against
neuronal and myelin antigens (Hayes et al., 2002; Ankeny et al.,
2006, 2009).

2.3. Compartmentalization of the SCI
lesion site

Recent research advocates dividing the SCI scar into three
compartments: the inner fibrotic scar, the surrounding astroglial
border (or glial scar), and the adjacent reactive neural parenchyma
(Figure 2; O’Shea et al., 2017). These compartments exhibit unique
cellular compositions and transcriptional profiles (Gong et al.,
2023). The central fibrotic scar consists of macrophages, other
blood-borne inflammatory cells like lymphocytes, and stromal
cells such as fibroblasts and pericytes. Over time, blood-borne
inflammatory cells recede (albeit not completely), leaving stromal
elements to constitute the bulk of the fibrotic scar (Beck et al.,
2010). The astrocyte border comprises proliferating astrocytes up

until 14 dpi, after which the structure matures. NG2+ OPCs are
also found in this region (Keirstead et al., 1998; Miron et al.,
2013). The adjacent reactive neural parenchyma comprises neurons
that display active synaptic remodeling and circuit reorganization.
Glial cells in this region are composed of reactive astrocytes,
microglia, and OPCs, but they differ in their magnitude of reactivity
from their counterparts in the lesion core and border (Khakh
and Sofroniew, 2015). For example, astrocytes outside the lesion
site upregulate glial-fibrillary acid protein (GFAP) but do not
dramatically change their morphology and orientation and can
even stimulate the regeneration of adult CNS neurons (Davies et al.,
1999; Li X. et al., 2020). In contrast, astrocytes within the scar
border more drastically upregulate GFAP and significantly change
their morphology and orientation to form a compact glial scar that
impedes regeneration (Tran et al., 2018b).

It is essential to state that the term “glial scar” was traditionally
used to refer to the whole SCI scar. This is now considered
a misnomer by prominent researchers as it carries negative
connotations that depict the glial scar only as an obstacle to
axon regeneration and functional recovery. This oversimplification
disregards the dynamic and multifaceted nature of the host
response to SCI (Adams and Gallo, 2018; Sofroniew, 2020;
Wahane and Sofroniew, 2022). Adopting accurate terminology
by describing the different compartments and time-dependent
roles of the SCI scar allows for a more nuanced understanding
of the SCI response, particularly for non-expert readers. Using
broad or general terms like “glial scar” to refer to the SCI
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FIGURE 2

This figure depicts the composition of different compartments of the SCI lesion site. The fibrotic scar mainly comprises stromal cells, blood-borne
inflammatory cells, and microglia. This core is surrounded by glial scar, composed of an astrocyte limitans border, oligodendrocyte progenitor cells
(OPCs), and microglia. Extensive reactive changes also take place in the adjacent neural parenchyma, including axonal dieback and synaptic
remodeling and axonal sprouting of spared axons. Glial cells such as astrocytes, OPCs and microglia in this peri-lesional area are reactive, but differ
in their magnitude of reactivity than those at the lesion site. This figure was created with Biorender.com.

lesion site perpetuates the misconception that the SCI scar
is inherently inhibitory and requires wholesale/indiscriminate
attenuation (Wahane and Sofroniew, 2022), which may hinder
the development of effective therapeutic strategies targeting the
diverse functions of glial and stromal cells. Unfortunately, there
is still no consensus regarding the correct use of the term “glial
scar” or agreed-upon alternate terms. In this review, we adopt the
terminology used by Adams and Gallo (2018), who used “glial
scar” to refer to the glial cell border—composed of astrocytes and
OPCs—surrounding the fibrotic core of the lesion.

2.4. Extracellular regeneration inhibitors
in the glial scar

Myelin’s role as a CNS axonal regeneration inhibitor was
first described in the 1980s (Schwab and Strittmatter, 2014).
Myelin-associated molecules inhibiting CNS regeneration include
Nogo (reticulon-4), Nogo-receptors (NgR), myelin-associated
glycoprotein (MAG), and oligodendrocyte myelin glycoprotein
(OMgp) (Bradbury and McMahon, 2006). While experiments
in the early 2000s found that systemic or local administration
of anti-Nogo receptor antibodies enhanced CNS regeneration
(Silver and Miller, 2004; Lu et al., 2012), others utilizing genetic
knockout (KO) of myelin-associated molecules did not consistently
reproduce these results (Anderson et al., 2018; Liu et al., 2022).
This discrepancy suggests that myelin may not play a significant
role in CNS regeneration failure, but that inhibiting myelin-
associated molecules could enhance the remodeling of spared

axons to provide functional improvement (Liu et al., 2022). The
RESET trial, completed on June 2022, is a two-part clinical trial
studying AXER-204, a human fusion protein that functions as a
decoy for myelin-associated inhibitors Nogo-A, MAG, and OMgp
(NCT03989440).

Chondroitin sulfate proteoglycans (CSPGs) are produced by
various cell types, including astrocytes, microglia, fibroblasts,
pericytes, and OPCs, and play a role in inhibiting axon growth
(Gallo et al., 1987; Tran et al., 2018b). CSPGs bind to the surface
receptor protein tyrosine phosphatase-σ (RPTPσ) on neurons,
disrupting neuronal autophagy and leading to axon growth cone
dystrophy and regeneration failure (Shen et al., 2009). Strategies
to counteract CSPGs include administering chondroitinase ABC
to digest glycosaminoglycan (GAG) side chains, preventing CSPG
formation, or abrogating RPTPσ signaling (see Tran et al., 2018a,b
for a detailed review). These approaches reproducibly alleviate
axon growth inhibition and promote some functional recovery
(Shen et al., 2009; Lang et al., 2015; Rink et al., 2018) but
do not yield significant regeneration benefits when used alone
(Zheng and Tuszynski, 2023). Furthermore, since aggrecan—the
prototypical CSPG—is mainly present in perineuronal nets (PNN)
and to a lesser extent in the core of SCI lesions, it appears that
inhibiting CSPG function enhances axon sprouting and neuronal
plasticity in the reactive CNS parenchyma rather than directly
allowing axon regrowth through the SCI scar (Fawcett, 2015). In
this regard, chondroitinase ABC reduces the atrophy of spared
corticospinal tracts after SCI and promotes axonal sprouting and
circuit reorganization (Carter et al., 2008; Starkey et al., 2012).
From these results, the future role of extracellular inhibition
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strategies will likely be limited to combinatorial approaches
supplementing neuron-intrinsic regeneration strategies such as
NSC transplantation or exogenous delivery of growth factors.
Detailed reviews on the role of perineural nets and CSPGs in SCI
are referenced here (Tran et al., 2018b, 2022).

2.5. The SCI scar and spinal cord
regeneration: revisiting historical
misconceptions

Throughout the 20th century, studies found that injured CNS
axons regrew through living peripheral nerve grafts but not CNS
white matter, indicating that the CNS microenvironment might
lack certain growth-promoting and/or contain growth-inhibitory
factors (Sugar and Gerard, 1940; Brown and McCouch, 1947;
Richardson et al., 1980; Silver and Miller, 2004; Anderson et al.,
2016). Additionally, the observation of dystrophic end-bulbs of
non-regenerating axons abutting the astroglial border led to the
hypothesis that the SCI scar formed a physical barrier impeding
axonal regeneration (Silver and Miller, 2004).

However, rigorous testing in the past two decades has shown
that the SCI scar plays both beneficial and harmful roles in
SCI. For instance, loss-of-function experiments in transgenic mice
have revealed a protective role of acute glial and stromal cell
responses in SCI (Table 1). It is now clear that the SCI scar
is a double-edged sword: it is acutely beneficial by performing
damage-containment functions that prevent the propagation of
the primary injury but, in the long-term, contributes to spinal
cord regeneration failure by virtue of its extracellular inhibitors,
physically insurmountable nature, and continual pro-inflammatory
cellular signatures (Silver and Miller, 2004; Gaudet and Fonken,
2018; Escartin et al., 2021).

2.6. Spinal cord regeneration across
different phyla

Spinal cord injury biology research has revealed the remarkable
regenerative capacity of invertebrates and several non-mammalian
vertebrates, such as Zebrafish, Urodeles (newts and salamanders),
Lamprey, and Xenopus frogs (Tran et al., 2022). These animals
form a glial bridge across the SCI lesion site, regenerate their
spinal cords without scar formation, and spontaneously return to
full autonomic and sensorimotor function (Ferretti et al., 2003;
Shifman et al., 2006; Tazaki et al., 2017; Ghosh and Hui, 2018;
Freitas et al., 2019; Sabin et al., 2019; Tsata and Wehner, 2021).
These studies also emphasize the hostile and growth-inhibitory
nature of the SCI scar in mammals, as regeneration in amphibians
begins to fail when scar tissue forms (Bertolotti et al., 2013;
Edwards-Faret et al., 2021). Scarring after injury appears to be a
phenomenon acquired during evolution that impairs spinal cord
regeneration after injury.

Previously, excellent spinal cord regenerative capabilities were
considered unique to invertebrates and lower, non-mammalian
vertebrates. However, new data shows that adult spiny mice
(Acomys cahirinus) can spontaneously recover complete bladder
control after spinal cord transection at the T8 vertebral level

(Nogueira-Rodrigues et al., 2022). Although locomotor recovery
in adult spiny mice remains incomplete, it still far exceeds any
magnitude of recovery observed in adult mammals after complete
SCI (Nogueira-Rodrigues et al., 2022). Therefore, a mammalian
adult spinal cord regeneration model is now available (Gaire et al.,
2021; Wehner and Becker, 2022).

2.7. Spinal cord regeneration throughout
lifespan

Age is a crucial factor in determining spinal cord regenerative
capacity in mammals. Neonatal mice (post-natal day 2) and
the prematurely born South American opossum (Monodelphis
domestica) can robustly regenerate their spinal cords without scar
formation, reintegrate with distal neural circuitry, and recover
neurologic function (Mladinic and Wintzer, 2002; Li X. et al., 2020).
However, scarring occurs globally in 7-day-old mice and 2–3-week-
old opossums, with a consequent loss in their regeneration capacity
(Mladinic and Wintzer, 2002; Li X. et al., 2020).

The decline in mammalian CNS regenerative capacity in
the post-natal period is multi-factorial. One reason is the

TABLE 1 Genetic or pharmacologic loss-of-function experiments have
revealed vital neuroprotective functions of glial and stromal responses
to SCI.

Cell
type

Reference Loss of
function
model

Impact on SCI
outcome

Astrocytes Faulkner et al.,
2004

TK+ GCV Failure of wound contraction
Prolonged neuronal loss
Persistent neurological deficits

Astrocytes Anderson et al.,
2016

TK+ GCV,
stat3-cKO

Failure of axonal regrowth
Significant increase in axonal
dieback

Astrocytes Wanner et al.,
2013

Stat3-cKO Poorly demarcated scar border
with extensive spread of
inflammatory cells

Microglia Bellver-Landete
et al., 2019

PLX5622 Impaired locomotor recovery
following SCI
Impaired astrocyte
proliferation
Decreased survival of neurons
and oligodendrocytes at site of
injury

Microglia Zhou X. et al.,
2020

Plxnb2-cKO Significant impairment in
sensorimotor recovery
Impaired wound compaction
leading to enlargement of SCI
lesion

OPC Hesp et al., 2018 NG2 TK+ GCV Enlarged lesions with edema
Prolonged hemorrhage
Inhibition of angiogenesis at
site of lesion

OPC Bartus et al.,
2019

ErbB-cKO Impaired locomotor recovery

Stromal cells Yokota et al.,
2017

Postn-KO Decreased fibrotic scar
formation
Impaired functional recovery
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significant change in the proteome of CNS neurons with age
(Agrawal and Welshhans, 2021), which likely impacts post-injury
regenerative capacity (Tran et al., 2022). During the embryonic
period, CNS neurons are programmed to grow far-reaching
axons to reach distal innervation targets, while in post-embryonic
life, they facilitate and maintain local synaptic plasticity (Gumy
et al., 2011; Shigeoka et al., 2016; Agrawal and Welshhans,
2021). For example, the alpha2delta2 subunit of voltage-gated
calcium channels (VGCCs) is expressed during late embryogenesis,
acting as a developmental switch that inhibits the axonal growth
characteristic of early developmental CNS axons (Tedeschi et al.,
2016). Genetically deleting the Cacna2d2 gene, which encodes
the alpha2delta2 subunit, promotes axonal growth in vitro and
inhibiting the alpha2delta2 subunit with pregabalin in adult
mice after SCI enhances axonal regeneration (Tedeschi et al.,
2016). The specific regulators of this developmental switch are
yet to be fully understood. Still, they likely involve combined
effects from various extracellular factors, including CSPG-RPTPσ

signaling and possibly astrocyte-derived synaptogenic signals
like thrombospondins, which upregulate alpha2delta1 subunit of
VGCCs on neurons (Christopherson et al., 2005; Risher and Eroglu,
2012; Brooks et al., 2013; Sakamoto et al., 2019; Tran et al., 2020).

Embryonic neurons are less sensitive to inhibition by CSPGs
and myelin-derived components like Nogo-A than adult neurons
(Carulli et al., 2005; See et al., 2010; Poplawski et al., 2020).
The concentration of these extracellular inhibitors is also much
lower within the neonatal SCI lesion site than in adults (Tran
et al., 2022). Recent novel findings by Nogueira-Rodrigues et al.
showed that the extraordinary regenerative capacity of adult
Acomys after SCI was underpinned by a pro-regenerative ECM
signature. In their study, the SCI microenvironment of Acomys
was highly enriched in keratin sulfate proteoglycans (KSPGs) and
β3gnt7, the enzyme involved in KSPG production (Nogueira-
Rodrigues et al., 2022). β3gnt7-expressing cells promoted neurite
outgrowth in vitro, attributing growth-stimulating properties to
KSPGs (Nogueira-Rodrigues et al., 2022). It would be interesting to
investigate if experimentally engineering the ECM signature toward
KSPG predominance in animal models known for poor spinal cord
regeneration can augment axonal regeneration. Prior research has
explicitly shown that KSPGs limit neuronal plasticity in rats, and
their degradation by keratanase-II improves sensorimotor recovery
after SCI, demonstrating comparable efficacy to chondroitinase
ABC (Imagama et al., 2011). The factors driving these divergent
responses to KSPGs in Acomys spiny mice and rats are yet to
be elucidated. It would also be worthwhile investigating whether
regenerative animal models that display scarless healing exhibit a
core, pro-regenerative ECM composition.

The non-neuronal cellular response to injury also varies
between embryonic and post-natal life. For example, immature
astrocytes react less severely to stimuli like amyloid-β than mature
astrocytes (Rudge and Silver, 1990; Canning et al., 1993). When
reactive, immature astrocytes demonstrate reduced hypertrophy
than their adult counterparts and are less densely packed at the
scar border. Such an arrangement allows them to retain essential
wound-sealing functions and creates an environment more
favorable for axonal regeneration (Smith et al., 1987; Balasingam
et al., 1994; Domowicz et al., 2011). After perinatal ischemic
stroke, immature reactive astrocytes elaborate neuroprotective
factors, including PGDF, IGF, and VEGF (Revuelta et al., 2019).

These beneficial effects are most apparent when implanting
immature astrocytes into adult SCI lesions, which leads to reduced
glial scarring, enhanced axonal growth, and improved functional
recovery (Davies et al., 2006, 2011; Filous et al., 2010; Haas and
Fischer, 2013). In contrast, transplanting mature astrocytes impairs
healing by recruiting macrophages and fibroblasts, resulting in
cavitation (Filous et al., 2010).

Groundbreaking findings from Li Y. et al. (2020) demonstrated
that microglia in neonatal mice populate the injury site, generating
fibronectin and protease inhibitors that connect severed axon ends
and enable scar-free axonal repair. Adult microglia only transiently
and partially recapitulate the gene expression profile of their
neonatal counterparts (Li Y. et al., 2020; Wahane et al., 2021), which
can drive proliferation, revascularization, and functional recovery
(Wang et al., 2022). However, adult microglial subsets displaying
these developmental, pro-regenerative signatures are significantly
less abundant in adult SCI lesion sites and overexpress and under-
express CD68 and P2ry12, respectively, which may diminish their
regenerative capacity (Li et al., 2022). Determining the factors that
drive this developmental gene signature in immature astrocytes and
microglia and how it can be augmented in their adult counterparts
is a critical area for future research.

Above, we have provided compelling evidence that spinal cord
regenerative capacity varies considerably between embryonic and
post-natal life. As aging research has garnered a massive rise
in interest in recent years, studies have also shown that older
patients display poorer neurologic outcomes after SCI compared
to younger individuals (Scivoletto et al., 2003; Furlan and Fehlings,
2009), suggesting the existence of a “second wave” of changes
in the CNS injury response that subjects older individuals to
a greater neuropathologic burden and worse clinical outcomes.
López-Otín et al. (2013, 2023) identified twelve biological aging
hallmarks: genomic instability, telomere shortening (i.e., attrition),
epigenetic alterations, loss of proteostasis, dysregulated nutrient
sensing, mitochondrial dysfunction, stem cell exhaustion, altered
intercellular communication, macroautophagy, chronic low-grade
inflammation, and gut microbiome dysbiosis. The geroscience
hypothesis states that the accumulation of these processes in
different body tissues—at different rates—drives aging-related
tissue dysfunction and that targeting biological aging processes
may extend healthspan and potentially even lifespan (Kennedy
et al., 2014). The accumulation of biological aging hallmarks is
evident in the CNS and manifests as age-related changes in cerebral
morphology, impaired neurogenesis, and neuroinflammation (see
Gonzales et al., 2022 for a detailed review).

Cellular senescence, a state of irreversible cell cycle arrest
accompanied by characteristic molecular, morphological, and
functional alterations, has emerged as a key therapeutic target in
aging and chronic diseases, including neurodegenerative diseases
(Kirkland et al., 2017; Kirkland and Tchkonia, 2017, 2020;
Hernandez-Segura et al., 2018; Calcinotto et al., 2019; Gorgoulis
et al., 2019; Gasek et al., 2021; Chaib et al., 2022; Huang W. et al.,
2022; Shafqat et al., 2022; Zhang L. et al., 2022). Senolytics, which
are drugs that eliminate senescent cells, are already being evaluated
in clinical trials for a host of chronic diseases such as Alzheimer’s
disease (see Zhang L. et al., 2022 for a detailed review).

Hence, recent studies have defined the role of cellular
senescence in the aging CNS in an attempt to uncover novel
therapeutic targets. Pericytes in the aging brain undergo
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senescence, associated with increased blood-brain barrier (BBB)
permeability in vitro, suggesting that senescent pericytes
could partially contribute to age-related BBB dysfunction and
neuroinflammation (Iwao et al., 2023). Senescent microglia
accumulate in the aged brain and elaborate pro-inflammatory
cytokines and chemokines that recruit adaptive T-cells and B-cells,
which are linked to the onset of cognitive decline (Ogrodnik et al.,
2021; Zhang X. et al., 2022). The pro-inflammatory phenotypes
of senescent microglia can be augmented by stressors such as
traumatic brain injury (TBI), resulting in more pronounced
neuroinflammatory responses in older mice and worse cognitive
outcomes than in younger mice (Ritzel et al., 2019). Lastly, adult
neurogenesis occurs in the dentate gyrus of the hippocampus but
decreases with age due to a decrease in the number of NSCs and
neuroblasts, connected to the onset of age-related cognitive decline
(Kase et al., 2020). A recent study demonstrated an accumulation
of senescent neuroblasts in the dentate gyrus with aging (Jin et al.,
2021). These neuroblasts release pro-inflammatory molecules that
recruit natural killer (NK) cells, subsequently eliminating senescent
neuroblasts, leading to impaired neurogenesis and cognition (Jin
et al., 2021).

It is curious, perhaps even paradoxical that cellular senescence
is an evolutionarily conserved phenomenon despite its adverse
effects on nearly every organ system. However, senescence has
crucial beneficial roles in embryogenesis and is a frontline
defense against tumorigenesis (Storer et al., 2013; Lorda-
Diez et al., 2015; Schosserer et al., 2017). Cellular senescence
exerts both beneficial and harmful effects on wound healing.
Pioneering work from Demaria et al. (2014) demonstrated that—
in p16-3MR mouse models that allow tracing and inducible
depletion of senescent cells—fibroblasts and endothelial undergo
senescence early after a cutaneous wound. These senescent
cells secrete PDGF-AA, stimulating the differentiation of local
fibroblasts to myofibroblasts that mediate wound contraction
(Demaria et al., 2014). Depleting senescent cells in transgenic
mice delayed wound healing (Demaria et al., 2014). However,
successful wound healing requires the clearance of senescent
fibroblasts and endothelial cells, as their persistent accumulation
drives inflammation and tissue dysfunction via their senescence-
associated secretory phenotype (SASP) (Childs et al., 2015;
Calcinotto et al., 2019). Similarly, experiments analyzing the
injury response in the zebrafish hearts and fins and salamander
limbs reveal a transient induction of cellular senescence that, if
disrupted, impairs the regenerative response (Yun et al., 2015;
Da Silva-Álvarez et al., 2020).

Paramos-de-Carvalho et al. (2021) conducted a comparative
study on the dynamics of cellular senescence in SCI between
zebrafish and adult mice. They discovered that SCI upregulates
senescence-associated β-galactosidase (SA β-gal), the most widely
used marker for senescent cells, in neurons at the lesion periphery
in zebrafish and mice. Striking differences were observed in the
temporal dynamics of senescent neurons: in zebrafish, the number
of senescent neurons peaked at 8.9% at 15 dpi but then steadily
declined to reach baseline levels by 60 dpi, in line with the idea that
transient senescence induction is a conserved process associated
with successful wound healing and regeneration (Paramos-de-
Carvalho et al., 2021). Conversely, in mice, the percentage of
total senescent neurons was 25.3% at 15 dpi and continued to
increase until 60 dpi, reaching 35.3% (Paramos-de-Carvalho et al.,

2021). When the mice were treated with ABT-263, a known
senolytic, they exhibited significantly better sensorimotor and
bladder function recovery than vehicle-treated mice, indicating
that the accumulation of senescent cells contributes to the growth-
inhibitory SCI microenvironment in mice. The functional recovery
was associated with increased white matter sparing and enhanced
synaptic plasticity in the adjacent reactive neural parenchyma
(Paramos-de-Carvalho et al., 2021). To test the hypothesis that
chronic senescent accumulation in non-healing wounds promotes
inflammation, the authors demonstrated that ABT-263 significantly
reduced inflammatory macrophages numbers and levels of pro-
inflammatory cytokines, chemokines, and mitogenic and fibrogenic
growth factors in the SCI scar (Paramos-de-Carvalho et al., 2021).

3. Astrocytes

Astrocytes are of neuroectodermal origin and constitute
about 20% of glial cells (Molofsky and Deneen, 2015; Khakh
and Deneen, 2019). They fulfill diverse physiological roles in
the CNS, including blood-brain barrier (BBB) maintenance,
neurotransmitter uptake for synapse homeostasis, energy substrate
provision to neurons, and interactions with other astrocytes,
oligodendrocytes, and microglia (Khakh and Deneen, 2019).
Following CNS injury, astrocytes become reactive, which entails
an array of molecular, morphological, and functional alterations
that impact adjacent cells, positively or negatively, depending
on the disease context (Sofroniew and Vinters, 2010; Sofroniew,
2020). This process is often incorrectly termed astrogliosis, which
entails astrocyte proliferation. Reactive astrogliosis constitutes
a small portion of the reactive astrocyte response at the SCI
lesion penumbra. Rather, much of the reactive astrocytic response
consists of morphologic alterations collectively referred to as
reactive astrocytosis, including hypertrophy of astrocytic processes,
a consequent overlap between spatially defined astrocyte domains,
and cytoskeletal rearrangements such as upregulation of the
intermediate filaments GFAP and vimentin (Daniel et al., 2010).

3.1. Historical perspective

Reactive astrocytes were once considered the primary
contributors to post-SCI regeneration failure by creating a
physical barrier and producing inhibitory CSPGs (Silver and
Miller, 2004). This belief was supported by histological evidence
depicting dystrophic axon end-bulbs abutting the astrocyte
limitans border (Aguayo et al., 1981; David and Aguayo, 1981;
Schwab and Bartholdi, 1996; Davies et al., 1997). Thus, researchers
hypothesized that depleting astrocytes or key signaling pathways
using transgenic models would enhance axonal regeneration across
the scar (Table 1).

3.2. Beneficial astrocyte reactivity

Astrocyte biology in SCI proved more complex than initially
assumed. Transgenic ablation of astrocytes, disruption of astrocyte
scar-forming function, or reducing the number of border-forming
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astrocytes does not improve the regeneration of transected
corticospinal, sensory, or serotonergic axons (Anderson et al.,
2016). Such manipulations exacerbate neuroinflammation and
neuronal loss (Bush et al., 1999; Faulkner et al., 2004; Myer et al.,
2006; Gu et al., 2019; Zhao W. et al., 2022). Therefore, scar-forming
astrocytes do not acutely inhibit axonal growth; instead, they recruit
inflammatory cells to the lesion epicenter and then proliferate
to seal it off, confining neuroinflammation (Wanner et al., 2013;
Sofroniew, 2015). Specific subsets of activated astrocytes may even
mitigate neuroinflammation outgrowth in SCI by upregulating
anti-inflammatory molecules like clusterin (Wright et al., 2014; De
Miguel et al., 2021; Gong et al., 2023).

Border-forming astrocytes can promote the growth of
maximally stimulated axons by producing integrin, which
binds axon growth cones and enhances their growth (Anderson
et al., 2016). Similarly, yes-associated protein (YAP), which
contributes to the exceptional regenerative abilities of lower
non-mammalian vertebrates like zebrafish, is upregulated in
mouse astrocytes by basic fibroblast growth factor (bFGF) in the
SCI microenvironment and promotes astrocyte proliferation,
protective glial scar formation, axonal regeneration, and functional
recovery (Xie et al., 2020; Riley et al., 2022). A recent study
transplanted anti-inflammatory/pro-repair astrocytes to promote
axonal regeneration, remyelination, and functional recovery after
SCI (Chang et al., 2023). Astrocytes have recently been converted
into neurons to aid synaptic remodeling and functional recovery
(Su et al., 2014; Noristani et al., 2016; Puls et al., 2020).

An essential question is how to reconcile these apparent axon
growth-enhancing effects of scar-forming astrocytes with their
propensity to produce inhibitory CSPGs. Hypertrophic astrocytes
in the surrounding CNS parenchyma elaborate CSPGs to influence
local synaptic remodeling (O’Shea et al., 2017; Sofroniew, 2018;
Santello et al., 2019). This explains why modulating astrocyte-
derived CSPGs can augment functionally beneficial synaptic
remodeling proximal to the lesion site (discussed above in the
section “Extracellular Regeneration Inhibitors in the Glial Scar”).
Furthermore, recent studies have demonstrated that astrocytes are
not the primary source of inhibitory CSPGs, mainly derived from
stromal cells, OPCs, and macrophages (Jones et al., 2002; Anderson
et al., 2016).

3.3. Dysfunctional astrocyte reactivity

While acknowledging the evidence discussed earlier, it is crucial
to recognize that particular astrocyte responses can be detrimental,
referred to as dysfunctional astrocyte reactivity.

Dysfunctionally reactive astrocytes can promote BBB
disruption and neuroinflammation through TNF-STAT3 signaling
and alpha-1-antichymotrypsin production (Kim et al., 2022).
Additionally, pro-inflammatory cytokines derived from microglia
foster pro-inflammatory and neurotoxic reactive astrocyte
phenotypes linked to the pathogenesis of neurodegenerative
diseases (Phatnani and Maniatis, 2015; Liddelow et al., 2017;
Russ et al., 2021; Brandebura et al., 2023). Amyloid-β was
also recently shown to directly provoke pro-inflammatory
and neurotoxic astrocyte reactivity, leading to synaptic
and neuronal loss (Jiwaji et al., 2022). Reactive astrocytes

can increase the expression of genes encoding proteins like
thrombospondins, which facilitate synaptogenesis (Christopherson
et al., 2005; Risher and Eroglu, 2012; Risher et al., 2018).
However, thrombospondins may also lead to the formation of
unwanted synapses, leading to epilepsy or neuropathic pain
(Boroujerdi et al., 2008; Liddelow and Barres, 2017; Cui et al.,
2021).

In SCI, it is still true that the chronic presence of the densely
packed astroglial scar constitutes a physical barrier to axonal
regeneration. The formation of the astroglial scar depends on
microenvironmental signals within the injured spinal cord, as
Hara et al. (2017) elegantly demonstrated. Astrocytes elicit reactive
gliotic responses when transplanted into the injured spinal cord but
revert to quiescent, non-reactive states when transplanted into a
naïve spinal cord (Hara et al., 2017). In the injured spinal cord,
type I collagen partly facilitates the dense packing of astrocytes
through the integrin/N-cadherin signaling pathway (Hara et al.,
2017). Attenuating integrin signaling reduces astroglial scarring—
but does not deplete astrocytes—and leads to improved axonal
regrowth and functional recovery (Kanemaru et al., 2013; Hara
et al., 2017). Other studies have similarly demonstrated that
carefully manipulating astrocyte functions rather than all-or-none
genetic or pharmacologic ablation techniques can “loosen” the
astrocyte scar and augment neuronal and functional recovery
(Iseda et al., 2004; Ma et al., 2004; Hurtado et al., 2011).
The severity of SCI adds another layer of complexity to the
dual role of astrocytes: milder forms of injury lack the dense
macrophage and stromal cell infiltrate and feature lower levels
of ECM elaboration, which can reprogram astrocytes to promote
neurite outgrowth and axonal regeneration (Fitch and Silver,
2008; Alicia et al., 2011; Silver, 2016). More severe injuries
elicit robust GFAP upregulation and dense, growth-blocking scar
formation (Fitch and Silver, 2008; Alicia et al., 2011; Silver,
2016).

Astrocytic SOSC3 signaling plays a role in glial scarring and
diminished functional recovery after SCI, while attenuating SOCS3
reduces scarring and promotes remyelination and functional
recovery (Okada et al., 2006; Hackett et al., 2016). Similarly,
the upregulation of erythropoietin-producing hepatocyte A4
(EphA4) on neurons post-SCI binds to ephrin-B receptors
on astrocytes, inducing pro-inflammatory astrocyte reactivity,
which hinders neurite outgrowth and axonal regeneration (Chen
et al., 2022). Genetic ablation of the ephrin-B receptor on
astrocytes leads to improved axonal regeneration following
SCI (Chen et al., 2022). Epigenetic regulation by several
micro-RNAs has also been widely implicated in stimulating
the hypertrophy and proliferation of reactive astrocytes, promoting
glial scar formation (Liu R. et al., 2018). For example, a
recent study showed that microRNA mir-155-5p stimulates
astrocyte proliferation and inhibits their apoptosis after SCI,
facilitating reactive astrogliosis and scar formation (He et al.,
2023). Silencing mir-155-5p decreases GFAP and NF-200
expression and attenuates astroglial scar formation, which is
associated with better locomotor recovery in mice (He et al.,
2023).

To conclude, reactive astrocytosis and astrogliosis are beneficial
in the acute and subacute phases of SCI, serving to contain
neuroinflammation. However, the formation of a dense astroglial
scar in the chronic phase of SCI constitutes a physical barrier

Frontiers in Cellular Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncel.2023.1180825
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-17-1180825 May 18, 2023 Time: 12:59 # 9

Shafqat et al. 10.3389/fncel.2023.1180825

to axonal regeneration. Moreover, the upregulation of particular
signaling pathways in scar-forming astrocytes can obstruct axonal
regeneration and functional recovery after SCI, and targeting these
regulators may have future clinical applications in promoting
axonal regeneration.

3.4. Astrocyte heterogeneity

Astrocytes are a diverse group of cells that exert region-
dependent functions in the healthy CNS and differentially
modulate local neuronal circuitry (Tsai et al., 2012; Matias et al.,
2019; Huang et al., 2020). The heterogeneity of astrocytes has
become a key focus in neuroscience research.

Astrocytes mount context-specific responses to CNS injuries
(Yu et al., 2020). For example, profiling astrocyte transcriptomes
by microarray or single-cell RNA sequencing (scRNA-Seq)
in stab wound injury, lipopolysaccharide (LPS)-induced
neuroinflammation, ischemic stroke, SCI, and neurodegeneration
reveals disease-specific gene expression (Zamanian et al., 2012;
Liddelow et al., 2017; Cao et al., 2022). Liddlelow et al. categorized
transcriptionally distinct astrocyte subsets into “A1” and “A2,”
with opposing effects in various disease states: A1 astrocytes
are pro-inflammatory and neurotoxic, whereas A2 astrocytes
promote tissue repair and are neuroprotective. However,
the functions of A1 and A2 genes are largely unknown, and
astrocytes often display a mix of A1/A2 gene signatures in
CNS disease (Grubman et al., 2019; Al-Dalahmah et al., 2020;
Das et al., 2020; Zhou Y. et al., 2020), leading researchers
to recommend moving past the binary A1/A2 classification
(Escartin et al., 2021). Nonetheless, it remains that transcriptional
astrocyte diversity can foster either dysfunctional astrocyte
reactivity that promotes neuropathology or resilient reactive
states that support wound resolution and functional recovery
(Liddelow et al., 2017; Wheeler et al., 2020; Yang et al., 2020a).
Multiple sclerosis research has shown that both dysfunctional
and resilient populations of astrocytes can coexist and vary
with disease stage (Wheeler and Quintana, 2019; Wheeler
et al., 2020). Similarly, amyloid-β and hyperphosphorylated
tau induce pathologic and protective astrocyte phenotypes,
respectively, suggesting that both populations co-exist in
Alzheimer’s disease (Jiwaji et al., 2022). Notably, the same
transcriptional regulators (TRs) can have protective or detrimental
roles depending on the disease context. For example, STAT3
signaling is neuroprotective in TBI (Nobuta et al., 2012) and
SCI (Herrmann et al., 2008; Wanner et al., 2013) but harmful
in Alzheimer’s disease (Ceyzériat et al., 2018; Reichenbach et al.,
2019).

Astrocyte heterogeneity in SCI has been investigated as well.
White and colleagues used immunohistochemical staining to
reveal morphological differences among astrocytes in the cervical,
thoracic, and lumbar spinal segments of a contusive SCI mouse
model (White et al., 2010). ScRNA-Seq showed that reactive
astrocytes in SCI exhibit a substantially different transcriptome,
sharing only partial similarities with the steady-state CNS and other
CNS disorders (Burda et al., 2022).

Hou et al. (2022) recently employed scRNA-Seq to identify 12
transcriptionally distinct clusters of astrocytes following traumatic

SCI. By using Gene Ontology (GO) enrichment analysis, KEGG
pathway analysis, and the use of “A1/A2” marker genes, the authors
inferred that each of the 12 clusters had uniquely enriched genes,
possibly pointing to distinct roles in SCI (Hou et al., 2022).
Moreover, each cluster exhibited differential temporal dynamics
within the SCI lesion site: “A1” astrocyte clusters were most
abundant in the acute and subacute phases, whereas “A2” reactive
clusters (Silver and Miller, 2004; Adams and Gallo, 2018; Orr and
Gensel, 2018; Liu et al., 2022) were more abundant in the subacute
and chronic phases (Hou et al., 2022). This study also identified
several biomarkers that may facilitate cluster-specific manipulation
experiments to test whether enhancing “A2” subsets or inhibiting
“A1” reactive astrocytes may improve post-SCI neural regeneration
and functional recovery (Hou et al., 2022).

However, inferring functional states from gene expression
data can be misleading since the transcriptional analysis does
not always accurately reflect functional activity, especially in the
highly dynamic in vivo environment and given the complexity of
cellular interactions. Ultimately, only loss-of-function experiments
targeting essential proteins enriched in different astrocyte subsets
will causally link molecular heterogeneity to function. Also, as
discussed above, the “A1/A2” terminology is now considered
outdated.

To address how context-specific astrocyte reactivity is
regulated, the Sofroniew Laboratory used scRNA-Seq and
transcriptional regulator enrichment analysis (TREA) followed by
numerous validation techniques to predict TRs of disease-specific
astrocytic reactivity in SCI, LPS-induced neuroinflammation,
and experimental autoimmune encephalomyelitis (EAE), which
is a mouse model of multiple sclerosis (Burda et al., 2022).
Strikingly, genetic KO models of key TRs such as Smarca4 and
Stat3 showed that they could regulate the same differentially
expressed gene oppositely (e.g., Stat3 and Smarca4 can upregulate
Slc14a2 and Rhof in LPS and downregulate them in SCI),
which better contextualizes findings highlighting divergent
functions of Stat3 in different CNS diseases (discussed above)
(Burda et al., 2022). The identified TRs, including Stat3 and
Smarca4, were shown to influence disorder outcome, as their
genetic deletion worsened SCI neuropathology and functional
outcomes in mice, suggesting that targeting these TRs could
have future clinical applications (Burda et al., 2022). Lastly,
although over 10,500 differentially expressed genes were
identified in astrocytes across eight CNS disorders with little
overlap between diseases, a core of 61 astrocyte reactivity
TRs were shared in at least 7 of 8 conditions, including SCI
(Burda et al., 2022).

These data suggest that a limit number of TRs exert a
combinatorial control over reactive astrocyte gene expression
to achieve remarkably heterogeneous context-specific astrocyte
responses that influence disease outcomes. Elucidating the extrinsic
modulators of core TRs and the astrocyte functions promoted
by each TR could reveal translational opportunities to mitigate
dysfunctionally reactive astrocytes and/or enhance resilient reactive
subsets. For instance, a recent study demonstrated that exogenously
delivering the TR Sox2 reprogrammed astrocytes into a pro-
regenerative phenotype, which promoted axonal regeneration,
reduced dense glial scarring, and enhanced functional recovery
when combined with rehabilitation strategies that improve
neuronal plasticity (Yang et al., 2020b).
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4. Microglia

Microglia are the resident immune cells of the CNS, originate
from the yolk sac, and perform various functions in both healthy
and diseased CNS states. In the healthy CNS, microglia are
non-motile but extend highly dynamic processes that survey the
extracellular environment to carry out “housekeeping” functions,
including phagocytosing extracellular debris or pathogenes,
fortifying the BBB, delivering nutritional support to neurons and
oligodendroglia, orchestrating synaptic pruning, and sustaining
myelin turnover (Paolicelli et al., 2011; Schafer et al., 2012;
Domingues et al., 2016; Haruwaka et al., 2019; Hughes and
Appel, 2020; Ronaldson and Davis, 2020; Santos and Fields, 2021;
McNamara et al., 2023).

4.1. Microglia heterogeneity

Microglia exhibit distinct morphological and functional
properties in the healthy CNS, contingent upon their location,
ontogeny/developmental origin, and local microenvironmental
signals such as astrocyte-derived cytokines/chemokines (Bennett
et al., 2018; Zheng et al., 2021; Lynch, 2022). This heterogeneity
wanes with aging, but specific location-dependent differences in
microglial identity are maintained in the adult CNS (Grabert et al.,
2016; Masuda et al., 2019). Furthermore, sex-specific differences
in microglial morphology, transcriptome, and proteome have been
identified, potentially contributing to gender-related variation in
CNS disease pathophysiology and manifestations (Guneykaya et al.,
2018; Lynch, 2022).

Heterogeneity intensifies when considering CNS-resident
macrophages or border-associated macrophages (BAMs), which
reside within the meninges, choroid plexus, and perivasculature.
These BAMs are transcriptionally and functionally unique from
microglia (Zeisel et al., 2015; Mrdjen et al., 2018; Van Hove et al.,
2019; Prinz et al., 2021; Masuda et al., 2022). However, their distinct
roles in SCI remain largely uncharted (Jordão et al., 2019; Kierdorf
et al., 2019; De Schepper et al., 2023). Additionally, under specific
circumstances such as ischemic stroke, pericytes can differentiate
into microglia- and macrophage-like cells (Nirwane and Yao, 2022),
introducing another facet of microglial heterogeneity.

Functionally, microglial and macrophages have traditionally
been categorized into “M1” (pro-inflammatory, cytotoxic) or
“M2” (anti-inflammatory, pro-repair) (David and Kroner, 2011).
This is an in vitro classification derived from experiments
that show that stimulating macrophages with IFN-γ, TNF-α,
or LPS induces macrophages toward pro-inflammatory cytokine
production, whereas IL-4 or IL-13 polarize macrophages toward
the production of anti-inflammatory cytokines (Gordon, 2003;
David and Kroner, 2011). However, the in vivo microenvironment
contains a mix of “M1-favoring” and “M2-favoring” DAMPs,
cytokines, and chemokines (Xue et al., 2014). Moreover, the SCI
environment is highly dynamic in that the balance between these
factors constantly changes. Hence, neatly categorizing microglial
and macrophage activation states into M1 and M2 does not reflect
the in vivo reality (David et al., 2018). Contemporary research has
unveiled that microglia and macrophages exhibit mixed M1/M2
gene signatures upon activation (Kigerl et al., 2009; Hsieh et al.,

2013; Fenn et al., 2014; Morganti et al., 2016; Masuda et al., 2019).
This functional heterogeneity is modulated by disease etiology,
injury location, and the time elapsed since the original insult.

Based on these findings, the current consensus posits that
microglia and macrophages in SCI exist on a spectrum as they
respond to a lesion, with a balance of pro-inflammatory and anti-
inflammatory reactivity being crucial to favorable SCI outcomes
(Ransohoff, 2016; Brennan and Popovich, 2018). Deviations from
this balance result in non-resolving pathologies, such as the
glial scar that typifies SCI in mammals. Consequently, eminent
researchers in the field of microglial biology recommend avoiding
the M1/M2 terminology to prevent misinterpretation of data
(Ransohoff, 2016; Paolicelli et al., 2022).

4.2. Microglial and macrophage
responses to SCI

Following SCI, DAMPs and pro-inflammatory cytokines, such
as ATP, IL-33, IL-1β, and TNF-α, trigger microglial reactivity
and the adoption of a pro-inflammatory phenotype within the
injured CNS microenvironment (Davalos et al., 2005; Rice et al.,
2007; Kristina et al., 2009; Orr et al., 2009; Gadani Sachin
et al., 2015). These reactive microglia migrate to the lesion site,
undergo hypertrophy, and retract their ramifications, becoming
morphologically indistinguishable from MDMs (Orr et al., 2009;
Boche et al., 2013).

During the acute phase of SCI, reactive microglia release pro-
inflammatory cytokines and chemokines, which augment astrocyte
reactivity and recruit circulating neutrophils to the lesion site,
exacerbating neuroinflammation and neuronal loss (Pineau and
Lacroix, 2007; David et al., 2012; Kobayakawa et al., 2019;
Pelisch et al., 2020). The subacute phase marks the beginning
of MDM infiltration into the lesion site (Tran et al., 2018b).
It is essential to delineate the distinct functions of microglia
and MDMs in SCI. While MDMs are found within the lesion
core, microglia localize along the margins of the fibrotic scar
interfacing with the astrocyte border (Zhou et al., 2014). Microglia
execute essential phagocytic and cytokine-producing functions
while ensuring wound compaction in the fibrotic core and proper
astrocyte scar formation, thereby limiting damage spread (Hines
et al., 2009; Brennan et al., 2022). Conversely, MDMs mainly
phagocytose debris and produce the cytokines and chemokines
dictated by their polarization state without contributing to damage
containment (David and Kroner, 2011). Only MDMs establish
destructive physical contact with axons, inducing axonal dieback
(Sarah et al., 2011; Evans et al., 2014). Furthermore, microglia
repress genes in MDMs associated with ECM processing; in the
absence of microglia, MDMs enhance ECM degradation and
increase neuroinflammation (Brennan et al., 2022).

Phagocytosis is a prerequisite for wound healing post-
SCI, mitigating neuroinflammation and promoting remyelination
(Wang et al., 2015, 2022; David et al., 2018; Bellver-Landete
et al., 2019; Lloyd and Miron, 2019; Fu et al., 2020). Microglia
drive the early phagocytic response up to 3-dpi (i.e., until MDM
infiltration starts), efficiently internalizing apoptotic and necrotic
cell debris and myelin (Andrew and Samuel, 2014). By 7-dpi,
MDMs at the lesion epicenter become the dominant phagocytic
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cell type, displaying superior phagocytic capabilities than microglia
(Andrew and Samuel, 2014). Microglia also bolster the phagocytic
functions of MDMs, whereas the latter actively suppress microglial
phagocytosis and pro-inflammatory phenotypes (Greenhalgh et al.,
2018). Preventing this macrophage-induced suppression of pro-
inflammatory microglial polarization increases neuroinflammation
and attenuates functional recovery (Greenhalgh et al., 2018). These
findings indicate that the microglial-macrophage interplay operates
to confine the lesion site, phagocytose and thereby eliminate pro-
inflammatory toxic debris, and restore homeostasis.

However, MDMs process phagocytic debris less efficiently
than microglia, leading to intracellular accumulation (Andrew
and Samuel, 2014). Progressive myelin buildup inside MDMs is
linked to their polarization toward pro-inflammatory states, akin
to lipid-laden “foamy” macrophages observed in atherosclerotic
plaques (Moore et al., 2013; Zhu et al., 2017; Milich et al.,
2019). Longitudinally profiling MDM responses in SCI reveals
a coexistence of pro- and anti-inflammatory populations in the
subacute phase, whereas MDMs at 28-dpi exhibit a much stronger
pro-inflammatory bias (Kigerl et al., 2009). These persistently
activated macrophages within the fibrotic core are well-established
contributors to the lack of wound resolution post-SCI (Wu et al.,
2005; Li et al., 2022). The local SCI microenvironment drives
these microglial and MDM phenotypes, thereby controlling disease
outcomes. For instance, transitioning to an anti-inflammatory/pro-
repair phenotype requires a shift in astrocytic signals from pro-
inflammatory (TNF-α and IL-6) to anti-inflammatory (TGF-
β and IL-4) (Norden et al., 2015). However, insufficient anti-
inflammatory cytokines like IL-4 in the SCI microenvironment
favor inflammation (Francos-Quijorna et al., 2016). Besides
extracellular factors, phagocytosis of myelin debris promotes
anti-inflammatory/pro-repair phenotypes, but TNF-α overrides
this effect to sustain pro-inflammatory/anti-repair polarization
(Kroner et al., 2014). Additionally, iron loading from RBC
phagocytosis reverses the anti-inflammatory/pro-repair phenotype
and increases TNF-α and inducible nitric oxide synthase (iNOS)
levels, favoring inflammation (Kroner et al., 2014). Hence, therapies
that appropriately modulate microglia and macrophage to achieve a
balance between pro-inflammatory/anti-inflammatory polarization
are needed (Shechter et al., 2009; Gensel and Zhang, 2015).
Experimentally skewing microglia and macrophage polarization
toward anti-inflammatory—by directly modulating their gene
expression, utilizing stem cell transplantation, or manipulating the
SCI microenvironment—has been shown to reduce axonal dieback,
enhance angiogenesis, and improve functional outcomes after SCI
(Busch et al., 2009, 2011; Francos-Quijorna et al., 2016; Pelisch
et al., 2020; Gu et al., 2023; Ju et al., 2023).

Studies have also attempted to elucidate the intrinsic molecular
pathways determining where microglia exist on their reactivity
spectrum. Histone deacetylase 3 (HDAC3) is a key epigenetic
regulator of microglial activation after SCI and skews their gene
expression signature toward inflammation (Kuboyama et al., 2017;
Huang D. et al., 2022). HDAC3 inhibition suppresses microglial
pro-inflammatory cytokine secretion (Xia et al., 2017) and alleviates
various CNS diseases, including SCI (Chen et al., 2018; Liao et al.,
2020; Matheson et al., 2020; Bian et al., 2021; Zhao Y. et al., 2022; Lu
et al., 2023). Microglia-specific HDAC3 knockout or administration
of HDAC3 inhibitor RGFP966 exert neuroprotective effects in
severe contusive SCI mouse models and increase the density of

regenerating axons in the fibrotic scar 10-dpi (Kuboyama et al.,
2017). Therefore, HDAC3 may constitute a therapeutic target to
suppress pro-inflammatory/anti-repair microglial subsets.

4.3. Wound compaction by microglia

Hines et al. (2009) initially reported that microglia represent
a frontline defense in the CNS, exhibiting rapid mobilization in
response to injury to mitigate damage propagation. Depleting
microglia via plexxikon molecules (PLX3397 and PLX5622)
expands the SCI lesion size, disorganizes the astrocyte scar, and
results in the spillover of ectopic clusters of MDMs into the
surrounding white matter (Fu et al., 2020; Brennan et al., 2022),
their morphology resembling “foamy” macrophages which are
known to exert pro-inflammatory and neurotoxic effects (Wang
et al., 2015; Zhu et al., 2017). Microglia-depleted mice also
display worse locomotor recovery post-SCI, whereas stimulating
microglia repopulation enhances recovery (Bellver-Landete et al.,
2019; Brennan et al., 2022).

Microglia are thus emerging as pivotal orchestrators of the
pro-homeostatic response following SCI. Numerous stereotypical
functions of reactive astrocytes, including proliferation, cell
adhesion, cytoskeletal reorganization, and inflammation, which
are essential elements for proper astrocyte scar formation, are
regulated by microglia, as evidenced by scRNA-Seq (Brennan et al.,
2022). Mechanistically, reactive microglia in SCI physically contact
scar-forming astrocytes to ensure proper glial scar formation and
secrete IGF-1, which stimulates the proliferation of scar-forming
astrocytes (Bellver-Landete et al., 2019). Microglial depletion by
PLX5622 decreases astrocyte and OPC proliferation, resulting in a
malaligned glial scar (Brennan et al., 2022).

Research from the Zhou Laboratory highlighted that microglia
allow wound compaction function following through by their
surface plexin-B2 receptor (Zhou X. et al., 2020). Upregulation
of plexin-B2 contributes to the clear spatial segregation between
the central fibrotic scar and astroglial border, whereas plexin-B2
deletion results in the intermingling of astrocytes and microglia at
the lesion center and spillover of inflammatory components into
the adjacent CNS tissue (Zhou X. et al., 2020).

4.4. Microglia and axonal regeneration

Transplanting microglia into mouse models of SCI has been
shown to promote tissue preservation and enhance functional
outcomes (Kou et al., 2018; Kobashi et al., 2020; Xia et al., 2022).
However, many of these studies infer regeneration or remyelination
from functional recovery rather than direct observation, while
different mechanisms, such as synaptic remodeling, axonal
sprouting, or regeneration through the lesion core, can underpin
recovery.

Earlier in the discussion, we described how milder astrocyte
manipulations that do not deplete astrocytes or completely abrogate
their proliferation could enhance axonal growth. Since recent data
show that microglia are crucial for forming a dense astrocytic
scar, perhaps attenuating microglial functions can also “loosen”
the astrocyte scar to allow for axonal regrowth. The study by
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Li Y. et al. (2020) demonstrated that SCI in neonatal mice results
in the upregulation of GFAP-positive but loosely packed astrocytes
with little evidence of hypertrophy and scar formation, in stark
contrast to the compact astroglial border that forms in adult
mice. This axonal regrowth-favoring glial scar was critically
dependent on immature microglia, as depleting microglia in
neonatal mice resulted in stronger astrocyte hypertrophy that was
more compactly arranged, resulting in axonal regrowth failure and
halted growth cones seen abutting astrocytes (Li Y. et al., 2020).
Mechanistically, immature microglia release serine and cathepsin
protease inhibitors, which reduced the deposition of astrocyte
scar-inducing type I collagen and growth-inhibitory CSPGs (Li Y.
et al., 2020). However, exogenously supplying protease inhibitors
when transplanting mature microglia into the adult spinal cord
improved axonal regeneration and functional recovery, but not to
the extent seen after transplanting immature microglia, indicating
that immature microglia also exert other currently unknown
functions that promote scarless wound healing (Li X. et al., 2020).

It is important to mention that skewing the
microglia/macrophage population toward anti-inflammatory/pro-
repair phenotypes may not be enough to render the astrocyte
border more conducive to axonal regeneration. For example,
inhibiting HDAC3 by RGFP966 during the acute phase of SCI
(0–2 dpi) significantly ameliorates neuroinflammation and
enhances axonal sparing but does not affect GFAP expression
levels, suggesting that the ability astrocytes to form a rigid,
growth-blocking scar was unaltered (Kuboyama et al., 2017).

4.5. Current limitations in microglial
research

Microglial investigations have struggled with the absence of
specific markers. Recent discoveries of novel microglia markers,
such as Tmem119, SLC2A5, Sall1, P2ry12, and FCRLS, and reporter
mice have improved this situation (Bennett et al., 2016; Konishi
et al., 2017; Jordão et al., 2019; Kaiser and Feng, 2019; Zhao et al.,
2019; Masuda et al., 2020; McKinsey et al., 2020; Ruan et al., 2020).
Still, concerns remain regarding the specificity of these markers, as
some may be downregulated in reactive microglia or expressed in
BAMs (Young et al., 2021; Ruan and Elyaman, 2022). Microglia-
specific reporter mice such as Cx3cr1-Cre may also suffer from a
lack of specificity by inadvertently labeling macrophages and glial
cells (Zhao et al., 2019).

Loss-of-function experiments typically administer plexxikon
CSF1R inhibitors, such as PLX3397 and PLX5622, that cross the
BBB to deplete microglia (Elmore et al., 2014; Najafi et al., 2018;
Green et al., 2020). However, PLX5622 depletes microglia and
BAMs, hindering assessments of their differential contributions to
CNS diseases (Montilla et al., 2023).

Thirdly, microglial depletion strategies in SCI animal models
have yielded beneficial and detrimental effects on scarring,
axonal regeneration, and functional recovery (Deng et al., 2022).
Microglia primarily exert their beneficial functions within the
first week of SCI, while activation beyond this phase proves
harmful (Zhou X. et al., 2020). Therefore, divergent outcomes
may arise from different timings of microglial depletion. The
severity of manipulation is also important to consider: severe

manipulations that either deplete microglia or their key pro-
inflammatory and wound compaction functions in the acute and
subacute phase of SCI are likely to be deleterious, whereas milder,
timed manipulations in the chronic phase are more likely to be
beneficial.

Finally, despite technological advancements enabling the
examination of microglial heterogeneity at the single-cell level,
the upstream regulators and functional consequences of this
diversity remain unclear. Future research must also consider
post-transcriptional and translational regulation of key transcripts
in microglia, as a recent study demonstrated stringent post-
transcriptional and translational control over pro-inflammatory
gene transcripts (Boutej et al., 2017), such that solely considering
transcriptomics may not accurately reflect the true nature of
the microglial proteome. Based on this, Paolicelli et al. (2022)
recommend adopting a multidimensional view of microglial
biology that incorporates their epigenetic, transcriptomic,
proteomic, metabolomic, and morphological states.

5. Fibroblasts

Unlike microglia and astrocytes, the roles of fibroblasts in SCI
are only beginning to be elucidated. Fibroblasts in the adult CNS
populate various spatial domains, including the meninges, choroid
plexus, and perivascular spaces (Soderblom et al., 2013). Pericytes
and endothelial cells also differentiate into fibroblast-like cells,
contributing to fibrotic scar formation after CNS injury (Göritz
et al., 2011; Zhou et al., 2019; Dias et al., 2021).

5.1. Fibroblast response to SCI

These distinct stromal cell populations are differentially
recruited to the SCI lesion site, where they respond to fibrogenic
factors such as TGF-β and elaborate ECM components, including
collagen, laminins, fibronectin, and CSPGs leading to the formation
of the fibrotic scar (Leask and Abraham, 2004; Klapka and Müller,
2006; Wynn, 2008; Ankeny and Popovich, 2009; Fawcett et al., 2012;
Kawano et al., 2012; Soderblom et al., 2013; Gensel and Zhang,
2015; Wang et al., 2018).

This initial response seals off the injury site and limits
CNS damage (Dias et al., 2018). Stromal cells are the primary
producers of type I collagen in SCI, responsible for astrocyte
scar formation (Hara et al., 2017). Moreover, interactions between
EphB2 on astrocytes with ephrin-B2 on fibroblasts are believed to
underpin the clear spatial segregation between the centrally located
fibroblasts and astrocytes at the scar border (Bundesen et al., 2003).
However, these interactions appear redundant since the astrocyte
border persists even when fibrotic scar formation is attenuated;
other cell types, such as microglia, are also involved in ensuring
proper glial scar formation (Bellver-Landete et al., 2019; Dorrier
et al., 2021).

Studies have shown that inhibiting key fibroblast functions after
SCI enhances remyelination, axonal regeneration, and functional
recovery (Pasterkamp et al., 1999, 2001; Hermanns et al., 2001; De
Winter et al., 2002; Hellal et al., 2011; Cregg et al., 2014; Dias et al.,
2018). Fibroblast-derived type I collagen induces the formation
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of the dense astrocytic scar, which chronically impedes axonal
regeneration. Moreover, EphB2/ephrin-B2 interactions between
astrocytes and fibroblasts can foster dysfunctional astrocyte
reactivity and decrease synaptic plasticity and axonal regeneration
after SCI (Li et al., 2017; Wu et al., 2021). Activated fibroblasts are
also known to augment innate and adaptive immunity to promote
inflammation and thereby delay wound healing in peripheral
tissues (Ayazi et al., 2022), but similar mechanistic insights remain
investigational in SCI.

5.2. Fibroblast origin and heterogeneity

Studies using ScRNA-Seq have demonstrated that meningeal
fibroblasts from the dura, arachnoid, and pia are transcriptionally
distinct (DeSisto et al., 2020). Recent studies have also shown
three transcriptionally distinct clusters of perivascular fibroblasts
in the healthy CNS (Garcia et al., 2022; Winkler et al., 2022).
Whether fibroblasts derived from different origins—the meninges,
perivasculature, or choroid plexus—have differential contributions
to the fibrotic scar, glial scar persistence or resolution, and axonal
regeneration/repair are important questions for future studies. In
this regard, a recent study demonstrated that three transcriptionally
distinct clusters of stromal cells—which the authors termed
fibroblasts—accumulate at different stages after SCI (Gong et al.,
2023). Cluster one fibroblasts begin appearing in the fibrotic
scar by 7 days dpi, peak at 14 days dpi, and stay consistently
elevated in the chronic phase. These fibroblasts exhibited a pro-
inflammatory transcriptomic signature (Gong et al., 2023). Cluster
2 fibroblasts—enriched in genes encoding proteins involved in
angiogenesis, ECM organization, TGF-β-related signaling, and
collagen processing—accumulate in the center of the lesion at
3 days dpi (Gong et al., 2023). This study was the first to
demonstrate that transcriptionally distinct subsets of stromal cells
accumulate at different timepoints through the course of SCI.
However, it is essential to note that, as already stated, documenting
transcriptional heterogeneity does not necessarily imply differential
functional contributions, which is an area that still requires
further work.

The lack of specific markers to distinguish between different
fibroblast lineages and perivascular cells such as pericytes and
vascular smooth muscle cells (vSMCs) has hindered studies
from delineating the distinct roles of each cell type in SCI.
Studies on Glast-CreER mice—reporter mice that allow the
inducible depletion of Glast1+ cells—ascribed a neuroprotective
role to Glast1+ stromal cells in SCI (Göritz et al., 2011;
Dias et al., 2021). The authors labeled these Glast1+ cells as
pericytes, but astrocytes and fibroblasts also express Glast1 (Regan
et al., 2007; Vanlandewijck et al., 2018). Col1a1-GFP transgenic
mice demonstrate that stromal cells within the fibrotic scar
are derived from the meninges rather than the perivasculature
and do not express pericyte markers such as NG2 (Soderblom
et al., 2013), supporting the idea that the studies describing
Glast1+ pericyte functions may have been studying fibroblasts.
The Gong et al. (2023) study discussed above also utilized Glast1
positivity to define stromal cell identify, and hence we caution
against considering these cells as fibroblasts or pericytes until
further results prove otherwise.

Similarly, although NG2+ perivascular cells are known to
perform essential functions in angiogenesis and fibrotic scar
formation after SCI (Hesp et al., 2018), NG2 is expressed by
pericytes, perivascular fibroblasts, vSMCs, and OPCs (Bergers and
Song, 2005). Therefore, tracing stromal cell lineage based solely
on Glast1 or NG2 expression lacks specificity, and the origin of
stromal cells in the fibrotic scar remains debatable. Dorrier et al.
(2021) utilized cell lineage-tracing technologies to demonstrate
that perivascular fibroblasts—not pericytes or vSMCs—contributed
to fibrotic scar development in EAE mouse models. It would be
valuable to apply similar methodologies to SCI to unequivocally
discern the origin of stromal cells in the fibrotic scar.

6. Oligodendrocyte progenitor cells

Oligodendrocyte loss ensues immediately after SCI, and their
apoptosis continues into the subacute and chronic phases in various
animal models (Li et al., 1999; Almad et al., 2011; Pukos et al., 2019).
Demyelination of spared axons is thus a prevalent feature post-
SCI and contributes to neuronal impairment by compromising
axonal conduction even in anatomically incomplete lesions (Pukos
et al., 2019). The mechanistic underpinnings of this phenomenon
and how spared axonal function can be restored have attracted
much research interest, especially given the fact that maintaining
the functional integrity of a few axons could significantly better
neuronal function (Schucht et al., 2002; Kakulas, 2004). Hence,
promoting remyelination, in which OPCs are crucial, has long been
sought after as a potential therapeutic strategy. NG2+ OPCs cells
are spread throughout the CNS (Nishiyama et al., 1999, 2016),
actively interact with neurons (Bergles et al., 2000; Sahel et al.,
2015), and sustain oligodendrocyte turnover and remyelination
(Watanabe et al., 2002).

6.1. OPC response to SCI

Oligodendrocyte progenitor cells acutely mount a robust
proliferative response that peaks at 5 dpi, accumulating in the
lesion penumbra alongside astrocytes (McTigue et al., 2001; Zai
and Wrathall, 2005; Barnabé-Heider et al., 2010; Hesp et al.,
2015). Ependymal cells, the NSCs of the spinal cord, also give
rise to OPCs in SCI (Meletis et al., 2008). Multiple factors in the
SCI microenvironment, such as TNF-α and WNTs, drive OPC
proliferation (Tripathi and McTigue, 2007; Moore et al., 2011;
Miron et al., 2013; Burda and Sofroniew, 2014; Hackett et al.,
2016; Miron, 2017) but concomitantly impair their differentiation
into mature oligodendrocytes as a result of enhanced β-catenin
signaling (Rhodes et al., 2006; Liu et al., 2008; Hill et al., 2013).
Moreover, OPCs express RPTPσ, which can bind CSPGs to inhibit
OPC differentiation into oligodendrocytes (Ranjan and Hudson,
1996; Siebert and Osterhout, 2011; Pendleton et al., 2013; Karus
et al., 2016).

Oligodendrocyte progenitor cells also differentiate into
remyelinating Schwann cells, although it should be stated that the
impact of this process on functional recovery remains controversial
and may not be significant (Duncan et al., 2018, 2020).
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Furthermore, OPCs have been shown to differentiate into
astrocytes after SCI (Suzuki et al., 2017; Duncan et al., 2020), which
express anti-inflammatory and anti-apoptotic proteins such as
crystallin alpha B (Hou et al., 2022), indicating that OPC-derived
astrocytes may be neuroprotective. Fate-mapping NG2+ cells
reveal that 25% of OPCs differentiate into astrocytes in a contusive
SCI model (Hackett et al., 2018). In contrast, this trajectory is less
likely in a stab or transection SCI model or EAE (Hackett et al.,
2018), indicating that the disease-specific microenvironment is
crucial in determining OPCs fate.

Dorrier et al. ablated proliferating fibroblasts in the fibrotic
scar using a transgenic herpes simplex virus thymidine kinase
combined with ganciclovir (HSV-TK/GCV) EAE mouse model.
After fibroblast ablation, there was a significant increase in
the infiltration of Olig2-positive OPCs into the inflamed lesion
(Dorrier et al., 2021). These results were corroborated by in vitro
findings that collagen-producing fibroblasts significantly reduce the
migration of OPCs across a transwell insert (Dorrier et al., 2021).
Therefore, the dense stromal cell and ECM presence in the SCI scar
may limit OPCs to the lesion periphery, restricting their access to
demyelinating axons.

6.2. OPCs beyond remyelination

Running contrary to the remyelinating response of OPCs, NG2
is an inhibitor of axonal regeneration (Dou and Levine, 1994;
Petrosyan et al., 2013). NG2+ cells have been visualized besides
dystrophic axon end-bulbs, which can be reversed by administering
an anti-NG2 antibody (McTigue et al., 2006; Tan et al., 2006; Filous
et al., 2014). However, NG2+ cells also reduce macrophage-induced
axonal dieback (Busch et al., 2010), possibly by forming synapse-
like connections with the tips of transected axons (Fünfschilling
et al., 2012; Angela et al., 2014). NG2+ cells also produce ECM
components such as fibronectin and laminin that protect axon
growth cones from the neuroinflammatory milieu (Angela et al.,
2014; Tran et al., 2018b). However, this acute neuroprotection
appears to be at the expense of long-term regeneration, as NG2+

cells and the ECM chronically entrap axon growth-cones to hamper
regeneration (Busch et al., 2010; Di Maio et al., 2011; Bradke
et al., 2012; Son, 2015; Hackett and Lee, 2016). Entrapped axon
growth cones have persisted as long as 40 years post-SCI (Silver
and Miller, 2004; Tom et al., 2004), indicating that this entrapment
is permanent. Freeing trapped dystrophic axon growth cones may
constitute a therapeutic approach to enhance regeneration (Tran
et al., 2018b).

Oligodendrocyte progenitor cells become reactive in the
SCI microenvironment and secrete MMP-9, increasing BSCB
permeability and enhancing neuroinflammation (Seo et al.,
2013). Reactive OPCs may also be sources of pro-inflammatory
cytokines and chemokines that induce pro-inflammatory reactive
states in microglia and macrophages (Kucharova and Stallcup,
2015). The spatial localization of OPCs also provides insight
into their intercellular communication: OPCs reside in the
scar border alongside proliferating astrocytes, which interface
with reactive microglia at the margins of the fibrotic scar
(Keirstead et al., 1998). Ablating NG2+ glia in the lesion penumbra
significantly reduces astrocyte hypertrophy and GFAP expression,

resulting in disorganization of the glial scar, expansion of the lesion
site, and worse neurologic outcomes (Hesp et al., 2018). These
results align with transgenic experiments showing that drastic
attenuation of each cell type is detrimental to the host injury
response.

Milder manipulations of OPCs without their depletion reveal
more specific functions of OPCs. A recent study showed that OPC-
specific β-catenin deletion in tamoxifen-inducible cre-recombinase
mice enhances OPC differentiation into mature oligodendrocytes
and significantly reduces astrocyte hypertrophy and GFAP
expression, fostering a growth-permissive microenvironment
that promotes axonal regeneration and improves recovery of
hindlimb motor function after SCI (Rodriguez et al., 2014).
β-Catenin deletion in OPCs also polarized microglia and
macrophages to anti-inflammatory/pro-repair phenotypes
(Rodriguez et al., 2014). Moreover, by injecting adeno-associated
virus (AAV) containing Wnt3a+GFP or Wnt5a+GFP into
uninjured spinal cords of female C57BL/6J mice, the authors
showed that Wnt3a-induced β-catenin signaling significantly
increased the infiltration and proliferation of OPCs around
the injection site (Rodriguez et al., 2014). The microglia
infiltration also substantially increased around the injection
site, while the density of GFAP+ astrocytes remained unaltered
(Rodriguez et al., 2014).

These results suggest that OPCs are part orchestrators of
the injury, particularly myeloid cell, response following SCI.
Dampened microglial responses could also explain the decrease
in GFAP+ astrocyte hypertrophy and density in β-catenin-
KO mice, as these cells facilitate reactive astrocytosis at the
lesion site (discussed above). The combination of a looser
astrocyte border and significant reduction of CSPGs can account
for improved axonal regeneration and density around the
lesion site.

6.3. Current limitations

The lack of OPC-specific markers is a major hindrance in
dissecting their contributions to SCI pathology and repair. NG2
and PDGFRα are commonly used OPC markers but are also
expressed by stromal cells such as pericytes (Bergers and Song,
2005). For example, Hesp et al. (2018) utilized an HSV-TK/GCV
transgenic model to deplete NG2+ stromal cells (pericytes or
fibroblasts) in the fibrotic scar and NG2+ OPCs in the glial
scar. Eliminating NG2+ cells in the lesion epicenter completely
abolished the fibrotic scar, and loss of dividing NG2+ OPCs
disrupted astrocytic scar formation. However, given that NG2+

stromal cells also ensure proper astrocyte border formation (Hesp
et al., 2018), this approach could not delineate the differential
effect of stromal cells and OPCs. Moreover, current genetic
mouse lines, which allow inducible attenuation or enhancement of
OPC-mediated remyelination, also affect glial scarring, astrocyte
reactivity, and neuroinflammation (Duncan et al., 2020). Future
studies utilizing combinatorial strategies of NG2/PDGFRα reporter
mice and localization and imaging techniques supplemented
with an array of cell surface markers will better identify NG2+

OPCs and allow their specific contribution to be dissected at
higher resolution.
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7. A neuro-centric view of axonal
regeneration

Neurobiologists have long known the ability of axons in
the developing CNS to grow far-reaching axons. Peripheral
nervous system (PNS) axons also regenerate effectively and reach
innervation targets after injury, whereas adult CNS neurons do not
(Broude et al., 1997). Animals such as the CAST/Ei mouse strain
display excellent axonal regeneration after injury, accompanied by
specific changes in neuron gene expression programs not seen
in control mice that exhibit poor regeneration (Omura et al.,
2015). Therefore, studies have cited gene expression differences
as essential factors in the poor regenerative capacity of the
adult mammalian CNS. Multiple ground-breaking studies over
the past decade have uncovered numerous vital regulators of
axon growth programs in SCI at the transcriptional, translational,
and epigenetic levels, including PTEN-mTOR, SOCS3-STAT3,
cAMP, REST/NRSF, and many others (Qiu et al., 2002; Park
et al., 2008; Liu et al., 2010; Sun et al., 2011; Cheng et al.,
2022). Excellent reviews on the neuron-intrinsic regulators of
axonal regeneration are referenced here (He and Jin, 2016;
Mahar and Cavalli, 2018; Bradke, 2022; Zheng and Tuszynski,
2023).

The Sofroniew Laboratory observed that a combination of
factors underpins CNS regeneration failure: insufficient growth
factors, chemoattractive substrates, and a failure to active pro-
regenerative gene signatures in neurons (Anderson et al., 2018).
Supplying all three elements together—but not individually—
significantly enhances axonal regeneration past the astroglial and
fibrotic scars more than 140-fold greater than in control mice
(Anderson et al., 2018). Therefore, delivering a variety of cells
and neurotrophic factors, such as through biomaterial-based
approaches (Liu S. et al., 2018; Courtine and Sofroniew, 2019;
Guijarro-Belmar et al., 2022), is a promising avenue to promote
axonal regeneration and functional recovery.

8. Concluding remarks and
perspectives

This review focused on the dual roles of the SCI scar, an acutely
beneficial and chronically pathological one. Indiscriminate
targeting of the essential cellular components of the SCI
scar is deleterious in animal models but does not discount
the chronically detrimental roles of glial and stromal cells.
Indeed, more specific and milder manipulations of cellular
constituents of the SCI scar enhance axonal regeneration
and functional recovery. Concomitantly, advancements
in single-cell technologies have revealed profound cellular
heterogeneity in the SCI scar, which underscores the importance
of cell- and context-specific therapeutic manipulations. To
develop such therapeutic strategies, it is essential to further
characterize the regulation and functional significance of cellular
heterogeneity.

One can classify the different therapeutic strategies that may be
employed to target the host response to SCI: (1) enhancing neuron
regenerating capacity; (2) targeting extracellular regeneration

inhibitors such as CSPGs and myelin; (3) targeting the glial cell
responses (particularly astrocytes and microglia); and (4) targeting
the central fibrotic core. Unlike the first three, the fibrotic core
has received relatively little attention regarding its therapeutic
value. The origin of stromal cells, their apparent heterogeneity
at the lesion site, and the effects of milder manipulations
(rather than transgenic ablation) of stromal cells are poorly
understood. Exploring these aspects may pave the way for future
therapies employing combinatorial approaches harnessing the
innate regenerative capabilities of neurons and promoting a pro-
repair microenvironment within the injured spinal cord.

We would also like to see the impact of biological aging
hallmarks such as cellular senescence be further fleshed out in
explaining divergent SCI responses across lifespan. Transgenic
models such as INK-ATTAC and p16-3MR mice are available that
allow the specific tracking and inducible depletion of senescent cells
(Baker et al., 2011; Demaria et al., 2014) and would be helpful in
determining the particular cell types undergoing senescence in SCI
and the effects of their depletion in different SCI phases. Given the
rapid evolution of senolytics from benchwork into clinical trials,
we feel it prudent to investigate the role of cellular senescence in
SCI to unveil potentially another therapeutic strategy improve SCI
outcomes.

Ultimately, only rigorous testing will uncover novel and
potentially groundbreaking therapeutic targets, revolutionizing our
ability to enhance regeneration and improve outcomes for humans
affected by spinal cord injuries.
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