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Introduction: Geometry-inspired notions of discrete Ricci curvature have been

successfully used as markers of disrupted brain connectivity in neuropsychiatric

disorders, but their ability to characterize age-related changes in functional

connectivity is unexplored.

Methods: We apply Forman-Ricci curvature and Ollivier-Ricci curvature to

compare functional connectivity networks of healthy young and older subjects

from the Max Planck Institute Leipzig Study for Mind-Body-Emotion Interactions

(MPI-LEMON) dataset (N = 225).

Results: We found that both Forman-Ricci curvature and Ollivier-Ricci curvature

can capture whole-brain and region-level age-related di�erences in functional

connectivity. Meta-analysis decoding demonstrated that those brain regions

with age-related curvature di�erences were associated with cognitive domains

known to manifest age-related changes—movement, a�ective processing, and

somatosensory processing. Moreover, the curvature values of some brain regions

showing age-related di�erences exhibited correlations with behavioral scores of

a�ective processing. Finally, we found an overlap between brain regions showing

age-related curvature di�erences and those brain regions whose non-invasive

stimulation resulted in improved movement performance in older adults.

Discussion: Our results suggest that both Forman-Ricci curvature and Ollivier-

Ricci curvature correctly identify brain regions that are known to be functionally

or clinically relevant. Our results add to a growing body of evidence demonstrating

the sensitivity of discrete Ricci curvature measures to changes in the organization

of functional connectivity networks, both in health and disease.
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Forman-Ricci curvature, Ollivier-Ricci curvature, healthy aging, resting-state fMRI,
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1. Introduction

The proportion of older adults or elderly is increasing across the world. Globally, the
number of adults aged 65 years or above surpassed the number of children under the age of
5 for the first time in 2018. Further, the share of the global population aged 65 years or above
is projected to rise from 10% in 2022 to 16% in 2050 (Ritchie and Roser, 2019; UnitedNations
Department of Economic and Social Affairs, Population Division, 2022). This upward shift
in the age distribution of the global population makes it crucial (Cabeza et al., 2016) to

Frontiers in AgingNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1120846
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1120846&domain=pdf&date_stamp=2023-05-24
mailto:asamal@imsc.res.in
https://doi.org/10.3389/fnagi.2023.1120846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1120846/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yadav et al. 10.3389/fnagi.2023.1120846

identify the neuronal correlates of age-related decline in cognition,
perception and motor performance. The advent of cutting-edge
neuroimaging technologies has facilitated the study of anatomical
and functional changes in the human brain during the healthy
aging process (Grady, 2012; Tromp et al., 2015). Specifically,
studies employing functional magnetic resonance imaging (fMRI)
methods (Spreng et al., 2010; Eyler et al., 2011; Rodriguez-Sabate
et al., 2022) have shed light on the altered activity of brain
regions that are necessary for optimal cognitive performance in
elderly individuals, including the prefrontal, medial temporal and
parietal cortices (Nyberg et al., 2010; Grady, 2012; Addis et al.,
2015). There is also an increasing interest in the development of
novel intervention strategies for reversing the effects of age-related
functional decline. Non-invasive brain stimulation techniques such
as transcranial direct current stimulation (tDCS), transcranial
alternating current stimulation (tACS), and transcranial magnetic
stimulation (TMS) offer an attractive option to modulate neuronal
plasticity and improve learning processes in older individuals
(Nitsche et al., 2008; Reis et al., 2009; Zimerman and Hummel,
2010). Neuroimaging techniques such as fMRI can not only
record the activity of individual regions in the human brain,
but also capture the correlations between the activities of these
brain regions (Logothetis, 2008), thereby revealing the underlying
functional connectivity networks (FCNs). Numerous efforts have
been undertaken to characterize age-related changes in FCNs
using concepts and tools from network science and graph theory
(Bassett and Sporns, 2017). Remarkably, graph-theoretic studies on
resting-state fMRI (rs-fMRI) datasets of healthy young and healthy
older individuals have demonstrated age-related changes in several
network-based measures including clustering coefficient, shortest
path length, global efficiency, local efficiency, and modularity
(Achard and Bullmore, 2007; Sala-Llonch et al., 2014; Song et al.,
2014; Geerligs et al., 2015; Li et al., 2016). Recent graph-theoretic
studies have combined data from diffusion tensor imaging (DTI)
and rs-fMRI scans of healthy aging participants in the Max Planck
Institute Leipzig Study forMind-Body-Emotion Interactions (MPI-
LEMON) (Babayan et al., 2019) to analyze the influence of white
matter hyperintensities (WMH) and global fractional anisotropy
(gFA) on resting-state FCNs (Porcu et al., 2020, 2021).

In recent years, several geometric notions of discrete Ricci

curvature (Forman, 2003; Ollivier, 2007; Sreejith et al., 2016;
Samal et al., 2018) have been introduced as novel tools for the
analysis of complex networks (Bianconi and Rahmede, 2017;
Boguñá et al., 2021). Discrete Ricci curvatures allow for a rigorous
characterization of network structure by accounting for higher-
order correlations in a network (Kartun-Giles and Bianconi,
2019), and have found important applications such as community
detection in networks (Ni et al., 2019; Sia et al., 2019; Tian
et al., 2022) and indicators of critical events in financial markets
(Sandhu et al., 2016; Samal et al., 2021). Forman-Ricci curvature
(FRC) (Forman, 2003; Sreejith et al., 2016) and Ollivier-Ricci
curvature (ORC) (Ollivier, 2007) are the two commonly-used
notions of discrete Ricci curvature for analysis of complex real-
world networks. Multiple studies have utilized FRC and ORC to
measure changes in structural and functional brain connectivity
during neurodevelopmental disorders (Farooq et al., 2019, 2020;
Simhal et al., 2020, 2022; Chatterjee et al., 2021; Elumalai et al.,

2022). For example, Chatterjee et al. (2021) revealed differences in
FRC in the FCNs of individuals with attention deficit hyperactivity
disorder (ADHD) compared to the FCNs of healthy controls.
Recently, Elumalai et al. (2022) demonstrated that FRC can capture
differences in FCNs of individuals with autism spectrum disorder
(ASD) compared to FCNs of typically developing controls, and
could be used to identify brain regions clinically relevant to ASD.
Additionally, Simhal et al. (2022) used ORC to characterize changes
in white matter connectivity after intravenous cord blood infusion
in children with ASD. FRC and ORC have also been applied
to brain networks of healthy populations. Specifically, Lohmann
et al. (2021) applied FRC to predict the intelligence of healthy
human subjects using fMRI data, and Farooq et al. (2019) applied
ORC to identify changes in brain structural connectivity during
healthy aging. However, no previous study has assessed the ability
of discrete Ricci curvatures to characterize FCN alterations during
healthy aging.

In the present work, we apply FRC and ORC to compare
resting-state FCNs of healthy young and healthy elderly individuals.
We constructed resting-state FCNs by applying a standard fMRI
preprocessing pipeline (Elumalai et al., 2022) to raw rs-fMRI images
of 225 healthy participants in the MPI-LEMON dataset (Babayan
et al., 2019). We estimated whole-brain and region-level FRC and
ORC differences between the young and elderly age groups. Next,
we used meta-analysis decoding (Yarkoni et al., 2011; Williams
et al., 2021) to determine whether discrete Ricci curvatures can
identify the cognitive and behavioral domains that are typically
associated with healthy aging. Finally, we performed two post-hoc

analyses based on the results of the meta-analysis decoding. For the
first post-hoc analysis, we determined whether the node curvatures
of brain regions with age-related differences were correlated with
performance in behavioral tests of affective processing. Affective
processing is known to change with age (Mather, 2012). For the
second post-hoc analysis, we compared the set of brain regions
showing age-related curvature differences, to the set of brain
regions whose non-invasive stimulation with tDCS, tACS, or TMS
is known to improve motor performance in healthy older adults.
Motor performance is also known to change with age (Seidler et al.,
2010; Cirillo, 2021). Figure 1 provides a summary of the methods
and the main results obtained in this work.

2. Materials and methods

We applied Forman-Ricci curvature (FRC) and Ollivier-Ricci
curvature (ORC) to measure age-related changes in resting-state
functional connectivity networks (FCNs). We constructed the
FCNs from raw rs-fMRI images of the subjects acquired from
the MPI-LEMON dataset (Babayan et al., 2019). We used the
CONN functional connectivity toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012) to spatially and temporally preprocess
the raw rs-fMRI images. Next, we parcellated each preprocessed
image into 200 regions of interest (ROIs) or nodes using the
Schaefer atlas (Schaefer et al., 2018) and generated a 200 ×
200 functional connectivity (FC) matrix for each subject. We
constructed the FCNs for each subject using a two-step filtering
approach, comprising maximum spanning tree (MST) followed by
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FIGURE 1

Summary of workflow and main results obtained in this study. Raw rs-fMRI scans of young participants and elderly participants were obtained from

the MPI-LEMON dataset and preprocessed using the CONN toolbox. The preprocessed rs-fMRI scan of each participant was used to construct

resting state functional connectivity networks (FCNs) at varying edge densities. Next, we computed and compared Forman-Ricci curvature (FRC) and

Ollivier-Ricci curvature (ORC) across the FCNs of the young and elderly groups. We found that both FRC and ORC show whole-brain and

region-level di�erences in the FCNs of young and elderly participants. Additionally, we found that age-related di�erences in FRC and ORC are

associated with the cognitive domains of movement, a�ective processing and somatosensory processing. Notably, node FRC shows a significant

negative correlation with behavioral test scores of chronic stress. Finally, we showed that FRC and ORC can capture brain regions whose

non-invasive stimulation is known to improve motor performance of older adults.

sparsity-based thresholding. Note that the preprocessing pipeline
for raw rs-fMRI images and methodology used to construct the
FCNs in this work is identical to our previous work on autism
spectrum disorder (Elumalai et al., 2022). In the following, we
describe in detail, the procedure we employed to construct and
analyze the FCNs.

2.1. Participants and imaging dataset

We obtained raw rs-fMRI and anatomical data for 228
participants from the MPI-LEMON dataset (Babayan et al., 2019),
comprising 154 young individuals from 20 to 35 years, and 74
elderly individuals from 59 to 77 years. Middle-aged individuals
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are not included in the MPI-LEMON dataset. We downloaded
all the raw rs-fMRI and anatomical data from the “Functional
Connectomes Project International Neuroimaging Data-Sharing
Initiative/Child Mind Institute” available at the following link:
http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.
html. Further, demographic information of the participants such
as handedness, formal education, drug test results, smoking
status, relationship status, blood sample, blood pressure, and
anthropometry is readily available at the following link: https://ftp.
gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/.

Next, we excluded the subjects with corrupted or missing raw
files in the MPI-LEMON dataset, resulting in 225 subjects (young
group: 153 subjects, elderly group: 72 subjects) that we included
for subsequent analyses. Note that the participants included in
the MPI-LEMON dataset provided written informed consent
prior to any data acquisition, including agreement to share their
data anonymously.

2.2. Raw fMRI data preprocessing

We preprocessed the raw rs-fMRI scans from the MPI-
LEMON dataset using the CONN functional connectivity toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012). The preprocessing
pipeline used in this study is identical to our previous work on
autism spectrum disorder (Elumalai et al., 2022), and we have
published earlier a protocol video explaining this pipeline which is
available at: https://youtu.be/ch7-dOA-Vlo.

We spatially preprocessed the raw rs-fMRI scans in four
major steps: (i) motion correction, (ii) slice-timing correction, (iii)
outlier detection, and (iv) structural and functional segmentation
and normalization.

For the motion correction step, we co-registered the raw fMRI
scans to the first scan of the first session. We corrected the fMRI
scans for motion using six rigid body transformation parameters
(three translations and three rotations) that are a part of the SPM12
realign and unwarp procedure (Andersson et al., 2001). For the
slice-timing correction step, we corrected temporal misalignment
between different slices of the fMRI scans using the SPM12 slice-
timing correction procedure (Sladky et al., 2011). For the outlier
detection step, we used Artifact Detection Tools (ART)-based
outlier detection to mark acquisitions as outliers if they were
found to have framewise displacement >0.5 mm or global BOLD
signal changes >3 standard deviations. For the segmentation and
normalization step, we normalized the images into the Montreal
Neurological Institute (MNI) space using the standard procedure
(Ashburner and Friston, 2005). Subsequently, we segmented the
brain into gray matter, white matter and cerebrospinal fluid (CSF)
areas using raw T1-weighted volumes of the anatomical scans and
mean BOLD signal of the fMRI scans as reference.

With the CONN toolbox, we extracted the BOLD signals (time
series) for each voxel after spatially preprocessing the raw rs-
fMRI scans, and performed a temporal preprocessing or denoising
step to reduce existing motion effects from BOLD signals. First,
we applied an anatomical component-based noise correction
procedure (aCompCor), which includes a linear regression step.
This step resulted in the removal of five possible noise components

(Chai et al., 2012) each from white matter and CSF areas,
12 possible noise components due to estimated subject motion
parameters and their first-order derivatives (Friston et al., 1996),
and 1 noise component from outlier scans detected earlier
(scrubbing) (Power et al., 2014). Second, we removed temporal
frequencies <0.008 Hz from the BOLD signals using a high-pass
filtering approach.

All the 225 subjects passed the quality assessment checks
provided by the CONN toolbox (Ciric et al., 2017; see
Supplementary Table 1). Finally, we used the preprocessed
fMRI scans of these 225 subjects to construct FC matrices and
perform network analysis.

2.3. ROI definition and ROI time series
estimation

After spatially and temporally preprocessing the raw rs-
fMRI scans of the 225 subjects, we partitioned the voxels into
cortical parcels so as to define nodes or ROIs with interpretable
neurobiological meaning (Luppi and Stamatakis, 2021) and reduce
the computational load of further analysis. For this purpose,
we used a cortical parcellation atlas provided by Schaefer et al.
(2018), which parcellates the brain into 200 distinct ROIs or
nodes. Apart from assigning each voxel to one of 200 ROIs,
the Schaefer atlas also provides a mapping between each ROI
and one of seven resting state networks (RSNs), namely, “default
network,” “somatomotor network,” “dorsal attention network,”
“salience/ventral attention network,” “visual network,” “limbic
network,” and “control network.” With the CONN toolbox,
we determined the time series corresponding to each ROI by
computing the average time series of its constituent voxels.

2.4. Functional connectivity network
construction

We constructed a 200 × 200 FC matrix for each of the 225
subjects, by computing the Pearson correlation coefficient between
all pairs of ROI time series. The resulting FC matrix can be
considered a complete, weighted, and undirected network with 200
nodes, with the weight of each edge determined by the Pearson
correlation coefficient between the time series of its corresponding
pair of nodes. We used the FC matrix of each of the 225 subjects to
construct the FCNs, using a two-step procedure.

First, we determined the maximum spanning tree (MST) of
the FC matrix using Kruskal’s algorithm (Kruskal, 1956). The
MST for a weighted graph with n nodes is an acyclic graph with
(n − 1) edges which includes all the nodes of the graph. Using an
MST-based filtering approach ensures that the resulting FCN is a
connected graph and it captures the highly correlated nodes from
the FC matrix.

Second, we used a sparsity-based thresholding procedure,
wherein edges from the FC matrix were iteratively added to the
MST in decreasing order of their correlation values until we
generated a network with the desired edge density. We binarized
the thresholded network by removing the edge weights in order to
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obtain an unweighted, undirected and connected FCNwith desired
edge density (Achard and Bullmore, 2007; Rudie et al., 2013). Using
a sparsity-based filtering approach ensures that the resulting FCNs
for different subjects have the same number of edges, which enables
a direct mathematical comparison of discrete Ricci curvatures and
other network properties across subjects (Bassett et al., 2012; Rudie
et al., 2013; Xu et al., 2016). We remark that such a two-step
procedure with MST followed by sparsity-based thresholding was
used previously by Achard et al. (2012) and Elumalai et al. (2022)
to construct resting-state FCNs from FC matrices.

In this work, we computed discrete Ricci curvatures and other
network properties over the range of edge densities 0.02–0.5 or 2–
50% edges, with an increment of 0.01 or 1% edges (Rudie et al.,
2013; Itahashi et al., 2014; Harlalka et al., 2018). Therefore, we
constructed 49 FCNs for each of the 225 subjects from the MPI-
LEMON dataset. We have made all the 200 × 200 FCNs for 225
subjects across 49 edge densities or thresholds publically available
via a GitHub repository: https://github.com/asamallab/Curvature-
FCN-Aging.

2.5. Discrete Ricci curvatures

Each FCN generated in our work can be represented as an
unweighted and undirected graph or network G = (V ,E), where
V is the set of vertices or nodes in G and E is the set of edges or
links in G. Classically, Ricci curvature is defined on tangent vectors
on smooth manifolds (Jost, 2017), whereas for discrete objects such
as networks, Ricci curvature is naturally defined on the edges.
While both FRC (Forman, 2003; Sreejith et al., 2016) and ORC
(Ollivier, 2007) are discrete analogs of the classical Ricci curvature,
the definitions for FRC andORC are non-equivalent, and therefore,
the two discrete versions capture distinct properties of the classical
Ricci curvature. Notably, FRC captures the geodesic dispersal
property of the classical Ricci curvature whereas ORC captures
the volume growth property of the classical Ricci curvature (Samal
et al., 2018). Below, we present definitions of the two notions of
discrete Ricci curvature, specific to an unweighted and undirected
network, employed in our work.

2.5.1. Forman-Ricci curvature
Forman (2003) introduced a discretization of Ricci curvature

for a particular class of geometric objects known as CW complexes,
which are widely studied within the field of algebraic topology.
Some of us adapted the notion of Forman-Ricci curvature (FRC)
to undirected graphs (Sreejith et al., 2016), which are equivalent to
1-dimensional CW complexes. However, a remarkable property of
Forman’s discretization is that it can be defined for CW complexes
in any arbitrary number of dimensions, which allows for a rigorous
means to account for higher-order interactions in complex systems.
Notably, we utilized this property in a subsequent work (Samal
et al., 2018) and defined a modified version of FRC, also known
as augmented FRC. Formally, consider a graph G where weights
are assigned to vertices, edges and triangular faces (that is, cycles of
length 3). We refer to a vertex, an edge or a triangular face in G as
a cell. Every cell in G can be assigned with a dimension. Specifically,

vertices have dimension 0, edges have dimension 1 and triangles
have dimension 2. The augmented FRC of an edge e in G can then
be defined as

F(e) = we









∑
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we
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where we is the weight of edge e, wv is the weight of vertex v, wf is
the weight of triangular face f .

For any two cells σ and τ in G, σ < τ denotes that σ is
contained in τ . In other words, σ is a lower dimensional cell of
τ . Specifically, for an edge e and a triangular face f , e < f means
that the triangular face f contains the edge e as one of its sides.
Moreover, for a vertex v and an edge e, v < emeans that the edge e
is anchored on the vertex v.

Any two cells with the same dimension can either share a higher
dimensional cell or a lower dimensional cell. For example, two
vertices v1 and v2 share an edge e if the edge e connects the vertices
v1 and v2. On the other hand, two edges e1 and e2 share a vertex v if
both e1 and e2 are anchored at v. Finally, two edges e1 and e2 share
a triangular face f , if e1 and e2 are the sides of the triangle f .

Two cells of the same dimension are said to be parallel if they
either share a higher dimensional cell or a lower dimensional cell,
but not both. For example, two edges e1 and e2 are parallel by
definition if they belong to the same triangular face or if they are
anchored on the same vertex, but not both. ê ‖ e denotes the set of
edges that are parallel to the edge e.

Augmented FRC accounts for cycles of length 3 in a graph
while neglecting cycles of length 4 or higher. We refer the reader
to Samal et al. (2018) for a systematic investigation of augmented
FRC. If the graph G is unweighted, then all the vertices, edges, and
triangular faces are assigned weight equal to 1, and the augmented
FRC reduces to the following simple combinatorial expression

F(e) = 4− deg(i)− deg(j)+ 3× tri(e)

where deg(i) and deg(j) are the degrees of nodes i and j, respectively,
that are anchored to the edge e and tri(e) is the number of triangular
faces that contain the edge e. We refer to augmented FRC simply
as FRC throughout the main text. Intuitively, FRC quantifies the
extent of the spread of information around the ends of an edge in
a network. A more negative value of FRC of an edge indicates a
higher amount of information spread around its ends.

2.5.2. Ollivier-Ricci curvature
For an edge e between nodes i and j in an unweighted and

undirected graph G, ORC is measured by comparing the minimal
cost of transporting a mass distribution over the neighbors of i and
j with the distance between i and j itself (Ollivier, 2007; Ni et al.,
2015). Formally,

O(e) = 1−
W1(mi,mj)

d(i, j)
,
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where mi and mj are the discrete probability measures defined on
nodes i and j, respectively, and d(i, j) is the distance between i and
j. Since G is an unweighted graph, d(i, j) is equal to the number
of edges contained in the shortest path connecting i and j. W1 is
the transportation distance between mi and mj, also known as the
Wasserstein distance (Vaserstein, 1969), which is defined as

W1(mi,mj) = inf
µi,j∈

∏

(mi ,mj)

∑

(i′ ,j′)∈V×V

d(i′, j′)µi,j(i
′, j′),

where
∏

(mi,mj) is the set of probability measures µi,j that satisfy

∑

j′∈V
µi,j(i

′, j′) = mi(i
′),

∑

i′∈V
µi,j(i

′, j′) = mj(j
′).

The above equation gives all the possible transportations of
measure mi to mj. The Wasserstein distance W1(mi,mj) is the
minimal cost of transportingmi tomj. The probability distribution
mi is considered to be uniform over the neighboring nodes of i (Lin
et al., 2011). Note that the computation of ORC can be formulated
as a linear programming problem (Ni et al., 2015).

2.6. Global and node-level network
analyses

For each of the 225 subjects in the MPI-LEMON dataset
included in this study, we generated 49 unweighted and undirected
FCNs with varying edge densities from 2 to 50% with an increment
of 1%. Subsequently, we compared the global or whole-brain
characteristics of the FCNs, at each edge density, across the two
groups (young and elderly) using FRC and ORC. Specifically,
we computed the average FRC of edges and average ORC of
edges, for each of the 49 networks, for each of the 225 subjects
included in this study. Additionally, we computed eight other
global networkmeasures namely, clique number, average clustering
coefficient, global efficiency (Latora and Marchiori, 2001), average
node betweenness centrality, average local efficiency (Latora and
Marchiori, 2001), average shortest path length, modularity (Blondel
et al., 2008), and assortativity. We provide the definitions of theses
global network measures used to characterize the FCNs in the
Supplementary material.

Next, we compared the node or region-level characteristics
of the FCNs, at each edge density, across the young and elderly
groups. Specifically, we computed the node FRC and node ORC
for the 200 nodes, for each of the 49 networks, for each of the 225
subjects included in this study. The notion of node Ricci curvature
is analogous to the notion of scalar curvature in Riemannian
geometry (Jost, 2017) and is computed as the sum of the Ricci
curvatures for the edges incident on a given node (Samal et al.,
2018).

The computer codes used to compute the global and node-
level network characteristics including FRC and ORC are publicly
available via a GitHub repository: https://github.com/asamallab/
Curvature-FCN-Aging. The standard network measures were
computed using the Python package NetworkX (Hagberg et al.,
2008).

2.7. Neurosynth meta-analysis decoding

In order to determine the cognitive and behavioral relevance
of the results from node-level comparisons across the young
and elderly groups, we used Neurosynth meta-analysis decoding
(Yarkoni et al., 2011; Williams et al., 2021). First, we used the
Neurosynth meta-analysis tool to find terms related to cognition,
perception and behavior corresponding to the centroid coordinates
of each of the 200 Schaefer ROIs. Second, we assigned each of
the nodes or ROIs with significant between-group differences
in FRC or ORC to their respective RSN, as defined by the
Schaefer atlas. The ROIs were assigned to one of seven such
RSNs, since the Schaefer atlas is divided into seven RSNs. Third,
for a given RSN, we computed the number of occurrences
of the terms associated with the significant ROIs within that
RSN. Fourth, we determined the statistical significance of the
number of occurrences of the different terms associated with each
RSN. Note that the above steps were performed separately for
each RSN.

2.8. Statistical analyses

We employed a two-tailed two-sample t-test to estimate the
differences in average edge curvatures and other global network
measures between the young and elderly groups throughout the 49
FCN densities in the range 2–50% considered in this work. In order
to estimate the between-group differences in node curvatures, we
first computed the area under the curve (AUC) for the FRC or ORC
of a given node across the 49 edge densities (Achard and Bullmore,
2007; Itahashi et al., 2014). Subsequently, we employed a two-tailed
two-sample t-test on the AUCs of the discrete curvatures for each
of the 200 nodes of the FCNs.

In order to determine the statistical significance of the
number of occurrences of each term in the Neurosynth
meta-analysis decoding, we first computed the number of
occurrences of the same terms corresponding to equal number
of randomly selected nodes (surrogate ROIs). For example, if
we identified 66 nodes with significant between-group differences
in FRC, then we randomly selected a set of 66 nodes out
of the 200 nodes in the Schaefer atlas. We obtained a null
distribution for the number of occurrences of each term by
generating 1,000 sets of randomly selected nodes. Subsequently,
we calculated the z-score corresponding to the number of
occurrences of each term associated with the subset of original
ROIs. Finally, we converted the z-scores to p-values, assuming
a normal distribution (Williams et al., 2021; Elumalai et al.,
2022).

In order to correct for multiple comparisons and control
the occurrence of false positives, we employed a false discovery
rate (FDR) correction (Benjamini and Hochberg, 1995) to adjust
the p-values for each of the statistical tests described above.
We set the threshold α for these FDR corrections to 0.05.
These statistical tests were performed using Python packages
SciPy (Virtanen et al., 2020) and statsmodels (Seabold and
Perktold, 2010). No covariates were used in the statistical
analyses.
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2.9. Correlation of node curvatures with
cognitive and behavioral scores

Neurosynth meta-analysis decoding revealed cognitive and
behavioral domains associated with those brain regions whose
node curvatures were different between young and elderly
participants. We performed a correlation analysis to determine
the extent to which curvatures of individual brain regions could
account for variation in performance on tests measuring ability
in cognitive or behavioral domains linked to those regions.
Specifically, if the Neurosynth meta-analysis for a given RSN
revealed a particular cognitive or behavioral domain, then we
acquired all the phenotypic test scores associated with that
domain for each of the 225 subjects in the MPI-LEMON
dataset. Note that the MPI-LEMON dataset contains detailed
information on 6 cognitive tests and 21 questionnaires related
to emotional behavior, personality traits and tendencies, eating
behavior, and addictive behavior. This data can be accessed via
the links https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-
Body-LEMON/ or http://fcon_1000.projects.nitrc.org/indi/retro/
MPI_LEMON.html.

Next, we computed Spearman’s correlation between the node
FRC (or node ORC) of all the significant regions in that RSN
and the phenotypic scores provided in each of the cognitive
or behavioral tests. We used Spearman rather than Pearson
correlation since some of the test scores are expressed on an
ordinal rather than continuous scale. Finally, we performed FDR
correction to adjust the p-values of the estimated correlations.
FDR correction was applied to p-values of each cognitive or
behavioral test, separately. Note that if a particular cognitive or
behavioral test had multiple phenotypic scores, then the FDR
correction was applied across all the phenotypic scores within
that test.

2.10. Literature search of non-invasive
brain stimulation studies in healthy elderly
individuals

We performed a literature search on PubMed to identify
scientific papers reporting the effect of three non-invasive brain
stimulation techniques namely, tDCS, tACS, and TMS on motor
performance in healthy elderly individuals. Then, we assessed the
results reported in these papers to identify brain regions that
show evidence for improvements in motor performance of elderly
individuals after non-invasive stimulation. The following search
query was used in PubMed: [(transcranial magnetic stimulation)
OR (TMS) OR (transcranial direct current stimulation) OR
(tDCS) OR (transcranial alternating current stimulation) OR
(tACS)] AND [(healthy old) OR (healthy elderly) OR (healthy
aging) OR (healthy aging)] AND [(motor function) OR (motor
performance) OR (motor skill) OR (movement)]. This PubMed
search was performed in October 2022, and returned a list of
1,659 articles.

We followed a three-stage procedure to identify relevant articles
from the list of 1,659 articles returned by the PubMed search (see
Supplementary Figure 1). First, we checked all the meta-analysis
papers studying the effects of tDCS, tACS, or TMS on motor
performance in elderly individuals (Summers et al., 2016; Patel
et al., 2019; Lee et al., 2021; Pino-Esteban et al., 2021) to identify
articles that were missing from the list of 1,659 articles. Second,
we filtered the relevant articles from the list of 1,659 articles based
on title and abstract. Third, we classified the articles according
to the non-invasive stimulation technique employed (tDCS, tACS,
or TMS) and checked the full text of the articles for relevance.
We used the following inclusion criteria to judge article relevance:
(1) studies on healthy elderly individuals, (2) studies that employ
non-invasive brain stimulation, namely tDCS, tACS, and TMS,
(3) studies that analyze the effect of non-invasive stimulation
techniques on motor performance, as measured during movement-
related tasks such as finger tapping tasks (FTT), sequence learning
tasks and serial reaction time tasks (SRTT), and their variants, and
(4) studies that are peer-reviewed. We used the following exclusion
criteria to judge article relevance: (1) review articles, (2) articles
presented in languages other than English, (3) studies that did not
employ non-invasive stimulation, (4) studies that investigate new
protocols for brain stimulation, (5) studies on diseased populations,
including patients with Alzheimer’s Disease, Parkinson’s Disease
or Stroke, (6) studies on non-human species, e.g., rats, (7) studies
that employed non-invasive stimulation on children or young
adults, (8) studies that analyze the effect of non-invasive stimulation
on domains other than motor performance, and (9) studies that
analyze the effect of non-invasive stimulation on neuronal activity,
neuroplasticity or neurophysiological processes. A given article was
considered as relevant only if all the inclusion criteria were satisfied,
whereas it was considered as not relevant if at least one exclusion
criterion was satisfied.

The above procedure resulted in 36 eligible articles that
employed tDCS, three eligible articles that employed tACS, and
two eligible articles that employed TMS in their experiments.
We extracted the following data from the eligible articles: PMID,
author, publication year, participant information (which includes
number of participants and mean age of the participants),
type of stimulation (for example, anodal tDCS, cathodal tDCS,
bilateral tDCS, rTMS), target brain region, stimulation parameters
(such as stimulation intensity for tDCS and tACS, pulses
per session and inter-train interval for TMS, number of sessions,
and treatment duration), outcome measures used to assess
motor performance after stimulation, results of stimulation,
and adverse effects of stimulation on experimental group or
control group (if applicable). Supplementary Table 2 provides
the data extracted from the tDCS, tACS, and TMS studies,
respectively. From the above data, we combined information
about the target region, outcome measures and results of
tDCS/tACS/TMS stimulation as measured using the outcome
measures in each study to identify the set of target regions whose
non-invasive stimulation resulted in improved motor performance
of healthy older individuals. These target regions were used
in a subsequent analysis to determine whether FRC or ORC
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can identify brain regions whose non-invasive stimulation shows
evidence for improvements in motor performance of healthy
older individuals.

2.11. Determining overlap between brain
regions with age-related di�erences in
curvature and target regions in
non-invasive stimulation studies

Next, we performed a systematic comparison of the age-
related differences in discrete Ricci curvatures with results from
previous non-invasive stimulation studies. However, note that
the target regions in our collected list of non-invasive brain
stimulation experiments correspond to the ROIs in the Brodmann
atlas (Strotzer, 2009), whereas the brain regions with age-related
differences in FRC or ORC correspond to the ROIs in the Schaefer
200 atlas. Therefore, in order to enable such a comparison, we
merged the two atlases together and subsequently determined
the overlap between brain regions with age-related differences in
curvature and target regions of non-invasive brain stimulation
experiments. More precisely, we employed the following two-step
procedure. First, we mapped each Schaefer ROI to a corresponding
Brodmann ROI. The mapping was performed using the MRIcron
tool (Rorden et al., 2007) by identifying the Brodmann area that
contains the MNI centroid coordinates of a given Schaefer ROI.
We remark that a similar mapping approach was employed in our
previous study (Elumalai et al., 2022) where some of us applied
discrete Ricci curvatures to identify brain regions related to atypical
functional connectivity in ASD. Second, we determined the set
of Brodmann ROIs corresponding to the target regions in non-
invasive brain stimulation experiments that show evidence for
improvements in motor performance in healthy elderly. Third,
we identified the set of Schaefer ROIs that were mapped to these
Brodmann ROIs. Fourth, we identified the Schaefer ROIs within
this set that also showed significant age-related differences in FRC
or ORC.

3. Results

In this work, we employed two geometry-inspired graph
measures namely, FRC and ORC, to investigate the whole-brain
and region-level differences in resting state FCNs during healthy
aging. We preprocessed raw rs-fMRI images of 153 healthy, young
individuals in the age range 20–35 years and 72 healthy, elderly
individuals in the age range 59–77 years from the MPI-LEMON
dataset. Next, we used the Schaefer atlas (Schaefer et al., 2018) to
parcellate the preprocessed rs-fMRI scan of each subject into 200
ROIs, and calculated the Pearson correlation coefficient between
all pairs of ROI time series, yielding a 200 × 200 FC matrix.
Finally, we generated 49 FCNs for each subject across the range
of edge densities 0.02–0.5 or 2–50% edges, with an increment
of 0.01 or 1% edges using a two-step edge filtering approach
comprising MST and sparsity-based thresholding. The detailed
methodology to construct and analyze the FCNs is described in
Section 2.

3.1. Whole-brain di�erences in functional
connectivity networks

We computed the average edge FRC and average edge ORC
for the 49 FCNs across edge densities 2–50% for each of the
225 subjects to evaluate the age-related brain-wide changes in
FCNs between the healthy young and healthy elderly groups.
Subsequently, we applied a two-tailed two-sample t-test with FDR
correction (see Section 2) to estimate the differences in average
edge curvatures between the young and elderly groups at each
value of edge density. Figures 2A, B show the differences in average
edge FRC and average edge ORC, respectively, between the young
and elderly individuals over the range of edge densities 2–50%.
We found that the elderly group had significantly higher values of
average edge FRC (p < 0.05, FDR-corrected) over the range of edge
densities 3–50% (Figure 2A). Similarly, we found that the elderly
group had significantly higher values of average edge ORC over
the entire range of edge densities 2–50% considered in this study
(Figure 2B).

We further compared eight other global network measures
to evaluate brain-wide changes in FCNs of young and elderly
individuals. The eight global network measures include clique
number, average clustering coefficient, global efficiency, average
node betweenness centrality, average local efficiency, shortest path
length, modularity, and assortativity. Out of the eight measures,
clique number, node betweenness centrality, and assortativity have
not been applied in previous network-based analyses of rs-fMRI
scans in healthy aging. First, we found that the clique number is
significantly higher in elderly group (p < 0.05, FDR-corrected)
over all edge densities considered in this study (Figure 2C).
Second, we found average clustering coefficient is significantly
higher in the young group at edge densities 2–7%, whereas it is
significantly higher in the elderly group at edge densities 12–50%
(Figure 2D). This change in the directionality of the differences
in clustering coefficient with increasing edge densities suggests
that highly correlated nodes or ROIs tend to cluster in young
individuals whereas weakly correlated nodes tend to cluster in
elderly individuals. Notably, the group differences in clustering
coefficient observed in the present work are consistent with
previous studies that have used clustering coefficient to compare
the global changes in resting state FCNs in healthy aging cohorts
(Sala-Llonch et al., 2014; Li et al., 2016). Third, we found that global
efficiency of the FCNs is significantly reduced in elderly individuals
over the edge density range 3–50% (Figure 2E), and our results are
consistent with previous graph-theoretic rs-fMRI studies (Achard
and Bullmore, 2007; Sala-Llonch et al., 2014; Song et al., 2014;
Geerligs et al., 2015; Li et al., 2016) in healthy aging populations.
Fourth, we found that average node betweenness centrality of the
FCNs is significantly higher in elderly individuals over the edge
density range 3–49% (Figure 2F).

Fifth, we found that average local efficiency is significantly
higher in the FCNs of the young group compared to the elderly
group over the edge density range 1–12%, and significantly
higher in the elderly group over the edge density range 19–49%
(Supplementary Figure 2). Notably, the differences in average local
efficiency observed in the present work are consistent with previous
graph-theoretic rs-fMRI studies (Achard and Bullmore, 2007; Song
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FIGURE 2

Di�erences in average edge curvatures and standard global network measures across the functional connectivity networks (FCNs) of 153 young

individuals and 72 elderly individuals from the MPI-LEMON dataset. The di�erences are reported for FCNs over the range of edge densities 0.02 (i.e.,

2% edges) and 0.5 (i.e., 50% edges), with an increment of 0.01 (i.e., 1% edges). The shaded regions in each plot correspond to the edge densities

where the between-group di�erences are statistically significant (p < 0.05, FDR-corrected). (A) Average Forman-Ricci curvature (FRC) of edges is

higher in elderly individuals over edge densities 3–50%. (B) Average Ollivier-Ricci curvature (ORC) of edges is higher in elderly individuals over the

entire range of edge densities considered (2–50%). (C) Clique number is higher in elderly individuals over all edge densities 2–50%. (D) Average

clustering coe�cient is higher in young individuals over edge densities 2–7%, and higher in elderly individuals over edge densities 12–50%. (E) Global

e�ciency is reduced in elderly individuals over edge densities 3–50%. (F) Average node betweenness centrality is higher in elderly individuals over

edge densities 3–49%.
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et al., 2014; Geerligs et al., 2015) in healthy aging populations.
Sixth, we found that average shortest path length is significantly
higher in the elderly group over the edge density range 3–50%
(Supplementary Figure 2), and these differences are consistent with
previous graph-theoretic rs-fMRI studies (Sala-Llonch et al., 2014)
in healthy aging populations. Seventh, we found that modularity is
significantly reduced in elderly individuals over the range of edge
densities 2–9% (Supplementary Figure 2), and these differences
are consistent with results from previous graph-theoretic rs-fMRI
studies (Song et al., 2014; Geerligs et al., 2015) in healthy aging
populations. Eighth, we found that assortativity is reduced in the
elderly group, but the differences are not significant (as suggested
by p > 0.05, FDR-corrected).

Supplementary Table 3 lists the FDR-corrected p-values
corresponding to the group-wise comparisons of discrete Ricci
curvatures and standard network measures across all edge densities
2–50% considered in this study.

3.2. Region-level di�erences in functional
connectivity networks

As reported in the previous subsection, we found that both
FRC andORC show significant differences between the resting state
FCNs of young and elderly individuals at the whole-brain level.
Subsequently, we determined how the global differences in discrete
Ricci curvatures are distributed across the 200 nodes or ROIs in
the brain as defined by the Schaefer atlas (see Section 2). First, for
each of the 225 subjects, we computed node FRC and node ORC
for the 200 nodes in the 49 FCNs across the range of edge densities
2–50%. Second, in order to determine the nodes with significant
between-group differences in node Ricci curvatures in the FCNs of
young and elderly individuals, we computed the Area Under Curve
(AUC) of the node curvature values across the 49 edge densities for
each of the 200 nodes, and compared these AUCs for each node
using a two-tailed two-sample t-test with FDR correction.

Figures 3A, B illustrate the nodes or ROIs that display
significant between-group differences (p < 0.05, FDR-corrected)
in FRC and ORC, respectively, of the FCNs of young and elderly
individuals. We identified 66 ROIs with significant differences in
FRC and 53 ROIs with significant differences in ORC across the
young and elderly groups. We found 42 ROIs to be identified by
both FRC and ORC. We found that the significant ROIs identified
by both FRC and ORC are spread across the 7 RSNs. However, the
ROIs with significant differences in node FRC are concentrated in
3 RSNs namely, somatomotor network (33 ROIs), salience/ventral
attention network (10 ROIs) and dorsal attention network (10
ROIs). The ROIs with significant differences in node ORC are
concentrated in 2 RSNs namely, somatomotor network (27 ROIs)
and dorsal attention network (9 ROIs). Supplementary Table 4 lists
the ROIs with significant between-group differences as identified
by FRC and ORC, partitioned across the 7 RSNs.

Further, we determined the directionality of the significant
differences in node FRC and node ORC between the young
and elderly individuals across each of the 200 nodes or ROIs.
Recall that at the whole-brain level, both FRC and ORC displayed
higher values in elderly individuals compared to young individuals.

We found that all the 66 ROIs with significant between-group
differences in node FRC display higher values of node FRC for
elderly individuals compared to young individuals. Moreover, we
found that 41 out of the 53 ROIs with significant between-group
differences in node ORC display higher values of node ORC in
elderly individuals and the remaining 12 ROIs display higher values
of node ORC in young individuals. Supplementary Table 5 lists
the AUCs of the node FRC and node ORC for each of the 200
nodes averaged across the young and elderly groups, along with the
FDR-corrected p-values.

3.3. Behavioral and cognitive relevance of
region-level di�erences

As reported in the previous subsection, we identified 66
nodes or ROIs that show significant between-group differences
in FRC (Figure 3A) and 53 ROIs that show significant between-
group differences in ORC (Figure 3B) across the young and
elderly groups. We partitioned the set of significant ROIs into
7 subsets based on their respective RSNs as defined by the
Schaefer atlas. Subsequently, we determined the cognitive domains
associated with the significant ROIs in each RSN using Neurosynth
meta-analysis (see Section 2). For nodes identified by FRC,
we limited the Neurosynth analysis to somatomotor network,
salience/ventral attention network, and dorsal attention network.
For nodes identified by ORC, we limited the Neurosynth analysis
to somatomotor network and dorsal attention network. We chose
the above-mentioned RSNs since the significant ROIs identified
by FRC or ORC are mainly concentrated within these RSNs.
Moreover, the sets of significant ROIs in these RSNs are nearly
bilaterally symmetrical.

Figure 4A shows the word clouds highlighting the behavioral
relevance of the significant brain regions associated with three
main RSNs identified by FRC, and Figure 4B shows the word
clouds for the significant brain regions associated with two main
RSNs identified by ORC. Supplementary Table 6 lists the terms
associated with the significant regions identified by FRC and
ORC across all 7 RSNs. For the nodes identified by FRC, the
word cloud for somatomotor network shows terms associated
with movement. For salience/ventral attention network, we find
terms associated with affective and somatosensory processing. For
dorsal attention network, we find terms associated with movement.
For the nodes identified by ORC, the word clouds for both
somatomotor network and dorsal attention network show terms
associated with movement.

3.4. Correlation between curvatures and
a�ective processing-related phenotypic
test scores

The Neurosynth meta-analysis revealed that brain regions
showing age-related FRC andORC differences in somatomotor and
dorsal attention networks are associated with movement, and brain
regions showing age-related FRC differences in salience/ventral
attention network are associated with affective and somatosensory
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FIGURE 3

A visual representation of nodes or regions in the brain that show significant di�erences in discrete Ricci curvatures between the functional

connectivity networks (FCNs) of young and elderly individuals (p < 0.05, FDR corrected). (A) 66 regions that show significant di�erences in

Forman-Ricci curvature (FRC) of the nodes in the FCNs of the young and elderly groups. All the 66 regions display higher values of node FRC for

elderly individuals compared to young individuals. (B) 53 regions that show significant di�erences in Ollivier-Ricci curvature (ORC) of the nodes in the

FCNs of the young and elderly groups. 41 out of these 53 regions display higher values of node ORC in elderly individuals and the remaining 12 ROIs

display higher values of node ORC in young individuals. The nodes are specified by the Schaefer atlas, and color-coded as per the 7 resting state

networks (RSNs) listed in the figure legend. This figure was created using BrainNet Viewer (Xia et al., 2013). Supplementary Table 5 lists the FDR

corrected p-values corresponding to curvature-related di�erences in each region.

processing (Figure 4). To do this, we performed a post-hoc

correlation analysis to determine the extent to which node FRC
and node ORC of the brain regions with age-related differences in
a given RSN, could account for variation in phenotypic test scores
corresponding to the cognitive or behavioral domains identified by
the Neurosynth meta-analysis for that RSN.

We identified 8 tests related to affective processing, for each
of the 225 subjects in the MPI-LEMON dataset, but did not find
any tests related to movement or somatosensory processing. In
the following, we list these tests related to affective processing:
(i) Cognitive Emotion Regulation Questionnaire (CERQ), (ii)

Coping Orientations to Problems Experienced (COPE), (iii)
Emotion Regulation Questionnaire (ERQ), (iv) Measure of Affect
Regulation Style (MARS), (v) Perceived Stress Questionnaire
(PSQ), (vi) State-Trait-Angstinventar (STAI-G-X2), (vii) Trait
Emotional Intelligence Questionnaire—Short Form (TEIQue-SF),
and (vii) Trierer Inventar zum Chronischen Stress (TICS).

We found that node FRC showed significant correlation (p <

0.05, FDR-corrected) only with the TICS phenotypic scores. TICS
contains 9 scores that are designed to measure the level of
chronic stress that an individual experiences across 9 subdomains
including work overload, social overload, pressure to perform,
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FIGURE 4

Behavioral and cognitive relevance of age-related region-level di�erences in curvatures. (A) Word clouds displaying cognitive and behavioral terms

associated with brain regions having age-related di�erences in values of Forman-Ricci curvature (FRC), in three RSNs, namely somatomotor network,

salience/ventral attention network, and dorsal attention network. (B) Word clouds displaying cognitive and behavioral terms associated with brain

regions having age-related di�erences in values of Ollivier-Ricci curvature (ORC), in two RSNs, namely somatomotor network and dorsal attention

network. The size of the terms in each word cloud is proportional to their frequency of occurrence. Note that size of the terms in each word cloud

are scaled separately, and thus, frequencies of occurrence cannot be compared across word clouds. The word clouds in this figure are generated

using https://www.wordclouds.com.

work discontent, excessive demands from work, lack of social
recognition, social tension, social isolation, and chronic worrying
(Schulz et al., 2004; Petrowski et al., 2020). Further, TICS contains
a separate score called Short Screening Scale for Chronic Stress
(SSCS) which was designed as brief chronic stress instrument for
applied research and practitioners. Hence, 10 scores are recorded
in the TICS test.

Since 10 brain regions in ventral attention network revealed
node FRC age-related differences, we performed 10 × 10 = 100
FRC—TICS correlations, out of which 17 correlations were
statistically significant (p < 0.05, FDR-corrected). The 17
statistically significant correlations were spread across seven
brain regions, with node FRC of RH_SalVentAttn_PrC_1 being
correlated to as many as 6 TICS scores (Figure 5), while the
other statistically significant correlations were distributed
between RH_SalVentAttn_Med_2, RH_SalVentAttn_Med_1,

RH_SalVentAttn_FrOperIns_4, RH_SalVentAttn_TempOccPar_2,

LH_SalVentAttn_Med_2, and LH_SalVentAttn_FrOperIns_3

(Supplementary Figure 3). All the 17 statistically significant
FRC—TICS correlations were negative, ranging between −0.22
and −0.18. Hence, we find that higher node FRC values are
associated with lower levels of chronic stress.

3.5. Comparison of region-level di�erences
in curvatures with tDCS/tACS/TMS data

The Neurosynth meta-analysis performed in this work revealed
that brain regions with age-related FRC and ORC differences in
somatomotor and dorsal attention networks are associated with
movement. Movement is known to be impaired with age (Seidler
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FIGURE 5

Scatter plots depicting the relationship between Forman-Ricci curvature (FRC) of the brain region RH_SalVentAttn_PrC_1 and 6 TICS scores of

chronic stress namely, Short Screening Scale for Chronic Stress (SSCS), lack of social recognition, excessive demands from work, pressure to

perform, chronic worrying, and work overload. Note that only the scatter plots corresponding to significant correlations r between FRC of

RH_SalVentAttn_PrC_1 and TICS scores (p < 0.05, FDR corrected) are shown in this figure. Each plot displays a line describing the linear relationship

between FRC of RH_SalVentAttn_PrC_1 and the corresponding TICS score, estimated using the least squares method. The brain region is named

according to the labeling scheme provided in the Schaefer atlas (Schaefer et al., 2018).

et al., 2010; Cirillo, 2021). Subsequently, we performed a post-

hoc analysis to determine the overlap between the set of brain
regions with age-related FRC and ORC differences in somatomotor
and dorsal attention networks, and the set of brain regions whose
stimulation with non-invasive techniques, e.g., tDCS, yielded
improvement in motor function of elderly individuals. An overlap
between these two sets of regions would provide additional
evidence, apart from results from the Neurosynth meta-analysis,
that FRC and ORC identify brain regions that are related to
movement impairments in healthy elderly individuals. To perform
this analysis, we first performed a literature search on PubMed to
identify scientific papers reporting the effect of non-invasive brain
stimulation on motor performance in healthy elderly individuals.
The details of the PubMed search query are provided in Section 2.
Supplementary Figure 1 summarizes the workflow we employed to
collect and classify the eligible articles from the literature survey,
as guided by preferred reporting items for systematic reviews and
meta-analysis (PRISMA) (Moher et al., 2009). We used results
reported in these eligible articles to identify those brain regions
whose stimulation in elderly individuals using tDCS, tACS, or TMS
yielded improvement in motor performance. Finally, we compared
this set of brain regions to those with age-related FRC or ORC
differences in somatomotor and dorsal attention networks.

We found that previous studies applying tDCS on healthy old
adults reported significant improvements in motor performance
upon stimulating 4 target regions namely, primary motor
cortex (M1), dorsolateral prefrontal cortex (DLPFC), right
supplementary motor area (SMA), and the cerebellum. Previous
studies that applied tACS on healthy old adults reported
significant improvements in motor performance upon stimulating
3 target regions namely, DLPFC, posterior parietal cortex (PPC),
and left M1. Finally, previous studies that applied TMS on
healthy old adults reported significant improvements in motor
performance upon stimulating the left DLPFC. We refer readers
to Supplementary Table 2 for details about the tDCS, tACS, and
TMS studies.

Note that the target regions stimulated in the previous tDCS,
tACS, or TMS studies correspond to ROIs in the Brodmann atlas
(Strotzer, 2009; Cieslik et al., 2013), whereas the ROIs in the
present study are defined according to the Schaefer atlas. Thus, we
mapped the ROIs in the Schaefer atlas to ROIs in the Brodmann
atlas (Elumalai et al., 2022) (see Section 2) to enable systematic
comparison of the age-related region-level differences in discrete
Ricci curvatures with those target regions whose stimulating
resulted in improved motor performance. Supplementary Table 7
lists the ROIs in the Brodmann atlas corresponding to each of the
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200 ROIs in the Schaefer atlas. Across tDCS, tACS, and TMS, the
four cortical target regions showing evidence for improvements
in motor performance in healthy elderly individuals include M1
(Brodmann area 4), DLPFC (Brodmann areas 9 and 46; Cieslik
et al., 2013), PPC (Brodmann areas 5, 7, 39, and 40;Whitlock, 2017),
and right SMA (Brodmann area 6). These target regions map to 42
ROIs in the Schaefer atlas. Out of these 42 ROIs, 11 ROIs belong
to the somatomotor network and 12 ROIs belong to the dorsal
attention network. All the 11 ROIs in the somatomotor network
whose stimulation resulted in improved motor performance in
healthy older individuals also showed age-related differences in
both FRC as well as ORC. Further, five out of the 12 ROIs in the
dorsal attention network whose stimulation resulted in improved
motor performance in healthy older individuals also showed age-
related differences in both FRC as well as ORC. Figure 6 provides
a visual illustration of the overlaps between the set of ROIs whose
non-invasive stimulation resulted in improved motor performance
in elderly, and the set of ROIs with age-related differences in FRC
or ORC, within the somatomotor and dorsal attention networks.
These results provide evidence that both FRC and ORC identify
brain regions that are related to movement impairments in healthy
elderly individuals.

4. Discussion

Prior to this work, the utility of discrete Ricci curvatures
in characterizing alterations in FCNs related to healthy aging
remained unexplored. In the present work, we apply two widely-
used notions of discrete Ricci curvature, FRC and ORC, to study
resting-state functional connectivity differences in 153 healthy
young and 72 healthy old subjects from the MPI-LEMON dataset
(Babayan et al., 2019). Raw rs-fMRI scans for each subject were
processed using a uniform preprocessing pipeline implemented
using the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon,
2012), and 49 FCNs at varying edge-densities between 2 and
50% were constructed for each subject. The nodes in the FCNs
correspond to the 200 ROIs defined by the Schaefer atlas
(Schaefer et al., 2018). The rs-fMRI preprocessing pipeline and
FCN construction methodology is identical to our previous work
(Elumalai et al., 2022), wherein some of us applied discrete Ricci
curvatures to compare FCNs of individuals with ASD and typically
developing controls.We remark that our selection of edge-densities
between 2 and 50% is to some extent arbitrary. However, there are
two reasons why considering very high edge-densities might not be
ideal. First, very high edge-densities would transform the network
closer to a complete graph, making the calculation of FRC andORC
trivial, and the subsequent group comparisons irrelevant. Second,
taking very high edge-densities may result in edges with negative
weights in the resulting FCN, as negative ROI-ROI correlations
would be included. The presence of negative correlations could
affect the reliability and interpretability of the results.

After comparing FRC and ORC across the FCNs of young
and elderly groups, we found age-related whole-brain and region-
level differences in FCNs. Next, we used meta-analysis decoding
to show that the brain regions with age-related differences in
FRC and ORC are associated with the cognitive domains of

movement, affective processing and somatosensory processing. We
found that FRC of some brain regions with age-related differences
exhibit significant correlation with behavioral test scores of affective
processing. Finally, we showed that FRC and ORC can capture
brain regions whose non-invasive stimulation is known to improve
motor performance of older adults.

FRC and ORC are fundamentally defined on the edges in a
network. Despite being local measures by definition, the average
properties of discrete Ricci curvatures have previously been used
to characterize the global organization of structural and functional
brain networks (Farooq et al., 2020; Elumalai et al., 2022) as well
as financial networks (Sandhu et al., 2016; Samal et al., 2021). In
this work, we compared the average edge curvatures of the FCNs
in the young and elderly groups, and found that both average edge
FRC and average edge ORC are significantly higher in the elderly
group. Moreover, we found that the global differences in ORC exist
across all the network densities considered in this work. Thus, our
results suggest that discrete Ricci curvatures are highly sensitive
to age-related changes in the global topological organization of
resting-state FCNs.

We determined how the age-related differences in curvature
are distributed across the 200 brain regions of the Schaefer atlas.
We compared node FRC and node ORC across the FCNs of young
and elderly individuals. We found 66 brain regions that show age-
related differences in FRC and 53 brain regions that show age-
related differences in ORC. Notably, FRC and ORC identify 42
brain regions in common. The age-related differences in FRC are
mainly concentrated within the somatomotor, dorsal attention,
and salience/ventral attention network, whereas the age-related
differences in ORC are concentrated within the somatomotor and
dorsal attention network. Farooq et al. (2019) have previously
applied ORC to compare the structural brain networks of healthy
young and healthy old individuals, and reported that brain
regions with differences in ORC are present within the default
mode network and visual areas. Thus, the application of discrete
Ricci curvatures to functional connectivity networks can identify
complementary sets of brain regions related to healthy aging,
compared to those identified by applying ORC to structural
brain networks.

Next, we used Neurosynth meta-analysis decoding based on
a large dataset of fMRI studies to determine the cognitive and
behavioral relevance of age-related differences in curvature. We
found that the brain regions exhibiting age-related differences
in FRC are associated with movement, affective processing and
somatosensory processing, whereas the brain regions exhibiting
age-related differences in ORC are associated with movement.
Previous research suggests deficits in motor performance for
older adults (Seidler et al., 2010; Cirillo, 2021) such as difficulties
in coordination (Seidler et al., 2002), increased variability in
movement (Contreras-Vidal et al., 1998) and slowing of movement
(Buckles, 1993). Previous research also suggests that healthy aging
is associated with changes in affective processing (Mather, 2012).
Specifically, elderly individuals are less emotionally reactive to
negative situations (Neupert et al., 2007; Mather, 2012) and display
higher emotional maturity compared to young individuals. Further,
previous literature also suggests a decline in somatosensory
functions such as warmth, touch and vibration with age (Edwards
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FIGURE 6

Overlap between brain regions with age-related curvature di�erences and target regions whose non-invasive stimulation resulted in improved motor

performance of healthy elderly individuals. (A) Within the somatomotor network, overlap between the set of 33 Schaefer ROIs with age-related

di�erences in Forman-Ricci curvature (FRC) and 11 Schaefer ROIs corresponding to the target regions used in tDCS/tACS/TMS experiments. All the

11 ROIs corresponding to the target regions show age-related di�erences in FRC. (B) Within the somatomotor network, overlap between the set of

27 Schaefer ROIs with age-related di�erences in Ollivier-Ricci curvature (ORC) and 11 Schaefer ROIs corresponding to the target regions used in

tDCS/tACS/TMS experiments. All the 11 ROIs corresponding to the target regions show age-related di�erences in ORC. (C) Within the dorsal

attention network, overlap between the set of 10 Schaefer ROIs with age-related di�erences in FRC and 12 Schaefer ROIs corresponding to the

target regions used in tDCS/tACS/TMS experiments. Five out of the 12 ROIs corresponding to the target regions show age-related di�erences in FRC.

(D) Within the dorsal attention network, overlap between the set of 9 Schaefer ROIs with age-related di�erences in ORC and 12 Schaefer ROIs

corresponding to the target regions used in tDCS/tACS/TMS experiments. Five out of the 12 ROIs corresponding to the target regions show

age-related di�erences in ORC. Note that the set of brain regions in each subfigure is partitioned into the following three subsets. Regions that are

relevant according to non-invasive stimulation studies but do not show age-related curvature di�erences (labeled as “NIBS only”), regions that show

age-related curvature di�erences but lack evidence from non-invasive stimulation studies (labeled as “FRC only” or “ORC only”), and regions that

show both age-related curvature di�erences as well as relevance according to non-invasive stimulation studies (labeled as “FRC & NIBS” or “ORC &

NIBS”). In (A, B), there are no regions labeled “NIBS only” since all the regions in the somatomotor network that are relevant according to

non-invasive stimulation studies also show age-related di�erences in FRC and ORC, respectively.

and Fillingim, 2001). Notably, Lautenbacher et al. (2017) in their
systematic review and meta-analysis study have shown that pain
threshold is higher in elderly individuals. Hence, our results suggest

that the regions exhibiting differences in discrete Ricci curvatures
in healthy aging populations are associated with the cognitive
domains and abilities that are typically known to exhibit age-related
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changes, even in healthy aging. We remark that this is the first
study that uses discrete Ricci curvatures to identify the cognitive
and behavioral domains associated with age-related changes in
brain networks.

After determining the cognitive and behavioral domains
identified by discrete Ricci curvatures, we performed a post-hoc

analysis to test the associations of discrete Ricci curvatures with
altered cognition and behavior in healthy aging. We found that
FRC of the nodes in the FCNs shows significant correlation with
test scores related to affective processing in healthy individuals.
Specifically, we found that higher values of FRC are associated
with lower levels of chronic stress. These results demonstrate
the ability of FRC to identify brain regions that are functionally
relevant to affective processing. We remark that the correlations
between FRC and the phenotypic test scores reported in our work
may be influenced by both individual differences and group-level
differences, and it is difficult to ascertain which factor is the main
driver of the observed correlations.

Previous studies on neurocognitive aging have provided ample
evidence for age-related impairments in motor performance, which
may include difficulties in planning, execution and control of
movement and deficits in coordination (Krampe et al., 2002;
Sawaki et al., 2003; Zimerman and Hummel, 2010). Non-invasive
brain stimulation technologies such as tDCS, tACS, and TMS
provide an attractive option to modulate brain function and help
preserve motor performance in older adults (Summers et al.,
2016; Patel et al., 2019; Lee et al., 2021; Pino-Esteban et al.,
2021). The Neurosynth meta-analysis decoding performed in the
present work demonstrated the ability of both FRC and ORC
to identify brain regions that are associated with movement. We
performed a manual curation of non-invasive brain stimulation
data to determine whether the regions with age-related differences
in curvature hold any clinical significance for the treatment of
motor declines in healthy elderly individuals. We found that
brain regions with age-related differences in curvature overlap
with those brain regions whose non-invasive stimulation with
tDCS, tACS, or TMS shows evidence for improvement in the
motor performance of healthy elderly. Remarkably, within the
somatomotor network, both FRC and ORC were able to detect the
brain regions that are clinically relevant according to non-invasive
stimulation experiments. These results suggest that discrete Ricci
curvatures can be used to generate novel hypothesis about target
regions for non-invasive brain stimulation experiments.

We highlight a methodological aspect of applying discrete
Ricci curvatures to brain networks and place our results in a
broader context. In this work, we found similar results for FRC
and ORC while determining brain regions related to healthy
aging. However, it is important to note that the two notions
differ in their definitions as they capture different properties
of the classical Ricci curvature, and while both notions are
shown to be correlated for many empirical networks (Samal
et al., 2018), one may perform better than the other depending
on the type of network under consideration. For example, we
previously applied FRC and ORC to identify brain regions
related to atypical resting state functional connectivity in autism
spectrum disorder (Elumalai et al., 2022). We found that FRC
is able to identify more regions, provides better interpretability

in terms of behavior, and can detect clinically significant regions
that are not captured by ORC. Therefore, future works on the
application of discrete Ricci curvatures to brain networks may
benefit when different notions of curvature are used together,
as it may help gather complementary information about the
topological organization of brain networks. Notably, in the
present study, we found that FRC can capture more brain
regions related to healthy aging compared to ORC within the
salience/ventral attention network, whereas ORC is able to capture
more regions in the limbic network. Further, at the level of cognitive
domains, we found that FRC identifies brain regions related
to three domains, namely movement, affective processing and
somatosensory processing, whereas ORC identifies brain regions
related only to movement.

To summarize, we found that geometry-inspired notions
of discrete Ricci curvature can be used to characterize age-
related changes in brain functional connectivity, both at the
whole-brain level as well as at the level of individual brain
regions. Further, we showed that the brain regions captured
by curvatures hold clinical relevance for non-invasive brain
stimulation interventions that are focused toward preservingmotor
function of older adults. Future studies could expand beyond
healthy aging populations by applying discrete Ricci curvatures
to brain networks of age-related neurodegenerative disorders
such as Alzheimer’s disease and Parkinson’s disease, and derive
insights about the cognitive domains affected in age-related
neurodegenerative disorders.
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