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Modular multilevel converter (MMC) is a proven technology for HVDC applications
due to its salient features such as modularity and excellent power quality. To
ensure best possible grid support, recent grid codes require incorporating fault
ride-through (FRT) strategies so that HVDC converter stations remain connected
and maintain reliable operation under various symmetrical and asymmetrical AC
faults. In this paper, a communication-free enhanced fault ride-through technique
without the need of DC chopper has been proposed. The proposed FRT strategy
ensures quick post fault recovery operation and can effectively manage DC link
and capacitor voltages within safe limits. Along with proposed FRT strategy, in
order to avoid high circulating current (CC) inside an MMC, this paper has
proposed an optimal circulating current control approach based on
proportional resonant and PI controllers in an abc reference frame. The
suggested technique lowers the ripple in capacitor voltages while reducing the
magnitude of the CC. Under both balanced and unbalanced ac grid conditions, the
ripple in the dc link voltage is also reduced without the use of dual synchronous
reference frame or any additional controllers. Simulation results confirm the
effectiveness of the proposed FRT and CC suppression techniques for a 580-
kV, 850-MW MMC-based HVDC system.
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1 Introduction

Since power electronic devices and power converters have advanced so quickly, DC has
reemerged and become preferable to AC. HVDC is a well-established technology that is
chosen over HVAC for long-distance transmission (Soomro et al., 2022). Lists the MMC-
based HVDC installations that have already been established around the world. The growth
of HVDC projects has created the possibility for HVDC super-grids, which connect several
HVDC systems. Continental super-grids are regarded as futuristic and are anticipated to
materialize in 15 years (Gomis-Bellmunt et al, 2019).
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Different converter configuration have been employed in several
HVDC projects. They are majorly classified into Line-commutated
converters (LCC) and voltage source converter (VSC). Initially LCC
were considered favored option. However, the voltage source
converter (VSC) afterwards appeared and is dominating. MMC is
recognized to be advanced version of VSC technology as shown in
Figure 1. Due to key advantages such as scalability, modularity, FRT
capability, improved power quality, compactness, black start
capability, and better efficiency, MMC is preferred over other
VSC topologies (Soomro et al., 2022).

Numerous PWM approaches, including sinusoidal pulse width
modulation (SPWM), space vector PWM, selective harmonic
elimination (SHE), and nearest level modulation (NLM), are
suggested in the literature as being utilized to control the MMC.
NLM operates at fundamental switching frequency (reduces
switching losses) and is simple to implement (Ali et al., 2020;
Soomro et al., 2021). NLM is favored among all PWM
approaches for a greater number of sub-modules. Additionally, it
provides desirable benefits including a natural voltage balancing
method and avoids the need for challenging mathematical
calculations, as in the case of SHE (Chandio et al., 2023). Due to
the aforementioned advantages, NLM has been selected in the
proposed system as a PWM.

In MMC-based HVDC systems, the issues of CC and capacitor
voltage ripple (CVR) need to be closely examined. During MMC
operation, the SMs capacitors will charge and discharge, which will
cause a CVR issue. This could result in energy differences between
the arms in a MMC. The potential difference (imbalance voltage)
and internal current between the various phase legs and arms are
brought on by this energy difference. CC, also known as internal
current is shown in Figure 1 with red dotted lines. Under balanced
grid settings, a CC is a negative sequence current with twice the

fundamental frequency. However, along with negative sequence
current, positive and zero-sequence current also show up in
unbalanced grid situations (Cui et al, 2018). Although second
order harmonics predominate in CC, if left unchecked, it may
intensify 4th, 6th, 8th order harmonics and beyond. Furthermore,
if unchecked, it could lead to higher CVR problem, power losses,
poor power quality, inductor saturation, decreased efficiency,
shorter equipment life, and general instability (Cui et al, 2015).

This research paper presents an integrated control strategy that
not only suppresses CC but also tackles the issue of CVR. Through
simulation results, we demonstrate that the proposed controller
outperforms conventional PI and PR-based CC suppression
methods in terms of dynamic response, steady-state error
reduction, and converter loss mitigation. Additionally, the
proposed method ensures well-regulated capacitor voltage across
all arms of MMC, offering superior performance during fault
conditions and maintaining stable converter operation. In
addition to reduced CC and CVR, a communication-free
enhanced FRT technique without the need for a DC chopper has
also been proposed in this research work.

2 Comparison with previous research

CC suppression and capacitor voltage balancing approaches
have been the subject of extensive investigation. In research work
(UdDin et al., 2019; Ishfaq et al, 2019; Uddin et al., 2019; Uddin et al,
2021) different CC suppression schemes have proposed for CC
suppression. In (Uddin et al, 2021), authors proposed arm level
control for controlling output and CC of MMC using vector current
control principle. The CC is suppressed by using conventional
proportional resonant (PR) controller. The validity of the

FIGURE 1
Three phase equivalent structure of an MMC.
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suggested arm level control scheme is demonstrated in the paper by
comparison findings of leg-level control based on PR controller. A
three-phase, five-level MMC is proposed to evaluate how well the
suggested CC approach works. It was suggested in (Ud Din et al.,
2019) that a backstepping controller may be used to regulate the
capacitor and CC voltage. Comparing the proposed backstepping
controller to a PR controller, it was discovered that the backstepping
controller outperformed the PR controller in terms of CC
suppression and CVR reduction. The output current and CC are
controlled using an adaptive proportional integral (API) controller
in (Ishfaq et al, 2019). Results from MATLAB/Simulink are then
compared for the PR and API controllers to demonstrate that the
API controller outperform the PR controller in terms of suppressing
CC. The sliding mode control (SMC) in (Uddin et al., 2019) is used
to control the output current and CC. To confirm the effectiveness of
the suggested control technique for suppressing CC, the results of
the suggested controller are extensively compared with the
traditional PR controller. On a unit-level MMC, each of the
aforementioned methods for suppressing CC has been put into
practice. However, their integration into networked systems like
HVDC is not covered. Additionally, the suggested control methods’
resilience has not been examined in the context of various AC and
DC fault scenarios. Sub-module (SM) CVR and CC reduction will
become evenmore challenging in case of unbalanced grid conditions
(AC fault). The CVR and CC can be rather significant and can
exceed the established safe limits in case of unbalanced AC fault. If
this happens, the converter will trip, which could cause major
stability issues. Various strategies for addressing the MMC SM
CVR and CC under unbalanced grid situations have been
presented in literature (Ilves et al, 2011; Pou et al., 2014; Wang
et al, 2018a; Li et al, 2019a; Wang et al, 2020a; Wang et al., 2020b;
Wang et al, 2020c; Wang et al, 2021). The goal of the suggested
compensation control strategies is to guarantee that, even when the
grid is unbalanced, the CVR and CC ofMMCs always operate within
safe limits. However, the authors have only proposed control
techniques for internal dynamic control of MMC such as CC and
CVR. The studies presented did not focus the implementation of
outer loop. Results were only limited to control of CC and CVR on a
unit level MMC and transient analysis under different AC and DC
faults were not part of the studies.

Traditional CC suppression schemes only focus on reducing CC
without minimizing CVR. On the other hand few researchers prefer
lowering CVR while slightly compromising CC. To suppress the CC
and decrease the CVR simultaneously, several authors have
proposed various enhanced CC control methods (Wang et al.,
2018b; Hafeez et al, 2020; Isik et al, 2020; Hafeez et al, 2021; Isik
et al, 2021). The research work in (Isik et al, 2020; Isik et al, 2021)
focus on internal dynamics under only single-line-to-ground (SLG)
fault on a MMC-HVDC test system. The robustness of the proposed
HVDC is not tested against other AC fault scenarios such as
symmetrical and asymmetrical faults. Whereas (Wang et al.,
2018b; Hafeez et al, 2020; Hafeez et al, 2021) only limits the
results for CC and CVR reduction, without verifying the
behavior of proposed HVDC system for AC and DC fault scenarios.

The transient dynamics of HVDC systems during various AC
and DC fault scenarios is also active research area. The HVDC
system is considered to be robust if it has both AC FRT capability
and internal dynamics control. Numerous researchers have

suggested alternative control and protection measures, including
those in (Zhou et al, 2019; Luscan et al, 2020; Malanda, 2020; Shah
et al, 2020; Cheng et al, 2021; Xin et al, 2021), for the HVDC system’s
ability to ride through an AC fault. The severe requirement of FRT
for safe grid operation during faults with minimal power disruptions
is the driving factor behind these problems. At the point of common
connection (PCC) between the MMC stations and the faulty grid
during the occurrence of a grid fault, there is a significant voltage
drop. The output power of theMMC abruptly decreases as a result of
this quick drop in AC voltage. The HVDC power mismatch results
from the fact that one MMC fails to interchange power with the
faulty grid while the other MMC, which is situated on the other side
of the DC link, is still able to perform well (Tavakoli et al, 2021).
Depending on the fault location (grid 1 or grid 2) and the pre-fault
power direction, the capacitance of the DC cable is continually
charged or discharged. During the fault, if the capacitance is not
adequately managed, this can cause the DC voltage to rise or drop to
an unacceptable level. This puts more strain on the HVDC
equipment and may cause protective devices to trip; which would
result in the converter station being disconnected from the AC grid
too soon. To ensure the best possible grid support, current grid
regulations mandate that HVDC converter stations remain
connected to the grid and maintain stability under such PCC
fault situations. The HVDC converter station’s FRT capabilities
help to achieve this goal (Tzelepis et al, 2017; Wang et al, 2017).

For grid faults, a variety of FRT techniques have been proposed
to keep DC voltage within acceptable limits. The most of them are
with offshore wind (OW) penetration, where a DC over voltage
results from an OW farm’s excess output and an issue with the
onshore AC grid (Erlich et al, 2013; Kirakosyan et al., 2016; Li et al,
2019b). The following categories can be applied to the FRT
procedures depending on how this excess power is managed.

a. Dissipation: A DC chopper is used to dissipate excess power
generated during a brief time of fault (Pannell et al, 2013; Naderi
et al, 2018). (Xu et al, 2019; Xu et al, 2020; Qi et al, 2021; Wu et al,
2021; Wang et al, 2023) proposed novel and enhanced DC
chopper for MMC base(B)d HVDC applications.

b. Storage: Kinetic energy is produced out of the excess energy and
kept in the rotor of the wind turbine (Yang et al, 2011) or a special
flywheel (Daoud et al, 2015).

c. Power reduction: The excess power is decreased through the
following methods: i) power reduction of individual OW turbines
during onshore fault (Ramtharan et al, 2009), ii) reduction of the
OWAC voltage by the offshore MMC (Erlich et al, 2013), and iii)
an increase in the frequency of the AC voltage by the offshore
MMC, which results in a reduction in OW power (Silva et al,
2014).

From the FRT design perspective, the interconnection of two AC
grids present a unique set of challenges because the fault could occur
in either grid or grid 2. As a result, the DC link may experience both
DC under and over voltage. Be aware that while DC under voltage
might cause over modulation problems (Jiang et al, 2023), DC
overvoltage may have an impact on the HVDC equipment’s
insulation level and MMC parts. Typically, slave MMC (referred
to as MMC2) regulates the active power flow while master MMC
(referred to as MMC 1) acts in DC voltage regulation (Wang et al,
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2014). Therefore, 2 MMCs require different FRT mechanisms in
order to stabilize DC voltage during fault.

Some of the recommended FRT systems, which focus on the
connecting of two AC grids, depend on a communication channel.
For instance, the research reported in (Adam et al, 2010) found that
the observed PCC voltages on both sides of the DC link determine
the active power set point of the slave terminal. As a result, the active
power reference is automatically lowered if there is a voltage dip on
either side of the DC link. The implementation of a communication
link typically results in good DC voltage performance, but requires
extra cost and there is a chance that communication may fail. The
ability of master and slave stations to momentarily switch between
performing DC voltage regulation is the basis for another class of
FRT techniques. With these methods, communication between two

MMC terminals is nonexistent. Similarly, the idea of voltage margin
control has been proposed in (Nakajima and Irokawa, 1999). When
the system experiences an abnormal DC voltage state, the slave
converter station detects it and shifts from active power controller to
DC voltage controller till everything returns to normal. As an
alternative to voltage margin control, DC voltage droop control
has been studied in (Oguma and Akagi, 2016) to regulate the DC
link during a fault. A control technique to reduce transient voltage
dips (AC FRT) for HVDC systems based on MMC was put forth in
(Slettbakk, 2018; Hoehn et al., 2019; Khan et al, 2022). The objective
was to use internal energy stored inMMC to supply the passive loads
with steady power in the case of any dip at the grid. However, the
studies were limited to only voltage sag fault and system stability
were not tested against other different fault scenarios such as
symmetrical, asymmetrical faults. Moreover, the CC and CVR
problem were not focused. The same FRT approach has been
extended for MTDC systems in (Ansari et al., 2022). The key
drawback of proposed FRT in (Slettbakk, 2018; Hoehn et al.,
2019; Ansari et al., 2022; Khan et al, 2022) is increased size of
capacitor, increasing overall cost and weight of converter station.

The aforementioned issues are addressed in this study in such a
way that not only does the HVDC link’s DC voltage is managed, but
also the CC and CVR is successfully suppressed. In order to avoid
high CC inside an MMC, this paper suggests an optimal CC control
approach based on PR and PI controllers in an abc reference frame.
The suggested technique lowers the CVR while reducing the
magnitude of the CC. Under both balanced and unbalanced ac
grid conditions, the ripple in the DC link voltage is also reduced
without the use of dual synchronous reference frame (DSRF) or any
additional controllers. Moreover, a communication-free improved
voltage margin FRT technique without the need of DC chopper has
been proposed. The capacitor and DC link voltages stay within safe
limits during the FRT, and the DC voltage never exceeds the safe
limit. Research is carried out on the efficacy of the proposed FRT and
CC suppression techniques for symmetrical and asymmetrical faults
at different fault locations (Grid 1 and 2).

3 Proposed enhanced CC suppression
scheme and optimized voltage margin
control

Although there are many other MMC SM configurations, the
half-bridge is frequently used. The Half Bridge SM, seen in
Figure 2A, is used in this study due to its low cost, reduced
volume (weight) and simple controllability (Isik et al, 2020; Isik
et al, 2021). In a half bridge SM, the SM capacitor is inserted into the
arm, and if the top switch S1 conducts, the SM voltage changes to the
capacitor voltage. The SM voltage is zero when the lower switch, S2,
conducts. As a result, average arm voltage, which is composed of N
separate SM voltages as shown in Figure 2B, can be thought of as a
controlled voltage source (Isik et al, 2020; Isik et al, 2021).

Upper (Vau) and lower (Val) arm voltages can be expressed Eqs
1, 2 if KVL is applied to phase A in Figure 1; Eq. 3 can be used to
construct a reference voltage for the output ac voltage for Phase A,
where m is the modulation index, w is the angular frequency, and δx
is the system’s initial phase angle; Eq. 4 represents phase voltage. The
expressions for the arm currents of the upper (iu,a), lower (il,a), and

FIGURE 2
(A)Half Bridge SM Configuration (B) Switching model of an MMC
Phase.
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differential current (iz,a) are (5), (6), and (7), respectively. As can be
seen from Eq. 7 that differential current consists of dc component
and ac component of CC. DC component is essential for reliable
operation of the converter, however the CC need to be suppressed. If
left uncontrolled, it will increase ripple component (Δvripple,ua) of
SM upper arm capacitor voltage as expressed in Eq. 8. Therefore the
primary job of proposed CC is to suppress icirc,a sin (nwt + ϕy) and
(Δvripple,ua) simultaneously. Eq. 9 describes individual SM current.
It can be seen from Eqs 10, 11 that total power and energy consists of
even harmonics and switching frequency components. These
components can be removed and the energy variation can be
decreased through proper control of the CC. The transfer
function of proposed CC suppression PR control is expressed in

Eq. 12. In order to achieve symmetric operation throughout all
phases, a compensating voltage is applied to the suppressed
differential voltage (vz,ac) to provide a consistent imbalance
voltage. Thus, CC is reduced by suppressing this differential
voltage (imbalance voltage). Thus, Eqs 13, 14 for the upper and
lower arms, respectively, can be used to estimate the number SM to
be inserted, where (nz) is the differential insertion index and
determined by the reference differential voltage vz,ap.

Vau � ∑N

i�1SiuVcu � Vdc/2 − Vma − L0 diua( )/dt (1)
Val � ∑N

i�1SiuVcl � Vdc/2 + Vma − L0 dila( )/dt (2)
Vma � (Vla − Vua)/2 � mVdc/ 2 sinωt + δx( ) (3)

FIGURE 3
Proposed CC suppression method.

FIGURE 4
(A) V-I Characteristics in LCC based HVDC system (B) Voltage Margin control in VSC based HVDC system.
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Va � Vdc − L0 d iua + ila( )/dt[ ] (4)
iua � ia/2 sin ωt + φx( ) + iz,a (5)
ila � −ia / 2 sin ωt + φx( ) + iz,a (6)

iz,a � iua + ila( )2 � Idc/3 + icirc,a sin nωt + φy( ) (7)

Vcu,i � Vdc

N
+ Δvripple,ua � 1

CSM
∫T

0
Nu,aiua t( )dt (8)

icu,i � Vau

NVcu,i
iua � Siuiua (9)

dWa t( )
dt

� VdcIdc
3

1 + km
2

cos nωt + φy( ) − cosφx( )[ ]
+VdcInf cos nωt + φy( )
+IdcVnf

3
sin nωt + φy( )

+VnfInf
2

sin nωt + 2φy( ) (10)

Wa t( ) � VdcIdc
3

km
4ω

sin nωt + φy( ) + 1 − km
2

cosφx( )t[ ]
+VdcInf

2ω
sin nωt + φy( )n

−IdcVnf

6ω
cos nωt + Φ( )n

−VnfInf
8ω

cos nωt + φy( )

(11)

Gh s( ) � krs

s2 + 2w( )2 (12)

nu,a � Vdc

2Vcu
1 − round m sin wt + δx( )( )[ ] − nz (13)

nl,a � Vdc

2Vcl
1 + round m sin wt + δx( )( )[ ] − nz (14)

Figure 3 shows the proposed CC control technique. The work in
this research is based on an enhanced CC suppression strategy. As a

FIGURE 5
Detailed control system applied on proposed system description.
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result of this method’s elimination of DSRF and dependence on PLL,
the controller’s processing time is reduced, making it faster. At twice
the fundamental frequency, it can reduce the positive, negative, and
zero sequence components of the CC. The suggested approach of
controlling the CC avoids ripple components from entering the dc
connection without any additional controller.

With coordination between two terminals and the use of the DC
link voltage as a reference signal, enhanced AC FRT is presented.
With the proposed AC FRT scheme, the use of DC chopper and
direct communication between two stations can be avoided. In fact,
the idea of voltage margin control was initially put forth in
(Nakajima and Irokawa, 1999), which was a development of the
LCC-HVDC’s current margin control (Cui et al, 2014). Figure 4A
shows the LCC-current margin control principle (Cui et al, 2018). In
the LCC-HVDC, the rectifier controls the line current and the
inverter controls the DC link voltage. When there is a fault in
the grid on the rectifier side, the rectifier loses its capacity to control
the line current, and the inverter assumes control over line current
regulation. Figure 4B illustrates the voltage margin basic operating
concept (Cui et al, 2018). If the master station fails to control the dc
voltage due to fault on the ac grid side, then the slave station has to
take over the responsibility of DC link regulation.

Optimized DC voltage margin control has been implemented to
ensure robust AC FRT as shown in Figure 5 under proposed system
description section. It will momentarily lose control of the DC
voltage in the event of a fault at the AC Grid station (connected to
the DC voltage control). When DC voltage disturbances reach the
threshold DC voltage, the slave station can immediately take over
the regulation of the DC voltage without the requirement to
determine the type and depth of the AC fault. Under normal
operating circumstances, the active power control station helps to
stabilize the power at reference power while the dc voltage control
regulates the dc voltage at reference value. The DC link voltage hits

either the maximum threshold (Ulim_H) or theminimum threshold
(Ulim_L) in the case of a fault. As a result, the active power control
station regulates its own power level in order to stabilize the dc
voltage.

4 Proposed system description

To verify the effect of proposed enhanced CC suppression
scheme and optimized AC FRT strategy, the interconnection of
two AC grids via MMC-HVDC system was studied on a PSCAD/
EMTDC software. The detailed control system applied on MMC
1 and MMC 2 station on a point to point grid connected HVDC
system is shown in Figure 5. The control system includes active
power control, dc voltage control, alternative voltage control, CC
suppression control, NLM control, and inner current control. A
widely used SRF approach is used. The SRF scheme’s mathematical
equations and implementation procedure are fully explained in
(Adam et al, 2010; Silva et al, 2014; Wang et al, 2014; Jiang et al,
2023). The objective of the developed control system is to manage
DC and AC voltages at the MMC1 converter station while active
power and AC voltage are controlled at theMMC2 converter station.
Furthermore, to guarantee a low CC and a balanced SMs capacitor
voltage, the proposed CC suppression control is employed at both
MMC converter stations. Finally, optimized AC FRT scheme has
been implemented to ensure robust AC FRT during various
symmetrical and asymmetrical ac faults. The parameters used in
proposed system is described in Table 1.

Essentially, the control mechanism consists of two control loops:
outer control loops and inner control loops. The outer loop controls
either active power or DC voltage, as well as AC voltage or reactive
power. The output from the outer control loop, which includes idref
and iqref, is supplied to the inner loop, serving as the reference signal
for the inner current control loop. In the proposed system
description, outer control loops for MMC1, including active
power and AC voltage control, provide idref and iqref to the inner
current control loop. On the other hand, for MMC2, outer control
loops such as DC voltage and AC voltage control deliver idref and
iqref to the inner current control loop. In the inner current control
loop, the actual values of id and iq are compared with the reference
signals, such as idref and iqref, and the error is fed to a PI controller,
which minimizes the error. The output of the inner controller is
further fed to the NLM for generating gate pulses for the MMC.

The control loops, including the active power control loop, AC
voltage control loop, DC voltage control loop, and inner current
control loop, can be represented by Eqs 15–18 respectively.

Idref � 3/2 Pref − P( ) KP+Ki/s( ) (15)
Iqref � Vacref − Vac( ) KP+Ki/s( ) (16)
Idref � Vdcref − Vdc( ) KP+Ki/s( ) (17)

Udqref � −F s( ) iref − i( ) − jωLi + Vg (18)

5 Case studies

Multiple fault scenarios must be addressed by an effective FRT
mechanism. The robustness of system has been tested against

TABLE 1 Parameters for the proposed HVDC System.

Parameter Value

MMC rated MVA 1,000

MMC Rated AC Voltage 370 kV

References Active Power 850 MW

References DC Voltage 580 kV

Arm Inductor 50 mH

Sub modules per arm 76

MMC transformer 370 kV/230 kV

Nominal Frequency 50 Hz

Maximum DC Voltage (Ulim_H) 1.1 [pu]

Minimum DC Voltage (Ulim_L) 0.7 [pu]

Kp value for PR controller 3.3

Kr value for resonant controller 1e4

Kp value for PI controller 0.8

Ki value for PI Controller 0.01
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FIGURE 6
(A) DC Link Voltages at MMC 1 and MMC 2 (B) Active Power at MMC 1 and MMC 2 (C) Phase Voltages connected to MMC 1 (D) Phase Voltages
connected to MMC2.

FIGURE 7
(A) AC side currents of MMC 1 (B) AC side currents of MMC 2.
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various fault types such as three phase fault (LLL-G), SLG fault, line
to line (LL) and double-line-to-ground (LLG) fault. All the scenarios
cannot be covered in this paper. As a result, this section presents a
detailed evaluation of two chosen fault scenarios.

• Scenario 1: The LLL-G fault happens at AC grid 2 at t = 3 s and
cleared at t = 3.3 s.

• Scenario 2: The SL-G occurs at AC grid 1 at t = 3 s and cleared
at t = 3.3 s.

FIGURE 8
Differential Currents of MMC 2: (A) proposed controller (B) PI controller (C) PR controller.

FIGURE 9
Sum of the SM-Capacitor voltages of MMC 2: (A) proposed controller (B) PI controller (C) PR controller.
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5.1 Simulation results for scenario 1 at AC
grid 2 connected to MMC 2

On the AC side ofMMC converter station 2, LLL-G symmetrical
fault is simulated in order to assess how well proposed AC FRT
strategies operate. In this part, the simulation results for both of the
converter stations are discussed. The fault has a total duration of
0.3 s (300 milliseconds). It is switched at time t = 3 s and is supposed
to be cleared at time t = 3.3 s. The FRTmechanism are influenced by
the direction of the prefault power flow via the HVDC link. Here, it
is assumed that the direction of the positive power flow is from
MMC 1 to MMC 2 station. The excess power in the DC link causes
DC over voltage when a failure in AC grid 2 happens and the power
flow direction prior to the fault is positive. Figure 6A shows
simulation results for DC link voltages at both MMC terminals.
The proposed CC suppression scheme has been employed, which
ensures smoother DC link voltages. Without using an additional
controller, the proposed CC control method avoids ripple
components from entering the DC link voltages at MMC 1 and
MMC 2 station. It has been shown in Figure 6D that throughout the
fault period, the phase voltages at terminal 2 (connected to MMC 2)
drops to zero. While MMC 1, which is connected to AC grid 1, has
no significant impact on their phase voltages as shown in Figure 6C,
regardless of whether a fault occurs at ACGrid 2, which is connected

to MMC 2. As the phase voltages at terminal 2 collapse during a
fault, it is evident in Figure 6B that the power supplied by MMC
2 drops to zero. The proposed AC FRT scheme performs in a robust
way by reducing the power by MMC 1 to zero as soon as the
maximum DC voltage (Ulim_H) is detected as shown in Figure 6.

The phase voltages (connected to MMC 2) drops to zero during
the entire fault period, and the MMC 2 converter station contributes
limited current to the fault as shown in Figure 7B. Therefore, the
proposed AC FRT ensures reduced di/dt stress on the power
semiconductor devices. Moreover, it can be seen from Figure 7A
that during the entire fault, theMMC 1 station reduces the current to
zero so that power imbalance and dc overvoltage can be avoided.
The phase voltages and AC side currents of MMC 1 and MMC
2 have improved power quality and reduced THD following IEEE
standards, as shown in zoomed-in portion of Figures 6, 7.

The proposed MMC-based HVDC system not only ensures
optimized AC FRT but also manages CC and CVR issues. The
proposed CC scheme successfully suppresses the magnitude of the
CC, as shown in Figure 8A. Themagnitude of the differential current
is 0.5 PU, which is less than 10% of the nominal current according to
grid codes. The simulation results of the proposed controller are
compared with conventional PI and PR-based CC suppression
control methods to validate the effectiveness of the suggested
control strategy. The proposed controller achieves a quicker

FIGURE 10
(A) DC Link Voltages at MMC 1 and MMC 2 (B) Active Power at MMC 1 and MMC 2 (C) Phase Voltages connected to MMC 1 (D) Phase Voltages
connected to MMC2.
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dynamic response and reduces steady-state error in comparison.
The proposed CC controller ensures the efficient suppression of the
second harmonic current in each leg of the converter, leading to

decreased converter losses and reduced current stresses on the
switches. Figure 8 shows the dynamic response of CC using the
proposed controller, along with PI and PR controllers. The response

FIGURE 11
(A) AC side currents of MMC 1 (B) AC side currents of MMC 2.

FIGURE 12
Differential Currents of MMC 1: (A) proposed controller (B) PI controller (C) PR controller.
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of the proposed CC controller is swift and effective, reaching a steady
state at nearly 3.6 s (within 0.3 s after the fault disappears), while the
PI and PR controllers attain a steady state at approximately 3.7 s
(within 0.4 s after the fault disappears). This indicates that the
proposed CC method responds more quickly than the PI and PR
in terms of circulating current control. The efficiency of the
proposed CC controller is maintained in the steady state as well.
The CC current converges perfectly at the reference value in the case
of the proposed method, while the PI and PR controllers fail to fully
suppress the second harmonic current, as shown in Figures 8B, C
respectively. This leads to increased converter losses and current
stress in devices with the same size and rating as the converter.
Lastly, Figure 8 clearly demonstrates that the response of the
proposed CC method is significantly better than the PI and PR-

based CC methods during a fault. The PI and PR-based methods
display inferior performance during the fault, and when the fault
occurs at 3 s, the differential current reaches 1.8 PU.

As depicted in Figure 9A, the proposed control strategy not only
suppresses CC but also addresses the issue of CVR. The CVR of
MMCs consistently operates within safe limits throughout the fault,
preventing the converter from tripping. Moreover, the capacitor
voltages are balanced and display a reduced CVR during and after
the fault. Figures 9B, C illustrate the capacitor voltage in the case of
the PI and PR-based CC controllers, respectively. Both the PI and
PR-based CC suppression schemes focus solely on reducing CC
without minimizing CVR. Consequently, the ripple magnitude of
capacitor voltages in both methods is nearly the same (higher). In
comparison to the PI and PR-based methods, the proposed method

FIGURE 13
Sum of the SM-Capacitor voltages of MMC 1: (A) proposed controller (B) PI controller (C) PR controller.

TABLE 2 Comparison of proposed controller with PI and PR Controllers.

Performance parameter Proposed controller PI controller PR controller

CC Suppression Efficient Less Efficient Less Efficient

Dynamic Response Time (CC) 0.3 s (post-fault) 0.4 s (post-fault) 0.4 s (post-fault)

Steady-state Error (CC) Reduced Higher Higher

Second Harmonic Suppression Successful Incomplete Incomplete

Converter Losses Decreased Increased Increased

Current Stress on Switches Reduced Increased Increased

CVR Suppression Efficient Less Efficient Less Efficient

Capacitor Voltage Balancing Balanced Unbalanced Unbalanced
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ensures well-regulated capacitor voltage for all upper and lower
arms of MMC, as seen in Figure 9.

5.2 Simulation results for scenario 2 at AC
grid 1 connected to MMC 1

As already discussed in scenario 1, it is assumed that the direction of
the positive power flow is from MMC 1 to MMC 2. To examine the
robustness of the proposed HVDC system, an SLG fault has been
applied at AC Grid 1 in this section. The lack of power in the DC link
causes DC under-voltage when a failure in grid 1 occurs and the power
flow direction prior to the fault is positive. In a HVDC system, a SLG
fault causes a voltage sag on the ac side MMC, which immediately
reduces the MMC’s power capacity, as shown in Figure 10B. The
proposed FRT approach must be used to coordinate two MMC
terminals in order to protect the MMCs from SM capacitor
overvoltage and power imbalance in the event of an SLG fault. In
order to ensure the stability of the power system during the FRT, the
system is predicted to closely match the prefault active power. Results
from the simulation for the DC link voltages at MMC 1 and MMC
2 stations are shown in Figure 10A. Power and DC link voltages at both
MMC stations have negligible deviations from reference value after the
fault is cleared, as shown in Figure 10 Phase A voltages (connected to
MMC 1) reaches to zero during the fault period, as shown in
Figure 10C. This results into slight increase in AC side currents of
MMC 1, as shown in Figure 11A. However, phase voltages (connected
to MMC 2) goes through negligible disturbance during this fault, as
shown in Figure 10D. It can be observed from Figure 11B that AC side
currents of MMC 1 and MMC 2 fluctuates within permissible limits
during the fault and as soon as fault is cleared, the currents reach their
desired value. Phase voltages and AC side currents of both MMC
stations are purely sinusoidal (having reduced THD) following standard
grid codes as shown in zoomed-in portion of Figures 9, 10

Compared to Scenario 1, addressing CVR and CC reduction
becomes even more challenging in the case of an unbalanced grid
(SLG fault). It is worth noting that arm capacitors are typically
designed to withstand twice the rated DC voltage (Prieto-Araujo
et al, 2017). In Scenario 2, similar to Scenario 1, the proposed
controller outperforms conventional PI and PR-based CC
suppression methods, demonstrating a faster dynamic response
and reduced steady-state error, as illustrated in Figure 12. The
controller effectively suppresses the second harmonic current,
decreasing converter losses and reducing current stresses on
switches. It also tackles the CVR issue, ensuring balanced
capacitor voltages and maintaining safe operational limits
throughout the fault, as depicted in Figure 13A. In contrast, PI
and PR-based methods mainly concentrate on reducing CC,
resulting in higher ripple magnitudes and unbalanced capacitor
voltages, as shown in Figures 13B, C, respectively. Consequently, the
proposed method excels in circulating current control and capacitor
voltage regulation compared to PI and PR controllers. The
superiority of the proposed controller over the PI and PR
controllers is summarized in Table 2.

From the above detailed discussions, it is clear that the proposed
communication-free AC FRT scheme ensures comprehensive FRT
capability without the need for additional expensive DC choppers.
Moreover, the optimized CC suppression method properly manages

the CC and CVR within allowable limits. The system ensures quick
post fault recovery operation and exhibits reduced
oscillations (THD).

6 Conclusion

This research paper has presented a comprehensive analysis of the
reliability and stability of MMC-based HVDC systems, addressing
significant challenges such as FRT, CC suppression, and CVR
reduction. The proposed communication-free FRT strategy
developed in this study effectively guarantees stable operation
during both balanced and unbalanced AC faults, eliminating the
need for an additional DC chopper. The proposed CC control strategy
proficiently reduces the CC magnitude to less than 10% of the
nominal current, meeting grid code requirements. A comparative
analysis between the proposed CC controller and traditional PI and
PR-based controllers highlights the superiority of the proposed
method. The dynamic response time of the proposed controller
achieves a steady state at nearly 3.6 s (within 0.3 s after the fault
disappears), while the PI and PR controllers reach a steady state at
approximately 3.7 s (within 0.4 s after the fault disappears). This
indicates a faster response in circulating current control for the
proposed controller. Moreover, the proposed CC controller ensures
efficient second harmonic current suppression, an area in which the PI
and PR controllers are inadequate. Lastly, the proposed method
effectively addresses CVR, ensuring that capacitor voltages remain
within safe limits during rapid post-fault recovery operations. The
results of this thorough investigation underscore the potential of the
proposed strategies in enhancing the performance and resilience of
MMC-based HVDC systems, paving the way for more dependable
and efficient power transmission in future grid networks.
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