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Multi-omics studies have enabled us to understand themechanistic drivers behind
complex disease states and progressions, thereby providing novel and actionable
biological insights into health status. However, integrating data from multiple
modalities is challenging due to high dimensionality and diverse nature of data,
and noise associated with each platform. Sparsity in data, non-overlapping
features and technical batch effects make the task of learning more
complicated. Conventional machine learning (ML) tools are not quite effective
against such data integration hazards due to their simplistic nature with less
capacity. In addition, existing methods for single cell multi-omics integration
are computationally expensive. Therefore, in this work, we have introduced a
novel Unsupervised neural network for single cell Multi-omics INTegration
(UMINT). UMINT serves as a promising model for integrating variable number
of single cell omics layers with high dimensions. It has a light-weight architecture
with substantially reduced number of parameters. The proposed model is capable
of learning a latent low-dimensional embedding that can extract useful features
from the data facilitating further downstream analyses. UMINT has been applied to
integrate healthy and disease CITE-seq (paired RNA and surface proteins) datasets
including a rare disease Mucosa-Associated Lymphoid Tissue (MALT) tumor. It has
been benchmarked against existing state-of-the-art methods for single cell multi-
omics integration. Furthermore, UMINT is capable of integrating paired single cell
gene expression and ATAC-seq (Transposase-Accessible Chromatin) assays
as well.
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1 Introduction

Recent advancements in single cell technologies have provided unprecedented
opportunities in analysis of omics data. This allows researchers to probe biological
functions at the cellular level while studying embryonic development, immune system or
cancer (Griffiths et al., 2018; Papalexi and Satija, 2018; Wills and Mead, 2015). Existing
technologies include DROP-seq (Macosko et al., 2015), SMART-seq2 Picelli et al. (2013) and
10x Genomics, which allow measuring mRNA expressions at single cell resolution (scRNA-
seq). Most recently, technologies have further scaled up to produce data assays frommultiple
modalities. This has provided several views of the same cell of interest, thereby refining our
definitions of the cellular identity. Multi-omics studies provide better understanding of the
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underlying biological mechanisms active during disease growth and
progression, which were otherwise hidden due to the inclusion of a
single omics. They also help us understand the effect of one omics
layer on the other (Seal et al., 2020). A few such methods include
CITE-seq (Stoeckius et al., 2017) and REAP-seq Peterson et al.
(2017) which enable paired measurement of RNA and cell surface
proteins. ATAC-seq (Buenrostro et al., 2015) measures chromatin
accessibility while other methods like, SNARE-seq (Chen et al.,
2019), sci-CAR (Cao et al., 2018) and SHARE-seq Clyde (2021)
measure paired gene expression and chromatin accessibility.
ScNMT (Clark et al., 2018), on the other hand, integrates single
cell chromatin accessibility, DNA methylation and transcriptomics
data. However, integration of various modalities of data does not
come without its challenges (Lähnemann et al., 2020). High data
dimension, sensitivity associated with each platform, zero-inflation
due to dropouts (Jiang et al., 2022), and technical batch effects
(Luecken et al., 2022) account for the stochasticity and noise in the
data. An appropriate organization and analysis of these multi-modal
datasets involve clever way of their integration and demand efficient
computing paradigm.

At present, several methods exist that can perform the task of
integration of single cell omics modalities. Seuratv3 (Stuart et al.,
2019) can integrate various single cell omics datasets including
RNA-seq, protein expression, chromatin and spatial data, and
transfer information between them. Seuratv4 (Hao et al., 2021)
provides multi-modal single cell analysis using “weighted nearest
neighbor” method. MOFA+ (Argelaguet et al., 2020), based on
Bayesian Group Factor Analysis, is another method that
generates a low-dimensional representation of the data by
integrating two or more omics among gene expression, DNA
methylation and chromatin data. In recent years, several neural
network-based methods have been developed for the task of single
cell multi-omics integration. One such method, GLUE (Cao and
Gao, 2022), integrates unpaired samples from single cell multi-omics
data and also predicts regulatory interactions. Other methods, like
scJoint (Lin et al., 2022) and scMVP (Li et al., 2022), can integrate
scRNA-seq and scATAC-seq data. The former is a semi-supervised
framework which allows label transfer and joint visualization, while
the latter extracts a latent representation from the integrated data
using a modified variational autoencoder model. TotalVI (Gayoso
et al., 2021), on the other hand, uses an encoder function to learn a
joint representation of the data and Bayesian inference to build a
latent embedding from single cell RNA and protein expressions.
Multigrate (Lotfollahi et al., 2022) develops an alternative pipeline
for integrating CITE-seq and single cell ATAC-RNA data for both
paired and unpaired samples. It has been used to map multimodal
queries to reference atlases and impute missing values. Other
standard omics integration methods include UINMF (Kriebel and
Welch, 2022), MUON (Bredikhin et al., 2022), scMOC (Eltager
et al., 2021) and SIMBA (Chen et al., 2021). A comprehensive review
of major single cell multi-omics integrationmethods can be found in
(Stanojevic et al., 2022).

With single cell multi-omics analysis, we can now comprehend
the mechanisms underlying complex disease states and progressions
at a cellular resolution. It has provided us multiple views of the same
patient and cognizance into the individual’s health status. Some
diseases, though being rare (often referred to as a rare disease (RD)),
cumulatively affect quite a substantial percentage of patients.

Overall, there are more than 7,000 variants of RDs. RDs affect
patients’ and their families’ quality of life, and have significant
societal impact. Due to the rarity of each RD, it is extremely
difficult to properly diagnose and treat these individuals, as well
as engage them into research to upgrade therapies. With the
advancements in omics technologies, molecular understanding of
RDs has improved over time leading to their rapid diagnosis. To
combine multi-omics data from various technologies, Artificial
Intelligence (AI)-based integration techniques are, nevertheless,
becoming more and more necessary. Deep learning (DL)
methodologies to integrate and query data from several
heterogeneous sources may also be utilised to dramatically
accelerate the discovery of efficient RD therapies (Bottini et al.,
2021). A detailed review (Lee et al., 2022) exploring 332 articles on
the application of DL on RDs indicate the rising demand for the use
of DL for advancements in diagnosis and therapeutics of RDs.

There are, however, challenges to be addressed while using DL
for multi-omics analysis for health and disease. Although different
omics measurements are recorded against the same set of cells, they
encode different features related to the underlying transcriptional
states and activities. Existing methods to handle these datasets are
not always capable of extracting features relevant to a biologically
significant problem, including cell-type classification/clustering,
biomarker identification, disease prediction and drug discovery.
Furthermore, sparsity and noise in the data along with
differences in platforms producing such high-dimensional
datasets and the presence of batch effects add to the complexity
of analysis (Lance et al., 2022). An inherent feature of multi-omics
data in concern is its complex, non-linear, layered structure. The
architecture of a deep neural network also resembles such layered
non-linearity. The output from each layer is multiplied by its weight
vector to compute the weighted sum, and a non-linear function is
then applied over the weighted sum for each node in the layer. The
non-linear output is then passed on to the next layer. Thus, deep
learning models facilitate learning complex features in an
unsupervised manner. However, existing neural network-based
methods for single cell multi-omics integration are
computationally expensive since they involve substantial amount
of parameter training. Further, even though pre-processing of single
cell data involves steps that may include scaling/normalization using
a specific data distribution, methods for integration of such pre-
processed data should be free from making assumptions about data
distribution, which is not the case with most of the existing
integration models.

All these problems discussed above have encouraged us to
develop a robust integration method for single cell multi-omics
integration that can be applied to health and disease analysis. Hence,
in this work, we have introduced a novel Unsupervised neural
network for single cell Multi-omics INTegration (UMINT).
UMINT is competent enough to integrate different single cell
omics layers of high dimensions with ease. It produces a latent
low-dimensional embedding that can extract relevant features from
the data, which facilitate further analyses. It can also reconstruct the
data with high accuracy. Further, UMINT does not make
assumptions about the distribution of data, and can integrate a
variable number of omics modalities. In addition, UMINT owns a
light-weight architecture and is thus computationally far less
expensive than some of the existing unsupervised neural network
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based methods (like those based on autoencoder networks), used for
single cell multi-omics integration. The performance of UMINT has
been demonstrated on multiple publicly available healthy and

disease datasets. These comprise four CITE-seq datasets, one of
which contains cells from MALT tumor, a rare variant of malignant
lymphoma. We have benchmarked the results against several

FIGURE 1
A graphical abstract showing the overall workflow of the methods used for evaluation and benchmarking of the proposed method for single cell
multi-omics integration, called UMINT. Panel (A) shows the primary experiments conducted in this work, as described in Section 3.1 and Section 3.2. Each
modalities in cbmc8k, bmcite30k and MALT10k have first been preprocessed using Seuratv4. The preprocessed datasets have been fed as input to
UMINT, Autoencoder-basedmethods (AE, SAE and DAE), Seuratv4, MOFA+ and TotalVI. Seuratv4 and TotalVI are capable of producing a latent low-
dimensional embedding and subsequently find cell clusters. The embedding produced by UMINT, AE-based methods and MOFA + have been subjected
to k-means and hierarchical clustering. The clustering performance of all the methods have then been compared. Panel (B) shows the experiments
conducted for kotliarov50k, where preprocessed data from each modality without batch integration (Exp. 1) and with batch-integration (Exp. 2) done
using Seuratv4 SCTransform () have been separately fed as input to UMINT, and the clustering performance on the embeddings generated by UMINT in
both these cases have been compared, as explained in Section 3.3. Panel (C) depicts the experiments carried out on pbmc10k, where the two modalities
(RNA and ATAC) have been preprocessed using MUON and the integrated embedding produced by UMINT has been assessed for its clustering
performance, as explained in Section 3.4.
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existing state-of-the-art algorithms used for single cell multi-omics
integration, which fall under different categories. In-silico
experimental results compare favourably for UMINT against
these state-of-the-art methods. Additionally, the performance of
UMINT has been validated through integration of an auxiliary
multimodal single cell paired gene expression and ATAC-seq
(chromatin accessibility) data. Finally, as a further extension to
this work, UMINT has been used to integrate bulk multi-omics data
with more than two omics layers, which it has been able to execute
with ease. Thus, UMINT’s ability to integrate widely heterogenous
omics data (CITE-seq, paired RNA-seq and ATAC-seq) with
varying number of omics layers boosts its utility as a powerful
integration model and makes it completely fit in with the status quo.

The remaining part of this article has been organized as follows.
Section 2 explains the methodology behind the proposed single cell
multi-omics integration technique, called UMINT. Section 3
describes in silico experimental results obtained on different
datasets used in this work and provides a detailed comparison
against other existing methods for single cell multi-omics
integration. In Section 4, the strengths and limitations of the
proposed method are discussed along with concluding remarks.

2 Methodology

This section describes the datasets used in the experiments, the
methodology used for data pre-processing and the proposed neural
network model, called UMINT, for single cell multi-omics
integration. Figure 1 shows a graphical abstract illustrating the
overall workflow of the methods used for single cell multi-omics
integration, and the procedures conducted for preprocessing,
embedding, validation and benchmarking performed in this work.

2.1 Data acquisition and pre-processing

Initially, four publicly available CITE-seq datasets, viz., cbmc8k
(Stoeckius et al., 2017),MALT10k (Li et al., 2021), bmcite30k (Stuart
et al., 2019) and kotliarov50k (Kotliarov et al., 2020), have been used
in this work.MALT10k dataset consists of cells from aMALT tumor,
a rare kind of malignant lymphoma (Oh et al., 2006). The datasets
have been downloaded as count matrices and pre-processed via
Seuratv4 (Hao et al., 2021). For scRNA-seq part in these datasets, we
have normalized them by library size to sum up to 10,000, applied a
logarithmic transformation, extracted highly variable genes, and
finally scaled them linearly (with default parameters). The protein
expressions/antibody-derived tag (ADT) datasets have been
normalized using the centered log-ratio transformation (Stoeckius
et al., 2017). Three proteins, viz., CCR5, CCR7 and CD10, have been
removed from cbmc8k dataset due to poor abundance. The first
three datasets, viz., cbmc8k, MALT10k and bmcite30k, have been
used to evaluate the performance of UMINT and compare the
results against other state-of-the-art algorithms. The fourth
dataset, viz., kotliarov50k, contains filtered cells with highly
variable genes only. It has been preprocessed via Seuratv4 and
used to assess other performance criteria of the proposed
methodology. Another auxilliary single cell multimodal dataset,
downloaded from 10x Genomics, has been used at a later stage

of the work. It contains paired ATAC and gene expression data from
human PBMCs with granulocytes removed through cell sorting
(processed with ARC 1.0.0 pipeline). It has been preprocessed via
MUON (Bredikhin et al., 2022), and used to evaluate the
performance of UMINT on paired RNA-seq and ATAC-seq data.
The summary of the single cell multi-omics datasets used in this
work have been listed in Table 1.

2.2 Unsupervised neural network for single
cell multi-omics INTegration (UMINT)

In this work, we have developed a deep Unsupervised neural
network for single cell Multi-omics INTegration (UMINT). UMINT
is a non-recurrent feed-forward neural network that is efficient
enough to integrate variable number of omics layers and extract a
latent embedding at a reduced dimension. The network structure of
UMINT represents a novel neural network architecture as shown in
Figure 2.

Let X1, X2, . . ., Xm be m datasets corresponding to m different
omics modalities having n samples (cells) each with d1, d2, . . ., dm
features (RNAs in case of gene expression data, ADTs in case of
protein expression data or Peaks in case of transposase-accessible
chromatin data) respectively. The UMINT architecture consists of
two sub-architectures - an encoder and a decoder. The encoder
accepts data from multi-omics datasets presented to the Input layer,
transports them through one or more Modality encoding layer(s)
and integrates them in the final layer, known as the Bottleneck layer.
The decoder accepts the embedded output from the Bottleneck layer,
transports them through one or more Modality decoding layers and
finally tries to reconstruct the original data at the Reconstruction
layer. In this work, we have used only one layer each for modality
encoding and decoding. However, UMINT may contain multiple
such layers based on the requirement. In order to improve
generalization capability and reduce dimension of the latent
embedding, the number of neurons at the Bottleneck layer has
been kept smaller than the number of neurons in the Input layer.

2.2.1 Forward propagation
The Input layer of UMINT consists ofm different modules, each

of which accepts input from a data modality. The number of neurons
in each of the modules in the Input layer is equal to the dimensions
of the individual data modalities d1, d2, . . ., dm respectively. In this
layer, UMINT tries to find a suitable projection for each of the data
modalities that may be good enough to get integrated in subsequent
layers. Each module in the first Modality encoding layer shares a
dense connection with the corresponding modules of the Input
layer. The first Modality encoding layer containing m modules thus
accepts data frommmodules in the Input layer as input, and obtains
m different projections. Let aji and hji be the input to and the output
from the ithmodule in the jth layer respectively. Then, for the Input
and Modality encoding layers, we have

a1i � xi h1i � a1i
a2i � W1ih1i + b1i h2i � ReLU a2i( ) (1)

where xi is a sample in ith modality, and ReLU(y) = max(0, y). The
termW1i denotes the weights between ithmodule of the Input layer
and ith module of the first Modality encoding layer, and b1i denotes
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the bias terms of the nodes in ith Modality encoding layer. Finally,
the outputs from theModality encoding layer(s) are projected onto a
lower dimensional space in the Bottleneck layer. The final Modality
encoding layer and the Bottleneck layer are fully connected. If W2i

represents the weights between the ith module of the final Modality
encoding layer and the Bottleneck layer, then we have

a31 � ∑m
i�1

W2ih2i( ) + b21 h31 � ReLU a31( ) (2)

where b21 denotes the bias terms of the nodes in Bottleneck layer.
This concludes the process of encoding. The overall function of the
encoder network can thus be represented as

TABLE 1 Summary of datasets used for evaluation of UMINT.

Dataset Description #Cells #RNAs #ADTs/
#Peaks

Batches
present

Healthy/
Disease

Source

cbmc8k (CITE-seq) scRNAseq and antibody sequencing of CBMCs 8,617 20,501 13 No Healthy Stoeckius et al.
(2017)

MALT10k (CITE-seq) Cells from a dissociated Extranodal Marginal
Zone B-Cell Tumour (MALT) stained with

TotalSeq-B antibodies

8,412 33,538 17 No Rare disease Li et al. (2021)

bmcite30k (CITE-seq) scRNA-seq profiles measured alongside a panel
of antibodies from bone marrow

30,672 17,009 25 Yes Healthy Stuart et al. (2019)

kotliarov50k
(CITE-seq)

CITE-seq profiling of 82 surface proteins and
transcriptomes of 53,201 single cells from healthy
high and low influenza-vaccination responders

58,654 32,738 87 Yes Healthy Kotliarov et al.
(2020), Lotfollahi

et al. (2022)

pbmc10k (paired
RNA-seq and
ATAC-seq)

Single cell multiome ATAC and gene expression
data from cryopreserved human peripheral blood
mononuclear cells (PBMCs) of a healthy female

donor

11,909 36,601 108,377 No Healthy Bredikhin et al.
(2022)

FIGURE 2
Architecture of UMINT showing propagation of input data through the network. Eq. 1 shows how the Modality encoding layer encodes each
modality fed as input to UMINT. At the Bottleneck layer, integration of thesemodalities is performed using Eq. 2. The encoding process that combines the
above mentioned steps is represented in Eq. 3. Eq. 4 shows how the Modality decoding layer tries to decode individual modalities and produce
reconstructions. The decoding process is represented in Eq. 5. Once a reconstruction is produced, the loss is calculated using Eq. 6. The error is then
propagated backwards through the network and the trainable parameters are updated accordingly.
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h31 � UEncoder x1, x2, . . . , xm( ) (3)
Reconstruction of the original data is done by the decoder

network in exactly the opposite manner to that of encoding.
The integrated embedding coming out of the Bottleneck layer is
projected onto the Modality decoding layer(s) which consists
of the same number of modules as that in the Modality
encoding layer(s). The number of neurons in each module
of the Modality decoding layer is identical to that used in the
modules in the Modality encoding layer. The last layer of the
decoder is the Reconstruction layer which tries to reconstruct
the original data from the respective modules in the final
Modality decoding layer. The process of decoding can be
expressed as

a4i � W3ih31 + b3i h4i � ReLU a4i( )
a5i � W4ih4i + b4i h5i � a5i � ~xi

(4)

whereWji and bji represent weights and biases for the ithmodule in
the jth layer respectively. Thus, the decoder function is given by

~x1, ~x2, . . . , ~xm( ) � VDecoder h31( ) (5)
where ~xi denotes the reconstruction for xi.

2.2.2 Objective function
In this scope of work, UMINT has been initially used to

integrate scRNA-seq and single cell protein expression data.
Subsequently, it has been used to integrate scRNA-seq and
ATAC-seq data. Thus, for each dataset, paired RNA and
ADT assays, or paired RNA and ATAC assays form the
inputs to different modules of the Input Layer of UMINT.
For each cell x, UMINT tries to find an optimal
reconstruction ~x of the input data retaining as much
information as possible, thereby minimizing the
reconstruction error ‖x − ~x‖. The reconstruction error is
contributed by reconstruction loss from each modality. In
order to avoid biasness arising out of number of dimensions
in the input modalities, we have introduced a balancing
parameter λi. Additionally, in order to limit over-fitting, we
have used an L1 regularization on the nodes’ activities to allow
sparsity of nodes’ outputs and an L2 regularization on the
weight values since L2 regularization tries to shift weight
values towards zero. Both L1 and L2 regularizations
minimize the model complexity. In this work, L1 and L2
regularizations have been controlled using regularization
parameters α and β respectively. The objective function thus
becomes

LUMINT � 1
n
∑m
i�1

λi‖Xi − ~Xi‖2 +∑m
i�1

∑4
j�2

α‖hji‖1 + β‖Wji‖2( ) (6)

Values of the regularization parameters α and β have been set to
0.0001 and 0.001 respectively, as recommended in literature
(Chaudhary et al., 2018). UMINT has been trained for 25 epochs
using Adam Optimizer (Kingma and Ba, 2017) with a batch size of
16 and Eq. 6 as the loss function. During the forward pass, the data is
fed as input to the encoder. A lossy reconstruction of the input data
is produced by the decoder at the Reconstruction layer. The error
value is then propagated backwards, and the weights and biases are
updated for a better reconstruction in the next forward pass.

2.3 Latent low-dimensional embedding and
clustering

At the outset of this work, the proposed integration model,
called UMINT, has been used to integrate RNA and protein
expression data. Once trained to reconstruct the input data,
UMINT is capable of learning a latent low-dimensional
embedding that extracts relevant features from the integrated
data. Here, we have used UMINT to extract a latent embedding
of 64 dimensions. This latent embedding has been used in the
subsequent step for downstream analysis in order to explore its
effectiveness. We have used agglomerative hierarchical clustering
and k-means clustering algorithm on this latent embedding to
cluster the cell-types for each of the datasets used in the study.
The performance of UMINT has then been compared against
existing benchmark methods used for multi-omics integration.
We have used two measures, viz., Adjusted Rand Index (ARI)
and Fowlkes Mallows Index (FMI) scores, to measure the degree
of agreement between the actual and predicted cell-types, for all the
methods used in comparison including UMINT. The actual cell
types corresponding to the ground truth data have been obtained
from the corresponding source datasets mentioned in Table 1.

For two sets of cluster labels, the overlap between them is
represented by a contingency table C = [cij], where cij indicates
the total number of points belonging to both ith cluster of the first set
and jth cluster of the second set. ARI is an external cluster validity
index, and is thus defined as

ARI � ∑ij
cij
2( ) − ∑i

pi
2( )∑j

qj
2( )[ ]/ N

2( )
1
2 ∑i

pi
2( ) +∑j

qj
2( )[ ] − ∑i

pi
2( )∑j

qj
2( )[ ]/ N

2( ) (7)

where pi = ∑jcij, qj = ∑icij and N = ∑ijcij respectively. An ARI value
close to 1 indicates good resemblance between two clusters.
Similarly, FMI, another external evaluation index used to
measure the similarity between two sets of cluster labels, is
defined as

FMI � TP																		
TP + FP( ) TP + FN( )√ (8)

where TP, FP and FN denotes the count of True Positives, False
Positives and False Negatives respectively. The FMI score lies
between 0 and 1, and a high value implies a good similarity
between two clusters.

At a subsequent stage of the work, UMINT has been evaluated
on another multiome dataset containing paired gene expresssion
and ATAC-seq data. After preprocessing each modality and
reducing them to highly variable features, UMINT has been used
to extract a latent 64-dimensional embedding by integrating the
RNA and ATAC assays. This latent embedding has been further
subjected to agglomerative hierarchical clustering and k-means
clustering. The embedding quality has been assessed using
external evaluation criteria like, ARI and FMI, as explained above.

3 Results

UMINT has been applied on a variety of datasets containing
cells from both healthy donors as well as donors with a disease, and
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its performance has been evaluated over multiple steps as depicted in
the graphical abstract shown in Figure 1. Initially, it has been
benchmarked on three CITE-seq datasets, viz., cbmc8k, MALT10k
and bmcite30k, where cbmc8k and bmcite30k contain cells from
healthy samples, and MALT10k contains cells from rare lymphoma
(MALT). The latent embedding produced by UMINT has been first
compared with that produced by Autoencoder (AE)-based
architectures. Subsequently, the UMINT-generated embedding
has been compared with three other state-of-the-art single cell
multi-omics integration methods. Section 3.1 and Section 3.2
describe results of comparison of UMINT against AE and other
state-of-the-art methods on these three datasets. Thereafter,
UMINT has been further tested for its performance on another
CITE-seq dataset kotliarov50k having multiple batches. For
evaluating the batch correction performance of UMINT, we have
performed two different experiments on kotliarov50k dataset, with
and without batch integration. Finally, as an extended utility,
UMINT has been used to integrate paired gene expression and
ATAC-seq data. The integrated embedding generated by UMINT
has then been validated through clustering techniques. Additionally,
UMINT has been validated on a bulk multi-omics cancer dataset for
integration and classification.

3.1 Comparison with autoencoder-based
unsupervised neural network models

An AE network (Hinton and Salakhutdinov, 2006), which is an
unsupervised neural network used for dimension reduction, being
the closest resemblance to UMINT, we have first compared it with a
regular AE network and its variations, viz., Denoising AE (DAE) and
Sparse AE (SAE), both in terms of architectural difference and
performance.

3.1.1 Comparison with autoencoder-based models
with respect to number of trainable parameters
and execution time

Similar to an AE network, UMINT also tries to reconstruct the
original input as explained in Section 2.2. However, there is a
difference between the two. The input layer in AE shares a dense
connection with the first hidden layer, whereas, the connections
between the Input layer and the first Modality encoding layer in
UMINT is not dense. This reduces the number of parameters to be
trained, drastically. Although, in this work, UMINT has been used to
integrate single cell RNA and protein expression data, it is quite
capable of integrating any number of omics layers. Let us consider
that the input to UMINT consists of data from mmodalities having
n samples each with d1, d2, . . ., dm dimensions respectively. As
shown in Figure 2, UMINT consists of the same number of modules
in the Modality encoding layer as that in the Input layer. If the
number of neurons in each of the module of thisModality encoding
layer are n1, n2, . . ., nm respectively, then the total number of
trainable parameters (TPUMINT) between the Input layer and the
Modality encoding layer in the encoder network becomes

TPUMINT � ∑m
i�1

dini (9)

Considering an input of similar dimensions, if an AE network is
employed to achieve this same task of integration, the number of
trainable parameters (TPAE) between the input layer and the first
hidden layer becomes

TPAE � ∑m
i�1

di
⎛⎝ ⎞⎠ ∑m

i�1
ni⎛⎝ ⎞⎠ (10)

Thus, the reduction in the number of trainable parameters
(TPReduction) in the encoder network is given by

TPReduction � TPAE − TPUMINT � ∑m
i�1

di ∑m
j�1,j≠i

nj⎛⎝ ⎞⎠ (11)

A reduction in the number of trainable parameters by the same
amount is also available at the Reconstruction layer of the decoder
network. Hence, the total reduction (TPTotalReduction) in the number
of trainable parameters in UMINT is given by

TPTotalReduction � 2 × TPReduction � 2 × ∑m
i�1

di ∑m
j�1,j≠i

nj⎛⎝ ⎞⎠ (12)

This is a massive improvement over AEs considering more than one
modality of data to be integrated. UMINT network reduces to a
regular AE network if a single modality is used which, however, does
not serve the purpose of integration.

We have further recorded the execution time taken by both
UMINT and the different variations of AE for integration of single
cell multi-omics data. This experiment has been repeated multiple
times with different training and test datasets to ensure stability of
results. As shown in Figure 3, we have observed that integration
using UMINT has been much faster as compared to that obtained
using different AE-based networks, like a regular AE, DAE and SAE.
Thus, we can say that UMINT not only has a light-weight
architecture than AE-based networks, but it is also
computationally less expensive than them.

3.1.2 Comparison with autoencoder-based models
with respect to performance

Initially, the performance of UMINT has been compared with
that of a standard AE and its variations (DAE, SAE) with respect to
their reconstruction capability and the strength of the latent low-
dimensional embeddings produced at the bottleneck layer by each
network. As mentioned earlier, RNA and protein expression data
form the input to different modules of the Input Layer of UMINT
which has then been used to reconstruct the input data. On a similar
note, RNA and protein expression data have been stacked together
to form the input to the AE-based networks. The AE-based networks
reconstruct the combined input by passing it through a series of
layers. In the process, they learn to extract useful features at the
bottleneck layer, where a latent embedding of 64 dimensions is
produced, similar to UMINT. The models UMINT, AE, DAE and
SAE have been trained keeping all hyper-parameter values identical.
For each modality, the amount of correlation between the original
data and its reconstruction, has then been computed for UMINT
and all the AE-based models using Pearson correlation coefficient.
We have then defined an Overall Reconstruction Score (ORS) to
assess the reconstruction performance of UMINT against that of the
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AE-based models, based on the omics modalities used for
integration as follows

ORS � 1
m

∑m
i�1

ρi (13)

where ρi is the Pearson correlation coefficient value between the
pairwise distances in the original ith data modality and the pairwise
distances in its reconstructed counterpart. As shown in Figure 4, we
have observed that UMINT has outperformed all the AE-based
networks with respect to overall reconstruction of the omics
modalities, for all the three datasets used for evaluation, with

Median Correlation Coefficient (MCC) values and corresponding
p-values as recorded in Supplementary Table S1. All the experiments
have been repeated multiple times with different training and test
datasets divided in a 80 : 20 ratio. The results of the test for statistical
significance thus obtained, have made us infer that UMINT is
capable of producing better overall reconstructions than AE-
based methods.

Thereafter, we have compared the latent low-dimensional
embedding produced by UMINT with that produced by a
standard AE and its variations. Once trained to create a lossy
reconstruction of the input, the latent representation has been
extracted from the bottleneck layer of UMINT and all AE-based

FIGURE 3
Comparison of execution time taken for single cell multi-omics data integration by UMINT with that taken for integration by different variations
of AE.

FIGURE 4
Comparison of performance of UMINT with that of a regular AE, and its variations DAE and SAE with respect to overall reconstruction of RNA and
ADT modalities in cbmc8k, MALT10k and bmcite30k datasets.
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FIGURE 5
Comparison of clustering performance of UMINT against that of AE-based methods when agglomerative hierarchical clustering is used, as
measured by (A) ARI and (B) FMI; (C) and (D) show clustering performance of UMINT compared to AE-based methods, as measured by ARI and FMI
respectively, when k-means clustering algorithm is used.

TABLE 2 A theoretical comparison between UMINT and other methods used for comparison.

Method Methodology Produces latent
embedding
(Yes/No)

Support cell-
type clustering

(Yes/No)

Omics
integration

supported for

Makes assumption
about data

distribution (Yes/No)

Can reconstruct
original data
(Yes/No)

UMINT Neural network
based

Yes No Both single cell and
bulk

No Yes

Autoencoder Neural network
based

Yes No Both single cell and
bulk

No Yes

Seuratv4 Graph based Yes Yes, via Louvain,
Leiden and SLM

Single cell only No No

MOFA+ Matrix factorization
based

Yes No Both single cell and
bulk

Yes Yes

TotalVI Neural network
based

Yes No (recommends
using Scanpy)

Single cell only Yes Yes
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models. Cell-type clustering on this latent embedding using k-means
and agglomerative hierarchical clustering has been performed to
validate the effectiveness of UMINT and compare it with AE-based
models using ARI and FMI scores, as discussed earlier.

We have observed that for cbmc8k and bmcite30k datasets, the
latent representation produced by UMINT has been more
representative of the cell clusters when compared with that of
AE-based methods. For MALT10k dataset, when hierarchical
clustering algorithm is used, UMINT embedding has produced

similar ARI and FMI scores to that obtained on embedding
produced by AE-based methods. This is indicated by both ARI
and FMI scores as shown in Figures 5A–D. Median ARI (MARI),
Median FMI (MFMI) scores along with the corresponding p-values
obtained using UMINT and the AE-based models on these three
datasets for both hierarchical and k-means clustering algorithms
have been shown in Supplementary Table S2. All the experiments
have been repeated multiple times with different training and test
datasets to ensure stability of the results.

FIGURE 6
Comparison of clustering performance of UMINT against Seuratv4, MOFA+ and TotalVI when agglomerative hierarchical clustering is used, as
measured by (A) ARI and (B) FMI; (C) and (D) show performance of each method, as measured by ARI and FMI respectively, when k-means algorithm is
used for clustering.
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3.2 Comparison with other state-of-the-art
methods for single cell multi-omics
integration

Subsequently, we have compared the performance of UMINT
with three other state-of-the-art methods - Seuratv4 (Hao et al.,
2021), MOFA+ (Argelaguet et al., 2020) and TotalVI (Gayoso et al.,
2021). We have chosen these three methods since they represent
three different categories of algorithms - Graph based, Matrix

factorization based and Neural network based, developed for
single cell multi-omics integration (Stanojevic et al., 2022). To
ensure a fair comparison between all these methods, we have
followed the same preprocessing pipeline for all the datasets used
for comparison. The effectiveness of UMINT has once again been
demonstrated by clustering the cell-types on the latent low-
dimensional embedding produced by it. It may be mentioned
here that Seuratv4 is capable of producing an integrated low-
dimensional representation through weighted-nearest neighbor

FIGURE 7
Performance of UMINT on bmcite30k dataset with respect to (A) batch integration, (B) cell-type clustering.
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analysis, and also find cell clusters from the integrated embedding
using Louvain (Blondel et al., 2008), Leiden (Traag et al., 2019) or
SLM (Waltman and Van Eck, 2013) community-detection
algorithms. TotalVI, on the other hand, integrates the data
through variational inferencing and autoencoding, and uses the
standard Scanpy (Wolf et al., 2018) pipeline for clustering on the
latent embedding. MOFA+, however, only produces a low-
dimensional representation of the integrated data, as in the case
of UMINT. The methods used in this work for comparison have
been compared theoretically in Table 2. Thus, for Seuratv4 and
TotalVI, we have extracted the cluster labels, while for MOFA+, we
have extracted the factors representing the low-dimensional
embedding and used hierarchical and k-means clustering on the
same, similar to UMINT, as illustrated in the graphical abstract
shown in Figure 1. Interestingly, UMINT has outperformed all three
methods in terms of ARI and FMI scores, validated both by
hierarchical and k-means clustering. Figure 6 shows the average
ARI and FMI scores obtained using UMINT plotted against the
scores obtained by the three benchmark methods.

3.3 Performance of UMINT on multi-batch
datasets

Batch effects in single cell datasets pose great challenges in data
integration and compromises the results (Haghverdi et al., 2018;
Tran et al., 2020). We wondered how UMINT would perform when
there are batches in the data. The dataset bmcite30k used in this work
contains two batches. However, we have not performed batch
integration on this dataset. Figures 4–6 show the performance of
UMINT on bmcite30k dataset when no batch integration has been
performed. We have further observed that batches present in the
bmcite30k projection by UMINT have been well integrated and are
thus inseparable. Additionally, cell clusters obtained on UMINT
projection are cohesive and well separated too. Thus, we can say that
besides cell-type clustering, UMINT may have the potential to
integrate batches in data efficiently, as shown in Figure 7.

However, validation on a single dataset might not establish the
strength of UMINT in terms of batch correction since the bmcite30k
dataset itself may not have strong batch effects.

Hence, in order to reinforce our findings, we have performed a
few more experiments on another dataset kotliarov50k. This dataset,
collected from (Lotfollahi et al., 2022), contains filtered data for
52,117 cells with highly variable genes (3,999), and two batches of
RNA and protein expressions each. Moreover, it contains expression
values for 87 proteins, a lot more than the three other datasets used
in this work. We have first integrated batches using
Seuratv4 SCTransform () (Hao et al., 2021) module with default
parameters and fed the batch integrated RNA and ADT datasets to
UMINT. The low-dimensional embedding produced by UMINT has
then been evaluated for clustering and batch integration
performance. In another experiment, we have fed the
preprocessed RNA and ADT datasets (without batch integration)
into UMINT, and evaluated the low-dimensional embedding
produced by it for clustering and batch integration performance
too. Apart from two external validity indices, we have used two
internal validity indices - silhouette coefficient (Rousseeuw, 1987)
and Davies Bouldin (DB) index (Davies and Bouldin, 1979) to
measure the clustering performance of the UMINT-generated
embeddings on the omics data with and without batch
integration. Interestingly, we have observed that when the
UMINT embedding has been generated from the RNA and ADT
data without batch integration, the ARI, FMI, Silhouette and DB
scores achieved have been quite close to those achieved when
UMINT embedding has been generated from batch integrated
RNA and ADT data, as shown in Figure 8. Thus, it is clear that
even without batch integration, UMINT can extract most relevant
features from the data that can act as input to further downstream
investigations. However, the UMINT-generated embedding
obtained on batch integrated data has shown better batch
correction performance than that obtained on data without batch
integration. From Figures 9A, C, it can be observed that batches in
kotliarov50k data remain separable if batch integration is not
performed on the dataset explicitly. This explains why

FIGURE 8
Clustering performance of UMINT-generated embeddings obtained from RNA and ADT data with and without batch integration on the kotliarov50k
dataset as measured by (A) external validity indices and (B) internal validity indices.
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performance on kotliarov50k dataset without explicit batch
correction is not as good as that on the same dataset with batch
correction. Thus, there is further scope of improvement for UMINT
in terms of batch correction performance. Figures 9B, D show cell-
type clustering performance of UMINT on the kotliarov50k dataset,
without and with batch integration respectively.

3.4 Performance of UMINT on paired RNA-
seq and ATAC-seq data

Finally, the performance of UMINT has been assessed on
another multiome dataset containing paired gene expression
and ATAC-seq assays. This pbmc10k dataset has been first
preprocessed via MUON (Bredikhin et al., 2022) and reduced
to highly variable features only. These reduced datasets have been
further processed to match the cells in the two modalities. The two
paired assays, RNA and ATAC, have then been fed as input to
UMINT, which has successfully extracted a latent low-dimensional
embedding out of the integrated data. In order to validate the
embedding quality, we have used both hierarchical and k-means
clustering techniques on the UMINT-generated embedding and
measured the clustering performance using ARI and FMI scores.

FIGURE 9
(A) and (B) show batch correction and clustering performance of UMINT on the kotliarov50k dataset without batch integration; (C) and (D) show
similar results on the kotliarov50k dataset with batch integration.

TABLE 3 ARI and FMI scores obtained on applying k-means and hierarchical
clustering on the UMINT-generated latent embedding of pbmc10k multiome
dataset.

k-means Hierarchical

ARI FMI ARI FMI

0.69 0.74 0.73 0.77
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The average scores over multiple runs of this experiment has been
reported in Table 3, which shows that the UMINT-generated
embedding has been pretty efficient in clustering the cell-types.
The UMAP-projections on the individual modalities (after PCA-
based dimension reduction) and on the embedding produced by
UMINT have been illustrated in Figures 10A–C respectively. Cell-
type annotation for the UMAP plot on the UMINT-generated
embedding has been performed using the RNA-annotations since
the ATAC annotations highly correlate to the RNA annotations as
shown in Figure 10D. Thus, we can say that besides CITE-seq data,
UMINT is competent enough to integrate paired RNA-seq and
ATAC-seq assays too.

3.5 Performance of UMINT on bulk multi-
omics data

As an extension to this work, in order to support the claim
that UMINT can integrate a variable number of omics layers, we
have further assessed UMINT for its integration performance on
bulk expression datasets with more than two modalities. TCGA

multi-omics data for Liver Hepatocellular Carcinoma (LIHC)
from TCGA portal (now relocated to Genomic Data Commons
https://gdc.cancer.gov/), have been used for this purpose. Pre-
processed datasets have been collected from our earlier work
(Seal et al., 2020) in which we tried to estimate gene expression
surrogates from genetic and epigenetic features through a DL
pipeline. This dataset contains three omics layers - DNA
methylation (DNAm), Copy Number Variation (CNV) and
RNA-seq. It contains 404 paired samples out of which 359 are
cancer and 45 are normal. The procedures conducted in this
separate experiment and their corresponding results have been
described in Supplementary Section S2.

4 Discussion and conclusion

In this work, we have introduced a novel deep Unsupervised
neural network for single cell Multi-omics INTegration (UMINT).
We have used UMINT to integrate heterogenous single cell omics
modalities and extract meaningful projections at reduced
dimensions. These features have been further used for clustering.

FIGURE 10
Figures (A), (B) show UMAP projections on the individual RNA-seq and ATAC-seq data respectively after PCA-based dimension reduction while,
Figure (C) show UMAP projection on the UMINT-generated latent embedding of pbmc10kmultiome dataset. Figure (D) shows the correlation between
the RNA and ATAC annotations.
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The effectiveness of UMINT has been first demonstrated on four
publicly available CITE-seq datasets, and compared on three of them
with some other state-of-the-art algorithms used for single cell
multi-omics integration. One of the three datasets used for
benchmarking corresponds to MALT rare disease, which
establishes the applicability of UMINT on rare diseases as well.
Thereafter, the performance of UMINT has been assessed on an
auxiliary dataset containing paired gene expression and ATAC-seq
assays.

The strengths or advantages of UMINT are many-fold.
UMINT-generated latent embedding has been proved to
produce better clustering than that generated using AE-
based methods. UMINT has a light-weight architecture in
terms of the number of trainable parameters. Even then,
UMINT-generated reconstruction has been better than that
produced by AE-based methods. When evaluated against other
state-of-the-art algorithms, UMINT has displayed superior
performance over every other method used for comparison,
across most of the evaluation criteria on all the three CITE-seq
datasets. The fact that UMINT can integrate both CITE-seq,
and paired RNA-seq and ATAC-seq data fortifies its strength
over other existing single cell multi-omics integration
methods. Moreover, UMINT does not make assumptions
about the underlying data distribution, thus making it more
robust. Finally, UMINT has been found to be competent
enough to integrate bulk multi-omics datasets too. It has
been able to produce better reconstructions for bulk omics
data than that obtained using a standard AE. UMINT-
extracted features from bulk multi-omics data, have also
shown superior classification of tumour and normal
samples. Integration of both single cell and bulk multi-
omics datasets imply that UMINT supports integration of
widely heterogenous and varying number of omics
modalities. Very few such integration methods exist that
can efficiently integrate features from both single cell and
bulk multi-omics, and can handle variable number of omics
layers. UMINT’s capacity to embed features from healthy and
disease omics (including a rare disease) also demonstrates its
applicability across varying health conditions.

UMINT, however, is susceptible to batch effects to some
extent. It has been able to correct batches for bmcite30k dataset
well (though the inherent batch effect in this dataset is subject to
further investigations), while for kotliarov50k data, integration has
been compromised by a tolerable amount due to batch effect.
Further, there is a huge imbalance of features in CITE-seq, and the
paired RNA-seq and ATAC-seq data. Despite this imbalance, the
overall embedding produced by UMINT remains unaffected. In
the current scope of work, we have not explored the integration of
other high throughput omics modalities like spatial
transcriptomics. Sequencing-based spatial transcriptomics data
like 10x Visium are still not available at a single cell resolution.
They are at spot level which may contain around 10–30 cells per
spot on an average which hinders pairing of input samples (cells
and spots). Presently, deconvolution methods are still a better
choice for interrogating spatial trancriptomics with single cell
transcriptomics. We have also not optimized the model at this
stage for image-based data, hence multi-omics spatial data, like
NanoString GeoMx, MERSCOPE using MERFISH technology,

cannot be still used for integration. Inclusion of such omics
layer(s) will need inclusion of Convolutional Neural Network
(CNN)-based DL models into the existing UMINT architecture.
This would further allow us to better understand the overall
contribution of each omics layer at a single cell and spatial level
to decipher regulatory systems biology on top of scRNA-seq,
scATAC-seq and protein expression data with a spatial location.
The potentiality of UMINT to select features from each of the input
modalities has also not been explored in the current scope of work.
Instead, UMINT has been used to extract relevant features from
the integrated data at a low dimension. All these remain as a future
extension and a scope for improvement for UMINT to identify key
molecular anchors in development and disease biology.

Nevertheless, UMINT can capture better variability among
high-dimensional datasets and produce robust low-dimensional
embedding which can significantly assist further downstream
analyses. A reduction in the number of trainable parameters also
makes UMINT far less computationally expensive than existing
neural network models based on AEs. Thus, we are able to provide a
robust and efficient unsupervised deep learning model for single cell
multi-omics integration.

Data availability statement

UMINT has been implemented in Python 3. The codes to
reproduce the results are freely available at https://github.com/
deeplearner87/UMINT. GitHub repository has been organized
into three main directories—Preprocessing, Proposed and
Benchmarking. The Preprocessing directory (https://github.com/
deeplearner87/UMINT/tree/main/Preprocessing) contains codes
(R scripts and IPython notebooks) for preprocessing the datasets
used in this study. The Proposed directory (https://github.com/
deeplearner87/UMINT/tree/main/Proposed) contains the script
for the proposed method umint.py and notebooks for the
pipeline executed on various datasets. Notebooks corresponding
to the comparative analysis made in this work are contained in the
directory Benchmarking (https://github.com/deeplearner87/
UMINT/tree/main/Benchmarking). The preprocessed datasets
used in this work can be downloaded from https://doi.org/10.
5281/zenodo.7723340. UMINT can be executed on any standard
computing platform with at least 8 GB RAM on a Windows/Linux/
CentOS platform with python 3.7+ installed in it.
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