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Accumulating clinical evidence indicates extensive inter-individual variations in

the effectiveness and adverse effects of standard treatment protocols, which are

largely attributed to the multifactorial regulation of the hepatic CYP-dependent

drug metabolism that is connected with either transcriptional or post-

translational modifications. Age and stress belong to the most important

factors in CYP gene regulation. Alterations in neuroendocrine responses to

stress, which are associated with modified hypothalamo-pituitary-adrenal axis

function, usually accompany ageing. In this light, ageing followed by a decline of

the functional integrity of organs, including liver, a failure in preserving

homeostasis under stress, increased morbidity and susceptibility to stress,

among others, holds a determinant role in the CYP-catalyzed drug metabolism

and thus, in the outcome and toxicity of pharmacotherapy. Modifications in the

drug metabolizing capacity of the liver with age have been reported and in

particular, a decline in the activity of the main CYP isoforms in male senescent

rats, indicating decreased metabolism and higher levels of the drug-substrates in

their blood. These factors along with the restricted experience in the use of the

most medicines in childhood and elderly, could explain at an extent the inter-

individual variability in drug efficacy and toxicity outcomes, and underscore the

necessity of designing the treatment protocols, accordingly.
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Introduction

To date, the outcome of pharmacotherapy remains a complex and challenging issue. Over

the years, accumulating clinical evidence indicates that each patient represents an individual

case in drug treatment. This notion is mainly based on the extensive inter-individual

variations observed in the efficacy of standard protocols used in the treatment of diseases,

such as depression, cancer, hypertension, epilepsy and diabetes, as well as in the drug-related

adverse reactions and toxicity outcomes (1–4). In particular, when a multi-drug therapeutic

scheme is followed, the failure of pharmacotherapy and drug toxicity is more likely to occur.
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The diversity in the drug response among individuals is largely

attributed to the multi-factorial machinery that regulates the

biological activity and fate of a drug in the body. Genes that

encode factors holding determinant roles in cell signaling,

metabolic and transport processes, participate in this machinery. It

is well defined that these genes are regulated by various factors

including age, gender, race, stress, disease, drugs, diet, lipidemic and

endocrinological state, among others (2, 5–8). It should be noted also

that important modifications in the functional integrity of the

cardiovascular, immune, respiratory, gastrointestinal, central

nervous and endocrinological systems take place as we grow older,

which have a decisive impact on the factors controlling drug activity

and therefore, the outcome and toxicity of pharmacotherapy (1–3, 5,

8–10). This is mainly due to the determinant roles these factors play

in the regulation of the absorption, distribution, metabolism,

excretion and activation of the drugs. In this regulatory loop, stress

among other factors, holds a key role in the regulation of several

enzymes catalyzing the metabolism of the majority of prescribed

medicines (8, 11) (2, 4, 12–15). The age-related modifications in vital

functions of the body and stress perception over the years along with

the lack of experience in the use of drugs in children and old people,

may explain at least in part, the important deviations in drug efficacy

and toxicity observed in childhood and elderly (16); (https://

www.msdmanuals.com/professional/geriatrics/drug-therapy-in-

older-adults/pharmacokinetics-in-older-adults).
Drug Metabolism

Every drug entering the body is recognized as a threat of

homeostasis and the detoxifying systems are activated (2, 17). The

liver is the major site of drug metabolism, where various enzymes

catalyze specific metabolic reactions including oxidation, reduction,

hydrolysis, hydration, conjugation, condensation, or isomerization

aiming at formation of water soluble molecules that can be readily

excreted in urine and bile (2, 18).

During drug metabolism of Phase I, cytochrome P450s (CYPs),

flavin-containing monoxygenases (FMO) and epoxide hydrolases

(EH) are the main families of enzymes that catalyze the

biotransformation of xenobiotics including drugs. In Phase II, the

metabolic products of Phase I are conjugated with glucuronic acid,

glutathione, sulphate and acetyl groups to form highly water soluble

complexes, a process that facilitates and accelerates the

detoxification of the organism (19). These conjugation reactions

are catalyzed by glucuronosyl-transferases (UGT), glutathione S-

transferases (GST), UDP- sulfo-transferases (SULT) and N-acetyl-

transferases (NAT), respectively (19). Long-term disturbances of

these metabolic processes usually result in intracellular

accumulation of metabolites and free radicals that could trigger

toxic manifestations (18).

The structure of the drug determines whether one or more of

these enzymes will be involved in its metabolism during Phase I.

Usually, metabolic biotransformation of a drug modifies drastically

the drug’s pharmacokinetic, pharmacodynamic and potentially,

toxicity profiles (2, 5, 19–22). In most cases, the metabolism of

drugs at Phase I leads to their inactivation. Nonetheless, it is also
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possible that some metabolites are pharmacologically active, and

sometimes they are even more active than the parent compound (2,

8). It should be noted that several active metabolic products may

have the potential to induce toxic manifestations including cell

death, oxidative stress, tumor initiation and teratogenesis, among

others (4, 19, 20, 23–26). There are also inactive or weakly active

drugs called pro-drugs, which are converted to pharmacologically

active metabolites within the body through metabolic reactions

predominantly catalyzed by cytochromes (8, 19, 27–30).

The extensive variation among different patients and

populations in the hepatic drug metabolic rate is of paramount

clinical interest. The spectrum of factors holding major roles in this

diversity includes genetic factors, comorbidities, such as chronic

liver disorders, diabetes, advanced heart failure and cancer, as well

as drug interactions and mainly those resulting in the acceleration

or inhibition of drug metabolism (2, 4, 8).
CYP-catalyzed drug metabolism

CYPs are hemoproteins, which are considered as the most

important enzymes in animals and humans that catalyze during

Phase I the metabolic biotransformation of the majority of

prescribed drugs. They can recognize and subsequently

metabolize numerous structures, as they have broad and

overlapping substrate specificities. The main CYP isozymes are

expressed in all tissues, and predominantly in the liver, where they

display the highest capacity. Based on their amino acid sequence

homology, the main CYP isozymes that are involved in the

metabolism of drugs are arranged into three gene families (CYP1,

CYP2 and CYP3) (19, 21, 31). Among the hundreds of CYPs,

the CYP1A2, CYP2A6, CYP2B6, CYP2C8/9/19, CYP2D6, CYP2E1

and CYP3A4 are considered as the most important human CYP

isoforms (21, 32–34) that catalyze diverse oxidation reactions, such

as heteroatom oxidations, hydroxylations, epoxidations,

heteroatom dealkylations, oxidative group transfer, cleavage of

esters, and dehydrogenations (22, 35). CYPs including CYP2D6,

also catalyze the biosynthesis or catabolism of steroid hormones,

fat-soluble vitamins, bile acids, fatty acids, eicosanoids and

neurotransmitters (23, 36).

Genetic polymorphism and mutations of CYP genes including

CYP1A1, CYP2A6, CYP2A13, CYP2C8/9/19, CYP2D6, CYP2B6

and CYP3A4 (19, 37, 38) and the variations in the distribution of

the common CYP gene allelic variants that are observed among

several ethnic populations, such as Africans, White and African

Americans, Asians, Caucasians and Europeans, are among the

predominant factors determining to a great extent, the inter-

individual and inter-ethnic deviations in drug response and

adverse reactions (39, 40). Based on CYP polymorphism,

populations could be divided into four phenotypes: the ultra-

rapid metabolizers (UM), who display more than two active CYP

genes, the extensive metabolizers (EM), who carry two functional

CYP genes, the poor-metabolizers (PM), who lack a functional CYP

isozyme due to deleted or defective CYP gene and the intermediate

metabolizers (IM), who carry one functional and one defective CYP

gene or two defective CYP genes. UM cannot reach therapeutic
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concentrations of drugs in blood and tissues following the usual

dosing regime, because they metabolize rapidly the drugs-

substrates, whereas PM display slow drug-substrate metabolism

that results in the accumulation of the drug in the blood even at

usual doses, a condition that may favor toxic manifestations (2).

Apparently, CYP gene polymorphism determines a drug’s

pharmacokinetic and pharmacodynamic profile (18). From a

clinical perspective, the pharmacogenetic profile of a patient in

terms of CYP polymorphism could be implemented in improving

the outcome of pharmacotherapy and reducing drug toxicity (5,

9, 39).
Stress impact on CYP-catalyzed
drug metabolism

Various external and internal factors can modify the regulation

of most CYP genes. They can either induce or inhibit the expression

of a particular CYP resulting in acceleration or inhibition

respectively, of the metabolism of its drug-substrates thus

modifying accordingly, the drug’s pharmacokinetic and toxicity

outcomes. Among these factors, stress holds a determinant role in

the expression and activity of the main CYP isozymes that catalyze

the metabolism of the majority of drugs in the market. In our

preclinical studies several animal models of stress were employed,

such as the mild unpredictable stress for 7 days, the repeated

restraint stress (2hrs per day x 4 days) and the maternal

deprivation stress for 24hrs. The findings indicated that mainly

restraint stress and to a lesser extent maternal deprivation stress can

modify constitutive and induced expression levels of CYP3A,

CYP2C, CYP2D and CYP1A at an extent that could affect a

drug’s pharmacokinetic profile (2, 4, 8, 11); https://www.fda.gov/

drugs/drug-interactions-labeling/drug-development-and-drug-

interactions-table-substrates-inhibitors-and-inducers).

It is well documented that the stress-mediated effect on each

particular CYP gene is stress-specific involving various mechanisms,
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such as transcriptional regulation by ligand-activated nuclear

receptors including PXR (pregnane X receptor), CAR (constitutive

androstane receptor) and AhR (aromatic hydrocarbon receptor) (2, 8,

11, 19, 41). In the stress-mediated regulation of CYP genes, the stress-

system effectors, epinephrine and norepinephrine released from

adrenal medulla and glucocorticoids released from adrenal cortex,

hold central roles by activating major signal transduction pathways in

the liver, such as the AR/cAMP/PKA, JNK, growth hormone (GH)/

signal transducer and activator of transcription 5b (STAT5b), PI3K/

AKT/FOXO1b and Glucocorticoid/GR-linked pathways. Activation

of these pathways usually results in up-regulation of several

transcription factors including hepatocyte nuclear factor 4a
(HNF4a), hepatocyte nuclear factor 1a (HNF1a), CAR, PXR,
RXR, AhR and peroxisome proliferator activated receptor a
(PPARa) that hold determinant roles in CYP regulation (Figure 1;

(2, 13, 14, 42–46). It should be noted that prolonged activation of

these pathways can result in accumulation of free radicals and other

toxic metabolic products in tissues, which along with the stress-

mediated reduction of glutathione content, constitute a condition that

usually favors the development of severe disease states (2, 4, 19, 47).

Within the spectrum of the stress-induced events, alterations in the

secretion of hormones, such as GH, prolactin (PRL), thyroid

hormones and insulin, the increased release of cytokines/NF-kB

and oxidative stress, play determinant roles in CYP regulation by

stress (2, 7, 8, 48, 49), (Figure 1). In particular, activation of the

hypothalamo-pituitary-adrenal (HPA) axis by stress results in the

somatostatin-mediated inhibition of thyroid-releasing hormone

(TRH) and thyroid-stimulating hormone (TSH) release and in

reduced conversion of thyroid T4 to T3 (active hormone) that in

humans, displays a negative control on various CYP genes including

those belonging to the CYP3A subfamily (50). It is well defined that

the stress-induced somatostatin release and adrenergic receptor

stimulation inhibit GH secretion (51–54), an effect of paramount

significance in drug metabolism, because GH, among other effects,

positively regulates various CYPs, such as CYP3A4 (55), CYP2C and

CYP2D (7, 48, 56, 57) and its up-regulating effect is mediated by the
FIGURE 1

Age-related modifications in vital functions of the body and in other parameters that affect decisively the drug metabolizing capacity of the liver.
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GH-pulse activated transcription factor, STAT5b (7, 23, 56, 57).

Notably, GH suppression is followed by down-regulation of the

insulin-like growth factor (IGF-1), which holds a determinant role

in the insulin-mediated down-regulation of various CYPs including

CYP3A4, CYP2C, CYP1A and CYP2D (2, 46, 49, 58–60). It is known

that stress reduces PRL release (61), which down-regulates several

CYPs including those of CYP1 family (62, 63). The effects of

glucocorticoids on drug-metabolizing enzymes derive from a

combination of distinct mechanisms involving their stimulating

effects on the synthesis and activity of several transcription factors,

such as CAR, PXR, RXR, AhR, HNF4a and STAT5b, critical CYP

regulators (64, 65). It is of interest also to note that the stress-induced

release of adrenaline stimulates alpha- and beta-adrenergic receptor-

linked pathways and in turn, the release of cytokines, IL-1b, IL-6 and
TNFa, that down-regulate hepatic CYP3A and CYP2C (66–68).

The impact of stress on drug metabolism is unique and distinct

from that of medicines that usually display dose- and time-

dependent specificities (2, 8, 11). Specifically, repeated restraint

stress repressed hepatic CYP2E1 and CYP2B constitutive

expression, whereas it up-regulated most of the other CYPs

including those belonging to CYP1A, CYP2A, CYP2C, CYP2D

and CYP3A subfamilies and metabolize over 70% of prescribed

drugs (2, 8, 22, 69). It is of note that CYP1A1 and CYP1A2

substrates including several drugs and pre-carcinogens, such as

polycyclic aromatic hydrocarbons (PAHs), act as ligands of AhR

and induce these CYP1A isozymes (31) thus accelerating their

metabolism. On the other hand, inhibition of these isozymes can

result in reduced metabolism of their drug-substrates and restricted

bioactivation of inactive pre-carcinogens (70–72). In terms of the

impact of stress on CYP2D expression, it appears that repeated

restraint stress induced CYP2D that to date was considered as a

non-inducible enzyme. CYP2D catalyzes the metabolism of most

antidepressants, anxiolytic, antipsychotic and antiepileptic drugs

along with several antiarrythmic drugs, beta- and calcium channel-

blockers (69, 73, 74). The role of CYP2D in the synthesis of

dopamine, serotonin and neurosteroids in the brain is well

defined and the reason of the current intensive investigation on

its role in Parkinson’s disease and other neurodegenerative

disorders (4, 75–78). From a clinical perspective, the stress-

induced up-regulating effect on the afore-mentioned CYPs could

result in acceleration of the metabolism of their drug-substrates and

therefore, in sub-therapeutic drug levels in blood and tissues (2, 4,

8). On the other hand though, the stress-induced CYP up-

regulation could increase the activation of pro-drug-substrates

and therefore, the drug efficacy, whereas the opposite is true for

the stress-mediated CYP down-regulation (2, 4, 8).

There is also an indirect involvement of stress in drugmetabolism

as long-term exposure to uncontrolled stress may trigger several

pathophysiological states including cancer, depression, inflammatory

diseases, diabetes mellitus and other diseases within the spectrum of

metabolic syndrome, which comprise modified hormonal,

nutritional, immune and psychological states compared to healthy

population (43, 44), condition that has been largely associated with

the patient’s hepatic drugmetabolizing capacity (2, 4, 8). Based on the

accumulating evidence that stress and the major effectors of the stress

response, epinephrine and glucocorticoids, play significant and
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distinct roles in the regulation of the metabolism of numerous

drugs in the market, clinicians should consider the stress profile of

the patient when designing treatment protocols and dosing regimes.

Although stress can not be included in any treatment algorithm, as it

does not display the dose- and time- dependent properties of a drug,

it is suggested that stress should be alleviated in patients, in order to

assure the highest drug efficacy with the less possible adverse

reactions (2, 4, 8). Furthermore, drugs with sympathomimetic

properties or adrenergic receptor blockers, or those who modify

GH, thyroid hormone, insulin and glucocorticoid hormone status

should be considered in treatment protocols, because they can

decisively modify the pharmacokinetic and pharmacodynamic

profiles of drugs and therefore, the efficacy and toxicity of

pharmacotherapy (2, 4, 8).

Age-related modifications of critical
parameters determining hepatic
drug metabolism

Although a comprehensive definition of ageing is not possible,

several characteristic alterations including the time-related loss of

functional units of organs, the disruption of functional integration

between cells and organs and the failure in preserving homeostasis

under stress are recognized. In this light, ageing is followed by a

progressive accumulation of random modifications in the function of

vital systems in the body, which take place at molecular, cellular and

tissue level and are followed by decreased viability and increased

morbidity (79). Within the spectrum of modifications observed with

age, a decline in the functional integrity of organs, such as heart,

kidneys and liver, holds central role. Among others, ageing is

followed by a progressive reduction in liver volume and blood flow,

parameters that drastically affect hepatic drug metabolism. Within

pharmacokinetic implications occurring with age and affect the fate

and activity of drugs in the body, the composition of the body is

included (80), along with alterations in drug absorption, first-pass

metabolism and bioavailability (81–84), drug distribution (80, 85),

protein binding (79, 86) and drug clearance (79, 87–91).

Furthermore, age-related diseases including congestive heart failure

and hypertension and the drugs used for their treatment, can also

modify drug pharmacokinetics (79, 85, 92–95).

It should be noted that alterations in neuroendocrine responses

to stress, which are associated with modified HPA axis function,

usually accompany ageing (79). In the aged-brain and in particular,

the hippocampus, increased oxidative stress and reduced synthesis

of neurotrophins are observed (96, 97). These ageing-dependent

alterations in the limbic system can affect critical biobehavioral

parameters, such as emotions and coping with stress (98). Notably,

susceptibility to stress increases with age via up-regulation of the

NADPH oxidase in the hippocampus (99). It should be also taken

into account the fact that aged people exhibit increased plasma

glucocorticoid levels (GC), which along with epinephrine and

norepinephrine organize the response of the stress system to

stress stimuli (42, 43, 45, 53, 99). Interestingly, the dysfunction of

the stress-regulating neuroendocrine system in elderly people along

with the ageing-dependent oxidative stress are equivalent to those
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in humans exposed to chronic stress (99, 100). Apparently, elderly

people are more vulnerable to chronic stress that determines among

other parameters, the age-related dynamics in the hepatic CYP-

dependent drug metabolism and therefore, the drug efficacy and

toxicity (2, 99).
Age-related modifications in the
CYP-catalyzed drug metabolism

It is worth noting that about 50% of drugs are prescribed by

clinicians without following age-related guidelines and in only 10%

of drugs administered in neonates and infants the safety and efficacy

has been evaluated. The age-related variations in the activity and

toxicity of drugs depend largely on the metabolic capacity of the

liver of patients, which is clinically very important, because it

determines a drug’s pharmacokinetic and pharmacodynamic

profile. Immaturity of drug-metabolizing systems in children and

their decline in elderly, have been associated with increased risk of

drug toxicity (101).

The drug metabolizing systems are under continuous

modifications during our lifespan and this fact should be

considered when prescribing drugs in children and the elderly.

In particular, ageing is followed by significant modifications in the

hepatic CYP isozyme expression pattern in humans, which are

CYP isozyme-specific (102) and these modifications can affect

drastically the oxidative biotransformation of the majority of

drugs in the market, and numerous other xenobiotics including

environmental pollutants, pre-carcinogens, carcinogens, and

toxicants along with the biosynthesis of several endogenous

compounds (101, 102).

There are several studies reporting considerable variations in

the hepatic ontogenic gene expression pattern of the major CYPs in

children and the elderly. These variations may underlie the fact that

children are often less responsive to drugs and are exposed to higher

risk in developing adverse reactions related to drugs (103). Of

particular interest is the fact that maturational changes in CYP3A

ontogeny may affect the clinical outcome of many drugs (~50% of

drugs in the market) (104). Therefore, the impact of ontogeny on

CYP3A and other CYP isozymes should be considered by the

clinicians when prescribing drugs-substrates, inducers or

inhibitors of these CYPs (104). But, variations in CYP-catalyzed

drug metabolism among individuals at different ages is not only

related to ontogeny, but also to exposure to environmental

pollutants, the diet, the gender and genetic polymorphism often

observed within different ethnicities (2, 6, 103).

Several studies reported an age-related decline in the clearance

of medicines undergoing CYP-catalyzed biotransformation in the

liver (102, 105–118). In particular, preclinical studies indicated that

the CYP-dependent drug metabolism is reduced by about 37-60%

in the liver of senescent rats (102, 115, 116, 118, 119). It is also of

interest to note that constitutive CYP1A1 expression was detected

only in the livers of 3-week-old rats, whereas it was not detectable in

older rats (120–122). In humans also, CYP1A1 is constitutively

expressed only at early stages of development, while it is not

detectable in adults (121).
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CYP1A2, CYP2B1 and CYP2E1 were detected at their highest

basal protein expression levels in 3-week-old rats, while they were

decreased in older rats aged 12- and 26-weeks (122). Hepatic

CYP2B1 was further repressed in old rats aged 104 weeks. Similar

age-related variations were observed in the CYP1A1-dependent

EROD, the CYP1A2-dependent MROD, the CYP2B1/2-dependent

PROD and the CYP2E1-dependent PNP activity levels (102,

122, 123).

Hepatic CYP2C11 and CYP3A2 constitutive protein expression

and the CYP3A1/2-dependent midazolam activity were drastically

induced after puberty in the adulthood and started declining with

ageing (122). It was also reported that CYP2C11, the main gender-

specific steroid 2a- and 16a-hydroxylase, was not detectable in

newborn rat livers. Nonetheless, it was induced at puberty only in

males and not in females (124–126). In contrast, the CYP3A1/2-

dependent steroid 6b-hydroxylase activity was detectable in the

liver of pre-pubertal male and female rats and CYP3A2 protein

expression increased until the age of 12-weeks, when it started

declining. Interestingly, CYP3A2 expression levels were lower in

female rat livers at puberty compared to those at a pre-pubertal

state. Apparently, there is an age- and gender-dependent regulation

of both, CYP2C11 and CYP3A1/2 expression patterns in the liver of

rats (122, 124–126). Notably, the developmental expression pattern

of CYP2C11 in males and females is determined by the gender

differentiated GH secretion pattern, but this is not the case for

CYP3A2 (57, 102, 125).

There are controversial reports on the effect of ageing on the

CYP-dependent drug metabolism in humans. In several studies, no

significant modifications of specific CYP isozyme expression

patterns were observed in the liver of subjects aged between 12

and 73 years (102, 127, 128). In contrast, there are studies reporting

that hepatic CYP2E1 and CYP3A content decreased with age (102,

129). Based on data coming from studies employing specific CYP

isozyme substrates, it appeared that the rate of CYP1A2 and

CYP2C19 drug-substrate metabolism decreases with age, whereas

the CYP3A4-, CYP2A6-, CYP2C9- and CYP2D6-dependent

substrate metabolism is slightly or not modified (102, 130, 131).

As previously mentioned, hepatic CYP1A1 and CYP1A2 expression

patterns are similarly modified with age in rats and humans (122).

Fluctuations in hepatic CYP expression and activity patterns

observed during development and with age occur at post-

transcriptional level and could be profoundly associated with

alterations in GH, gonadal hormones, PRL, thyroid hormone,

insulin, glucagon and glucocorticoid levels, because these

hormones hold determinant roles in CYP regulation. In

particular, GH and gonadal hormones determine sex-

differentiation in the CYP expression patterns (2, 8, 11, 37, 48, 57,

102, 125, 127, 132–136). In this light, the modified CYP expression

patterns observed in pregnancy, at different phases of the estrous

cycle (137, 138), in menopause or in subjects following hormonal

replacement therapy (137, 138) and in diabetes could be explained

(102). The age-related alterations in the hepatic CYP expression

pattern may also take place at transcriptional level and are often

associated with oxidative stress and HNF1a levels, factors that are

induced during the metabolic biotransformation of drugs at Phase I

(102, 118, 139, 140).
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In drug metabolism, CYP inducibility is a significant parameter.

Numerous structurally diverse foreign substances and endogenous

compounds can induce several CYP genes, resulting in increased

synthesis and activity of the corresponding enzymes and

acceleration of the drug-substrates metabolism. Most of CYP

genes belonging to families 1-4 can be transcriptionally induced

by xenobiotics. In this process, cytosolic AhR and the nuclear

receptors CAR, PXR and PPARa (peroxisome proliferator-

activated receptor a) hold central roles (2, 11, 60, 102, 141–143).

Regarding the effect of age on CYP induction in humans and

rats there are controversial reports (102, 144, 145). Several studies

reported decreased (102) or no modified CYP induction by various

compounds with age in rats (146). In particular, the phenobarbital-

induced effect on several CYP genes including CYP3A and CYP2B,

was either decreased with age (147) or remained unaffected (148). It

is of note though that the CYP3A inducibility by dexamethasone

was strongly reduced with ageing (149–151).
Discussion

Long-term clinical experience demonstrates the high frequency

of failure in the treatment protocols followed in pediatric and geriatric

patients. This is due in part, to the fact that clinical trials usually

engage adults 18-65 years old (152) and thus, the results drown from

these studies often do not reflect the potential activity and side effects

of a drug in children and elderly patients. This review has focused

mainly on alterations in drugmetabolism in the elderly, because there

is limited information about alterations in drug metabolism at early

stages of life including childhood. In addition, there is markedly

higher incidence of morbidity with age (over 80% of old people suffer

at least from one chronic disease). In comparison to younger

individuals, the elderly take about three times more medications

and usually, they followmulti-drug treatments (polypharmacy) (153–

155), a condition that constitutes a major challenge for health

professionals and patients, who often experience memory

impairment and either forget to take their medication or take it

multiple times (156). It should be noted also that ageing is

accompanied by significant alterations in the functional capacity of

several organs, such as the liver, kidneys, heart, lungs and intestine,

among others (157). All these parameters hold determinant roles in

the regulation of drug metabolism in the elderly and may explain the

higher incidence of drug-drug interactions and increased incidence of

adverse effects and toxicity in old patients (158, 159). It is estimated

that about 10% of hospital admissions in the elderly are associated

with drug side effects (10, 102, 160–162).

The effects of a drug in the body depend on various factors

including body composition, age, stress, gender, race, diet,

medication, hormonal state, pathophysiological states, long-term

alcohol consumption and smoking that modify fundamental

processes determining a drug ’s pharmacokinetic and

pharmacodynamic profiles (2, 4, 137). In particular, hepatic drug

metabolism, mainly at Phase I, is a determinant parameter for drug
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effectiveness and toxicity and hence, the inter-individual variability

in drug metabolism is now considered as a crucial factor in the age-

dependent variations in pharmacokinetics and idiosyncratic drug

toxicities observed in patients (163, 164); (www.fda.gov/cber/

gdens/popharm.pdf).

As previously mentioned, several hormones including GH,

cortisol, insulin, PRL and thyroid hormones play important roles

in CYP regulation (2, 7, 48, 51, 148) and therefore, the decline in the

functional integrity and activity of the hormonal systems that

fo l lows ageing is of paramount s ignificance for the

pharmacotherapy in elderly patients. Among these age-related

modifications, the impairment in HPA axis feedback inhibition

with age, which is followed by increased plasma cortisol levels, holds

a prevalent role and may explain the increased stress susceptibility

in geriatric patients (165). All these modifications observed with age

can drastically affect several drug metabolizing enzymes and

mainly, several CYP isozymes that catalyze the metabolism of

numerous prescribed drugs (2, 4, 11, 51).

In conclusion, the restricted experience in the use of most drugs

in children and elderly patients, the decline in memory with age

along with the increased stress susceptibility and the decreased

activity of various hormonal systems, which follow ageing and

largely determine the CYP-dependent drug metabolism, are

exceptionally important parameters that should be taken into

account when designing treatment regimes in pediatric and

geriatric patients, in order to provide them with the appropriate

drug dosing regimes and assure the optimal effectiveness and

restricted adverse reactions of pharmacotherapy.
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