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Semi-supervised learning (SSL) methods provide a powerful tool for utilizing

abundant unlabeled data to strengthen standard supervised learning. Traditional

graph-based SSL methods prevail in classical SSL problems for their intuitional

implementation and e�ective performance. However, they encounter troubles

when applying to image classification followed by modern deep learning, since

the di�usion algorithms face the curse of dimensionality. In this study, we propose

a simple and e�cient SSL method, combining a graph-based SSL paradigm with

di�erential privacy. We aim at developing coherent latent feature space of deep

neural networks so that the di�usion algorithm in the latent space can give more

precise predictions for unlabeled data. Our approach achieves state-of-the-art

performance on theCifar10, Cifar100, andMini-imagenet benchmark datasets and

obtains an error rate of 18.56% on Cifar10 using only 1% of all labels. Furthermore,

our approach inherits the benefits of graph-based SSL methods with a simple

training process and can be easily combined with any network architecture.

KEYWORDS

deep semi-supervised learning, label propagation, di�erential privacy, robust learning,
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1. Introduction

Deep neural networks (DNN) have become the first choice for computer vision

applications due to their prominent performance and flexibility. However, the harsh

requirement for precisely annotated data has largely constrained the wide application of

deep learning. It is generally known that the collection and annotation of large-scale data

are extremely costly and time-consuming in some professional industries (e.g., healthcare,

finance, and manufacturing). Therefore, semi-supervised learning (SSL), which utilizes

abundant unlabeled data in deep learning applications, has become an important research

trend in the field of artificial intelligence (Chapelle et al., 2006; Tarvainen and Valpola, 2017;

Iscen et al., 2019).

Various approaches to SSL in terms of image classification have been proposed in recent

years based on some prototypical assumptions. For instance, the manifold assumption,

which states that high dimensional data usually lie on low dimensional manifolds, leads

to some consistency-based SSL methods. Other two well-known assumptions, cluster

assumption, and low-density separation assumption have also inspired some types of

research. To summarize, two main research directions show great promise.
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One direction explores generative model-based approaches.

For instance, VAE (Kingma and Welling, 2013), generative

adversarial network (GAN) (Goodfellow et al., 2014), and

normalizing flows (Kobyzev et al., 2020) can establish a low-

dimensional hidden variable capturing the manifold of the input

data, and then, Bayesian inference can be applied to optimize

the posterior probability of both labeled and unlabeled examples

(Kingma et al., 2014; Makhzani et al., 2015; Rasmus et al., 2015;

Maaløe et al., 2016). However, GAN is known to be extremely

difficult in generating high-resolution images, despite a large

amount of research in recent years (Radford et al., 2015; Gulrajani

et al., 2017; Brock et al., 2018), making these approaches difficult

to scale to large and complex dataset (Yu et al., 2019). Furthermore,

the extensive computation cost in training generativemodelsmakes

these approaches less practical in real-world applications (Brock

et al., 2018).

Another direction tries to exert proper regularizations on the

classifier using unlabeled data. Those regularizations could be

summarized into two categories as follows: one is consistency

regularization, where two similar images or two networks with

related parameters are encouraged to have similar network outputs

(Sajjadi et al., 2016; Tarvainen and Valpola, 2017; Miyato et al.,

2019). Another type is based on the data graph. In traditional

machine learning, manifold assumption-based algorithms usually

establish a graph to describe the manifold structure, then employ

the graph Laplacian to induce smoothness on the data manifold,

such as Harmonic function (HF) (Zhu et al., 2003), Label

Propagation (LP) (Zhou et al., 2003; Gong et al., 2015), and

Manifold Regularization (MR) (Belkin et al., 2006).

Those two types of semi-supervised methods have their

strengths and weakness, respectively. In terms of consistency-based

regularization, those methods only consider the perturbations

around each data point, ignoring the connections between data

points. Therefore, they do not fully utilize the data structure, such

as manifolds or clusters. This artifact could be avoided if the data

structure is taken into consideration using graph-based methods,

which define convex optimization problems and have closed form

of solutions (Zhou et al., 2003; Gong et al., 2015; Tu et al., 2015).

On the contrary, the performance of the graph-based methods

will degrade if the input data graph cannot satisfy the following

conditions (Belkin et al., 2006): capturing the manifold structure

of the input space and representing the similarity between two

data points. Some traditional research aims at improving the graph

quality (Jebara et al., 2009). However, it is extremely difficult to

capture the manifold of high-dimensional image data, causing poor

performance on image recognition tasks (Kamnitsas et al., 2018;

Luo et al., 2018; Li et al., 2020, 2022; Ren et al., 2022).

Motivated by the above observation, we introduce differential

privacy (Dwork and Roth, 2014) and mixup data augmentation

(Zhang et al., 2018) in the graph-based SSL method. For both

labeled and unlabeled data points, we force the predictions of

network changes linearly in the vector from one data point to

another, which forces the middle features to change linearly as

well. We also employ differential privacy, to further boost the

consistency of latent feature space by adding random noise to its

latent representation layers. We observe that such regularization

results in a more compact and coherent latent feature space given

by the network and leads to a high-quality graph that captures the

data manifold more accurately. Compared with the consistency-

based methods (Sajjadi et al., 2016; Tarvainen and Valpola, 2017;

Miyato et al., 2019), the proposed method demonstrate dominant

performance with fewer label and much higher convergence speed,

which means it can achieve the same performance with fewer

computational cost. Compared with previous graph-based SSL

methods, the proposed method tends to form more coherent latent

feature space and achieves higher performance.

To summarize, there are two key contributions of our study

as follows:

• We propose a simple but effective regularization method that

can be applied to a graph-based SSL framework to regularize

the latent space of deep neural network during the training

process so that the graph-based SSL framework can work

better with high-dimensional image datasets.

• We experimentally show that the proposed method achieves

significant performance in improvement over the previous

graph-based SSL method (Iscen et al., 2019) on SSL standard

benchmarks and demonstrates competitive results to other

state-of-the-art SSL methods.

2. Related work

In this section, we roughly categorized the recent advances in

SSL into generative methods and graph-based methods and briefly

introduce these two types of methods.

2.1. Generative SSL methods

Instead of directly estimating posterior probability p(y|x), the
generative methods pay attention to learning the class distributions

P(x|y) or the joint distribution p(x, y) = p(x|y)p(y), to compute

the posterior probability using Bayes’ formula. In this framework,

SSL can be modeled as a missing data problem while the unlabeled

data can be used to optimize the marginal distribution p(x) =
∑

y∈Y p(x|y)p(y). The joint log-likelihood on both labeled data set

DL and unlabeled data set DU is naturally considered an objective

function (Chapelle et al., 2006) as follows:

∑

(xi ,yi)∈DL

logπyip(xi|yi, θ)+
∑

xi∈DU

log

M
∑

y=1
πyp(xi|y, θ), (1)

where πy = p(y|θ) is class prior. Previous studies under

this framework use auto-encoder (Rasmus et al., 2015)

or variational auto-encoder (Kingma and Welling, 2013)

to model p(x, y). Unfortunately, since the neural network

has excessive representational power, optimizing marginal

distribution cannot guarantee to achieve the right joint

distribution, making those approaches perform less well in

large datasets.

To better estimate p(x|y), generative adversarial network

(GAN) (Goodfellow et al., 2014) has been introduced to the

SSL framework. GAN is well-known for high-quality realistic
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image generation, Radford et al. (2015) employed fake examples

from a conditional GAN as additional training data. Salimans

et al. (2016) strengthened the discriminator to classify input data

as well as distinguish fake examples from real data. Besides,

BadGAN (Dai et al., 2017) argued that generating low-quality

examples which lie in low-density areas between different classes

can better guide the classifier position its the decision boundary.

However, those approaches are based on practice and lack

theoretical analysis, showing weak performance compared with

newly emerged approaches.

2.2. Graph-based SSL methods

Graph-based methods operate on a weighted graph G = (V ,E)

with adjacency matrix A, where the vertex set V is composed of

all data samples denoted as D = DL ∪ DU , and the elements

of adjacency matrix Aij are based on similarities between vertices

xi, xj ∈ V . The smoothness assumption states that close data points

should have similar predictions. Label Propagation (LP) iteratively

propagated the class posterior of each node to its neighbors,

faster through a short connection between data nodes, until a

global equilibrium is reached. Zhou et al. (2003) showed that the

same solution is arrived at by enforcing the smoothness term or

equivalently minimizing the energy on the graph as follows:

R(f) = 1

2

∑

i,j

Aij

(

fi − fj
)2 = fT1f (2)

Here, fi is the pseudo label of the i-th data sample, 1 = D − A

is the traditional graph Laplacian where D is a diagonal matrix

with Dii =
∑n

j=1 Aij. If f is replaced with f(X) which is the output

of a parameterized function on all data samples, the R(f) reaches

a graph Laplacian regularizer which forces the function f to be

harmonic. Somemodifications to Equation (2) are made tomitigate

the effect of outliers in the graph (Gong et al., 2015; Tu et al.,

2015). An inevitable drawback of these approaches is that their

performance largely relies on the quality of the input graph.

Our study is inspired by a series of recent methods which utilize

the LP with a dynamically constructed graph in the optimization

process. Acting like EM algorithms, those methods alternate

between the two steps, the first step is to use the embeddings

obtained by the deep neural network to construct the nearest

neighbor graph, and then LP is performed on this graph to infer

pseudo-label for the unlabeled images. After that, the network is

trained using both labeled and pseudo-labeled data. In addition

to the time cost by LP, this method just uses standard back-

propagation methods to train the deep neural network, making it

fast and efficient. Luo et al. (2018) used the graph constructed from

embeddings obtained by the teacher model which is acting better

than the student model. Kamnitsas et al. (2018) utilize LP to infer

clusters in networkmiddle representation, then encourage points in

the same cluster to be closer. Iscen et al. (2019) introduce entropy

as an uncertainty measure of pseudo-labels, then reduce the cost of

uncertain examples. All of those approaches construct the graph

actively in the optimization process to improve the quality of

pseudo-labels.

3. The proposed method

The common challenge of graph-based methods is the need

for a well-behaved graph that captures the geometry manifold

of input data. In the following, we formalize our approach and

emphasize our efforts in improving the quality of the graph.

The key motivation of our method is to form a better network

representation for better graph construction.

3.1. Problem formulation

We assume that the input space is X ⊆ R
N . We have a

collection of l labeled samples XL: = {x1, ..., xl} with xi ∈ X ,

their labels are given by YL = {y1, ...., yl} with yi ∈ C, where

C = {1, ..., c} is the set of discrete labels for c classes. In addition,

u extra samples XU = {xl+1, ..., xl+u} are given without any label

information. The whole set of samples is denoted as D = XL ∪ XU .

The transductive goal in SSL is to find the possible label set Ŷ for

all unlabeled samples, while the inductive goal is to find a classifier

f :X 7→ R
c which can generalize well on unseen samples by

utilizing all samples D and label YL. In this study, we focus on the

inductive settings and use the convolutional neural network (CNN)

as the classifier in our experiments.

3.2. Overview

Given a randomly initialized neural network f parameterized

by θ , we introduce a new optimization process for SSL that can

be summarized as follows. First, we perform pre-training of the

network using only labeled data to warm it up, where we introduce

mixup data argumentation. Then, we start the iterative SSL training

process, perform label propagation to infer pseudo-labels, and

optimize the network with both labeled and pseudo-labeled data.

We point out two critical improvements compared with previous

approaches: mixup regularization with pseudo-labeled data and

deformed graph Laplacian-based label propagation. In addition, we

incorporate the pseudo-label certainty and class-balancing strategy

from the study by Iscen et al. (2019) into our approach. A graphical

view of the proposed approach is shown in Figure 1.

3.3. Supervised mixup pre-training

In the early stage of the training process, the neural network f

is composed of randomly initialized weight parameters. The output

of the neural network is chaotic and has little semantic information

about the input images. In previous studies, the network is pre-

trained using the labeled samples by minimizing supervised cost

only. Standard optimization techniques are employed in this

procedure. The optimization target is the expectation of loss

function ℓ over the labeled data distribution PD as follows:

Rsu(fθ ) = E
(x,y)∼DL

[

ℓ
(

fθ (x), y
)]

, (3)
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FIGURE 1

Overview of the proposed method. The colored points are the t-SNE visualization of the feature vectors extracted from Cifar10 train data by the

same deep neural network in di�erent training stages (we squeeze the 128-D feature vectors into 2-D plane coordinates using t-SNE). Starting from a

randomly initialized network, we first train it with labeled data (l = 1, 000) only and di�erential privacy to form a primitive network representation.

Then, we perform label propagation and train the network on the entire dataset, with both handcraft labels and pseudo-labels. We repeat this

process for T ′ times until convergence.

where DL(x, y) = 1
l

∑l
i=1 δ(x = xi, y = yi) is a point distribution

that is employed to estimate the true data distribution PD when

labeled data set XL and correspondent label YL are given. With

fewer labeled data in the SSL setting, the point distribution is hardly

able to estimate the true data distribution PD, causing the model

overfitting and degeneration. Previous studies take measures to

mitigate this problem, using a larger learning rate and fewer pre-

training epochs (Iscen et al., 2019). Other regularization techniques

such as dropout and weight decay are adopted by Luo et al. (2018)

and Miyato et al. (2019).

In this study, we introduce mixup (Zhang et al., 2018) in the

pre-training procedure. Instead of simple point distribution, mixup

proposes a vicinal distribution to estimate PD, whose generative

process is summarized as follows:

(xi, yi), (xj, yj) ∼ DL,

λ ∼ Beta(α,α),

x := λxi + (1− λ)xj,

y := λyi + (1− λ)yj,

(4)

where α is a hyperparameter α ∈ (0,∞), which controls the

strength of interpolation between data pairs. Notably, DM will

degrade to DL as α → 0. We denote the mixup distribution

as DM(DL,α). By replacing the DL with mixup distribution in

Equation (3), we have as follows:

Rsu(f ) = E
(x,y)∼DM(DL ,αsu)

[

ℓ
(

fθ (x), y
)]

. (5)

In a nutshell, we just randomly sample two data

points each time and perform standard supervised training

using the mixed data point. Notably, the interpolation

between yi and yj is an interpolation between two one-

hot encoded probability vectors. This modification does

not influence the optimization process, which means any

optimizer and network architecture can be applied with

this regularization.

We summarize the benefits of introducing mixup mainly in

two-folds as follows:

(1) Overfitting problem is greatly alleviated. While the output

posterior probability of the classifier is forced to transit

linearly from class to class, the decision boundaries between

classes are pushed into the intermediate area, reducing the

number of undesirable results when predicting outside the

train examples. The experiments will demonstrate the test

error of the pre-trained network is reduced by introducing

mixup regularization.

(2) The internal representation of the classifier is

encouraged to transit linearly as well as the output,

leading to abstract representations in smooth and

coherent feature space, and then more accurate label
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propagation is preformed based on sample distance in

feature space.

3.4. Label propagation via nearest neighbor
graph

Given a classification network f with pre-trained parameters θ ,

we clarify how to infer the possible label for unlabeled examples,

which is employed to guide the SSL optimization process in the

following subsection. First, we construct a graph based on network

internal representations of all examples, and then, we apply label

propagation on the graph to infer pseudo labels.

In most cases, the deep neural network can be seen as

a sequence of non-linear layers or transformations, with each

transformation giving an internal representation of the input.

While the low-level representation captures more details of the

input image, the high-level representation contains more semantic

information about the input image, and the last layer maps the

input feature into class probabilities. In a nutshell, network f can

be decomposed as f = g ◦ h where h :X 7→ R
d is a feature

extractor and g :Rd 7→ R
c is the output layer usually consisting

of a fully-connected layer with softmax. We take h as a low-

dimensional feature extractor and denote the feature vector for the

i-th example as vi := h(xi). We extract all features set of D as

V = {v1, .., vl, vl+1, ..., vn} for similarity computation.

The next is to construct a graph on N data nodes. While

computing the full N × N affinity matrix A may be intractable, we

approximate it by constructing a nearest neighbor graph and only

count the similarity between nodes and their k nearest neighbors.

Thus, we create a graph with a sparse affinity matrix A ∈ R
n×n and

its elements as follows:

aij :=
{

s(vi, vj), if i 6= j ∧ vi ∈ NNk(vj)

0, otherwise
(6)

where NNk(vi) denotes the set of k nearest neighbors of vi inD, and

s is the similarity function. The choice of s is quite flexible. Since

we need to approximate the semantic similarity of two instances,

we adopt the Gaussian similarity function s(vi, vj) = exp
(

‖vi −
vj‖2/σ 2

)

with hyperparameter σ . Notably, approximate nearest

neighbor (ANN) algorithms can be applied to accelerate the graph

construction for large N.

Hereafter, let W := A + AT be the symmetric affinity matrix

and W = D−1/2WD−1/2 be its normalized counterpart, D is the

diagonal degree matrix, in which the element is defined by Dii :=
∑n

j=1 Wij. Further more, the volume of the graph is formulated as

v =
∑n

i=1 dii.
After defining those parameters, we are going to describe our

LP algorithm by defining input and output as two n × c matrix Y ,

Z. Y is the matrix of the given label with rows {y1, ..., yl, yl+1, ...yn},
where the first l rows are corresponding one-hot encoded labels

of each labeled example, and the rest are all zero vectors. Z is the

desired class posterior probabilities which are solved byminimizing

the following cost function:

min
Z

Q(Z) =1

2

[

β

n
∑

i,j=1
wij‖

zi√
dii
−

zj
√

djj
‖2

+ γ

n
∑

i=1
(1− dii/v)‖zi‖2 +

n
∑

i=1
‖zi − yi‖2

]

=1

2

[

βtr(ZT1Z)+ γ tr(ZT(I − D/v)Z)

+ ‖Z − Y‖2F
]

.

(7)

Here, zi is the i-th row of matrix Z, 1 = I − W is the

normalized graph Laplacian and ‖·‖F is the Frobenius norm. The

first term encourages smoothness where similar examples tend to

induce the same predictions, and the last term attempts to maintain

predictions for labeled examples (Zhou et al., 2003). In addition, the

outlier which is indicated by a lower degree dii is forced to have a

weak label in the second term. Thus, the degree of smoothness and

weakness of outliers is controlled by weight parameters β and γ

individually. To find the optimal solution of Z, we set the derivative

of Equation (7) with respect to Z to 0 and obtain as follows:

β1Z∗ + γ (I − D/v)Z∗ + Z∗ − Y = 0. (8)

Thus, the optimal Z is defined as follows:

Z∗ =
(

I + β1+ γ (I − D/v)
)−1

Y . (9)

Let k1 = β
1+β+γ

, k2 = γ

(1+β+γ )v
and ignore the constant part

in Equation (9). We have as follows:

Z∗ =
(

I − k1W − k2D
)−1

Y . (10)

Directly computing Z∗ by Equation (10) is often intractable for

large n because the inverse matrix
(

I−k1W−k2D
)−1

is not sparse,

Instead, we use the conjugate gradient (CG) method to solve the

linear system as follows:

(

I − k1W − k2D
)−1

Z = Y . (11)

This method is applicable because
(

I − k1W − k2D
)−1

is a

positive-definite matrix. The CGmethod has been adopted inmany

LP applications (Zhou et al., 2003; Gong et al., 2015; Tu et al.,

2015; Iscen et al., 2019). Finally, the pseudo-label for an unlabeled

example is given as follows:

ŷi = argmax
j

zij. (12)

Equation (11) is a hard assignment by evaluating the most

confident class of each example; however, the contrast between

classes can reflect the certainty of each example. Following Iscen

et al. (2019), we associate a measure of confidence to each unlabeled

example of calculating the entropy of Z:

wi := 1− H(ẑi)

log (c)
, (13)

where ẑi is the normalized counterpart of zi, in other words, ẑij =
zij/

∑

k zik, function H :R
c 7→ R is the entropy function.
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3.5. Mixup regularization with di�erential
privacy

Given the pseudo-label and confidencemeasure of all unlabeled

data, we associate them with each example and denote the point

distribution of unlabeled data as DU (x, y,w) = 1
u

∑l+u
i=l δ(x =

xi, y = ŷi,w = wi). To take the confidence coefficient into account,

we propose the mixup distribution of unlabeled data asDMU whose

generative process is summarized as follows:

(xi, ŷi,wi), (xj, ŷj,wj) ∼ DU ,

λ ∼ Beta(α,α),

x := λxi + (1− λ)xj,

ŷ := λŷi + (1− λ)ŷj,

w := λwi + (1− λ)wj,

(14)

In this generative process, the input data are interpolated

randomly between two examples, while the pseudo-label and

confidence score are interpolated with the same proportion as well.

The abundant unlabeled data are used in the training process

by minimizing the following cost along with labeled data.

Runsu(fθ ) = E
(x,ŷ,w)∼DMU (DU ,αunsu)

[

wℓ
(

fθ (x), ŷ
)]

. (15)

While the interpolation of labeled data can help form better

network representation, in the unsupervised part, introducing

interpolation of unlabeled data can lead to two benefits as follows:

(1) The decision boundaries are pushed far away from unlabeled

data, which are a desired property of low-density separation

assumption. The model is forced to make neutral predictions in

the middle zone of different samples or namely different clusters.

(2) The clusters in hidden space are encouraged to have only

one class of pseudo label, respectively. Considering the clusters in

hidden space, if data points in one cluster are pseudo-labeled by two

different classes, the mixup loss term will tear this cluster apart. The

middle of this cluster is both encouraged to have neutral predictions

as the interpolation of edge points or encouraged to have clear

predictions as the middle points of the cluster.

Moreover, we employ differential privacy by directly adding

noise to the latent representation of the deep neural network in the

training progress:

f ∗θ (x) = g(h(x)+ ǫ), (16)

where ǫ is randomly sampled from N (0, σ 2). This procedure is

inspired by the Ladder network (Rasmus et al., 2015). By adding

noise to its latent representation, the neural network will have more

resistance to the dataset bias and form amore coherent latent space.

Finally, we finetune the network by minimizing the following

objective function using both labeled and unlabeled data:

Rall(fθ ,DL,DU ) = Rsu(fθ ,DL)+ λRunsu(f
∗
θ ,DU ), (17)

where λ is a coefficient that controls the effects of the

unsupervised term.

3.6. Iterative training

We summarize our approach with the above definitions. Given

a convolution neural network f with randomly initialized weights

θ , we begin by training the network with mixup regularization for

T epochs using the supervised loss term (Equation 5), and then,

we start the following iterative process. First, we extract feature

vector set V on the entire training set X and construct a nearest

neighbor graph by computing the adjacency matrix via Equation

(6). Second, we perform label propagation by solving the linear

system (Equation 11) and assign pseudo-label and confidence score

by Equations (12) and (13). Finally, we train the network for one

epoch by minimizing the cost (Equation 17) on both labeled and

unlabeled data set. This iterative process is repeated for T′ epochs.
The whole training process is summarized in Algorithm 1,

where procedure Optimize() refers to the mini-batch optimization

of the given loss term for one epoch. In our experiment, we

randomly sample a mini-batch of data and perform mixup

interpolation within this mini-batch, and this strategy is used

to reduce I/O consumption and report no harm to the

result in the study by Zhang et al. (2018). The procedure

NearestNeighborGraph() refers to the nearest neighbor graph

construction based on the feature vector set V and the computing

of edge value in the graph.

4. Experiments

In this section, we conduct our experiments with several

standard image datasets commonly used in image classification.

We first describe the datasets and our implementation details, and

then, we compare the proposed method with the state-of-the-art

methods. Finally, we conduct an ablation study to give a deep

investigation into our method.

θ ← initialize randomly;

for epoch ∈ [1, ...,T] do

θ ← Optimize(RS(XL,YL, θ));

end for

for epoch ∈ [1, ...,T′] do

for i ∈ 1, ..., n do

vi ← hθ (xi);

end for

A← NearestNeighborGraph(V) ;

W ← A+ AT;

1← I − D−1/2WD−1/2;

Z← solve with CG;

for i ∈ 1, ..., n do

ŷi ← argmaxj zij;

wi ← 1−H(ẑi)/log(c);

end for

θ ← Optimize(Rall(XL,YL,XU , ŶU , θ));

end for

Algorithm 1. Mini-batch training with LP for SSL.
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4.1. Datasets

We conduct experiments on three datasets, such as Cifar10,

Cifar100, and Mini-imagenet. Cifar10 is widely used in related

study, and Mini-imagenet is adopted by Iscen et al. (2019), to

evaluate the proposed method on a large-scale dataset. Those

datasets are commonly used in SSL setting by randomly taking a

certain amount of labels and all image data to train the network and

evaluate on the test set for fair a comparison with fully supervised

methods, while the use of other labels in the training process

is forbidden.

4.1.1. Cifar10, Cifar100
Cifar10 and Cifar100 datasets (Krizhevsky, 2009) are adopted in

the evaluation process of previous SSL methods. The two datasets

consist of small images of size 32 × 32. The training set of Cifar10

contains 50 k images, and its test set contains 10 k images, collected

from 10 classes. Similar to Cifar10, Cifar100 has 50 and 10 k images

for training and test, respectively, instead, Cifar100 collects images

from 100 classes. For Cifar10, we randomly choose 50, 100, 200, and

400 images from each class, as the labeled images in our evaluation

corresponding to 500, 1,000, 2,000, and 4,000 labels in total. For

each class, we also choose 500 images as the validation images and

employ the best model in validation to get the final performance

on the test dataset. Following the common practice, we repeat the

selection process 10 times, and for each time, we run the algorithm

once on the dataset split and report mean error and standard

deviation of test accuracy.

4.1.2. Mini-imagenet
Mini-imagenet was proposed by Gidaris and Komodakis (2018)

for a few-shot learning evaluation, which is a simplified version of

the Imagenet dataset. We adopt the same setting as the study by

Iscen et al. (2019). Mini-imagenet consists of 100 classes with 600

images in each class, we randomly choose 500 images per class for

the training set and use the remaining 100 images for testing.

4.2. Implementation details

4.2.1. Networks
We adopt a “13-layer” network for experiments on Cifar10 and

Cifar100, which is a baseline used in all experiments in Table 1,

and Resnet-18 is employed for experiments on Mini-imagenet.

All of those networks consist of a feature extractor hθ , followed

by a linear classification layer. The l2-normalization after the

feature extractor in the study by Iscen et al. (2019) is canceled,

which reported slightly harmful performance since we employ the

Mahalanobis distance between features instead of the dot product

as the similarity function.

4.2.2. Hyper-parameters
The following hyper-parameters are adopted in all

experiments. First, we train the model with labeled data

for 30 epochs, then we finetune the model with all data for

270 epochs for the experiments on Cifar10 and Cifar100

and 370 epochs for the experiments on Mini-imagenet.

The training is performed using the SGD optimizer in all

experiments. The learning rate is decayed from 0.1 to 0 with

cosine annealing (Loshchilov and Hutter, 2016), and the

momentum and weight decay parameters are set to 0.9 and

0.0001, respectively.

For the three hyperparameters, k, k1, k2 introduced in Section

3.5, and we set k = 10 in Equation (6) for fast graph construction

and set k1 = 0.99, k2 = 0.0005 in Equation (11), where we

implement the CG algorithm using the python sci-kit package.

Other two hyperparameter mixup coefficients αsu and αunsu are set

to 1.0 in all our experiments. We set the value of λ in Equation (17)

to 10 for all experiments.

TABLE 1 Comparison with state-of-the-art methods on Cifar10 using 13-layer ConvNet network architecture.

Nb. labels 500 labels 1,000 labels 2,000 labels 4,000 labels

Nb. images 50,000 images 50,000 images 50,000 images 50,000 images

Supervised w/o. mixup 46.22± 2.93 33.09± 1.13 24.32± 0.34 17.75± 0.15

Supervised w. mixup 44.65± 1.01 34.84± 1.37 24.86± 0.42 16.89± 0.16

BadGAN† (Dai et al., 2017) – – – 14.41± 0.30

VAT† (Miyato et al., 2019) – – – 11.36± 0.34

MT† (Tarvainen and Valpola, 2017) – 27.36± 1.30 15.73± 0.31 12.31± 0.28

SWA† (Athiwaratkun et al., 2019) – 15.58± 0.12 11.02± 0.23 9.05± 0.21

LP† (Iscen et al., 2019) 32.40± 1.80 22.02± 0.88 15.66± 0.35 12.69± 0.29

LP+MT† (Iscen et al., 2019) 24.02± 2.44 16.93± 0.70 13.22± 0.29 10.61± 0.28

ICT† (Verma et al., 2019) – 15.48± 0.78 9.26 ± 0.09 7.29 ± 0.09

Ours 18.56 ± 1.58 14.74 ± 0.55 10.14± 0.30 8.58± 0.27

The error rate is reported over 10 runs. †Denotes scores reported in previous studies. Bold values means the best result under the described experimental settings.
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TABLE 2 Comparison with the state-of-the-art methods on Cifar100

using 13-layer ConvNet network architecture.

Nb. labels 4,000 labels 10,000 labels

Nb. images 50,000 images 50,000 images

Supervised w/o. mixup 51.82± 0.51 39.81± 0.53

Supervised w. mixup 52.43± 0.43 38.53± 0.29

LP† (Iscen et al., 2019) 46.20± 0.76 38.43± 1.88

LP+MT† (Iscen et al., 2019) 43.73± 0.20 35.92± 0.47

Ours 38.87 ± 0.43 32.15 ± 0.25

The error rate is reported over 10 runs. †Denotes scores reported in previous studies. Bold

values means the best result under the described experimental settings.

TABLE 3 Comparison with state-of-the-art methods on Mini-imagenet

using the resnet-18 network.

Dataset 4,000 labels 10,000 labels

Nb. labeled images 50,000 images 50,000 images

Supervised 63.57± 0.59 48.25± 0.33

LP+MT† 70.29± 0.81 57.58± 1.47

Ours 48.86 ± 0.11 40.08 ± 0.93

Fully supervised with all labels 31.97± 1.46 31.97± 1.46

The error rate is reported over three runs. †Denotes scores reported in previous studies. Bold

values means the best result under the described experimental settings.

4.3. Comparison with state-of-the-art
methods

In this section, we present a comparison with the state-of-

the-art methods. We choose representative methods from three

categories, such as generative SSL methods (BadGAN; Dai et al.,

2017), consistency-based SSL methods [VAT; (Miyato et al., 2019),

MT (Tarvainen and Valpola, 2017), and ICT (Verma et al.,

2019)], and graph-based SSL methods (LP; Iscen et al., 2019). The

performance of various methods on three datasets is represented in

Tables 1–3, respectively.

The proposed method outperforms other methods with the

same network architecture. On the Cifar10 dataset, our method

achieves a significant error rate reduction (∼ 20%) compared

with our precedent method (Iscen et al., 2019), showing that our

method exactly amends its weakness and successfully mitigates

the performance gap between the graph-based SSL framework

and other SSL methods. Compared with the best consistency-

based method (Verma et al., 2019) to our knowledge, our method

performs slightly weaker with 4,000 labels in total but outperforms

it with fewer labeled images. This shows the advantage of traditional

graph-based SSL learning that it canmakemore effective utilization

of available labels, which are still applicable when it comes to

modern deep learning architecture. We also try to use even fewer

labels to evaluate the robustness of our method. Holding 500 labels

(∼ 1% of all), our method still achieves 18.56% error rate on the

Cifar10 dataset.

FIGURE 2

Pseudo-label accuracy and weighted pseudo-label accuracy with

di�erent mixup conditions on Mini-imagenet (10,000 labels are

given in the training process, and accuracy is calculated according

to ground truth). α = 0.0 means no mixup operation and α = 1.0

means mixup coe�cient, λ is drawn from a uniform distribution. The

results show that the applied regularization in both two losses

greatly improves the pseudo-label accuracy during the iterative

training process.

4.4. Ablation studies

We conduct ablation studies to investigate the impact of

mixup regularization on the pseudo-labels. To access the quality

of pseudo-labels, accuracy is an important indicator. Despite

this, we utilize the confidence score to calculate the weighted

accuracy of pseudo-labels: Accweighted = 1
u

∑u
i=1 wiδ(ŷi = yi).

During the iterative optimization process, if the models are not

capable of correcting wrong pseudo-labels, the confidence of those

mistakes will increase and eventually get close to 1, leading to

Accweighted ≈ Acc. The weighted accuracy indicator can reflect if

the model really learns something useful from unlabeled images

or if it just remembers the pseudo-labels. Figure 2 shows the

progress of accuracy and the weighted accuracy of pseudo-labels

throughout the training process. The experiments are conducted

on Mini-imagenet with 100 labels per class. The results show

that if no mixup regularization is applied or only applying mixup

regularization on labeled data, the accuracy of pseudo-labels only

increases in the beginning and tends to be stable in the following

epochs, while the weighted accuracy curve keeps declining until

getting close to the accuracy curve. These results imply that

without regularization, the deep neural network just remembers

the pseudo-labels due to its excessive representational ability. In

contrast, our regularization method successfully alleviates such

undesired phenomenon, and the accuracy of pseudo-labels is keep

increasing during the training process.

In Table 4, we compare the performance of Mini-imagenet.

The results show that our method greatly reduces the error rate

compared with the baseline method even on a high-resolution

image dataset. To investigate the effectiveness of differential privacy

in the proposed method, we vary the noise scale from 0 to 1.0

and report the performance on different datasets in Table 5. The
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TABLE 4 Impact of mixup regularization on pair of labeled data points or

unlabeled data points.

Nb. labels 10,000 labels

Nb. images 50,000 images

LP+MT† 57.35

LP+MT 48.07

LP+MT+Su.mixup 44.39

LP+MT+Su.mixup+Unsu.mixup 39.43

The error rate is reported on Mini-imagenet with 10,000 labels.

TABLE 5 Impact of varying the noise scale σ .

Noise scale Cifar10 Cifar100 Mini-imagenet

0 12.31 37.98 43.72

0.01 10.24 35.32 41.30

0.1 8.58 32.15 39.65

1 8.69 31.90 39.61

results clearly show that the added noise reduces the error rate of

the final model.

5. Conclusion and future work

In this study, we present a simple but effective regularization

method in the graph-based SSL framework. Based on the previously

proposed method that extends the traditional graph-based SSL

framework for modern deep learning of image recognition, our

study further strengthens this research line by introducing two

critical measures as follows: imposing regularization on the latent

space of the deep neural network and preventing the outlier

data points from hurting the label propagation process. We

show that our approach is effective and practical in utilizing

unlabeled images via evaluation on both simple datasets of Cifar10

and Cifar100 and complex datasets with high resolution (Mini-

imagenet). Furthermore, our method is computationally efficient

and easy to implement the experiment on Mini-imagenet costs

approximately 5h using a single NVIDIA 1080TI GPU. Our

study also demonstrates differential privacy, which is an effective

technique to constrain the excessive representation power of deep

neural networks. Future study includes designingmore delicate and

effective regularization techniques in the SSL framework to further

mitigate the performance gap between semi-supervised learning

and supervised learning with all labels.
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